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RESEARCH

Right‑left ventricular shape variations 
in tetralogy of Fallot: associations 
with pulmonary regurgitation
Charlène A. Mauger1,2†, Sachin Govil3†, Radomir Chabiniok4,5,6,7, Kathleen Gilbert2, Sanjeet Hegde3,8, 
Tarique Hussain4, Andrew D. McCulloch3, Christopher J. Occleshaw9, Jeffrey Omens3, James C. Perry3,8, 
Kuberan Pushparajah10, Avan Suinesiaputra11, Liang Zhong12,13   and Alistair A. Young1,10*   

Abstract 

Background:  Relationships between right ventricular (RV) and left ventricular (LV) shape and function may be useful 
in determining optimal timing for pulmonary valve replacement in patients with repaired tetralogy of Fallot (rTOF). 
However, these are multivariate and difficult to quantify. We aimed to quantify variations in biventricular shape associ-
ated with pulmonary regurgitant volume (PRV) in rTOF using a biventricular atlas.

Methods:  In this cross-sectional retrospective study, a biventricular shape model was customized to cardiovascu-
lar magnetic resonance (CMR) images from 88 rTOF patients (median age 16, inter-quartile range 11.8–24.3 years). 
Morphometric scores quantifying biventricular shape at end-diastole and end-systole were computed using principal 
component analysis. Multivariate linear regression was used to quantify biventricular shape associations with PRV, cor-
rected for age, sex, height, and weight. Regional associations were confirmed by univariate correlations with distances 
and angles computed from the models, as well as global systolic strains computed from changes in arc length from 
end-diastole to end-systole.

Results:  PRV was significantly associated with 5 biventricular morphometric scores, independent of covariates, and 
accounted for 12.3% of total shape variation (p < 0.05). Increasing PRV was associated with RV dilation and basal bulg-
ing, in conjunction with decreased LV septal-lateral dimension (LV flattening) and systolic septal motion towards the 
RV (all p < 0.05). Increased global RV radial, longitudinal, circumferential and LV radial systolic strains were significantly 
associated with increased PRV (all p < 0.05).

Conclusion:  A biventricular atlas of rTOF patients quantified multivariate relationships between left–right ventricular 
morphometry and wall motion with pulmonary regurgitation. Regional RV dilation, LV reduction, LV septal-lateral 
flattening and increased RV strain were all associated with increased pulmonary regurgitant volume. Morphometric 
scores provide simple metrics linking mechanisms for structural and functional alteration with important clinical 
indices.

Keywords:  Cardiovascular magnetic resonance, Ventricular function, Atlases, Myocardial deformation, Tetralogy of 
Fallot
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Background
The survival rate of repaired tetralogy of Fallot (rTOF) 
patients has greatly increased due to the improvement 
of surgical repair. Currently, the early mortality rate is 
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below 2% [1] and the 25-year survival rate is above 94% 
[2]. However, pulmonary regurgitation (PR) is a common 
consequence of the surgical relief of right ventricular 
(RV) outflow tract narrowing. rTOF patients are there-
fore monitored for PR, and its effects on RV dysfunc-
tion and long-term outcomes [3, 4]. Despite being well 
tolerated in childhood, PR has damaging effects on RV 
dysfunction and leads to RV dilation over an ill-defined 
period of time. In follow-up, rTOF patients may demon-
strate progressive exercise intolerance, arrhythmia, right- 
or left-sided heart failure, RV and/or left ventricular (LV) 
dysfunction or sudden cardiac death [5–7]. Patients with 
a history of severe PR are at risk for irreversible RV func-
tional impairment making timing for pulmonary valve 
replacement a critical issue [8, 9]. However, the timing of 
valve replacement based on RV size and systolic function 
remains a subject of debate, with wide inter-institutional, 
qualitative variations of clinical practice [3, 4, 10, 11].

Studies of RV remodeling in rTOF have demonstrated a 
strong relationship between RV dilation, RV bulging, and 
apical dilation with the presence of pulmonary regurgi-
tation [12–14]. However, the relationships with LV func-
tion and the underlying mechanisms are less understood 
in rTOF population and few studies have focused on 
RV-and-LV interactions [15–19]. Increased RV dilation 
has been known to affect LV function in rTOF [19–22] 
and approximately 20% of adult rTOF patients develop 
LV dysfunction [23]. Furthermore, the close relationship 
between LV ejection fraction (LVEF) and RV ejection 
fraction (RVEF) has been previously demonstrated [24, 
25], indicating the importance of ventricular interactions 
in rTOF. This has led to the suggestion that LV function 
and inter-ventricular interactions should be considered 
in the timing of pulmonary valve replacement [26, 27]. 
Conventional clinical metrics of ventricular volume and 
function remain limited in their scope and do not fully 
explain the contribution of biventricular shape and inter-
action, thus limiting the value of imaging data in clinical 
evaluation and understanding of pathophysiology in rela-
tion to clinical outcomes.

