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Approximate Diff~rential Cross Sections at Large 

Scattering Angles for Simple Repulsive Potentials. 

* E. A. Gislason 

Department of Chemistry and Inorganic Materials Research 

Division of the Lawrence Radiation Laboratory, 

Berkeley, California 

ABSTRACT 

The classical deflection angle 8 and the classical 

differential cro~s section 1(8) are examined in the 

r~gion near 8 = 180° for three simple repulsive poten­

tials: the repulsive power potential; the exponential 

repulsive potential; and the screened Coulomb potential. 

An expansion for 8 valid at small impact parameters is 

carried through second order and compared with exact 

calculations of e andICe). In most cases, the exp~n­

sion is quite accurate in the region from 8 = 180° to 

e= 80°. Numerical formulas are given for evaluating 

the first two coefficients in the exparision. Interpre­

tation Of eXperimental cross sections using these results 

is discussed. 

Present address: Department of Chemistry, University of 

Illinois at Chicago Circle, Chicago, Illinois. 
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Th~ calculation of classical deflection ~ngles and differential 

cross sections for any reasonable potential is quite straightfor.ward 

usj.ng modern computers. This problem has recently been di:;:.cussed in 

great detail by Ioup and Thomas. 1 Exact values of differential cross 

sections for a number o·f simple potentials have appeared in the 

literature. As in most numerical calculations, however, it is only 

possible to list results for selected values of angle and relativ~ 

energy. Thus, later workers must often repeat the same calculations 

when faced with different angles or energies. 

, 

> : 

'J i 

Because of this problem, a number of approximations have been i 

developed for special regions of angle and energy. A series expansion 

valid at large impact parameters (small scattering angles) was de­

veloped by Lehmann and Leibfried 2 and by Smith et al. 3 This series 

converges rapidly at high energy and has pr6ved extremely useful in 

interpreting experiments at small angles inc.luding the "rainbow" 

angle region. 4 In thi~ paper we will consider an analogous expansion 

for small im~act parameter collisions. Recently a number of exper­

~ments have studied scattering in this region of large deflection 

angles. 

Three simple repulsive potentials will be used as examples with 

this large-angle expansion .. They are the repulsive power potential 

v = K/rs, 

the exponential' repulsive potential 

V = A exp(-r/a), 

(1) 

(2) 

.~ : 
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and the screened Coulomb potential 

x = A(')exp(-r/a). 

For the first potential F~lder5 has given exact values of the de­

flection angle and cross secionfor selected values of s. Everhart 

et a1 6 have computed a few differential cross sections for the screened 

Coulomb potential, and RObinson' has compiled a large table of deflec­

tion angles for both the ~creened Coulomb and exponential repulsive 

potentials. 

In this work we will closely examine the large-angle expansion. 

The first two terms of the expansion will be evaluated and compared 

with exact calculations. Both deflection angle~ and differential 

cross sections are considered. The region of convergence of the 

series is investigated, and useful numerical formulas for reproducing 

the first two terms of the series are presented. 

THEORY 

The classical deflection angle in the center of mass coordinate 

system i.5 obtained from 

where 

6 = 1T-.2bfClO dr r- 2 reI' )-~ , 
I'm 

(4 ) 

(5) 

bisthe classical impact parameter, and E = 1/2ll",2 is the relative 

kinetic energy of the collision. The turning point, I'm' is the largest 

solution of the equation 

ferm) =, O. 

The classical differential cross ~ection 1(6) can then be obtained from 
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'Exact d'e,flection angles have 'b'ee'n' evaluate'a for all threere~ 

p'ulsive'po'tentials 1;lstng Eq. (iO.The singularitY,at r=rm was re-

,moved tising the transforma:tiondue to Burnett. ~ 

, a=' '( 1-,Z%}Clo 
sina= b/r 
s1n'~o' '= b/rm, , 

,then 

If we let 

, (7) 

This, integrand 'is -well~behavedln' t,fle region' c'to' l~ althougp it must' 

be ~valuated· analytically at Z = 0.:' The iritegral itself was dorie 
, , , 

. using Romberg quadrature toprescrf..t>ed accuracy , 'usually' 3 parts .'1n, 
. 6 

10 ' . 

