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Counterexample-guided inductive synthesis (CEGIS) is used to synthesize programs from a candi-
date space of programs. The technique is guaranteed to terminate and synthesize the correct program
if the space of candidate programs is finite. But the technique may or may not terminate with the
correct program if the candidate space of programs is infinite. In this paper, we perform a theoreti-
cal analysis of counterexample-guided inductive synthesis technique. We investigate whether the set
of candidate spaces for which the correct program can be synthesized usingCEGIS depends on the
counterexamples used in inductive synthesis, that is, whether there aregood mistakeswhich would
increase the synthesis power. We investigate whether the use of minimal counterexamples instead
of arbitrary counterexamples expands the set of candidate spaces of programs for which inductive
synthesis can successfully synthesize a correct program. We consider two kinds of counterexamples:
minimal counterexamples andhistory boundedcounterexamples. The history bounded counterexam-
ple used in any iteration ofCEGIS is bounded by the examples used in previous iterations of inductive
synthesis. We examine the relative change in power of inductive synthesis in both cases. We show
that the synthesis technique using minimal counterexamplesMinCEGIS has the same synthesis power
asCEGIS but the synthesis technique using history bounded counterexamplesHCEGIS has different
power than that ofCEGIS, but none dominates the other.

1 Introduction

Automatic synthesis of programs has been one of the holy grails of computer science for a long time.
It has found many practical applications such as generatingoptimal code sequences [27, 20], optimiz-
ing performance-critical inner loops, generating general-purpose peephole optimizers [3, 4], automat-
ing repetitive programming, and filling in low-level details after the higher-level intent has been ex-
pressed [33]. A traditional view of program synthesis is that of synthesis from complete specifications.
One approach is to give a specification as a formula in a suitable logic [25, 26, 13]. Another is to write
the specification as a simpler, but possibly far less efficient program [27, 33, 20]. While these approaches
have the advantage of completeness of specification, such specifications are often unavailable, difficult
to write, or expensive to check against using automated verification techniques. This has led to proposal
of oracle guided synthesis approach [19] in which the complete specification is not available. All these
different variants of automated synthesis techniques share some common characteristics. They are itera-
tive inductive synthesis techniques which require some kind of validation engines to validate candidate
programs produced at intermediate iterations, and these validation engines identify counterexamples, aka
mistakes, which are subsequently used for inductive synthesis in the next iteration. We collectively refer
to such synthesis techniques as counterexample-guided inductive synthesis, akaCEGIS.

In this paper, we conduct a theoretical study ofCEGIS by examining the impact of using different
kinds of validation engines which provide different natureof counterexamples.CEGIS has been success-
fully used across domains and has been applied to areas such as integer program synthesis and controller
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design where the candidate set of designs is not finite, and the synthesis technique is not guaranteed
to always succeed. This raises an interesting question whether the power ofCEGIS can be improved by
considering validation engines which providebettercounterexamples than any arbitrary counterexample.

We consider two kinds of counterexamples in this paper.

• First, we considerminimal counterexamples instead of arbitrary counterexamples. For any pre-
defined ordering on the examples, we require that the validation engine provide a counterexam-
ple which is minimal. This defines an alternative synthesis technique: Minimal Counterexample
Guided Inductive SynthesisMinCEGIS where the validation engine returnsminimalcounterexam-
ples.

This choice of counterexamples is motivated by literature on debugging1. Significant effort has
been made on improving validation engines to produce counterexamples which aid debugging
by localizing the error. The use of counterexamples inCEGIS conceptually is an iterative repair
process and hence, it is natural to extend successful error localization and debugging techniques to
inductive synthesis. Minimal counterexamples is inspiredspecifically from [28, 8].

• Second, we consider history bounded counterexamples wherethe counterexample produced by the
validation engine must be smaller than a previously seen positive example. This defines another
alternative synthesis technique: History Bounded Counterexample Guided Inductive Synthesis
HCEGIS where the validation engine returnshistory boundedcounterexamples.

This choice of counterexample is also motivated by literature on debugging. In particular, [12,
35] use distance of the counterexample from a correct example to help debug programs. If the
counterexample is very close to a correct example, then the error localization would be more
accurate. We use a similar notion and force the counterexamples produced by the validation engine
to be close to some previously seen correct example.

For each of the variants ofCEGIS, we analyze whether it increases the candidate spaces of programs
where a synthesizer terminates with correct program. We prove the following in the paper.

1. MinCEGIS successfully terminates with correct program on a candidate space if and only ifCEGIS
also successfully terminates with the correct program. So,there is no increase or decrease in power
of synthesis by using minimal counterexamples.

2. HCEGIS can synthesize programs from some program classes whereCEGIS fails to synthesize
the correct program. But contrariwise,HCEGIS also fails at synthesizing programs from some
program classes whereCEGIS can successfully synthesize a program. Thus, their synthesis power
is not equivalent, and none dominates the other.

Thus, none of the two counterexamples considered in the paper are strictlygood mistakes. The
history bounded counterexample can enable synthesis in additional classes of programs but it also leads
to loss of some synthesis power.

2 Motivating Example

In this section, we present a simple example that illustrates why it is non-intuitive to estimate the change
in power of synthesis when we consider alternative kinds of counterexamples. Consider synthesizing a

1 Practically, this would mean replacing satisfiability solving based verification engines with those using Boolean optimiza-
tion such as maximum satisfiability solving techniques.
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program which takes as input a tuple of two integers(x,y) and outputs 1 if the tuple lies in a specific
rectangleR (defined by diagonal points(−1,−1) and(1,1)) and 0 otherwise.

