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Approximate Differential Cross Sections at Large

Scatterlng Angles for Simple Repulsive Potentialu.
E A. Gislason

_Department of Chemistryvand Inorganic Materials Research
‘Division of the Lawrence Radiation Léboratory,

_Berkeley,}California

ABSTRACT

The classical deflection angle 6 and the classical
'dlfferentlal cross section I(6) are examined in the |
region near 6'= 180_ for-three simple repulslve poten-
fials: the repﬁléive power po+ehtial°-the exponentiai
'repulsive potential' and the screened Coulomb potential.
‘An expansion for 6 valid at small 1mpact parametezs is |

carried through second‘order and compared with exact
.Qalcﬁlations'of»e and I(6). In most cases, the expan-
sion is quite accurate in the region from 6 = 180° to

6 = 80°. Numerical formulas are given for evaluatiné

the first two=coéffici§nts ih the expansiOnr interpre~
tatioh of GXpefimehtal cross- sections using these results

1s'discussed.

* o S ' : -
Present address: Department of Chemistry, University of

Illinois at Cbicago.Circle,‘Chicago,llllinois..



" The calculation of classical deflection angles and differential -

cross seetions for any reasdnable potential is quite straightfonWard
using.mbderh'pomputérs. ‘This problem has recently'beeh'diséussed‘in
.gréat detail by Ioup and Thomas.! Exact values of differential cross
sectidné'for a numbér of Simple potentials have appearéd in.the
vliterature}' As'ih most numerical calculations,‘however,‘it 1s only
' possibleftb list resﬁlts-for selected values of angle and relativé
energy. 'Thus, later workers mﬁSt oftenvrépeat fhe sameicaldulations
when’fécéd'with different angles 6r enérgies.

Because of this probleﬁ, a number of approximations havé béén
developed fbr special regions ofvénglé and energy. A series expanSion‘
valid at large impact parameters (sméll'scattering angles) was de-
veloped by Lehmann and Leibfried2 énd by Smith gg'gl.3 Thié sefies
cOnvergeSurapidly at high energy and has préVed extremely uséful in
intefpretiﬁg'expériments atvsméll angles including the'"fainbowﬁ
| angle region;“ In this.paper we will consider an analogous expansion
fbr'small impact parameter‘coliisions..‘Beceﬁtly a humbér of exper—'
) 1ments have studied scattering in this regibn of large defieétionj

'angles.

Three simple repulsive potentialé will bé'used as‘exampies With 'vi

this large-angle expansion. ' They are the repulsive power poﬁential
V = K/I"S’ o ‘ - - (1)

V = A exp(-r/a), _' | (@

v



and thé‘scfeened'Coulomﬁ’potential
| X #_A(g)éxp(ér/a). | | (3)

For the first'potential FelderS haS‘given-exact‘Values‘of the dé—
flection angie and'cfoss Seéion‘for'seleéted-values’of é. Everhart
ég gl‘ havé‘computed a few differential cféSS sections for the screened
Coulomb botential, énd’Robinson7-has complled a 1érgé table of deflec-
tion angles for both the screened Coulomb and exponentiél repulsive |
potentials!iv

- In this work weiwill closely exémine the 1arge%angle;expansion.
The fipsf fwo terms of the eipansion wiil be-eVaiuated aﬁd campared
' with'éiact-éalculations; Both]defléction angles and differential
crossvSectidns are CQnsidefed. .The region‘df convergence of the
séries is investigated,'and'useful nuﬁeriéal.forMulas for réproducihg

the first two terms of the series are presented.

THEORY R

: The'qiaSSidal deflection angle in the center §f hés# coordinate

system is'ébtained from | | , |
 §'=.ﬂ-2b4;nvdf rf’ £(ry®, - | (&)

where | R - |
_‘ f = 1-V(r)/E—b2/r5;" | ""f \ }_' (5)
b 'is the classiéal impact.parameter,band_E = 1/2ﬁv2_ is_the re1ative
kinetic energy df the»colliSion. ‘The tﬁrnihg'point,‘rm;.is.the.iérgest
solutioh of thé”equation-' " | | B | | |
B ot =0

The claééical differential-cfoéé section_I(é) éan then be obtained from



| I<e)-= (b/sine)ldbl" R f'-‘ (6); |
Exact deflection angles have been evaluated for all three re—,
hE pulsive potentials using Eq. (u) The singularity at r-rm was re—

