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Abstract
Despite many behavioral and neuroimaging investigations, it remains unclear how the human cortex represents
spectrotemporal sound features during auditory imagery, and how this representation compares to auditory perception. To
assess this, we recorded electrocorticographic signals from an epileptic patient with proficient music ability in 2 conditions.
First, the participant played 2 piano pieces on an electronic piano with the sound volume of the digital keyboard on. Second,
the participant replayed the same piano pieces, but without auditory feedback, and the participant was asked to imagine
hearing the music in his mind. In both conditions, the sound output of the keyboard was recorded, thus allowing precise
time-locking between the neural activity and the spectrotemporal content of the music imagery. This novel task design
provided a unique opportunity to apply receptive field modeling techniques to quantitatively study neural encoding during
auditory mental imagery. In both conditions, we built encoding models to predict high gamma neural activity (70–150Hz)
from the spectrogram representation of the recorded sound. We found robust spectrotemporal receptive fields during
auditory imagery with substantial, but not complete overlap in frequency tuning and cortical location compared to receptive
fields measured during auditory perception.
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Introduction
Auditory imagery is defined here as the mental representation
of sound perception in the absence of external auditory stimu-
lation. The experience of auditory imagery is common, such as
when a song runs continually through someone’s mind. On an
advanced level, professional musicians are able to imagine the
sound of a piece of music by looking at its printed notes
(Meister et al. 2004). Behavioral studies have shown that struc-
tural and temporal properties of auditory features (see
(Hubbard 2010) for complete review), such as pitch (Halpern
1989), timbre (Pitt and Crowder 1992; Halpern et al. 2004), loud-
ness (Intons-Peterson 1992), and rhythm (Halpern 1988) are pre-
served during auditory imagery. Despite numerous behavioral
and neuroimaging studies, it remains unclear how these audi-
tory features are encoded in the brain during imagery.
Experimental investigation is difficult due to the lack of observ-
able stimulus or behavioral markers during auditory imagery.
Using a novel experimental paradigm to synchronize auditory
imagery events to neural activity, we quantitatively investi-
gated the neural representation of spectrotemporal auditory
features during auditory imagery in an epileptic patient with
proficient music abilities.

Previous studies have identified anatomical regions active
during auditory imagery (Kosslyn et al. 2001), and how they com-
pare to actual auditory perception. For instance, lesion (Zatorre
and Halpern 1993) and brain imaging studies (Zatorre et al. 1996;
Griffiths 1999; Halpern and Zatorre 1999; Rauschecker 2001;
Halpern et al. 2004; Kraemer et al. 2005) have confirmed the
involvement of bilateral temporal lobe regions during auditory
imagery (see Zatorre and Halpern 2005, for a review). Brain areas
consistently activated with fMRI during auditory imagery include
the secondary auditory cortex (Griffiths 1999; Kraemer et al. 2005;
Zatorre et al. 2009), the frontal cortex, the sylvian parietal tempo-
ral area (Hickok et al. 2003), ventrolateral and dorsolateral corti-
ces (Meyer et al. 2007), and the supplementary motor area
(Mikumo 1994; Petsche et al. 1996; Halpern and Zatorre 1999;
Halpern 2001; Schürmann et al. 2002; Brodsky et al. 2003).
Anatomical regions active during auditory imagery have been
compared to actual auditory perception to understand the inter-
actions between externally and internally driven cortical pro-
cesses. Several studies showed that auditory imagery has
substantial, but not complete overlap in brain areas with music
perception (Kosslyn et al. 2001)—for example, the secondary
auditory cortex is consistently activated during music imagery
and perception while the primary auditory areas appear to be
activated solely during auditory perception (Griffiths 1999; Yoo
et al. 2001; Halpern et al. 2004; Bunzeck et al. 2005).

These studies have helped to unravel anatomical brain
areas involved in auditory perception and imagery; however,
there is lack of evidence for the representation of specific
acoustic features in the human cortex during auditory imagery.
It remains a challenge to investigate neural processing during
internal subjective experience like music imagery, due to the
difficulty in time-locking brain activity to a measurable stimu-
lus during auditory imagery. To address this issue, we recorded
electrocorticographic neural signals (ECoG) of a proficient piano
player in a novel task design that permitted robust marking of
the spectrotemporal content of the intended music imagery to
neural activity—thus allowing us to investigate specific audi-
tory features during auditory imagery. In the first condition, the
participant played an electronic piano with the sound output
turned on. In this condition, the sound was played out loud
through speakers at a comfortable sound volume that allowed

auditory feedback (perception condition). In the second condi-
tion, the participant played the electronic piano with the speak-
ers turned off, and instead imagined the corresponding music
in his mind (imagery condition). In both conditions, the sound
output of the keyboard was recorded. This provided a measur-
able record of the content and timing of the participant’s music
imagery when the speakers of the keyboard were turned off and
he did not hear the music. This task design allowed precise
temporal alignment between the recorded neural activity and
spectrogram representations of music perception and imagery—
providing a unique opportunity to apply receptive field modeling
techniques to quantitatively study neural encoding during audi-
tory imagery.