The target program is:

i f ((−1≤ x&& x≤ 1)&& (−1≤ y&& y≤ 1)) op= 1 else op= 0

The candidate program space is the space of all possible rectangles inZ×Z whereZ denotes the set
of integers, that is,

i f ((αx ≤ x&& x≤ βx)&& (αy ≤ y&& y≤ βy)) op= 1 else op= 0

whereαx,αy,βx,βy are the parameters that need to be discovered by the synthesis engine.
Now, consider a radial ordering of(x,y) which usesx2+y2 as the ordering index. If we consider syn-

thesis using minimal counter-examples, it is clear that we can learn the rectangle: starting with an initial
candidate program that always outputs 1 for all(x,y) in Z×Z; validation engine producing minimum
counterexamples would discover the rectangle boundaries.One possible sequence of minimal counterex-
amples would be(0,2),(0,−2),(2,0),(−2,0). Since the boundary points form a finite set,MinCEGIS

will terminate with the correct program. But if the counterexamples are arbitrary as inCEGIS, it is not
obvious whether the rectangle can be still learnt. Our paperproves thatCEGIS can also learn such a
rectangle.

The question of synthesis power of different techniques using different nature of counterexamples is
non-trivial when the space of programs is not finite. Even termination of inductive synthesis technique
is not guaranteed when the candidate space of programs is infinite. Thus, the question of comparing the
relative power of these synthesis techniques is interesting.

3 Related Work

Automated synthesis of systems using counterexamples has been widely studied in literature [32, 34,
19, 16, 7] as discussed in Section 1. While the applications of CEGIS to different domains have been
very extensively investigated, theoretical characterization of the CEGIS approach independent of the
application domain has received limited attention. To the best of our knowledge, this is the first attempt
at a theoretical investigation into how the nature of counterexamples inCEGIS would impact the power
of inductive synthesis technique to synthesize programs.

The inductive generalization used inCEGIS is similar to algorithmic learning from examples [11,
10, 21, 9, 29]. This relation between the two fields has been previously identified in [19]. A learning
procedure is provided with strings from a formal language and the task of the learner is to identify the
formal grammar for the language. Learning is an iterative inductive inference process. In each iteration,
the learning procedure is provided a string. The string is either in the language, that is, it is a positive
example, or the string is not in the language, that is, it is negative example. Based on the examples, the
learning procedure proposes a formal grammar in each iteration. The learning procedure is said to be able
to learn a formal language if the learner converges to the correct grammar of the formal language after
a finite number of iterations. The algorithmic learning techniques can be classified across the following
three dimensions:

1. Nature of examples: Examples could be restricted to only positive examples, or it could include
negative examples too.
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2. Memory of learner: The memory of the learner is allowed to grow infinitely or it could be bounded
to a finite size.

3. Communication of examples to learner: The examples couldbe provided to the learner arbitrarily
or as responses to specific kind of queries from the learner such as membership or subset queries.

We discuss the known theoretical results for algorithmic learning across these dimensions and identify
how the results presented in this paper extend these existing results.

Gold [11] considered the problem of learning formal languages from examples. Similar inductive
generalization techniques have been studied elsewhere in literature as well [18, 37, 5, 1]. The examples
are provided to learner as an infinite stream. The learner is assumed to have unbounded memory and
can store all the examples. This model is unrealistic in a practical setting but provides useful theoretical
understanding of inductive generalization. Gold defined a class of languages to beidentifiable in the
limit if there is a learning procedure which identifies the grammarof the target language from the class
of languages using a stream of input strings. The languages learnt using only positive examples were
calledtext learnableand the languages which require both positive and negative examples were termed
informant learnable. We examine the known results for both:text learnableand informant learnable
classes of languages. None of the standard classes of formallanguages are identifiable in the limit from
text, that is, from only positive examples [11]. This includes regular languages, context-free languages
and context-sensitive languages. It is also known that no class of language with at least one infinite
language over the same vocabulary as the rest of the languages in the class, can be learnt purely from
positive examples. We can illustrate this infeasibility ofidentifying languages from positive examples
with a simple example.

Consider a vocabularyV and letV∗ be all the strings that can be formed using vocabularyV. The
strings inV∗ arex1,x2, . . .. Let us consider the set of languages

L1 =V∗−{x1},L2 =V∗−{x2}, . . .

Now a simple algorithm to learn languages from positive examples can guess the language to beLi if xi

is the string with the smallest index not seen so far as a positive example. This algorithm can be used to
inductively identify the correct language using just positive examples. But now, if we add a new language
V∗ which contains all the strings from vocabularyV to our class of language, that is,

L2 =V∗
,V∗−{x1},L2 =V∗−{x2}, . . .

The above algorithm would fail to identify this class of languages.
In fact, no algorithm using positive examples would be able to inductively identify this class of

languages. The key intuition is that if the data is all positive, no finite trace of positive data can distinguish
whether the currently guessed language is the target language or is merely a subset of the target language.
Now, if we consider the presence of negative counterexamples, the learning or synthesis algorithm can
begin with the first guess asV∗. If there are no counterexamples, thenV∗ is the correct language. If a
counterexamplexi is obtained, then the next guess isV∗−{xi}, and this is definitely the correct language.

A detailed survey of classical results in learning from positive examples is presented in [24]. The
results summarize learning power with different limitations such as the inputs having certain noise, that
is, a string not in the target language might be provided as a positive example with a small probability.
Learning using positive as well as negative examples has also been well-studied in literature. A detailed
survey is presented in [17] and [22]. In contrast to this lineof work, CEGIS is a practical inductive
generalization which restricts the memory of the synthesisengine or learner. At any step, the synthesis
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engine only has the candidate design and response from the verifier which can be stored in a finite
memory. Further, in contrast to learning from an infinite stream of positive and negative examples,
CEGIS inductive generalization relies on using counterexamples. The positive and negative examples
used inCEGIS are not arbitrary but rather they depend on the counterexample-generating verifier and the
intermediate candidate programs proposed by the synthesisengine.

