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ABSTRACT OF THE DISSERTATION

Models for Spatial Point Processes on the Sphere

With Application to Planetary Science

by

Meihui Xie

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2018

Professor Mark Stephen Handcock, Chair

A spatial point process is a random pattern of points on a space A ⊆ Rd. Typically A will be

a d-dimensional box. Point processes on a plane have been well-studied. However, not much

work has been done when it comes to modeling points on Sd−1 ⊂ Rd. There is some work in

recent years focusing on extending exploratory tools on Rd to Sd−1, such as the widely used

Ripley’s K function.

In this dissertation, we propose a more general framework for modeling point processes on

S2. The work is motivated by the need for generative models to understand the mechanisms

behind the observed crater distribution on Venus. We start from a background introduction

on Venusian craters. Then after an exploratory look at the data, we propose a suite of

Exponential Family models, motivated by the Von Mises-Fisher distribution and its gener-

alization. The model framework covers both Poisson-type models and more sophisticated

interaction models. It also easily extends to modeling marked point process. For Poisson-

type models, we develop likelihood-based inference and an MCMC algorithm to implement

it, which is called MCMC-MLE. We compare this method to other procedures including

generalized linear model fitting and contrastive divergence. The MCMC-MLE method ex-

tends easily to handle inference for interaction models. We also develop a pseudo-likelihood

method (MPLE) and demonstrate that MPLE is not as accurate as MCMC-MLE.

In addition, we discuss model fit diagnostics and model goodness-of-fit. We also address

ii



a few practical issues with the model, including the computational complexity, model de-

generacy and sensitivity. Finally, we step away from point process models and explore the

widely used presence-only model in Ecology. While this model provides a different angle to

approach the problem, it has a few notable defects.

The major contributions to spatial point process analysis are, 1) the development of a

new model framework that can model a wide range of point process patterns on S2; 2) the

development of a few new interaction terms that can describe both repulsive and cluster-

ing patterns; 3) the extension of Metropolis-Hastings algorithms to account for spherical

geometry.
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CHAPTER 1

Backgroud

Impact craters are found on every terrestrial body in the solar system. Without direct phys-

ical samples, the cratering record is the most valuable tool to determine the surface age and

gain an understanding of the resurfacing history of a planet. This thesis work is motivated

by the need of statistical models to analyse the distribution of impact craters and their

modification processes on the surface of Venus. In planetary geology, many exploratory data

analysis and Monte Carlo studies have been done, but the lack of relevant statistical method-

ology as well as computational tools limit the application of in-depth statistical models. The

cratering process on Venus is essentially a spatial point process on a sphere. The point

process on a Euclidean plane has been highly-developed (see Moller and Waagepetersen,

2003; Daley and Vere-Jones, 2007; Møller and Waagepetersen, 2007; Baddeley et al., 2015;

Cressie, 2015, and references therein). However, since craters occur on a spherical surface,

other geographic features are also observed at the global scale, so it is important to develop

models that take account of the spherical geometry. This thesis focuses on planetary-scale

point distributions. We develop spatial point process models on a sphere in the exponential

family model setting. The multivariate regression forms are very flexible and are able to take

account of the spatial covariates as well as crater characteristics. We will use these models

to assess various hypotheses regarding the Venusian crater distribution.

This dissertation is organized as follows. In this chapter, we give a brief review of previous

work on analyzing spatial point patterns on S2. We also introduce the background of Venus

cratering record studies and discuss the importance of this research. In Chapter 2 we give

an exploratory analysis of Venusian craters and develop a relative age map of the surface.

In Chapter 3, we provide a more detailed introduction to Poisson Point Processes, as well
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as some other fundamentals of the point process model. Then we extend the methodology

for spherical point pattern data. Chapter 4 discusses extensions for the model in Chapter

3, including marked point process models on a sphere and the model with a variable total

number of points. The second extension is applied to quantify the relative age of the relative

age map we propose in Chapter 2. We provide a different angle to approach the problem by

exploring presence-only methods in Chapter 5. Finally we conclude this work by summarizing

the advantages of our approaches and discuss potential directions of future work.

1.1 Previous Work on Spherical Point Pattern Analysis

The modeling of Spherical point patterns starts from assuming the points are independent

observations from a probability density function defined on the sphere. The Von Mises-Fisher

distribution and its generalization to the Fisher-Bingham distribution have been well-studied

in directional statistics (see Kent, 1982; Fisher et al., 1987; Mardia and Jupp, 2009). While

the Von Mises-Fisher distribution on the sphere is the analogue of the isotropic bivariate

normal distribution on the plane, Fisher-Bingham distribution is the analogue to the general

bivariate normal distribution. Based on that, methods of inference, simulation as well as

models for clustering analysis have been developed and an R package movMF has been

published (see Banerjee et al., 2005; Hoff, 2009; Hornik and Grün, 2014, and references

therein). Recently, researchers have borrowed existing statistical tools for two-dimensional

point processes and adapted them to spherical settings. Robeson et al. (2014) is the first

to extend the widely used Ripley’s K function to the sphere. Then Møller and Rubak

(2016) extend the work by generalizing inhomogeneous K function to the sphere. They also

defined other summary functions, such as the nearest neighbour function, the empty space

function. Furthermore, they considered determinental point process models on the sphere,

which can be used to model repulsiveness. For modeling clusterness, Lawrence et al. (2016)

considered extension of Neyman-Scott cluster models to the sphere. They also discussed the

edge-correction issue for point patterns on a region of a sphere.
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1.2 Background on Venus

Venus is called Earth’s “sister planet” since it is the planet most like Earth in size, mass and

bulk composition. Yet it has evolved to a completely different geologic and climatic state.

Venus has a very dense atmosphere; its atmospheric pressure at the planet’s surface is 92

times that of Earth’s. And its runaway greenhouse effect heats the surface to 462 ◦C (863

◦F), makes it the hottest planet in the solar system. Venus’s surface is a dry desertscape

and about 80% of it is covered by volcanic plains.

The near global scale imaging radar on the Magellan Mission has provided a data base

of impact craters, including their location, size, morphologic characteristics. A topographic

map with 15km spatial and 100m vertical resolution was also obtained. Study of the cratering

record, combined with the topographic image is providing evidence to better understand

Venusian geology and the role of impacts, volcanism, and tectonics in the formation of

Venusian surface structures.

1.2.1 Importance of the Research Topic

The scientific question of resurfacing history is fundamental for understanding the history of

Venus, and it provides an important guide for selecting targets for exploration and defining

science objectives in future missions.

1.2.2 Cratering

a. Formation of craters

Impact structures are formed by a cosmic body at a supersonic velocity hitting the target

surface, leading to the spreading of shock waves. These shock waves propagate to produce

craters by the ejection of vapors, melted rocks, hot particles and fragments, sheared and

fractured rocks, and large blocks (Melosh, 1989). During this process, the deepest target

material is exposed closest to the crater rim and the most shallow material is deposited

farthest from the rim. Generally, impact craters have a circular outline, a raised rim, and a
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depth that is shallow relative to the diameter. The crater is surrounded by ejecta deposits

that decrease in thickness outward from the crater rim (Hamilton, 2018). On Venus, the

wind will blow these ejecta particles and throw it far from the original enter point. On the

downwind side, the wind will disperse the particles, and on the upwind side, the particles will

pile up. The resulting material distribution can be observed as parabola-shaped deposits

around the craters. Besides the parabola deposits, which can be thousands of kilometres,

many craters (including many of those with parabolas) have a nearly circular halo, tens of

kilometres in radius. The halos are inferred to be smooth surfaces produced as part of the

impact process. In some cases there is no crater at all, only a dark “splotch” presumably

created when an impactor disintegrated before hitting the surface.

b. The size frequency distribution of craters and surface age

The general theory describing the link between craters and the surface age argues that

the planet formed by accreting from smaller bodies, which kept impacting and adding onto

the mass of each planet. Eventually, most of these smaller bodies had hit the planets, and

so the rate of cratering tailed off. As a rule of thumb, the larger a crater is, the older it

probably is. The history of crater formation can be roughly divided into three periods: 1)

large and small craters formed; 2) small craters only formed; 3) very few craters formed.

This argument leads to a very popular method of assessing surface age, namely the analysis

of size frequency distribution of craters. This approach has been successfully applied on

planets (or satellites) like Mars, and the moon, where the crater population is big enough to

support the analysis. However, on Venus, the crater size frequency analysis does not provide

reliable results due to the scarcity of craters.

Without any resurfacing activities, we would expect all of the planets to be nearly uni-

formly covered with both large and small craters. However, the resurfacing activities, in-

cluding volcanism, tectonism, can bury the craters and reset the surface to smoothness

(Caplinger, 1994).

c. Degradation of craters

Since the population of Venusian craters is sparse, incorporating information on the
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degradation of craters provides an additional constraint. The crater can be modified by

erosion, weathering, volcanism, later impacts, or tectonic activity for millions of years after

its formation. To infer the relative age, it is very important to understand the degradation

sequence of craters or their extended ejecta, the processes which may be responsible for the

modification.

In general, the craters with associated dark parabolic features are considered to be pris-

tine, and then there are the craters with non-parabolic halos, and then with no halos as an

aging sequence. Figure 1.1 illustrate this process.

Figure 1.1: Crater degradation

On Venus, there are∼10% craters with parabolas, which are considered to be the youngest

ones. Over time, fine-grained parabolas are removed by either weathering processes (chemical

and/or aeolian) or modification by volcanism and tectonic activities. The volcanic activity

will erase parabolas/halos, and it is also possible to bury the whole crater. Erosion removes

only the extended ejecta. Regions with both a relatively low parabola crater density and

more geologically modified craters have been interpreted as being relatively young . Those

with low parabola crater density and high total crater density are interpreted to be relatively

old, with parabolas removed primarily via weathering processes.

Besides the degradation of extended ejecta, other features were also studied to help un-

derstand the modification of craters. 1) Radar reflectivity of crater floors can be categorized

to three types, bright, intermediate and dark. Bright-floored craters are interpreted as being

unmodified, rough surfaces, thus the young craters. The craters became relatively old as the

floor darkens. 2) Based on crater morphology, the modification state can be categorized as

“unmodified”, “embayed” and “tectonized”. “Embayed” craters are craters that have been

invaded by lava from an exterior source, e.g. from volcano eruption. “Tectonized” craters
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are those showing strong evidence for through going fractures or continuous ejecta deposits.

1.2.3 Resurfacing Models and Monte Carlo Studies

Two observations with regard to Venus’ cratering record influenced our view of its resur-

facing history. (1) The distribution of the 945 craters can not be distinguished from a

completely spatial random one. (2) The population includes few obviously modified craters.

Two end-member resurfacing models were proposed to address the two basic observations:

The equilibrium resurfacing model (ERM); the catastrophic resurfacing model (CRM) (see

Phillips et al., 1992).

a. Catastrophic model Catastrophic hypotheses propose that a global-scale, tempo-

rally punctuated events dominated Venus’ evolution. The proposed resurfacing consists of a

short duration (< 100 million years) impact crater burial or destruction event that occurred

over a very large spatial area (∼80% global surface). If the planet experienced more than

one catastrophic resurfacing event, the events should be separated by a large time interval,

with little or no preserved record of previous one.

b. Equilibrium model Unlike the catastrophic model, equilibrium hypotheses suggest

numerous frequently volcanic or tectonic events occurred randomly over time and space. The

distribution of craters observed on Venus is the result of an equilibrium between steady state

crater formation and crater removal by volcanic or tectonic processes.

Note that the two models are only idealized representation of the resurfacing process.

The real surface history may be a complex combination of several periods of equilibrium

resurfacing and several catastrophic resurfacing.

Until now, Monte Carlo modeling was the only method to test the viability of the two

end-member models above. Most earlier studies show a strong preference for catastrophic

models. However, in a recent study, Bjonnes et al. (2012), expanded the parameter space

of the simulation study and conclude the equilibrium hypothesis can not be rejected. They

constructed three suites of experiments in which different lengths of time of the particular

resurfacing era was applied. They simulated the recent 4.5 billion years, the craters form
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throughout this period at a constant rate, the resurfacing era occurs across the first 4.5, 3.75,

and 3 billion years for the three suites, respectively. They explored a variety of resurfacing

areas, including 50%, 25%, 10%, 1%, 0.1% etc. The Monte Carlo models include the following

assumptions. (1) Impact craters form at a constant rate within the studying period, their

location is also completely spatially random; (2) resurfacing events occur anywhere on the

surface with equal probability, and they occur at a constant rate; (3) only resurfacing events

remove impact craters; (4) impact craters can be modified an unlimited number of times.

The crater distribution and the proportion of modified craters in the simulation results are

calculated and compared to the two observations, namely, near-random surface distribution

and a relatively low number of modified craters. They conclude that certain configurations

of equilibrium resurfacing meet the two observational constraints. In general, the shorter

the equilibrium-resurfacing era, the narrower the range of each resurfacing area that meet

the observational constraints.

Monte Carlo models generate large data sets, making them a powerful tool to simulate

random processes. However, such methods cannot indicate that a particular model is the

only possible configuration, as it cannot comment on other scenarios.
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CHAPTER 2

Exploratory Data Analysis

To gain some insight about the resurfacing history of Venus, we start from some exploratory

data analysis. The analysis also provides guidance to our model formulation in the following

Chapter. This Chapter is based on Xie et al. (2014) and Smrekar et al. (2016). In Section

2.1 we introduce the data that is available for this analysis and discuss the limitations of it.

Some necessary data preprocessing is done to the image data. A nearest neighbour analysis

is conducted to test if the distribution of craters is completely random in Section 2.2. Then

in Section 2.3 we combine the crater density with the degradation status to define a relative

age map. In Section 2.4 we assess the correlation between the relative age units we defined

with various of other features.

2.1 Data Source and Data Preprocessing

2.1.1 Cratering Record

We use a database compiled by Robert Herrick which is an updated version from the Venus

II book Herrick et al. (1997). The database contains geographic coordinates (Latitude and

Longitude), diameter of craters, diameter of dark halo as well as many other crater character-

istics such as floor reflectivity (bright, intermediate or dark), embayment (yes, no or maybe),

tectonic deformation (yes, no or maybe). The original database contains 942 crater records,

after removal of two duplicte records, and addition of five newly classified small craters near

the south pole by Senske and Ford (2015), we have a dataset contains 945 craters in total.

Table (2.1) shows the crater data we use throughout our analysis. Note the columns are

just a subset of the original database, as we exclude some features that are irrelevant to our

8



study.

As mentioned earlier, projectiles that are too small to form craters probably formed

“splotches”, circular radar reflectance features in the Magellan data (see Zahnle, 1992; Cook

et al., 2003). The most convincing line of reasoning that the splotches are impact induced

comes from examination of their correlation with craters whose diameters are near the lower

limit of the observed craters. Many of the small, bright impact craters in the 2-6 km size

range are centered in dark, circular halos. Other virtually identical dark halos exhibit only

small bright surface markings at their centers. Finally, many other dark halos exhibit no cen-

tral surface marking at all. This morphological sequence strongly suggests that the craterless

halos, named as “splotches” are impact generated (Schaber, 1991). The location of splotches

has a correlation with elevation; their abundance appears to decrease with increasing ele-

vation. One possible explanation is the splotches are easier to form in regions of deeper

atmosphere, where the atmospheric screening effect of small projectiles is stronger. Another

possibility is they may be more difficult to observe on terrains that occur at higher elevations,

for example, the tessera, which are regions of radar-bright, rough, highland terrain. There

are in total 401 splotches and we only have location and size information of them (see Table

2.2).

Table 2.1: Cratering Record

Index
Lat Lon Diameter Halo Diameter Floor Exterior Tectonically

(degree) (degree) (km) (km) Reflectivity Embayment Deformed

1 12.5 57 268.7 510 i n n

2 -29.9 204.2 176 0 d n n
...

...
...

...
...

...
...

...

940 -87.3 145.5 11.7 0 b n y

941 -82.81 18.8 13.4 NA NA NA NA

942 -85.87 345.5 12.3 NA NA NA NA

943 -86.10 224.1 8.4 NA NA NA NA

944 -84.15 173.2 17.3 NA NA NA NA

945 -87.30 145.5 11.7 NA NA NA NA
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Table 2.2: Record of Splotches

Index Latitude (degree) Longitude (degree) Diameter (km)

splotch 1 78.5 74 40
...

...
...

...

splotch 401 -75.2 267.1 10

2.1.2 Elevation Map

Figure (2.1) shows the Elevation map created from Magellan images. Since Venus is suffi-

ciently spherical, the reference level is chosen to be the mean radius of the planet (∼ 6051.8

km). Venus has a relatively flat landscape, with around 80% of the topography within 1-

kilometre of the median radius; while only 2% of the surface is above 2 kilometres high. The

highest point is about 13 kilometres. In Figure (2.1), the blues and purples represent areas

that are below the average height relative to the center of the planet; while greens, yellows,

oranges and reds represent areas above the mean height. The elevation data we obtained

is a 4097 × 8194 matrix with entries corresponding to the elevation of a grid of latitude,

longitude points. The grid latitude and longitude are equally spaced in degree, from −90 to

90 degree, and 0 to 360 degree, respectively. We rescale the value of elevations, normalizing

it to 0-1 range.

2.1.3 Geological Map

Using Magellan and Venera-15/16 radar image, Ivanov and Head (2011) compiled a global

geologic map of Venus at a scale of 1:10M, 13 distinctive units and a series of structures are

identified utilizing the dual stratigraphic classification approach to geological mapping. The

units were defined only based on their characteristics, descriptive nature and morphology,

not based on an time component. The units can be grouped in three major categories: (1)

Volcanic units: Bell (pl), Gunda (ps), Boala (sc), Russalka (rp1), Ituana (rp2), Accruva

(psh); (2) Tectonic Units: Tessera (t), rift zone (rz), Akana (mt), Agrona (gb), Lavinia

(pr), Atropos (pdl); (3) Others
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Figure 2.1: Venus Topographic Map

Arvidson et al. (1992) argues that erosional processes are inhibited on Venus and the

majority of materials that make up the surface have been interpreted to have a volcanic

origin. These units are commonly deformed by tectonic structures to varying degrees. This

situation allows a robust identification of the primary process of formation of the units and

the sequence of events. Ivanov and Head (2011) concludes that the observable geological

history can be subdivided into three distinctive phases.

(I) The earliest phase (t) involved intense deformation and building of regions of thicker

crust (tessera).

(II) Guineverian Period. Tectonized materials of (pdl), (pr), (mt), and (gb) formation

characterize the first part of this period. The vast majority of coronae began to form.

The second part of this period involved global emplacement of deformed plains of

volcanic origin, including (psh), (rp1) and (rp2).

(III) Atlian Period involved formation of (rz) and fields of lava flows (pl) unmodified by

wrinkle ridges that are often associated with large shield volcanoes and earlier-formed

coronae. The Atlian volcanic activity, which may continue to the present, formed small
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Figure 2.2: Venus Geological Map

smooth plains (ps) and clusters of small volcanoes (sc).

However, some scientists disagree with the conclusion above. Suppose the same geologic

unit was impacted by the same resurfacing activity at the same time, then what was the

temporal sequence of these units is still open to debate.

We only have an image of the geological map, see Figure (2.2) below. This map has in

total 15 units (excluding the black areas) according to its legend.

There are two major issues with the geological map. (1) We need to convert the image to

a matrix of categorical values; (2) Among the 15 units, c and cf represent units of craters and

crater outflows. They cover around 25% of the crater locations. Their spatially association

with craters interfere the analysis of crater density in each geological unit. To tackle the two

issues, we process the image data as follows,

(I) Categorize the pixels according to their rgb value.

We extract the rgb values from the image. The values are in 3 matrices with a dimen-

sion of 825× 1650. There are suppose to be 16 distinct combinations of (r,g,b) values,

corresponding to 15 units and the black gap. However, from the image available, the
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rgb values are far more than 16. The margin pixels seem to have been interpolated.

So the task is to classify the 825× 1650 (r,g,b), the vectorized representation of color

to 16 groups. I extract 16 rgb values from the near center of each color region as the

legend. Then compare each pixel to these 16 values and label it using the group index

with the nearest distance. This simple method outperform k-means when we compare

the unit area to the result in Ivanov and Head (2011). The geological units are likely

to be non-spherical, which make the k-means method inappropriate. Table (2.3) shows

the percentage of pixels of each geological units, the area percentage after latitude cor-

rection, the area percentage as in Ivanov and Head (2011) as well as number of craters

in each units based on our classification.