A well-established role of the early auditory system is to
decompose complex sounds into their component frequencies
(Aertsen et al. 1981; Eggermont et al. 1983; Tian 2004), giving
rise to tonotopic maps in the auditory cortex (see Saenz and
Langers 2014, for a review). Auditory perception has been
extensively studied in animal models and humans using spec-
trotemporal receptive field (STRFs) analysis (Aertsen et al. 1981;
Clopton and Backoff 1991; Theunissen et al. 2000; Chi et al.
2005; Pasley et al. 2012), which identifies the time-frequency
stimulus features encoded by a neuron or population of neu-
rons. STRFs are consistently observed during auditory percep-
tion tasks, but the existence of STRFs during auditory imagery
is unclear due to the experimental challenges associated with
synchronizing neural activity and the imagined stimulus. To
characterize and compare the spectrotemporal tuning proper-
ties during auditory imagery and perception, we fitted 2 encod-
ing models on data collected from the perception and imagery
conditions. In this case, encoding models describe the linear
mapping between a given auditory stimulus representation
and its corresponding brain response. For instance, encoding
models have revealed the neural tuning properties of various
speech features, such as acoustic, phonetic, and semantic
representations (Pasley et al. 2012; Tankus et al. 2012;
Mesgarani et al. 2014; Lotte et al. 2015; Huth et al. 2016).

In this study, the neural representation of music perception
and imagery was quantified by STRFs that predict high gamma
(HG; 70–150Hz) neural activity. High gamma correlates with the
spiking activity of the underlying neuronal ensemble (Miller
et al. 2007; Boonstra et al. 2009; Lachaux et al. 2012) and reliably
tracks speech and music features in auditory and motor cortex
(Crone et al. 2001; Towle et al. 2008; Llorens et al. 2011; Pasley
et al. 2012; Sturm et al. 2014). Results demonstrated the pres-
ence of robustly measureable spectrotemporal receptive fields
during auditory imagery with extensive overlap in frequency
tuning and cortical location compared to receptive fields mea-
sured during auditory perception. Predictive accuracy was com-
pared to alternative encoding and decoding models designed to
control for potential motor confounds associated with piano
playing. These results provide a quantitative characterization
of the shared neural representation underlying auditory per-
ception and the subjective experience of auditory imagery.

Materials and Methods
Participant and Data Acquisition

Electrocorticographic (ECoG) recording was obtained using sub-
dural electrode arrays implanted in one patient undergoing neu-
rosurgical treatment for refractory epilepsy. The participant
gave his written informed consent prior to surgery and experi-
mental testing. The experimental protocol was approved by the
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University of California, San Francisco and Berkeley Institutional
Review Boards and Committees on Human Research. The partici-
pant was a proficient piano player (age of start: 7, years of music
education: 10, hours of training per week: 5). Prior studies have
shown that music training is associated with improved auditory
imagery ability, such as pitch and temporal acuity (Aleman et al.
2000; Lotze et al. 2003; Janata and Paroo 2006). A 256-electrode
grid was implanted on the left hemisphere (Fig. 2A). Grid location
was defined solely by clinical requirements. Inter-electrode spac-
ing (center-to-center) was 4mm and the electrode contact area
diameter was 2.3mm. Localization and co-registration of electro-
des was performed using the structural MRI. Multi-electrode
ECoG data were amplified and digitally recorded with sampling
rate of 3052Hz. ECoG signals were re-referenced to a common
average after removal of electrodes with epileptic artifacts or
excessive noise (including broadband electromagnetic noise from
hospital equipment or poor contact with the cortical surface). In
addition to the ECoG signals, the audio output of the piano was
recorded along with the multi-electrode ECoG data.

Experimental Paradigm

The recording session included 2 conditions. In the first task,
the participant played 2 music pieces on an electronic piano
with the speakers of the digital keyboard turned on (perception
condition; Fig. 1A). In the second task, the participant played
the 2 same piano pieces, but the volume of the speaker system
was turned off to establish a silent room. The participant was
asked to imagine hearing the corresponding music in his mind
as he played the piano (imagery condition; Fig. 1B). In both con-
ditions, the audio signal from the line output jack of the key-
board was analogously recorded in synchrony with the ECoG
signal at 24 414Hz. The recorded sound allowed synchronizing
the auditory spectrotemporal patterns of the imagined music
and the neural activity when the speaker system was turned
off and no audible sounds were recorded in the room. Figure 1B
illustrates that the sound recorded in synchrony with the ECoG
data (even when the speakers were turned off and the partici-
pant did not hear the music).

The 2 music pieces were the “Prelude in C Minor, Op. 28, No.
20” by Frederic Francois Chopin and the “Fugue No.1 In C
Major, BWV 846” by Johann Sebastian Bach. Prior to the surgery,
the imagery experiment was described to the patient who then
selected these 2 music pieces based on familiarity and ease of
performing the perception and imagery tasks. The patient
reported that he played by reading the scores and was able to
use auditory imagery vividly in synchrony with the spectral

and temporal features elicited by the keypresses, including the
lowest and highest pitches in the music pieces. In addition,
self-report by the patient indicated he did not purposefully
vary the tempo while playing, and a control encoding model
analysis based on tempo variance revealed no significant rela-
tionship between tempo variance and the neural response (see
Supplementary Materials for details). To assess general audi-
tory imagery abilities, the participant completed the “Bucknell
Audiotry Imagery Scale—Vividness and Control” (BAIS; Halpern
2015), a self-report assessment including subscales for musical,
verbal, and environmental sounds that is based on 2 14-item
questionnaires, respectively. In the Vividness test, the partici-
pant was asked to construct an auditory image (e.g., the sound
of gentle rain), and rate his image for each item on a 7-point
scale (1 = no image present at all; 7 = as vivid as actual sound).
In the Control test, the original item was again described (e.g.,
the sound of gentle rain), and the participant was asked to
change it to a new sound (e.g., the gentle rain turns into a vio-
lent thunderstorm), and rate how easily he could change the
first image to the second image (1 = no image present at all; 7 =
extremely easy to change the item). The participant’s rating
was 4.9/7 for the Vividness scale and 5.2/7 for the Control scale,
which is within the range of previously reported assessments
(2.9–6.9; Halpern 2015; Lima et al. 2015), suggesting that the par-
ticipant was able to successfully perform the imagery task.