Another related line of work is that of techniques using iterative algorithmic learning with restricted
memory of the learner [23, 36]. The learner or synthesis engine can use only finite memory but these
techniques rely on availability of an infinite stream of positive examples in addition to negative examples.
While the stream is not explicitly stored due to finite memoryconstraint, it can be used for synthesizing
intermediate concepts. In contrast,CEGIS relies on using positive examples which are derived from the
specification with respect to the counterexamples. These techniques differ fromCEGIS in the dimension
of how counterexamples are communicated to the learner or synthesis engine.

Angluin [2] considered a similar learning environment asCEGIS with respect to the communication
of counterexamples to the learner or synthesis engine. Angluin’s learning model consists of a teacher
or oracle which provides responses to queries from the learner. The teacher in the context of Angluin
is analogous to verifier inCEGIS and the learner is the synthesis engine. Similar learning models have
also being proposed in [31, 14, 6, 15]. But they focus on complexity analysis of learning techniques
using different kinds of queries such as membership queries, verification or equivalence queries and
subset queries. In contrast, we restrict ourselves to verification queries and investigate the impact of
substituting arbitrary counterexample producing verifiers with more powerful verifiers which produce
counterexamples which are minimal or bounded.

Verification techniques have been adapted to provide more meaningful counterexamples [12, 28, 35,
8] for the purpose of aiding design debugging. The key idea isthat these more powerful verification
engines that provide not just any arbitrary counterexamples but rather a simpler counterexample with
respect to some metric can be used for better debugging. These simpler or minimal counterexamples
provide the most information to help localize bugs in a faulty design. If a counterexample trace is
close to a correct trace and differs from a correct trace in a minimal way, then it can be used more
effectively to localize the source of bug and fix it. It is natural to consider extending this use of minimal
counterexamples for debugging to also enable more powerfulsynthesis. In this work, we conduct a
theoretical analysis of using these more power verificationengines and using counterexamples produced
by these to aidCEGIS in synthesis.

4 Notation

In this section, we define some preliminary notation used in our definition and analysis of CEGIS and
MinCEGIS.N represents the set of natural numbers.Ni ⊂ N denotes a subset of natural numbersNi =
{n|n < i}. min(S) denotes the minimal element in the setS. The union of the sets is denoted by∪ and
the intersection of the sets is denoted by∩.

A sequenceσ is a mapping fromN toN∪{⊥}. We denote a prefix of lengthk of a sequence byσ [k].
So,σ [k] of lengthk is a mapping fromNk to N∪{⊥}. σ [0] is an empty sequence also denoted byσ0.
We denote the natural numbers in the range ofσ [i] by SMPL, that is,SMPL(σi) = range(σi)−{⊥}. The
set of sequences is denoted byΣ.

We extend natural numbers to pairs. Let〈n1,n2〉 be any bijective computable function fromN×N→
N which is monotonically increasing in both of its arguments.Similarly, pairs can be extended ton-
tuples. Assuming existence of such a bijective mapping, tuples can also be used in place of natural
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numbers as elements of a language. A language in this case would be a subset of such tuples.
We also use standard definitions from computability theory [30]. A setLi of natural numbers is called

computable or recursive language if there is an program, that is, a computable, total functionPi such that
for any natural numbern, Pi(n) = 1 if n ∈ Li andPi(n) = 0 if n 6∈ Li. We denote the complement of
languageLi by Li. We denote the union of two languagesLi andL j by Li ∪L j , and the intersection of
two languagesLi andL j by Li ∩ L j . Also for convenience, we useL(Pi) to denoteLi using the one to
one mapping between languages and programs that identify them. Thus, we distinguish only between
semantically different programs and not the syntacticallydifferent programs which identify the same
language.

The languages are sets of natural numbers. The natural numbers correspond to indexed elements of
the language or valid input-output traces of the program. Without loss of generality, the natural ordering
of natural numbers is used as an ordering of elements in the set. In practice, this will correspond to
some user-provided ordering on the elements of the language. For example, for a program manipulating
strings, we can choose alphabetical ordering and for program operating on numerical tuples, we can
choose lexicographical ordering. We define a minimum operator min(L) which uses this natural ordering
to report the minimum element in the languageL. If the ordering is not total, min(L) denotes one of the
minimal elements in the languageL with respect to the given partial ordering.

Given a sequenceL of non-empty languagesL0,L1,L2, . . ., L is said to be an indexed family of
languages if and only if there exists a recursive functionTEMPLATE such thatTEMPLATE(i,n) = Pi(n).
We denote the corresponding set of programsP0,P1,P2, . . . by P. For brevity, we refer toTEMPLATE(i,n)
also asPi(n). Intuitively, TEMPLATE defines the encoding of candidate program space similar to sketches
in [33] and the component interconnection encoding in[19]. The indexi is used to index into this
encoding to select a particular programPi. Pi(n) denotes the output of the program on inputn.

Inductive synthesis consists of synthesis enginesT each of which identify the correct programPi

using a set of examples from the target languageLi from a given indexed family of languagesL . So,
the overall synthesis problem is as follows. LetP be the class of candidate programs corresponding
to indexed family of languagesL . No, given some target languageLi from L , the synthesis engine
receives a set of examples{n1,n2, . . .}. The synthesis task is to identifyPi corresponding toLi from the
candidate programsP. CEGIS is a particular kind of inductive synthesis techniques in which examples
are obtained using counterexamples produced through iterative validation of inductively produced inter-
mediate conjecture programs. We use the notations developed in this section to formally define concepts
useful for theoretical analysis ofCEGIS in the next section.