(II) Interpolate geological unit ‘c’ and ‘cf’

We treat unit ‘c’ and ‘cf’ as “missing” values, and interpolate it using non-missing

values in a small neighbourhood. There are two ideas, one is using spatial kernel

regression and treat rgb value as the continuous value that we want to interpolate.

Specifically, we can assume the location of missing-valued pixel is Xc, the non-missing

pixels within B(Xc, r) are Xi, i = 1, 2, . . . ,m. with rgb value yi. Then the interpolation

value is

yc =

∑m
i=1K(d(Xi−Xc)

h
)yi∑m

i=1 K(d(Xi−Xc)
h

)
,

where Kh is some kernel function with bandwith h. d(Xi−Xc) is simply the Euclidean

distance since we only care about a small neighbourhood. Another idea is to work

directly on the categorical variable of the geological unit type. We can interpolate ‘c’

and ‘cf’ pixels by checking the geological type of their nearest neighbours and assign

the majority type to them. We take the second approach since if working in the rgb

value space, we will need to categorize a rgb value to one of the geological types,which

introduces another source of uncertainty. The result after interpolation is shown in

Table (2.4)

In summary, the overall accuracy of the geological map is limited because of the fact that

1) the map is at a resolution level of 180/825 = 0.218 degree; 2) the image contains rgb values
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that was interpolated by some unknown method; 3) the map actually only approximately

maps +/- 82◦ latitude, and there are also gaps (black cracks on the map) in the mapped

region; 4) to decide geological features of craters, we interpolate two units ‘c’ and ‘cf’.

2.1.4 Volcano Database

Venus has over 1000 major volcanoes, ∼80% of the surface of Venus is covered by volcanic

features. Coronae are large (hundreds of kilometres wide) volcanic features identified based

on the radar image. They play a similar role as volcanoes in resurfacing. Other volcanic

features like Lava channels will not be discussed in our analysis because their location is

hard to define. They are very narrow, 1-2 km, features tens to hundreds km long.

There are many existing studies and databases. We use the Brown volcano database

for small volcanoes (∼1323), Brian volcano database for large volcanoes (∼133) as well as

Stofan’s coronae database (∼581) (see Crumpler et al., 1806; Stofan et al., 2001). These

databases provide the location of the volcano, the diameter of the volcanic flow, as well as

many other features. From the standpoint of resurfacing, we will use the flow diameter as

the assessment of the size of the volcano. Throughout this Chapter, large volcanoes always

refer to volcanoes and coronae with diameter greater than 100 km, small volcanoes refer to

those with diameter no greater than 100 km. Figure (2.3) shows the location of volcanoes

with it’s size, as well as crater locations with different color indicating whether or not the

crater has been embayed.

2.2 Nearest Neighbour Analysis

By using nearest neighbour method, previous work concluded that the crater distribution can

not be distinguished from complete spatial randomness (CSR). We go further in testing this

hypothesis by using the idea of relative probability density function (rPDF). This function

gives us a clearer picture of how and where the nearest neighbour distances differ from CSR.
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2.2.1 Great-circle Distance

We use Haversine formula to calculate great-circle distances between two points on a sphere.

Assuming r is the radius of the sphere, λ1, λ2 are longitudes of point1 and point2, φ1, φ2 are

latitudes. Then the spherical distance between point1 and point2 can be calculated by,

d = 2r arcsin

(√
sin2(

φ2 − φ1

2
) + cos(φ1)cos(φ2)sin2(

λ2 − λ1

2
)

)
(2.1)

2.2.2 Relative Distribution

Assume Y0 is a a reference population with cumulative density function (CDF) F0(y) and

PDF f0(y); while Y is a comparison population with CDF F (y) and pdf f(y). Then to

study the differences between the distribution of Y0 and Y , we can consider the relative

distribution. Let R = F0(Y ), the CDF of R is

G(r) = F
(
F−1

0 (r)
)
, 0 ≤ r ≤ 1. (2.2)

The corresponding density, which is the rPDF is,

g(r =
f
(
F−1

0 (r)
)

f0

(
F−1

0 (r)
)), 0 ≤ r ≤ 1. (2.3)

g(r) the relative density, represents the ratio of the frequency of the target population (Y ) to

the frequency of the reference population (Y0) at the rth quantile of the reference population

level F−1
0 (r). If the two distributions are identical, then the relative distribution is just

uniform on [0, 1]

2.2.3 Test of Complete Spatial Randomness

Analysis of point process usually begin with a test of complete spatial randomness (CSR)

hypothesis. CSR is synonymous with a homogeneous spatial Poisson process, it describes a

point pattern that

1. The number of events in any subregions follow a Poisson distribution;
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2. The number of events in two non-overlapping subregions are independent;

3. The intensity (expected number of events per unit area) is homogeneous throughout

the region where the point process is defined.

To test if the distribution of craters is CSR, we apply the method of relative distribution to

compare the nearest neighbour distribution of craters to that of a simulated homogeneous

Poisson process. The method is summarized below

1. Calculate nearest neighbour distances (NND) between the observed craters, denote n

as the number of observations. This is the target population we will use in the relative

distribution method;

2. Generate n random points on sphere and calculate NND, denote as nndobs;

3. Repeat 2nd step 10,000 times, pool the NND values together to form a Poisson popu-

lation, denote as nndpoi. This is the reference population we use;

4. Calculate rPDF as defined in Formula (2.3);

5. Construct global 95% confidence interval. If the target distribution is identical to the

homogeneous Poisson, g(r) = 1 for r ∈ [0, 1]. Then under null hypothesis (CSR), find

value L such that the curve g(r) fall into the interval (1 − L, 1 + L) ∀ r ∈ [0, 1] with

95% confidence.

Based on the result in Figure 2.4, we conclude that the distribution of craters can not be

distinguished from CSR. Figure 2.5 shows the test result of splotches. There are significantly

more splotches at very close spatial proximity, which indicates clusterness.
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Figure 2.4: Venus Craters Figure 2.5: Venus Splotches

2.3 Relative Age Map

We expand on the work of Phillips and Izenberg (1995) to define relative age units globally

based on the accumulation of craters and the removal of extended ejecta deposits. Phillips

and Izenberg (1995) proposed that young, intermediate, and old regions could be defined

on the basis of total crater density (n) and the fraction of craters that have extended ejecta

(p). Thin volcanic flows will remove the extended impact crater ejecta without removing the

high standing crater. Thicker flows will entirely remove all evidence craters. Young regions

that have volcanically resurfaced will have a low density of craters (n) and a low density

of craters with halos (p) relative to the means. Older regions that have not experienced

volcanism recently will have high crater density and low halo density, with erosion presumed

to be the mechanism for extended ejecta removal. In addition, we define a “very young” age

category, which has a low total crater density and a high fraction of craters with extended

ejecta deposits. We also note the presence of regions with high n and p, the “both high”

class. One of the possibilities is that those regions are relatively old but it’s not old enough

so the halos have not been smoothed out by erosion. Also this unit has not been influenced

by many small volcanoes. Based on this hypothesis, we define the “both high” region as

relatively “old” region; and the region with high crater density and low halo density as “very

old” region.

We use a counting method to estimate crater density and halo density of the surface.
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Since we don’t have the halo inforamtion of the 5 small craters near the south pole, we

will exclude them in the assessment of relative age. It’s straightforward how this method

works once we have a set of counting centers as well as a fixed counting radius. We just

need to count number of craters, number of halos in each counting circle (a crater is in that

circle if the great circle distance between the counting center and the crater is less than

the counting radius). However, the choice of counting centres, and especially the counting

radius is tricky and will partially influence the result. After trying a bunch of values, we

believe a counting radius of 1750 km, which is the size of the largest parabola on Venus,

would be a good choice. The idea is we want to choose a value that is in the same scale as

the crater features/resurfacing processes. For counting centers, it must not be too few so

that the whole surface would be counted. We used two extremes of the values for counting

center, one is 1 million, another is 800. To avoid over-representation of polar regions, we

use evenly-spaced points on the sphere as the counting centers. The points are generated

by a Matlab toolbox (see Leopardi, 2006a) and the idea of equal area partition on sphere is

based on Leopardi (2006b). Those two choices of number of counting centers also lead to

two different versions we proposed for a relative map, a continuous version and a regional

version.

The continuous version is constructed from 1 million counting circles. The idea is for

every point on the sphere, we looked at its neighborhood of a radius 1750 km, and use

the density of that neighborhood as the density of the location of that point. Then after

deciding on the classification standard, we ‘assign’ the age unit to each counting center, that

provides a continuous relative age map. Figure (2.6) shows the plot of halo proportion as

a function of crater density (pn plot) and the relative age map. We use the mean value of

halo proportion as the cut-off value for low/high halo proportion. For low/intermediate/high

crater density, we use the 25th and 75th quantile values. Since this value will roughly control

the percentage of points that being defined as relative young/old, the reason we choose 25th

and 75th quantile is that we want to identify roughly the top 25% and bottom 25% regions

in terms of aging. The actual percentage of area would have some deviation because the

value of halo proportion serves as another dimension in deciding age groups.
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The regional version is constructed from 800 counting circles, which is not heavily over-

lapping compared to the 1 million counting circle case. The idea is that the resurfacing

activity modified the whole counting circle, so the count of craters and halos in each circle

would represent the whole region, the age group is assigned to the counting circle as a whole.

One problem for this approach is, since the counting circles are overlapping, there would be

different assignment to the same location, the relative age would be ambiguous. To solve the

overlapping issue, the age is assigned at this priority: very young > young > old > very old

> intermediate. The argument is that since intermediate age is almost used as a baseline, so

if there is any information of deviation from that, then other age groups should have priority.

In addition, this sequence represents the aging sequence, if we find a location belongs to a

counting circle that is defined as ‘very young’, then this should overwrite the assignment

of any elder groups, since we assume some resurfacing activity modified the location and

reset its surface. Figure (2.7) shows the pn plot as well as the age map. Instead of assign

an arbitrary quantile cut-off, we define low/high crater density as the density value that is

significantly lower/higher than the mean, assuming that the crater densities of 800 counting

circles follow a normal distribution.

Although the continuous version is appealing from the statistical point of view, the

regional one actually makes more sense in astrogeology. We will focus on the regional one in

the following analysis.

We compare the results of the two cases. 1) Only use the crater population; 2) Include

splotches as crater-less halos. In both cases, a high/low halo proportion is relative to the

average halo proportion; a high/low crater density is decided based on a z-test at a level of

95%. The result of combining splotches as crater-less halos is shown in Figure (2.8). We

found that since adding of splotches is basically adding halos, the halo proportion is defined

as (halo+splotch)/(crater+halo), which drives the mean halo proportion to 0.53 from 0.38

as in the case of using craters only. However, the relative age map doesn’t change a lot, in

fact, the only change is 4 counting circles that is originally defined as ‘young’ becomes ‘very

young’ regions. This makes intuitive sense because these 4 regions are the region that the

splotches clustered, so they add to the halo proportion. Since the two maps have very few
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disagreements, we use the map in Figure (2.7) as a show case in the following discussion.

Table (2.5) shows some basic facts about the relative age map defined.

2.4 Correlation Between Relative Age and Variety of Variables

We compare the relative age map in Figure (2.7) to the geological map in Figure (2.9). The

plot indicates that no geological unit is dominated by one age group. The unit ‘pl’,‘rz’ con-

tains more younger regions, ‘mt’,‘rp1’,‘ps’,‘t’ are the units that contains more older regions,

other units are in between. This observation roughly agrees with the aging sequence in

Ivanov and Head (2011).

We checked the correlation between age units and the location of different crater types

as well as volcanoes, the result is shown in Figure (2.10). For different types of craters, the

95% confidence interval is constructed by sampling from a distribution that accounts for the

non-randomness. Take embayed craters (denote ne as the total number of observed embayed

craters) as an example, the procedure is as follows,

1. Count number of embayed craters in the 5 age units defined in Figure (2.7). This is

the bar height of the histogram;

2. Use an inhomogeneous Poisson process to model the distribution (the details of this

method will be discussed in Chapter 3.3). The intensity function is assumed to be

λ(xi) = exp{β0 + β1xi1 + β2xi2 + β3xi3 + αElevation(xi)},

here xi = (xi1, xi2, xi3) is the Cartesian coordinate of the point xi ∈ S2;

3. Sample ne points from model fitted at step 2, count numbers of sampled points in the

5 age units;

4. Repeat the 3rd step 1000 times. Then find the 2.5 and 97.5 percentile to form the 95%

confidence interval (the red vertical bar in the plot).

For volcanoes, we follow similar steps, except that the volcano samples are drawn randomly

on the sphere. The result in Figure (2.10) suggests that:
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• There is no strong evidence for correlations between age units and the embayment/-

tectonic deformation of craters;

• There are more volcanoes (small and large) in very young regions and less in very old

regions, compared to the expected value under null hypothesis. The null hypothesis is

that the volcanoes are randomly distributed;

• For floor reflectivity, there are significantly more dark-floored craters in very old region,

and less in very young/young regions.
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Table 2.3: Geological Units

Unit Pixel % Area % (a) Area % (b) # of craters (a) # of craters (b)

t 10.1 11.1 7.3 128 150

rz 3.3 4.8 5.0 9 13

pl 6.8 7.5 8.3 24 35

ps 1.5 1.8 2.3 4 19

sc 0.6 0.7 0.7 145 123

rp1 26.6 26.6 31.1 117 170

rp2 8.0 8.9 9.2 19 36

psh 17.6 20.3 17.4 76 99

gb 6.1 7.0 8.1 26 43

mb 0.8 0.8 0.3 28 18

pr 2.5 2.4 2.1 101 42

pdl 3.9 4.3 1.6 20 7

c 0.3 0.3 0.6 208 158

cf 0.1 0.1 NA 1 2

ac 0.1 0.2 NA 14 3

black 11.7 3.5 6.2 20 22

Area % (a) is the area percentage based on our classification of geological units; Area % (b)

is the result in Ivanov and Head (2011). The geological unit type of the location of a crater

is decided by either (a) the type of nearest pixel or (b) majority type of the nearest 4 pixels.
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Table 2.4: Geological Units after Interpolation

Unit Pixel % Area % # of craters (a) # of craters (b)

t 10.1 11.1 148 158

rz 3.3 4.8 11 14

pl 6.8 7.5 28 29

ps 1.5 1.8 5 13

sc 0.6 0.8 196 154

rp1 26.7 26.7 160 194

rp2 8.0 8.9 20 35

psh 17.6 20.3 83 97

gb 6.1 7.0 28 44

mb 0.9 0.8 47 47

pr 2.5 2.4 121 77

pdl 3.9 4.3 25 16

ac 0.2 0.2 47 37

black 11.7 3.5 21 25

The geological unit type of the location of a crater is decided by either (a) the type of nearest

pixel or (b) majority type of the nearest 4 pixels.

Table 2.5: Relative Age Map Summary Table

Item Very young Young Intermediate Old Very old Total

# of craters 47 37 496 159 201 940

% of area 10.2 7.1 56.2 11.4 15.1 100

# of embayed 5 4 53 7 16 85

# of tectonized 10 8 76 16 31 141

# of volcanoes 213 106 724 197 163 1403

# of coronae 102 39 292 70 78 581

# of splotches 50 18 218 89 26 401
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Figure 2.3: Crater embayment and volcano locations with size proportional to the real

diameter.

24



(a) Plot of halo proportion as a function of crater density, based on 6 million evenly

spaced counting centers and 1750 km counting radius

(b) Relative age map (continuous version)

Figure 2.6: Venus relative age map 1
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(a) Plot of halo proportion as a function of crater density, based on 800 counting centers

and 1750 km counting radius

(b) Relative age map (discrete version)

Figure 2.7: Venus relative age map 2
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(a) Plot of halo proportion as a function of crater density, based on 800 counting centers

and 1750 km counting radius, includes 401 splotches as 401 crater-less halo

(b) Relative age map based on combined data of craters and splotches

Figure 2.8: Venus relative age map 3
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Figure 2.9: Proportion of area of age units in each geological unit
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(a) Tectonized craters (b) Embayed craters

(c) Small volcanoes (d) Large volcanoes

(e) Bright-floored craters (f) Dark-floored craters

Figure 2.10: Correlation between relative age units and various of features
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CHAPTER 3

Models for Spatial Point Processes on a Sphere

In this chapter we introduce varieties of spatial point process models on a sphere. We use

Venusian and Lunar crater databases as examples of the inferential procedures we propose.

In Section 3.1 we describe the lunar crater database and relevant background. Section 3.2

reviews some basics of Poisson point processes and the Von Mises-Fisher distribution, and

lists the notation that will be used throughout this chapter. Section 3.3 extends Poisson

type models for point process on the sphere. Section 3.4 discusses non-Poisson models by

introducing varieties of interaction terms. In Section 3.5, we discuss methods to estimate

MCMC errors. Section 3.6 shows how to assess model goodness-of-fit by likelihood ratio

testing. Finally, Section 3.7 discusses the Bayesian framework.

3.1 Data Source

The Venusian crater data is fully explained and explored in the previous chapter. We already

see that the distribution can not be distinguished from CSR. For illustration purposes, we

need some point patterns that are non-random. Lunar craters are well studied and contain

more structural patterns. Thus they will be used as examples in this chapter. This section

will give a brief introduction to the Lunar crater dataset.

3.1.1 Moon

The Moon is thought to have formed about 4.51 billion years ago. It is in synchronous

rotation with Earth, always showing the same face, named the near side. The far side of

the Moon is the hemisphere that always faces away from Earth. The far side of the lunar
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surface is on average about 1.9 km higher than that of the near side. The geological features

of the far side are quite different from the near side. Around 31% of near side is covered by

Moon maria, which is formed by ancient volcanic eruptions, compared with 2% of the far side.

Most of Moon’s maria basalts erupted 3-3.5 billion years ago, although some radio-metrically

dated samples indicate eruptions as early as 4.2 billion years ago, and the crater counting

method indicates the youngest eruption is around 1.2 billion years ago. The question of

why the far side is more mountainous (with higher elevation on average) and the near side

appears younger, flatter and with more maria is still under debate. One theory claims that

this is thought to be due to a concentration of heat-producing elements under the crust on

the near side. Another plausible explanation is related to the tidal effects of the Earth-Moon

system. The far side has more visible craters. This was thought to be a result of the effects

of lunar lava flows, which cover and obscure craters, rather than a shielding effect from the

Earth (see Lunar and Institute, 2018).

3.1.1.1 Coordinate System

Selenographic coordinates (see Hartung, 1972) are used to refer to locations on the surface

of the Moon. The coordinate system is comparable to the latitude and longitude of Earth.

The moon’s prime meridian is defined as the line passing from the lunar north pole through

the point on the lunar surface directly facing Earth to the lunar south pole. Basically any

location past 90◦E or 90◦W would not be visible from Earth due to tidal locking.

3.1.1.2 Lunar Craters

The moon lacks water, atmosphere and tectonic activity, so many of the lunar craters are

well-preserved. The largest impact crater on the moon is found on the far side, with a

diameter of 2500 km, as deep as 6 km. it is also the second largest crater known in the solar

system. The smallest craters found have been microscopic in size, found in rocks returned

to Earth. Because of the lack of erosion and tectonic activities on the moon, some craters

have an age exceed 4 billion years. The older and larger craters generally accumulate more
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small, contained craters. The total number of craters on Moon is still unclear since there are

many more small craters which we cannot see. One estimation of the number of craters on

the near side alone could be 30,000. Some also argue that the oldest areas on both the near

and far side are saturated, meaning that they have reached equilibrium (each new crater, on

average, destroys one old one). In this case, the density of craters is no longer an accurate

measure of the number of hits the surface has received, thus it can not provide an accurate

estimation of the surface age.

3.1.1.3 Existing Lunar Crater Database

There are several lunar crater catalogues available online, none of them are complete. A

few well-known catalogues, with different focuses (craters on nearside only, or craters larger

than a certain size), are summarized in Table (3.1). Without a full census, we will focus on

large craters. Our goal is to study the distribution of lunar craters with diameter larger than

20 km, combined with the crater size and elevation of the surface. The database we used

is a global catalog down to 20 km diameter craters, completed by Caleb Fassett and Seth

Kadish (see Kadish et al., 2011; Head et al., 2010). Although one of the focuses of lunar

crater research is trying to discriminate primary from secondary craters, by constraining on

crater size, we do not have any nested or overlapping craters. So the point process is simple,

i.e. there are no duplicates.