Here, we use a biventricular atlas [28] to quantify rela-
tionships between RV and LV shape and function, and 
examine their associations with PR, in a retrospective 
cross-sectional study of 88 rTOF patients with no history 
of pulmonary valve replacement. We aimed to determine 
whether novel 3D shape features, calculated from stand-
ard 3D imaging exams, can be used to quantify specific 
shape and function alterations associated with clinically 
important metrics such as PR. If so, these methods could 
be readily applied to any cross-sectional imaging exam 
to provide shape scores in relation to factors of interest, 
thereby providing a mechanistic link between these fac-
tors and alterations in cardiac geometry and function 

and reducing inherent inaccuracies of qualitative clinical 
decision-making.

Methods
Study population
Cardiovascular magnetic resonance (CMR) examinations 
and clinical data from 88 rTOF patients were obtained 
from the Cardiac Atlas Project (CAP) congenital heart 
disease database [29].

CAP is a large-scale database of cardiac images and 
limited associated clinical data that facilitates data shar-
ing for the development of new methods for image analy-
sis and collaborative statistical analysis of heart shape 
and function across multiple cohorts (cardiacaltas.org). 
Datasets related to congenital heart disease were added 
to the CAP beginning in 2015.

In this paper, deidentified datasets were contributed 
from two clinical centers (Auckland, New Zealand and 
San Diego, California, United States) with approval from 
local institutional review boards compatible with data 
sharing. Demographic data are shown in Table 1. Patients 
with pulmonary valve replacement, or severe tricuspid 
regurgitation from either echocardiography or CMR 
were excluded.

Table 1  Characteristics of the 88 rTOF participants

Normally distributed data are presented as mean ± std. dev and median 
(interquartile ranges) otherwise. PRF pulmonary regurgitant fraction, PRVIi 
pulmonary regurgitant volume index, BMI body mass index. *Tricuspid 
regurgitation from the MRI report

Variables N = 88

Age at CMR scan (y) 16 (11.8, 24.3)

Sex (F/M) 35/53

Height (cm) 160 (149.8, 168)

Weight (kg) 58.3 ± 25.4

PRF (%) 36.9 ± 14.4

PRVi (ml/m2) 23.7 (14.2, 33.3)

Age at primary repair (y) 0.8 (0.25, 1.6)

Time after primary repair (y) 15.7 (10.9, 21)

BMI (kg/m2) 23.0 (17.8, 26.5)

Tricuspid regurgitation*:

None-trace 57 (64.8%)

Mild 18 (20.4%)

Mild-to-moderate 6 (6.8%)

Moderate 7 (8.0%)

Severe 0

Numbers with reintervention 33 (37.5%)

Pulmonary valve replacement 0

Types of repair:

Transannular patch 69 (78.4%)

Valve-Sparing 5 (5.7%)

Conduit 14 (15.9%)
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CMR imaging protocol and image analysis
CMR images were acquired with either prospectively or 
retrospectively electrocardiogram (ECG) gated balanced 
steady-state free-precession cine sequence on 1.5 T CMR 
scanners (Avanto, Siemens Healthineers, Erlangen, Ger-
many, or Discovery MR450, GE Healthcare Systems, 
Chicago, Illinois, United States) during breath-holding. 
The short axis slices were acquired parallel to the tricus-
pid annulus plane and spanned both ventricles. Long-
axis slices were obtained through all valves in standard 
4-chamber, 2-chamber, LV outflow tract and RV outflow 
tract views. Typical imaging parameters were: repetition 
time 24-32 ms; echo time 1.1–1.5 ms; flip angle 70–80°; 
pixel size reconstructed to in plane 0.59–1.75 × 0.59–
1.75 mm; slice thickness 4–6 mm; number of time frames 
20–35; image matrix 180–224 × 208–256, and field of 
view 200–300 mm.

Antegrade and retrograde pulmonary flow measure-
ments were obtained from two-dimensional phase con-
trast (2D PC) imaging. PC analysis of antegrade and 
retrograde flows in the main artery was performed on a 
plane at a location just below the pulmonary artery (PA) 
bifurcation and perpendicular to the axis of the PA. Typi-
cal imaging parameters were: acceleration factor 3, echo 
time = 2.3–3.0  ms, repetition time = 4.8–5.0  ms, field 
of view = 169–315  mm × 300–420  mm, spatial resolu-
tion = (1.4–2.0) × (1.4–2.0) × (5–8) mm3, temporal reso-
lution = 37–41 ms, flip angle of 15°-30°. Scouts were used 
to set the velocity encoding.