Feature Extraction

We extracted the ECoG signal in the high gamma frequency
band from 8 bandpass filters (hamming window non-causal
filter of order 20, logarithmically increasing center frequencies
(70–150 Hz) and semi-logarithmically increasing bandwidths),
and extracted the envelope using the Hilbert transform. Prior to
model fitting, the power was averaged across these 8 bands,
downsampled to 100Hz and z-scored.

Auditory Spectrogram Representation

The auditory spectrogram representation was a time-varying
representation of the amplitude envelope at acoustic frequencies
logarithmically spaced between 200 and 7000Hz. This represen-
tation was calculated by affine wavelet transforms of the sound
waveform (output of the keyboard) using auditory filter banks
that mimics neural processing in the human auditory periphery
(Chi et al. 2005). To compute these acoustic representations, we
used the NSL MATLAB toolbox (http://www. isr.umd.edu/Labs/
NSL/Software.htm).

Figure 1. Experimental task design. (A) The participant played an electronic piano with the sound of the digital keyboard turned on (perception condition). (B) In the

second condition, the participant played the piano with the sound turned off and instead imagined the corresponding music in his mind (imagery condition). In both

conditions, the sound output of keyboard was recorded in synchrony with the neural signals (even when the participant did not hear any sound in the imagery condi-

tion). The models take as input a spectrogram consisting of time-varying spectral power across a range of acoustic frequencies (200–7000Hz, bottom left) and output

time-varying neural signals. To assess the prediction accuracy, the predicted neural signal (light lines) is compared to the original neural signal (dark lines).
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Encoding Model

The neural encoding model, based on the spectrotemporal
receptive field (STRF) (Theunissen et al. 2000) describes the lin-
ear mapping between the music stimulus and the high gamma
neural response at individual electrodes. The encoding model
was estimated as follows:

∑ ∑ τ τˆ ( ) = ( ) ( − )
τ

R t n h f n S t f, , , , ,
f

where ˆ ( )R t n, is the predicted high gamma neural activity at
time t and electrode n, S(t−τ, f) is the spectrogram representa-
tion at time (t−τ), and acoustic frequency f. Finally, h(τ, f, n) is
the linear transformation matrix that depends on the time lag
τ, the frequency f, and electrodes n. h represents the spectro-
temporal receptive field of each electrode. The neural tuning
properties of a variety of stimulus parameters in different sen-
sory systems have been assessed using STRFs (Wu et al. 2006).
We used Ridge regression to fit the encoding model (Thirion
et al. 2011), and a 10-fold cross-validation resampling proce-
dure, with no overlap between training and test partitions
within each resample. We performed grid search on the train-
ing set to define the penalty coefficient α and the learning rate
η, using a nested loop cross-validation approach. Statistical sig-
nificance of individual parameters was assessed by the z-test
(mean coefficient divided by standard error of the mean across
resamples). For display in the figures, model parameters with
z < 3.1 (P < 0.001) were set to zero in order to emphasize only
significant weights.

Decoding Model

The decoding model linearly mapped the neural activity to the
music representation, as a weighted sum of activity at each
electrode, as follows:

∑ ∑ τ τˆ ( ) = ( ) ( − )
τ

S t f g f n R t n, , , , ,
n

where ˆ ( )S t f, is the predicted music representation at time t
and frequency f. R(t−τ, n) is the HG neural response of electrode
n at time (t−τ), τ is the time lag ranging between −100 and
400ms. Finally, g(τ, f, n) is the linear transformation matrix that
depends on the time lag τ, frequency f, and electrode n. Both,
neural response and music representation were synchronized,
downsampled to 100Hz, and standardized to zero mean and
unit standard deviation prior to model fitting. To fit model para-
meters, we used gradient descent with early stopping regulari-
zation. We used a 10-fold cross-validation resampling scheme,
and 20% of the training data were used as validation set to
determine the early stopping criterion. Finally, model prediction
accuracy was evaluated on the independent testing set, and the
parameter estimates were standardized to yield the final model.

Evaluation

Prediction accuracy was quantified using the correlation coeffi-
cient (Pearson’s r) between the predicted and actual HG signal
using data from the independent test. Overall prediction accu-
racy was reported as the mean correlation over folds. The z-test
was applied for all reported mean r values. Electrodes were
defined as significant if the P-value was smaller than the signifi-
cance threshold of α = 0.05 (95th-percentile; FDR correction).

To further investigate the neural encoding of spectrotemporal
acoustic features during music perception and music imagery,

we analyzed all the electrodes that were at least significant in
one condition (unless otherwise stated). Frequency tuning curves
were estimated from STRFs (not thresholded), by first setting all
inhibitory weights to zero (David et al. 2007), then averaging
across the time dimension and converting to standardized z-
scores. Frequency tuning peaks were identified as significant
peak parameters in the acoustic frequency tuning curves (z > 3.1;
P < 0.001)—separated by more than one-third an octave.

Decoding accuracy was assessed by calculating the correlation
coefficient (Pearson’s r) between the reconstructed and original
music spectrogram representation using testing set data. Overall
reconstruction accuracy was computed by averaging over acous-
tic frequencies and resamples, and standard error of the mean
(SEM) was computed by taking the standard deviation across
resamples. Finally, to further assess the reconstruction accuracy,
we evaluated the ability to identify isolated piano notes from the
test set auditory spectrogram reconstructions—using similar
approach as in (Pasley et al. 2012; Martin et al. 2014).