3.2 Model Framework and Notation

3.2.1 Poisson Process

Poisson processes play a fundamental role in the theory of point process. Although they are

based on the assumption of no interaction between points, which is not always true for many

spatial point patterns, they serve as the building block for more structured point process

models. The basic theory can be found in many textbooks (e.g. Cressie, 2015), and a brief

review is provided below. A homogeneous Poisson process has two basic properties:
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Table 3.1: Existing lunar impact crater databases

Author Data Source
Number of

Craters
Scope

Arthur et al. Earth based telescope ∼ 16,700 Near side only

Andersson

Whitaker
Lunar Orbiter IV 6,231 Named craters only

A. Losiak et al.
Based on Andersson

Whitaker and Wood
8862

Most complete database

for the named craters

up to date

Kadish et al.
Lunar Orbiter Laser

Altimeter instrument
5185

Craters with diameter

larger than 20 km

• In a bounded region A, the number of events has a Poisson distribution with mean

λ|A|

• Given there are n events in A, the events are independent. They form a random sample

from a uniform distribution on A

Based on the second property, the density of n tuple of events (x1, . . . , xn) is f(x1, . . . , xn|n) =

1
|A|n . Combined with the first property, the joint distribution can be written as,

f((x1, . . . , xn), n) = f(x1, . . . , xn|n)f(n) =
1

|A|n
(λ|A|)ne−λ|A|

n!
=
λne−λ|A|

n!
(3.1)

The density function sums up to 1.

∞∑
n=0

λne−λ|A|

n!

∫
An
dx1dx2 . . . dxn =

∞∑
n=0

(λ|A|)ne−λ|A|

n!
= 1,

since
∑∞

n=0
λn

n!
= eλ.

The data {x} = {x1, . . . , xn} are assumed to be a realization of a random point process

X in A. n(x) is the cardinality of {x}. The intensity λs is the number of events expected

per unit area at location s. For homogeneous process, λ(s) = λ = E[N(A)]
|A| , for inhomogeneous

process,
∫
W
λ(s)ds = E[N(A)]. Typically, the homogeneous Poisson point process with rate

1 is used as a reference measure for more sophisticated models. Then the probability density
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function of a homogeneous Poisson process with intensity λ with respect to a unit rate

homogeneous Poisson process is,

f(x;λ) = e−(λ−1)|A|λn(x)

An Inhomogeneous Poisson process is a Poisson process with a varying intensity function

λθ(u) = lim|ds|→0
µ(ds)
|ds| , where µ is a random measure on A (usually the counting measure).

Then based on the properties of Poisson process, we have

P (N(B) = n) =
e−µ(B)(µ(B))n

n!
, n = 0, 1, . . . ,

for any bounded sub-region B ⊂ A, µ(B) =
∫
B
λ(u)du. The density function of a location

s ∈ A is proportional to λ(s):

fA(s) =
λ(s)∫

A
λ(u)du

=
λ(s)

µ(A)

Then, given there are n events, the conditional density of the ordered n tuple (x1, . . . , xn) ∈

An is,

f(x1, . . . , xn|N(A) = n) =

∏n
i=1 λ(xi)

(µ(A))n
.

The joint distribution is,

f((x1, . . . , xn), n) =


e−µ(A) n = 0

e−µ(A)
∏n
i=1 λ(xi)

n!
n ≥ 1

(3.2)

The density function sums up to 1.

e−µ(A) +
∞∑
n=1

e−µ(A)

n!

∫
An

n∏
i=1

λ(xi)dx1 . . . dxn =
∞∑
n=0

e−µ(A)

n!
(µ(A))n = 1.

Rewrite the density function with respect to a unit-rate Poisson process,

f(x;λ) =

n(x)∏
i=1

f(xi;λ) = exp(−
∫
W

[λθ(u)− 1]du)

n(x)∏
i=1

λθ(xi). (3.3)
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3.2.2 Von Mises-Fisher Distribution

A unit random vector y has the (p − 1)-dimensional von Mises-Fisher distribution if its

probability density function with respect to the uniform distribution is

f(y;µ, κ) = (
κ

2
)p/2−1 1

Γ(p/2)Ip/2−1(κ)
exp{κµ>y}, (3.4)

where κ ≥ 0, ||µ|| = 1, and Iν denotes the modified Bessel function of the first kind and

order ν.

Two observations:

(i) The density (3.4) is symmetric about µ, the mean direction if y is µ. As y runs through

Sp−1, µ>y is maximised at µ and minimised at −µ. Thus, provided that κ > 0, the

density has a mode at µ and an antimode at −µ. The expected value of y can be

calculated:

E(y) = ρµ,

where

ρ =
Ip/2(κ)

Ip/2−1(κ)
.

(ii) κ is called the concentration parameter. For κ > 0, the distribution has a mode at the

mean direction µ, when κ = 0, the distribution is uniform. The larger the value of κ,

the greater is the clustering around the mean direction.

The most important feature of the von Mises-Fisher distribution is that the log-density

is linear in the observation y. A natural generalization is to replace y in the exponent in

(3.4) by higher polynomials t(y) in y. In particular, the use of general quadratics in y yields

the Fisher-Bingham model with densities

f(y;µ, κ,A) =
1

a(κ,A)
exp{κµ>y + y>Ay},

where A is a symmetric p×p matrix and trA = 0, y>y = 1. Further models with interesting

geometrical properties appropriate for modeling spherical data from various fields can be
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obtained by suitable restriction of the Fisher-Bingham model (see Kent, 1982; Mardia and

Jupp, 2009).

Based on the Von Mises-Fisher distribution and its generalizations, we develop a suite

of exponential family models for modeling the density of the point process on sphere. The

simplest version starts from just using the Von Mises-Fisher distribution to describe the point

patterns. Then other spatial covariates, numerical or categorical could be added. Quadratic

forms or interactions between the terms can also be considered as a natural extension of the

Fisher-Bingham distribution.

3.2.3 Notation

Two coordinate systems are used thoughout the thesis, geographic coordinate (latitude,

longitude in degree) and Cartesian coordinate. The geographic coordinate system is useful

because, 1)The data is usually released in geographic coordinates; 2) It provides a convenient

way to define grids partition of the sphere when needed for computational reasons. For

instance, to locate a point on the topology map and extract its elevation value; count number

of points in grid cells; 3) It can be used to construct spherical splines. However, the Cartesian

coordinate system is used most of time in our models because the values are well bounded

in [−1, 1] and we can use well-defined distribution, i.e., Von Mises-Fisher to describe it. In

general, the joint probability function of a point process x = {x1, . . . , xn} can be written as,

f(x; θ) = C(θ)−1 exp{(
n∑
i=1

β>B(xi)) + (
n∑
i=1

α>Z(xi)) + (γ>H(x))} (3.5)

The notations used in Equation (3.5) are list below:

• θ = {β, α, γ} is the parameter space

• C(θ) is the normalizing constant

• B(xi) represents the spatial trend. for u ∈ S2, B(u) = (B1(u), . . . , Bk(u)) would be a

vector of functions of location. For instance, B(u) = (ux, uy, uz) if we use orthonormal

functions of location in Cartesian coordinate. B(u) could also be spline functions. In

homogeneous Poisson process, this term would be 1.
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• Z(xi) denote the spatial covariates such as elevation, geological units. We separate it

from the term B(xi) because usually the spatial covariates are implicitly depends on

location and requires different computing procedure. Again, Z(xi) could be vector of

spline functions or any convenience parametric functions.

• H(x) is the interaction term that represent dependence between different points in the

process {x}. If γ = 0 then the model reduces to an inhomogeneous Poisson process.

We will consider specific interaction terms in Section 3.4.
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3.3 Inhomogeneous Poisson Processes

We start with assuming independence among points, so the joint probability density function

in Equation (3.5) is separable:

f(x; θ) = C(θ)−1 exp{(
n∑
i=1

β>B(xi)) + (
n∑
i=1

α>Z(xi))} (3.6)

=
n∏
i=1

c(θ)−1 exp{β>B(xi) + α>Z(xi)} (3.7)

(3.8)

We discuss the inference procedure for the model and explore different specification of B(xi)

and Z(xi) in this section.

3.3.1 Inference

3.3.1.1 Intensity Function

As discussed above, the probability density function at a location xi can be written as,

f(xi) = c(θ)−1 exp{β>B(xi) + α>Z(xi)} (3.9)

This is equivalent to having an intensity function in the inhomogeneous Poisson process as,

λθ(xi) = exp{β0 + β>B(xi) + α>Z(xi)} (3.10)

The intercept term β0 goes to the normalizing constant in the probability density function.

Then we can use the glm() fitting device in R, the procedure is summarized below:

1. Set up a fine grid system on the sphere and record the center location xi = (lati, loni)

of the grid cells as well as value of spatial covariates Z(xi) of the center. For example

the 1 degree latitude and longitude grid is a natural choice. The finer the cells are, the

better the result would be;

2. Count number of points in each grid cell, denote as ni;
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3. Calculate the area Ai of each grid cell. In practice, if using latitude-longitude rectan-

gular grid, the area can be calculated as.

Ai = | sin(lati1)− sin(lati2)||loni1 − loni2| ∗R2 ∗ (π/180), (3.11)

where (lati1, loni1) and (lati2, loni2) are the coordinate (in degree) of the bottom left

and top right corner of the ith lat-lon rectangle. Without loss of generality, the radius

of the sphere R is always set to be 1.

4. Model the number of points in each grid cell as independent Poisson random variable.

The Poisson regression model can be fit in R via the glm() call:

glm(ni ∼ offset(log(Ai)) + B1(xi) + · · ·+ Bk(xi) + Z1(xi) + · · ·+ Zp(Xi),

family = poisson(link = ‘log′), data = data)

As the grids get finer, the glm() fitting may run into memory issues. For instance, the 0.1

degree grid has 6.48 million grid cells, with most of the counts equal to zero and very few

equal to one (in Lunar crater case, we have 5185 observations, which result in 5185 of ones,

around 0.08% of the total number of grids). To handle the imbalanced data, one solution is

under-sampling. In practice, the procedure is,

1. select all n1 cells with a count value equal to 1, select n0 cells with a count value 0, n0

is in the same magnitude of n1 (e.g. select n0 = n1);

2. fit a weighted glm with weighti = 1/pi, where pi is the probability of the ith cell being

selected. Clearly we have pi = 1 for cells with count 1, pi = n0/M for cells with count

0. M is the total number of cells having count value 0;

3. repeat step 1 and 2, check if the fitted value converges.

If B(xi) is a vector of spline basis functions, the mgcv package in R provides a handy tool

to construct various of spline bases to fit the model. For instance, we can choose B(xi) as

spherical spline values at location xi = (lati, loni); Z(xi) as thin plate regression splines if the
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spatial covariates are continuous (e.g. elevation). Then call the function gam() or bam() (for

big data),

bam(n ∼ offset(log(A)) + s(lat, lon, bs = “sos′′, k = k1) + s(Z(x), k = k2),

family = poisson(link = ‘log′), data = data, weights = weights)

Note the glm() and gam() fit discussed above approximate
∫

cell
λθ(ui)du by λθ(xi)Ai. How-

ever, this approximation is not necessary, we will discuss a more accurate and flexible MCMC

technique for likelihood-based inference in the following section.

3.3.1.2 MCMC-MLE

To find the maximum likelihood estimator of the model parameters θ in Equation (3.9),

the main difficulty is calculating the normalizing constant c(θ). If the model only involves

simple parametric functions of location xi, it is plausible to compute c(θ). However, in the

case when spatial covariates or non-parametric functions of locations are involved, c(θ) is

intractable. MCMC technique is the remedy for this. The method introduced below is based

on the approach of Geyer and Thompson (1992).

We start from an arbitrary estimate of the parameter, θ(0) = (β(0),α(0)). Then generate

M samples from the probability density function f(x; θ(0)) using the method of Metropo-

lis Sampling. Denote the observed data location and spatial covariate as {(x1, z(x1)), . . . ,

(xn, z(xn))}, the sampled data as (xs1, z(xs
1)

), . . . , (xsM , z(xs
M )). The size of observed data is
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n, the size of sampled data is M . Then, the log-likelihood function can be written as:

r(β,α) = log f(x|β,α)− log f(x|β(0),α(0))

= n log c(β,α)− n log c(β(0),α(0)) + 〈(β − β(0)),
n∑
i=1

B(xi)〉+ 〈(α−α(0)),
n∑
i=1

Zxi
〉

≈ −n× log
1

M

M∑
i=1

e
〈(β−β(0)),B(xs

i )〉+〈(α−α
(0)),Zxs

i
〉
+ 〈(β − β(0)),

n∑
i=1

B(xi)〉+

〈(α−α(0)),
n∑
i=1

Zsi〉

(3.12)

The last step in equation 3.12 used an approximation of c(β(0),α(0))/c(β,α) based on M

samples from the distribution f(x|β(0),α(0)).

c(β(0),α(0)) =

∫
x∈s2

e〈β
(0),x〉+〈α(0),Z(x)〉f(x|β(0),α(0)) dx (3.13)

c(β,α) =

∫
x∈s2

e〈β,x〉+〈α,Z(x)〉f(x|β,α) dx (3.14)

c(β,α) = c(β(0),α(0))

∫
x∈s2

e〈(β−β
(0)),x〉+〈(α−α(0)),Z(x)〉f(x|β(0),α(0)) dx (3.15)

Equation (3.15) is derived from a minor variation of the formula for moment-generating

function of sufficient statistics in exponential family distribution. To show this, we simplify

the notation in the density function as,

f(xi) = c(θ)−1 exp{θ>T (xi)}, (3.16)

where T (xi) = (B(xi), Z(xi)) is the sufficient statistics. Then the moment-generating function

of T (x) induced by f(xi; θ) is

MT (u) = Eθ(exp{u>T (x)}) (3.17)

=

∫
x∈s2

exp{u>T (x)} exp{θ>T (xi) − κ(θ)} dx (3.18)

=

∫
x∈s2

exp{(u+ θ)>T (x)− κ(u+ θ)} exp{κ(u+ θ)− κ(θ)} dx (3.19)

=
c(u+ θ)

c(θ)
, (3.20)
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here κ(θ) = log c(θ). The purpose of Equation (3.15) is to express c as an integral with

respect to a probability distribution, making MCMC methods applicable. The value of c

is still not unknown, but it can be determined up a constant of proportionality. The ratio

of the normalizing constant can be approximated by the MCMC samples as shown in the

following equation.

c(β,α)

c(β(0),α(0))
=

∫
e〈(β−β

(0)),x〉+〈(α−α(0)),Z(x)〉 (3.21)

≈ 1

M

M∑
i=1

e
〈(β−β(0)),xsi 〉+〈(α−α(0)),Z(xs

i )
〉

(3.22)

For sample generation method, we use Metropolis-Hastings algorithm. The proposal of a

new point is based on a perturbation of the old point within a spherical cap that is centered

around the old point, and having an fixed angle ξ. Under this design the transition matrix

is symmetric and the condition of detailed balance would be satisfied. The angle ξ controls

how far a point can jump, and should not be too small to allow fast mixing. However, a

larger ξ can lead to a lower acceptance rate. A good choice of ξ should provide a desirable

acceptance rate while allowing large jumps. In practice, ξ is set to be something like π/3,

π/6 for independence case; while it should be much smaller when the interaction term is

introduced, we will discuss this in Section 3.4. The detailed sampling methods are described

in Algorithm 1 and 2; and the step to find MLE is summarized in Algorithm 3.

Algorithm 1 Perturbation of point on sphere

To randomly perturb a unit vector orig vector within a given angle θ

1. Find a unit vector rand vector in the tangent plane of the orig vector, find the unit

vector cross vector that is perpendicular to orig vector and rand vector

2. s = rand(0, 1), r = rand(0, 1), h = cosθ

3. z = h+ (1− h)r, x = cos(2πs)
√

1− z2, y = sin(2πs)
√

1− z2

4. perturb vector = rand vector × x+ cross vector × y + orig vector × z
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Algorithm 2 Metropolis-Hastings Sampling

To draw k samples from the distribution f(x|β, α).

1. Generate a random point on the sphere.

Repeat through steps 2 to 4:

2. At the ith iteration, perturb xi using Algorithm 1, denote the perturbed point as x∗,

calculate values of B(x∗), find the corresponding spatial covariates Z(x∗)

3. Calculate acceptance rate:

r = exp{〈β,B(x∗)−B(xi)〉+ 〈α,Zx∗ − Zxi〉}

4. If min(1, r) > rand(0, 1), update xi to x∗, otherwise, keep xi

Algorithm 3 MCMC-MLE: Poisson model fitting

1. Start from an arbitrary parameter (β(0), α(0))

Repeat through step 2 to 4:

2. In the kth iteration, generate m samples (x
(s)
j ) under the parameter (β(i−1), α(k−1))

3. Find β(k) and α(k) that maximize L(β, α)

L(β, α) =〈(β − β(k−1)),
n∑
i=1

B(xi)〉+ 〈(α− α(k−1)),
n∑
i=1

Zxi〉

− n× log(
1

M

M∑
i=1

exp{〈(β − β(k−1)), B(x∗i )〉+ 〈(α− α(k−1)), Zx∗i 〉}
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3.3.1.3 Contrastive Divergence

It usually takes a long time to compute the MCMC-MLE. The reason is twofold: the MCMC

algorithm typically requires a large number of iterations to converge to the target distribu-

tion; and if this target distribution is far from the true distribution, the MCMC-MLE needs

to be iterated a few times until it converges to the true parameter value. A good initial

value is important because, 1) we usually use the observed data as the initial status to run

MCMC. If the target distribution is far from the true MLE, there would be a long burn-in

period for the MCMC chain, thus costs a lot more time; 2) More importantly, even after we

get the MCMC sample, the optimization step may fail to provide a reasonable result if the

two distributions are too different. The MCMC weights have high variance and the MCMC

error in the likelihood function is large. Hinton (2002) showed that even if the Markov chain

is only run for a few steps, the MCMC-MLE method can still work well. And instead of

minimizing the Kullback-Leibler divergence, it approximately minimizes a different function

called “contrastive divergence” (CD), which is actually the difference of two Kullback-Leibler

divergences. CD learning provides biased estimation in general, but the bias is typically very

small, so it is perfect to use as the method to get initial values for MCMC-MLE. The max-

imum likelihood maximizes the observed data likelihood, or equivalently, it minimizes the

negative log likelihood, denote as E(x; θ), which is called the energy function. For notation

simplicity, let

g(xi; θ) = exp{β>B(xi) + α>Z(xi)}

Then for the inhomogeneous Poisson model whose density function is defined in Equation

(3.9), the energy function can be derived as:

E(x; θ) = log c(θ)− 1

n

n∑
i=1

log g(xi; θ) (3.23)

Then we can do gradient descent to find the minimizer:

θt+1 = θt − η
∂E(x; θ)

∂θ
. (3.24)
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Here η is the step size and the gradient can be derived as:

∂E(x; θ)

∂θ
=
∂ log c(θ)

∂θ
− 1

n

n∑
i=1

∂ log g(xi; θ)

∂θ

=
1

c(θ)

∂c(θ)

∂θ
− 1

n

n∑
i=1

∂ log g(xi; θ)

∂θ

=
1

c(θ)

∂

∂θ

∫
g(x; θ) dx− 1

n

n∑
i=1

∂ log g(xi; θ)

∂θ

=
1

c(θ)

∫
∂g(x; θ)

∂θ
dx− 1

n

n∑
i=1

∂ log g(xi; θ)

∂θ

=
1

c(θ)

∫
g(x; θ)

∂ log g(x; θ)

∂θ
dx− 1

n

n∑
i=1

∂ log g(xi; θ)

∂θ

=

∫
∂ log g(x; θ)

∂θ
f(x; θ) dx− 1

n

n∑
i=1

∂ log g(xi; θ)

∂θ

=

〈
∂ log g(x; θ)

∂θ

〉
f(x;θ)

−

〈
∂ log g(x; θ)

∂θ

〉
X

Here
〈
h(x)

〉
f(x;θ)

is the expectation of h(x) given x follows the distribution f(x; θ),
〈
h(x)

〉
X

is the mean of h(x) when x takes the observed values X. Since the first expectation is

intractable, MCMC samples draw from f(x; θ) is used to approximate the integral. Let Xn

represents the sample set after n cycles of MCMC chain with the initial status being the

observed values X, i.e. X0 = X, and X∞ is the sample set after the MCMC converges.