' moved using the transformation due to. Burnett & If we let

Ca e (1 z’)ao ' o SR
sina.= b/r . - - SRR B T
| v.ysinq f b/r ,' o S . S .
.then"":. | ; | | S
Coes 1r-’-la JJldz a(1- V(b/sina)/(Ecos a)J"*‘ o (8)

This integrand is well behaved in the region 0" to l although it must‘:

fbe evaluated analytically at Z :_O;; The integral itself was done

‘"using Romberg quadrature to prescribed accuracy, usually 3 parts in
IQ.,e This accuracy was. achieved in;about 0. 05~sec on a CDG-66004‘
'computer- For the differential cross section the derivative de/db

can be obtained using the equations in Ref 1‘[ Because we’were not"

Zinterested in extremely accurate values of I(e), a simple three pointﬁf

numerical differentiation of 8 was used most of the time : Then I(G)
was accurate to 2 parts in 10“, or better. . _
Approximate deflection angles are obtained by expanding Eq (U)
7in'an appropriate manner For example, the expansion of Leibfried2
- and Smith9 valid at large impact parameters is obtained by recognizing
that V(r) is always small. Then Eq- (H) becomes'- ' A

6 = Z E-(n+1) Tn(b) A'v_L A.A . :v (9)T:
n—O . o e

For the simple potentials discussed in this paper the first few values 1f

. of T (b) have ‘been tabulated in Refs o and 3. The expression we wish
_to study in detail is obtained by expanding the integrand in Eq (M)

for small impact parameter
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The coeffieients, as Shcwn.by’Leibfried,'9 are_computed from |

| ¢n(E)v=’2(n!)‘*(—1)n42)df(v)%(ievY% g (1) [ (1)
with _ ,

gn(e) = Sotviynpm2ntl)y-tnin g, (2)

Here v.="V(r)/E, v' = dv/dr, and ro is3thevturning point for col-
1isions-withfb = 0. Thus, | -
- S =1 a3
must be solved to find'ré - | - -

Once the coefficients ¢ are’computed, the differential cross

section I(e) can be computed from Eq. (6). ‘This involves a series

reversion which'is easily carried out for the first few terms. For
example, keeping terms ‘through order ¢, we get'near g=m the resuits
Lm0 = b+ gD L L an
1(6) = (¢ sine)t (n-g)[1- SEV D ICEOEE N (15)

The last equation shows the well known result that I(e T) = ¢q -2,

.'Although the term sine can be expanded in a power series in (v-g), 1

is_best to leave Eq. (15) as written. This is because Eq. (14) with

~Just two terms is often accurate out to 6 = 7/2, whereas similar

accuracy in siné would require_at 1eaSt fourvterms; »
Unfortunately, the infinitefseries”in Eqs}'(9)handz(10) both

diverge, typically between 8=90° and 6=20°. “Leibfried!’ has examined

.vthiswproblem in detail._*Helexamined successiVevterms in the series

'in_the“limit of large n and determined at what impact parameter.b'

(for a given E) each series diverges There ia; in general, a region'

where neither series'converges Becau e we hope to uue these seriesl



in éénjuétion withlexperiments;'which determine'é'rather than b, i o
.1we will be interested in recasting his results concerning series H : ;
| divergence in’ terms of angles.’7*"'A - L f | | w

, We will use’ the results of this. section to consider ‘the three
'_potentials individually. The.values of,¢O and ¢1Afor all” energies' :
of interest are determined;uand simple'polynomial'approximations€are.. fg
'given for them. 'The'apnroximate differentialAcross section computed ;
from ﬁq. (15) is tnen'comparediwith the exact result. It is shown that

for mostfenergies Eq. (15) works surpr151ng1y well out to 6 = ﬂ/2

and .even beyond.