Contours were drawn manually on both long axis and 
short axis cine slices by one expert analyst using Segment 
[30]. Contours from another independent expert analyst 
were also performed for 35 cases. Ventricular masses 
and volumes at end-diastole (ED) and end-systole (ES) 
for both ventricles were calculated using the volumet-
ric summation of discs method. Papillary muscles were 
excluded from the masses and endocardial contours 
segmentation. Tricuspid and mitral valve hinge points 
were defined from the intersection of the left atrial and 
ventricular contours delineated on the 2-chamber and 
4-chamber long axis images, and right atrial and ventric-
ular contours on the 4-chamber long axis images. Aortic 
valve hinge points were extracted from the LV outflow 
images and the ventricular extent of the RV outflow tract 
was extracted from the RV outflow tract images. When 
aortic and pulmonary leaflets were not visible, boundary 
points were defined by the transition in appearance from 
myocardium to vessel wall.

Biventricular atlas
A biventricular subdivision surface template mesh was 
constructed as described previously [28]. An overview of 

the analysis pipeline is shown in Fig. 1. This included the 
LV, RV, and the four valves (aortic, mitral, pulmonary, and 
tricuspid). The template mesh was automatically custom-
ized to each patient and breath-hold slice misregistration 
was also automatically corrected using an iterative regis-
tration algorithm [31]. Valve locations were customized 
to the manual landmarks by using landmark registration 
and surfaces were customized by using diffeomorphic 
non-rigid registration to the manual contours. LV and RV 
volume and mass were calculated by numerical integra-
tion of mesh volumes. To build the biventricular atlas, all 
the ED mesh points were first aligned to the mean mesh 
surface points by a rigid registration (translation and 
rotation). This transformation was then applied to the ES 
mesh. The ED and ES surface points were then concate-
nated to form a single combined shape. Principal compo-
nent analysis (PCA) was used to evaluate the distribution 
of shape variation across the cohort [32]. This results in a 
relatively small number of components (24 in this study) 
that describe the shape variation across all patients, while 
accounting for correlations between points in the model. 
The first component explains the most variance, the sec-
ond component explains the most remaining variance, 
and so on. For each patient, morphometric scores were 
calculated, which quantified the amount of each compo-
nent present (“Appendix”). Owing to the combination of 
ED and ES shapes in each mode, both shape and shape 
changes between ED and ES could be captured using this 
method.

Pulmonary regurgitant volume
Pulmonary regurgitation was quantified from CMR 
imaging using pulmonary regurgitant volume indexed to 
body surface area (PRVI) as this has been shown to be a 
more accurate reflection of regurgitation severity com-
pared with pulmonary regurgitant fraction [12, 33–35]. 
PR was quantified using PC imaging, and forward and 
regurgitant flows in the main PA were quantified using 
commercially available software (Argus Flow, Siemens 
Healthineers, and cvi42, Circle Cardiovascular Imaging, 
Calgary, Alberta, Canada). The range of PRVI was 1.5–
95.7 ml/m2 with median of 23.7 and IQR (14.2, 33.3) ml/
m2 (Table 1).

Multivariate associations with pulmonary regurgitant 
volume
A linear regression model was constructed to estimate 
associations with biventricular heart shape, using the 
morphometric scores as the response (dependent) vari-
ables [28]. PRVI, height, weight and age were included 
as continuous predictor variables, and sex and tricus-
pid regurgitation severity from the CMR report (none/
mild/mild-to-moderate/moderate) were included as 
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Fig. 1  Overview of the biventricular atlas construction. A Contours and landmarks on short and long axis cardiovascular magnetic resonance (CMR) 
images at end-diastole; B model fit at end-diastole (ED) (left) and end-systole (ES) (right). The left ventricle (LV) is shown in green, the right ventricle 
(RV) is shown in blue and the epicardium is shown in maroon; C endocardial surface colors showing differences in shape at ED (left) and ES (right) 
from the mean (25.5 ml/m2) to high (40 ml/m2) pulmonary regurgitant volume index (PRVI). Scale bar is in mm. Red denotes displacement outward 
from the LV, and blue denotes displacement inward to the LV
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categorical predictors. Height, weight, sex, and age were 
added to the model to control for body habitus as done 
previously [28]. LV and RV volumes and mass could be 
calculated from the resulting morphometric scores, as 
well as LV and RV dimensions.