, , ~ 

Thls~cc~~acy waa,achleved in1~baut C.n5'sec on a CDC 6600' ' 
. , 

computer. For the differential cross section the derivative: de/db 

can be obtained using the equations i~ R~f. 1. Because we were ~6t 
" .' -. . . . ' . 

interested in extremely accu;r.ateyalues of I (e), a simple three-poirit, 

numerieal'differerttia~ion of ~ was u~ed most ,of t~~ time. Tben 1(6) 

was accurate ~o 2partsfn lO~~ or better. 

Approximate de'flect-ion angles, are obtained by expandi~gEq. (4), 

, , 

. ~ . 

.. 
':;.: : 

'., : . 
. ; , 

" 
" , ' 

, ;!, I 

,~ I 
;' i 
'.! 

, ! 

, I 

and Smith g valid at large impact parameters is, obtained by, recogn1:zing' : 
c, • • ,", ) i 

that VCr) Is always small. Then Eq. '(4) becomes 
.. : 

, 00 ) e = ,L E';' (n+ I ' Tn (b)., 
n=O ' 

(9) 
, ,. 

" , .... '; 
'.:~ i 

" ; 

For the stmplepotentials d1.scu5sed, in this paper the firs'tfew .values 
, , 

of Tn (b) have been t'abulated' 'in Refs .2' and- 3. The expressi'on ,we<wish: "'j 

to study in detail ,is obtained by expanding the lntegra~dinEq/: (4)" 
:: -" :, '.' .. :, 

',' ' 

fo'r small impact parameter: 

I' , 

i 
j 

:' I 
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(10) 

The coefficients, as shown by Leibfried,9 are computed from 

<l>n(E) = 2(n! )-1 (-l)nf;o dr(v)~(l~vf~ gn (r) (11) 

with 

(12) 

Here v = V(r)/E, VI = dv/dr, and ~o is the turning point for col­

lisions ~ith b = O. ThUS, 

(13) 

must be solved to find roo 

On6e the coefficient~ <l>n are computed, the differential cross 

section rCa) can be computed from Eq. (6). This involves a series 

reversion 'which is easily carried out for the first few terms. For 

example,keeping terms through order <1>1 ' we get near 8=n the results 

n-9 = .ob + <I> b' 1 . + . . . (14) 

lee) = (<1>2 sin a)' ('IT - a ) [1- .< 4 <I> 1 I<P 6 ) ( n - e) 2 
0 + . . . ] . (15) 

The last ~quation shows the well kn6wn resultthaf r(8=n) = <P
0

- 2 • 

Although the term sine can be expanded in a power series in (n-a), it 

is best to leave Eq. (15) as written. This is because Eq. (14) with 

just two terms is often accurate out to e = n/2, whereas similar 
- , 

accuracy in sine would require at least four terms . 

Unfortunately, the infinite series in Eqs. (9) and (10) both 

diverge, typically between e=900 and 8-20°. Leibfried 10 has examined 

this problem in detail. He examined successive terms in the series 

in the' limit of larg~n and determined at what impact p~rarnet~r b 

(for a given E) each series diverges~ There is, in general, a region 

where neither series' converges. Because we hope to use these series 

, ! 
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in cori.juctlon with exper1.ments-, which determines rather than b, 

'we will- be inter~stedln reca~ting hisr~~ults cbncernlng ~eries' 

d~v~rgericeln:ter~s of ahgl~s.' 

, vi~w1.'1.tuse the results of thisse'ction toco}1siderthe thre~ 

potent'lals individually. · The ,values '- of, 4>0 arid' 4J 1 'fbrcill -energi'es' 

ofint~rest are deterMihe~~and si~ple polynomial ~~pr6ximciiioris~are 

given for them. The approximate differential cross section comptited 

f~om Eq. (15) is thencom~a~edwith the exact result. It 1s sh6~n that 

for most' eriergies Eq. (15) works surprisingly well out to e = 1T/2 

and ,even beyond. 

REPULSIVE POWER POTENTIAL 
, . 

