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ABSTRACT 
 

EFFECTS OF TISSUE NITROGEN AND MEDIA NITRATE ON TRACE METAL 
UPTAKE AND TROPHIC TRANSFER BY ULVA SPP. 

 
by Sonya M. Sankaran 

 
A general survey of trace metal content in Ulva spp. (Linnaeus) around Moss 

Landing, California was carried out.  The next objective was to evaluate whether tissue 

nitrogen or media nitrate affects metal uptake (As, Pb, Mn, Zn) by Ulva spp. under 

eutrophic conditions.  Additionally, the role of metal burden in the invertebrate Idotea 

resecata as a function of metal content in its diet was examined.  Mean trace metal 

concentrations in Ulva differed significantly among sites in Moss Landing, California.  

Laboratory measurements using samples from 15 sites along the central California coast 

revealed a significant positive correlation between Ulva spp. tissue nitrogen and both 

arsenic and manganese uptake.  No relationship was found between tissue nitrogen and 

lead or zinc, but a significant positive correlation with the relative change in manganese 

and lead was observed.  Though statistically insignificant, a regression analysis revealed 

a logarithmic relationship between media nitrate and both tissue arsenic and manganese.  

Lead and zinc content in Ulva had no relationship with media nitrate.  Metal in Idotea 

resecata was not significantly related to diet treatments; however, a bioaccumulation 

trend was observed for arsenic and manganese.  Given the role of trace metals in the 

production of photosynthetic enzymes and proteins, variability in productivity may drive 

the uptake of essential and non-essential elements.  Depending on the amount of Ulva 

consumed, elevated metal content in these macroalgae could pose a health risk to 

invertebrates and/or humans.
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INTRODUCTION 
 

Photoautotrophs perform numerous services for both marine and terrestrial 

systems, from oxygen production and carbon dioxide sequestration to inorganic nutrient 

cycling (Lobban and Harrison 1994; Raven 1997; Raven and Yin 1998).  Their unique 

ability to use solar energy and inorganic nutrients to produce carbohydrates via 

photosynthesis naturally casts them in the role of primary producer at the base of all food 

webs.  Thus, directly or indirectly, all higher trophic organisms depend on autotrophic 

productivity and the bulk of this is in the form of photoautotrophy.  Kwak and Zedler 

(1997) explored food web dynamics in coastal wetlands and demonstrated the vital role 

of microalgae, macroalgae, and marsh plants to consumers such as invertebrates, fishes, 

and birds with the use of stable isotope techniques.  Power (1990) revealed the reliance of 

fish on algivorous insects and fish fry and the indirect effects of fish abundance on algal 

biomass.  While consumers certainly shape community composition, primary producers 

render basic inorganic building blocks, such as carbon and nitrogen, usable by higher 

trophic levels (Hunter and Price 1992; Power 1992). 

It is well known that abiotic factors are integral in determining the magnitude of 

photoautotrophic productivity.  Photosynthetic processes in aquatic systems are driven by 

various abiotic parameters such as light, nutrients, temperature, pH, and concentration of 

free carbon dioxide (Lobban and Harrison 1994).  In most systems, light and nutrients are 

the limiting resources for photosynthesis.  Assuming an adequate nutrient supply, light 

controls photosynthetic biomass production (King and Schramm 1976).  However, in 

many systems nutrient supply is variable due to flux to and from adjacent systems.  
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Algae, abundant primary producers in many marine and aquatic systems, are 

frequently exposed to variable nutrient supply due to tidal or fluvial flux, seasonal 

upwelling, and terrigenous inputs.  This variability has consequences for photosynthetic 

output, including concomitant sugar and protein synthesis.  For the macroalga Ulva spp., 

gross photosynthesis and chlorophyll content are positively correlated with ambient 

nitrate concentrations (Cabello-Pasini and Figueroa 2005).  Rosenberg and Ramus (1982) 

also found a positive correlation between pigment levels and soluble tissue nitrogen in 

Gracilaria foliifera and Ulva spp. 

The central California coast is an exceptionally diverse environment in terms of 

geomorphology, marine life, and anthropogenic influences.  Trace elements are naturally 

introduced to this region via upwelling (Bruland et al. 2001; Chase et al. 2005) and 

crustal weathering and subsequent erosion (Libes 1992; Luoma and Rainbow 2008).  In 

addition, various anthropogenic sources such as harbor inputs, and agricultural, industrial 

and municipal effluents, lead to a complex mosaic of chemical conditions that is not 

easily characterized.  Metals are introduced to nearshore systems from commercial 

harbors in Monterey, Moss Landing, Santa Cruz, and San Francisco and include zinc, 

copper, and lead as anti-corrosive, anti-fouling and anti-rust agents on ship hulls and 

dock pilings (Bird et al. 1996; Schiff et al. 2004; Warnken et al. 2004).  Agricultural 

pesticides and herbicides, byproducts from industries such as mining and smelting, and 

municipal wastewater discharge all flow through rivers and culverts, eventually reaching 

coastal habitats.  Trace metals, of natural and anthropogenic origin, are transferred 

through food chains with some bioaccumulating as they are passed on to higher trophic 
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levels (Wang 2002; Croteau et al. 2005).  Thus, local biogeochemistry has far reaching 

ecosystem effects that often start with primary producers (Mason and Morel 1996). 

Marine macroalgae passively and actively uptake various essential and non-

essential elements.  These elements can be adsorbed by cell wall polysaccharides or 

absorbed into algal cells.  Essential elements, including trace metals, perform structural, 

and metabolic roles in protein and sugar synthesis  (DeBoer 1981; Lobban and Harrison 

1994).  Some trace metals are essential micronutrients when incorporated in low 

concentrations but can become toxic at higher concentrations, such as manganese, 

copper, iron, selenium and zinc (Stauber and Florence 1986; Lobban and Harrison 1994; 

Rijstenbil et al. 1994).  Non-essential elements can be benign or toxic to algae.  Trace 

metals such as arsenic, cadmium, lead and mercury, have no nutritive value and are toxic 

at low concentrations (Rai et al. 1981; Lobban and Harrison 1994). 

Some studies have linked trace metal uptake in algae to ambient nitrate 

concentrations.   Lee and Wang (2001) demonstrated a positive relationship between 

ambient nitrate concentration and cadmium accumulation rate in Ulva fasciata 

(Linnaeus).  Algal cells in nitrate enriched media can accumulate more copper, 

manganese, and zinc when compared to low nitrate media (Rijstenbil et al. 1998).  

Furthermore, studies by Rosenberg and Ramus (1982) revealed that nitrogen enrichment 

leads to an increase in photosynthetic pigment production and growth rate in Gracilaria 

foliifera and Ulva spp.  An increase in nitrate concentration has also been shown to 

positively affect gross photosynthesis and chlorophyll content (Cabello-Pasini and 

Figueroa 2005). Given the role that trace metals play in the function and synthesis of 
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photosynthetic enzymes and proteins, variability in productivity could be affecting the 

uptake of essential and non-essential elements. 

Trace metals such as zinc and manganese are essential for growth and 

photosynthesis in algae, and their uptake is driven in part by physiological requirements 

(Brand 1983; Sunda and Huntsman 1998).  In nature, multiple factors influence algal 

growth rate aside from available ambient nutrient supply.  Temperature and light also 

play a strong role in short term growth rates; therefore, nutrient history is an important 

parameter to examine in a broader context of productivity because maintenance of growth 

rates can depend greatly on nitrogen reserves.    

  Macroalgal species of the genus Ulva are distributed globally and thrive in 

intertidal and estuarine habitats.  This genus is considered cosmopolitan and 

opportunistic, due to its early colonization of available substrate, rapid growth, and 

reproduction.  Ulva spp. demonstrates higher stress tolerance, persisting despite varying 

levels of desiccation, salinity, and pollution (Abbott and Hollenberg 1976).   Ulva spp. 

are common in nearshore, intertidal, and estuarine systems along the coastline of central 

California.  This genus has a high nitrogen saturation point, making it possible for Ulva 

spp. to utilize nutrients toward increased growth, reproduction and/or productivity 

(Rosenberg and Ramus 1982).  Additionally, Ulva spp. demonstrate relatively high metal 

accumulation potentials (Wang and Dei 1999).  