Shape features
Regional shape variations associated with PRVI were 
confirmed using univariate regression models for spe-
cific features derived from the 3D patient-specific 
biventricular models. These included: basal bulge, tri-
cuspid tilting, apical dilation, RV and LV anterior–
posterior dimensions and lateral to septal dimensions 
(Fig.  2). Basal bulge was calculated as the distance 
between the most basal point on the RV free-wall and 
its perpendicular projection onto a plane perpendicu-
lar to the LV long axis and going through the mitral 
valve centroid. Tricuspid tilt was calculated as the 
angle between a plane perpendicular to the LV long 
axis and going through the centroid of the mitral valve 
and a plane fitted to the tricuspid valve points, similar 
to [36]. Apical dilation was quantified using the apical 
angle. Apical angle was defined as in [37], using two 
lines defined at the RV apex in a four-chamber view: 

one aligned with the endocardium of the septum and 
another line aligned parallel to the most linear por-
tion of the RV free wall endocardium. LV and RV lat-
eral to septal dimensions were defined as the length of 
the minor axis perpendicular to the interventricular 
septum at mid-ventricle in both LV and RV. LV and 
RV anterior–posterior dimensions were defined as the 
length of the minor axis parallel to the interventricu-
lar septum at mid-ventricle in both LV and RV. Fig-
ure 2 summarizes how those remodeling features were 
calculated.

Geometric strain
To further study interventricular relationships, model-
derived systolic deformations for both chambers were 
assessed. Geometric strain was defined as the change 
in geometric arc length from ED to ES. Longitudinal 
strain (LS), which represents the longitudinal shorten-
ing of the cardiac muscle, and circumferential strain 
(CS), shortening along the circular perimeter, and 
radial strain (RS), thickening of the wall during systole, 
were derived from length changes between ED and ES 
using the Cauchy strain formula:

Fig. 2  Model-based LV and RV dimension calculations. Green: LV; Purple: RV; Maroon: Epicardium. A Biventricular model and intersecting planes. 
B Long axis plane showing how apical angle (β), tricuspid tilt (α), and basal bulge (d) were calculated. C Mid-ventricular short axis view showing LV 
and RV lateral to septal dimensions (D1 and D3 respectively) and RV and LV anterior–posterior dimensions (D2 and D4 respectively)
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where ε is the engineering strain, L the length at ES and 
L0 the length at ED. Changes in geometric arc length 
have previously shown good agreement with myocardial 
strain derived from tagging and displacement encoded 
CMR[38, 39]. For RS, myocardial wall thickness was 
calculated using a modified version of the centerline 
method [40] using the intersection between short axis 
slices and the biventricular model. For CS and LS, arc 
lengths were calculated from the model mesh. RV free 
wall and LV RS and CS were averaged over three different 
levels: base, mid-ventricle and apex. LV and RV LS were 
averaged over the apical 4-chamber and RV outflow tract 
views. The interventricular septum was included in the 
LV strain.

Univariate regression models were used to quantify the 
association between LV and RV strains and the amount 
of regurgitation. Although systolic CS and LS are conven-
tionally negative, their absolute values were used in this 
study for simpler interpretation of the association with 
PRVI.

Statistical analysis
Statistical analysis was carried out with R [41] (R Founda-
tion for Statistical Computing, Vienna, Austria). All data 
are reported as mean and standard deviation or median 
and interquartile range, depending on the distribution, 
for continuous variable and as frequency for categori-
cal variables. Normality was tested using Shapiro–Wilk 
tests. All variables were standardized before regression. 
Statistical differences were presented by p-values using 
one-way ANOVA or Kruskal–Wallis test depending on 
the distribution. A p-value of 0.05 was considered sig-
nificant for the overall effect. Parameter estimates (PE), 
which represent the change in the response variable asso-
ciated with a 1-unit change of the predictor, were used 

ε =
L− Lo

Lo

to measure the strength of the association between strain 
measurements, morphometric scores, and pulmonary 
regurgitation.

Results
RVLV model customization
All models were successfully customized to the manual 
contours and landmarks. Table 2 shows the mean volume 
and mass of LV and RV calculated from the biventricular 
models by numerical integration; they had good agree-
ment with those calculated from the manual contours by 
short axis slice summation. Inter-observer errors in man-
ual contour results in 35 participants are also reported in 
Table 2. The differences between model and manual esti-
mates were similar to the inter-observer differences. The 
larger model RV volumes may be due to inaccuracies of 
short axis slice summation at the base and apex (in par-
ticular due to the basal bulge common in rTOF) since the 
biventricular model incorporates information from the 
long axis contours as well as the short axis contours. The 
larger LV mass in the model may be due to differences in 
the definition of LV vs RV myocardial partitions in the 
model relative to the contours.