The coefficients 'fo~ therepufsivepower- potential in Eq, .. (l) 

havebeene~aluate-dan'alyticallY by 'Leib~fri~d;9wh-O ob'tained 

4>n(E) ~ (2/s)(E/K)C(n+l/2-c)-J B(1!2,c)/B(n+l,1/2-C) ,(1'6) 

where 

(17) 

. and B' (X"y)is the Beta function, defined in terms of the' Gamma 

function as 

B{.x,y) = r(x)r(y)/r(x+y)'. (18) 

, In par-t:i.cular, we have 

, : 

·1 
, ' 

. ' 
.... I 

•••• : t 

. ~ ; 

~ ! , ' 

.. 
4>o( E) :: (E/K) VS (2/5') r(1/2) r( l/s) /r(1/2+ l/s) (19) 

4>l(E) - (E/K)3/ss - 2 (s-6Jr(3/s)r(1/2)/f(1/2+3/S). (20) 

Since the quantit~{K/E)J/S has unit~ b~ length, the redu6ed­

'dlffet.ential 'cross section at e'= 7T' is - " 

. ~ I 

~ . .;:'; ~ 

I ( 7T ) / (K/ E) 2/-S = 1. ( s f ( 21) 

with 
-, 

- ,~: 

,.' : 

:. ! 

.f.. 
~i. 
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i(s} = (s2/4)r(1/2+1/s)2/[r(1/2)r(1/s)]2. (22) 

A plot of i(s) is shown in Fig. (1). Assuming s is known, an ab­

solute measurement of I(n) will yield the constant K. Any experi-

mental un~ertainty in I{~) or s, however, will lead to uncertainties 

in VCr). For exa~ple, if s=8 a' 4% error in I(n) gives a 17% error 

in K. An uncertainty ins has a more complicated effect on the poten­

tial. To show this in detail we have worked out an example. Assume 

an experiment at 1 eV measures I(n) = 0.li 2 /sr. If the true potential 

has s=8, Eq. (21) gives the potential drawn in Fig. (2). The same 

data inte~preted with other values of s gives rather different 

potentials, also shown in Fig. (2). Thus, the closers is to the 

true value, the better the potential, but it is hard to generalize 

beyond this. 

The 'potential parameter s can be obtained from the behavior of 

I(e) away from e=n. We can rewrite Eq. (15) as 

sine (n-e)-lI(e)/I(n) = I-h(s)(n-8)2 + . . . (23) 

with 

11 ( s) = (2 n) - 1 ( s ) ( s - 6 ) [r< 1 / 2+ 1/ s ) J r (J .. / s ) ] 3 r ( 3/ s ) / r< 1/2+ 3/ s) . ( 24 ) 

The furtction h(s) is shown in Fig. (1). It varies from 1/6 (the 

hard sphere result ) at large s to -13/~ at s=O, passing through 

zero at s=6~ This means that the right hand side of Eq. (23) is 

slowly varying near e=n; even at e~o/2 the first two terms can only 

be as large as 2.36 or as small as 0.59. The implication for experi­

mental work is clear. Measur~ments of I(e)/I(n) at large deflection 

angles will give a good value for s only if the measurements are qUite 

accurate. For example, ne~r s~8 a 1% error in I(e) at 8=n/2 would 
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give a 3.4 % error ins. This pro,blem 1s not as severe if the 

measuremeritsare extended to smaller angles, but then Eq. (23) may 

no longer converge and exact calculations of lee) would be necessary. 

~. : 

\ ; 

! , 

We have compared the exact dj.fferential cross section I(e) with t 

" the two-term approximation in Eq.' (23). Figure (3) shows the angle 

(for each s) where the exact and approximate cross sections differ 

by 5%; for all angles larger th~n this Eq. (23) can be used quite 

confidently. For comparison, Fig. -(3) also gives the angle at which 

the se~ies in Eq. (10) no longer converges; this involves converting 

Leibfriedts 10 results from impact parameters to angles. Thus the first 

curve shows the angular region where two terms of Eq. (23) gives I(a) 

accurately; -- the second curve shows the region where an infinite 

number of terms would give I(e) accurately. 

ExroNENTIAL REPULSIVE POTINTIAL_ 

The c6efficients <Pn for the exponential repulsive potential. 