Control Analysis for Motor Confounds

In this study, the participant played piano in 2 different condi-
tions (music perception and imagery). Movements related to face,
arm, hand, or fingers during the piano task present potential con-
founds to the encoding and decoding models. We controlled for
possible motor confounds in 4 different ways. First, we investi-
gated differences across conditions, as they cannot be explained
by motor confounds, because movements were similar in both
tasks. Second, we defined auditory sensory areas, by building
encoding models on data recorded while the participant listened
passively to auditory stimuli during ~35min (speech sentences
from the TIMIT corpus (Garofolo 1993) and classical music pieces
by Johann Sebastian Bach—“The Art of Fugue” in C minor (BWV
1080), Contrapunctus 1–3 played by Grigory Sokolov), using the
same procedure described in the section “Encoding model”.
Third, we built an encoding model to predict the amount of vari-
ance accounted by motor movements. For this, we built encoding
models using motor-related keypresses as an input feature (key-
press control condition). Keypresses were detected from the audio
waveform using the MIRtoolbox (Lartillot et al. 2008). Values in
the input feature were set to 1 if a keypress onset was detected or
0 if no keypress was detected. Fourth, we built additional decod-
ing models explicitly designed to test motor versus auditory con-
tributions: 1) a decoding model using only temporal lobe
electrodes traditionally not defined as motor areas (Langers and
van Dijk 2012) and 2) only auditory-responsive electrodes from
the passive listening conditions (speech and music) described in
the section “Decoding model”.

Results
High Gamma Neural Encoding During Auditory
Perception and Imagery

The participant performed 2 famous music pieces: Chopin’s
Prelude in C minor, Op. 28, No.20 (length of the piece played in
the perception condition = 122.3 s and in the imagery condition =
120.2 s) and Bach’s Prelude in C major BWV 846 (length of the
piece played in the perception condition = 112.4 s and in the
imagery condition = 111.2 s). Example auditory spectrograms
from Chopin’s Prelude determined through the participant’s key-
presses with the electronic piano are shown in Figure 2B for both
perception and imagery conditions. To compare spectrotemporal
auditory representations during music perception and music
imagery tasks, we fit separate spectrotemporal receptive field
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(STRF) models in each condition. We used these models to quan-
tify specific anatomical and neural tuning differences between
auditory perception and imagery.

For both perception and imagery conditions, the observed
and predicted high gamma neural responses are illustrated for 2
individual electrodes in the temporal lobe, respectively (Fig. 2C),
together with the corresponding music spectrum (Fig. 2B). The
predicted neural response for electrode 67 was correlated with
its corresponding measured neural response in both perception
(r = 0.41; P < 10–7; one-sample z-test; FDR correction) and imagery
(r = 0.42; P < 10–4; one-sample z-test; FDR correction) conditions.
The predicted neural response for electrode 179 was correlated
with the actual neural response only in the perception condition
(r = 0.23; P < 0.005; one-sample z-test; FDR correction) but not in
the imagery condition (r = −0.02; P > 0.5; one-sample z-test; FDR
correction). The difference between both conditions was signifi-
cant for electrode 179 (P < 0.05; 2-sample t-test), but not for elec-
trode 67 (P > 0.5; 2-sample t-test). This suggests that there is an
underlying relationship between time-varying imagined sound
features and STG neural activity, but that this relationship is
dependent on cortical location.

To further investigate anatomical similarities and differences
between the perception and imagery conditions, we plotted the
anatomical layout of prediction accuracy of individual electro-
des. In both conditions, results showed that sites with the high-
est prediction accuracy in both conditions were located in the
superior and middle temporal gyrus, pre- and post-central

gyrus, and supramarginal gyrus (Fig. 2D; heat map thresholded
to P < 0.05; one-sample z-test; FDR correction). These results
were overlapping with auditory areas (Fig. 7B and S3; see
Material and Methods for details), and consistent with previous
findings showing the presence of STRFs in the temporal lobe
(STG, MTG), as well as sensorimotor cortex (pre- and post-
central gyrus, supramarginal gyrus) (Pasley et al. 2012;
Mesgarani et al. 2014; Cheung et al. 2016).

Among the 256 electrodes recorded, 210 were used in the
STRF analysis, while the remaining 46 electrodes were removed
due to excessive noise (epileptic artifacts, broadband electro-
magnetic noise from hospital equipment, or poor contact with
the cortical surface). Within the analyzed electrodes, 35 and 15
electrodes had significant prediction accuracy in the perception
and imagery condition, respectively (P < 0.05; one-sample
z-test; FDR correction), while 9 electrodes were significant in
both conditions (Fig. S1). To compare the prediction accuracy
across conditions, we performed additional analysis on the
electrodes that had significant accuracy in at least one condi-
tion (41 electrodes; unless otherwise stated). Prediction accu-
racy of individual electrodes was correlated between
perception and imagery (Fig. 2E; 41 electrodes; r = 0.65; P < 10–4;
randomization test). Because both perception and imagery
STRF models are based on the same auditory stimulus repre-
sentation, the correlated prediction accuracy provides strong
evidence for a shared neural representation of sound based on
spectrotemporal features.

