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STOCHASTIC BLOCK MODELS ARE A DISCRETE SURFACE TENSION∗

ZACHARY M. BOYD† , MASON A. PORTER‡ , AND ANDREA L. BERTOZZI§

Abstract. Networks, which represent agents and interactions between them, arise in myriad applications throughout the
sciences, engineering, and even the humanities. To understand large-scale structure in a network, a common task is to cluster a
network’s nodes into sets called “communities” such that there are dense connections within communities but sparse connections
between them. A popular and statistically principled method to perform such clustering is to use a family of generative models
known as stochastic block models (SBMs). In this paper, we show that maximum likelihood estimation in an SBM is a network
analog of a well-known continuum surface-tension problem that arises from an application in metallurgy. To illustrate the
utility of this bridge, we implement network analogs of three surface-tension algorithms, with which we successfully recover
planted community structure in synthetic networks and which yield fascinating insights on empirical networks from the field of
hyperspectral video segmentation.

Key words. networks, community structure, data clustering, stochastic block models, Merriman–Bence–Osher (MBO)
scheme, geometric partial differential equations

AMS subject classifications. 65K10, 49M20, 35Q56, 62H30, 91C20, 91D30, 94C15

1. Introduction. The study of networks, in which nodes represent entities and edges encode inter-
actions between entities [61], can provide useful insights into a wide variety of complex systems in myriad
fields, such as granular materials [68], disease spreading [69], criminology [34], and more. In the study of
such applications, the analysis of large data sets — from diverse sources and applications — continues to
grow ever more important.

The simplest type of network is a graph, and empirical networks often appear to exhibit a complicated
mixture of regular and seemingly random features [61]. Additionally, it is increasingly important to study
networks with more complicated features, such as time-dependence [36], multiplexity [46], annotations [63],
and connections that go beyond a pairwise paradigm [67]. One also has to worry about “features” such as
missing information and false positives [44]. In this paper, we restrict attention to undirected, unweighted
graphs for simplicity.

To try to understand the large-scale structure of a network, it can be very insightful to coarse-grain
it in various ways [25, 73, 75, 77, 78]. The most popular type of clustering is the detection of assortative
“communities,” in which dense sets of nodes are connected sparsely to other dense sets of nodes [25, 75].
One of the most popular approaches, which is statistically principled, is to treat community detection as a
statistical inference problem using a model such as a stochastic block model (SBM) [73]. The detection of
communities has given fascinating insights into a variety of applications, including brain networks [8], social
networks [83], granular networks [5], protein interaction networks [4], political networks [74], and many
others.

One of the most popular frameworks for many recent approaches for detecting communities is to use an
SBM, a generative model that can produce networks with community structure [25,73].1 One uses an SBM
for community detection by fitting an observed graph to a statistical model to attempt to infer the most
probable community assignment for each node. SBMs can incorporate a variety of features, including degree
heterogeneity [42], hierarchical structure [70], and metadata [63]. The benefits of an SBM approach include
statistical defensibility, theoretical tractability, asymptotic consistency under certain conditions, definable
transitions between solvable and unsolvable regimes, and theoretically optimal algorithms [58,73].

Recently, Newman showed that one can interpret modularity maximization [60,64], which is still among
the most popular approaches for community detection, as a special case of an SBM [62]. In another pa-
per [38], it was shown that one can also interpret modularity maximization in terms of total-variation (TV)
minimization. The latter connection allows the application of methods from geometric partial differential
equations (PDEs) and `1 minimization to community detection. This raises the possibility of formulating

∗Submitted to the editors DATE.
†Department of Mathematics, UCLA, Los Angeles, CA (zach.boyd@math.ucla.edu).
‡Department of Mathematics, UCLA, Los Angeles, CA (mason@math.ucla.edu).
§Department of Mathematics, UCLA, Los Angeles, CA (bertozzi@math.ucla.edu).
1Networks that are generated from an SBM can also have other types of block structures, depending on the choice of

parameters; see subsection 2.1 for details.
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2 Z. M. BOYD, M. A. PORTER, AND A. L. BERTOZZI

SBM maximum-likelihood estimation (MLE) in terms of TV.2 In this paper, we develop such a formulation
using ideas from models of surface tension and crystal growth.

The main result of the present work is the establishment of an equivalence between SBMs and surface-
tension models from the literature on PDEs that model crystal growth. Crystal growth is an important
aspect of certain annealing processes in metallurgy [45, 59]. It is a consolidation process, wherein the many
crystals in a metal grow and absorb each other to reduce the surface-tension energy that is associated to
the interfaces between them. The various processes involved have been modeled from many perspectives,
including molecular dynamics [17], front tracking [28], vertex models [91], and many others. (See [45] for a
much more extensive set of references.) It has been observed experimentally that the interface between any
two grains evolves according to motion by mean curvature [80]. Because mean-curvature flow is the gradient
descent of the TV energy, this leads naturally to formulations in terms of level sets [66], phase fields [9], and
threshold dynamics [56]. Although the interfaces follow mean-curvature flow, each different interface can
evolve at a different rate, as there are different surface-tension densities between each pair of crystals. In
realistic cases, surface tensions are both inhomogeneous and anisotropic, and they require careful adaptation
of standard mean-curvature-flow approaches [21, 39], especially for dealing with the topological challenges
that arise at crystal junctions, which routinely form and disappear.

Recently, Jacobs showed how to apply techniques from models of crystal growth to graph-cut problems
from semisupervised learning [39]. (See also [40] for related work.) We also note that several recent papers,
which do not directly involve surface tension, have used ideas from perimeter minimization and/or TV
minimization for graph cuts and clustering in machine learning [7]. Three of those papers are concerned
explicitly with ideas from network science [10,38,85].

Each community in a network is analogous to a crystal, and the set of edges between nodes from a pair
of communities is akin to the topological boundary between a pair of crystals. The surface-tension densities
correspond to the differing affinities between each pair of communities. To demonstrate the relevance of
this viewpoint, we develop and test discrete analogs of surface-tension numerical schemes on several real and
synthetic networks, and we find that straightforward analogs of the continuum techniques successfully recover
planted community structure in synthetic networks and uncover meaningful structure in the real networks.
We also prove a theoretical result, in terms of Γ-convergence, that one can meaningfully approximate the
SBM MLE problem by smoother energies. Finally, we introduce three algorithms — inspired by work on
crystal growth — that we test on synthetic and real-world networks.

The rest of this paper is organized as follows. In section 2, we present background information about
stochastic block models, total variation, and surface tension. In section 3, we state and prove our main result,
which establishes an equivalence between discrete surface tension and maximum likelihood estimation via an
SBM. In section 4, we discuss three numerical approaches for performing SBM MLE: mean-curvature flow,
Γ-convergence, and threshold dynamics. We discuss our results on both synthetic and real-world networks
in section 5. In section 6, we conclude and discuss our results. We give additional technical details in
appendices.