V=A exp(-r!a) must be evaluated numerically from Eq. (11). 

The first two coefficiertts can be written. 

<Po = (2/a) /; dx (x+Ro)-2(1-e-X)-~ 
, -

<Pl = a-- 3 10m dx (X+RO-8)(X+Ro)-:-S(1-e-X)-~. 

(25) 

(26) 

Here we have set Ro = ro/a, and using Eq .. (13) we can easily show that 

Ro == In(A/E). (27) 

Although.these integrals -can not be done analytically, they can be 

, expanded for the cases of small Ro and large Ro • 

For small Ro J the expression (l.;..e:-X) -~is expanded for smalL x, 
. '. '. '. 

and the resulting integrals are Beta, functions . The series terminates 

, ! 
." ! 

! 

I 
1 

: i 

.. : 
, .;:: 

.:.: 

" 

. ... ; 
- , 

.. ~ '. 

.. .'.~ ! 

.,r; 

. :') ~;. ; 
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when the appropriate integral does not converge at x=oo. The results 

are: 

at = wR -'/Z[1+1/4R J o. 0 . 0 

= -(35W/16)R-9/~ ~ C R n 
. 0 n=o n 0 

Th~ coefficients Cn are tabulated in Table I. 

(28) 

(29) 

For large ~ the expansion is worth examining in some detail. 

For all x we can write 

(1_e- X)-1/2 = 

with 

t A e- kx 
k=o k 

(30) 

A = r (2k+l) I [2kr (k+ 1) F . (31) 
k 

Using this ~nd the SUbstitution y={x+R )/R , Eq. (25) becomes o 0 

at = (2/R ) ~ A e~Ro/l°Odye-kRoY y-z (32) 
o 0 k=o k 

00 
=. (2/R ) + (2/R ) E AkekROEz(kRo)' 

o 0 k=l 
The function E

2
(X) is the exponential integral,l1 whose asymptotic 

expansion for large i is w~ll known: 

E 2 (x)-(e-x/x)[1-(2/x)+(6/x 2 )-(24/x')+(120/x')- ... J. 

Combining this withEq. (32) gives 

(33) 

, 
where the sums Sn are given by 

SinCe Ak-k-~ for large k, Sn converges for n>1/2 and very rapidly 

for large n. Conveniently, A1 , which converges very slowly, can be 

evaluated analytically. Using Eq. (30), we know that 
00 

x-l(l-x)-~X-l= ~ A x k- 1 
k=l k . 

Integrating both sides from a to 1 gives 



10 

. :00 
Sl' c· I Ak/k = In 4 . (35) 

k=l 
Fer n=2 and higher, the val~es cf Sn were ebtained by directly 

summing Eq. (34), using deuble precisien en an IBM 360/65. Eight 

place accuracy required 2 x 10 6 terms fer S2 er abeut 3 minutes ef 

computer time. The values ef Sl threugh Ss are given in Table II. 

With these numbers the expansiens fer <Po' and <Pl at large Re 

can be summarized as fellows: 
00 

a<p = (2/R ) I. GnHe-n 
0' . 0' nco (36) 

00 

a~. = (3R 3)-1 I H R -n 
1 0' n=o n 0' 

( 37) 

The first fivecoeff1cients Gn and Hn are tabulated in Table I. 

Unfertunately, there is a regien ef nO' where neither expansien 

gives accurate values fer <Pc and <Pl' ThUS, it is necessary to' inte­

grate Eqs. (25) and (26) numerically. We have dene this fer many 

values ef R and then fit the cceffi~ients by least squares to' 
0' 

pclynemials inRc ' These numerical appreximatiens fer <Po' and <Pl have 

been determined fer all values ef Ro greater than zerO'. The results 

are summarized belew: 

2. 4 ~R ~6. 9 . 
--=--;o~-

a<Pc = 3.1416Ro-3/2(1+0.2500Rc~O.134Ro2) 

a 3 <PI (use gq. (40) belew) 

a<p . = 
0' 

a ~ 4>1 = 

. 5 

3.1432R -3/21: DnRen .· 
0' n=e 3 

-6.8721R -9/2 I E ~ n 
0' n=c IT'e 

5 

A. - 4 62'00" R' _1 I I R n a 'fI 0'''' • - 0' n=c - n 0' 

a 3 <p = -3.5738R _5 r J R n 
1 0' n=e n 0' 

. ~ 

',":4.. 