Figure 2. Prediction accuracy. (A) Electrode location overlaid on cortical surface reconstruction of the participant’s cerebrum. (B) Overlay of the spectrogram contours

for the perception (blue) and imagery (orange) condition (10% of maximum energy from the spectrograms) corresponding to a segment of Chopin’s prelude. (C) Actual

and predicted high gamma band power (70–150Hz) induced by the music perception and imagery segment in (B). Electrode 67 has very similar predictive power across

conditions, whereas electrode 179 has significantly better predictive power for perception compared to imagery. Recordings are from 2 different temporal lobe sites

highlighted in pink in (A). (D) Prediction accuracy is plotted on the cortical surface reconstruction of the participant’s cerebrum (map thresholded at P < 0.05; FDR cor-

rection). (E) Prediction accuracy of significant electrodes of the perception model as a function of the imagery model. Electrode-specific prediction accuracy is corre-

lated between perception and imagery models (r = 0.65; P < 10–4; randomization test). (F) Prediction accuracy as a function of anatomic location (pre-central gyrus

(pre-CG), post-central gyrus (post-CG), supramarginal gyrus (SMG), medial temporal gyrus (MTG), and superior temporal gyrus (STG)).
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To assess how brain areas encoding auditory features varied
across experimental conditions, we analyzed the significant
electrodes in the gyri highlighted in Figure 2A (pre-central
gyrus (pre-CG), post-central gyrus (post-CG), supramarginal
gyrus (SMG), medial temporal gyrus (MTG), and superior tempo-
ral gyrus (STG)) using Wilcoxon signed-rank test (P > 0.05; one-
sample Kolmogorov–Smirnov test; Fig. 2F). Results showed that
the encoding accuracy in the MTG and STG was higher for the
perception (MTG: M = 0.16, STG: M = 0.13) than for the imagery
(MTG: M = 0.11, STG: M = 0.08; P < 0.05; Wilcoxon signed-rank
test; Bonferroni correction). The encoding accuracy in the pre-
CG, post-CG and SMG was not different between the perception
(pre-CG M = 0.17; post-CG M = 0.15; SMG M = 0.12; P > 0.5;
Wilcoxon signed-rank test; Bonferroni correction) and imagery
(pre-CG M = 0.14; post-CG M = 0.13; SMG M = 0.12; P > 0.5;
Wilcoxon signed-rank test; Bonferroni correction) conditions.
The significant improvement of the perception versus imagery
model was thus specific to the temporal lobe, which may reflect
underlying differences in spectrotemporal encoding mecha-
nisms, or alternatively, a greater sensitivity to discrepancies
between the actual content of imagery and the recorded sound
stimulus used in the model.

Spectrotemporal Tuning During Auditory Perception
and Imagery

To quantify similarities and differences in neural tuning, we
used the STRF models described above which were fit sepa-
rately for perception versus imagery experimental conditions
to allow comparison of neural tuning between the 2 conditions.
Examples of perception and imagery STRFs are shown in
Figure 3A for temporal electrodes (Fig. S2 for STRFs at all elec-
trodes). These STRFs highlight neural stimulus preferences as
shown by the excitatory (warm color) and inhibitory (cold color)
subregions. The similarities (correlation coefficients) between
the vectorized STRFs in the perception and imagery condition
are plotted on the surface reconstruction of the participant’s
brain for electrodes that had significant prediction accuracy in
at least one condition. Correlations coefficients ranged between
0.1 and 0.8. (Fig. 3B). STRF similarity was significantly correlated
with prediction accuracy similarity, as defined by the relative
change (abs((accperception − accimagery)/(accperception + accimagery)))

across electrodes (r = −0.40, P < 0.05), suggesting that electrodes
which predicted well across both conditions also had similar
spectrotemporal tuning in the 2 conditions. Overall similarities
in STRF tuning and prediction accuracy suggest a shared audi-
tory representation between auditory imagery and perception.

In addition to the overall STRF structure, we analyzed simi-
larity in temporal and frequency tuning independently.
Figure 4A shows the correlation in latencies for the perception
and imagery conditions, defined as the time lag of the maxi-
mum deviation in the standardized STRF for electrodes that are
significant in at least one condition. The peak latency corre-
lated between conditions (r = 0.43; P < 0.005; randomization
test), and the mean peak latency between conditions was not
significantly different (mean perception = 79ms and mean
imagery = 82ms; P > 0.5; 2-sample t-test; P > 0.5; 2-sample
t-test). This suggests that neural activity evoked by the percep-
tual and imagery processes had similar temporal offsets rela-
tive the piano keypress. We next analyzed frequency tuning
curves estimated from the STRFs (see Materials and Methods for
details). Examples of frequency tuning curves for both percep-
tion and imagery encoding models are shown for the electrodes
indicated by the black outline in the anatomic brain (Fig. 4B).
Across conditions, the majority of individual electrodes exhib-
ited a complex frequency tuning profile. For each electrode, sim-
ilarities between the frequency tuning curves in the perception
and imagery models were quantified using Pearson’s correlation
coefficient. The anatomical distribution of frequency tuning
curve similarity is plotted in Figure 4B, with the correlation at
individual sites ranging between r = −0.3 and 0.6. Different elec-
trodes are sensitive to different acoustic frequencies important
for auditory processing. We next assessed how frequency tun-
ing of predictive electrodes (N = 41) varied during the 2 condi-
tions. First, to evaluate how the acoustic spectrum was covered
at the population level, we quantified the proportion of signifi-
cant electrodes with a tuning peak at each acoustic frequency.
Figure 4C depicts the number of electrodes with significant STRF
tuning for each frequency bin for the perception (blue) and
imagery (orange) conditions. Note that the maximum funda-
mental frequency of the keyboard was ~4200Hz but acoustic
energy is present in higher frequencies due to harmonics
(Fig. 5B). Tuning peaks were identified as significant parameters
in the acoustic frequency tuning curves (z > 3.1; P < 0.001;

Figure 3. Spectrotemporal receptive fields. (A) Examples of standard STRFs for the perception (left panel) and imagery (right panel) models (warm colors indicate

where the neuronal ensemble is excited, cold colors indicate where the neuronal ensemble is inhibited). Electrodes whose STRFs are shown are outlined in black in