2. Background.

2.1. Stochastic Block Models (SBMs). The most basic SBM has N nodes and an assignment
g : {1, . . . , N} → {1, . . . , n̂} that associates each node with one of n̂ sets. It also has an n̂ × n̂ symmetric,
nonnegative matrix ω. One generates an undirected, unweighted graph as follows: for each pair of nodes, i and
j, we place an edge between them with probability ωαβ , where α and β, respectively, denote the community
assignments of nodes i and j. Similar models have been studied and rediscovered many times [18,23,25,27,
35,73,81]. In the present paper, we use the SBM from [62].

There is considerable flexibility in the choice of ω, which leads in turn to flexibility in the SBMs themselves
[25,73]. Three examples of ω, using n̂ = 2, will help illustrate the diversity of block structures.

1. If ω11 = ω22 > ω12, one obtains traditional assortative community structure, in which nodes have
a larger probability to be adjacent to nodes in the same community instead of ones in different
communities.

2. If ω11 = ω22 < ω12, nodes tend to associate more with ones that are in other communities. As
ω12 → 0, the graph becomes increasingly bipartite.

2Another recent paper [85] used total variation for maximizing modularity, although it was not phrased in those terms.
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Community structure Core–periphery structure Bipartite structure

Figure 1. Examples of different connectivity patterns that one can generate using stochastic block models. Each panel
corresponds to a different kind of structure. In each panel, the upper-left and lower-right squares represent the density of con-
nections between nodes in the same set, and the upper-right and lower-left squares represent the density of connections between
nodes in different sets. Darker squares represent more densely connected sets of nodes. In (assortative) community structure,
nodes are densely connected to other nodes in the same community but sparsely connected to nodes in other communities.
In the core–periphery structure, core nodes (as illustrated by the dark square in the upper left) are densely both to other core
nodes and somewhat densely connected to peripheral nodes, but the latter predominantly have connections only to core nodes.
In bipartite block structures, a set of nodes is more densely connected to nodes in other sets than to nodes in its own set. One
can also model other structures, such as hierarchical and role-based structures, using SBMs. See subsection 2.1 for additional
discussion. [This figure is inspired by a figure from [41].]

3. If ω11 > ω12 > ω22, there is a core–periphery (CP) structure: nodes from set 1 are connected densely
to many nodes, but nodes from set 2 are connected sparsely to other nodes [19,77].

These three examples are also illustrated in Figure 1. To simplify our presentation, we refer to latent block
structures as “community structure,” regardless of the form of ω.

The above SBM is not realistic enough for many applications, largely because each node has the same
expected degree [42]. To address this issue, one can suppose that one knows the degree sequence {ki} and
then define connection probabilities to take this information into account. The easiest approach is to model

the adjacency-matrix elements Aij as Poisson-distributed with parameter ωgigj
kikj
2m

, where m is the number

of edges in the network. An important point to note is that this allows both multi-edges and self-edges.
Although such edges can have important effects [26], we neglect them for simplicity.

Given an observed network, one can attempt to infer some sort of underlying community structure by
statistical fitting methods. There are several ways to do this, including maximum-likelihood estimation
(MLE), maximum a posteriori (MAP) estimation, and maximum marginal likelihood (MML). In MLE, one
chooses the parameters g and ω under which an observed network is most probable (without using a prior),
MAP yields the most probable parameter configuration under a Bayesian prior, and MML yields the best
community assignment for each node individually by integrating out all of the other variables [58, 73]. We
use MLE, which is the simplest approach. In mathematical terms, the problem is stated as

(1) argmax
g,ω

P (A|g, ω) ,

where P is the probability density function. Because we determine the edges independently, P is given by

P (A|g, ω) =
∏
i≤j

P (Aij |g, ω) =
∏
i≤j

P

(
Aij

∣∣∣∣wgigj kikj2m

)
.

We use a Poisson distribution, so

P (Aij |λ) =


λAij

Aij !
e−λ , i 6= j ,

λAij/2

(Aij/2)!
e−λ , i = j ,

where the need for cases arises from the convention that Aii = 2 if a self-edge is present. To solve (1), one can
equivalently maximize the logarithm of P (A|g, ω). Conveniently, this changes the multiplicative structure
into additive structure and allows one to drop irrelevant constants. The resulting objective function is

(2) argmax
g,ω

∑
i,j

[
Aij log(ωgigj )− ωgigj

kikj
2m

]
.
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The exact optimization of (2) is NP-hard, so one needs to use a heuristic. Possibilities include greedy
ascent [42], Kernighan–Lin (KL) node swapping [42,43], and coordinate descent [62]. As far as we are aware,
the theory of these approaches has not received much attention, although the associated papers generally
include positive results. In light of the extreme nonconvexity of the modularity objective function [33]
(which is known to be related to the planted-partition form of the SBM [62]), we expect that multiple
random initializations are needed for any local algorithm. (Ideas from consensus clustering may also be
helpful [25].)

Ways to elaborate the above SBM include incorporating overlapping and hierarchical communities
[70, 72], generalizing to structures such as time-dependent and multilayer networks [71], or incorporating
metadata [63]. There are also Bayesian models and pseudo-likelihood-based methods [1, 73]. We do not
consider such embellishments in this paper, although we conjecture that our approach will generalize to
some of these settings.

2.2. Total Variation. We briefly introduce total variation (TV) and why it is interesting to establish
a connection between SBM MLE and TV. Consider a smooth function f : Ω ⊂ Rd → R for some d. The TV
of f is

(3) |f |TV =

∫
Ω

| ∇ f |dx .

For d = 1, (3) describes the total amount of increase and decrease of the function f . If f is smooth except
for jump discontinuities, one can interpret the derivative of f in a generalized sense, yielding

|f |TV =

∫
Rd−Γ

| ∇ f |dx+

∫
Γ

|[f ]|dx ,

where Γ is the union of all curves of discontinuity and [f ] is the height of the jump across the discontinuity.
The first integral uses a d-dimensional measure, and the second uses a (d−1)-dimensional Hausdorff measure.
In the particular case in which d = 2 and f is the characteristic function of some set S, we see that |f |TV is
the perimeter of S. Similarly, when d = 3, we obtain surface area.

Total variation is an important regularizer in machine learning. It is worth contrasting it with the Dirich-

let energy

∫
Ω

| ∇ f |2dx, which has minimizers that satisfy ∆f = 0, a condition that guarantees smoothness.

However, minimizers of TV need not be smooth, as they can admit jump discontinuities. In image denoising,
for instance, regularization using Dirichlet energy tends to blur edges to remove discontinuities, whereas a
TV regularizer leaves the edges intact [14,79].