. , 

'. 
i 

".1 

.... ! 

i .' , 

.! J 

i 
I 

,,' i 

, ~ 1 
" 

- ' 

I 
;", 

, 

.. I 
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a¢o = 2.0027 R _1 f K R -n 
. 0 n=o n 0 

4 
as. = 0.33427 R -3 E L R-n 

1 0 n=o n 0 

(43) 

(44) 

The coefficients Dn,En , In' I n , Kn' and Ln are given in Table III . 

For H greater than 16.1, Eqs. (36) and (37) can be used. The o 

accuracy of every series above but one is bette~ than 1 part in 10~ 

for all Ro' Th~ coeffibi~nt.l goes through zero n~a~ Ro = 6.6; 

thus, in the vicinity numbers computed from Eq; (42) may have an 

8 _4 
absolute error of 2 x 10- or a fractional error of 1 x 10 ,which-

ever 1s greater. 

With¢o and ¢l available we can investigate the differential 

cross section ~(e) near e=w. Right at e=w the differential cross 

section can bew~itten 

I ( w) / a 2 = i ( A/E) . ( 45) 

The function i(A/E) is graphed in Fig. (4). If A is known, an absolute 

measu~e~ent of I(w) at a known energy E will give the potential para-

meter a, b~t any uncertainty in A will lead to appreciable errors in a. 

For example, near A/E=lOO (R ~11.6) a 10% error in A would, change a by 
o 

4.9%. The behavior of I(e) near B=w will give (A/E) and thus A, as can 

be seen from rewriting Eq. (15): 

sine(w-B)-lI(e)/I(w) = I-h(A/E)(n-B)2+ ... 

The behavior of h(A/E) is also shown in Fig. (4). It varies from 

1/6 (the hard sphere result) at large A (large R ) to .:..35/(li1T2) 
- 0 

(46) 

in the limit of A/E = 1. This is a somewhat broader range thari for 

the repulsive powe~ potential, but the comments ~ade for the latter 

potential apply here as well. Either measurements of I(e)/I(n) must 

extend to angles considerably smaller than 8=n/2 or the measurements 
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themsel~esmust be very accurate if A is to b~ determined accurately. 

Thus, a 1% error in ICe) at 6=11'/2 would givc-ah8.6%'error in A if 

A/E~lOO. 

- , -

The exact different:ial cross section I (e) for the exporiential 0 1 

repulsive potent-i:alis compared with the series approximation of 

Eq. (46) in Figure ( 5) ; The , solid curve shows the angle for each 

A/E where the exact and 
\ 

approximate (two terms of Eq. (46» cross 

sections ;differ 'by 5% .- The dashed curve shows _the angle where the 

-full ser1esexp~nsion in Eq. (10) diverges. As in the case of the 

repulsive power potential, the two term approximation of I(e) works 

quite well out toe = 90° for most values of A/E. The dive~gence 

angle falls exponentially, so that for A/E;lOOO Eq. (46) wi th a 

sufficient number of terms wo~ld work at~llangles. The difficulty 

would lie in determining the large number of the coefficients ~n' 

SHIELDED COULOMB POTENTIAL 

The first two coefticients fo~ the shielded Coulomb potential 

are computed from- expressions derived .from Eq. (11): 

4> - = (2/ a ) f ()O d xC x + R ) -3/2 ( X + R _ R e - X) - 1 / 2 
o 0 0 0 -0 

eIl l 
= a- 3 f oodx(x+R )-j/2(x+R +1)-2(x+R -R e- X)-1/2F(x) 

o 0 0 0 0 -

with 

F(x) = -5-6(x+R ) + (X+R)2. 
o 0 

(47) 

(48) 

(49 ) 

Again we have set Ro=r~/a, -and it is Obtained by solVing the equation 

R e xp (R) = -AlE. o - 0 - _ 
(50 ) 

In general, -CPo and - ~l must be detcrminednuinerlcally, but.expansl,ohs: 

';',' 

