Title
Cutaneous varicella zoster virus infection following zoster vaccination: report of post-vaccination herpes zoster skin infection and literature review of zoster vaccination efficacy and guidelines

Permalink
https://escholarship.org/uc/item/9tv6p5jz

Journal
Dermatology Online Journal, 23(6)

ISSN
1087-2108

Authors
Stiff, Katherine M
Cohen, Philip R

Publication Date
2017-01-01

License
CC BY-NC-ND 4.0

Peer reviewed
Cutaneous varicella zoster virus infection following zoster vaccination: report of post-vaccination herpes zoster skin infection and literature review of zoster vaccination efficacy and guidelines

Katherine M Stiff1 BS and Philip R Cohen2 MD

Affiliations: 1Northeast Ohio Medical University, Rootstown, Ohio, 2Department of Dermatology, University of California San Diego, La Jolla, California

Corresponding Author: Philip R Cohen, MD, 10991 Twinleaf Court, San Diego, CA 92131, Email: mitehead@gmail.com

Abstract

\textbf{Background:} Herpes zoster vaccine is currently recommended in the United States for immune competent individuals \geq60 years. The efficacy of the herpes zoster vaccine decreases with age and with time following vaccination.

\textbf{Purpose:} An elderly man with herpes zoster following vaccination is described. The guidelines for vaccination and issues regarding re-vaccination are reviewed.

\textbf{Methods:} PubMed was used to search the following terms: efficacy, elderly, herpes zoster, herpes zoster incidence, herpes zoster recurrence, and vaccination. The papers and relevant citations were reviewed. The clinical features of a patient with post-vaccination herpes zoster skin infection are presented; in addition, vaccine efficacy and guidelines are reviewed.

\textbf{Results:} A 91-year-old man, vaccinated for herpes zoster 10 years earlier, presented with crusted erosions on his face corresponding to the area innervated by the ophthalmic division of the left trigeminal nerve. Evaluation using polymerase chain reaction confirmed the diagnosis of herpes zoster.

\textbf{Conclusions:} Herpes zoster vaccine decreases in efficacy with both age and number of years following vaccination. Therefore, booster shots or revaccination in the older population may be of benefit.

\textit{Keywords:} herpes, vaccination, vaccine, zoster

Introduction

Varicella zoster virus causes varicella (chicken pox) upon initial exposure. The virus then becomes dormant in sensory and cranial ganglia and reactivates in approximately 15\% of people to cause herpes zoster (shingles). Most cases of reactivation occur in the older population owing to declining cell-mediated immunity [1]. The virus usually presents with painful unilateral dermatomal lesions. The most common complication of herpes zoster is postherpetic neuralgia; this is a progression of herpes zoster, with pain persisting for over three months [2].

A herpes zoster vaccine was approved for use in the United States in 2006. It is recommended, in the United States, for all immune-competent individuals \geq60 years. We describe a man who received the zoster vaccine at age 81 years and subsequently developed cutaneous herpes zoster 10 years post-vaccination. We also review the guidelines and concerns regarding the efficacy of the herpes zoster vaccine in older adults.

Case Synopsis

A 91-year-old man visits his ophthalmologist every 3 months for an ocular procedure involving an injection of aflibercept (Eylea\textregistered) to treat his macular degeneration. Immediately following the procedure, he noted pain around his eye. During the next two days, the pain worsened and extended towards his left ear and forehead. Two days later, he noted blisters on his upper eyelid and scalp.

The ophthalmologist referred him to a dermatologist for evaluation of the lesions. He presented to the dermatology clinic on day 7 after the onset of symptoms. Cutaneous examination revealed crusted erosions on the left upper eyelid and superior helical...
rim in addition to erythematous pustules on the face and anterior scalp (Figure 1). The distribution of the lesions corresponded to the ophthalmic division of the left trigeminal nerve.

A specimen from a lesion was obtained for polymerase chain reaction evaluation. The test was positive for varicella zoster virus. The diagnosis of cutaneous herpes zoster was confirmed.