5 Definitions

In this section, we present some definitions. Trace is a sequence of examples from the target languageL.
The formal definition of trace is as follows:

Definition Traceτ : A traceτ for a languageL is a sequence withSMPL(τ) = L. τ [i] denotes the prefix
of the traceτ of lengthi. τ(i) denotes thei-th element of the trace.

Counterexample guided inductive synthesis (CEGIS) techniques employ a verifier to provide coun-
terexamples. So, we define verifiers for a language formally below and then, give a formal definition
of a CEGIS engine denoted byTCEGIS. Intuitively, the verifier returns a counterexample if the languages
are different and returns⊥ if they are equivalent. We use one way difference instead of the symmetric
difference between sets for ease of presentation.
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Definition A verifier CHECKL for a languageL is a non-deterministic mapping fromL to N∪⊥
such thatCHECKL(Li) =⊥ if and only if Li ⊆ L, andCHECKL(Li) ∈ Li ∩L otherwise.

Definition A CEGIS engineTCEGIS : σ ×σ → P is defined recursively below.
TCEGIS(τ [n],cex[n]) = F(TCEGIS(τ [n−1],cex[n−1]),τ(n),cex(n))
whereF is a recursive functionP ×N×N → P that characterizes the engine and how it eliminates
counterexamples,τ [n] is a trace for languageL andcex is a counterexample sequence such that
cex(i) = CHECKL(L(TCEGIS(τ [i −1],cex[i −1]))).
TCEGIS(σ0,σ0) is a predefined constant representing an initial guessP0 of the program, which for example,
could be program corresponding to the universal languageN.

Intuitively, CEGIS is provided with a trace along with a counterexample trace formed by counterex-
amples to the latest conjectured languages. Thus,CEGIS receives two inputs. The counterexample is
generated through a subset query.

Definition We say thatTCEGIS converges toPi if and only if for all, but finitely many prefixesτ [n] of τ ,
TCEGIS(τ [n],cex[n]) = Pi. We denote this byTCEGIS(τ ,cex)→ Pi. In other words,TCEGIS(τ ,cex)→ Pi if
and only if there existsk such that for alln≥ k, TCEGIS(τ [n],cex[n]) = Pi.

Definition TCEGIS identifies a languageLi if and only if for all tracesτ of the languageLi and counterex-
ample sequencescex, TCEGIS(τ ,cex)→ Pi. TCEGIS identifies a language familyL if and only if TCEGIS
identifies everyLi ∈ L .

We now define the set of language families that can be identified by the counterexample guided
synthesis engines asCEGIS formally below.

Definition CEGIS= { L | ∃TCEGIS . TCEGIS identifiesL }

Now, we consider a variant of counterexample guided inductive synthesis where we use minimal
counterexamples instead of arbitrary counterexamplesMinCEGIS. We define a minimal counterexample
generating verifier before definingMinCEGIS. This requires an ordering of the elements in the language.

Definition A verifier MINCHECKL for a languageL is a mapping fromL to N∪⊥ such that
MINCHECKL(Li) =⊥ if and only if Li ⊆ L, andMINCHECKL(Li) = min(L∩Li) otherwise.

Definition A MinCEGIS engineTMinCEGIS : σ ×σ → P is defined recursively below.
TMinCEGIS(τ [n],cex[n]) = F(TMinCEGIS(τ [n−1],cex[n−1]),τ(n),cex(n))
whereF is a recursive functionP ×N×N → P that characterizes the engine and how it eliminates
counterexamples,τ [n] is a trace for languageL andcex is a counterexample sequence such that
cex(i) = MINCHECKL(L(TMinCEGIS(τ [i −1],cex[i −1]))).
TMinCEGIS(σ0,σ0) is a predefined constant representing an initial guessP0 of the program, which for
example, could be program corresponding to the languageN.

The convergence of theMinCEGIS synthesis engine to a language and family of languages is defined
in similar way asCEGIS.

Definition We say thatTMinCEGIS converges toPi, that is,TMinCEGIS(τ ,cex)→Pi if and only if there exists
k such that for alln≥ k, TMinCEGIS(τ [n],cex[n]) = Pi.

Definition TMinCEGIS identifies a languageLi if and only if for all tracesτ of the languageLi and coun-
terexample sequencescex, TMinCEGIS(τ ,cex)→ Pi. TMinCEGIS identifies a language familyL if and only
if TMinCEGIS identifies everyLi ∈ L .
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Definition MinCEGIS= { L | ∃TMinCEGIS . TMinCEGIS identifiesL }

Next, we consider another variant of counterexample guidedinductive synthesisHCEGIS where we
usehistory boundedcounterexamples instead of arbitrary counterexamples. Wedefine a history bounded
counterexample generating verifier before definingHCEGIS. Unlike the previous cases, the verifier for
generating history bounded counterexample is also provided with the trace seen so far by the synthesis
engine. The verifier generates a counterexample smaller than the largest element in the trace. If there
is no counterexample smaller than the largest element in thetrace, then the verifier does not return any
counterexample. From the definition below, it is clear that we need to only order elements in the language
and do not need to define an ordering of⊥ with respect to the language elements since the comparison
is done between an element in non-emptyL∩Li and elementsτ [ j] in the trace.

Definition A verifier HCHECKL for a languageL is a mapping fromL ×σ to N∪⊥ such that
HCHECKL(Li,τ [n]) =mwherem∈ L∩Li∧m< τ( j) for somej ≤ n, andHCHECKL(Li,τ [n]) =⊥ otherwise.