The central California coast is naturally enriched with nutrients and trace 

elements as a result of annual coastal upwelling from March through August (Graham 

and Largier 1997).  Additionally, this coast is exposed to significant amounts of 
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terrigeneous runoff, increasing in months with higher precipitation (November-April) 

(Caffrey et al. 2007).  Natural terrigenous nutrients combine with significant 

anthropogenic inputs which discharge along the coast.  Habitat degradation due to 

growing urban and agricultural development has led to increased soil erosion and nutrient 

runoff by destabilizing hillsides and waterway embankments, as well as increasing 

impervious surfaces (Peierls et al. 1991; Nixon 1995).  This compromises natural 

mechanisms of runoff remediation such as riparian vegetation, marshes, wetlands, and 

adequate permeable surfaces, exacerbating the influence of terrigenous effluents in 

coastal systems.   

Nutrient enrichment, whether caused by upwelling and/or anthropogenic 

activities, often affects ecosystems by supplying them with limiting compounds such as 

dissolved inorganic nitrogen.  Shifts in productivity and even species dominance can 

result from shifts in nutrient availability (Valiela et al. 1997).  Caffrey et al. (2007) 

presented evidence that the seasonal nutrient regime in Elkhorn Slough, an estuary 

adjacent to the Monterey Bay, corresponds to increased levels of gross marine 

photoautotrophic productivity.   

Trace elements are transferred between trophic levels, becoming bioaccumulated 

(biomagnified, or increasing in concentration with each trophic step) or biopurified 

(decreasing in concentration with each trophic step) depending on the elemental species 

and particular pathway through the food web. Mercury, selenium, and arsenic have been 

shown to biomagnify under certain conditions (Ogle et al. 1988; Mason and Morel 1996; 

Barwick and Maher 2003), occurring in greater concentrations in higher trophic levels 
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compared to primary producers and other lower trophic organisms.  In contrast, other 

metals are biopurified as they are transferred up the trophic ladder.  Trace element burden 

in herbivores that feed on Ulva spp. should therefore exhibit varying tissue element 

concentrations with varying algal metal concentrations.  Idotea spp. is a common 

invertebrate genus in this region and is an example of an invertebrate genus that is known 

to eat Ulva (Kamermans et al. 2002) as well as reflect metal burden in toxicity studies 

(El-Nady and Atta 1996).  It is a prey item for large inverts, omnivorous and carnivorous 

fish, and aquatic birds; therefore, Idotea resecata was used in this study to examine 

trophic transfer of metals by Ulva spp.  

Exploring the fundamental physiological relationship between nutrient and metal 

uptake in algae is important in piecing together a biogeochemical picture of environments 

where nutrient and metal enrichment co-occur.  Algae play an intrinsic role in the cycling 

of nutrients and metals by sequestering elements from their environment and transferring 

them down into sediments and up through food webs.  Currently, the majority of global 

oceans are increasingly influenced by anthropogenic activities (Halpern et al. 2008) 

making the co-occurrence of metal and nutrient enrichment commonplace in coastal 

environments.  Therefore, the goal of this study was to understand how nitrogen affects 

metal uptake in Ulva spp. under eutrophic conditions, and to examine if there exists a 

relationship between invertebrate tissue metal burden and the metal concentration in their 

diet.  I conducted a series of experiments to assess the physiological relationship between 

1) tissue nitrogen and metal uptake in Ulva spp., 2) media nitrate and metal uptake in 

Ulva spp. under eutrophic conditions, and 3) tissue metal burden of I. resecata and the 
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metal content in their diet.  After conducting a general, local, spatial survey of metal 

content in Ulva spp., I focused specifically on arsenic, lead, manganese, and zinc for the 

remaining experiments.  The first two of these metals are toxic and non-essential, and the 

latter two are essential to algal growth, yet toxic at high concentrations.  To control for 

the great spatial and temporal variability in this region, most of my specimens were 

collected from Elkhorn Slough and surrounding areas. 

 

METHODS 

Creation of an Ulva process reference material 

Thirteen kilograms (wet weight) of fresh Ulva spp. were collected from Elkhorn 

Slough (Fig. 1A) using sterile gloves and placed in polyethylene bags in a cooler for 

transport to the laboratory, where they were stored in flowing seawater for 48 hours.  The 

likely species that were represented in this study were U. expansa, U. lactuca, U. lobata 

and U. rigida.  The tissue was dried and homogenized for use as a process reference 

material for trace element analyses.  A large glass jar was trace metal cleaned for storage 

of the homogenate: Soaked for 3 days in 1% micro and deionized water solution, rinsed 5 

times with deionized water, rinsed 3 times with ultrapure water from a Milli-Q ion 

exchange system (Millipore Corporation), and soaked in the same overnight.  The jar was 

then soaked in 5% trace metal grade HCl for 5 days, then rinsed 3 times with Milli-Q.  

One large sample was taken from one location in the glass jar and divided into five 

subsamples (“parsed”).  Then, five more samples were taken from various parts of the 

container and run separately (“separate”).  To test for its suitability for use as a process 
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reference material, trace metal analyses were performed.  Six milliliters of concentrated 

Double Distilled HNO3 (Seastar) were added to each sample and spike solutions were 

added for spike scans.  Algal tissue was digested in a microwave digestor. Vials with 1 

mL of digestate, 25 µL of internal standard and 10 mL of Milli-Q with 1% HNO3 were 

analyzed using a Sciex Elan 6000 Inductively-Coupled Plasma Mass Spectrophotometer 

(Perkin-Elmer, Waltham MA, USA).  An orchard leaf standard reference material (1571) 

was used to confirm accurate results.  To test for trace metal homogeneity of the Ulva 

homogenate, a two sample t-test was performed comparing mean trace metal 

concentration of “parsed” samples to “separate” samples. The standard error and standard 

error as a percent of metal concentration were both reported as a measure of the 

variability in trace metals in the material.   

 

Spatial variation in Ulva spp. trace metal burden in Moss Landing, California 

To explore spatial variability in metal burden in Ulva spp., in October 2008, 

samples were collected from the following sites:  the Old Salinas River Channel, Elkhorn 

Slough, Moss Landing Harbor, and the north Moss Landing jetty (Fig 1A).  Samples 

were collected using polyethylene gloves and stored in polyethylene bags in a cooler for 

transport to the laboratory.  Three to four blades from each site were homogenized and 

three subsamples used for analysis.  Sub-samples were prepared by rinsing in Milli-Q and 

metals were analyzed using the protocols listed above, with one change: initial wet 

weight was recorded and 3.00 ± 0.2g of algal tissue was dried for 48 hours in an oven at 

72 degrees Celsius.  Final dry weights were recorded for moisture determination.   
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A. 

 
B. 

 
 
FIG. 1A. Collection sites for Ulva. Spatial variation in metal burden in Ulva spp.: a=Moss 
Landing north jetty, b=Moss Landing Harbor, c=Salinas Channel, d=Elkhorn Slough; Collection 
sites for the Ulva process reference material & trace metal uptake by Ulva spp. as a function of 
media nitrate=e.  FIG. 1B. Collection sites for Ulva spp. and Idotea resecata. f= intra- and inter-
blade variability; g= trophic transfer.  FIGS. 1A & 1B. Trace metal uptake by Ulva spp. as a 
function of tissue nitrogen: 1) Big Creek Marine Reserve; 2) Soberanes Point; 3)Stillwater Cove; 
4) South Point Pinos; 5) North Point Pinos; 6) San Carlos Beach; 7)Monterey Harbor; 8) Elkhorn 
Slough; 9) Moss Landing Harbor; 10) Moss Landing Jetty; 11) Moss Landing Yacht Club;  12) 
Kirby Park; 13) Santa Cruz Harbor; 14) Santa Cruz Jetty; 15) Davenport Beach. 
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The mean tissue concentration of each metal was calculated and a one-way 

ANOVA was used to determine if there were significant differences in metal 

concentrations among sampling sites.  Crustal abundance tables (Korte 1999) were used 

to calculate the ratios of the metals of interest to crustal abundance relative to aluminum.  