» REPULSIVE POWER POTENTIAL

| The coefficients for the repulsive power potential in Eqw (l)
have been evaluated analytically byﬁLeibfried,’vwho obtained _ | l f
9n(E) = (2/8)(E/K)C(nt1/2-c)7  B(1/2,0)/B(n#1,1/2-c), (16 |
vwhere::y o - _ - o | :
¢ = (2n+l)/s, . ',, S '»' (17) r*i'ﬁ
- and B (x,y) i1s the Beta function defined in terms of the: Gamma _ - ;
function as ' I . | _ | ?%
| B(x,y) = P(X)T(Y)/f(k+y); L - -f" (18) :i
"In particular, we have\ - | . . : - | 'it v - t:%
| bo(E) = (E/K)/@ (2/s)r(1/2)r<1/s)/r(1/2+1/s) -fﬁ a9
I

6,(B) (E/K) 5 5=2(s- 6)r(3/s)r(1/2)/F(1/2+3/s) (200
- Since the quantity (K/E) '/s has units of length the reduced o
"differential Ccross section at o=mis" _:_1 - . o
o | I(n)/(K/F)z/S = i(s) e :'_:.v(21)-3,';§
.fwith . - E ST




1(s) = (s2/8)T(1/241/s)2/[T(1/2)1{1/5)]2. (22)

A plot of‘i(s) isvshown-in Fig;'(l)..vASSuming s is known, an ab-
solute measurément of I(w) will yiéld thé cdh§taht K. Any experi-
mental un&eftaiﬁty in I(ﬂ) or s,‘however;bwill lead to uncertaihties
in V(f); For eXample,'if sm8ha'u% errof in i(n)'g1Ves a 17% error
in X. An.ﬁncértainty ih,s has a more complicated effect on the poten-
tial. To‘sﬁow this in detaii_we'haVe worked out an examplé., Assumé
an eXpefiment at 1 eV meaéures I(n) = O;lﬁz/sr. If the true potential
has s=8; Eq; (ZI)Igives the_potential drawn'in.Fig. (2). The same
data interprétédfwith other values of s gives rather different |
botentials, also shown in Fig. (2). Thus, the.dlbser s is to the
true“value, the better the pdtential, but it is hard to generalize
beyond this. | |

The*potentiél parameter s can be'obtained ffbm'the_behavior of
I(e) away from’egﬂ. We cén'reWrite Eq. (15) as
| sing (m-8)=1I(8)/I(n) = 1-h(s)(m-8)* + . . . (23)
with | o o |
h(s) = (?ﬂ)"(S)(s—6)[F(1/2+1/s)/P(l/$)]3P(3/s)/F(1/2+3/s). (24)
~ The funétionih(s)~is shown in Fig.‘(l). It varies from.l/6 (the
hard sphere reéult) at large s_t¢'-/§7n at s=O, passing through |
2ero’at s=6. This means that thé'right hand side of Eg. (23) is
.‘ slowly'varying near =g ; even at 8="T/2 the first two terms can §nly
be asvlarge,as‘2.36‘or.as small as'0;59, Thé'implication“for éxperia‘»
 menta1 work is clear.‘.MeasurementsjQf.I(G)/I(ﬂ)iat largé'defléction
angles wiil gi§e a good value for s only if the'méasﬁreménts ére qﬁite

accurate. For example, near‘s=8 a 1% error in I(8) at 8=7/2 would



_give e 3.ﬁ%terror in s.- This problem is»not as severe if the
,meesufehents_are extended to smaller-angles,vbut then Eq. (23) may
no 1ongeroconyefge and'exact‘calculations of I(8) would be necessary.
We haVe compared'the_exact diffefential cross'section I(e) with é
h'the two—term approximation in ﬁq.*(23), _Figurev(3) shows the angle' o
(fdr each s) where the eiact:and-approximate cross'sections differ' |
by-S%;1for‘ell angles largef than this_Eq.'(Zijcan be usedtquite~' .fﬁ
vcoﬁfidently.”vFOr cbmpabison,'Fig;'fB) also gives the engle_at Which |
“the seriesiin-Eq. (10) no 1onger converges;}this‘involves'conYerting
Leibfried‘s’° results~from]impact pérameters to angles Thus:the fifst“e
curve shows the:angniar region where two-tefms of Eq (23) gives I(e) .
accurately, the second curve shows the region ‘where an infinite

number of terms would give I(e) accurately. -

EXEONENTIAL REPULSIVE POTE@TIAL
' The coefficients ¢ for the. exponential repuls1ve potential
V= A exp(-r/a) must be evaluated numerically from Eq. (11).