Principal components
The first four principal components of shape variation, 
accounting for the most variation in biventricular shape 
across the cohort (total 59%), are shown in Fig. 3 (ante-
rior view). Animations of these shape variations can be 
found in Additional file  1. These represent the largest 
variations of biventricular shape as well as shape changes 
between ED to ES within the cohort. The first mode was 
associated with overall size and accounted for 37.5% of 
the total shape variance. The second mode accounted 
for 9.3% of the total shape variance and was associated 
with septal-free wall dimension (i.e., expansion and con-
traction of both ventricles toward and away from the 

Table 2  Error between biventricular model estimates and slice summation of manual contours

Data are presented as mean difference ± std. dev. of the differences. RV right ventricle, LV left ventricle, EF ejection fraction, EDVI end-diastolic volume index, ESVI end-
systolic volume index, LVMI left ventricular mass index, PPMCC Pearson product moment correlation coefficient, RVMI right ventricular mass index

Differences PPMCC Values from 3D 
models

Values from manual 
contours

Interobserver 
error (n = 35)

RV EDVI (ml/m2) 9 ± 15 0.89 147 ± 14 137 ± 15 − 7 ± 12

RV ESVI (ml/m2) 6 ± 10 0.90 90 ± 27 84 ± 33 − 11 ± 15

RVEF (%) 0 ± 7 0.70 39 ± 7 39 ± 9 5 ± 5

RVMI (g/m2) 2 ± 6 0.74 42 ± 11 39 ± 9 − 2 ± 5

LV EDVI (ml/m2) 0 ± 7 0.90 78 ± 14 79 ± 16 − 1 ± 5

LV ESVI (ml/m2) 3 ± 6 0.88 42 ± 24 39 ± 20 − 1 ± 3

LVEF (%) 4 ± 8 0.74 50 ± 6 46 ± 9 1 ± 3

LVMI (g/m2) 10 ± 6 0.75 76 ± 14 66 ± 11 − 4 ± 3
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interventricular septum) as well as the transition from 
a LV dominant apex shape to a RV dominant shape. 
The third mode (7.1%) was associated with basal vs api-
cal bulging of the RV, with basal bulging associated with 
a tilt of the LV base away from the septum. The fourth 
mode (5.3%) was associated with a systolic septal devia-
tion towards the RV, a common feature in rTOF remod-
eling due to volume overload [42, 43] in concert with LV 
diminution.

Multivariate associations
The first 24 PCA modes accounted for 90.2% of the total 
shape variance and were selected to perform the multi-
variate regression. Morphometric scores were used as 
outcome (dependent) variables and sex, height, weight, 
age, degree of tricuspid regurgitation, and PRVI were 
used as predictor (independent) variables. The relation-
ships between each predictor variable and the associated 
shapes were visualized using the method described in 
“Appendix”.

Height was a significant predictor in modes 1, 4, 9 and 
15 (p < 0.001, p < 0.001, p = 0.005, and p = 0.04 respec-
tively), accounting for 27% of the total variation. Weight 
was a significant predictor in modes 1 and 4 (p < 0.001 
and p < 0.001 respectively, accounting for 16.3% of 
the total variation), age in modes 6, 9 and 14 (p = 0.01, 
p = 0.003, and p = 0.04 respectively) and sex in modes 1, 

8, 9 and 14 (p = 0.003, p = 0.002, p = 0.006, and p = 0.04 
respectively).

Tricuspid regurgitation was significant predictor in 
modes 4 and 11 (p < 0.001 and p = 0.003 respectively). 
PRVI had significant effects on mode 1 (p < 0.001, 
PE = −  0.15), mode 2 (p = 0.007, PE = 0.3), mode 4 
(p < 0.001, PE = − 0.4), mode 7 (p = 0.02, PE = − 0.27) and 
mode 8 (p = 0.002, PE = 0.3). Combining these scores, 
PRVI accounted for 12.3% of the total shape variation. A 
positive (negative) PE indicates increasing (decreasing) 
morphometric scores. For example, PRVI was associ-
ated with a negative coefficient for mode 1, meaning that 
as PRVI increased, patients had larger hearts. Figure  4a 
shows the regional shape differences associated with 
increasing PRVI computed with the regression model.

An animation of these shape differences can be found 
in Additional file 2. Figure 4b shows the quantitative dif-
ferences in shape of the endocardial surfaces (expressed 
as a displacement in mm) relative to the mean PRVI of 
25.5 ml/m2, at both ED and ES. Displacements outward 
from the LV are shown in red, displacements inwards 
towards the LV are shown in blue. The dilation of the RV 
outflow tract and apex are confirmed, as well as diminu-
tion of the LV. The associations between shape and PRVI 
were similar if height and weight were replaced by BSA 
in the predictor variables, and also if height and weight 
and age were replaced by BSA. The results were therefore 

Fig. 3  Principal component shape modes. Wireframe shows model at ED and shaded surfaces show the model at ES. Green: LV; Purple: RV; 
Maroon: Epicardium; Yellow: Aorta; Cyan: Mitral; Light green: Pulmonary; Pink: Tricuspid. Top rows show mean plus two standard deviations. Bottom 
row shows mean minus two standard deviations. PV pulmonary valve, AV aortic valve, TV tricuspid valve, MV mitral valve. See Additional file 1 for 
animations of these modes. To better visualize the change in function, motion was linearly interpolated between ED and ES shapes
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PRVi = 5 ml/m2 PRVi = 25.5 ml/m2 PRVi = 40 ml/m2