The ratio of metal concentrations to aluminum concentration determined in this study was 

divided by the crustal ratio to compare relative metal concentrations. 

 

Trace element variability within and among blades 

To quantify the trace element variability both within and among Ulva blades, 

tissue samples and seawater were collected in accordance with trace metal clean 

protocols (Gordon et al. 1980) by using clean, polyethylene gloves, bags, bottles and 

carboys for collection and storage.  All equipment that was in contact with tissue samples 

and seawater was cleaned in a trace metal clean laboratory according to methods 

described in U. S. Environmental Protection Agency Method 200.7 & 200.8 (1994; 

USEPA 1994).  Ho (1993) indicated that Ulva thalli near the holdfast and marginal cells 

had slower growth rates and metabolism than the central thalli, therefore all tissue 

samples were taken from the central part of the blade and rinsed with seawater to remove 

organic matter and sediment.  All samples were stored and transported in a cooler with 

ice packs.  Ulva samples were cut with trace metal clean plastic implements, and 

swabbed with cotton that was soaked in 5% trace metal grade HCl for 1 hour, rinsed with 

Milli-Q, then soaked in clean seawater.  
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Five Ulva blades were collected from pilings in the Monterey Harbor (Fig. 1B) 

and eight 1.0 g tissue samples (wet weight) were taken from each blade.  Four of the 

eight tissue samples were homogenized together and reparsed into four separate samples, 

while the other four were analyzed separately.  An orchard leaf standard reference 

material (1571) was used to assure accuracy in the analysis and the Ulva substandard 

from the previous experiment was used as a process control standard.  Metals were 

analyzed using the same methods as described above.  Trace metal values were recorded 

in parts per million dry weight.  A two-way ANOVA was run on the data using the five 

blades (8 subsamples each) as a random factor and the two tissue preparations 

(homogenized and separate) as a fixed factor, to test the hypothesis that metal 

concentrations do not significantly vary within or among Ulva blades collected from the 

same site. 

 

Trace metal uptake by Ulva spp. as a function of tissue nitrogen 

Experiments were used to test the hypothesis that increased tissue nitrogen results 

in increased metal uptake by Ulva.  Seawater used in these experiments was collected 5 

miles offshore of Moss Landing (N 36° 50.134, W 121° 54.129) using trace metal clean 

methods and filtered with a Millipore Millipak 0.22 µm filter, rendering it comparable to 

open ocean water in terms of trace metal content (Table 1).  Seawater analyses were 

performed using a Thermo Finnigan Element 2 high-resolution ICP-MS (Hulme et al. 

2008).  A 10% dilution was used with standards in 10% low-metal surface seawater from 
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the Southern Pacific Ocean collected during the SoFeX cruise (Coale et al. 2004).  Metal- 

spiked seawater was also analyzed for metal content. 

 
TABLE 1. Trace metal content in filtered seawater used for Ulva tissue nitrogen and eutrophication 
experiments in ng/mL.  10% SW Blank and Blank1 refer to water collected during the SoFex cruise 
in 2004 (Coale et al. 2004). 1643e is a National Institute of Standards and Technology (NIST) 
standard reference material. HNO3 blank is a standard nitric acid blank required for quality control.  
Exp 1 and 2 SW1 and SW2 refer to filtered seawater used in experiments.  “Exp1 - spiked” refers to 
seawater after metals (Pb, Mn, Zn, As) were added.  DL = detection limit. 
 

Al Ag Cd Pb Cr Mn Ni Cu Zn Se As 

10% SW Blank 1.5 0.0 0.0 0.1 <DL <DL 0.1 0.0 0.3 0.0 0.0 

10%SW Blank1 <DL 0.0 0.1 0.2 <DL <DL <DL 0.1 1.5 0.2 <DL 

1643e plus SW 144.5 1.0 6.5 19.0 19.8 36.9 59.8 21.9 77.3 11.4 58.5 

HNO3 blank <DL 0.1 0.0 0.1 <DL <DL 0.0 <DL 0.5 0.6 <DL 

Exp1 SW1 2.1 0.1 0.1 0.1 <DL 0.2 0.0 0.3 1.4 0.0 0.5 

Exp1 SW2 3.6 0.0 0.1 0.1 <DL 0.0 <DL 0.1 0.1 0.3 <DL 

Exp1 - spiked 33.6 0.1 0.1 18.3 <DL 297.2 0.1 1.0 136.8 0.1 1950.8 

Exp2 SW1 0.4 0.5 0.1 0.2 <DL 0.0 <DL 13.8 0.8 0.2 <DL 

Exp2 SW2 0.5 0.1 0.1 0.3 <DL <DL <DL 0.2 0.7 0.4 0.0 

DL 0.45 0.02 0.16 0.16 0.21 0.23 0.11 0.16 0.33 0.66 0.27 
 

A range of Ulva tissue nitrogen (2.5% - 4.7%) was created by sampling Ulva from 

15 sites along the central California coast (Fig. 1B): 1) Big Creek Marine Reserve; 2) 

Soberanes Point; 3) Stillwater Cove; 4) South Point Pinos; 5) North Point Pinos; 6) San 

Carlos Beach; 7) Monterey Harbor; 8) Elkhorn Slough; 9) Moss Landing Harbor; 10) 

Moss Landing Jetty; 11) Moss Landing Yacht Club; 12) Kirby Park; 13) Santa Cruz 

Harbor; 14) Santa Cruz Jetty; 15) Davenport Beach.  A power analysis (G*Power 3.1.3) 

was used to determine the sample size (ANOVA: Multiple regression, omnibus; α = 0.05, 

power = 0.95), which was the minimum to detect an R2 of 0.5 (Faul et al. 2009). 
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Two Ulva blades were collected from each site, and each blade was split into three 

1.0 g pieces for: (1) analysis of initial trace metal concentration, (2) spiking with additional 

metal, and (3) tissue nitrogen analysis.  Samples were stored and transported to a clean 

laboratory according to protocols described above.  For nitrogen analysis, 0.5 gram wet Ulva 

was dried and homogenized for each sample.  Samples (~150 µg) were loaded in 3.5x5 mm 

tin capsules and analyzed with a CE Elantech 2500 CHN Elemental Analyzer at the 

University of Wyoming Stable Isotope Facility, Laramie, Wyoming.  Although cutting the 

algae into pieces may stimulate the release of chemicals (Webster and Gadd 2004), no 

evidence has indicated that metal accumulation is significantly affected by this treatment (Ho 

1993).   

To test for tissue nitrogen effects on metal uptake, thirty 500 mL, clear, trace metal 

cleaned polycarbonate bottles were filled with clean, filtered seawater and spiked with four 

metals: arsenic (30*103 nmol/kg), lead (150 nmol/kg), manganese (7.3*103 nmol/kg) and 

zinc (5000 nmol/kg) (Claritas brand 1000 uM metal standards dissolved in 3% HNO3).  The 

nitric acid in the metal solutions brought the baseline nitrate level in the media to 1000uM, 

and the pH to 6.4.  These conditions are similar to conditions observed at sites in the Salinas 

Channel and Elkhorn Slough, California: local, eutrophic water bodies where Ulva is 

common (Monterey Bay Aquarium Research Institute’s Land/Ocean Biogeochemical 

Observatory (LOBO) network; J. Plant pers. comm.).  The relatively low pH may lower 

adsorption to bottles and Ulva thalli; therefore, the reported results likely represent mostly 

the incorporation of metals by algae.  Pieces of Ulva (1.0 g wet weight) from each site were 

placed in separate bottles, and attached to an acrylic rotating carousel (plankton wheel) in 
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order to circulate seawater and minimize the diffusion boundary layer.  Experiments were 

carried out in a temperature controlled room at 12°C and were incubated for 24 hours.  All 

samples were exposed to a full spectrum light source (96 W, 6700 K) that provided 50 PAR 

at the bottom of the rotating wheel, and 500 PAR when the bottles moved to the top of the 

wheel, closer to the light source (~2.22 rpm).  Tissue was then removed and blade surfaces 

were cleaned with cotton swabs and rinsed in clean seawater.  Trace element analysis was 

carried out as described.   