Ideally we should use

∂E(x; θ)

∂θ
≈

〈
∂ log g(x; θ)

∂θ

〉
X∞

−

〈
∂ log g(x; θ)

∂θ

〉
X0

(3.25)

as an approximation to the gradient. The CD method says that we don’t need X∞, even 1

cycle of MCMC is sufficient for the algorithm to get close enough to the MLE. The intuition

is that after a few iterations, the sample is able to move towards the target distribution, so

the algorithm will be able to move towards the correct direction. Thus the gradient step can

be expressed as

θt+1 = θt − η

(〈∂ log g(x; θ)

∂θ

〉
X0
−
〈∂ log g(x; θ)

∂θ

〉
X1

)
(3.26)
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To summarize, the CD method updates the parameter θt at the tth iteration to θt+1 by

running a short MCMC chain with the target distribution f(x; θt), denote the MCMC sample

as {xs1, . . . , xsn}, the update steps of the inhomogeneous Poisson model in Equation (3.8) are:

β
(t+1)
i = βti + η

( 1

n

n∑
j=1

Bi(xj)−
1

n

n∑
j=1

Bi(x
s
j)
)

(3.27)

α
(t+1)
i = αti + η

( 1

n

n∑
j=1

Zi(xj)−
1

n

n∑
j=1

Zi(x
s
j)
)

(3.28)

In practice, we run the MCMC for more than 1 cycle to make the algorithm more stable. The

step size η does not need to be the same for all parameters, and doesn’t need to be constant

in different iterations. It is chosen to balance between convergence time and stability. The

method is proved to be working well for all inhomogeneous Poisson process models we have

applied it to.

3.3.2 Spatial Trend

Let B(u) = (u1, u2, u3) be the Cartesian coordinates of point u ∈ S2. Under this basic form

of spatial trend, the pdf f(x) = c(β) exp{β1x1+β2x2+β3x3} is essentially a Von Mises-Fisher

distribution. After reparameterization, we can show that,

• κ =
√

(β2
1 + β2

2 + β2
3) is a concentration measure. κ = 0 indicates an uniform distri-

bution, larger value indicate stronger clustering pattern;

• µ = 1
κ
(β1, β2, β3) is the mean direction;

• c(β) =
√

κ
2

1
Γ(3/2)I1/2

Table (3.2) shows the MCMC-MLE of model fitted on Venusian and Lunar craters. We used a

thinning interval of thin = 1000, the length of burn-in period is 10×thin, and the number of

samples after thinning is 105. From Table 3.2 we can conclude that there’s no strong spatial

trend on Venus, while Lunar craters have a concentration direction (−0.88, 0.41,−0.23).

Equivalently, we can conclude that the density of Lunar craters reaches its maximum at

location (Lat: -13◦, Lon: 155◦); and it is minimized at the opposite location (Lat: 13◦, Lon:

-25◦). The location are marked as red and blue respectively in Figure (3.1).
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Table 3.2: MCMC-MLE Spatial Trend

Venusian craters

Coef. Est. 95% CI

β1 0.07 (-0.04, 0.18)

β2 0.05 (-0.06, 0.16)

β3 0.04 (-0.07, 0.15)

Lunar craters

Coef. Est. 95% CI

β1 -0.43 (-0.47, -0.38)

β2 0.20 (0.15, 0.24)

β3 -0.11 (-0.16, -0.06)

3.3.3 Spatial Covariate

Spatial covariates can be either continuous measures or categorical variables. They may

serve to eliminate spurious spatial trends and explain variation in crater density. For Venus

and the Moon, elevation is a very natural covariate to be included. The MCMC-MLE results

shown in Table (3.3) indicates that for Venus craters, the elevation effect is not significant,

since the 95% confidence interval includes 0. For Lunar crater, there is a slightly negative

effect indicating there are more craters on low land. But the location effect still dominates

the intensity.

Table 3.3: MCMC-MLE Elevation Effect

Venusian craters

Coef. Est 95% CI

β1 0.07 (-0.04, -0.18)

β2 0.05 (-0.06, 0.16)

β3 0.01 (-0.10, 0.12)

α1 0.04 (-0.04, 0.12)

Lunar craters

Coef. Est 95% CI

β1 -0.44 (-0.50, -0.39)

β2 0.19 (0.14, 0.24)

β3 -0.11 (-0.16, -0.06)

α1 -0.02 (-0.05, 0.00)

Since the geological features indicate possible resurfacing activities on the planet, a natu-

ral question to ask is, do different geological features have different concentrations of craters?

The question can be explored by fitting a model with geological units as spatial covariates.

We use Venus craters as an example. The preprocessing of the geological map is discussed
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Figure 3.1: Lunar crater distribution with concentration direction. Red point: maximum

point; Blue point: minimum point

in Section (2.1) and the data is ready to use. The geological units are coded as 12 dummy

variables. The MCMC-MLE, along with its 95% confidence bar is shown in Figure (3.2).

For moon, it is of interest to see if the side of the body has an effect. Let f(xi) = 1

if xi is on the far side of the moon, f(xi) = 0 otherwise . We fit a model with spatial

trend, and include elevation, far/near side as two spatial covariates. Table (3.4) compares

the results from using glm() fit versus the MCMC-MLE. For glm(), we use three different

scales, 1 degree, 0.5 and 0.1 degree for the lat-lon grids. Table (3.4) shows that the location

is still the strongest effect, the elevation effect is slightly negative and the near/far side

does not has a significant effect. The glm() result under 0.1 degree lat-lon grid provides the

closest estimate to the MCMC-MLE. It may be surprising to see that the near/far side is not

significant. However, Figure (3.3) shows that considering the relative size and distance of

Earth and the Moon, the Earth can only shield almost negligible portion of the near side of

the Moon from incoming asteroids, it is not enough to influence crater densities. Scientists

argue that the real reason there are more craters on the far side is that the near side has a

much thinner crust which has allowed volcanoes to erupt and remove the craters that were
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Figure 3.2: MCMC-MLE for geological feature effects model of Venusian craters

Figure 3.3: Earth and moon location, with size and distance proportional to the actual value.

formed earlier.

3.3.4 Spline Functions

In the context of our model, it is straightforward to replace the linearity of the spatial trend

and spatial covariates with more flexible terms, i.e. smooth functions. With mgcv package in

R, which provides spline basis function construction in a generalized additive model setting,

this is simply a matter of adding more terms to the linear predictor log f(x). For the spatial

trend, it is natural to consider representing points in latitude/longitude and use spherical

splines. For spatial covariates with a continuous measure, such as elevation, thin plate splines
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Table 3.4: GLM vs. MCMC-MLE for Lunar crater with elevation and near/far side effect

grid size 1 degree 0.5 degree 0.1 degree MCMC-MLE

Coefficients glm Est. glm Est. glm Est. Est. 95% CI

(Intercept) 1.897 1.899 1.897 NA NA

β1 -0.490 -0.501 -0.505 -0.434 (-0.533, -0.335)

β2 0.308 0.304 0.188 0.187 (0.138, 0.236)

β3 -0.111 -0.107 -0.106 -0.106 (-0.154, -0.058)

α1 -0.008 -0.021 -0.024 -0.023 (-0.051, 0.005)

α2 0.078 0.078 0.082 -0.014 (-0.123, 0.096)

or cubic splines could be used. Figure (3.4) shows the result of using spherical splines with

20 degrees of freedom and thin plate splines with 5 degrees of freedom. Compared to the

actual crater location map in Figure (3.1), the spline model is able to capture most of the

patterns.

3.3.5 Discussion

• glm and gam can be used to fit inhomogeneous point process on S2. mgcv package

provides more flexibility in the model terms since it allows the use of smooth terms.

• gam and glm use the intensity function at the center of the grid cell as an approximation

to the overall intensity of the cell, the accuracy of the model relies on the granularity of

the grids. MCMC-MLE relies on MCMC sampler to approximate normalizing constant

in the likelihood function. Then either gradient based (BFGS) or non-gradient based

(Nelder-Mead) methods can be used to minimize the likelihood function.

• gam and glm are much faster than MCMC-MLE. So we could use gam or glm as the

method to get initial values to run MCMC, or use it when computational time is the

major concern instead of accuracy. Contrastive divergence is an alternative to get

initial values for MCMC without any extra coding to fit the glm.
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• The two methods provide very close results if the granularity of the grids in glm/gam

is small enough. For the Poisson type of model, the benefit of using MCMC-MLE

is not fully revealed. We will see in the next section that, if the interaction term is

added, MCMC-MLE is still available. However, to apply the idea of glm/gam fitting,

we will need the concept of pseudo-likelihood, which is an approximation to the true

likelihood. The maximum pseudo-likelihood estimator (MPLE) is efficient only if the

interaction is weak. We will discuss this approach in the following section.
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(a) Density map estimated by spline func-

tions of location and elevation

(b) Density map estimated by linear function

of location and elevation

(c) Spatial trend estimated by spherical

spline

(d) Spatial trend estimated by linear combi-

nation of Cartesian coordinate

(e) Comparison of elevation effect under thin

plate spline fitting vs linear function

Figure 3.4: Lunar crater spline fit
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3.4 Interaction Models

In this section we develop dependence models to extend the inhomogeneous Poisson models.

For notational simplicity, we restrict our attention to spatial trend of the form B(xi) =

(xi1, xi2, xi3), the Cartesian coordinates of point xi. Also the spatial covariate Zxi will be

univariate, the elevation at xi. The model easily extends to more general forms as discussed

in the previous section. Specifically, the models considered in this section are conditional on

the total number of observed points; and share the general form,

f(x1, . . . , xn; θ, n = n) = C(θ)−1 exp{
n∑
i=1

〈β, xi〉+
n∑
i=1

αZxi + γH(x)} (3.29)

Pairwise interaction is often sufficient to model many types of point patterns. But it is much

more computationally intensive compared to independent models. Thus before we dive into

the pairwise interaction, we first introduce a few global interaction terms, which are easier

and faster to compute.

3.4.1 Inference

3.4.1.1 Pseudo Likelihood

Denote f(xi|x−i) as the probability of observing point i at location xi given other points in

{x} fixed. Then the pseudo likelihood function is,

PL(θ;x) =
n∏
i=1

f(xi|x−i) (3.30)

The point of calculating conditional probability is that the normalizing constant will cancel

out. f(xi|x−i) can be approximated by a set of random points {xs1 , . . . , xsM} on S2, as

shown below,

f(xi|x−i) =
f(x)∫

x′∈S2 f(x′,x−i) dx′

≈ f(x)
4π
M

∑M
j=1 f(xsj ,x−i)
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Plug in Equation (3.29) we have,

f(xi|x−i) ≈
1

4π
M

∑M
j=1 exp{〈β, (xsj − xi〉+ α(Zxsj − Zxi) + γ(H(xsj ,x−i)−H(x))}

(3.31)

Denote K(xsj , xi,x−i, θ) = 〈β, (xsj − xi〉 + α(Zxsj − Zxi) + γ(H(xsj ,x−i) − H(x)) as the

‘change’ of statistics if moving xi to xsj while keeping other points unchanged. Then the log

of the conditional probability can be approximated as

log f(xi|x−i) ≈ − log(4π)− log(
1

M

M∑
j=1

exp{K(xsj , xi,x−i, θ)}) (3.32)

≈ − log(4π)− (µ(xi,x−i, θ) +
1

2
σ2(xi,x−i, θ)), (3.33)

where µ(xi,x−i, θ) and σ2(xi,x−i, θ) are the mean and variance of {K(xsj , xi,x−i, θ)}j=1,...,M

respectively. We assume the change of statistics {K(xsj , xi,x−i, θ)}j=1,...,M follows a normal

distribution. Then exp{K(xsj , xi,x−i, θ)} follows a log-normal distribution and its mean

value is exp{µ(xi,x−i, θ) + 1
2
σ2(xi,x−i, θ)}. Finally we derive the log pseudo-likelihood as,

logPL(θ;x) = −n log(4π)−
n∑
i=1

(µ(xi,x−i, θ) +
1

2
σ2(xi,x−i, θ)) (3.34)

Note that when there is no interaction, we have f(xi|x−i) = f(xi) and this pseudo-likelihood

is the exact likelihood. The maximum pseudo-likelihood estimator (MPLE) is typically a

good approximation of MLE only when the interaction is very weak.

3.4.1.2 MCMC-MLE

The idea of the likelihood-based inference are exactly the same as discussed for the Poisson

type of model. One difference that needs to be noticed is that for interaction models,

instead of using MCMC to generate single points to form the sample, n points need to be

generated to form one sample. n is constrained to be the number of observations. The

details are summarized in Algorithm 4 and 5. The choice of perturb rate and perturb angle

in Algorithm 4 needs to take a balance between acceptance rate and mixing. Ideally we want

to perturb all points at every cycle of the MCMC, but it results in nearly 100% rejection.

So in practice we choose some rate between 20% to 60%. The perturbation angle is also set
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to be much smaller (such as π/12, π/18) than the case when we have independent points.

Due to these constraints, the samples are highly correlated, a large thinning interval need to

be taken to account for this.

Algorithm 4 Metropolis-Hastings algorithm for sampling from an interaction model

To generate samples from the joint distribution function,

f(x1, . . . , xn; θ) = C(θ)−1 exp{
n∑
i=1

〈β,B(xi)〉+
n∑
i=1

〈α,Zxi〉+ γH(x)},

here xi is a location on s2 in Cartesian coordinate.

1. Use observed locations {xobs1 , . . . , xobsn } as the initial status to start the MCMC. Repeat

through steps 2-4 to get m groups of samples.

2. At each iteration, denote xold =
{
xold1 , . . . , xoldn

}
as the current sample, randomly select

from it the points to be perturbed (without replacement) according to some perturb

rate. This rate could be anything within (0, 1]. Record the resulting locations xnew =

{xnew1 , . . . , xnewn }. Calculate the corresponding B(xnewi ) and find the covariate value{
Zxnewi

}
.

3. Calculate Metropolis-Hastings ratio.

r =
f(xnew1 , . . . , xnewn )

f(xold1 , . . . , xoldn )

= exp{β>
n∑
i=1

(B(xnewi )−B(xoldi )) + α>
n∑
i=1

(Zxnewi
− Zxoldi ) + γ(H(xnew)−H(xold)}

4. If log(r) < log(rand(0, 1)), we reject the proposed perturbation, and retain the old

sample. Otherwise, update the points to {xnew1 , . . . , xnewn }.

3.4.2 Global Interaction Terms

The ‘global’ interaction terms we considered are based on the grid counts. Let g = {g1, . . . , gk}

be the points count in some fixed grids partition of S2. A natural choice would be latitude-
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Algorithm 5 MCMC-MLE: Interaction model fitting

1. Start from an arbitrary parameter θ(0) = (β(0), α(0), γ(0))

2. In the kth iteration, use Algorithm 4 to generate m sets of samples
{
x

(j)
1 , . . . , x

(j)
n

}
under the parameter (β(k−1), α(k−1), γ(k−1)), j indicate the group index that a point

belongs to, j = 1, 2, . . . ,m.

3. Find
(
β(k), α(k), γ(k)

)
that maximize L(β, α, γ).

L(β, α, γ) = (β − β(k−1))>
n∑
i=1

B(xi) + (α− α(k−1))>
n∑
i=1

Zxi + (γ − γ(k−1))H(x)

− log
(

1

m

m∑
j=1

exp{(β − β(k−1))>
n∑
i=1

B(x
(k)
i ) + (α− α(k−1))>

n∑
i=1

Z
x
(k)
i

+ (γ − γ(n−1))H(x(k))}
)

longitude grids. The grid size is chosen to make sure the counts have moderate fluctuation.

If the size is too small, the counts would be just 0 or 1; if the size is too big, the cluster-

ing/repulsion pattern would be smoothed out. For lunar craters, we set the grid cells to be

on a 5 degree lat-lon grid. The histogram of counts of observed craters in each cell is shown

in Figure (3.5).

3.4.2.1 Variance of the Grid Counts

Let the interaction term H(x) = V arg =
∑k
i=1(gi−ḡ)2
k−1

be the variance of the point counts

g = {g1, . . . , gk}, ḡ =
∑k
i=1 gi
k

is the mean value. A natural alternative is the standard

deviation of the counts, which is also considered as a comparison to the variance interaction

model. The results of models on lunar craters in Table (3.5) and Table (3.6) suggest that the

variance/standard deviation interaction has a significantly positive effect. A larger variation

in the grid counts is more likely, in other words, the Lunar craters exhibit clustering. Note

that this variance or standard deviation interaction term can describe point patterns with

repulsion as well. If the parameter γ < 0, then more regular point patterns is more likely.
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Figure 3.5: Lunar crater count in 5 degree cells

γ = 0 indicates Poisson process. Despite the fact that the two inference methods provide

very different estimates of interaction effect, the location effect estimates, visualized as the

concentration direction in Figure (3.6) are similar.

Table 3.5: MPLE vs. MCMC-MLE for variance interaction model with fixed n

Method MPLE MCMC-MLE

Coef Estimate 95% CI Estimate 95% CI

β1 -0.362 (-0.417, -0.306) -0.419 (-0.475, -0.363)

β2 0.103 (0.053, 0.153) 0.169 (0.120, 0.218)

β3 -0.138 (-0.186, -0.091) -0.102 (-0.149, -0.054)

α -0.098 (-0.129, -0.066) -0.029 (-0.056, -0.002)

γ 111.087 (91.040, 131.134) 32.117 (7.102, 57.131)
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Table 3.6: MPLE vs. MCMC-MLE for std. dev. interaction model with fixed n

Method MPLE MCMC-MLE

Coef Estimate 95% CI Estimate 95% CI

β1 -0.362 (-0.417, -0.306) -0.427 (-0.478, -0.377)

β2 0.103 (0.052, 0.153) 0.167 (0.114, 0.220)

β3 -0.138 (-0.186, -0.091) -0.101 (-0.148, -0.053)

α -0.098 (-0.129, -0.066) -0.036 (-0.060, -0.012)

γ 419.894 (344.244, 495.543) 102.425 (17.328, 187.522)

3.4.2.2 Correlation Between Counts of Neighboring Cells

A point process is called a Markov random field if the conditional density function of any

subset of the region only depends on its neighboring regions. Here we can assume the point

process satisfies a kind of Markov property in the sense that the conditional distribution at

a certain location only depends on the point counts in the neighboring cells. Denote ḡi as

the mean of the points count of all neighboring cells around cell i. Then we can define the

interaction term to be the correlation coefficient ρ between {gi}i=1,...,k and {ḡi}i=1,...,k. Table

(3.7) shows the results fit on Venusian splotches. The interpretation of the parameter γ is

similar to the variance interaction term. If γ > 0, then a larger correlation is preferred, which

means if there are more points in the surrounding region, then the probability of placing more

points at that location is higher, if holding other factors fixed. The neighboring dependency

is strong and positive means clusterness. If γ < 0, then more points in the surrounding

region make it less likely to observe event at that location, this negative effect results in

repulsion. γ = 0 simply indicates no strong neighborhood interaction.
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Figure 3.6: Location effect of Lunar crater distribution. Blue arrow is the concentration

direction of MCMC-MLE; Red arrow is MPLE. Left of the red longitude circle is the near

side facing Earth.

3.4.2.3 Divergence From Poisson

Denote Oi = {# of gm = i}, Ei as the expected value if g = {g1, . . . , gk} is the grid count

from a homogeneous Poisson process with intensity λe. The MLE of λe is,

λ̂e =

∑k
j=1 gj

k

Then we have,

Ei = k
(λ̂e)

i exp{−λ̂e}
i!