Another use of TV energy is in relaxations, in which one can transform a nonconvex problem involving
piecewise-constant constraints into a convex problem with the same minimizers [14,54]. A common heuristic
explanation for this phenomenon (see Figure 2) uses the shape of the 1-norm unit ball. The simplest case
is in two dimensions, where the 1-norm ball is diamond-shaped, and minimizing the 1-norm over certain
domains (e.g., a line) gives a sparse solution, in the sense that most components of the solution vector are 0.
In this case, minimizing the 1-norm, constrained to a line, is the same as minimizing the number of nonzero
elements of the vector, subject to the same constraint.

In the context of TV minimization, we take the 1-norm of a function’s gradient, rather than of the
function itself. Thus, instead of promoting sparsity of the function values, we promote sparse gradients,
thereby incentivizing piecewise-constant minimizers for TV. Our discussion above is heuristic, but the ideas
therein can be treated rigorously [14].

Algorithmically, one can minimize TV using, for example, phase-field models [9] or threshold dynam-
ics [56], both of which rely on the fact that the gradient descent of TV is a generalization of mean-curvature
flow. The alternating-directions method of multipliers (ADMM) [32] and graph-cut methods, such as the
one in [12], also solve similar problems very effectively.

Thus far, we have restricted our discussion of TV to a continuum setting. There are graph analogs of
the mathematical objects — gradients, measures, integrals, tangent spaces, divergences, and so on — that
one uses to define TV in a continuum setting. For instance, for any function f on the nodes of a graph and
any edge between nodes i and j, the discrete derivative at i in the direction j is

∇ f(i, j) = f(j)− f(j) .



SBM IS DISCRETE SURFACE TENSION 5

Using the inner products

〈f, g〉 =

N∑
i=1

figi ,

〈φ, ψ〉 =
∑
i,j

Aijφijψij

on the spaces of functions on the nodes and edges, respectively, gives the divergence as the adjoint of the
gradient:

(div φ)i =
∑
j

Aijφji .

In a continuum, an alternative definition of TV is

(4) |f |TV = sup〈div φ, f〉 ,

where the supremum is over an appropriate set of test functions. For a graph, (4) is equivalent to

|f |TV =
1

2

∑
i,j

Aij |f(i)− f(j)| .

See [31,87] for a detailed justification of these definitions.

Figure 2. Image of the
1-norm unit ball and a line in
the plane. The point on the
line with the smallest 1-norm
is almost always on one of
the axes.

Some methods for graph clustering (e.g., see [90]) rely on the combinatorial
graph Laplacian L = diag(k) − A, which is a discrete analog of the continuum
Laplacian ∆. The continuum Laplacian arises in solutions to constrained opti-
mization problems that involve the Dirichlet energy, so it is reasonable to expect
minimizers of energies that involve the combinatorial graph Laplacian to have
analogous properties to minimizers of the Dirichlet energy. Indeed, it is well-
known that the minimizers that arise from spectral methods are usually smooth,
instead of having sharp interfaces, so one needs to threshold them in some way.
Such thresholding is a major source of difficulties for attempts to obtain theoret-
ical guarantees about the nature of minimizers after thresholding. In contrast,
methods that use graph TV can directly accommodate piecewise-constant so-
lutions [54], which do not require thresholding to give classification information.
Several previous papers have exploited this property of TV on graphs [6,38,84,93].

In the case of SBMs, one can use TV to express (2), but we find a more
natural formulation in terms of surface-tension energy (a related notion).

2.3. Surface Tension. Very roughly, one can consider a metal object as being composed of a large
number of crystals that range in size from microscopic to macroscopic [3]. Each crystal is a highly-ordered
lattice; and there is a thin, disordered interface between crystals. The sizes and orientations of these crystals
affect material properties, and one goal of annealing processes is to allow crystals to reorganize to produce
a useful metal.

The potential energy of a given crystal configuration is roughly

(5)
∑
α,β

σαβArea(Γαβ) ,

where Γαβ is the interface between crystals α and β, and σαβ is the surface tension energy density between
these crystals. Each σαβ is different, based on physical considerations that involve the exact offset between
the orientations of the lattices in each pair of crystals. When prepared and heated appropriately, the
individual crystals decrease (5) by growing to consume their neighboring crystals. See [21,39,45] for further
background information.
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Figure 3. An example ar-
rangement of crystals. The inter-
faces between pairs of crystals grow
into each other according to mo-
tion by mean curvature. [This im-
age from Cenna/Wikimedia Com-
mons/Public Domain [15].]

We exploit the appearance of surface area in (5) to cast it as a TV
problem. Mathematically, we model the metal as a region of space that is
partitioned into n̂ regions, corresponding to the crystals in the metal. Let
uα and uβ , respectively, denote the characteristic functions of the regions
α and β. Therefore,

Areaαβ = |uα|TV + |uβ |TV − |uα + uβ |TV .

Each interface between two regions evolves according to mean-curvature
flow, which is the gradient descent of TV. Thus, the surface-tension flow
is locally mean-curvature flow, except at the junction of three or more
crystals [21,39]. Because of this connection, one can use some of the ideas
(such as phase-field and threshold-dynamics methods [21]) from TV mini-
mization to perform surface-tension minimization. When using threshold
dynamics, it is possible to do theoretical analysis in the form of Lyapunov
functionals, Γ-convergence, and descent conditions [39].

3. An Equivalence Between SBM MLE and Discrete Surface
Tension. We now present a mathematical result that connects SBM MLE
and discrete surface tension.

Proposition 3.1. Maximizing the likelihood of the parameters g and
ω in the degree-corrected SBM is equivalent to minimizing

(6)
∑
α,β

[
WαβCutg,A(α, β) + e−Wαβ

volg,A(α) volg,A(β)

2m

]
,

where Cutg,A(α, β) =
∑
gi=α
gj=β

Aij, volg,A(α) =
∑
gi=α

ki, and Wαβ = − logωαβ.

The analogy with continuum surface tension is as follows. Graph cuts are analogous to surface area:
given a domain in R3, one can superimpose a fine grid on space and count the number of edges that cross
the boundary to estimate its surface area. In the limit of an infinitely fine grid, this estimate converges to
the surface area under appropriate conditions [11]. Similarly, graph volumes are analogous to continuum
volumes. The quantities Wαβ play the role of surface tensions σαβ , so the first set of terms is analogous to (5).
One can view the second set of terms as a soft volume constraint. A constraint is “soft” if violating it adds
a finite penalty on an objective function, so minimizers will usually approximately satisfy the constraint.
Volume-constrained versions of (5) have received a great deal of attention [40,45].3

Proof. In [62], it was shown that maximizing the log-likelihood of the parameters g and ω for a particular
version of the degree-corrected SBM amounts to maximizing (2). Let Π(G, n̂) be the set of partitions
of the nodes of a graph G (associated with an adjacency matrix A) into at most n̂ sets. Substituting
Wαβ = − logωαβ into (2) gives

argmin
Wαβ∈R
g∈Π(G)

∑
i,j

[
AijWgigj +

kikj
2m

e−Wgigj

]
.