For each metal, a linear regression analysis was carried out to determine the 

relationship between tissue nitrogen and metal uptake in the Ulva tissue.  Uptake was 

calculated by subtracting initial metal concentration from final metal concentration for each 

sample.  An additional regression analysis was performed comparing the percent change for 

each metal (final concentration minus initial concentration divided by the initial 

concentration) to the tissue nitrogen.  Enrichment factors were calculated by dividing the 

average of final Ulva metal concentrations (multiplied by 0.17 to convert to ppm wet weight) 

by spiked seawater metal concentrations. 

 

Trace metal uptake by Ulva spp. as a function of media nitrate 

Experiments were used to test the hypothesis that, under eutrophic conditions, 

Ulva metal uptake increases with 0-20% additions of nitrate.  As in the previous 

experiment, nitric acid in the metal solutions brought the baseline nitrate level in the 

media to 1000 µM and the pH to 6.4.  Fifteen Ulva blades were collected on one date 

from one site in Elkhorn Slough (Fig. 1A) and randomly assigned to 15 nitrate 
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treatments: 0, 1, 2, 4, 6, 8, 10, 15, 20, 30, 40, 50, 75, 100, and 200 µM nitrate.  Trace 

metal-clean 500 mL polycarbonate bottles were filled with clean seawater.  Nitrate 

treatment was administered using a potassium nitrate standard, and all bottles were 

spiked with arsenic (30*103 nmol/kg), lead (150 nmol/kg), manganese (7.3*103 nmol/kg) 

and zinc (5000 nmol/kg) (Claritas brand 1000 uM metal standards dissolved in 3% 

HNO3).  Pieces of Ulva (1.0 g wet weight) were placed in the bottles, and then incubated 

for 24 h in identical conditions to those described above.  Trace metal analysis was 

carried out as described above, and a regression analysis was used to evaluate the 

relationship between media nitrate and final trace metal concentration. 

 

Trace metal trophic transfer to Idotea resecata 

A laboratory feeding experiment was used to test the hypothesis that tissue metal 

burden in the isopod I. resecata would increase when fed Ulva with a higher than normal 

tissue metal burden. Ulva was collected from one site in Elkhorn Slough, Moss Landing 

(Fig. 1A) and placed in an aquarium with flowing seawater for 10 days.  Four diets were 

created: control, low, medium, and high metal treatments.  The low batch was treated 

with seawater enriched with arsenic (0.1 ppm), manganese (0.065 ppm), lead (0.0075 

ppm), and zinc (0.05 ppm).  The medium treatment was placed in seawater spiked with 

arsenic (0.5 ppm), manganese (0.325 ppm), lead (0.0375 ppm) and zinc (0.25 ppm).  The 

high treatment was placed in seawater enriched with arsenic (1.0 ppm), manganese (0.65 

ppm), lead (0.075 ppm) and zinc (0.5 ppm).  These batches of algae were left to incubate 
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at 12ºC for 36 hours with air bubblers and a 200 PAR light source with a spring 

photoperiod of 12 hours of light and 12 hours of dark.   

One hundred and fifty individual I. resecata between 2-3 centimeters length were 

collected from kelp beds near Point Pinos, Pacific Grove, California (Fig. 1B).  For an 

estimate of baseline metal burden in I. resecata, 28 individuals were split into 4 groups 

(baseline A-D).  Individuals from each group were diced finely with a clean scalpel and a 

1.0 g sample was used for metal analysis.  The other 122 were kept in flowing seawater 

and fed clean, “control” Ulva for 7 days and then starved for one week.  At the end of the 

week, they were separated into 16 mesocosms with identical air bubblers and placed in an 

aquarium with running seawater at 13°C.  A mesh opening in the top of each mesocosm 

allowed seawater to freely flow in and out of the containers.  They were split into 4 

replicates of 4 treatments (about 6-9 individuals, 2.5-3.0 total grams per replicate) and 

administered the corresponding diet ad libidum for 7 days.  On the seventh day, 3 

individuals (~1.0 grams wet) were removed and starved for 5 days in order to purge 

undigested Ulva from their digestive tract.  They were then frozen at -20ºC.  The 

remaining individuals were fed unspiked Ulva that had been in flowing seawater to 

investigate their ability to recover from the contaminated food.  After 7 days of this 

“clean” diet, they also were starved for 5 days and frozen.  Individuals from each group 

were homogenized with a clean scalpel and a 1.0 g sample was used for metal analysis.   

One-way ANOVA analyses were used to determine if treatments (control, low, 

medium, and high metal-dosed Ulva diets) caused a change in I. resecata tissue metal 

burden (As, Mn, Pb, Zn), and to determine the effects of the “recovery” diet.  A Tukey’s 
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post-hoc test was used to detect differences among treatments (SPSS 16.0.1, α = 0.05).  

Homogeneity of variance was tested using Levene’s test and normality with a 

Kolmogorov-Smirnov test. 
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RESULTS 

Creation of an Ulva process reference material 

A two-sample t-test comparing “parsed” samples  to “separate” samples revealed 

no significant differences in arsenic, manganese, lead, or zinc concentrations, confirming 

that the Ulva process reference material was adequately homogenized (Fig. 2, Table 2A). 

Additionally, for every metal, agreement between the sample concentrations was within 

the standard error, demonstrating the sufficient precision of the Ulva process reference 

material to detect differences in treatments for the following experiments (Table 2B). 

 
 

FIG. 2. Mean metal concentrations (As, Mn, Pb & Zn) in samples of Ulva process reference 
material in ppm dry weight.  Pb* = Pb*10.  Error bars represent ± SE.  “Parsed” samples were 
taken from one location in a container of homogenate and compared to “separate” samples, taken 
from different places in the container.  No significant differences between metal concentrations 
were detected, demonstrating the adequate homogeneity of Ulva process reference material. 
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Establishing a reliable, accurate process reference material, of the same tissue 

used in this study, was integral for the quality control of metal analyses.  Verifying that 

the variability within the stock Ulva homogenate was insignificant provided the 

necessary confidence for its use as a process reference material for all experiments in this 

study.  

 
 
TABLE 2A. Results of an independent samples t-test comparing 1 parsed sample (5 
subsamples) to 5 separate samples of Ulva process reference material.  No difference was 
found between samples. 
 
Metal t df p  
     

As -1.202 8 0.264  
Mn -0.047 8 0.964  
Pb 0.886 8 0.401  
Zn -1.460 8 0.182  

 

TABLE 2B. Average metal concentration, standard error and coefficient of 
variation in Ulva process reference material. 
 

 

Sample / 
Metal 

Average 
(ppm) ± SE 

Standard error 
(% of avg) 

Coefficient of 
variation 

 

“Parsed” /     
As 7.51 ± 0.04 0.55 1.22  
Mn 32.6 ± 0.17 0.51 1.14  

Pb*10 17.1 ± 0.16 0.96 2.15  
Zn 18.25 ± 0.07 0.36 0.81  

“Separate”/     
As 7.59 ± 0.05 0.70 1.56  
Mn 32.64 ± 0.39 1.20 2.69  

Pb*10 16.81 ± 0.28 1.66 3.70  
Zn 18.55 ± 0.18 0.99 2.20  
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Spatial variation in Ulva spp. trace metal burden in Moss Landing, California 

Mean trace metal concentrations in Ulva differed significantly among sites (Fig. 3, 

Table 3).  Samples from the Salinas River Channel exhibited significantly higher trace 

metal concentrations than the other sites for chromium, nickel, lead and manganese.  The 

Ulva from the Salinas Channel and Moss Landing Harbor had significantly greater 

arsenic, copper and zinc concentrations than the Ulva from the other two sites.   
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A. 

 
 
 
B. 

 
FIG. 3. Mean concentrations of trace metals in Ulva tissues (ppm dry weight) collected from four 
sites in Moss Landing, CA: NJ=north jetty at Moss Landing, ES=Elkhorn Slough, MLH=Moss 
Landing Harbor, SC=Salinas Channel.  FIG. 3A. Mean As, Cd (* = Cd*10), Cr, Cu, Ni, Pb, Se & 
Zn (* = Zn/10).  FIG. 3B. Mean Mn.  Error bars represent ± SE.  Metal concentrations differed 
significantly for all metals but selenium (Table 2).   
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TABLE 3. Results of one-way ANOVA comparing mean algal tissue metal concentrations 
among sites.  Those below the critical p-value of 0.05 in bold.  Tissue metal content in Ulva 
differed significantly among sites for all metals tested except selenium. 
 