(3.35)

Then we can measure the distance of the observed point process from a homogeneous Poisson

process by calculating one of the divergence below,

1. Peason’s χ2: divx =
∑t

i=1
(Oi−Ei)2

Ei

2. Kullback-Leibler: divKL =
∑t

i=1 Ei log Ei
Oi

3. Squared Hellinger: divh =
∑t

i=1(
√
Oi −

√
Ei)

2
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Table 3.7: MPLE vs. MCMC-MLE for correlation interaction model with fixed n

Method MPLE MCMC-MLE

Coef Estimate 95% CI Estimate 95% CI

β1 0.056 (-0.112, 0.224) 0.010 (-0.129, 0.149)

β2 -0.301 (-0.475, -0.127) -0.228 (-0.392, -0.064)

β3 0.318 (0.148, 0.488) 0.175 (0.014, 0.336)

α -4.650 (-6.027, -3.272) -6.649 ( -8.554, -4.744)

γ 268.883 (200.492, 337.274) 175.857 (119.333, 232.381)

Here t is a fixed large number so that the difference from a sum to infinity is negligible. The

term can be interpreted as a measure of ‘non-Poissoness’ of the point process. Among these

three choices, the Hellinger distance is the most robust term.

3.4.2.4 Stabilizing and Tapering

While fitting the squared Hellinger distance interaction model, we found that the MCMC

sampler can not resemble the observed pattern. Then the MCMC-MLE is impossible to find

due to the failure of the MCMC sampler. This is known to be an issue of model inferential

degeneracy, and it is not rare in exponential family models with complex structural term, e.g.

interaction term here (see Strauss, 1986; Handcock et al., 2003; Schweinberger, 2011, and

references therein). Here we use Venusian splotches data, Table (3.9) shows the MPLE result

of Hellinger distance interaction model. We demonstrate the impact of model degeneracy

on the MCMC sampler in Figure (3.7). For MPLE, even we run the MCMC for 10 million

cycles, only very few (75 in the figure we show) samples are accepted. The interaction term in

MCMC tends to climb to a large number, and it is very unlikely to move back. If we set the

parameter for the interaction term to a smaller value, then MCMC clearly will converge to

a very different distribution than the observed configuration. As we increase the interaction

parameter value, we see the model degeneracy issue again. Two possible solutions here are,

1. Modify the interaction term so it gets stabilized
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2. Add a tapering term in the density function to down-weight extreme configurations

The inverse hyperbolic sine function can be used to stabilize the Hellinger distance term.

The model now becomes,

f(x1, . . . , xn; θ, n = n) = C(θ)−1 exp{
n∑
i=1

〈β, xi〉+
n∑
i=1

αZxi + γ arsinh
(
divH(x)

)
} (3.36)

The result shown in Table (3.8) indicates that we can work around the degeneracy issue,

and the stabilized interaction term is still significant.

An even better approach is to work on a tapered distribution, proposed by Fellows and

Handcock (2017). They suggest that since the exponential family model has the property of

maximizing the entropy within the family of all distributions having the given expectation

of the sufficient statistics, and the degeneracy issue is caused by the introduction of unstable

or sensitive terms, then by adding extra variance constraints on those sensitive terms, the

resulting distribution may have better property. Specifically, we can apply their idea in our

case, the maximum entropy problem, with extra variance constraint on the interaction term

can be formulated as follows,

maximize
f

∫
· · ·
∫
S2
f(x) log(f(x)) dx1 . . . dxn

subject to f(x) ≥ 0, ∀x ∈ (S2)n∫
· · ·
∫
S2
f(x) dx1 . . . dxn = 1,

Ef (Tk(x)) = µTk for k = 1, . . . , 5

Varf (H(x)) ≤ κ,

here Tk(x) is the kth sufficient statistics. For the Hellinger distance interaction model, we

have T = (
∑n

i=1 xi1,
∑n

i=1 xi2,
∑n

i=1 xi3,
∑n

i=1 Zxi , H(x)). The last inequality is the variance

constraint added to the interaction term, we use the notation of H(x) and µH explicitly.

More generally, we can add this constraint to any sufficient statistics Tk(x). Then the

solution to this optimization problem is

f(x; θ, τ) =
1

C(θ, τ)
exp

{∑
k

θkTk(x)− τ 2
[
µH −H(x)

]2
}
, (3.37)

61



here we use the notation τ 2 because this multiplier need to be a positive number. The

Lagrange multipliers satisfy the constraints below:

Ef(x;θ,τ)

[
Tk(x)

]
= µTk , for k = 1, . . . , 5

Ef(x;θ,τ)

[
(µH −H(x))2

]
= κ

At the inference step, Fellows and Handcock (2017) prove that

Ef(x;θ̂mle,τ)(H(x)) = H(x(obs)),

and finding the MLE of Equation (3.37) reduces to finding the maximum of the density

function below,

f(x; θ, τ) =
1

C(θ, τ)
exp

{∑
k

θkTk(x)− τ 2
[
H(x(obs))−H(x)

]2
}
, (3.38)

Intuitively, Equation 3.38 augments the PDF to include an ‘offset’ term, so that an extreme

value of the interaction term will be penalized and as a result the MCMC sampler will put

more mass around the true model. For our model, the density function is modified to the

form below,

f(x1, . . . , xn; θ, n = n) = C(θ)−1 exp

{ n∑
i=1

〈β, xi〉+
n∑
i=1

αZxi + γ divH(x)

− τ 2
[
divH(x)− divH(x(obs))

]2}
,

where τ is some hyper-parameter controls the size of the tapering. τ = 0 reduces the case

to the original model, while τ →∞ will force the MCMC sampler to have interaction term

equals exactly to what is being observed. In practice, τ should be as small as possible. One

should start from a large value to make sure it helps to solve the problem, and eventually

decrease the value until the degeneracy issue shows up again. As a rule of thumb, τ = 1
4µH

would be a good choice. Figure (3.9) illustrates how tapering helps with the MCMC. Table

(3.9) compare the MPLE of the original model with MCMC-MLE obtained by tapering.
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Table 3.8: MPLE vs. MCMC-MLE for stabilized Hellinger distance interaction model

Method MPLE MCMC-MLE

Coef. Estimate 95% CI Estimate 95% CI

β1 0.043 (-0.128, 0.214) 0.055 (-0.123, 0.234)

β2 -0.211 (-0.383, -0.039) -0.266 (-0.428, -0.103)

β3 0.238 (0.068, 0.408) 0.195 (0.040, 0.350)

α -4.445 (-5.821, -3.069) -6.708 (-8.556, -4.860)

γ 56.566 (46.239, 66.893) 37.262 (24.305, 50.220)

Table 3.9: MPLE vs. MCMC-MLE for Hellinger distance interaction model, with tapering

term τ = 1/22, µH = 22

Method MPLE MCMC-MLE

Coef. Estimate 95% CI Estimate 95% CI

β1 0.044 (-0.127, 0.216) 0.065 (-0.085, 0.214)

β2 -0.215 (-0.387, -0.042) -0.278 (-0.441, -0.116)

β3 0.241 (0.071, 0.411) 0.199 (0.040, 0.358)

α -4.465 (-5.841, -3.089) -6.737 (-8.588, -4.887)

γ 2.476 (2.009, 2.944) 1.706 (1.216, 2.195)
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Figure 3.7: MCMC examples of Hellinger interaction model. The first row sets γ = 1.71;

the second row sets γ = 1.4; the third row takes MPLE as parameter values, with γ̂ = 2.5
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Figure 3.8: MCMC diagnostics of Hellinger interaction model with arsinh transformation
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Figure 3.9: MCMC examples of Hellinger interaction model with different level of tapering,

under the same set of parameter (γ = 1.71). The first row uses τ = 1/22; the second row

uses τ = 1/(2 ∗ 22).
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3.4.3 Pairwise Interaction

3.4.3.1 Strauss Process

The Strauss process (Strauss, 1975) is a pairwise interaction point process that uses neigh-

bour relation xi ∼ xj iff d(xi, xj) < r, where d is the great-circle distance, r is called the

interaction distance. The interaction term is defined as,

H(x) =
n∑

i,j=0

I[0<d(xi,xj)<r]

Kelly and Ripley (1976) pointed out the Strauss model is a model for anti-clustering because

Equation (3.29) is a proper density if and only if γ ≤ 0, γ = 0 reduces the model to

inhomogeneous Poisson. Because of the restriction on parameter γ, the canonical parameter

space for Strauss process is not an open set. The derivative on the boundary is not defined

and one has to use the methods of constrained optimization.

3.4.3.2 Saturation Process

Geyer et al. (1999) proposed another pairwise interaction term, the model is known as

Saturation process. Unlike the Strauss model, the conditional intensities for all values of the

parameter is bounded, hence the full canonical parameter space for γ is R. Let σ be the

saturation parameter, r be the fixed “interaction distance” and d is the great-circle distance

as defined in Strauss process. Then the interaction term is defined as,

si =
n∑
j=1

I[0<d(xi−xj)<r] (3.39)

H(x) =
n∑
i=1

max(σ, si) (3.40)

(3.41)

si calculates number of neighbours of a point xi within a range r up to a certain value σ,

beyond σ any additional neighbours is irrelevant. A large number of neighbours within a

small range represents clustering, and σ serves as an upper bound for this clustering effect.
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Table 3.10: Nearest neighbor distances for lunar craters

min 1st Qu. median mean 3rd Qu. max

0.0018 0.0182 0.0244 0.0267 0.0324 0.1835

3.4.3.3 Hyper-parameter Selection

For Saturation process, there are 2 hyper-parameters to be decided. Since the saturation

threshold serves as an upper bound, the value should not be too small. Some value around

the 75 percentile of the number of neighbours makes intuitive sense. For the choice of

interaction distance, we can look at the nearest neighbour distances to get some basic idea.

Table (3.10) shows the nearest neighbour distance summary statistics for Lunar craters.

Figure (3.10) shows the log pseudo-likelihood value among a set of possible choices with

r = {0.04, 0.06, 0.08, 0.1} and σ = {4, 7, 10, 15, 20, 25, 28}. We found that (r = 0.04, σ =

4), (r = 0.06, σ = 10), (r = 0.08, σ = 15), (r = 0.1, σ = 28) provide the optimal fit for

the 4 different choices of interaction distances. The MPLE results of the combinations

(r = 0.06, σ = 10), (r = 0.08, σ = 15) are shown in Table (3.11).

Figure 3.10: Profile log-pseudolikelihood for the hyper-parameters in Saturation process,

lunar craters

68



Table 3.11: MPLE of lunar craters Saturation process with fixed n

Hyper-para r = 0.06, σ = 10 r = 0.08, σ = 15

Coefficient Est. 95% CI Est. 95% CI

β1 -0.230 (-0.286, -0.174) -0.135 (-0.193, -0.077)

β2 0.041 (-0.009, 0.092) 0.015 (-0.036, 0.065)

β3 -0.116 (-0.163, -0.068) -0.103 (-0.151, -0.056)

α -0.103 (-0.134, -0.072) -0.101 (-0.133, -0.070)

γ 0.064 (0.059, 0.070) 0.055 (0.051, 0.059)

3.4.3.4 Computational Details

In practice, if the point process x consists of a lot of points, the pair-wise term can take very

long time to compute. Denote the total number of points as n, then the time complexity of

deciding the interaction term would be O(n2). When using MCMC to conduct inference, this

interaction term need to be calculated at every MCMC cycle, which makes MCMC too slow

to be practical. Therefore, a “localized” version of the interaction term is explored as a rough

approximation at first. The idea is to partition the sphere into grid cells, then the calculation

of si only take the points within the same cell as xi into consideration. The size of the cell

controls the computation time and loss of accuracy, and it depends on the interaction distance

r. The length of the cell need to be several times of the distance r to make the approximation

desirable. For modeling lunar craters with hyper-parameters (r = 0.08, σ = 15), 30 degree

latitude-longitude grid cells are used, with adjustment of the polar area, i.e. the polar area

is one cell, ranging from latitude (-)60 to (-)90. This approach accelerates the speed ∼100

times compared to compute accurate number of neighbours. In general, denote K as the

total number of grids, the approximation method helps to reduce the runtime to O((n/K)2)

in the best case scenario. However, this method becomes less reliable as σ grows. For

instance, for the observed points, when r = 0.08, σ = 5, the approximated value is almost

the exact count (with less than 5% loss); while if r = 0.08, σ = 15, the approximated value

by using 30 degree grids is ∼ 30% less than the actual count. The loss of count is still non-
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negligible (∼ 25%) even when using 50 degree grids. The inaccuracy comes from the points

near the grids’ boundary, and a larger saturation parameter will exaggerate the difference.

This observation motivates a better method to compute the interaction term. The sphere

will still be discretized to grid cells in the same way described above. Then for each points,

we calculate the distances between this point to all the points in the neighbouring grids.

Since we are counting in more grids, the runtime will be longer. In general, this method

would be approximately 10 times slower than the approximation method if using the same

grid size. But we won’t lose number of neighbours for the points near grid boundary, the

interaction term will be accurately calculated. In addition, the fact that we can shrink the

grid size from several times of the interaction distance to the interaction distance without

loss of accuracy makes this method equally good in terms of computational efficiency.

3.4.3.5 Result and Discussion

For lunar craters, among the choices of parameters selected based on the highest log pseudo-

likelihood, we chose (r = 0.06, σ = 10) and (r = 0.08, σ = 15) as two examples to illustrate

the fitting procedure of MCMC-MLE. However, we found that the model is highly sensitive

to the parameters, and the MPLE failed to provide reasonably close estimate. So for the

Metropolis-Hastings algorithm, the acceptant rate is usually below 0.01%. We tried to

stabilize the interaction term by taking the square root or the cubic root, but none of the

efforts work. We found that under some parameter values, MCMC would converge to some

distribution with the sufficient statistics far from the observed one in a relatively fast speed.

But as we update the parameters so that the sufficient statistics of the MCMC samples would

get closer, the acceptant rate get slower. One possible reason is that the observed data is an

extreme case under the model. In addition, MCMC-MLE is too time consuming due to the

fact that, 1) each MCMC cycle takes n log(n) time to compute interaction terms; 2) the low

acceptant rate requires more MCMC cycles to get enough sample; 3) the perturb rate and

angle is set to be very small (rate equal to or less than 0.2, angle is π/18), the samples are

highly correlated which requires a very long thinning.
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Table 3.12: MPLE vs. MCMC-MLE for Saturation process with parameter {r = 0.24, σ =

16} for splotches

Method MPLE MCMC-MLE

Coef. Estimate 95% CI Estimate 95% CI

β1 -0.048 (-0.220, 0.124) 0.010 (-0.068, 0.088)

β2 -0.108 (-0.282, 0.066) -0.098 (-0.185, -0.010)

β3 0.072 (-0.102, 0.245) 0.029 (-0.050, 0.108)

α -2.677 (-4.098, -1.257) -3.629 (-5.159, -2.099)

γ 0.095 (0.080, 0.110) 0.086 (0.073, 0.099)

For the reasons discussed above, the Strauss model is not practical for large dataset.

MPLE fails to provide reliable estimate, MCMC-MLE takes too long to compute (or even

does not exist). However, we could demonstrate the model on smaller dataset. The Venusian

splotch has a total number of 401 and also exhibit clusterness. We repeat the same step as we

did for Lunar craters to decide a good choice of interaction distance and saturation parameter.

Table (3.12) shows the result for Saturation model with parameter {r = 0.24, σ = 16}

3.4.4 A Simulation Study For the Comparison of MPLE and MCMC-MLE

Van Duijn et al. (2009) proposed the framework for the comparison of MPLE and MLE

of exponential family random graph models and recommend that it is always better to use

the MLE than MPLE. They showed that MPLE is worse for structural effects representing

transitivity in the network. Here we want to compare the MPLE and MCMC-MLE of our

models with interaction term. Due to the limit of computational power, we present a case-

study to show that how biased the MPLE can be. The example we use is the variance

interaction model of Lunar craters, the result of MPLE and MCMC-MLE is presented in

Table (3.5). The simulation plan is simulating 1000 point processes under both the MCMC-

MLE and MPLE, then re-compute the MCMC-MLE and MPLE under the simulation cases.

However, since the MPLE is way overestimating the interaction effect, it leads to a very
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extreme case, so we can not draw samples from it. Only samples from MCMC-MLE are used

in this simulation study. Figure (3.11) shows that in general MCMC-MLE provides close

estimate to the parameters we used to sample from; while MPLE only provides good estimate

for one coefficient (one of the location effect). MPLE is overestimating the interaction effect,

and largely biased for elevation effect and two other location effects.
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Figure 3.11: Boxplot of MPLE and MCMC-MLE under simulated data from the variance

interaction model with parameters set to be the MCMC-MLE of the observed Lunar craters.

Blue dashed lines indicate the parameters used to sample from.
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3.5 MCMC Error

3.5.1 Interaction Model

There are two sources of the error of MCMC-MLE. One is the MLE uncertainty due to the

assumption that the observed data is a random sample from the true distribution. Another

one is the MCMC error induced by using MCMC samples to approximate normalizing con-

stant. Let θ̂ be the true MLE, θ̃ be the MCMC-MLE. For the interaction model, we can

simplify the notation as,

f(x1, x2, . . . , xn; θ) =
1

C(θ)
exp{

n∑
i=1

〈β, xi〉 +
n∑
i=1

αZxi + γH(x)} (3.42)

=
1

C(θ)
exp{θ>T (x)}, (3.43)

(3.44)

where θ = {β, α, γ} is the parameter set, T (x) = {
∑n

i=1 xi,
∑n

i=1 Zxi , H(x)} is the sufficient

statistics. As discussed above, the normalizing constant and its approximation can be written

as,

C(θ) = Ef(x;θ)

(
exp{θ>T (x)}

)
=

∫
x

exp{θ>T (x)}f(x; θ) dx (3.45)

Ĉ(θ) =
1

m

m∑
i=1

exp{θ>T (xsi)} (3.46)

C(θ)
C(θ(0))

=

∫
x

exp{(θ − θ(0))>T (x)}f(x; θ(0)) dx (3.47)

Define r(θ) and its approximation r̂m(θ) as,

r(θ) = `(θ)− `(θ(0)) = − log
C(θ)
C(θ(0))

+ (θ − θ(0))T (x) (3.48)

r̂m(θ) = ˆ̀(θ)− ˆ̀(θ(0)) = − log
Ĉ(θ)
Ĉ(θ(0))

+ (θ − θ(0))T (x), (3.49)

here `(θ) is the log likelihood function, θ(0) is a set of fixed initial parameter values. Since θ̃

maximizes r̂m(θ), θ̂ maximizes r(θ), we also have,

∇r̂m(θ̃) = 0; ∇r(θ̂) = 0 (3.50)

74



The standard MLE error of θ̃ can be calculated from the estimated inverse Fisher information

matrix (Î(θ̃))−1. The expected Fisher Information matrix is defined as in equation (3.54)

below.

`(θ) = − log C(θ) + θ>T (x) (3.51)

∇`(θ) = −∇ log C(θ) + T (x) (3.52)

∇2`(θ) = −∇2 log C(θ) (3.53)

I(θ) = Eθ

[
∇`(θ)∇`(θ)>

]
= −E

[
∇2`(θ)

]
(3.54)

For exponential family models, the observed Fisher Information matrix, after plug-in the

estimator θ̃ can be calculated as shown in equation (3.56)

Î(θ̃) = −∇2`(θ̃;xobs) (3.55)

= ∇2 log C(θ̃) = COV(T ((x))) (3.56)

Thus, we can either use the negative Hessian matrix (if maximizing log likelihood function)

or Hessian matrix (if minimizing the negative log likelihood function), or the estimated

covariance matrix of the sufficient statistics as the observed fisher information matrix. To

obtain the MCMC error incurred by approximating θ̂ by θ̃, we follow the method of Geyer

(1992), Hunter and Handcock (2006). A first order Taylor expansion gives,

∇r̂m(θ̂) = ∇r̂m(θ̃) + (θ̂ − θ̃)∇2r̂m(θ̃) (3.57)

√
m(θ̃ − θ̂) = −

[
∇2r̂m(θ̃)

]−1[√
m∇r̂m(θ̂)

]
(3.58)

Geyer (1992) showed that
√
m(θ̃− θ̂) is asymptotically normal under mild regularity condi-

tions. Now we need to estimate the covariance matrix of
√
m∇r̂m(θ̂).