- -. 
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for both large Rp and small Ro are easily obtained using the methods 

of the previous section. For small ~, e -x is expanded alJout x=o 

and the term (x+Ro+l) is expanded assuming l>(x+Ro )" The integrals 

o are then Beta functions, and the results for the expansion are: 

~¢ = 4R -1(l+R )-~ 
000 

a 3¢1 = -(16/3)R -3[1-(3/2)R +(27/l6)R 2J. o 0 0 

(51) 

(52) 

In the case of large &L,' the term (x+Ro + 1) is expanded a~)suming 

l«x+Ro )' and the additional expansion 

-x ~ k 00 -kx ~ k 
(x+Ro -Roe)-2= (x+R

O
)-2 E Ak e (x+R) 

k=o 0 
is used. The resulting integrals are handled similarly to the 

previous section, and the terms when collected yield 
00 

a¢o = (2/R ) EM R -n 
,0 n=o no 

a3~ = (3R 3)_1 ~ N R -n. 
.1 '0 n~o n 0 

The first five coefficients Mn and Nn are given in Table IV. 

(53) 

(54) 

For the intermediate region of Ro where the above series are not 

useful, we have numerically evaluated ¢o and ¢l and fit the values 

by least squares to polynomials in R, These numerical approximations o 

for ¢ 0 and ¢ I' are summari zed below: 

0< Ro.:5..0 ,1j 3 

5 
a¢o = (3.9997/Ro)n~o PnRon 

a 3¢ = (-5.3332/R 3) ~ Q R n 
1 . 0 n=o n 0 

1+ ' 

= (3.944D/R )nIo T R n o ~ n 0 
5 

= (-5.2370/R3) L URn 
o n=o n 0 

4 
L V R n 

n=o n r 

I! 

(55) 

(56) 

(57) . 

( 58) , 

(59) 
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.. 

5 

a 3 ¢1 = (0.37361/R~)n~o WnR~n 

4.63?Ro~20.0 

a¢o = (2.0019/Ro,) nto YnRo-n 
_ 5 

a 3 ¢. = (O.3343'0/R 3) )~ Z R -n 
. 0 0 n=o no 

The various coefficientsP., Q , T , U ,V , W , y., ,and Z are 
, n nn n n nn n 

tabulated in Table V. The accuracy of e~ch series is 1 partin 10~ 

for all R , except for Eq. (62)· which goes through zero ,near R = o ' 0 

5.5. Near Ro = 5.5 the uncertainty is '2 x 10- 8 (absolute) or l x 10-~ 

(fractional), whichever ~s gr~ater. 

Using an analysis similar to that for the exponentialrep,ulsive 

potential, we can show that at 8=TI 

I(TI)/~2 = j(A!E). (63) 

Figure .(6} graphs j{A/E). Thus, if AlE is known, an absol~te measure­

ment of I(n) will give a, but any uncertainty in A will lead to 

errors in a. The ratio of AlE can be determined by the behavior of 

I CO) near 0 =TI where 

1 '. 2 I ' sinO(TI-e)-Ice)/I(TI) ,= I-H(A/E)(TI-O) +. . . (64) 

The function H(A/E) is also shown in Fig. (6). At large AlE it 

appr6aches 1/6 (hard sphere result), whereas at sm~lLA/E it levels 

off at -1/3. This is a much narrower spread th~n for either of the 

other two potentials, and the comments made earlier about the necessity' 

, 
I 

'1 

, i 

for very accUrate me~~urements of I(o)/1(~) applj even more strbngly ~ 

here. A 1% e~ror iri the cross s~ctjon at e=TI/jwould give anil% 

er~or in A if AIE~lOO. 

The approximate differential cross sec.tiori rCe)' camputedwlth 

the two termH of Eq. (64) above l~Comparcd with the exact valtie in 
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Fig. (7). Once again, we 'have shown the angle where the two differ 

by 5%; for angles greater than this the approximate result can be 

used comfortably. Also shown is the result obtained from Leibfried'sl1 

study of the convergence of the series in Eq.' (10) -- the dashed 

curve gives the angle where the serjes djverges. For angles greater 

than this Eq. (64) with a large number of terms would reproduce 1(8). 