Rearranging the summations gives

argmin
Wαβ∈R
g∈Π(G,n̂)
n̂∈N

∑
α,β

∑
gi=α
gj=β

AijWαβ +
∑
α,β

∑
gi=α
gj=β

kikj
2m

e−Wαβ

 ,
3As far as we are aware, our formulation of SBM MLE in terms of graph cuts and volumes is novel, although similar formulas

have appeared previously in the literature; see, e.g., [73].
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where the inner sums are over all nodes i and j such that gi = α and gj = β. Rearranging again gives

argmin
Wαβ∈R
g∈Π(G,n̂)
n̂∈N

∑
α,β

Wαβ

∑
gi=α
gj=β

Aij +
∑
α,β

e−Wαβ

∑
gi=α
gj=β

kikj
2m

 .
Using the definition of Cutg,A in the first set of terms and summing over the j index independently in the
second set of terms gives

argmin
Wαβ∈R
g∈Π(G,n̂)
n̂∈N

∑
α,β

WαβCutg,A(α, β) +
∑
α,β

e−Wαβ

∑
gi=α

ki
2m

volg,A(β)

 .
Finally, we sum over the i index in the second set of terms to obtain

(7) argmin
Wαβ∈R
g∈Π(G,n̂)
n̂∈N

∑
α,β

[
WαβCutg,A(α, β) + e−Wαβ

volg,A(α) volg,A(β)

2m

]
.

One difference between (6) and (5) is that in the latter (i.e., for a graph), one performs optimization over
the Wαβ , whereas in the former (i.e., in a continuum), one ordinarily treats the surface-tension densities as
fixed by the choice of material that one is modeling. Another difference is that the surface-tension coefficients
in the graph setting can be any element of (−∞,∞], subject only to the symmetry condition Wαβ = Wβα. In
contrast, for a continuum, further restrictions are necessary to ensure well-posedness. Esedoglu and Otto [21]
proved the following sufficient conditions for well-posedness:

(1) σαβ ≥ 0 ,
(2) σα,α = 0 ,
(3) σαγ + σγβ ≥ σαβ .

In a graph setting, one can use a straightforward change of variables to make W satisfy requirement (2).4

In general, however, at least one of requirements (1)–(3) are not necessarily satisfied for a graph.5

4. Mean-Curvature Flow (MCF), Γ-Convergence, and Threshold Dynamics. We now outline
three algorithmic approaches that illustrate how one can use tools from surface-tension theory to solve
SBM MLE problems. Our three algorithms are graph versions of mean-curvature flow (MCF), Allen–Cahn
(AC) evolution, and Merriman–Bence–Osher (MBO) dynamics. In section 5, we conduct several numerical
experiments to demonstrate that these algorithms can effectively solve (2). We expect the performance of
these algorithms to be good relative to other algorithms for SBM MLE, though a full evaluation of this claim
is beyond the scope of our paper. We have posted our code at http://www.math.ucla.edu/∼zach.boyd/code/
SBM.zip. In the next three subsections, we describe how we infer g when ω is fixed. We then describe how
to jointly infer ω and g.

4.1. Mean-Curvature Flow. Surface-tension dynamics are governed by mean-curvature flow except
at junctions. Intuitively, this means that each point on a surface moves in the direction normal to the
surface at a speed given by the mean curvature at that point. In the two-phase case, such dynamics have
been well-studied, and notions of viscosity solutions and regularity theory have been developed [52]. In the
multiphase case, the situation is much more complicated, notably because of the topological changes that
can occur and the issue of defining the behavior at the junction of three or more phases. In two-phase
surface-tension dynamics, it was shown in [12] that one can approximate the flow by solving a discrete-time
minimizing-movements problem. Let Cn be one of the two regions at time ndt, where dt is the time step.

4See section A for the change of variables, which causes the sum in (6) to instead be over all α 6= β, so that there are no
“internal” surface tensions.

5Requirement (1) is false whenever some component of W is negative; this occurs exactly when ω has a component that is
larger than 1. Requirement (3) may not hold, because the the components of W can assume any real value. Thus, it is possible
to pick some W that violates requirement (3) and generate a network using it.

http://www.math.ucla.edu/~zach.boyd/code/SBM.zip
http://www.math.ucla.edu/~zach.boyd/code/SBM.zip
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We then have

(8) Cn+1 = argmin

[
SurfaceArea(C) +

1

dt

∫
Cn∆C

ρ̂(p, Cn)dp

]
,

where

ρ̂(p, Cn) = inf
x∈∂Cn

‖x− p‖ ,

the operation ∆ denotes the symmetric difference, and ∂ is the topological boundary operator. The idea
behind this approach is, at each time step, to shorten the curve as much as possible without straying too far
from the curve location at the previous time step.

In the setting of graphs, a similar approach was developed in [87], where the mean-curvature flow was
given by

(9) Cn+1 = argmin

[
Cutg,A(C,Cc) +

1

dt

∑
i∈Cn∆C

ρ(i, ∂(Cn))

]
,

the operation ∆ is again the symmetric difference, and ρ(i, ∂(Cn)) is the shortest-path distance from node
i to the boundary of Cn. In this context, the boundary of a set of nodes is the set of nodes in Cn with at
least one neighbor in Ccn along with the nodes in Ccn that have at least one neighbor in Cn. We use the
term boundary node for any node that lies on the boundary. In the limit of small dt, (9) may still evolve, as
opposed to the MBO scheme (which we use later), which becomes “stuck” when the time step is too small.
Such evolution can still occur, because the penalty (associated with moving any node in ∂(Cn)) induced by
the second set of terms in (9) is 0, regardless of the value of dt. Conveniently, this implies for sufficiently
small dt that the only acceptable moves at each time step are allowed to change only the boundary nodes
themselves. This makes it possible to drastically reduce the search space when solving (9).

Because careful studies in the spirit of [87] are not yet available for multi-way graph partitioning, we resort
to a heuristic approach based on what is known in the binary case. Specifically, we are motivated by situation
in which time steps are sufficiently small that only boundary nodes can change their community assignment.
Ideally, we wish to compute an optimal reassignment of all boundary nodes jointly in order to minimize (6).
To save computation time and facilitate implementation, we instead decouple the computations in the
following manner: During a single time step, for each boundary node, we compute an optimal assignment of
that node, assuming that all other nodes keep their assignment from the beginning of the time step. After
this (but before the end of the time step), we assign each boundary node to its community, as computed
previously in the time step. Because most nodes are boundary nodes6 in our SBM-generated graphs, we find
it more efficient and easier to consider reassigning all nodes in each time step rather than maintaining and
referencing a separate data structure to track the boundary. In Algorithm 1, we give pseudocode for this
graph MCF procedure.