∇r(θ) = −C(θ
(0))

C(θ)

∫
T (x) exp{(θ − θ(0))>T (x)}f(x; θ(0)) dx+ T (xobs) (3.59)

∇r̂m(θ) ≈ −C(θ
(0))

C(θ)
1

m

m∑
i=1

T (xsi) exp{(θ − θ(0))>T (xsi)}+ T (xobs) (3.60)

Then let g(x) = T (x) exp{(θ − θ(0))>T (x)}, for the integral

µ =

∫
g(x)dP (x) (3.61)
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and its Monte Carlo integration approximation

µ̂m =
1

m

m∑
i=1

g(xsi) (3.62)

Geyer (1992) showed that µ̂m → µ almost surely and the central limit theorem holds,

√
m(µ̂m − µ)

D−→MVN(0,Σ) (3.63)

Then an upper bound of the covariance matrix Σ can be estimated by method of standardized

time series,

Σ̂seq,m = −ξ̂0 + 2
k∑
i=0

τ̂m,i, (3.64)

where

τ̂m,i = ξ̂m,2i + ξ̂m,2i+1 (3.65)

ξ̂m,t = ξ̂m,−t = cov
(
g(xsi), g(xsi+t)

)
(3.66)

is the lag t auto-covariance matrix of the stationary time series {g(xs1), g(xs2), . . . }, where

{xs1 ,xs2 , . . . } are MCMC samples from the stationary distribution f(x; θ(0)). k is chosen to

be the largest integer s.t. τ̂m,k > 0. Now we have,

√
m
(
∇r̂m(θ̂)−∇r(θ̂)

)
=
√
m
[
∇r̂m(θ̂)

]
D−→MVN(0,

(C(θ(0))

C(θ̂)

)2

Σ) (3.67)

As we discussed above, Σ ≤ lim sup
m→∞

Σ̂seq,m for almost all sample paths of the Monte Carlo

Chain. Since in (3.67) θ̂ is unknown, it is approximated by θ̃; and
(
C(θ(0))
C(θ̂)

)
is approximated

by 1
m

∑m
i=1 exp{(θ(0) − θ̃)>T (xsi)}. Let

Ṽ =
1

m2

[ m∑
i=1

exp{(θ(0) − θ̃)>T (xsi)}
]2

Σ̂seq,m (3.68)

denote the variance estimate for
√
m
[
∇r̂m(θ̂)

]
. Finally, ∇2r̂m(θ̃) is approximated by Î(θ̃).

The covariance matrix of MCMC error for θ̃ is,

1

m

[
Î(θ̃)

]−1

Ṽ
[
Î(θ̃)

]−1

(3.69)
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3.5.2 Inhomogeneous Poisson

Poisson model is just a special case of the interaction model discussed above. The pdf and

log likelihood function can be written as

f(x1, x2, . . . , xn; θ) =
n∏
i=1

f(xi; θ) (3.70)

=
( 1

c(θ)

)n n∏
i=1

exp{〈β,B(xi)〉 + αZxi} (3.71)

`(θ) = −n log c(θ) +
n∑
i=1

θ>T (xi) (3.72)

r(θ) = −n log
c(θ)

c(θ(0))
+

n∑
i=1

(θ − θ(0))>T (xi) (3.73)

r̂m(θ) = −n log
ĉ(θ)

ĉ(θ(0))
+

n∑
i=1

(θ − θ(0))>T (xi) (3.74)

Denote g(xi) = T (xi) exp{(θ − θ(0))>T (xi)}, then follow similar steps, we can derive similar

equation as (3.67) for the independent points case

√
m
(
∇r̂m(θ̂)−∇r(θ̂)

)
=
√
m
[
∇r̂m(θ̂)

]
D−→MVN(0,

(
n
c(θ(0))

c(θ̂)

)2

Σ) (3.75)

Σ is bounded by the sum of auto-covariance matrix Σ̂seq,m of time series {g(xs1), g(xs2) . . . }

up to sum lag k. Finally, the variance estimation of
√
m
[
∇r̂m(θ̂)

]
in the independent model

case can be written as,

Ṽ =
( n
m

)2
[ m∑
i=1

exp{(θ(0) − θ̃)>T (xsi )}
]2

Σ̂seq,m (3.76)

The covariance matrix estimation of MCMC error is the same to Equation (3.69).

3.5.3 Result

The MCMC error will mostly depends on number of MCMC samples and the auto-correlation

matrix of the MCMC chain. The MCMC standard error is proportional to square root of the

MCMC sample size. For Poisson type of model when points are independent, since MCMC

runs faster than interaction models, larger thinning interval can be taken. Therefore, auto-

correlation is almost neglectable, MCMC error is a secondary error compared to the MLE
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Table 3.13: Error estimations for elevation model, using MCMC chain with one million

samples (after thinning and burn-in)

Coef. Estimates MLE Std MCMC Std

Lag 10 Lag 20 Lag 50

β1 -0.438 0.0272 0.0034 0.0034 0.0034

β2 0.192 0.0249 0.0031 0.0031 0.0031

β3 -0.111 0.0246 0.0031 0.0031 0.0031

α -0.020 0.0142 0.0018 0.0018 0.0018

error. Table (3.13) shows the error comparison for elevation model of lunar craters. The

mcmc error is almost only 1/10 of the MLE error with a sample size 1e6. In addition, the

choice of the maximum lag value k when calculating Σ̂seq,m doesn’t influence the magnitude

of the error. Usually in the MCMC chain, as lag gets larger, the auto-convenience will get

closer to 0 and may be bouncing around 0 for a few times. If the lag value k is too large,

then we will just keep adding ‘noise’ to the matrix Σ̂seq,m. k around 10 or 20 is good enough

in our case. We also shows the auto-correlation plot and MCMC diagnostic plot in Figure

(3.12) and Figure (3.13). For interaction models, since the MCMC takes much longer to

run, we usually take a smaller thinning interval. In addition, one MCMC cycle only perturb

a portion of the whole point set. Therefore, we would expect higher auto-covariance, which

leads to a larger MCMC error. Table (3.14) shows that, based on 5 short MCMC chains,

MCMC error stay stable for different choices of lag value k. The coefficient of the interaction

term has high MCMC error, while other coefficients are fine. Figure (3.14) and Figure (3.15)

are the diagnostic plot and the auto-correlation plot. The chains are mixing well and seems

to converge to the target distribution. There are still high auto-correlation at lag 1 and 2.

There are high covariances between the interaction term and other terms, which leads to

the high MCMC error. The results suggest that a longer MCMC chain is needed to make

reliable inference.

For the variance interaction model, we compare the error estimations in Table (3.14)
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Table 3.14: Error estimations for Variance interaction model. Five short MCMC chains are

combined, each of them contains 480 samples after thinning. The burn-in period is 5× 104,

the thinning interval is 5000, perturb rate at each cycle is 0.6.

Coef. Estimates MLE Std MCMC Std

Lag 10 Lag 20 Lag 50

β1 -0.417 0.0282 0.0011 0.0011 0.0011

β2 0.168 0.0245 0.0009 0.0009 0.0009

β3 -0.101 0.0241 0.0011 0.0011 0.0011

α -0.029 0.0140 0.0005 0.0005 0.0006

γ 30.908 11.1340 2.0879 2.0697 2.1355
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Figure 3.12: MCMC diagnostic plot of elevation model, a 100 thinning interval is applied to

the one million samples
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Figure 3.13: Auto correlation plot of MCMC samples of elevation model
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Figure 3.14: MCMC diagnostic plot of variance interaction model
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Figure 3.15: Auto correlation plot of MCMC samples of variance interaction model
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3.6 Hypothesis Testing

So far we have discussed spatially independent model and interaction model. The general

form of log likelihood function for the two types of model can be expressed as

`(θ) = −n log c(θ) +
n∑
i=1

θ> T (xi) (3.77)

`(θ) = − log C(θ) + θ> T (x) (3.78)

Although it is impossible to compute exact likelihood value when the normalizing constant is

intractable, the fact that this normalizing constant can be determined up a constant of pro-

portionality makes it possible to compare nested models and test significance of coefficients

using likelihood ratio test.

Denote θ̂0 as the MLE under the null hypothesis H0, θ̂a as the MLE under the alternative

Ha. Then the test statistics is

ln Λ = `(θ̂0)− `(θ̂a) (3.79)

3.6.1 Inhomogeneous Poisson model

Assuming the points are independent, the log likelihood ratio can be calculated as

ln Λ = `(θ̂0)− `(θ̂a) (3.80)

= n× (ln c(θ̂a)− ln c(θ̂0)) + 〈(θ̂0 − θ̂a),
n∑
i=1

T (xi)〉 (3.81)

≈ n× log
1

M

M∑
i=1

e〈(θ̂a−θ̂0),T (xsi )〉 + 〈(θ̂0 − θ̂a),
n∑
i=1

T (xi)〉 (3.82)

here xsi are the samples generated under H0. The large sample theory under the classic

setting states that when the sample size n → ∞, −2 × ln Λ ∼ χ2
p. However the asymptotic

distribution of the test statistics is unknown, we use bootstrap method to obtain the confi-

dence interval for ln Λ. Assuming there are infinity number of moons, the observed craters

on each planet are different realizations of the ‘true’ model under H0. Conditional on the

number of observations, n = 5185 points {xsimj

1 , . . . , x
simj
n } are drawn from the model with
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parameter θ̂0 on the simulated planet indexed by j. Then the MLE θ̂
simj

0 under H0 and the

MLE θ̂
simj
a under Ha need to be calculated with the simulated observation {xsimj

i }. The log

likelihood ratio at the jth simulation is

lnλsimj ≈ n× log
1

M

M∑
i=1

e〈(θ̂
simj
a −θ̂

simj
0 ),T (xsi )〉 + 〈(θ̂simj

0 − θ̂simj
a ),

n∑
i=1

T (x
simj

i )〉 (3.83)

The procedure seems to be computational expensive at the first glance, since in every simula-

tion, the MLE need to be calculated. However, if MLE of Ha is not far from MLE under H0,

we can use θ̂0 as the initial value and one long chain of MCMC samples under the parameter

θ̂0 is sufficient to calculate all θ̂
simj
a and θ̂

simj

0 . We can simply replace xi with {xsimj

i } in the

function that need to be optimized over

L(θ) = 〈(θ − θ̂0),
n∑
i=1

T (xi)〉 − n× log
1

M

M∑
i=1

exp{〈(θ − θ̂0), T (xsi )〉} (3.84)

3.6.2 Interaction Model

Similarly, for interaction model, the log likelihood ratio can be calculated as

ln Λ = `(θ̂0)− `(θ̂a) (3.85)

= ln C(θ̂a)− ln C(θ̂0) + 〈(θ̂0 − θ̂a), T (x)〉 (3.86)

≈ log
1

M

M∑
i=1

e〈(θ̂a−θ̂0),T (xsi )〉 + 〈(θ̂0 − θ̂a), T (x)〉 (3.87)

here xsi = xsi1 , . . . , x
si
n is one realization of the point process under H0, T (xsi) is the cor-

responding sufficient statistics, e.g. sum of locations, interaction terms. The bootstrap

distribution of the test statistics requires more effort to compute because,

1. The MCMC procedure takes much longer in the interaction model due to the depen-

dency structure;

2. One long chain under H0 is no longer adequate to find all MLEs in the simulated cases,

especially for MLE under Ha;

3. The Monte Carlo approximation to c(θ)
c(θ′)

is subject to larger error if θ and θ′ is very far,

which is more likely to happen for the parameter of interaction term.
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The second and third one can be resolved by ‘bridge’ sampling. Consider a set of parameters

θ′1, . . . , θ
′
L, which forms a grid over the parameter space. Then we generate MCMC samples

under every parameter f(x|θl). Suppose for every simulated case xsi , there will be one θl

that is close enough to the MLE under Ha, so we could use θl as the initial state and its

MCMC sample to compute θ̂simi
a in one iteration. For accuracy concerns, if θ̂a and θ̂0 are far

apart (or, in same simulated case, θ̂simi
a and θ̂simi

0 are very different). Then a set of parameter

grids θ′1, . . . , θ
′
k can ‘bridge’ the gap between them, and the ratio of normalizing constant can

be estimated as,

c(θ̂a)

c(θ̂0)
=
c(θ̂a)

c(θ′1)

c(θ′1)

c(θ′2)
. . .

c(θ′k)

c(θ̂0)

≈
( 1

m0

m0∑
j=1

exp
{
〈θ̂a − θ′1, T (x

simθ′1,j)〉
})( 1

m2

m2∑
j=1

exp
{
〈θ′1 − θ′2, T (x

simθ′2,j)〉
})

. . .

( 1

mk

mk∑
j=1

exp
{
〈θ′k − θ̂0, T (x

simθ̂0,j)〉
})

here x
simθ′

l
,j is the jth sample from the MCMC chain under parameter set θl. With a reason-

able estimation of the range of parameter space, we fix the set of bridge parameter values

θ′1, . . . , θ
′
L to serve both the need of MCMC-MLE optimization and normalizing constant

ratio calculation. This technique is quite efficient since we only need to run one MCMC

chain for the bridge parameters, and it is handy to use in all simulating cases. In prac-

tice, however, it is not always obvious to decide the bridge parameter sets, especially in the

multi-dimensional case. We will discuss this with examples in the following section.

3.6.3 Examples

3.6.3.1 Test the Significance of Elevation Effect

In model

`(θ) = −n log c(θ) +
n∑
i=1

(
〈β,B(xi)〉+ αZ(xi)

)
,
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where B(xi) is the Cartesian coordinate of point xi, Z(xi) is the elevation at location xi,

β = (β1, β2, β3) is a vector of length 3, α is a scalar. We want to test the hypothesis below,

H0 : α = 0

Ha : α 6= 0

As described in the previous section, we run 1000 bootstrap simulations:

1. Using the observed data, calculate MLE under H0. Since H0 is a model with only the

basic location trend, we can either use MCMC method or movMF package directly to

get θ̂0;

2. Generate a long MCMC chain {xsi} from the density function f(x|θ̂0);

3. Calculate MLE under Ha using the MCMC samples {xsi}. Since θ̂a is close to θ̂0, the

result is converged at one iteration;

4. Randomly draw 1000 samples from {xsi}, each sample consists of 5185 points;

5. For every sample set, calculate θ̂sim
0 and θ̂sim

a using the same MCMC chain {xsi}

6. Calculate observed and simulated likelihood ratios using equation (3.82) and (3.83).

Figure 3.16: Moon elevation term likelihood ratio

test, with 1000 bootstrap simulations.

θ̂0 = (−0.43, 0.20,−0.11, 0)

θ̂a = (−0.44, 0.19,−0.11,−0.02)

Conclusion: simulated p-value = 0.13, the

elevation effect is not significant under 95%

level of confidence.
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3.6.3.2 Test the Significance of Location Effect

Figure 3.17: Venus location effect likelihood ratio

test, with 1000 bootstrap simulations.

θ̂0 = (0, 0, 0)

θ̂a = (0.06, 0.05, 0.04)

Conclusion: simulated p-value = 0.456,

none of the location effects is significant un-

der 95% level of confidence.

3.6.3.3 Test the Significance of the Variance Interaction Effect

In model

`(θ) = − log C(θ) +
n∑
i=1

(
〈β,B(xi)〉+ αZ(xi) + γV arg(x)

)
,

where B(xi) is the Cartesian coordinate of point xi, Z(xi) is the elevation at location xi,

V arg(x) is the Variance interaction term discussed before. θ is the parameter space, β =

(β1, β2, β3) is a vector of length 3, α and γ are scalars. We want to test the significance of

the interaction term,

H0 : γ = 0

Ha : γ 6= 0

We follow the similar procedure as in the previous example except that we will need sev-

eral bridge parameters, since MLE under Ha usually won’t converge in one iteration if the

parameter search starts from θ̂0. Since we already have several MCMC chains when calcu-

lating MCMC-MLE θ̂0 and θ̂a from our previous section, those MCMC chains could be used

without extra effort. Since the dimension of the parameter space under Ha is 5, the choice

of bridge parameters is not trivial. In practice, the location trend term and the elevation
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term usually don’t have much fluctuation in the simulated samples compared to the variance

interaction term, thus the bridge we used are: (-0.44, 0.19, -0.11, -0.02, -30), (-0.44, 0.19,

-0.11, -0.02, -20), (-0.44, 0.19, -0.11, -0.02, -10), (-0.44, 0.19, -0.11, -0.02, 10), (-0.44, 0.19,

-0.11, -0.02, 20), (-0.44, 0.19, -0.11, -0.02, 30). However, there are still several cases (40

out of the 1000 simulations) whose MLE can not be determined by the bridge samples we

prepared. We exclude those cases in the plot because those cases are only very extreme

configurations under H0.

Figure 3.18: Moon variance interaction term like-

lihood ratio test, with 1000 bootstrap simulations.

θ̂0 = (−0.44, 0.19,−0.11,−0.02, 0)

θ̂a = (−0.41, 0.17,−0.10,−0.03, 32.23)

Conclusion: simulated p-value = 0.029, re-

ject H0, i.e., the interaction effect is signif-

icant.
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3.7 A Bayesian Approach

The asymptotic distribution of the MCMC-MLE is not well understood as there are multiple

asymptotics frameworks that can apply. The 95% confidence interval we presented is based

on the curvature of Hessian matrix. Although very similar interval estimates are obtained

by parametric bootstrap method, it is computational intensive. The Bayesian framework is

appealing in the sense that the posterior distribution of the parameter can provide us a better

understanding of the model. However, the intractable normalizing constant results in a so-

called doubly intractable posterior distribution in Bayesian analysis, which brings significant

computational difficulties. Several MCMC methods have emerged in recent years to address

this challenge, Park and Haran (2018) provide a good summary of these methods. Among

these methods, we use the double Metropolis-Hastings sampler (see Liang, 2010) which

involves an ‘outer sampler’ to generate parameter draws and an ‘inner sampler’ to generate

the auxilliary variable y. We use one of the Poisson-type model, namely the location and

elevation effect model for Venusian Splotches to illustrate how the Bayesian approach works,

and compare the results with the MCMC-MLE. Since we do not have any prior knowledge,

a non-informative prior will be used. It takes up to 20 hours for a MCMC chain with 1200

cycles. For more complex models (e.g. models with interaction terms) or point processes with

more points, a much faster MCMC algorithm is needed, otherwise the Bayesian approach is

too computational expensive to be practical. Figure (3.19) shows the result based on 1000

draws from the posterior distribution, a burn-in period of 1000 cycles and a thinning interval

of 100 is taken. We start from all parameters equal to 0. For each parameter, we place a flat

prior on R, and propose a move according to a Gaussian distribution with a large variance

(σ2 = 100) so that it allows the MCMC sampler to explore the parameter space. After the

burn-in period, we set σ2 = 4 so that the acceptance rate is around 40% - 50%. For the inner

Metropolis-Hastings sampler, we collect one sampled point process after 10, 000 iterations as

the auxiliary variable y. This inner step is the main computational bottleneck. One could

reduce the iteration if the MCMC is converging to the target distribution fast. The detailed

procedure is presented below. Based on the result we conclude that the 95% Bayesian equal-
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tailed credible interval is almost identical with the MCMC-MLE 95% confidence interval

calculated on the inverse Hessian matrix and a normal approximation. The variance of each

parameters draw from posterior distribution is also almost equal to that of MCMC-MLE.

Figure 3.19: Posterior distribution for the parameters of the elevation model for Venusian

splotches. The posterior mean is marked by the blue solid vertical line and the 95% credible

intervals are marked by the blue dashed lines. The MCMC-MLE result with its 95% intervals

are marked in red dashed lines.
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Algorithm 6 Sample From Posterior Distribution π(θ|x)

1: Start from initial values θ(0) = (0, 0, 0, 0)

2: for i = 1; i < n; i+ + do

3: for j = 1; j < 4; j + + do

4: propose a move of θ
(i−1)
j to θ∗j ∼ N(θ

(i−1)
j , σ), denote the current parameter set as θ

and the proposed parameter set is θ∗

5: generate an auxiliary variable y from m Metropolis-Hastings (MH) updates start-

ing with x. The transition probability is P
(m)
θ∗ (y|x), here P

(m)
θ∗ (y|x) = Kθ∗(x →

x1) · · ·Kθ∗(xm−1 → y), K(· → ·) is the MH transition kernel.

6: accept θ∗ with probability min{1, r(θ, θ∗,y|x)}

r(θ, θ∗,y|x) =
f(y|θ)P (m)

θ∗ (x|y)

f(x|θ)P (m)
θ∗ (y|x)

=
f(y|θ)f(x|θ∗)
f(x|θ)f(y|θ∗)

7: set θ
(i)
j to be θ∗j if the proposal is accepted, otherwise set θ

(i)
j to be θ

(i−1)
j

8: end for

9: end for
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CHAPTER 4

Extensions of Spatial Point Process Model on a Sphere

This Chapter discusses two extensions of the point process models we developed previously.