 Source Sum of Squares df Mean Squares F-ratio p 
 As Between Groups 39.252 3 13.084 26.862 <0.001 
 Within Groups 3.897 8 0.487   
 Total 43.149 11    
Cd Between Groups 0.203 3 0.068 19.603 <0.001 
 Within Groups 0.028 8 0.003   
 Total 0.230 11    
Cr Between Groups 303.980 3 101.327 6.058 0.03 
 Within Groups 160.263 8 20.033   
 Total 464.243 11    
Cu Between Groups 447.678 3 149.226 13.546 0.002 
 Within Groups 88.132 8 11.017   
 Total 535.810 11    
Ni Between Groups 233.874 3 77.958 4.832 0.033 
 Within Groups 129.076 8 16.135   
 Total 362.950 11    
Pb Between Groups 37.938 3 12.646 5.281 0.027 
 Within Groups 19.156 8 2.395   
 Total 57.094 11    
Se Between Groups 20.775 3 6.925 2.905 0.101 
 Within Groups 19.069 8 2.384   
 Total 39.843 11    
Zn Between Groups 1211.929 3 403.976 6.799 0.014 
 Within Groups 475.353 8 59.419   
 Total 1687.283 11    
Mn Between Groups 161739.967 3 53913.322 7.538 0.01 
 Within Groups 57214.240 8 7151.780   
 Total 218954.207 11    
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The Moss Landing north jetty site showed the largest discrepancies between 

measured algal metal concentrations and crustal abundances (Table 4). Relative to crustal 

abundances, arsenic, cadmium, copper, nickel, lead, selenium and zinc were elevated at 

all sites.   

 

TABLE 4. Relationship between ratio of sample metal concentrations to sample aluminum 
concentrations and ratio of crustal metal abundances to crustal aluminum abundance. ES = 
Elkhorn Slough, MLH = Moss Landing Harbor, NJ = North Jetty, SC = Salinas Channel.  
As, Cd, Cu, Se and Zn were more than 3 times their natural crustal abundance at 2 or more 
sites. 
 

  As Cd Cr Cu Mn Ni Pb Se Zn 
ES 29.08 28.96 1.64 2.59 0.63 2.68 1.80 2459.00 4.08 
MLH  50.58 7.18 1.03 4.59 0.58 1.16 1.24 1778.55 5.95 
NJ 87.87 95.70 1.64 3.74 0.61 2.11 3.51 7163.60 9.59 
SC 20.52 6.24 0.98 1.76 1.74 1.17 2.26 1004.39 3.03 

 
 

Trace element variability within and among blades 

Neither the method of preparation (subsamples homogenized and reparsed or run 

separately) nor sampling from different blades had a significant effect on metal 

concentration in Ulva (Tables 5A-D).  For arsenic and lead there was a significant 

interaction between sample preparation and blade. 
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TABLE 5.  Results from 2-way ANOVAs determining trace metal variability (A. As; B. Mn; 
C. Pb; D. Zn) within and among Ulva spp. blades.  Analyzed with a critical p-value of 0.05.  
Those below the adjusted critical value for 4 comparisons of 0.0125 in bold.  
 
A. 

Test of Between-Subjects Effects 
Dependent Variable:  As  
Source Sum of Squares df Mean Square F p 
      
Preparation 0.406 1 0.406 0.107 0.760 
Blade 45.713 4 11.428 3.015 0.155 
Preparation * Blade 15.164 4 3.791 5.989 0.001 
Error 18.988 30 0.633   
B.      

Test of Between-Subjects Effects 
Dependent Variable:  Mn  
Source Sum of Squares df Mean Square F p 
      
Preparation 0.710 1 0.710 0.315 0.605 
Blade 63.282 4 15.820 7.012 0.043 
Preparation * Blade 9.025 4 2.256 0.510 0.729 
Error 132.804 30 4.427   
C.      

Test of Between-Subjects Effects 
Dependent Variable:  Pb  
Source Sum of Squares df Mean Square F p 
      
Preparation 1.612 1 1.612 0.925 0.391 
Blade 6.323 4 1.581 0.907 0.537 
Preparation * Blade 6.971 4 1.743 10.869 <0.001 
Error 4.811 30 0.160   
D. 

Test of Between-Subjects Effects 
Dependent Variable:  Zn 
Source Sum of Squares df Mean Square F p 
      
Preparation 3591.025 1 3591.025 1.022 0.369 
Blade 66721.850 4 16680.462 4.746 0.080 
Preparation * Blade 14057.350 4 3514.337 0.971 0.438 
Error 108530.750 30 3617.692   
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Trace metal uptake by Ulva spp. as a function of tissue nitrogen 

Arsenic exhibited a significant positive relationship with tissue nitrogen (F= 

4.215, df=29, p=0.050, r2=0.135), which explained approximately 14% of the observed 

variability in arsenic uptake (Fig. 4A).  Tissue nitrogen was also positively correlated 

with manganese uptake (F=10.005, df=29, p=0.004, r2=0.272), accounting for 

approximately 27% of the manganese uptake observed (Fig. 4C).  

 

A.      B.   
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FIG. 4. Results of a linear regression analysis to evaluate the effect of tissue nitrogen on metal 
uptake in Ulva (n = 30) over 24 hours variability (A. As; B. Pb; C. Mn; D. Zn).  Tissue nitrogen 
was significantly correlated with arsenic (4.2151, 28(0.05), 0.050, 0.135) and manganese uptake 
(10.0051, 28(0.05), 0.004, 0.272), but not with lead (0.0501, 28(0.05), 0.825, 0.001) or zinc (0.9921, 

28(0.05), 0.330, 0.044). 
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Neither lead nor zinc was significantly correlated with tissue nitrogen (Fig. 4B & 

4D), although for zinc the lowest metal concentration occurred at the lowest percent 

tissue nitrogen and the Ulva with the highest percent tissue nitrogen had the highest zinc 

concentration. 

Tissue nitrogen did not affect the percent change in arsenic concentrations in Ulva 

(Fig. 5A).  However, tissue nitrogen was significantly correlated with the percent change 

in manganese (F=5.663, df=29, p=0.024, r2=0.161) (Fig. 5B) and lead (4.078, df=29, 

p=0.053, r2=0.121) (Fig. 5C), contributing to 16% and 12% of the positive trend in 

percent uptake of those metals, respectively.  
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FIG. 5. Results of a linear regression analysis to evaluate the effect of tissue nitrogen on percent 
change in metal concentration in Ulva (n = 30) over 24 hours (A. As; B. Pb; C. Mn; D. Zn).  
Tissue nitrogen was significantly correlated with percent change in manganese (5.6631, 28(0.05), 
0.024, 0.161) and lead (4.0781, 28(0.05), 0.053, 0.121), but not with arsenic (0.0931, 28(0.05), 0.763, 
0.003) or zinc (3.1121, 28(0.05), 0.092, 0.119). 
 
 
 The enrichment factor (EF) of an organism represents the degree to which an 

element is concentrated (Libes 1992).  Lower trophic organisms generally concentrate 

more metals in their tissues than those higher on the trophic ladder.  However, the 

concentration of some metals, such as mercury, increases as they are passed to higher 

trophic levels.  When the EF of an organism for a particular element is less than one, it is 

said to “biopurify” that element.  An EF greater than one indicates that the organism is 

“bioaccumulating” that particular element.  Ulva spp. in this study demonstrated 
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bioaccumulation for all metals of interest, with lead exhibiting the greatest enrichment 

factor (Table 6). 

TABLE 6. Average enrichment factors for Ulva spp for As, Mn, Pb and Zn.  Positive values for all 
metals tested demonstrates bioaccumulation in Ulva, with the greatest bioaccumulation occurring 
for lead. 
 