LV

RV

RVLV

MV
TV

PV
AV

PRVi = 5 ml/m2 PRVi = 40 ml/m2

ES

ED

Posterior view Posterior view Anterior viewAnterior view

RV
LV LV

RV
LV LV

MV AV TV

MV AV TV

PV AV MV

PV AV MV

Displacement (mm)b

a

Fig. 4  a Shape differences associated with increasing pulmonary regurgitant volume index. Green: LV; Purple: RV; Maroon: Epicardium; Yellow: 
Aorta; Cyan: Mitral; Light green: Pulmonary; Pink: Tricuspid. Top: anterior view; Bottom: posterior view. Left: mean shapes at 5 ml/m2; middle: 
mean shape at 25.5 ml/m2; right: mean shape at 40 ml/m2. PV: pulmonary valve, AV: aortic valve, MV: mitral valve and TV: tricuspid valve. For an 
animation of this variation see Additional file 2. To better visualize the change in function, motion was linearly interpolated between ED and ES 
shapes. b Endocardial surface colors show differences in shape from the mean for low (left) and high (right) PRVI. Scale bar is in mm. Red denotes 
displacement outward from the LV, and blue denotes displacement inward to the LV. Top: end-diastolic shape; bottom: end-systolic shape. PV 
pulmonary valve, AV aortic valve, MV mitral valve, TV tricuspid valve
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robust to different methods of accounting for body 
habitus.

Shape features
Results of the univariate regression models performed 
with specific shape features are summarized in Table  3. 

Significant correlations with PRVI are shown with cor-
responding PE (p < 0.05). In the RV, as PRVI increased, 
RV size increased, the RV apex dilated, and the tricus-
pid annulus tilted. In the LV, the distance between the 
LV free wall and LV septum reduced, resulting in a flat-
tening of the LV. In addition, larger PRVI was associated 
with a systolic septal motion towards the RV (paradoxical 
septal motion), which is consistent with RV overload and 
decreased LV dimension at ED.

To illustrate and quantify the paradoxical septal 
motion, Fig.  5 shows changes in systolic motion of the 
endocardial surfaces, expressed as a displacement in 
mm from ED to ES, for a PRVI of 5 ml/m2, and a PRVI 
of 40  ml/m2. Displacements outward from the LV are 
shown in red, displacements inwards towards the LV are 
shown in blue.

Geometric strain
LS, CS, and RS for LV and RV are shown in Table 4 and 
significant correlations with PRVI are shown with cor-
responding PE. Although all RV strains were correlated 
with PRVI, for the LV only RS was significantly correlated 
with PRVI.

Discussion
Adults with rTOF are exposed to ongoing physiologic 
sequelae of surgical interventions, causing remodeling 
which affects both the LV and RV. This cross-sectional 

Table 3  Remodeling features derived from biventricular models

LV left ventricle, RV right ventricle. Values are shown as mean ± SD. PRVI PE: 
pulmonary regurgitant volume index parameter effect for significant univariate 
correlations with parameters (p < 0.05). As normalized values were used in the 
regression, PRVI PE represents changes in standard deviations