Treatment included oral valacyclovir (1000 mg 3 times daily) and topical mupirocin 2% ointment (3 times daily to the lesions). Within two days after initiating treatment, there was significant relief of pain and the vesicles began to crust. He continued the oral and topical therapy until his follow up appointment two weeks later; all of his symptoms and lesions had resolved.

Case Discussion
Varicella zoster virus infects the body when it contacts the mucosa of the upper respiratory tract or the conjunctiva. It then travels through the blood to the skin, leading to the development of the varicella eruption known as chicken pox. The virus can also infect other organ systems [1].

Subsequently, varicella zoster virus becomes dormant in dorsal root and cranial nerve ganglia, where it can reactivate and present as herpes zoster [1]. Herpes zoster affects approximately one million Americans every year. Nearly one in three Americans

Figure 1. Distant (left) and closer (right) views of lesions on the face (top left and right) and scalp (bottom left and right) show painful erythematous lesions on the face and pustules on the anterior scalp corresponding to the dermatome innervated by the ophthalmic division of the left trigeminal nerve.
Dermatology Online Journal | Case Presentation

will develop herpes zoster throughout their lifetime and 68% of cases occur in those aged 50 years and older [3].

Most patients with herpes zoster have a prior history of varicella virus infection during childhood. The virus reactivates when cell-mediated immunity declines in older individuals [1] or in immunocompromised patients, including persons with bone marrow and other organ transplants, human immunodeficiency virus infection, Hodgkin disease, leukemia, non-Hodgkin lymphomas, rheumatoid arthritis, systemic lupus erythematosus, and immunosuppressive medication exposure [2, 4, 5].

The onset of herpes zoster can be spontaneous or linked to trauma [6]. A study by Zhang et al. in 2013 showed that individuals with herpes zoster were 3.4-times as likely as controls to have experienced trauma in the week before onset; in addition, patients with cranial herpes zoster were more than 25 times as likely as controls to have had cranial trauma in the week before herpes zoster onset [6]. Our patient’s eye treatment may have been associated with his development of herpes zoster.

Herpes zoster usually presents with unilateral erythematous blisters or pustules. Clear vesicles and new vesicle formation follow for three to 5 days after which the lesions pustulate and scab [6]. The vesicles are traditionally located within one or two adjacent dermatomes, most commonly the thoracic, cervical, or ophthalmic branch of trigeminal ganglion [1]. Pain may precede the appearance of a rash, as it did with our patient, or the patient may not experience pain until the eruption appears. The pain ranges from mild itching, tingling, or allodynia to severe pain [6].

Postherpetic neuralgia, pain persistent after resolution of the eruption, is the most common side effect of herpes zoster [2]. The incidence of this complication increases with age. Indeed, post-herpetic neuralgia occurred in 33% of zoster patients of age 79 years and older; approximately 80-85% of postherpetic neuralgia cases occurs in zoster patients ≥50 years old [3]. In an analysis of data from the United Kingdom General Practice Research Data-base, Gauthier et al. found that postherpetic neuralgia, defined as pain at 3 months post-zoster episode, increased from 8% of patients ages 50-54 years to 21% of patients ages 80-84 years [7].

The herpes zoster vaccine, Zostavax®, was licensed in the United States in 2006. This vaccine is a live attenuated vaccine; thus, it is contraindicated for certain groups of individuals (Table 1), [8-11].

Table 1: Contraindications for herpes zoster vaccination [8-11].

| Allergy: Patients allergic to any component of shingles vaccine, such as: |
| Gelatin |
| Neomycin |
| Weakened Immune System: Patients who have or who are receiving: |
| Chemotherapy |
| Hematoproliferative malignancies |
| High dose corticosteroid treatment |
| HIV infection, CD4+ count <200 cells/μL |
| Peripheral blood stem cell transplantation recipients [a] |
| Radiation |

| Other: Patients who have or who are receiving, or who are: |
| Active, untreated tuberculosis |
| Anti-TNF biologics [b] |
| Non-TNF biologics [c] |
| Pregnant |

[a] Peripheral blood stem cell transplantation recipients who are < 24 months post-transplantation, who still require immunosuppressive therapy, or who have evidence of graft-versus-host-disease should not receive live vaccines [10].