Definition A HCEGIS engineTHCEGIS : σ ×σ → P is defined recursively below.THCEGIS(τ [n],cex[n]) =
F(THCEGIS(τ [n−1],cex[n−1]),τ(n),cex(n))
whereF is a recursive functionP ×N×N → P that characterizes the engine and how it eliminates
counterexamples,τ [n] is a trace for languageL andcex is a counterexample sequence such that
cex(i) = HCHECKL(L(TMinCEGIS(τ [i −1],cex[i −1])),τ [i −1]).
THCEGIS(σ0,σ0) is a predefined constant representing an initial guessP0 of the program, which for exam-
ple, could be program corresponding to the languageN.

The convergence of theHCEGIS synthesis engine to a language and family of languages is defined in
similar way asCEGIS andMinCEGIS.

Definition We say thatTHCEGIS converges toPi, that is,THCEGIS(τ ,cex)→ Pi if and only if there existsk
such that for alln≥ k, THCEGIS(τ [n],cex[n]) = Pi.

Definition THCEGIS identifies a languageLi if and only if for all tracesτ of the languageLi and coun-
terexample sequencescex, THCEGIS(τ ,cex) → Pi. THCEGIS identifies a language familyL if and only if
THCEGIS identifies everyLi ∈ L .

Definition HCEGIS= { L | ∃THCEGIS . THCEGIS identifiesL }

6 Main Result

In this section, we present the main results of the paper. We first compareMinCEGIS andCEGIS in the
first part of the section followed byHCEGIS andCEGIS in the second part of the section. Since the focus
of our work is to analyze the impact of change in the power of counterexample providing verification
engine, we fix the inductive generalization functionF that eliminates counterexamples. So, we vary the
counterexample generating verifierCHECKL, MINCHECKL andHCHECKL butF is constant in our definitions
of CEGIS, MinCEGIS andHCEGIS. In the rest of the section, we present the two central results of this
paper:

1. MinCEGIS= CEGIS

2. HCEGIS 6= CEGIS
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6.1 Synthesis Using Minimal Counterexamples

We investigate whetherMinCEGIS = CEGIS and prove that it is in fact true. So, replacing a verifica-
tion engine which returns arbitrary counterexamples with averification engine which returns minimal
counterexamples does not increase the power of inductive synthesis system. The main result regard-
ing this non-intuitive fact that there is no change in the power of synthesis technique by using minimal
counterexamples is summarized in Theorem 6.1.

Theorem 6.1 The power of synthesis techniques using arbitrary counterexamples and those using min-
imal counterexamples are equivalent, that is,MinCEGIS= CEGIS.

Proof CEGIS ⊆ MinCEGIS trivially. MINCHECKL is a special case ofCHECKL and minimal counterex-
ample reported byMINCHECKL can be treated as arbitrary counterexample to simulateCEGIS using
MinCEGIS . Intuitively, using minimal counterexample is not worse than using arbitrary counterex-
amples.

The more interesting case to prove isMinCEGIS ⊆ CEGIS. For a languageL, let MinCEGIS converge
to P on traceτ . We show thatTCEGIS can simulateTMinCEGIS and also converge toP on traceτ .

The proof idea is to simulateTMinCEGIS in two phases. In one phase,TCEGIS finds the minimal coun-
terexample for a candidate languageL j by iteratively callingCHECKL on L j ∩{i} wherei = 0,1,2,3. . ..
The minimumi for whichCHECKL returns a counterexample forL j ∩{i} is the minimum counterexample.
In the second phase,TCEGIS consumes the next elements from the trace. While searching for minimum
counterexample,TCEGIS needs to store the backlog of the traces as well as cache the minimum counterex-
ample for candidate languages.

We now present the formal description of the proof. For this simulation, we use some auxiliary vari-
ables maintained byTCEGIS which store some finite information required for simulatingTMinCEGIS. The
key idea is forTCEGIS to iteratively guess the minimal counterexample in multiple micro-steps and then
use that to simulate one step ofTMinCEGIS. But simulating each step ofTMinCEGIS takes finite number of
micro-steps forTCEGIS and uses finite storage.

The first auxiliary component for this simulation is a minimal counterexample map

lce : P → N∪{⊤}∪{⊥}

Intuitively, this maps a candidate programPi (languageLi) to minimal counterexample as known toTCEGIS
so far in simulatingTMinCEGIS. If minimal counterexample is not known for a given program,lce maps
the program to⊤. If there is no counterexample to a given program,lce maps the program to⊥. At any
given step, only finite number of programs have their minimalcounterexamples known, and the rest are
mapped to⊤.

Next, we define a mappingTlce from P ×σ → P which simulatesTMinCEGIS based on the known
lce so far, that is,

Tlce(P,τ [n]) = Pn where Pi = F(Pi−1,τ(i),lce(Pi−1)) for i = 1,2, . . . and P0 = P

if lce(Pi) is defined fori = 1,2, . . . and it is undefined iflce(Pi) is⊤ for any i.
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Tlce simulatesTMinCEGIS using the same counterexamples and intermediate candidateprograms for the
known historylce. If lce is ⊤ for any of the intermediate programs,TMinCEGIS is undefined. Further,
we record the program proposed byTMinCEGIS into the variablePm

sim
and the last program which initiated

search for minimal counter example inPlast. τm
sim

records the part of the trace already simulated byTCEGIS
andµ is the candidate minimal counterexample while searching for minimal counterexample.