4.2. Allen–Cahn (AC) Evolution. Another approach for studying mean-curvature flow, that is pop-
ular due to its simple implementation and the existence of unconditionally-stable numerical methods [6], is
approximation by a Ginzburg–Landau (GL) functional. In the binary case, the GL functional is

(10)

∫
Ω

[
ε |∇u|2 +

1

2ε
u2(1− u)2

]
dx ,

where u : Ω ⊂ RN → R is a smooth function and ε is a small parameter. The L2 gradient descent of the GL
functional is

ut = ε∆u− 1

2ε

d

du

[
u2(1− u)2

]
,

6Recall that a node is a boundary node if it shares an edge with a node that lies outside of its own community, so most
reasonable partitions of many real graphs have many boundary nodes. Additionally, because we use a random initialization of
g, most nodes will initially be boundary nodes for most graphs.
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Algorithm 1 Modified graph mean-curvature flow (MCF) for SBM MLE (2).

Input A, W , n̂ .
Initialize g uniformly at random.
Let eW = e−W be the entry-wise exponential of W .
while not converged do

Let Uiα = δgiα for each i, α .
Let X = AU . // Counts the number of neighbors that each node has in each class
Let volg,A = (kTU) .
for a′ = 1 to n̂ do

Let Ia′ be the set of nodes currently assigned to group a′ .
for a=1 to n̂ do

Let I be the indices 1, . . . , n̂ aside from a and a′ .
Let Delta(Ia′ , a) be given by the following formula:

Delta(Ia′ , a) = 2X(Ia′ , I)W (I, a)

− 2X(Ia′ , I)W (I, a′)

+ 2X(Ia′ , a)W (a, a)

− 2X(Ia′ , a)W (a, a′) + 2X(Ia′ , a
′)W (a, a′)

− 2X(Ia′ , a
′)W (a′, a′)

+
1

2m
(2k(Ia′)volg,A(eW (:, a)− eW (:, a′))

+ k(Ia′)
2(eW (a, a) + eW (a′, a′)− 2eW (a, a′))

)
.

end for
end for
for i = 1 to N do

gi = argmin(Delta(i, :)) . // [Choose uniformly at random in case of a tie.]
end for

end while
Output g .

which is the Allen–Cahn (AC) equation. The minimizers of the GL energy are mostly constant, with O(ε)-
width transition layers between the constant regions. Further, one can show that the GL energy Γ-converges

to the TV energy as ε → 0, assuming that

∫
Ω

udx = const [57]. Consequently, if uε is a minimizer of the

constrained GL energy with parameter ε and the minimizers converge in bounded-variation (BV) space as
ε→ 0, then the accumulation point is a minimizer of the TV energy.

In the setting of graphs, the first use of AC schemes for TV minimization was in [6]. One can invoke the
combinatorial graph Laplacian L = diag(k)−A to obtain the functional

(11) UTLU +
1

ε
U2(1− U2) ,

where U is a function on the graph nodes (i.e. an N -element vector), and ε again a positive number.
Equation (11) Γ-converges to graph TV [86].

In the multiphase case, we represent a partition g by an N × n̂ matrix whose i, α entry is δ (gi = α),
where δ is the Kroneker delta. Then, instead of a double-well potential, we use a multi-well potential on
RN×n̂ that is small for arguments with exactly one nonzero entry in each row. For example, [29] found that
the following potential works well:

T (U) =

N∑
i=1

(
n̂∏
α=1

1

4
‖Ui − ek‖2`1

)
,

where Ui is the ith row of the N × n̂ matrix U and ek is an n̂-element vector that is equal to 0 except for a
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1 in the kth entry.
For the particular case of surface-tension dynamics, we proceed as follows. Given a partition of a network,

if U is the corresponding N × n̂ matrix, one can show that W. ∗ (UTLU) = −W. ∗ (UTAU), where .∗ is the
entry-wise product. Therefore, an appropriate GL functional for our problem is

(12)
∑
α,β

[
−WαβU

T
α LUβ +

volg,A(α) volg,A(β)

2m

]
+

1

2ε
T (U) .

Because kTu gives the vector of volumes, one can rewrite (12) as

(13)
∑
α,β

[
−WαβU

T
α LUβ +

kTUαe
−W
αβ UTβ k

2m

]
+

1

2ε
T (U) ,

where e−W is the entry-wise exponential.
As in a continuum setting, one can prove Γ-convergence.

Theorem 4.1. The functionals in (13) Γ-converge to (6) as ε→ 0.

See section B for a proof. As far as we are aware, this is the first Γ-convergence result for a multiphase graph
energy.

The resulting AC equation is

(14) Ut = LUW − 1

2m
kkTUe−W − 1

ε
T ′(U) .

See section C for further details on the numerical solution of (14).

Algorithm 2 A two-phase, continuum MBO scheme.

Input the initial domain.
Initialize u as the characteristic function of the initial domain.
for i = 1, . . . do

ui+1/2 is the solution at time dt of ut = ∆u with initial condition ui .
ui+1 = bui+1/2 + 0.5c , where b·c is the floor function.

end for
Output the set of points for which u = 1 .

4.3. MBO Iteration. In [56], Merriman, Bence, and Osher showed that continuum mean-curvature
flow is well-approximated by the simple iteration in Algorithm 2. In a rectangular domain, the iteration is
extremely efficient, as one can use a fast Fourier transform when solving the heat equation. Esedoglu and
Otto [21] developed a generalized version of the MBO scheme (see Algorithm 3) for computing the evolution
of multiphase systems modeled by (5).

One can apply the MBO idea to community detection in networks by replacing the continuum Laplacian
with the (negative) combinatorial graph Laplacian, replacing σ with W , changing u to U , and adding
appropriate forcing terms for the gradient descent of the volume-balance terms. See section C for additional
implementation details.

4.4. Learning ω. The MCF, AC, and MBO algorithms are able to yield a good partition of a network,
given W , but they do not include a way to find W . A simple way to address this issue is to use an expectation-
maximization (EM) algorithm, in which one alternates between an update of g with fixed W and an update
of W with fixed g. One can find the optimal W , given g, in closed form by differentiating (6) with respect
to any component of W and setting the result to 0 [42].

One must be careful, however, because the optimal Wαβ when Cutg,A(α, β) = 0 is infinite. This is
a problem, because once one of the entries in W is infinite, it prevents g in subsequent iterations from
taking any nonzero value of Cutg,A(α, β), which gives bad results in our test examples. (See section 5 for
a discussion of these examples.) We address this issue by modifying the EM algorithm to reset all infinite
values of W to 1.1×Wmax, where Wmax is the largest non-infinite element of W .
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Algorithm 3 A multiphase, continuum MBO scheme.