SUMMARY 

Th~behavior of the classical deflection angle 8 and the clas­

sical differenti~l cross sectionI(e) has been investigated for small 

impact parameter collisions, where e is large. The series expansion 

fore valid near e=w has b~en examined, and expressions for the 

first two terms of the series have been presented for three simple 

repulsive potentials. It has been seen that using only these two 

terms gives accurate values of I(e) in the region from 8=TI to e~TI/2 

for most energi~s. The effect of any experimental error on the 

derived potential has also been explored. In brief, accurate measure-

ments of I(e) in the region B=TI/2 to e=TI will yield the repulsive 

part of the intermolecular potential, but this potential is quite 

sensitive to experimental uncertainties in I(e). 
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TableI~.·Coeffici·er'l.ts i,for.'Expans1on of <Po .and <P i"[or Large and'" 
" Sma:J,.i:Ro'-ExponentiaI'.RepulSive,: Potential a 

.', .. :;".~~>;::.:\ .. : . ... - . " ", .. ~. 

'.' .. ' 

n· Cn 

,0 1 
1 -3'/28 
2 .,..1/160 
3 -3/4480 
459/215040 

"5,,' ·n.c. b ' 

, " 

L 0000000 
1. 3862944 
.,..1. 3:680'5'61 

" }. 4067031 
',,'-12,.699712 

61.608724 

aSee, text f,or.descriptionc"bf series. 

I. 

-Hn 

l.ooiooooo 
-1.8411169 
-41;479401 
.116.15040 
-599.30012, 

,3960,7237 

',".; 

bTh~ lntegral:J~~r thts, coefficient does' not cbnve't>ge. 
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d 
, .j. 

4t .. ' 

Ta b Ie II.. Va 1 u e S 0 f S n a 

Sl = 1.38629436 
S2 = 0.68402804 
S3 = 0.56778385 
Sit = o • 529 :i5 4 86 
Ss = 0.51340603 

00 

as = L: A /k n A = f. (2k+ 1 ). / [2 k f( k+ 1) J 2 • n k=o.k , k 
'\ 

" 
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n 

o ' 
1 
2 
3 
4 
5 

/. 

'?',' 
., 

" ,,' ,.i' '", , "', .. :', ", , ' '(:", " " ' "a 
Tab ie, TIl. 'Coefficients for Lea;,st Squares Flt,to;¢o~rtd <PI; fp~ Expol1~ntialRepul;3,ly~, P6t~n':t,J,al 

i ~ . '. ' . ""'. ' .• 

,~. Dn 

1.oo0b,(~0) 
'2.3656 (-1) 

-'-4 .• 947 '( ~2) 
. 2.007 '(-2')' 
" -5 :741 ,'" (~'3) 

} ~ 15:0 " :-'. ( :.. 4 ):' 

, , 

.' .~ 

Erl-

, , 1.0000' (;-0) 
-1. 0688., (~1) 
-6.876 { ... 3} 
~6.39 C-5} 

:a ' ,'. ""'" ' Notation: Z.0(-'-2) = ·2.rr x 10- 2 

" 

,.;. 

'";:. 

;I:n 

1.00000, (-OJ 
'-2.99587 (-1) 

8.84709 (,;.2) 
-1.46877 (-2) 

1.28299 (-3) 
- 4 • 5886,' ( -5 ) 

, c 'C .......... , . c"..... . '''_ __ 
, 

I n ' 

1.00QOO (-0) 
":9~ 9:8t2 0; (_1) 

.+2'.792,61' (-1) 
2.692-84 (-2 L 

... 2.17578 (-3) 
7 .,4J)89' (-5)' 

'·'1 

'-... 

" " Kn' 

1.0000 (~O).', 
1.3376' ;( ... O)" 

-7 .77 ",. (-1) 

'"S 

~, f;. 

':.< 

Ln 

L.OOOO(+O) 
22.0026 Xt 0) " 
- 3'.'1230. (i; '1) , 
" 5. 8463~ (+ 1) 

. ,-7.107 '(+1) 

.:.: 

t-' 
CD 
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Table IV. Coefficients for Expansion of ¢o and ¢l for 
Large Ro-Shielded Coulomb Potentiala . 

n Mn N· n 

0 1.00000000 1.00000000 
1 1. 3862944 -1. 8411169 
2 -2.7543504 -39.638284 
3 8.2131377 207.63793 
4 -35.004643 -1182.7632 

aSee text for description of series. 