(B). Gray electrodes were removed from the analysis due to excessive noise (see Materials and Methods). (B) The correlation coefficients between the vectorized STRFs

in the perception and imagery condition are plotted on the surface reconstruction of the participant’s brain for electrodes that had significant prediction accuracy in

at least one of the perception and imagery conditions.
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separated by more than one-third an octave). The proportion of
electrodes with tuning peaks was larger for the perception
(mean = 0.19) than for the imagery (mean = 0.14) condition (Fig.
4C; P < 0.05; Wilcoxon signed-rank test). Results showed that
some sites exhibit significant frequency tuning at frequencies
<500Hz and >6000Hz during the imagery condition. This indi-
cates that neural activity at these sites systematically increased
with the (assumed ground truth) imagery contents of high and
low frequencies. If the pianist were unable to imagine this fre-
quency range, we would expect nonsignificant tuning (weights
close to 0) at high or low frequencies because there would be no
systematic, time-locked relationship between an increase in
neural activity and the low or high frequencies produced by the
keypresses during imagery. Over the full range of the acoustic
frequency spectrum, both conditions exhibited reliable fre-
quency selectivity. The fraction of acoustic frequency bins cov-
ered with peaks by predictive electrodes was 0.91 for the
perception and 0.88 for the imagery. These findings showed
robust spectrotemporal receptive fields during auditory imagery
with substantial, but not complete overlap in frequency tuning
and cortical location compared to receptive fields measured dur-
ing auditory perception. This is in accordance with previous
research that showed partial overlap across conditions (Griffiths
1999; Kosslyn et al. 2001; Yoo et al. 2001; Halpern et al. 2004;
Bunzeck et al. 2005).

Reconstruction of Auditory Features During Music
Perception and Imagery

An additional indication showing that auditory perceptual ele-
ments of sounds are represented in the brain is to reconstruct
the auditory spectrogram representations from high gamma
neural signals. Results showed that the overall reconstruction
accuracy was higher than zero in both conditions (Fig. 5A; left
panel; P < 0.001; randomization test), but did not differ between
conditions (P > 0.05; 2-sample t-test). As a function of acoustic
frequency, mean accuracy ranged from r = 0 to 0.45 (Fig. 5A;
right panel). These results showed for the first time that acous-
tic features can be accurately decoded from subjective experi-
ence of music imagery.

We further assessed reconstruction accuracy by evaluating
the ability to identify isolated piano notes from the test set audi-
tory spectrogram reconstructions. Examples of original and
reconstructed segments are depicted in Figure 5B for the percep-
tion (left) and imagery model (right). For the identification, we
extracted 0.5-s segments at piano note onsets from the original
and reconstructed auditory spectrogram. Note that onsets were
defined as the maxima of the onset detection curve (amplitude
envelop of the spectrogram), using the MIRtoolbox (Lartillot et al.
2008). Then, we computed the correlation coefficient between a
target reconstructed spectrogram and original spectrograms in

Figure 4. Auditory tuning. (A) Peak latency estimated from STRFs was significantly correlated between perception and imagery conditions (r = 0.43; P < 0.005; random-

ization test). (B) Examples of frequency tuning curves (right) for perception and imagery encoding models (averaged over the time lag dimension of the STRF). Black

outline in the surface reconstruction of the patient’s brain (left) indicates electrode location. Gray electrodes were removed from the analysis due to excessive noise.

Correlation coefficients between the perception and imagery frequency tuning curves are plotted for significant electrodes on the cortical surface reconstruction (left).

The bottom panel plots the histogram of electrode correlation coefficients between perception and imagery frequency tuning. (C) Proportion of predictive electrode

sites (N = 41) with peak tuning at each frequency. Tuning peaks were identified as significant parameters in the acoustic frequency tuning curves (z > 3.1; P < 0.001)

and separated by more than one-third of an octave.
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the candidate set. Finally, we sorted the coefficients and com-
puted the identification rank as the percentile rank of the correct
spectrogram. This metric reflects how well the target reconstruc-
tion matched the correct original spectrogram out of all candi-
date. Results showed that the median identification rank of
individual piano notes was significantly higher than chance for
both conditions (Fig. 5C; left panel; median identification rank
perception = 0.72 and imagery = 0.69; P < 0.001; randomization
test). Similarly, the area under the curve (AUC) of identification
performance for the perception (blue curve) and imagery (orange
curve) model was well above chance level (Fig. 5C; right panel;
diagonal black dashed line indicates no predictive power; P <
0.001; randomization test).

Cross-condition Analysis

Another way to evaluate the overlapping degree between both
perception and imagery conditions is to apply the decoding
model built in the perception condition to imagery neural data,
and vice-versa. This approach is based on the hypothesis that
both tasks share neural mechanisms and is useful when one of

the models cannot be built directly, because of the lack of
observable measures. This technique has been successfully
applied to various fields, such as vision (Haynes and Rees 2005;
Reddy et al. 2010; Horikawa et al. 2013) and speech (Martin
et al. 2014). When the model was trained on the imagined con-
dition and tested on the imagined condition (r = 0.28; P < 0.001;
randomization test), decoding performance significantly
improved by 50% (P < 0.0001; one-sided Hoteling’s t-test) com-
pared to when the perception model was applied to imagined
data (r = 0.19; P < 0.001; randomization test; Fig. 6). This high-
light the importance of having a model that is specific to each
condition, and also emphasize that these results are not based
on movements per se, as these are equal across conditions,
thus should give equal detection results.