The-first_two coefficients can be written

b = (2/a) fo dx (x+Rg)=2(1-e~%)~ *ﬁ (2%
4y = a 1 ax (0hRp-8) (Ro) T3 (1-e"9)7%  (26) |,
lHere we have 'set R, = ro/a, and using Eq. (13) we can eesily.shownthat i
| Rav-—- n(a/B). . ey Y

Although these integrals . can not be done analytlcally, they can be
~expanded for the cases of small Ro and large Ro.
Forvsmall Ro, the expression (1 e’ x)—/ 1is expanded for small x, o

and the resulting integrals are Beta functions The:serleSvterminates~"




when the appropriate integral does not converge at x=«. The results
are: | ,
aé, ='wRo“’/‘£‘1+i/uR ] o o (28)

4% = -(35116)R,72 £ coR - (29)
n=o . ]

: The coefficiento C ‘are tabulated in Table I

For large the expansion is worth examining in some detail

For all x we can write

(1-e™¥)74/2 = F pekx . (30)
o o : k=0 ' :
with _ '
| A, = T(2k+1)/[2r (k+1)]%. o o (3)
Using this andithe substitutioniy=(x+Rd)/Ro, Eq. (25) becomes
a, = (2/R}) ? AkekROI “dye°kR0y y i IR - (32)

“(2/R ) + (2/R ) z A, e*RoE, (kR,) .

The‘function E, (X) 1is the exponential integral,’?fwhosevaSymptotic-”

expansion for large x is well known | | |
E,(x)~(e~%/x)[1- (2/x)+(6/x )- (24/x )+(120/x - . L.

Combining this with Eq. (32) gives

a¢ (2/R o)+(25, /R %) - (us /R })+(128 /R, “) : (33)
-(48S,/Rg%)+(240S /R®)= . . .,
‘where the sums S, are given by _
‘ oo : ' .
S, = k" . ' . D i
| | Sn = k) A/ v | '1 (3 )
Since A ~k"15 for large.k,.s converges for n>l/z and very rapidly

k
‘for_large n. ConVeniently, A,, which converges very slowly, can be
_eValuated analytically. Using Eq. (30), we know that
- N TH(1-x) Ex 1= 3 A xk-
) k=1 K
Integrating both sides from O to 1 giveo
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S 00

Sy = I Ak = 1n . : o (35)

S k=1 _ _
For n=2 ‘and higher, the values of S were obtained by directly

“summing Eq. (34), using double precision'on an IBM 360/65. .Eight
place accuracy required 2 x_los.terms'fOr S, Or:about 3 minutes of
COmputer_time; The values of S, through S5 are given in Table TI.

”With these numbers the expansions.for‘¢o and‘¢l-at large R,

can be summarized as follows:

as, = (2/R) I GRT a6

\ | a%, = (3R 3)*‘ z HRSP o (37)
The first five coefficients Gn and Hn are tabulated in Table I

Unfortunately, there is a region of_RO where nelther expansion

gives accurate values for ¢o and ¢1. Thus, it is n6cessary to inte-

grate Eqs.'(zs)’and (26) numerically. we:hare’done this for many
values of Rd'and then fitvthe coefficientsvby leaet squares to
polynomials in R . These numerical approximations for ¢o and ¢1 have
been determined for all values of R greater than zero. The results
are summarized ‘below:

O<R 50.1

B atg = 3.14;6R0'§/2(1+0.250030;0.13unc2) 38
a'é; (use Eq. (40) below) - |
0.13RQs2.u | )
. = '_3/2 by o s P
- adg = 3.1432R, o gnﬁo | o (39)
i -9/2 i :
1 vaf¢1 = '6‘872;R0 n=o nRo? o o :(QQ)"
2.4<R 6.9 | | |
ad, . 6200R ™" L TR, G v,(ul)
adg, = -3, 5738R - ? JROD (42)

1

L%
B3

BegMaZle Ho L L L

B P, W

s h
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6.95R,<16.1
ad, = 2.0027 R, f‘nﬁo KoRo™ o (3)
a5¢1 10.33427 R -3nzo LnRo‘n o . - ()
The coefficients Dis Eps In,'Jﬁ, Kps and Ln‘are_givenhin~Table-III.