Initialization : All the internal auxiliary variables are initialized as follows. P0
sim

= P0 which is the
same initialization asTMinCEGIS being simulated,µ = 0, Plast = P0, andτ0

sim
= σ0. lce is initialized to

map allP to ⊤ as no minimal counterexamples are known at the beginning.

Update: We describe the updates made in each iterationm. One of the following cases is true in each
iteration.
Case 1: If Plast = Pm

sim
, that is, we are in lock-step with theMinCEGIS synthesis algorithm with the same

candidate program.
Case 1.1: If there is any counterexample forPm

sim
(found using the verifier forTCEGIS), that is, the candi-

date program has a counterexample and we need to find the corresponding minimal counterexample.
Case 1.1.1: If lce(Pm

sim
) is not⊤, that is, the minimal counterexample for candidate programis already

part oflce.
Let τdone be the longest prefix forτm

sim
τ(m+ 1) such thatTlce(Pm

sim
,τdone) is defined. τdoneτm+1

sim
=

τm
sim

τ(m+1), Pm+1
sim

= Tlce(Pm
sim

,τdone), Plast = Pm+1
sim

We use the minimal counterexample fromlce and then advance the simulationτdone traces ahead if
Tlce can simulate the trace using minimal counterexamples fromlce for all the intermediate candidate
programs.
Case 1.1.2: If lce(Pm

sim
) is⊤, that is, the minimal counterexample for candidate programis not known.

τm+1
sim

= τm
sim

τ(m+1), Pm+1
sim

= Pm
sim

∩{0}
We initialize the candidate languagePm+1

sim
for searching for minimal counterexample toPm

sim
∩{0}, that

is, it is either the language consisting only of the minimal element{0} or is empty. Since our verifier
uses a subset query, empty language will return no counterexamples.
Case 1.2: If there is no counterexample forPm

sim
,

Let τdone be the longest prefix forτm
sim

τ(m+ 1) such thatTlce(Pm
sim

,τdone) is defined. τdoneτm+1
sim

=
τm
sim

τ(m+1), Pm+1
sim

= Tlce(Pm
sim

,τdone), Plast = Pm+1
sim

andlce(Pm
sim

) =⊥,
The candidate program seen so far is subset of the target language and we consume as much of the trace
τdoneas possible for whichTlce is defined.

Case 2: If Plast 6= Pm
sim

, that is, the simulation is trying to find the minimum counterexample as a re-
sult of case 1.1.2.
Case 2.1: If there is any counterexamplecexsim for Pm

sim
(found using the verifier forTCEGIS),

Updatelce(Plast) = cexsim. Let τdone be the longest prefix forτm
sim

τ(m+1) such thatTlce(Plast,τdone)
is defined.τdoneτm+1

sim
= τm

sim
τ(m+1), Pm+1

sim
= Tlce(Plast,τdone), Plast = Pm+1

sim
, µ = 0

If there is a counterexample, since the candidate language was a single element set or empty, and verifi-
cation engine checks for containment in the target language, the only element in the language has to be
the counterexample. Further, starting from step 1.1.2 and with possible increments in step 2.2, we stop
with the minimal counterexample in this step and add it to thelce.
Case 2.2: If there is no counterexample forPm

sim
, that is, we have not yet found the minimal counterex-

ample.
µ = µ +1, Pm+1

sim
= Plast∩{µ}, andτm+1

sim
= τm

sim
τ(m+1).
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We incrementµ and search for whetherPlast∩{µ} is in the target language. This is either empty or is a
language consisting of a single element{µ}.

Progress: Now, we first show progress of the simulation in parsing trace τ [m]. For anym, there exists
m′ > m such thatτ [m] = τm

doneτ
m
sim

, τ [m′] = τm′

doneτ
m′

sim
andτm

done is a proper prefix ofτm′

done. This follows
from the observation that Case 2.2 can not be repeated infinitely after Case 1.1.2 sincePlast has at least
one counterexample. So, case 2.1 would eventually become true and sincelce is extended,TMinCEGIS
would be defined for a longer prefix.

Correctness: Let TMinCEGIS converge onτ after reading prefixτ [n]. From progress, after somem, τ [n]
would be a prefix ofτm

done. SinceTMinCEGIS converges after readingτ [n], F(Pn,τ(n′),cex(n′)) = Pn for
n′ > n. Now, lce is not ⊤ for all intermediate programsPm′′ in TMinCEGIS for m′′ ≤ m. So, Pm

sim
=

Tlce(P0
sim

,τ [m]) = Tlce(P0,τ [m]) = Pn and for allm′ > m, Pm′

sim
= F(Pn,τ(n′),cex(n′)) = Pn So,TCEGIS

also converges toPn, that is,MinCEGIS⊆ CEGIS.

Thus,MinCEGIS= CEGIS.

Thus,MinCEGIS successfully terminates with correct program on a candidate space if and only if
CEGIS also successfully terminates with the correct program. So,there is no increase or decrease in
power of synthesis by using minimal counterexamples.

6.2 Synthesis Using History Bounded Counterexamples

We investigate whetherHCEGIS= CEGIS or not, and prove that they are not equal. So, replacing a ver-
ification engine which returns arbitrary counterexamples with a verification engine which returns coun-
terexamples bounded by history has impact on the power of thesynthesis technique. But this does not
strictly increase the power of synthesis. Instead, the use of history bounded counterexamples does allow
programs from new classes to be synthesized but at the same time, program from some program classes
which were amenable toCEGIS can no longer be synthesized using history bounded counterexamples.
The main result regarding the power of synthesis techniquesusing history bounded counterexamples is
summarized in Theorem 6.2.

Theorem 6.2 The power of synthesis techniques using arbitrary counterexamples and those using his-
tory bounded counterexamples are not equivalent, and none is more powerful than the other.HCEGIS 6=
CEGIS. In fact,HCEGIS 6⊆ CEGIS andCEGIS 6⊆ HCEGIS.