Input the initial state of the domain.
Initialize u1, . . . , un̂ as the characteristic functions of the initial domains.
for i = 1, . . . do

for α = 1, . . . , n̂ do
ui+1/2
α is the solution at time dt to uα,t = ∆uα with initial condition uiα .

end for
for each point x do

α̂ = argmin
α

∑
β

σαβuβ(x) . // [Choose uniformly at random in case of a tie]

uα̂(x) = 1 and uβ(x) = 0 if β 6= α̂ .
end for

end for
Output u .

We also need to address another practical issue for an EM approach to work. Specifically, the algorithm
that we have described thus far in this section often finds bad local minima, in which two communities are
merged erroneously or a single community is split inappropriately. To overcome this issue, we implement a
wrapper function (see Algorithm 4) that checks each community that is returned by MCF, AC, or MBO
for further possible splitting or merging with other communities. Whenever we call MCF, AC, or MBO on
a subgraph, we use the values of k and m for the whole graph rather than for a subgraph.7

There is also a danger of overfitting by setting n̂ = N , which gives a likelihood of 1 in (2). The proper
selection of n̂ is a complicated problem, both algorithmically and theoretically [65, 76]. For our tests, we
were very successful by using a simple heuristic approach. (However, our framework in this paper is also
compatible with more sophisticated methods for selecting n̂.) For each data set, one supplies an expected
value of n̂ for that data set, and one adds a quadratic penalty to the objective value whenever n̂ differs from
its expected value. This helps curtail overfitting, while still allowing our algorithms to perform merges and
splits to escape bad local minima.

Algorithm 4 The splitting–merging wrapper that we use to escape bad local minima.

Input A, n̂expected .
Place all nodes in the same community and add this community to a queue.
while the queue is not empty do

Save gold = g and Wold = W .
Save the current objective value as Qold .
Partition the next community in the queue (as a graph in its own right) into min(n̂expected,

√
N)

communities using MCF, AC, or MBO with wαβ =

{
1 , α = β ,

0.1 , α 6= β .

while it is possible to improve the objective by merging do
Perform the merge that most improves the objective.

end while
if the objective is better than Qold then

Add any newly created communities to the queue.
else

Set g = gold and W = Wold .
Remove the current community from the queue.

end if
end while
Output g, W .

7A similar choice was used for the recursive partitioning procedures in [38,60].
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5. Empirical Results. In this section, we discuss our results from several numerical experiments to
(1) confirm that our algorithms can successfully recover g and ω from networks that we generate using
SBMs and (2) explore their applicability to real-world networks. In our experiments, we use three different
families of SBMs, three Facebook networks (whose community structure is partly understood [82,83]), and an
example related to hyperspectral video segmentation. Because of the random initialization in our approach,
we perform three trials on each of the networks for each algorithm, and we report the best result in each
case.8 For comparison, we also report the results of a Kernighan–Lin (KL) algorithm, which was reported
in [42] to be effective. We summarize our results in Table 1, and we highlight that we consistently recover
the underlying structure in the synthetic examples. For the real networks, we compare our results with
a reference partition based on metadata that is thought to be correlated with the community structure.
We find that the MCF scheme performs the best among our three schemes on these networks, and it finds
partitions with a larger likelihood than the reference partition. We implement our methods in Matlab, so
one should interpret our computation time as indicative that the run time is reasonable for networks with
millions of edges and perhaps on larger networks, given a careful implementation in a compiled language.
For an example of code for a similar problem that was solved by an MBO scheme at large scale, see [53].

We briefly describe the three families of SBM-generated networks that we use in our numerical experi-
ments.

• Planted partition (PP) is a 16,000-node graph that consists of 10 equally-sized communities. It
is produced by the method that was described in [42]. It builds a degree-corrected SBM with a
truncated power-law degree distribution with exponent 2. The parameter λ from Equation (27)
in [42] is 0.001, indicating a fairly clear separation between communities.

• Lancichinetti–Fortunato–Radicchi (LFR) is a standard benchmark SBM network [48]. We construct
1000-node LFR graphs with a power-law degree distribution (with exponent 2), mean degree 20,
maximum degree 50, power-law-distributed community sizes (with exponent 1), community sizes
between 10 and 50 nodes, and mixing parameter 0.1.

• Multiscale SBM (MS). To construct such a graph, we take a union of disjoint components: a 10-
clique, a 20-clique, and a sequence of Erdős–Rényi (ER) graphs (drawn from the G(n, p) model
with expected mean degree 20) of sizes 40, 80, 160, . . . , 5120; there are a total of 10, 230 nodes.
We connect the components to each other by adding a single edge, from nodes chosen uniformly at
random, between each consecutive clique or ER graph. This construction tests whether an algorithm
can find communities of widely varying sizes in the same graph [2, 24].

The hyperspectral video is a recording of a gas plume as it was released at the Dugway Proving
Ground [30, 51, 55]. A hyperspectral video is different from an RGB video, in that each pixel in the former
encodes the intensity of light at a large number (e.g., 129, in this case) of different wavelengths rather than
only 3. We consider the classification problem of identifying pixels that include similar materials (such as
dirt, road, grass, and so on). This problem is difficult, because of the diffuse nature of the gas, which leads to
a faint signal that spreads out among many wavelengths and with boundaries that are difficult to determine.
We construct a graph representation of this video using “nonlocal means,” as described in [13]. Specifically,
we use the following construction. For each pixel p and in each of 7 frames, we construct a vector vp by
concatenating the data in a 3 × 3 window that is centered at p. We then use a weighted cosine distance
as a similarity measure on these (3 × 3 × 129)-component vectors, where we give the most weight to the
components from the center of the window.9 Finally, using the VLFeat software package [88], we build
a 10-nearest-neighbor graph using the similarity measure and a k-dimensional tree (with k = 10). We see
from Figure 4 that partitions with small values of (6) correspond to meaningful segmentations of the image.

In Table 3, we include an example of a W matrix that we obtain from an MS network to illustrate that

8We chose to use three trials to illustrate that our algorithms do not require a large number of attempts to reach a good
optimum. In most of our trials, even a single run of the solver is likely to give good results. In Table 1, we report our best scores.
Our worst scores for MCF are 0.00, 0.00, 0.00, −0.14, and 0.01 for the the PP, MS, LFR, Caltech, and Princeton networks,
respectively. We did not record the worst score for Penn. St. or the plume network. Our corresponding worst scores for AC
and MBO, respectively, are 0.00, 0.00, 0.01, 0.22, 0.86 and 0.15, 0.00, 0.02, 0.53, 1.12. Comparing these results with Table 1,
we see that our best and worst scores are often similar to each other.