[c] Non-TNF biologics include abatacept, rituximab, and tocilizumab [11].
The incidence of herpes zoster increases with age. Unfortunately, the efficacy of the zoster vaccine declines with increasing age [12-14, 22]. Indeed, the efficacy of Zostavax® declines from nearly 70% in individuals aged less than 60 years at the time of their vaccination, to only 18% in those aged 80 and older when vaccinated (Table 2), [12, 22, 23].

The vaccine’s effectiveness also decreases over time. Tseng et al. found that the efficacy falls from 68.7% in the first year to 4.2% in the eighth year [24]. Another study showed that the decrease in risk of developing zoster is significant for at least 5 years after vaccination [14]. However, a booster dose of the vaccine is currently not recommended [14].

The decline in efficacy of the zoster vaccine presents a problem. Many people who receive the vaccine at age 60 go on to live for many years after vaccination and their risk for development of herpes zoster and post-herpetic neuralgia continues to increase as they age. This suggests the need for a revaccination program in older patients.

Levin et al. found that administering a booster dose of zoster vaccine to adults ≥70 years who had received their first dose of zoster vaccine ≥10 years previously elicited a varicella zoster virus antibody response that was non-inferior to that in adults aged ≥70 years who received their first dose of zoster vaccine [25]. This suggests a potential benefit to a booster for patients following their initial vaccination. Our patient was again vaccinated two months after his zoster infection resolved.

A concern regarding revaccination in patients nearing the older end of the indicated age (≥80 years) is the cost-effectiveness of the vaccine. Cost-effectiveness analysis by Gelb in 2007 showed that, given the cost per quality-adjusted life-years gained by vaccine

<table>
<thead>
<tr>
<th>Age</th>
<th>50-59 years</th>
<th>60-69 years</th>
<th>70-79 years</th>
<th>≥80 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td>69.8%</td>
<td>64%</td>
<td>41%</td>
<td>18%</td>
</tr>
</tbody>
</table>

[a] Table is modified from data in references 12, 22, and 23.

[b] The age group is the age in which the patient received the vaccine. The mean duration of follow up was 3.13 years for those aged 60 years and older [12] and 1.3 years in those aged 50-59 [22].
administration, models of patients vaccinated closer to 60 years old were more cost-effective than models of patients vaccinated at older ages [26]. However, this study, along with other studies analyzing the cost-effectiveness of the herpes zoster vaccine, was performed before the long-term efficacy of the vaccine was known [26-28]

Conclusion

Herpes zoster is a disease caused by reactivation of the varicella zoster virus. The incidence of herpes zoster increases with advancing age. A vaccine for herpes zoster has proven to be effective in preventing the disease; however, the efficacy declines as patients age. The effectiveness of the vaccine also decreases as the time following vaccination increases. This disparity in efficacy leads to numerous situations, similar to that which occurred in our patient, in which the patient develops zoster following vaccination. Currently, the CDC recommends only a single dose of the zoster vaccine. Analysis of other individuals with similar scenarios to our patient prompts consideration as to whether booster immunizations or revaccination should be considered in order to provide better immunity with increasing age. More studies are required in order to determine if these methods would be cost-effective and beneficial to our continuously growing aging population.

After consulting with his primary care physician, our patient decided to be revaccinated following his zoster episode. The arguments supporting revaccination are the minimal side effects to the vaccine, and potential benefits in possibly preventing future episodes of zoster. The arguments against revaccination are the cost of the medication and the lower efficacy based on increasing treatment age. From a medical point of view, there is no contraindication to vaccination in immunocompetent elderly individuals. However, from a socioeconomic and evidence-based medicine perspective it may not be cost-effective, considering the likelihood of an elderly patient developing a clinical recurrence.

References