• 
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Table .. \T. Coefficients for Least Squares Fit to, 4>0 and cj> 1 for Shielded Coulomb Potential 

n Pn Qn Tn Un Vp Wn y' 
n 

0 1. 000 C~O) 1.0000C-O) . 1.0000(~OY. l~OOOOOC~O) I 1.0000 C-O) 1.00000 (+ 0) 1.0QOO(+0) 
1 -4.924.(· ... 1). -'1,~:498 0 (~O) -3.~254(-1) -i.37590(~0) -2.6930( .... 0) -3.90947 (+ 0) .1.3424 (+0) 
26. 94'6(~'1) 1. 6508{-0 ) 2.4086 (-1) 1.18946(~O) -5.5572(-0) -1.27030(+1) -2.0407(+ 0) 
3 -1~252{-O)-1.4306(-O) -9.3195(-2) -6.79411(..,.1) 1.2153(..,.1) 2.63405(+1).' 2.084 (+0) 
4 1. 805C-O) .. :6.942 (-1) 1. 5607( -2) '. 2.25452(-1) -7.002(~3) -2.39321(+ 1) 
5 -1. 215 C .... 'O)· ' -3.2403(-2) 8.85366(+0) 

" 

,;.,;- .. '·0' 'C .. -.-.-.-~.-.--."--.- .. .', --\.. ... _ .. _-. 

.Zn 

1.00000.(+.0 ) 
-2.02694(+ 0) 
-3.41828 (+ 1) . 
1.21854(+2) 

-2.58067(+2) 
2.57289(+2) 

N 
o 
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Figure Captions 

Figurel!~he redu6ed differential cross section at a=rr, 
i=I('IT) (E!K)2!S , for the repulsive power potential V=K!r S is 
shown as the solid curve.' The dashed curve gives h,th:e first 
coefficient in the expansion of I( a) near 8=rr. 

Figure 2., An exampleof'theeffect of uncertainty in s when 
fittlh~ a measur~d6ross sectfon~o th@potential V=K!r s ., 
For'this Figure, E=leV and I(tr)=0.100A 2!sr is assumed to' 
be·known, and these data yields the potentials silown if s=6,' 
7 , "8,9, or 1 0 . 

Figure 3 .. The angle w~erethe approximate (two terms of Eq. (23» 
, ,and exact differential cross sectfon I(a) differ by 5% is ' 

showri'~~ the solidctirve for the potential V~K/rs. Forangles 
gr.eater than this the approximate cross section is quite 

. good. For comparison, the dashed curve is the angle where 
the large":angle series apprOXimation for a (eq. (10» diverges. 
~. . " . . . . 

Figure 4. ~he reduced differential~ross section,at ,a~rr, i=I(rr)/a 2 , 
:for the exponential repulsive potential V=A exp (...:r/a) isc ' 
shown as the solid durve. The dashed curve i~ h, the first 
coefficient in the expanSion Of I(e) near a=rr. 

Figure' 5. The angle where ;the apprOXimate (two terms of Eq. (46» 
and exact Ica) diff~r by 5% for the potential V=A exp(-r!a) 
is the solidcurv~. The dashed curve is the angle where the 
la~ge-angle series approximation for e (eq.( 10) ) diverges 
for this potential. 

Figure 6. The reduced differential cross se'ction at e=rr, , 
j=I ( 'IT)!a 2, for the shielded Coulomb pote:ritialV=A (a!r) exp (-r!a) 
is shown as the solid curve. The dashed curve is h, the first 
coefficient in the expansion of I(a) near a=rr. 

I 

~I 
I 

Figure 7. The angle where the approximate (two terms of Eq. (64» I 

and exact I(a) differ by 5% for the potential V=A (a/r)exp(-r!a) 
1s tbe ~olid curve. The dashed curve is the angle where the 
large-angle series approximation for a (eq.' (10» diverges 
for this potential. ' 

(~ 
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