We prove this using the following two lemma. The first lemma 6.3 shows that there is a family of
languages from which a program recognizing a language can besynthesized byCEGIS but, this can not
be done byHCEGIS. The second lemma 6.4 shows that there is another family of languages from which
a program recognizing a language can be synthesized byHCEGIS but not byCEGIS.

Lemma 6.3 There is a family of languagesL such that for the candidate programsP corresponding
to L , HCEGIS can not synthesize a program P inP recognizing some language L inL but CEGIS can
synthesize P, that is,CEGIS 6⊆ HCEGIS

Proof Consider the languages formed by upper bounding the elements by some fixed constant, that is,

Li = {n|n∈ N∧n≤ i}
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Now, consider the family of languages consisting of these, that is,L = {Li |i ∈ N}. Given this family
L , let the target languageL (for which we want to synthesize a recognizing programP) beLi.

If we obtain a traceτ [ j] at any point in synthesis using history bounded counterexamples, then for
any intermediate programPj proposed byTHCEGIS, HCHECKL would always return⊥ since all the coun-
terexamples would be larger than any element inτ [ j]. This is the consequence of the chosen languages
in which all counterexamples to the language are larger thanany positive example of the language. So,
THCEGIS can not synthesizeP corresponding to the target languageL.

But we can easily design a synthesis engineTCEGIS using arbitrary counterexamples that can synthe-
sizeP corresponding to the target languageL. The algorithm starts withL0 as its initial guess. If there
is no counterexample, the algorithm next guess isL1. In each iterationj, the algorithm guessesL j+1 as
long as there are no counterexamples. When a counterexampleis returned byCHECKL on the guessL j+1,
the algorithm stops and reports the previous guessL j as the correct language.

Since the elements in each languageLi is bounded by some fixed constanti, the above synthesis
procedureTCEGIS is guaranteed to terminate afteri iterations when identifying any languageLi ∈ L .
Further,CHECKL did not return any counterexample up to iterationj −1 and so,L j ⊆ Li. And in the next
iteration, a counterexample was generated. So,L j+1 6⊆ Li. Since, the languages inL form a monotonic
chainL0 ⊂ L1 . . .. So,L j = Li. In fact j = i and in thei-th iteration, the languageLi is correctly identified
by TCEGIS.

Thus,CEGIS 6⊆ HCEGIS.

This shows thatCEGIS can be used to identify programs whenHCEGIS will fail. Putting a restriction
on the verifier to only produce counterexamples which are bounded by the positive examples seen so far
does not strictly increase the power of synthesis.

We now show the nonintuitive result that this restriction enables synthesis of programs which can not
be synthesized byCEGIS. The proof uses a diaganolization argument similar to the argument used in [24]
for showing the increase in inductive synthesis power when negative examples are introduced in addition
to the positive examples. This argument is presented in Section 3. Recall that the set of languages
considered in that case wereL1 = V∗−{x1},L2 = V∗−{x2}, . . . and the languageV∗. The argument
relies on indistinguishability ofV∗−{x1} andV∗ with respect to finite traces of positive examples.

In the proof below, we similarly construct a language which is not distinguishable using arbitrary
counterexamples and instead, it relies on the verifier keeping a record of the largest positive example
seen so far and restricting counterexamples to those below the largest positive example. We use the tuple
notation introduced in Section 4 to clearly identify the diagnolization.

Lemma 6.4 There is a family of languagesL such that for the candidate programsP corresponding
to L , CEGIS can not synthesize a program P inP recognizing some language L inL but HCEGIS can
synthesize P, that is,HCEGIS 6⊆ CEGIS

Proof Consider the following languagesL01
i = {〈 j,n〉| j ∈ {0,1},n∈ N}. We now construct a family of

languages inL01
i which are finite and have atleast one element of the form〈1, .〉, that is,

L
f in = {L01

i |i ∈N∧ |L01
i |is finite∧∃k s.t. 〈1,k〉 ∈ L01

i }

Now consider the languagesLi which are subsets ofN. We consider only those languagesLi such that
the indexi of the language is also the smallest element in the language,that is, i = min(Li). We now
build a language of pairs as follows:Ldiag

i = {〈0,n〉|n∈ Li} if i = min(Li) and undefined, otherwise We
construct a second family of languages using these languages. L diag = {Ldiag

i } if Ldiag
i is defined for
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index i. Now, we consider the following family of languages

L = L
f in ∪L

diag

We show that there is a languageL in L such that the programP recognizingL can not be synthesized
by CEGIS butHCEGIS can synthesize all programs recognizing any language inL .

The key intuition is as follows. If the examples seen by synthesis algorithm are all of the form〈0, .〉,
then any synthesis technique can not differentiate whetherthe language belongs toL f in or L diag. If
the language belongs toL f in, the synthesis engine would eventually obtain an example ofthe form
〈1, .〉 (since each language inL f in has atleast one element of this kind and these languages are finite).
While the synthesis technique using arbitrary counterexamples can not recover the previous examples,
the techniques with access to the verifier which produces history bounded counterexamples can recover
all the previous examples.