9We weight the center pixel components by 1, the components from adjacent pixels by 0.5, and the components from
corner pixels by 0.25. That is, we let vij be the 129-element vector at pixel (i, j), and we define wij as the concatenation of
vij , .5vi+1,j , .5vi−1,j , .5vi,j+1, .5vi,j−1, .25vi+1,j+1, .25vi+1,j−1, .25vi−1,j+1, and .25vi−1,j−1. We then calculate the cosine
similarity between each pair of wij vectors.
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PP LFR MS Caltech Princeton Penn. St. Plume

Nodes 16,000 1,000 10,230 762 6,575 41,536 284,481
Edges 2.9× 105 9.8× 103 1.0× 105 16, 651 293, 307 1, 362, 220 2, 723, 840
Communities 10 40 10 8 4 8 5

Score

MCF 0 0 0 −0.16 −0.02 −0.56 −1.41
AC 0 0 0 0.21 0.58 −0.04 −1.23
MBO 0 0 0 0.53 1.12 0.40 −1.21
KL 0.28 0.03 0.04 −0.16 0.11 −0.55 −1.38
Reference 0 0 0 0 0 0 0

Table 1
Results of several tests on several synthetic and empirical networks. We use three surface-tension-based methods (mean-

curvature flow, Allen–Cahn, and Merriman–Bence–Osher) and the Kernighan–Lin algorithm from [42] to partition three
synthetic networks (Planted Partition, LFR, and Multiscale SBM) and the largest connected components of three empirical
networks (Caltech36, Princeton12, and Penn94) from the Facebook100 data set [83]. The score is the difference between
the recovered surface-tension energy (6) and the corresponding energy of a reference partition, divided by the absolute value
of the energy of the reference partition. Smaller values indicate better performance, and 0 corresponds to a partition that
is of comparable quality as the reference partition. For the synthetic networks, we use the planted (and hence ground-truth)
community structure as the reference partition. For the Facebook networks, we use metadata that is positively correlated with
community structure (namely, House affiliation for Caltech and graduation year for the others). For the plume video, our
reference partition is to assign all nodes to the same community. The edge counts on the synthetic networks give the order of
magnitude, because the exact number differs across realizations.

Figure 4. Segmentation of a hyperspectral video using graph MCF. The gas plume is clearly represented in the yellow
and orange pixels. The two bottom blue classes are the ground, and the other two are the sky. This image is frame 3 of 7.

we recover different surface tensions between different pairs of communities.10

6. Conclusions and Discussion. We have shown that a particular stochastic block model (SBM)
maximum likelihood estimation problem is equivalent to a discrete version of a well-known surface-tension
problem. The equivalence associates graph cuts to surface areas and SBM parameters to physical surface ten-
sions. This gives new geometric and physical interpretations to SBM MLE problems, which are traditionally
viewed from a statistical perspective. We used the new connection to adapt three well-known surface-tension-
minimization algorithms to community detection in graphs. Our subsequent computations suggest that the
result algorithms are able to successfully find underlying community structure in SBM-generated graphs.
When applied to graphs that are constructed from empirical data, our mean-curvature-flow method per-
forms very well, but the other two methods face some issues (which will be interesting to explore in future
studies). We also proved a Γ-convergence result that gives theoretical justification for our algorithms and is
the first multiphase Γ-convergence result of which we are aware.

Although the focus of our paper has been a specific form of an SBM and an associated MLE problem, our
techniques should also be insightful for other SBM problems. One straightforward adaption is to consider
SBMs without degree correction, although that is more interesting for theoretical work than for applications.
Additionally, one can likely incorporate priors on the values of g and ω as regularizers in the surface-tension
energy. Another viable extension is to incorporate a small amount of supervision into the community-
inference process using techniques (such as quadratic fidelity terms) from image processing. A similar idea

10For this example, we have applied the change of variables from section A to eliminate the diagonal elements.
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PP LFR MS Caltech Princeton Penn. State Plume

MCF 5.36 17.71 3.47 1.39 1.46 38.91 77.91
AC 5.37 26.27 7.28 8.84 480.4 3853 268.7

MBO 4.27 11.05 1.73 0.67 7.43 382.31 270.0
KL 16,566 176 5,117 20 662 95,603 980,520

Table 2
Computation times (in seconds).

0 5.22 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
5.22 0 6.1817 ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ 6.1817 0 6.8471 ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 6.8471 0 7.6316 ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ 7.6316 0 8.362 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 8.362 0 9.0869 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ 9.0869 0 9.7926 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 9.7926 0 10.4911 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 10.4911 0 11.1869
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 11.1869 0

Table 3
Optimal surface tensions for the MS SBM example. (Note that the entries are heterogeneous, so there are different surface

tensions between different pairs of communities.) The infinite entries correspond to sets with no observed edge between them.

was suggested for modularity maximization in [38] and was tested in [10]. The introduction of supervision
helps alleviate severe nonconvexity by penalizing local minima that do not agree with the supervision. It is
also important to generalize our approach to more complicated types of networks, such as multilayer [46] and
temporal networks [37], and to incorporate metadata [63] into our inference methodology. For example, given
our successful results on the hyperspectral video, it may be particularly interesting to use temporal-network
clustering to analyze time-dependent communities in the video.

Approaches such as inference using SBMs and modularity maximization are also related to other ap-
proaches for community detection, and the results in this paper may help further illuminate those connec-
tions. These include recent work that relates SBMs to local methods for community detection that are based
on personalized PageRank [47] and very recent work that established new connections between modularity
maximization and several other approaches [89]. We expect that further mapping of the relations between
the diverse available perspectives for community detection (and other problems in network clustering) will
yield many new insights for network theory, algorithms, and applications.

Acknowledgements. ZMB and ALB were funded by NSF grants DMS-1737770 and DMS-1417674, as
well as ONR grant N00014-16-1-2119. ZMB was also supported by the Department of Defense (DoD) through
the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. MAP and ALB were
also funded by DARPA award number FA8750-18-2-0066. We thank Kevin Miller, Brent Edmunds, and
Robert Hannah for helpful discussions.

A. Eliminating the Diagonal Elements of W . It is difficult to determine the parameters Wαα in
the context of (6) and our surface-tension analogy, because they correspond to “internal” surface tensions of
a single crystal. In this appendix, we use a change of variables to eliminate these diagonal terms and replace
them with additional volume terms, which are much easier to interpret.