Control Analysis for Motor Confounds

We controlled for possible motor confounds in 4 different ways.
First, differences across conditions cannot be explained by
motor confounds, because movements were similar in both
tasks. For instance, the STRFs of one temporal lobe electrode
(electrode 67) are correlated between perception and imagery
conditions (Fig. 7A; r = 0.76; P < 0.05; Bonferroni correction) and
the encoding accuracies at this electrode are similar across
conditions (mean perception = 0.41; mean imagery = 0.42; P >
0.05; 2-sample t-test). The STRFs in an adjacent electrode (elec-
trode 68) exhibit distinct, uncorrelated tuning patterns when
measured during the 2 conditions (Fig. 7A; r = 0.04; P > 0.05;
Bonferroni correction) and different encoding accuracies (mean
perception = 0.15; mean imagery = 0.03; P < 0.05; 2-sample
t-test). Because essentially the same motor sequence was pres-
ent in both the perception and imagery conditions, the effects
of this motor sequence at each individual site would be
expected to be similar across conditions. This electrode-specific
control for motor sequence suggests that motor activity is
unlikely to explain the differences in neural tuning and predic-
tion accuracies observed between perception and imagery.
Second, brain areas that significantly encoded music perception
and imagery overlapped with auditory sensory areas (Fig. 7B
and Fig. S3), as revealed by the prediction accuracy and STRFs
during passive listening (no movement) to TIMIT sentences and
classical music. Although motor commands have been shown
to modulate auditory responses (Zatorre et al. 2007), it is
unlikely that the motor commands associated with pressing
piano keys can induce prediction accuracies and STRFs that are

Figure 5. Reconstruction accuracy. (A) Left panel, overall reconstruction accuracy

of the spectrogram representation for perception (blue) and imagery (orange)

conditions. Error bars denote SEM. Right panel, reconstruction accuracy as a

function of acoustic frequency. Shaded region denotes SEM. (B) Examples of

original and reconstructed segments for the perception (left) and the imagery

(right) model. (C) Left panel, distribution of identification rank for all recon-

structed spectrogram (N = 140 for perception and N = 135 for imagery). Median

identification rank is 0.65 and 0.63 for the perception and imagery decoding

model, respectively, which is significantly higher than 0.50 chance level (P <

0.001; randomization test). Right panel, receiver operating characteristic (ROC)

plot of identification performance for the perception (blue curve) and imagery

(orange curve) model. Diagonal black line indicates no predictive power.

Figure 6. Cross-condition analysis. Reconstruction accuracy when the decoding

model was trained on the perception condition and applied to the imagery neu-

ral data and vice-versa. Decoding performance improved by 50% when the

model was trained and tested on the imagery condition (r = 0.28; P < 0.001; ran-

domization test), compared to when the perception model was applied to imag-

ery data (r = 0.19; P < 0.001; randomization test).
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overlapping with those obtained with pure auditory listening.
Third, we evaluated a control encoding model based on motor
patterns alone to quantify the prediction accuracy that could be
accounted for by movements associated with the keypress (see
Materials and Methods for details). The encoding prediction
accuracies for the keypress control condition were not signifi-
cant (P > 0.05; one-sample z-test; FDR correction). Finally, we
built 2 additional decoding models, using 1) only temporal lobe
electrodes and 2) only auditory-responsive electrodes (Fig. 7C;
see Materials and Methods for details). Both models showed sig-
nificant reconstruction accuracy (P < 0.001; randomization test)
and identification rank (P < 0.001; randomization test). This indi-
cates that even using only auditory-responsive electrodes (thus
removing the more motor-driven electrodes), we are still able to
reconstruct the spectrograms significantly above chance levels.

Discussion
Experimental studies of auditory imagery are difficult due to
the subjective nature and absence of verifiable and observable
measures. The task design in the current study allowed precise
time-locking between the recorded neural activity and spectro-
temporal features of music imagery, alleviating a core method-
ological issue in most imagery research. This approach
provided a unique opportunity to quantitatively study neural
encoding during auditory imagery and compare neural tuning
properties with auditory perception. We describe the first evi-
dence of spectrotemporal receptive fields and neural tuning to
auditory features during music imagery and provide quantita-
tive comparison to the neural encoding of actual music percep-
tion in the same cortical sites. In particular, we observed that
neuronal ensembles were tuned to acoustic frequencies during
imagined music, suggesting that neural encoding of spectral
features occurs in the absence of actual perceived sound. This
is in agreement with previous studies showing increased neu-
ral activity during sound imagery (Zatorre et al. 1996; Griffiths
1999; Halpern and Zatorre 1999; Rauschecker 2001; Halpern
et al. 2004; Kraemer et al. 2005), as well as studies of auditory
neural encoding during “restored speech”, when a speech
instance is replaced by noise, but the listener instead perceives
a specific speech sound (Holdgraf et al. 2016; Leonard et al.
2016).

Importantly, the current results showed substantial, but not
complete overlap in functional and anatomical patterns of neu-
ral encoding for music perception compared to imagery. Across
the population of ECoG electrodes, spectral and temporal tun-
ing properties, as well as anatomical location, showed strong
correlations between perception and imagery, yet specific elec-
trodes revealed significantly different spectrotemporal tuning
between the 2 conditions. Similar patterns of partial functional
and anatomical overlap have been found in the visual system
(Kosslyn and Thompson 2000, 2003) and in the motor system
(Roth et al. 1996; Miller et al. 2010). Brain areas with significant
prediction accuracy were located in the superior and middle
temporal gyrus, pre- and post-central gyrus, and supramarginal
gyrus, and overlapped with auditory-responsive regions deter-
mined from separate passive listening data sets. STRFs outside
of traditional auditory cortex, in pre- and post-central gyrus,
and supramarginal gyrus, have been observed in a number of
ECoG studies (Pasley et al. 2012; Martin et al. 2014; Mesgarani
et al. 2014; Cheung et al. 2016), and the functional role of these
sites outside of temporal cortex remains an open research
question. These findings are in agreement with neuroimaging
studies that have consistently reported activity in motor-
related areas when imagining the sound of musical excerpts
(Zatorre and Halpern 2005) or imagining performing instru-
ments (Langheim 2002; Meister et al. 2004).