For R greater than 16. l Egs. (36)'and (37)'can be used' The

-accuracy of every series above but one is better than 1 part in 10"

for all R ‘The coefficient 4, goes through zZero near Ry = 6.6;

fthus, in the v101nity numbers computed from Eq (NE) may have an
absolute error of 2 X 10‘8 or avfractional error of 1 x 10'“, which-"

ever is greater

W1th ¢ and ¢1 avallable we can 1nvest1gate the differential

‘cross section I(e) -near e . Right_at Béﬂ_the differentlal cross

section can be written

I(m)/a? = 1(A/E).- L (45)

The function i(A/E) 1s graphed in Fig (M) Tf-A.is known, an absolute

measurement of I(n) at a Kknown energy E will give the potentlal para- ..

meter a,hbut any uncertainty in A will lead_tovappre01able errors ‘in a.

 For example; neéar A/E=100 (R ~l|.6) a 10% error in-Avwould)change‘a by

4.9%. | The behavior of I1(6) near 6=7 will glve (A/E) and thus A, as can

be seen from rewritlng Eq. (15)

C sine(n- e)“I(e)/I(n) = 1-n(A/B) (1-0) P4, L L e
The behav1or of h(A/E) is also shown in Flg (b)), It Varies from H
1/6 (the hardtsphere result) at large’At(large-Hé):to =35/(hm?)

in the 1imit ofiA/E = 1, This is a'someWhat’broader_range‘than for

the repuisive poWer potential but the commentsimade for‘the-latter

potentialvapply'here aS'well: Either measurements of I(e)/I(w) mus t

‘extend to angles considerably smal]er than 6= w/2 or the measurements
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themselVes~must be very.accnrete-if A is to be determinedvaccurately.
-Thus, a 17 error in I(g) at 0= W/2 would glve an 8. 67 error in A lfv
le/F 100. | R

A The exact differentlal cross section I(e) for the exponential
'lréoulsive potential is_compared-withtthe series epprox1mation of |
Eq. (565 1in Figure'(S);\ The;solid'CUrve Shows thebangle forxeach_A'
A/E Where the.eXact and aonroximete-ttwo‘terms of Edl (N6)) eross
sections differ by 57  The dashed curve‘showathehanglehWhere_the;
‘full series” expanSion in Eq (lO) diverges »As invthe case of'the'
'repulsive power potential the two term apprOXimation of I(6) works
‘quite well out to 8 = 90° for most values of A/E ',The divergencefl

angle falls exponentially, 50 that for A/E>lOOO Eq. (46) with a-

sufficient number of terms would work at all angles The difficulty'

;would lie in determining the 1arge number of‘,the'coeff‘icients”{brl

SHIELDED COULOMB POTENTIAL
The first two coefficients for the shielded Coulomb potential

'are computed from expressions derived from Eq. (ll)

(2/a) f dx (x+R )'3/2(x+R —R e‘X)"‘/2 o '.fQY)YI

¢1 = a-—3 f “dx (x+R )'7/2 x+R +1)"(x+R -R e"x)'l/zf“(x) (48) -

with

F(x) = =5-6(x+R) + (x+R)P. 0 (49)
Again we have set RO ro/a, and it-is obtained by solv1ng the equation“

R, exp(R ) A/E _jf‘;vbf f_ .'¥f_u (SO)Q,‘

In general, ¢ and ¢1 mus t be determined numerically; but expansions

T
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for both largefRo and small R, are easily obtained:using the methods

of the previous section. For small R ™" is expanded about x=0

-0

“and the term (X+Rb+l) is expanded assuming 1>(x+Ro);< The integrals

afe‘théaneta’fuhctions;'and the results for the expansion are:
_ L ;v - o, | | o |
a¢, = UR TH(I+R )T | | | (51)
a’¢, = -(16/3)R “°[1-(3/2)R_+(27/16)R_2].  (52)
In the case of large Rg, the term (X+RO41) is expanded‘assuming'
1<(x+RO),'and_the additioﬁal eXpansion

-X

)R = (x4R, ¥ p . “kx (Ba 4k

X+R4
is used. - The resulting integrals are handled similarly to the

(x+R,-R e Ape

previous section, and the terms when chlected yield

ap, = (2/R, ) z Man—n - - (53)

.a ¢; = (3R 3) °° N R __l'l.. | | : (5)4)

no n o

" The flrst five coefficients M and Nrl are.giVen in Table IV.