 As Mn Pb Zn  

EF 21.89 127.19 330.01 307.25  
      
 
 
 
Trace metal uptake by Ulva spp. as a function of media nitrate 

Both arsenic and manganese uptake increased, then seemed to saturate with 

increasing media nitrate (F=4.219, df=13, p = 0.062, r2=0.260; F=2.862, df=13, p = 

0.119, r2=0.191 respectively; Fig. 6A & 6B).  Lead and zinc demonstrated no relationship 

with media nitrate (F=0.103, df=13, p = 0.754, r2=0.008; F=0.191, df=13, p = 0.670, 

r2=0.016 respectively; Fig. 6C & 6D).  Metal concentrations at the 200 µM nitrate level 

were excluded from analyses because they clearly did not fit the pattern exhibited by the 

rest of the data.  This could have been an artifact of the experimental process, possibly 

reflecting the adsorption of metals to the vessel walls or an anomaly in the Ulva blade 

itself.   

The samples for this experiment were collected from the same site in Elkhorn 

Slough as the Ulva SRM tissue.  Since among blade trace metal variability was shown to 

be insignificant (Table 5A-D), the Ulva SRM values were used to represent initial metal 

concentrations for this experiment (dashed lines below). 
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A.       B.  

      
 

C.       D. 

     
 
FIG. 6.  Results of logarithmic regression analyses to test the effect of media nitrate on metal 
uptake (n=14) (A. As; B. Pb; C. Mn; D. Zn).  Dashed line denotes Ulva SRM metal 
concentration.  Red star indicates metal concentration at 200 µM media nitrate (excluded from 
analysis).  Arsenic and manganese were correlated with media nitrate (4.2191, 12(0.05), 0.062, 
0.260; 2.8621, 12(0.05), 0.119, 0.191).  Lead and zinc were not related to media nitrate (0.1031, 

12(0.05), 0.754, 0.009; 0.1911, 12(0.05), 0.670, 0.016). 
 
 
Trace metal trophic transfer to I. resecata 

Average values for baseline arsenic, manganese, lead and zinc concentrations in I. 

resecata tissue were 11.0, 2.4, 0.88, and 47.0 ppm dry weight respectively (Fig. 8).  

Average baseline metal concentrations in I. resecata were notably different than metal 

concentrations in individuals in both “contaminated” and “recovery” diet trials (Tables 7 

& 8, Appendices A & B).  All baseline metal concentrations were lower in baseline 

individuals than treatment individuals except arsenic, which was higher. 
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FIG. 7.  Effect of treatments in mesocosm experiments in which Idotea resecata individuals were 
fed diets with low, medium or high concentrations of metals.  Zn* = Zn/10.  Bars represent 
average As, Mn, Pb, & Zn ± SE.  FIG. 7A. Mean trace metal concentration in I. resecata after 7 
days of “contaminated” Ulva diet and FIG. 7B. after additional 7 days of “recovery” diet. 
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No significant differences among treatments were found based neither on 

“contaminated” diets nor on “recovery” diet (Fig. 7A & 7B, Tables 7A & B).  However, a 

slight positive trend can be seen for arsenic and manganese, which increased with metal 

contamination in their diet (Fig 7A). 

 
 
TABLE 7A.  Results of one-way ANOVAs for I. resecata tissue metal concentrations (As, Mn, 
Pb, Zn) across control, low, medium, and high metal diet treatments. 
 

 
Source 
 

Sum of Squares 
 

df 
 

Mean Squares 
 

F-ratio 
 

p 
 

 As Treatment 2.815 3 0.938 1.663 0.227 
 Error 6.770 12 0.564   
Mn Treatment 9.083 3 3.028 2.396 0.119 
 Error 15.161 12 1.263   
Pb Treatment 2480.603 3 826.868 1.883 0.186 
 Error 5270.797 12 439.233   
Zn Treatment 422.122 3 140.707 1.231 0.341 
 Error 1371.238 12 114.270   

 
TABLE 7B.  Results of one-way ANOVAs for I. resecata tissue metal concentrations (As, Mn, Pb, 
Zn) across control, low, medium, and high metal diet treatments after 1 week of “recovery” diet. 
 

 
Source 
 

Sum of Squares 
 

df 
 

Mean Squares 
 

F-ratio 
 

p 
 

 As Treatment 1.172 3 0.391 2.121 0.186 
 Error 1.289 7 0.184   
Mn Treatment 7.462 3 2.487 0.786 0.539 
 Error 22.160 7 3.166   
Pb Treatment 569.036 3 189.679 0.722 0.570 
 Error 1838.971 7 262.710   
Zn Treatment 828.596 3 276.199 1.285 0.352 
 Error 1504.840 7 214.977   
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Mean arsenic concentration in I. resecata tissue decreased when comparing the 

low “contaminated” diet individuals to those that were fed a “recovery” diet (Table 8).  

No other metal significantly changed in I. resecata tissues after being fed a “recovery” 

diet. 

 
 
TABLE 8. Results of an independent samples t-tests comparing average metal burden in 
Idotea resecata fed with “contaminated” diets and after “recovery” diet. 
 
Metal Treatment t df p 
     

As Low -2.166 5 0.083 
 Medium -1.011 5 0.358 
 High 1.343 5 0.237 

Mn Low -0.574 5 0.591 
 Medium -0.010 5 0.993 
 High -1.192 5 0.287 

Pb Low -1.013 5 0.358 
 Medium 0.401 5 0.705 
 High -0.381 5 0.719 

Zn Low -0.273 5 0.796 
 Medium -2.018 5 0.100 
 High -0.278 5 0.792 

 

 

DISCUSSION 

Spatial variation in Ulva spp. trace metal burden between sites in Moss Landing, 
California 
 

Spatial variability in metal concentrations in Ulva spp. has been observed in 

previous studies, which can be due to a variety of factors.  Brown et al. (1999) concluded 

that variation in copper and zinc concentrations in Ulva spp. from Otago Harbor, New 

Zealand, reflected variability in soluble metal concentrations in surface waters.  The 



33 
 

authors cited two other studies that reported surface water copper and zinc concentrations 

(i.e. Dickson and Hunter 1981; Hunter and Tyler 1987) and found that anthropogenic, 

riverine, and atmospheric inputs could not account for the magnitude of metal content in 

that water body.  They concluded that dredging activities and resuspension of sediments 

due to storms caused the release of particle-bound metal from the substrate.  In another 

study, Ho (1990) demonstrated spatial variability in metal concentrations in Ulva lactuca 

from intertidal sites around the island of Hong Kong.  The author found that U. lactuca 

collected from polluted industrial and urban centers reflected 1.8 to 4.6 times the mean 

metal burden of comparatively unpolluted, rural sites for Mn, Fe, Ni, Cu, Zn and Pb.  

A spatial snapshot of metal distribution in Ulva in the Moss Landing area 

revealed elevated arsenic, cadmium, copper, nickel, lead, selenium, and zinc 

concentrations relative to crustal abundances (Korte 1999) at all sites in my study area.   

Samples from the Salinas River Channel exhibited significantly higher chromium, 

manganese, and lead concentrations relative to the other three sites (Fig. 2A & B).  Ulva 

from the Salinas Channel and Moss Landing Harbor both had elevated arsenic, copper, 

and zinc relative to the other two sites.  The elevated zinc and copper are likely artifacts 

of sacrificial anodes and anti-fouling paint on boat hulls and /or pilings in Moss Landing 

Harbor.   

Though the sites in this study were all within connected water bodies, there were 

distinct chemical, physical, and oceanographic differences between sites.  The average 

dissolved nitrate values reported at the Salinas Channel site are regularly orders of 

magnitude higher than all other sites sampled (Monterey Bay Aquarium Research 
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Institute’s Land/Ocean Biogeochemical Observatory (LOBO) network).  Differences in 

ambient nitrate concentrations between sites may play a role in metal uptake by Ulva; 

elevated metal burden in samples from the Salinas River could be due to higher rates of 

productivity resulting from extreme nitrate loading.  It is also possible that there were 

differences in the amount of dissolved trace metals in surface waters between sites.  The 

Salinas Channel is a terminal segment for the Salinas River and Tembladero Slough, 

which carries sediments from upstream mountains and agricultural fields.  The damming 

and degradation of riparian and wetland habitats has resulted in erosion-prone 

embankments along the Salinas River, greatly increasing the agricultural effluent and 

sediment discharge downstream in the Salinas Channel (Farnsworth and Milliman 2003).  