Mean value PRVI PE

Basal bulge at ED (mm) 16.5 ± 4.5 0.25

Basal bulge at ES (mm) 11.9 ± 3.4

Tricuspid tilt at ED (°) 41.6 ± 12.39

Tricuspid tilt at ES (°) 31.6 ± 10.9 0.25

Apical angle at ED (°) 85.7 ± 6.8 0.29

Apical angle at ES (°) 83.8 ± 7.5 0.21

LV lateral to septal dimension at ED (mm) 41.1 ± 6.4 − 0.25

LV lateral to septal dimension at ES (mm) 31.0 ± 6.0 − 0.27

RV lateral to septal dimension at ED (mm) 41.0 ± 6.7 0.24

RV lateral to septal dimension at ES (mm) 34.0 ± 6.0

LV anterior–posterior dimension at ED (mm) 54.0 ± 7.7

LV anterior–posterior dimension at ES (mm) 42.1 ± 6.9 − 0.18

RV anterior–posterior dimension at ED (mm) 71.1 ± 9.6 0.32

RV anterior–posterior dimension at ES (mm) 59.8 ± 8.7 0.26

5 ml/m2

40 ml/m2

RVS LVS LVFW RVFW RVFW LVFW

PV TV AV MV AV TV PV TV AV MV

mm

Fig. 5  Changes in contraction patterns associated with increasing pulmonary regurgitation. Paradoxical septal motion is observed as regurgitation 
increases, as shown by an outward displacement of the septum toward the RV. AV aortic valve, PV pulmonary valve, TV tricuspid valve, MV mitral 
valve, RVFW right ventricular free wall, LVFW left ventricular free wall, RVS right ventricular septum, LVS left ventricular septum
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study used atlas-based shape analysis to enable precise 
quantification of complex shape differences associated 
with pulmonary regurgitation. We used linear regres-
sion methods to control for confounding variables, and 
quantified independent effects associated with PRVI. 
PRVI explained more shape variance than any principal 
component except for the first (size mode), highlight-
ing its importance in biventricular remodeling. Increas-
ing PRVI was associated with dilation of the RV apex 
and outflow tract, together with a diminution of the LV 
and flattening in which the lateral free wall to septum 
distance decreased. Increasing PRVI was also associated 
with increased RV RS, LS and CS, as well as an increase 
in LV RS.

In the INDICATOR cohort study [44, 45], preopera-
tive risk factors for postoperative occurrence of death or 
sustained tachycardia included RV systolic dysfunction, 
age at pulmonary valve replacement > 28, and elevated 
RV mass-to-volume ratio. Current guidelines recom-
mend pulmonary valve replacement in asymptomatic 
patients if progressive RV dilation to RV end-systolic 
volume index (ESVI) > 80 ml/m2 and/or RV end-diastolic 
volume index (EDVI) > 160  ml/m2 is observed [46, 47]. 
However, optimal timing of replacement remains a chal-
lenge particularly in asymptomatic patients and there is 
wide qualitative institutional bias in practice. Owing to 
the continuity of muscle fibers between the LV and RV, 
a confined pericardial space and a relatively non disten-
sible pericardium, volumes and function of one ventri-
cle directly affect the other ventricle. Increased LVESVI 
and decreased LVEF have been associated with adverse 
outcomes in the INDICATOR cohort [45, 48] and other 
studies [49, 50]. Smaller LV diameters were previously 
associated with RV dilation and the severity of pulmo-
nary regurgitation [15], as in the current study. PR has 
been associated with decreasing contribution of lon-
gitudinal shortening to the RV ejection and increasing 
lateral pumping, which results in larger volume changes 
and septal motion towards the RV [51], as seen in our 
data (Additional file  2). RV shortening has also been 
associated with exercise capacity in adult rTOF [52]. 
Fernandes et  al. [16] also suggested that RV apical dila-
tion alters LV geometry, thereby decreasing LV stroke 

volume. Alterations in LV geometry may also affect the 
mitral valve, contributing to the relatively high propor-
tion of rTOF patients with mitral valve prolapse [17]. 
Our methods enable precise quantification of these rela-
tionships, including new features of LV flattening and 
motion, which highlight the importance of understand-
ing the contributions of both RV and LV shape and their 
interactions.

The atlas captured regional shape differences and 
also reproduced global mass and volume with accept-
able bias and precision (Table  2). Similar errors were 
previously obtained for 4329 cases from UK Biobank 
[28]. There was consistent overestimation of LV and RV 
mass in the model relative to manual contour estima-
tions, likely due to differences in the apex and base. The 
biventricular model numerically integrated the volume 
contained within the 3D surfaces using information 
from both long and short axis images, whereas con-
tour slice summation was performed only on short axis 
images, in which the contours are often difficult to esti-
mate at the apex and base.

Shape models and atlas-based methods have previ-
ously shown RV shape changes associated with PR [12, 
17, 36, 53]. These studies demonstrated RV dilation, 
basal bulging, tricuspid tilting, and apical dilation asso-
ciated with pulmonary regurgitation, in agreement with 
the current study (Additional file  2, posterior view). 
This tilting may be a specific effect of RV dilation that 
contributes to tricuspid regurgitation, which develops 
in one third of rTOF patients [54]. Our biventricular 
analysis enabled extension of these methods to quantify 
the associations between biventricular shape and func-
tion and amount of PR.

In the German Competence Network rTOF study, 
reduced LV CS and RV LS were independent predic-
tors of adverse outcomes [55]. Decreased LV LS has 
also been associated with adverse events [56]. In our 
study, we found that LV RS as well as RV RS, CS and 
LS increased as pulmonary regurgitation increased. A 
compensatory increase in RV free wall RS in response 
to PR and volume overload was also observed in [51, 
57], which may be due to increased RV SV and a higher 
preload. The increase in LV RS found the current study 

Table 4  Strain values derived from biventricular models

LV left ventricle, RV right ventricle, LS longitudinal strain, CS circumferential strain, RS radial strain. Absolute values are shown for CS and LS for simpler interpretation of 
the association with PRVI

Values are shown as mean ± SD. PRVI PE: pulmonary regurgitant volume index parameter effect for significant correlations with strains (p < 0.05). As normalized values 
were used in the regression, PRVI PE represents changes in standard deviations

LV LS (%) LV CS (%) LV RS (%) RV LS (%) RV CS (%) RV RS (%)

Value 19.0 ± 5.7 20.6 ± 5.3 21.5 ± 7.4 20.7 ± 5.4 14.0 ± 3.8 20.8 ± 12.8

PRVI PE 0.32 0.22 0.25 0.37
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may be due to the inclusion of the septum into the LV 
RS measurement.