FOP thevintermediate.region of'Ro where the above series are not

useful, we,have numericaily evaluated ¢b and ¢1_and fit the Values

by least squares to poiynomials in RO. ‘These numerical appfoximatiOnsi

for ¢O and ¢?”are summarized below:

0<Rp=0.43 | |
as_ = (3. 9997/Ro)n Eoer™ (55
a’¢. =;<—5.3332/R03)5§O QR _‘ . (56)
0. u353n51 60 , | ' | |
‘a¢¢ - (3ﬁ9u40/Ro)n§o TR" | | o sy
cah, = (—5l23707Rg) nédUnRon R o (58).
1.6oiadsu,63' | |
| 5 =(=0. UPB)O/R ) nz v R " N o (59)

=on ™



A T 37361/R ) Eo "Re o (60
4,635R 520.0 ‘ B

| "a§o = (2.0019/R ) g RV (D)

Y4 . (o aala . - . L

a’és = (0.33430/R,* )»ngoanO n S (62)

vThe varlous coefflclents P Qn’ Tn’ U 3fV , W ,,Xn,\and Zn are

tabulated in Table V. The.accuracyvof.each series: is l‘part‘in 10%
for all R o* except for Eq.‘(62):which goes through zero.near.ﬁo "
5.5. Near R, = 5.5 the uncertainty is 2 x 107° (absolute) or 1 x 107*
(fractlonal) Whichever-is’greater h | | o N

Using an ana1y81s similar to that for the exponential repulsive’
-'potential we can show that at 6 =T | o | | _ _ t

m/at =g, (63)

Figure (6). graphs J(A/E) Thus, 1f A/E is: known, an absolutebmeasure—
-ment of I(ﬂ) will glve a, . but - any uncertalnty in A will lead to - - '

errors in a The ratlo of A/E can be determlned by the behaVJOr of

I(8). near o= where'

sine (- e)“‘I(@)/I(w) %'1¥H(A/E)(ﬂf9)2+31's R L

The functlon H(A/E) is also shown in- Fig (6)’ At-large‘A/E‘it v
| approaches 1/6 (hard sphere- result) whereas at small A/E it levels'A

off at'—1/31A This is a much narrower spread than for either of the

other two potentials, and the comments made earlier about the necessity-

‘for very accurate measurements of I(G)/I(ﬂ) apply even more- strongly
' here A l% error in the cross sect*on at 8= TT/2 would give an 11% ‘

error 1n A if A/E lOO

The approxlmate dlfferentlal cross )ection,I(Q)“computedﬂwithe |

the two terms'of Faq. (6“) abovc is,comparcd with the:exact valude "in
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‘Fig. (7). Once again, we have shown the angle where the two differ

" by 5%; for angles greater than this the approximate result can be

used comfortably. Also shown is the result obtained. from Leibfried's!!
study of the convergence of the series in Eq.'(lO)i—- the dashed
curve gives the ‘angle where the sefjes diverges. For angles greater

than this.Eq._(6M)’with a large number of terms would reproduce I(6).

SUMMARY
The behavior of the classical deflection angle e and the clas-

51cal differential cross section I(e) has been investigated for small

vimpact parameter collisions, where 8 is large. - The series expansion

for g valid near 6=ﬁlhas been examined, and,expressions‘for the
first two terms of the series have been presented for three eimple
repulsive potentials. ~ ‘It has been seen that using only these two

terms ives accurate values of I(O) in the region from 6=7 to O« w/2

for most energies1 The effect of any experlmental error on the
»derlved potential has also been explored. In brief accurate measure-

" ments of I(e) in the region 9““/2 to o= will yleld the repulsive

part of the 1ntepmolecular potential but this potentlal is quite

sensitive to experimental uncertalnties in I(e)
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J-fCoefficientsffor Expanoion of by and ¢1 for Large and
“‘R —bxponential Repu151ve Potential : :

B gy ‘a*‘;:ulﬁ,f}Gﬁ’

1 - 1.0000000 . .
=3/28 - 1.3862944
- -1/160 . =1.3680561
-3/4480. © . -3.4067031
597215040 - -12.699712 -
o nielb o . 61.608724 -

VTEW RO

7.0000000 5

21.8411169 °
-41.479401

. 116.150%0 ..,e o
',n']'-599 30012 -

"aSee text for description of series

behe integral for this coefficient does not co

nverge
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" Table ITI. Value_é of s;@

.38629436 .
68402804
.56778385
.52915486
.51340603
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[oNoNoNoRay
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,f (2k+1 )./[21{.1%'_'( k+l ) ] 2 ER



. Table III. TCoefficients for Least Squares Fit -to ¢ and ¢, for Exponentlal Repulsive Potential® .