Our results also showed that auditory features can be recon-
structed from neural activity of the imagined music and used
to identify isolated piano notes from the reconstructed auditory
spectrograms. Because both perception and imagery models
are based on the same auditory stimulus representation, the
correlated prediction accuracy provides strong evidence for a
shared neural representation of sound based on spectrotem-
poral features, as suggested by previous behavioral and brain
lesion studies (see Hubbard 2010 for a review). These results
build on earlier studies showing anatomical and behavioral
similarities between perception and imagery (Griffiths 1999;
Yoo et al. 2001; Halpern et al. 2004; Bunzeck et al. 2005).

An important advantage of the encoding model approach is
that it describes not only the anatomical location of imagery
neural processes (as with prior neuroimaging work: Griffiths
1999; Kraemer et al. 2005; Zatorre et al. 2009), but also how neu-
ral tuning to specific stimulus features is organized during

Figure 7. Control analysis for motor confound. (A) STRFs for 2 neighboring electrodes for perception (left) and imagery (right) encoding models. For electrode 67, the

STRF is strongly correlated between perception and imagery conditions (r = 0.04), while there is a nonsignificant correlation (r = 0.76) in the adjacent electrode 68.

(B) Prediction accuracy plotted on the cortical surface reconstruction of the participant’s brain (map thresholded at P < 0.05; FDR correction) for the passive listening

data sets (speech and music). Black dots represent electrodes that had significant prediction accuracy in at least one of the perception and imagery conditions. (C)

Overall reconstruction accuracy (upper panel) and median identification rank (lower panel) when using all electrodes, only temporal electrodes, or only auditory-

response electrodes (see Materials and methods for details).
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auditory imagery. Our results provide an explicit characteriza-
tion, beyond anatomical overlap, of the underlying neural
representations of auditory perception and imagery. One limi-
tation of the encoding model approach is the possibility that
alternative models based on correlated stimulus representa-
tions may be a more accurate description of the neural
response. For example, a nonlinear sound representation such
as the modulation power spectrum (Chi et al. 1999) is correlated
with the spectrotemporal representation studied here and
may yield higher prediction accuracy because it models addi-
tional nonlinear neural processes not accounted for by a
spectrogram-based representation (Pasley et al. 2012). Direct
comparison of such alternative encoding models to the STRF is
an interesting avenue for future work and may identify audi-
tory features that provide a more accurate description of the
underlying imagery neural representation.

This study involved active motor movements associated with
the piano task and could represent a potential experimental con-
found. Sensory-motor interactions during musical performance
are well-known, and identification of auditory versus motor pro-
cesses remains challenging (see Zatorre et al. 2007 for a review).
For example, it is possible that practicing a musical piece over
several months could create a mapping where the motor
sequence itself induces tonotopic auditory responses in the asso-
ciated auditory cortex. To address possible motor confounds, we
used 4 distinct analyses. First, we observed differences across
conditions, which cannot be explained by motor-related neural
activity, given that the same movement sequences were per-
formed in both conditions. Second, we found that brain areas
involved during the perception and imagery conditions over-
lapped with auditory areas, suggesting that these were auditory
sensory brain responses rather than movement related neural
activity. Third, the keypress control model did not account for
variability in the neural responses, suggesting that the brain
activity was not correlated with hand movement as defined by
keypresses. Finally, we were able to decode spectrotemporal fea-
tures and identify piano keys using models built only with
auditory-responsive electrodes.

Studies have shown the importance of both hemispheres
for auditory perception and imagination (Zatorre and Halpern
1993; Zatorre et al. 1996; Griffiths 1999; Rauschecker 2001;
Halpern et al. 2004; Kraemer et al. 2005). In our task, the grid
was located on the left hemisphere, and allowed significant
encoding and decoding accuracy within high gamma frequency
ranges, consistent with the notion that music perception and
imagery processes are also evident in the left hemisphere.

Methodological issues in investigating imagery are numer-
ous, including the lack of evidence that the desired mental task
was operational. The current task design did not allow verifying
how the mental task was performed, although the behavioral
index of keypress on the piano was utilized to indicate the pre-
cise time and frequency content of the intended imagined
sound. In addition, higher cognitive functions, such as atten-
tion and other task-related processes can rapidly alter neural
selectivity and STRF structure (Fritz et al. 2003; Atiani et al.
2009; Mesgarani et al. 2009; David et al. 2012; Ding and Simon
2012; Mesgarani and Chang 2012). While the current study
focused on music imagery, neural selectivity might be altered
during imagery of other auditory stimuli, such as speech or
environmental sounds, if different attentional or task-related
mechanisms are engaged. Finally, we recorded a skilled piano
player, and it has been suggested that participants with musi-
cal training exhibited better pitch and temporal acuity during
auditory imagery than did participants with little or no musical

training (Janata and Paroo 2006; Herholz et al. 2008).
Furthermore, tonotopic maps located in the STG are enlarged
within trained musicians (Pantev et al. 1998). Thus, having a
trained piano player may have contributed to improved audi-
tory imagery ability (see also Halpern 1988; Zatorre and
Halpern 1993; Zatorre et al. 1996), and reduced issues related to
spectral and temporal errors. Given the music proficiency of
this single participant, our results might not be representative
of the general population and further investigations are needed
to assess with participants with less musical background.

Supplementary Material
Supplementary data is available at Cerebral Cortex online.
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