We can easily specify aTHCEGIS which can synthesize programs that correspond to languagesin L .
THCEGIS works as follows. If all the elements seen so far are of the form 〈0, .〉, then the synthesis algorithm
and picks the minimumj such that〈0, j〉 has been seen as an example by the synthesis engine. The
proposed program isPj corresponding toL j . If the proposed program is not the correct program,HCHECK

returns〈0, jce〉 such thatjce< j. This is guaranteed sinceHCHECK returns counterexamples smaller than
the examples seen so far, and we have assumed thatPj is not correct. So, iteratively, the algorithm
would discover a language fromL diag eventually. But if the language is fromL f in, then we know
that all languages inL f in are finite and have at least one element of the form〈1, .〉. After THCEGIS sees
〈1, .〉, for every future positive examplex, it queriesHCHECK with the singleton language having only one
element{〈x+2,0〉}. Clearly,〈x+2,0〉 is not in the language since it only contains elements of the form
〈0, .〉 and〈1, .〉. But HCHECK returns no counterexample for{〈xmax+2,0〉} if xmax is the largest positive
example seen so far. At this point, we can recover all positive examples seen previously by enumerating
all x′ < xmax and testing the candidate language{x′} with HCHECK. We get a counterexample if and only
if x′ is not in the target language. Further, the target language is finite and hence, enumerating members
of the language is sufficient to identify the target languageafter consuming a finite trace. Thus,THCEGIS
can synthesize programs corresponding to any language inL .

We now prove the infeasibility ofCEGIS for this class of languages. Let us assume thatL ∈ CEGIS.
So, there is a synthesis engineTCEGIS which can synthesize programs corresponding to languages in L .
Let us consider traceτ and counterexample sequencecex such thatTCEGIS converges inn steps that is
TCEGIS(τ ,cex)→ TCEGIS(τ [n],cex[n]). Now,cex[n] is a valid counterexample sequence of any language
L such thatSMPL(τ [n])⊆ L ⊆N−SMPL(cex[n]). SinceTCEGIS must recognize a language from any trace
and any arbitrary counterexample sequence, we choose a trace and counterexample sequence as follows.
Let us consider a traceτ ′ of the formτ [n](〈1,z1〉)

∞. The corresponding counterexample trace discovered
by TCEGIS is cex[n] followed by minimal counterexamples, if any, after observing 〈1,z1〉. Now, we pick
an element〈0,z2〉 such that〈0,z2〉 6∈ cex[n] and〈0,z2〉 6∈ τ [n]. Sincecex[n] is a valid counterexample
sequence of any languageL such thatSMPL(τ [n]) ⊆ L ⊆ N− SMPL(cex[n]), the behavior ofTCEGIS is
same forτ [n](〈1,z1〉)

∞ as it is forτ [n]〈0,z2〉(〈1,z1〉)
∞. Thus,TCEGIS can not distinguish between the two

languages:Ld = SMPL(τ [n])∪{〈1,z1〉)} andLd′
= SMPL(τ [n])∪{〈0,z2〉,〈1,z1〉)}. Intuitively, TCEGIS can

forget some positive examples seen before observing〈1,z1〉 and there is no way to regenerate these as it
can be done withTHCEGIS.

Thus,HCEGIS 6⊆ CEGIS.

Hence,HCEGIS can synthesize programs from some program classes whereCEGIS fails to synthesize
the correct program. But contrariwise,HCEGIS also fails at synthesizing programs from some program
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classes whereCEGIS can successfully synthesize a program. Thus, their synthesis power is not equiva-
lent, and none dominates the other.

7 Discussion and Conclusion

The paper presents formal analysis of the impact of counterexample selection on what programs can be
synthesized, without any restriction on the type of programother than it be from a countable set. We
have shown that the use of minimal counterexamples does not enable synthesizing programs from newer
space of candidate programs. In practice, this means that any domain whereMinCEGIS can be used,
use ofCEGIS would also be possible sinceMinCEGIS successfully terminates with correct program on a
candidate space if and only ifCEGIS also successfully terminates with the correct program. So,there is
no increase or decrease in the power of synthesis by using minimal counterexamples. ButHCEGIS can
synthesize programs from some program classes whereCEGIS fails to synthesize the correct program.
Contrariwise,HCEGIS also fails at synthesizing programs from some program classes whereCEGIS can
successfully synthesize a program. Thus, their synthesis power is not equivalent, and none dominates
the other. This paper is a first step towards the theoretical characterization of Counterexample Guided
Inductive Synthesis technique:CEGIS.

Further analysis ofCEGIS is pertinent given the widespread adoption ofCEGIS as one of the standard
paradigms for automated synthesis. We envision the following directions in which further work can be
done to better understand the power ofCEGIS techniques.

• Speed of convergence:MinCEGIS andCEGIS have equal synthesis power and if one of the tech-
niques successfully identifies a program from a given program class, the other would also be able
to successfully synthesize this program. But would both techniques need the same number of
counterexamples for successfully synthesizing the program ? If we measure the complexity of
automated synthesis using the number of counterexamples needed to synthesize a program, the
comparison of the complexity ofMinCEGIS andCEGIS is open.
Similarly, for the program spaces on which bothHCEGIS andCEGIS terminate, can we compare
the number of counterexamples needed by the two techniques to synthesize a program.

• Newer variants of counterexamples: The two new variants of counterexamples considered in this
paper; namely, the minimal counterexamples and the historybounded counterexamples are not the
only variants that can be used inCEGIS. The question of whether there are other variants of coun-
terexamples which would enable synthesis in program spacesbeyond the power of conventional
CEGIS is open.
In particular, consider another new variant of counterexamples which are minimal counterexam-
ples among all the counterexamples which are larger than thelargest positive examples seen so
far. This counterexample captures another notion of beingclose to correctcounterexample, and it
would be interesting to investigate whether it increases the power ofCEGIS.

In summary, we presented variants ofCEGIS using different kinds of counterexamples and compared
the power of these variant synthesis techniques withCEGIS. This is a first step towards a better theoretical
understanding of the synthesis power ofCEGIS technique.
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