In Section 4.1 we develop models for point processes with marks. In Section 4.2, we propose a

model to handle varying number of observations, which would be applied to quantify relative

age in different regions on Venus.

4.1 Marked Point Process

The crater database contains characteristics of the craters other than their location. For

example, crater diameter, halo diameter, completeness of ejecta deposits, parabolic feature,

degradation state, etc. Those patterns are ‘marks’ attached to the point, the full dataset is

a list

v = {(x1,m1), . . . , (xn,mn)}, xi ∈ S2 and mi ∈M,

where M is the space of possible marks. The marks can be continuous value (e.g. ra-

dius of crater) or discrete labels (e.g. existence of halo, degradation states). Denote

X = {x1, . . . , xn} as the point pattern, M as the marks, then we could specify a model

for the joint probability distribution [X,M ]. Alternatively we could condition on locations

of the points and model [M |X] or condition on marks and treat the locations as a point

process [X|M ]. If the marks are categorical values with M groups, then the marked point

pattern is a multi-type point process, which is equivalent to M point patterns X1, . . . ,XM ,

where Xm is the pattern of points of type m. The intensity function for a marked point

process (MPP) can be defined similarly to the usual spatial point process (SPP). For a MPP
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on Rd and marks in M, the intensity function λ(s,m) is a function that

E[N(A×B)] =

∫
A

∫
B

λ(s,m) dµ(m) ds (4.1)

for set A ⊂ Rd and B ⊆M. Here N is the counting measure, µ is some reference measure on

M. If marks are real numbers, the conventional choice of reference measure is just Lebesgue

measure. Then Equation (4.1) becomes

E[N(A×B)] =

∫
A

∫
B

λ(s,m) dm ds (4.2)

The process of points without marks has intensity

λ(s) =

∫
M
λ(s,m) dm (4.3)

If marks are categorical values (or discrete values), then the reference measure can be a

counting measure. Then Equation (4.1) becomes

E[N(A×B)] =

∫
A

∑
m∈B

λ(s,m) ds (4.4)

Then the process of points without marks has intensity

λ(s) =
∑
m∈M

λ(s,m) (4.5)

In both cases, the conditional probability that a point at location s has mark m given that

there is a point at location s is

p(m|s) =
λ(s,m)

λ(s)
(4.6)

The simplest model is the independent marks model which assumes that the marks

are i.i.d random variables and are independent of the locations of the point process. So

the intensity is separable in the sense that λ(s,m) = λ(s)f(m). λ(s) could be spatially

homogeneous or inhomogeneous as discussed before, but the distribution of marks is spatially

homogeneous. The random field model is the next level of generalization. It assumes that

the marks are generated by a random field independent of the points. So there could be

correlation between marks. If the marks are not independent of points, we can consider

intensity-dependent or location-dependent model.
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4.1.1 Categorical Marks: Halo

Whether a crater has a halo or not can be treated as an indicator variable. Let m be the

‘mark’,

mxi =


1 if xi has halo

0 if xi does not have halo

The basic independent model can be derived,

f(xi,mi; θ) =
1

c(θ)
exp{〈β, xi〉+ αZxi + ηmi}, (4.7)

here the spatial covariate term Zxi is the elevation. The marginal distribution of marks is

f(m) = c′ exp(ηm). Intuitively, α = log number craters with halo
number of craters without halo

= log(356
589

) = −0.50. The

MCMC-MLE in Table (4.1) agrees with this result.

Figure 4.1: Craters with or w/o halo

Under the current model framework, it’s easy to include dependency between marks and

spatial covariate/point locations. Model (4.8) contains the interaction between elevation and

marks, the MCMC-MLE result is shown in Table (4.2). Model (4.9) adds the interaction

between location and marks, the MCMC-MLE result is in Table (4.3). Through the interac-

tion terms we can conclude that the halos are more likely to be seen at lower elevation, but
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Table 4.1: MCMC-MLE of Venusian craters with Halo as marks, basic model

Coefficients Estimate 95% CI

β1 0.048 (-0.064, 0.160)

β2 0.061 (-0.051, 0.173)

β1 0.057 (-0.054, 0.167)

α -0.771 (-1.684, 0.143)

η -0.502 (-0.633, -0.370)

there is no significant location preference.

f(xi,mi; θ) =
1

c(θ)
exp{〈β, xi〉+ αZxi + η1mi + η2Zxi ×mi}, (4.8)

f(xi,mi; θ) =
1

c(θ)
exp{〈β, xi〉+ αZxi + η1mi + η2Zxi ×mi+

η3xi1 ×mi + η4xi2 ×mi + η5xi3 ×mi},
(4.9)

Table 4.2: MCMC-MLE of Venusian craters with Halo as marks, interaction between marks

and elevation

Coefficients Estimate 95% CI

β1 0.042 (-0.070, 0.154)

β2 0.058 (-0.054, 0.170)

β3 0.040 (-0.070, 0.151)

α 1.343 (0.353, 2.333)

η1 0.934 (0.511, 1.358)

η2 -7.483 (-9.661, -5.305)

4.1.2 Continuous Marks: Radius

Now consider a continuous mark, radius. Figure (4.2) plots the crater locations with point

size proportional to the actual crater radius. Figure (4.3) shows that the log of radius roughly
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Table 4.3: MCMC-MLE of Venusian craters with Halo as marks, interaction between marks

and elevation as well as location

Coefficients Estimate 95% CI

β1 0.051 ( -0.091, 0.192)

β2 0.103 (-0.037, 0.244)

β3 -0.000 (-0.142, 0.141)

α 1.301 (0.298, 2.305)

η1 0.916 (0.486, 1.346)

η2 -7.394 (-9.598, -5.190)

η3 -0.024 (-0.254, 0.207)

η4 -0.127 (-0.361, 0.107)

η5 0.102 (-0.125, 0.329)

follows N(2, 0.8). This observation motivate us to use a basic independent model with both

quadratic and linear term of log radius. Let mi = log r, the model can be written as,

f(xi,mi|θ) =
1

c(θ)
exp{〈β, xi〉+ αZxi + η1m

2
i + η2mi}, (4.10)

here the spatial covariate term Zxi is the elevation. We can also derive the marginal distri-

bution of marks,

f(mi) ∝ exp{−
(mi + η2

2η1
)2

−1/η1

}, (4.11)

which is just the probability density function of Normal distribution with mean − η2
2η1

=

3.153
2×0.788

= 2.0 and std
√
−1/(2η1) =

√
1/(2× 0.788) = 0.8 according to the MCMC-MLE

result in Table (4.4). The result agrees with the empirical distribution from the observed

data.
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Figure 4.2: Craters with radius as the mark

Table 4.4: MCMC-MLE of Venusian craters with radius as mark

Coefficients Estimate 95% CI

β1 0.052 (-0.060, 0.163)

β1 0.063 (-0.049, 0.175)

β1 0.056 (-0.054, 0.167)

α -0.776 (-1.693, 0.140)

η1 -0.788 (-0.859, -0.716)

η2 3.153 (2.857, 3.450)

98



Figure 4.3: Histogram of log of radius, with N(2, 0.8) curve overlaid
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4.2 Models With the Number of Points as a Variable

4.2.1 Model Assumptions

So far the model focuses on the density function conditional on number of observations. For

the application of modeling crater distribution, we focus on understanding the factors that

modify the surface and lead to the crater distribution we observe now. Conditional on the

exogenous variable helps to reduce the variation of the model. So it’s more appropriate to

hold n fixed. However, the methodology easily extends to scenarios where the total number

is varying. We make two assumptions in this section:

1. The total number of craters follows a Possion distribution with intensity β0.

2. Given n, the distribution of craters can be explained by the general model we proposed

in Section 3.4 Equation (3.29).

Then the joint probability density function can be derived as,

f(x1, . . . , xn; θ, n = n) = C(θ)−1 exp{
n∑
i=1

〈β, xi〉+
n∑
i=1

αZxi + γH(x) + n log β0}, (4.12)

where β = (β1, β2, β3) and θ = c(β0, β, α, γ) is the vector of all parameters. The homogeneous

Poisson process with an unit rate is used as a reference measure. Note that neither of the

two assumptions is necessary. There could be other functional forms besides a Poisson

distribution, and the intensity function can be dependent on n. However, one needs to check

that Equation (4.12) is a proper density function. For instance, in the variance interaction

model, one extreme case would be all observed points are in one grid cell. Then by adding

new points in that same cell, f(x1, . . . , xn) grows in the speed of O( exp(n2)
n!

), the number of

points will go infinity.
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4.2.2 Inference

4.2.2.1 Pseudo Likelihood

To introduce pseudo-likelihood in this case, we will start from the definition of conditional

intensity. For a point process on any region A with density f , the conditional intensity at a

point u ∈ A is:

λ(u;x) =
f(x ∪ u)

f(x)
(u /∈ x), (4.13)

λ(xi;x) =
f(x)

f(x\{xi})
(xi ∈ x). (4.14)

According to the definition, let x∗ be the point process either with addition of a new point

u /∈ x or deletion of an existing point u ∈ x, I[u∈x] denotes the indicator of whether u belongs

to the original process x or not. Then the general interaction process (4.12) has conditional

intensity:

log λθ(u;x) = β0 + 〈β,ui〉+ αZui + γ(−1)I[u∈x](H(x∗)−H(x)) (4.15)

The advantage of using conditional intensity is that the normalizing constant will be can-

celled. The pseudolikelihood of a point process with conditional intensity λθ(u;x) in a

bounded region A is defined as:

PLA(θ;x) =

(∏
xi∈A

λθ(xi;x)

)
exp

(
−
∫
A

λθ(u;x)du

)
(4.16)

The integral in (4.16) can be approximated by a finite sum using some quadrature rule,∫
A

λθ(u;x)du ≈
m∑
j=1

λθ(uj;x)wj, (4.17)

where uj, j = 1, . . . ,m are points in A and wj > 0 are quadrature weights summing up to

|A|. This yields an approximation to the pseudolikelihood,

logPL(θ;x) ≈
n(x)∑
i=1

log λθ(xi;x)−
m∑
j=1

λθ(uj;x)wj. (4.18)

We can either optimize (4.18) directly or use GLM package after reorganize the equation,

logPL(θ;x) ≈
m∑
j=1

(yj log λj − λj)wj, (4.19)
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where the list of point uj, j = 1, . . . ,m contains all the data points xi, i = 1, . . . , n as well as

the pseudo points; λj = λθ(uj) and yj = Ij/wj, and Ij is the indicator,

Ij =


1 if uj ∈ x,

0 if uj /∈ x.
(4.20)

Now the right side of (4.19) can be maximized using standard software for fitting generalized

linear models since it’s equivalent to the log-likelihood of independent Poisson variable yk

with mean λk taken with weights wk. This fitting procedure is known as Berman-Turner

device which is discussed in detail in Berman and Turner (1992); Baddeley and Turner

(2000). The steps are summarized as follows,

1. Generate a set of dummy points and combine it with the data points xi to form the

set of quadrature points uj;

2. Compute the quadrature weights, wj = aj/nj, here aj is the area of the jth tile, nj is

the number of points (observed and pseudo) in the tile;

3. Calculate yj = Ij/wj and vj = log λ(uj);

4. Specify the log-linear Poisson regression model, the coefficient estimates will be the

maximum pseudo-likelihood estimator (MPLE) of the parameters

theta,

glm(y ∼ v, family = poisson, link = log, weights = w)

Berman and Turner (1992) used the Dirichlet tessellation for the data points include both

observed and dummy points. Then the weight is just the area of each tile. The algorithm for

Voronoi diagrams on the sphere is available (Na et al., 2002). However, the best algorithm

available now (for instance, scipy.spatial.SphericalVoronoi in Python) has a time complexity

of n2, in practice we take two other computationally cheaper scheme instead. One scheme

is just the grid partitioning of the sphere. The dummy points is taken as the center of the

grid, and number of total points is counted. The area of each grid can be calculated as
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in Equation (3.11). Baddeley and Turner (2000) discussed the discontinuity error of non-

Poisson processes since the conditional intersity λ(u;x) is usually a discontinuous function

of u at data points xi. They argue that the error has a size of
n∑
i=1

(λ(xi;x)− lim
u→xi

λ(u;x))wi, (4.21)

and therefore could be controlled by reducing
∑

iwi, or more easier, by increasing number

of dummy points. We find that among the choice of 1, 0.5, 0.3, 0.2, 0.1 degree of grids, the

result would converge and the choice of 0.3 degree is usually good enough.

Another scheme is based on the evenly-spaced counting center (denote m as the total

number) we used in Chapter 2. We used those counting centers as the dummy points, and

the tile size is just 4π/m due to the fact that those points are the center of tiles from an

equal area partition on sphere. Since we don’t have the boundary information for each tile,

we need to make sure that m is large enough so that we can ascribe to each observed point

a tile index by choosing its nearest dummy point index.

The results are shown in Table (4.5) and (4.6).

Table 4.5: MPLE for variance interaction model with varying n

grid size 1 degree 0.5 degree 0.1 degree

Coefficients Estimate Std error Estimate Std error Estimate Std error

β0 5.916 0.016 5.925 0.016 5.928 0.016

β1 -0.380 0.028 -0.390 0.028 -0.392 0.028

β2 0.124 0.025 0.132 0.025 0.135 0.025

β3 -0.085 0.025 -0.088 0.025 -0.089 0.025

α -0.063 0.015 -0.058 0.015 -0.056 0.015

γ 104.656 9.558 89.287 9.534 84.285 9.526

4.2.2.2 MCMC-MLE

A birth-death-move Metropolis-Hastings algorithm (see Moller and Waagepetersen, 2003) is

needed to account for the fact that n is no longer a constant. The idea is at each MCMC
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Table 4.6: MPLE for std dev interaction model with varying n

grid size 1 degree 0.5 degree 0.1 degree

Coefficients Estimate Std error Estimate Std error Estimate Std error

β0 5.916 0.016 5.925 0.016 5.928 0.016

β1 -0.380 0.028 -0.390 0.028 -0.392 0.028

β2 0.124 0.025 0.132 0.025 0.135 0.025

β3 -0.085 0.025 -0.088 0.025 -0.089 0.025

α -0.063 0.015 -0.058 0.015 -0.056 0.015

γ 395.702 36.060 337.772 35.971 318.908 35.942

Table 4.7: MPLE of Lunar craters, Saturation process with varying n, using 0.3 degree grids

Hyper-para r = 0.04, σ = 4 r = 0.06, σ = 10 r = 0.08, σ = 15 r = 0.1, σ = 25

Coefficients Est Std error Est Std error Est Std error Est Std error

Intercept 5.798 0.027 5.420 0.032 5.124 0.039 5.108 0.040

β1 -0.384 0.028 -0.285 0.028 -0.211 0.029 -0.218 0.029

β2 0.153 0.025 0.092 0.025 0.076 0.025 0.063 0.026

β3 -0.093 0.024 -0.066 0.024 -0.052 0.024 -0.036 0.024

Elevation -0.030 0.014 -0.055 0.014 -0.055 0.014 -0.068 0.015

Neighbors 0.052 0.006 0.060 0.003 0.054 0.002 0.033 0.001
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cycle, the proposal step has three options: perturbing a selected point, to deleting an existing

point, or adding a new point. The procedure is summarized in Algorithm (7). q can be set

to a relative large number to encourage move step (q = 0.5 and q = 0.9 were both tried). At

the current status with a set of points {x}, rb and rd can be determined as follows:

rb(x, ξm) =
f(x ∪ ξm)qd(x ∪ ξm, ξm)

f(x)qb(x, ξm)
(4.22)

rd(x, xj) =
f(x\xj)qb(x\xj, xj)

f(x)qd(x, xj)
(4.23)

As the simplest case, we generate random distributed new point and delete randomly

chosen existing point. The function qb and qd can be expressed as:

qd(x, xj) =
1

n(x)
(4.24)

qb(x, ξm) =
1

λ(s)
=

4π

nobs
, (4.25)

where nobs is the total number of observed craters. Plug in Equation (4.24) and (4.25) to

Equation (4.22) and (4.23) we get:

rb(x, ξm) =
nobs

4π(n+ 1)
exp{〈β, ξm〉+ αZξm + γ

(
H(x ∪ ξm)−H(x)

)
+ log β0}, ξm ∈ S2

(4.26)

rd(x, xj) =
4πn

nobs
exp{−〈β, xj〉 − αZxj − γ

(
H(x)−H(x\xj)

)
− log β0}, xj ∈ {x} (4.27)

4.2.3 Application: Assessing Quantitative Relative Age in the Relative Age

Map

Considered the computational difficulty in implementing MCMC-MLE method, we will use

inhomogeneous Poisson models to illustrate the idea. In addition, we assume that the for-

mation of craters is independent and has a constant rate λ, i.e. the expected number of

craters formed in a small time period (t, t+ ∆t) in region A is:

E(# craters formed in A during (t, t+ ∆t)) = λA∆t (4.28)
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Algorithm 7 Birth-Death-Move Metropolis-Hastings Sampling

Given Xm = (x1, x2, . . . , xn), generate Xm+1 from the distribution in Equation (4.12) as

follows:

Let 0 ≤ q < 1, and r ∼ Uniform(0, 1). Then:

if r ≤ q, generate Xm+1 by a move step as in Algorithm 2;

otherwise, generate Xm+1 by a birth-death step as follows:

1. draw r1 ∼ Uniform(0, 1) and r2 ∼ Uniform(0, 1)

2. if r1 ≤ 0.5, then generate ξm a random point on sphere and set

Xm+1 =


Xm

⋃
ξm if r2 ≤ rb(Xm, ξm)

Xm otherwise

3. if r1 > 0.5 then

(a) if Xm = ∅, then set Xm+1 = Xm

(b) else generate a random integer j ∈ (1, 2, . . . , n) and set

Xm+1 =


Xm\xj if r2 ≤ rd(Xm, xj)

Xm otherwise
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Then we have β0 = λt. We re-write the model as,

f(x1, x2, . . . , xn) =
1

C(β, α, λ, t)
exp{

n∑
i=1

< β, xi > +
n∑
i=1

αZxi + n log(λt)} (4.29)

Consider points {x1, . . . , xnj} on a subregion of the sphere Bj ∈ S2, where Bj has a uniform

age t. Denote ηj = log(λtj), we have:

f(x1, x2, . . . , xnj) =
1

C(β, α, ηj)
exp{

nj∑
i=1

< β, xi > +

nj∑
i=1

αZxi + njηj} (4.30)

We can use this model to assess the relative age of the age map we defined in Figure (2.7)

which consists of five age categories. We combine the region ‘very young’ with the ‘young’

region, as well as the region ‘very old’ with the ‘old’ region. The result is that we used an

additional information, namely the removal of the extended ejecta to distinguish the ‘very

young’ region from the ‘young’ region, similarly for ‘very old’ and ‘old’ region. However,

in this basic model version, we do not have any term that reflects this constraint. For the

resulting map with three relative age regions, we further assume that,

• The three subregions ‘young’, ‘intermediate’, and ‘old’ was modified by the same pro-

cesses, thus each subregion has the same age. The subregions are labelled as j = 1, 2, 3,

correspondingly.

• The location and elevation effect share the same parameters among the 3 subregions.

Then the joint distribution of all craters across age units is given below:

f(x1, x2, . . . , xn) =
1

C(β, α, η)
exp{

n∑
i=1

< β, xi > +
n∑
i=1

αZxi +
3∑
j=1

njηj} (4.31)

The parameters in model (4.31) are: θ = {β, α, η} = {β1, β2, β3, α, η1, η2, η3}. Here ti is the

age that we are interested in. Without knowing λ, we can not estimate the age ti. However,

we can estimate λti as a whole, this allows us to compare relative age of different regions.