The water of the Tembladero Slough originates from an agricultural reclamation ditch 

and creeks that, together, form the Gabilan Watershed.   This watershed is significantly 

influenced by agricultural activities in the Salinas Valley.  The Salinas Channel is a 

shallow, muddy basin with anoxic pore waters, which lead to a chemically reducing 

environment.  This may lead to the release of particle-bound metals, which could diffuse 

up through sediments, making them more readily incorporated into and/or adsorbed by 

Ulva spp.  

The biogeochemical and oceanographic complexity of this nearshore system 

undoubtedly has an impact on resident foodwebs and is, in part, reflected in the metal 

composition of one of the predominant primary producers: Ulva spp.  Further studies are 

needed to explore the cause/s of the spatial variability found in this stud, as well as the 

potential impacts on resident invertebrate and fish populations.  Understanding the 
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natural variability in Ulva metal content in this local system, as well as within and among 

blades, informs the interpretation of induced variability in laboratory experiments. 

 

Trace metal uptake by Ulva spp. as a function of tissue nitrogen and media nitrate 

 In a study by Rosenberg and Ramus (1982), an increase in inorganic nitrogen in 

the thallus of Ulva spp. was accompanied by an increase in soluble organic nitrogen, a 

portion of which was in the form of proteins and possibly free amino acids.  These 

nitrogen reserves were depleted in proportion to algal growth rate.  With further protein 

analysis, the authors demonstrated the role of soluble tissue nitrogen in the production of 

photosynthetic pigments.  Hanisak (1983) explained that nitrogen is an important 

component of proteins, nucleic acids, and cell components such as carboxylating 

enzymes and photosynthetic pigments.   Thus, nitrogen availability can impact 

metabolism by influencing photosynthetic capacity.  

Interestingly, although these experiments were carried out under eutrophic 

conditions, the results suggest an effect of nitrogen on metal uptake by Ulva.  A broad 

range of “saturating” media nitrate has been reported for Ulva spp., from 20 to 85 µmol N 

(g  DM)-1 h-1, suggesting Michaelis-Menten uptake kinetics (Lavery and McComb 1991; 

Pedersen and Borum 1997; Naldi and Viaroli 2002).  However, a study by Cabello-Pasini 

(2005) demonstrated an unabated increase in both electron transport rate and gross 

photosynthesis in Ulva rigida as media nitrogen is increased from 0 to 50 µM.  It is 

unknown to what concentration this trend continues.  A study by Rivera and Graham 

(unpub. data) reported no apparent saturation point for nitrogen in Ulva.  The saturation 
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points and uptake kinetics for Ulva spp. in extremely eutrophic systems is relatively 

unknown.  The results of this study show increasing arsenic and mangaenese uptake with 

an increase in both tissue and media nitrate, suggesting that Ulva continues to respond to 

changes in nitrogen, even in replete environments. 

When examining the effects of tissue nitrogen and media nitrate on arsenic uptake 

by Ulva spp. in this study, a weakly significant positive relationship was revealed.  

Arsenic is a phosphorous analogue, and could possibly be behaving as a nutrient in both 

situations (Crane 1953; Wolfe-Simon et al. 2009; Wolfe-Simon et al. 2011).  When tissue 

nitrogen or ambient nitrate levels are high, growth rates and photosynthesis increase; for 

balanced growth of marine primary producers, this demands the uptake of nutrients in 

accordance with the Redfield Ratio.  According to this stoichiometric ratio, nitrogen and 

phosphorus occur in marine organisms in a proportion of 16:1.  It is possible that in the 

absence of phosphate enrichment to match the nitrogen reserves in the case of the first 

experiment, and the nitrate additions in the second, the algae absorbed arsenic in place of 

phosphorus.   

Tissue nitrogen and media nitrate related positively with manganese uptake in 

Ulva in this study.  The percent change in manganese was also significantly directly 

correlated with tissue nitrogen.  Manganese is an important element in photosynthetic 

oxygen evolution (Rai et al. 1981), and it is a part of the Kreb’s cycle enzymes malic 

dehydrogenase and oxalosuccinic decarboxylase.  Manganese atoms are the core of 

water-oxidizing centers in in photosystem II, thus playing an integral role in electron 

transport (Debus 1992).  It has also exhibited influence in the maintenance of chloroplast 
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structure (DeBoer 1981).  Superoxide dismutase is a protein that is associated with metals 

such as manganese, and is vital in removing toxic superoxide radicals that are produced 

during photosynthetic oxygen evolution (Burnell 1988).  In this study, manganese uptake 

could be reflecting an increase in growth and/or photosynthesis concomitant with 

nitrogen reserves and media nitrate supply.  

Zinc uptake was greatest in samples with the highest tissue nitrogen.  Though 

these results were statistically insignificant, zinc has been shown to maintain the structure 

of ribosomes and play a role in photosynthesis as a component of carbonic anhydrase 

(DeBoer 1981; Rai et al. 1981).  This might explain higher zinc uptake in tissues with 

greater nitrogen reserves, which likely have a higher photosynthetic capacity than those 

Ulva tissues with lower tissue nitrogen. No effect of tissue nitrogen was observed for lead 

or zinc uptake, nor was there a relationship between media nitrate and lead or zinc in 

Ulva.  Lead is a non-essential metal, and plays no physiological role in algae, possibly 

explaining its uptake being independent of any change in nutrients. A study by Lee and 

Wang (2001) lead to a similar result for zinc when testing the effects of media nitrate on 

metal accumulation in Ulva fasciata.   

Enrichment factors for Ulva spp. for all metals of interest were positive, 

indicating bioaccumulation, with lead and zinc being accumulated to the greatest degree.  

Alginic acid in brown algal cell walls has an exceptionally high affinity for lead (Haug 

1961) relative to other metals; it is possible that sulfated polysaccharides in the cell walls 

of Ulva passively adsorb lead to a similar extent.  Zinc, however, is known to be actively 
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taken up against large intracellular concentration gradients (Eide et al. 1980); therefore 

some other mechanism must be responsible for its relatively high enrichment factor. 

Many coastal environments are exposed to both nitrogen and metal enrichments 

due to anthropogenic and natural, terrigenous inputs.  The chemical interaction/s between 

these inputs have varying consequences for sediments, water quality and marine and 

estuarine organisms.  If tissue nitrogen or media nitrate were enhancing metal uptake in a 

globally dominant primary producer such as Ulva, many coastal marine foodwebs could 

be impacted.  No previous studies have explored the relationship between metal 

accumulation in macroalgae and tissue nitrogen; this study revealed a positive 

relationship for both tissue nitrogen and media nitrate and arsenic and manganese uptake   

by Ulva spp. 

 

Trace metal transfer to Idotea resecata 

Baseline I. resecata individuals reflected a significantly different metal burden 

than those in both “contaminated” and “recovery” diet studies.  Interestingly, arsenic 

decreased from baseline values.  It is apparent that they are exposed to a level of arsenic 

in the water or in their natural diet of Macrocystis pyrifera (Point Pinos, California) 

sufficient for them to bioaccumlate to such a high level.  The subsequent decrease could 

be due to the starvation period that all individuals underwent to purge their digestive 

tracts before treatments were applied.  It is possible that the I. resecata were able to 

detoxify their tissues of arsenic before they received the “contaminated” Ulva diet. 
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Manganese and zinc were significantly elevated in I. resecata from all treatments 

when compared to baseline samples.  Though insignificant, lead in the I. resecata fed a 

“contaminated” diet also seemed to increase from baseline values.  This trend 

demonstrates accumulation of metals by these invertebrates from their environment.  In a 

study by Radenac et al. (2001) the bioaccumulation and toxicity of zinc and lead in their 

dissolved form was demonstrated in sea urchin embryos (Parocentrotus lividus).  

Norwood et al. (2006) found arsenic and manganese to bioaccumulate with increasing 

dissolved metal concentrations in the benthic amphipod, Hyalella azteca.  Though these 

studies did not explore dietary uptake and accumulation, their results support the 

observed bioaccumulation of arsenic, manganese, lead and zinc by invertebrates.  These 

trends could apply to the dietary uptake observed by I. resecata in this study. 