Our study also found a relationship between RV lon-
gitudinal shortening and the amount of regurgitation, in 
agreement with Ylitalo et al. [18]. However, conclusions 
regarding the effects of PR on longitudinal shortening 
have varied between studies. In pediatric populations, 
Ylitalo et al. [18] found the PR led to an increase in RV 
LS, on the other hand, Eyskens et  al. [58] and Ouyang 
et  al. [59] found an inverse correlation between PR and 
RV LS measurements. Studies in adult rTOF patients did 
not show any variation in RV and LV strain in relation to 
PR [16, 22, 43]. However, reduced contractile function in 
relation to PR was demonstrated in [3] but did not have 
any influence on RV strain measurements. Our study 
contained mostly younger adult patients, but decreasing 
strain beyond a certain point may occur with more severe 
disease.

The type of primary repair has also been shown to 
affect RV shape [60]. Zaidi et al. [60] found differences in 
volume and regional curvatures in patients with transan-
nular repair vs those with pulmonary valve preserving 
repair. In our study, 78.4% had transannular patch pri-
mary repair. Also, our findings of reduced septal-lateral 
dimension are consisted with increased curvature in the 
free wall.

Although data sharing mechanisms provided through 
the CAP enable merging of data from different institu-
tions, access to clinical information was limited. Data 
on ethnicity was not available. Indices of RV pressure 
loading were not available, and investigation of pressure 
effects requires further study, ideally using measure-
ments from catheter recordings. The interpretation of 
strain measurements in the rTOF population is also dif-
ficult due to the competing effects of increased force of 
contraction with higher preload, and decompensating RV 
contractility. Another limitation of the study is the use of 
cross-sectional data. The temporal evolution of ventricu-
lar dysfunction in relation to regurgitation should be per-
formed in longitudinal studies. Finally, our study did not 
quantify dyssynchrony (due to right bundle branch block) 
or late gadolinium enhancement patterns, which may be 
have important effects on biventricular function [61, 62].

Future application of these methods will examine 
quantitative shape changes in relation to interventions 
and clinically significant metrics, including pulmonary 
valve replacement and adverse outcomes. The distillation 
of complex shape features into a small number of mor-
phometric scores allow precise quantification of mecha-
nistic effects linking structural and functional alterations 
to a variety of clinical measures, including rhythm distur-
bances, functional score, restrictive RV physiology, and 
exercise capacity. Relationships between morphometric 

scores and future adverse outcomes will enable examina-
tion of mechanisms of developing risk. Fully automated 
analysis including quantification of contours, biven-
tricular shape model customization, and computation of 
scores relative to reference populations, is now possible 
using machine learning and AI methods.

Conclusions
Biventricular morphometric relationships with impor-
tant clinical features can be quantified in rTOF patients. 
Increasing PR is associated with LV diminution and sep-
tal flattening, in conjunction with RV dilation, especially 
at the base and apex, as well as an increase in RV systolic 
strain. Specific and quantifiable biventricular shape char-
acteristics, revealed in biventricular models of rTOF, can 
be used to quantitatively evaluate RV and LV dysfunction 
in these patients. This study provides a basis for including 
quantitative shape analysis into the clinician’s toolbox, 
providing simple scores which express complex features 
that experienced clinicians may well recognize but which 
have been difficult to report until now.

Appendix
Each shape model was subdivided into 5,810 points on 
the LV and RV endocardial and epicardial surfaces as 
well as the four valves. These points (x,y,z) coordinates 
at ED and ES were concatenated into a single shape vec-
tor with 34,860 elements. The shape vectors from each 
patient were assembled into a data matrix (one row per 
case). The PCA shape modes were calculated from the 
covariance matrix and morphometric scores for each 
patient were calculated by projection onto the shape 
modes and then standardized to provide z-scores. A 
multivariate linear regression was performed to esti-
mate the contribution of predictor variables to each 
principal component score:

where T are the morphometric scores, A is a matrix of 
predictor variables, B is a matrix of regression coeffi-
cients and R is a residual matrix. The predictor variables 
comprised sex, age, height, weight, and PRVI. For each 
predictor variable, the associated shape changes were 
visualized by calculating the contribution to the morpho-
metric scores for that predictor.
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