Denote the observed data as: (x1, x2, . . . , xnobs , n1, n2, n3), here ni is the number of ob-

served craters in region i. Start from an arbitrary estimate of the parameters (β(0), α(0), η(0)),

we use Algorithm (7) to generate M sets of samples, each set k contains a total of nsk num-

ber of points, located in the three pre-defined regions. Denote samples in the kth set as:
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(xsk1 , x
sk
2 , . . . , x

sk
nsk , n

sk
1 , n

sk
2 , n

sk
3 ), here nski is the number of the sampled craters in ith age

category, nsk =
∑3

i=1 n
sk
i . Then the log-likelihood function can be written as:

L(β, α, η) = log f(x1, x2, . . . , xn|β, α, η)− log f(x1, x2, . . . , xn|β(0), α(0), η(0))

= log C(β(0), α(0), η(0))− log C(β, α, η)+

〈(β − β(0)),

nobs∑
i=1

xi〉+ (α− α(0))

nobs∑
i=1

Zxi +
3∑
j=1

(ηj − η(0)
j )nj

≈ − log
1

M

M∑
k=1

exp

{
〈(β − β(0)),

nsk∑
i=1

xski 〉+ (α− α(0))
nsk∑
i=1

Zxski +
3∑
j=1

(ηj − η(0)
j )nskj

}

+ 〈(β − β(0)),

nobs∑
i=1

xi〉+ (α− α(0))

nobs∑
i=1

Zxi +
3∑
j=1

(ηj − η(0)
j )nj

The result is shown in Table (4.8). If the age of the intermediate age region is 1, then the

younger group has a relative age of 0.54, the older group has a relative age of 1.55.

Table 4.8: MCMC-MLE of Relative Age Model

Coefficients Estimates 95% CI

β1 -0.02 (-0.13, 0.10)

β2 -0.03 (-0.15, 0.09)

β3 -0.06 (-0.18, 0.05)

α -0.52 (-1.40, 0.35)

η1 -0.58 (-0.86, -0.30)

η2 0.04 (-0.16, 0.24)

η3 0.48 (0.29, 0.68)
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CHAPTER 5

Presence-only Data Modeling

A common ecological problem is to estimate the relationship between geographic features

and the distribution of species. Ideally, the species data is collected in a systematically way

to reduce the sample bias. For instance, a typical design could be first discretizing the region

of interest to certain size of patches; then randomly select n patches to record presence or

absence of the species, within a certain length of time interval. The data collected this way

is called presence-absence data since we have the information of both presence or absence at

a certain site. Logistic regression could be applied to model the relationship between species

occurrence and spatial characteristics. However, presence-absence data are often expensive

or even unrealistic to collect, especially for rare species. In most cases, the only data available

is some records of locations where a specimen was found. This is called presence-only data.

In addition, the geographic information systems (GIS) provide ecologists with varieties of

geographic covariates, which could be used as ‘background’ data, but the occurrence of

species is unknown.

We found that the concept of presence-only data is very similar to the cratering record we

are trying to model. A record of crater location could be treated as a presence site; the ab-

sence site is analogous to craters being removed by resurfacing activity after formation. We

want to understand the relationship between crater removal and spatial covariate/character-

istics. Instead of modeling the distribution of craters by point process model, the framework

of presence-only model is providing a different perspective. The core problem in presence-

only data is to estimate the occurrence probability given a location, which by analogy is the

retention probability of craters.

The rest of this chapter is organized as follows. In Section 5.1 we review some popular
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models for presence-only data in ecology literature. Section 5.2 compares the differences

between presence-only data in ecology to our data of cratering records. Then we describe

the model inference procedure and discuss the model identifiability issue in Section 5.3.

5.1 Presence-only Problem in Ecological Modeling

The major difficulties in presence-only data modeling are,

• The records of presence sites may have some observation bias, for example, toward

more accessible locations;

• There are no reliable data on where the species was not found;

• The overall prevalence is often unknown, and it is not identifiable from the model unless

certain assumptions are made. However, even when it is identifiable, the estimate is

highly variable.

The sampling bias in observed presences is beyond the scope of our discussion, the methods

we discuss in this section assume that the observed presences in the data are taken at random

from all locations where the species is present. To tackle the second issue, a common ap-

proach in the ecology literature is sampling pseudo-absences from the background data, then

applying models for presence-absence data. The two popular models (Maximum Entropy

and Pseudo-absence Logistic) assume that those pseudo-absences are true absences, which

apparently will result in a biased estimate. Ward et al. (2009) propose an EM algorithm

to reduce this bias. The maximum observed data likelihood method by Royle et al. (2012)

focuses on observed data only and doesn’t rely on pseudo-absences. This method is the

basis for our analysis in Section 5.3. Below we will provide some details of each method, the

notations for this section are listed below,

• Let L denote the landscape of interest, xi denote a location in L, Z(xi) is some spatial

covariate;
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• y = 1 indicates the observed presence, y = 0 indicates absence for the pseudo-absences.

Let t = 1 indicate the true presence and t = 0 indicate the true absence. Then y = 1

indicates t = 1, but t could be either 0 or 1 when y = 0. Maximum Entropy and

Pseudo-absence Logistic methods assume that y and t are the same; the EM method

tries to impute t;

• Let π be the prevalence, i.e. species frequency or overall occurrence rate in L, π =

p(t = 1). Most of the cases π is unknown;

• p(t = 1|x) is the probability of presence given location and spatial covariates. In-

stead of modeling the true presence which is unobservable, Maximum Entropy and

Pseudo-absence Logistic method estimate p(y = 1|x), with different parametric forms.

Maximum Entropy method proposes the log link function; while the latter method

uses logistic link.

The presence-only data consists of record of presence locations {(x1, y1 = 1), . . . , (xn, yn =

1)} as well as Z(xi) at any location xi in L.

5.1.1 Maximum Entropy

Elith et al. (2011) provide a statistical explanation for MaxEnt, the most popular program

for modeling species distributions from presence-only data, which is based on the idea of

maximum entropy. Denote f(x) as the probability density function at location x ∈ L,

f1(x) as the probability density of locations where species is present, f0(x) is for absent

sites. Then Elith et al. (2011) argues that maximizing the entropy of p(x|y = 1) is equiv-

alent to minimizing the relative entropy (Kullback-Leibler divergence) of f1(x) relative to

f(x). Phillips et al. (2006) shows that minimize Kullback-Leibler divergence results in an

exponential-family model:

f1(x) = f(x) exp{η(x)} = f(x) exp{β0 + 〈β, (x, Z(x))〉}, (5.1)

here η(x) is some linear combination of location and spatial covariates, it could also have

more general forms. Equation (5.1) is equivalent to a log link between η(x) and p(y = 1|x),
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because Bayes’ rule implies:

p(y = 1|x) =
f1(x)p(y = 1)

f(x)
= p(y = 1)η(x) (5.2)

The major issue of this method is that, an exponential function is not very appropriate

to model a probability (p(y = 1|x)) since it is not bounded on [0, 1]. Also by this model

specification, p(y = 1) is not identifiable. In fact, the method will rescale the output and

arbitrarily set the average of η(x) to be 0.5. However, the model could be helpful if the

major goal is to rank the location according to its relative likelihood of species occurrence.

5.1.2 Pseudo-absence Logistic Model

Assuming the logistic link function,

p(y = 1|x) =
exp(η(x))

1 + exp(η(x))
(5.3)

Select (m − n) points from the background data as pseudo-absence points, then tradi-

tional logistic regression model could be applied to the dataset consists of both observed

presence records and pseudo-absences points {(x1, y1 = 1), . . . , (xn, yn = 1), (xn+1, yn=1 =

0), . . . , (xm, ym = 0)}. However, since the pseudo-absence points is a contaminated sample

of absences, the logistic model needs to be modified (see Elith et al., 2006, and the refer-

ences therein). Assuming p1 and p0 are the proportion of occupied sites and unoccupied sites

respectively, then

p(y = 1|x) =
exp(η(x) + ln(p1/p0))

1 + exp(η(x) + ln(p1/p0))
(5.4)

Since p1 and p0 is unknown, the model is usually interpreted through the relative likeli-

hood by calculating the odds ratio to a reference site, where all covariates are set to 0, i.e.

η(Z(xreference)) = β0.
p(y=1|x)
p(y=0|x)

p(y=1|xreference)
p(y=0|xreference)

= exp(η(x)− β0) (5.5)

There are many different ways to generate pseudo-absence points. Among those methods,

Warton et al. (2010) shows that if the pseudo-absences are generated either on a regular grid

or by random sample over the landscape L, as m → ∞, all parameter estimators in η(x)
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except for the intercept β0 converge to the MLE of a Poisson process model with intensity

λ(x) = η(x), the intercept term will differ by log(|L|/m) where |L| is the total area of L.

An alternative approach proposed by Ward et al. (2009) use an EM algorithm to impute

the true value t with t̂ = p̂(y = 1|x) at each iteration of the algorithm. However, this method

assumes the true prevalence p(y = 1) is known.

5.1.3 Likelihood Analysis for Observed Data

Royle et al. (2012) conduct likelihood analysis for presence-only data. Assuming the logistic

link as in Equation (5.3), we keep using f(·) as the probability distribution of x and p(·) as

the probability distribution of the indicator y. Then by an application of Bayes’ rule, we

have

f(x|y = 1) =
p(y = 1|x)f(x)

p(y = 1)
(5.6)

We can calculate p(y = 1) by

p(y = 1) =

∫
x∈L

p(y = 1|x)f(x) dx (5.7)

Thus we have,

f(x|y = 1) =
p(y = 1|x)f(x)∫

x′∈L p(y = 1|x′)f(x′)
dx′

=
p(y = 1|x)∫

x′∈L p(y = 1|x′) dx′

under the assumption that f(x) is constant. The likelihood function we aim to maximize

can be derived as,

L(θ) =
n∏
i=1

p(yi = 1|xi; θ)∫
x∈L p(y = 1|x; θ) dx

(5.8)

=
n∏
i=1

p(yi = 1|xi; θ)
4π
M

∑
x
(s)
i ∈L

p(y = 1|x(s)
i ; θ)

(5.9)

The last step uses Monte Carlo integration to approximate
∫
x∈L p(y = 1|x; β) dx, {x(s)

1 , . . . ,

x
(s)
M } are M random samples on L. Hastie and Fithian (2013) point out that the prevalence

is not identifiable from the data itself. Although it seems that from Equation (5.7) p(y = 1)
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could be estimated, it is actually only a result of the model specification, which is too fragile.

If the logistic link is misspecified, then the prevalence estimation won’t make any sense.

5.2 Notations and Assumptions

We will keep using the same notation as before. Let {(x1, y1), . . . , (xN , yN)} be the locations

(xi) of craters formed on the planet, with the indicator variable y. y(xi) = 0 means the crater

at location xi was either removed by resurfacing activities or unobservable (analogy of ab-

sence in ecology literature). y(xi) = 1 indicates that a crater is observed at location xi (anal-

ogy of presence). The set of n locations in the crater database {(x1, y1 = 1), . . . , (xn, yn = 1)}

are the observed data upon which inference is based.

The rest of this Chapter is based on the following assumptions,

1. The formation of craters is independent and random.

Thus for any location xi, the crater existence (either currently observable or removed)

is equally likely, thus f(xi) = 1
4π

. Here without loss of generality, the planet surface is

always assumed to be unit sphere.

2. The retention probability of a crater (analogy of probability of presence) depends on

the spatial covariate through a logistic link.

p(y = 1|x; θ) = logit−1(η(x)) =
exp(η(x))

1 + exp(η(x))
(5.10)

Here η(x) could be linear combination of locations and other spatial covariates, or

non-linear forms such as spline basis function.

3. The craters in the database are all the craters present on the planet.

The first and the third assumption are specific to our problem. In the typical presence-

only problem setting, the presence sites are assumed to be a random sample of all the

locations that a species is present. However, in our problem, it is reasonable to assume the

craters observed is the population rather than a sample. There is concern about whether all
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craters are observable, especially on some heavily deformed terrain (like Tessera on Venus).

it is hard to distinguish this situation from removal of craters without additional information,

thus the observation bias will not be considered.

5.3 Model and Inference

We apply the method discussed in Section (5.1.3). The goal is to maximize the observed

likelihood as shown in Equation (5.9). The log likelihood function can be written as,

l(θ) = −n log(p(y = 1)) +
n∑
i=1

log

{
logit−1(η(xi))

}
(5.11)

= −n log

{
4π

M

M∑
j=1

logit−1(η(x
(s)
j ))

}
+

n∑
i=1

log

{
logit−1(η(xi))

}
(5.12)

Where x
(s)
j are random samples on S2.

5.3.1 Model Identifiability

The model with no spatial covariates will not be identifiable. Assuming that the conditional

occurrence probability is given by

p(y = 1|x, β) = p(y = 1|β0) =
exp(β0)

1 + exp(β0)
,

regardless of the location. Applying Bayes rule, we have

f(x|y = 1) =
p(y = 1|x; β0)f(x)

p(y = 1)

=
p(y = 1|x; β0)f(x)∫

x′∈s2 p(y = 1|x′, β0)f(x′)ds

=
p(y = 1|x; β0)∫

x′∈s2 p(y = 1|x′, β0)ds

=
p(y = 1|β0)

p(y = 1|β0)
∫
x′∈s2 ds

=
1

4π
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The observed likelihood function would be a constant:

L(β0) =
n∏
i=1

f(xi|yi = 1) =
( 1

4π

)n
The non-identifiable issue is mainly caused by the fact that the model does not have any

constraint on the total number of craters (including both observed and removed ones).

For model with basic location trend,

η(xi) = β0 + β1xi1 + β2xi2 + β3xi3 (5.13)

The integral in likelihood function can be calculated analytically,

p(y = 1) =

∫
xi∈s2

eβ0+β1xi1+β2xi2+β3xi3

1 + eβ0+β1xi1+β2xi2+β3xi3
f(xi) ds

= 2π

∫ 1

−1

eβ0+h
√∑3

i=1 β
2
i

1 + eβ0+h
√∑3

i=1 β
2
i

1

4π
dh

=
1

2
∑3

i=1 β
2
i

ln
(

1 + eβ0+h
√∑3

i=1 β
2
i

)∣∣∣1
−1

=
1

2
∑3

i=1 β
2
i

[
ln
(

1 + eβ0+
∑3
i=1 β

2
i

)
− ln

(
1 + eβ0−

∑3
i=1 β

2
i

)]
Clearly, when we include other spatial covariates in the model, the intercept term β0 won’t

be cancelled out in the likelihood function. The parameters seem to be identifiable. However,

the estimate of the overall prevalence p(y = 1) is a pure result of model specification. The

data itself conveys no information about the percentage of craters that are retained.

The MLE as well as its uncertainty can be derived analytically for models with location

effect only. The results for Venusian and Lunar craters are shown in Table (5.1).

For more complicated forms of η(x), the analytic solution is not available. We will assess

and discuss the numerical results below.

5.3.2 Numerical Results

5.3.2.1 Spatial Covariate Model

Now we add elevation as the spatial covariate Z(x) to the model:

p(y = 1|x, Z(x), β) = logit−1(β0 + β1x1 + β2x2 + β3x3 + β4Z(x)) (5.14)
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Table 5.1: Parameter estimate for basic location trend model

Venusian craters

Est 95% CI

β0 -0.30 (-41.00, 40.40)

β1 0.11 (-1.92, 2.14)

β2 0.10 (-1.66, 1.85)

β3 0.10 (-1.28, 1.47)

Lunar craters

Est 95% CI

β0 6.19 (5.03, 7.35)

β1 -7.54 (-8.73, -6.36)

β2 3.09 (2.33, 3.86)

β3 -3.46 (-4.16, -2.77)

Table 5.2: Parameter estimate for model with spatial trend and covariate

Venusian craters

Est 95% CI

β0 -4.58 (-42.22, 33.06)

β1 0.05 (-0.07, 0.16)

β2 0.07 (-0.05, 0.18)

β3 0.06 (-0.06, 0.17)

β4 -0.80 (-1.74, 0.14)

Lunar craters

Est 95% CI

β0 6.50 (5.37, 7.62)

β1 -7.37 (-8.49, -6.24)

β2 2.35 (1.61, 3.10)

β3 -2.69 (-3.28, -2.10)

β4 1.72 (1.16, 2.28)

For Venusian craters, all the variables are not significantly different from 0. The large

confidence interval for the intercept term suggests that the model can say nothing about

the overall prevalence p(y = 1). For lunar craters, the location and elevation effect are very

strong. We can interpret the elevation term as: the odds of retention of a crater at a higher

location is higher. If the elevation increased by 0.1 unit, the odds increased by 18.8% holding

other things fixed. Spherical spine basis functions are also explored as an alternative term

to the location effect. Figure (5.1) shows the retention rate estimated by using the linear

function of location, using the spherical basis functions of location, with or without adding

the elevation effect. It is also of interest to compare this fitting result to what we had in

Figure (3.4). For the point process models, the regions with low crater density correspond

to the regions with low retention rate in presence-only model; while the region with higher
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crater density corresponds to region with high retention rate. The overall outputs are similar,

but the presence-only model makes more rigorous predictions.

(a) Retention rate estimated by spherical

spline functions of location

(b) Retention rate estimated by linear func-

tion of location

(c) Retention rate estimated by spherical

spline functions of location, combined with

a linear term in elevation effect

(d) Spatial trend estimated by linear combi-

nation of location and elevation

Figure 5.1: Presence-only model lunar crater retention rate

5.4 Discussion

The major concern of the presence-only approach is the non-identifiability issue with the

overall prevalence p(y = 1). In principle, the data we observe can not tell us the total

number of craters that ever formed on the surface, so the estimate of p(y = 1) purely comes

from model assumption, namely the logit link function. However there is no justification for

using a linear logistic framework. In addition, logistic regression relies on the assumption
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that the observations are independent. However in our application, the removal of craters

is likely to be a localized event (for example, volcanic activities). The logistic regression

framework can not handle this dependency structure as flexibly as the point process models.

For these reasons, we argue that although presence-only models provide an interesting angle

to approach the problem, the point process model we developed is much more sophisticated

and useful.
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CHAPTER 6

Conclusion and Future Work

In this dissertation, we develop a suite of Exponential Family models for modeling point

process on a sphere. This new framework is shown to be very flexible and can model a wide

range of point patterns. The models are applied to analyzing crater distribution patterns on

Venus and the Moon.

A few inferential methods are discussed,

1. For Poisson-type models:

• Generalized Linear Models (GLM) or Generalized Additive Models (GAM) with

in the Poisson family can be used based on a grid partition in S2. It involves a

crude approximation that uses the intensity at the center of each cell to represent

the average intensity of that cell. So its accuracy will largely depend on the

granularity of the grids;

• Likelihood-based inference (MCMCMLE) requires more computational effort but

it is more accurate. A good initial parameter value is important to MCMC-MLE

method. Both GLM and the Contrastive Divergence method can be used to

quickly compute an initial value for the MCMC-MLE method.

2. For interaction models:

• Pseudo-likelihood (MPLE) is faster but can be inaccurate and biased. It consis-

tently overestimates strong interaction effects.

• MCMC-MLE could provide an accurate result, but it is time consuming compu-

tationally.
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We also notice the model degeneracy issue for some of the interaction models. It is usually

caused by the fact that the interaction term is volatile, and the MCMC tends to run into

some extreme values and will be very slow to return from its excursions. We demonstrate

that by either stabilizing the interaction term, or adding a tapering term in the PDF to

down-weight the extreme configurations, the problem could be solved.

We also make a number of contributions to gain a better understanding of the crater

distribution on Venus. Specificity, we combine nearest neighbor analysis and a novel relative

distribution method to show that the distribution of Venusian craters can not be distin-

guished from complete spatial randomness; we also define a global relative age map with 5

categories based on the accumulation of craters and the removal of extended ejecta deposits;

we assess the correlation between the relative age we defined with varieties of other variables;

we use statistical models to assess the effect of different factors on the distribution of craters,

such as location, elevation, geological feature, etc.

There are a few interesting questions to be explored in the future. We discuss using

likelihood ratio tests for model assessment, and use parametric bootstrap to simulate the

distribution of the log likelihood ratio. The simulation results suggest that the log likelihood

ratio follows a χ2 distribution asymptotically. A proof of this would be valuable. In the

spatial setting, there are two types of asymptotic frameworks. If the spatial domain is

expanding as number of observations increases, so the intensity stays constant, then we have

increasing-domain asymptotics; while if the spatial domain is fixed but the number of points

increases to infinity, the intensity will also goes to infinity, this is called infill asymptotics or

fixed-domain asymptotics.

Another area for future work is a theoretical understanding of the model degeneracy

issue. We observe model degeneracy in a few interaction models. We can work around

this issue by proposing more stable interaction terms. A better approach is the tapered

distribution. However, how to quantify the bias induced by tapering the distribution is still

an open question.
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