No significant difference in I. resecata tissue metal concentration was exhibited 

among control, low, medium or high metal diet treatments in the “contaminated” or 

“recovery” diet trials.  However, in the “contaminated” diet study, a slight positive trend 

was observed for arsenic and manganese that implied bioaccumulation.  Studies have 

shown both arsenic and manganese to bioaccumulate in algae (Sanders et al. 1989), 

invertebrates (Barwick and Maher 2003; Meador et al. 2004) and fish (Patrick and Loutit 

1978; Barwick and Maher 2003).  It is possible that arsenic and manganese were being 

accumulated in this study, and would be passed on and accumulated in predators of I. 

resecata in a natural system.  Though insignificant, I. resecata showed a weak depuration 

of arsenic when fed a “recovery” diet (p=0.083); this was consistent with the decrease in 

arsenic seen from baseline individuals to those fed with the “contaminated” diet, which 
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possibly had lower arsenic content than their natural diet of M. pyrifera.  Manganese 

concentrations did not change from “contaminated” to “recovery” diets in this study.  

Norwood et al. (2006) found that manganese elimination rates decreased with total body 

concentration of the metal in the brackish, benthic amphipod Hyalella azteca.  The 

authors proposed that metal uptake and elimination rates could be saturating based on 

total body concentration of the metal, perhaps independent of the availability of binding 

sites on/in the organism.  It is possible that the dietary concentration of manganese 

presented to I. resecata in this study was high enough to saturate its capacity for 

elimination, resulting in a lack of recovery upon receiving an uncontaminated food 

source. 

 Lead and zinc concentrations in I. resecata did not differ among treatments nor 

between “contaminated” and “recovery” diets.  Lead concentrations in I. resecata 

increased from baseline numbers demonstrating dietary accumulation; however, the high 

variability among the contaminated diet treatments and comparison to recovery means 

were difficult to interpret.  High variability may have masked a treatment effect, but 

additional studies are needed to clarify these results.  In regards to zinc, Ahsanullah and 

Williams (1991) found that, in the marine amphipod Allorchestes compressa, zinc did not 

accumulate linearly with dietary metal content but rather with dissolved metal content in 

the media.  This is presumably due to internal metabolic regulation of essential metals 

(White and Rainbow 1984).  In Idotea baltica, zinc accumulates in the hepatopancreas at 

levels that are independent of the external concentrations (Gambardella et al. 1998).  In 

this study, I. resecata may have similarly been able to regulate the zinc concentration in 



41 
 

their tissues across treatments, thus eliminating any effect of variable dietary zinc 

content. 

 The spike concentrations used in this study were large relative to most natural 

systems, yet less than metal concentrations of sediments in Elkhorn Slough, where the 

Ulva was collected (Nelson 2011).  Nonetheless, 41% of ocean systems are now 

significantly and negatively impacted by anthropogenic activity (Halpern et al. 2008) and 

perturbed metal and nutrient values are becoming the norm in coastal systems. 

Manganese (0.065 – 0.65 ppm) concentrations in this study are relevant when compared 

to 0.255 ppm in San Francisco Bay (SFEI, n.d.).  Lead (0.0075 – 0.075ppm) and zinc 

(0.05 – 0.5ppm) concentrations are comparable to concentrations in urban stormwater 

runoff reported by Gobel et al. (2007) diluted to 10% (Pb: 0.0525 ppm; Zn: 0.2 ppm), 

which is a relevant stormwater dilution in offshore surface waters (Bay et al. 2003).  The 

arsenic spike in this study was higher than naturally occurring concentrations.  A future 

study with a greater spread of dietary metal concentrations, starting at lower values, could 

clarify trends in the uptake of these metals by I. resecata.  Repeating this experiment over 

a longer time span and sampling the molts of these invertebrates could elucidate the rate 

of bioaccumulation and possible purification mechanisms.  Pourang et al. (2004) found 

that most metals accumulate to some degree in the exoskeleton of shrimp species of the 

genus Penaeus.  The authors did not examine arsenic, but for lead, zinc and manganese, it 

is possible that some portion of these trace metals accumulated in the exoskeleton of 

Idotea individuals in this study, and were subsequently removed through molting.  This 

mechanism may have complicated the results of this study.  Additionally, conducting 
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metal analyses on the algal tissue after the spikes are administered would result in a more 

accurate picture of bioaccumulation and/or magnification trends. 

 

CONCLUSION 

 Both macro and micronutrients play complex and inter-related physiological roles 

in algae.  This picture becomes more complex with environmental enrichments, whether 

natural or anthropogenic, toxic or non-toxic.  In parts of Elkhorn Slough and the Salinas 

Channel, as is typical in eutrophic estuaries globally, nitrogen enrichments from 

agriculture are orders of magnitude greater than any natural influence, leading to  

extensive seasonal algal blooms of Ulva spp. (Caffrey et al. 2007).  Aside from its 

prolific nature, Ulva is particularly morphologically and physiologically well-suited for 

nitrogen uptake, with a high surface area to volume ratio (Rosenberg and Ramus 1984) 

and exceptionally high capacity for nitrogen uptake and storage (Naldi and Viaroli 2002), 

making it one of the most efficient genera for nitrogen metabolism among algae.  Studies 

on saturation kinetics of nitrogen in Ulva may lead one to believe that differences in 

tissue nitrogen or relatively small additions of nitrate in such a nutrient rich scenario 

would not result in any chemical consequences for this abundant primary producer.  

However, despite an environment replete with media nitrate, both tissue nitrogen and 

minor additions of media nitrate seem to partially drive arsenic and manganese uptake in 

Ulva spp. 

 Studies have revealed that arsenic and lead, both non-essential metals, begin to 

have toxic effects in Ulva at dissolved concentrations of 3.75 and 5.0 ppm respectively, 
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inhibiting photosynthesis, competing with nutrients such as phosphorus, inhibiting the 

flow of electrons in mitochondria and reducing chlorophyll α (Rai et al. 1981; Knauer et 

al. 1999).  Zinc and manganese can have toxic consequences at 10 and 30 ppm, 

respectively, with zinc inhibiting manganese uptake, compromising the integrity of 

plasma membranes, and manganese causing asymmetric cell division, and inhibiting 

gamete formation and algal growth (Rai et al. 1981). 

 More importantly, however, is the toxic effect that these incorporated metals 

would have on higher trophic levels.  Ulva can absorb high concentrations of both 

essential and non-essential metals making those elements available in their tissues.  As is 

common in many eutrophic systems, the fate of those tissues after a bloom is to become 

particulate organic matter in sediments.  Inverts that graze directly on Ulva such as Idotea 

spp., and a variety of amphipods (Kamermans et al. 2002), and those that feed in 

sediments (such as polychaete worms) could be impacted by high metal concentrations in 

their diet.  Unfortunately, very few studies have been done to examine the toxicity of 

these metals to invertebrates through dietary sources.  In addition, a variety of fish and 

birds graze directly on Ulva spp., and could also be vulnerable indirectly when preying 

upon organisms that feed on Ulva (Ramer et al. 1991; Barry 1993; Barry et al. 1996).   

 Overall, results of this study reveal that nitrogen continues to have an effect on 

arsenic and manganese uptake, even under nutrient rich conditions, and in turn, these 

could be bioaccumulating in an important invertebrate grazer.  This study could prove 

useful from a bioremediation perspective, both for metal and nitrogen remediation.  Ulva 

spp. is an opportunistic genus that proliferates in nearshore and estuarine ecosystems 
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where chemical influences from watersheds, municipal outfalls, atmospheric deposition, 

road and highway runoff, and industrial, municipal and agricultural wastes converge.  

The interaction and ultimate fate of these inputs are largely determined by the 

biogeochemical processes that occur in these systems.  Whether Ulva  is a step along the 

path of the biopurification or biomagnification of these metals is yet to be known.  Future 

studies, which explore the influence of nitrogen on metal uptake in Ulva using a wider 

range of dissolved metal exposure, and test the impacts of dietary uptake by organisms 

from various trophic levels, will be vital in completing this picture. 
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