V=W O ‘

Y .5 1,0000 (=0).. " 1.0000 (+0) .
Y o =TGTT s (=1) =3.7230.(+1) ¢
Yo W v 5 BRE3(+1)
3 | : © 27,107 (#1)

D) . 1.00000.(
) =2.99587 (
Y . .8.84709 (=
) ~1.46877 (
C . 1.28299 (
. -4.5886. (

 Pwotation: 2.0(-2) = 2.0 x 107

81
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Tablé’IV Coefficients for EXpan51on of ¢o and ¢, for-

Large Ry-Shielded Coulomb Potential

n | v Mn Np
0 1.00000000 1.00000000
1 1.3862944 -1.8411169
2 -2.7543504 -39.638284
3 8.2131377. 207.63793
L -35.004643 -1182.7632

asée text for description of serles.



_Tablegv. Cbefficients’for Least Squares Fit to. ¢, and ¢, for Shieldéd‘C§ulbmb Potentia1 ,.

Pn. Q'

.Tn

.Un..

Vn

W

n

Yd  ,

Zn

S I EWND - O

=4,

.000(=0) 1.0000(-0) -
924(=1) ~1.4980(-0)
6.946(=21)  1.6508(-0)
~1.252(~0) =1.4306(-0)
.805(~0)-6.942 (-1)
. ,

215(-0)

~9.3195(~2)

1.0000(=0) .
2.4086(-1)
1.5607(-2)3"

.00000(=0)
.37590(~0)
.18946(~0)
.T9411(-1) -
.25452(-1)
2803 (~-2)

' 1.0000(=0)
-2.6930(=0)

-5.5572(-0)

1.2153(-1)
.'7-002'653)

.00000(+ 0)
.909147(+0)
.27030(+1)
.63405(+1)
-39321(+1)
.85366(+0)

.1.0000(+0)
01.3424(+0)
-2.0407(+0)

- 2.084 (+0)

1.
3
3.
1
-2.

20

00000 (+0)

02694(+0)

.21854(+2)

58067 (+2)

57289(+2)

i
1L

0z |-
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. Figure Captions

Figure- 1 The reduced differential Cross section at =,
' 1=I(m)(E/K)?%/s , for the repulsive power potential V= K/rs is
shown as the solid curve. The dashed curve gives . h, the first
coefficient in the expansion of I(8) near 6=w.

Figure, 2._ An example of ‘the effect of uncertainty in s when
fitting a measured cross section to. thg potential V=K/rS
For this pigure, E=1 eV and I(m)=0. 100A2/sr is assumed to g
be. known, and.the&adata yields the potentials shown if s= 6
7 '8, 9,'or 10,

Flgure 3. " The angle where ‘the approximate (two terms of Eq. (23))
,and exact differential cross section I(g) differ by 5% is
 shown as the solid curve for the potential V=K/rS. For angles

greater than this the approximate cross section is quite-
“good. For comparison, the dashed curve is the angle where
the large ~angle series approximation for 8 (eq. (10)) diverges;

' Figure 4. The reduced differential cross section at .o=n, 1=1(7)/a?
' for the exponential repulsive potential V=A exp (-r/a) is
shown as the solid curve. The dashed curve 1s h, the first
coefficient in the expansion of I(e) near g=r.

L

_Figure 5. The angle where ‘the approximate (two terms of Eq. (46))
- and exact T(6) differ by 5% for the potential V=A exp(-r/a)
“is-the solid curve. The dashed curve is the angle where the
large-angle series approximation for 6 (eq (10)) diverges
for this potential. _

Figure 6. The reduced differential cross section at 6= =7,
o Jj= I(n)/a for the shielded Coulomb potential V=A(a/r)- exp(-r/a)

is shown as ‘the solid curve. The dashed curve 1s h, the first -

coefficient in the expansion of 1(8) near o=m.

.,Figure 7. ‘The angle where the approximate (two ‘terms of Eq. (64))

: and exact I(8) differ by 5% for the potential V=A: (a/r)exp(- r/a)
~is the solid curve. The dashed curve is the angle where the
large-angle series approximation for 8 (eq. (10)) diverges
for this potential. :

\a
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LEGAL NOTICE

- This report was prepared as an account of work sponsored by the

United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents

" that its use would not infringe privately owned rights.
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