We begin with the identity∑
α,β

WαβCutg,A(α, β) =
∑
α

∑
β 6=α

WαβCutg,A(α, β) +
∑
α

WααCutg,A(α, α) ,(15)

and we compute ∑
α

WααCutg,A(α, α) =
∑
α

Wα,α

∑
gi=α,gj=α

wij



SBM IS DISCRETE SURFACE TENSION 15

=
∑
α

Wα,α

 ∑
gi=α,j=1,...,N

wij −
∑

gi=α,gj 6=α

wij


=
∑
α

Wα,α

∑
gi=α

ki −
∑

β 6=α,gi=α,gj=β

wij


=
∑
α

Wα,α

volg,A(α)−
∑
β 6=α

Cutg,A(α, β)

 .(16)

Combining (16) with (15) yields∑
α,β

WαβCutg,A(α, β) =
∑
α 6=β

(Wαβ −Wαα) Cutg,A(α, β) +
∑
α

Wααvolg,A(α) .(17)

This formulation has eliminated the diagonal at the cost of making W asymmetric. We can fix this issue by
replacing (17) with∑

α,β

WαβCutg,A(α, β) =
∑
α6=β

(
Wαβ −

1

2
Wαα −

1

2
Wββ

)
Cutg,A(α, β) +

∑
α

Wααvolg,A(α)

=
∑
α6=β

σ̂αβCutg,A(α, β) +
∑
α

Wααvolg,A(α) ,(18)

where σ̂αβ = Wαβ −
1

2
Wαα −

1

2
Wββ . The matrix σ̂ is symmetric and has 0 values on the diagonal.

Finally, we expand a bit on the role of the volume terms in (6). The term

(19)
∑
α

Wααvolg,A(α)

is the inner product of the vector of volumes with the diagonal of W . We minimize (19), subject to the

constraints
∑
α

volg,A(α) = 2m and volg,A(α) ≥ 0, by placing all of the nodes in the community that

corresponds to the smallest11 entry in the diagonal of W . Thus, these terms incentivize placing more mass
in the communities with the smallest volume penalty.

B. Γ-Convergence of the Ginzburg–Landau Approximation of (6). Gamma-convergence is de-
fined as follows:

Definition B.1. Let Y be a metric space, and let Fn be a sequence of functionals that take values in
R∪{∞}∪{−∞}. We say that Fn Γ-converges to another functional F if for all x ∈ Y , the following bounds
hold:

1. (Lower bound) For every sequence xn → x, we have F (x) ≤ lim inf
n→∞

Fn(xn).

2. (Upper bound) For every x ∈ Y , there is a sequence xn → x such that F (x) ≥ lim sup
n→∞

Fn(xn).

We now prove Theorem 4.1.

Proof. We largely follow [86], though we generalize to account for the multiphase nature of our problem.
Observe that all of the terms that do not involve the potential T are continuous and independent of ε,

so they cannot interfere with the Γ-convergence [20]. Therefore, it suffices to prove that
1

ε
T Γ-converges to

χ(U) =

{
0 , if U corresponds to a partition ,

+∞ , otherwise .

11When referring to “smallest” eigenvalues in the appendices, we mean the smallest positive or most-negative values rather
than those that are smallest in magnitude.
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To prove the lower bound, let Un → U and εn → 0. If U corresponds to a partition, then χ(U) = 0,

which is automatically less than or equal to
1

εn
T (Un) for each n. If U does not correspond to a partition,

then χ(U) = +∞. Pick N1 such that whenever n > N1, the distance from Un to the nearest feasible point
is at least c > 0. Let Tc be the infimum of T on all of RN×n̂ except for the balls of radius c that surround

each feasible point (so, in particular, T0 > 0). It follows that lim inf
n→∞

1

εn
T (Un) ≥ lim

n→∞

1

εn
T0 = +∞. Thus,

the lower bound always holds.
To prove the upper bound, let U be any N × n̂ matrix. If U corresponds to a partition, then letting

Un = U for all n gives the required sequence. If u does not correspond to a partition, then Un = U for all n
still satisfies the upper bound.

Thus, both the upper and lower bound requirements hold, and we have proven Γ-convergence.

C. Additional Notes on the AC and MBO Schemes. In this appendix, we discuss some practical
details regarding our implementation of the AC and MBO solvers.

The choice of ε in AC is important, because it selects a characteristic scale of the transition. If it is
too small, the barrier to transition is large, and no evolution occurs. If it is too large, the transition layer
becomes wide enough that a large part of the graph is caught in it, such that U does not approximately
correspond to a partition of the graph. Furthermore, Theorem 4.1 asserts only that the minimizers of (6)
and (13) are related when ε is sufficiently small. In our numerical experiments, we set ε = 0.004, a choice that
we selected by hand-tuning using our synthetic networks. There is no reason to believe that the same value
should work for all networks. For example, for the well-known Zachary Karate Club network [92], we obtain
much better results for ε = 0.04. A very interesting problem is to determine a correct notion of distance and
accompanying quantitative estimates to allow an automated selection of ε to obtain a transition layer with
an appropriate width to give useful results. We discretize the AC equation via convex splitting [22]:

(1 + c dt)Un+1 + LUn+1W = −dt
(
cUn + T ′(Un) +

1

2m
kkTUe−W

)
,

where c > 2/ε [50]. Using the constant c leads to an unconditionally stable scheme, which negates the
stiffness caused by the 1/ε scale.

It is necessary to solve linear system of the form

(20) (1 + c dt)Un+1 + LUn+1W = Fn

many times. In a continuum setting, one can use a fast Fourier transform, but we do not know of a graph
analog with comparable computational efficiency. Instead, we find the 2n̂ eigenvectors that correspond to the
smallest eigenvalues12 of L and the entire spectrum of W . Consequently, L ≈ VLDLV

T
L and W = VWDWV

T
W ,

and the system (20) is appromately equivalent to

(1 + c dt)V TL U
n+1VW +DLV

T
L U

n+1VWDW = V TL F
nVW .

Letting Ûn = V TL U
nVW and F̂n = V TL F

nVW , we write

(21) (1 + c dt)Ûn+1 +DLÛ
n+1DW = F̂n ,

which is easy to solve for Ûn+1. We convert Ûn+1 to a solution using Un+1 = VLÛ
N+1V TW . (See [6] for a

discussion of this method of recovering Un+1 from Ûn+1.)
One final detail that we wish to note is that we want the evolution of U to be restricted to have a row

sum of 1, so that we can interpret it in terms of probabilities. To do this, we use a vectorized version of the
projection algorithm from [16] at each time step.

The MBO solver uses a very similar pseudospectral scheme, although it does not include convex splitting.
Unlike in the AC scheme, we need to estimate two time steps automatically in our code, instead of tuning
them by hand. The first is the inner-loop step, which we determined using a restriction (which one can

12The number 2n̂ is somewhat arbitrary; we choose it to exceed n̂, but for computational convenience, we do not want it to
be too large.
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show is necessary for stability13) that the time step should not exceed twice the reciprocal of the largest

eigenvalue of the linear operator that maps U to
1

m
kkTUe−W . The time step between thresholdings of U

is given by the reciprocal of the geometric mean of the largest and smallest eigenvalues of the operator that
maps U → LUW . The associated intuition is that linear diffusion should have enough time to evolve (to
avoid getting stuck) but not enough time to evolve to equilibrium (because the equilibrium does not depend
on the initial condition, so it carries no information about it). The reciprocal of the smallest eigenvalue gives
an estimate of the time that it takes to reach equilibrium, and the reciprocal of the largest eigenvalue gives
an estimate of the fastest evolution of the system. We choose the geometric mean between these values to
produce a number between these two extremes.14 References [10] and [87] proved bounds (although in a
simpler setting) that support these time-step choices for MBO schemes.
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