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Department of Psychology, New York University
6 Washington Place, New York, NY, USA 10003 USA

Abstract
Acting effectively in the world requires learning and control-
ling dynamic systems, that is, systems involving feedback re-
lations among continuous variables that vary in real time. We
introduce a novel class of dynamic control environments us-
ing Ornstein-Uhlenbeck processes connected in causal Markov
graphs that allow us to systematically test people’s ability to
learn and control various dynamic systems. We find that per-
formance varied across a range of test environments, roughly
matching with complexity defined by a set of models trained
on the task (an optimal model, a deep Reinforcement Learning
agent, and a PID controller). The testbed of dynamic envi-
ronments and class of models introduced in this paper lay the
groundwork for the systematic study of people’s ability to con-
trol complex dynamic systems.
Keywords: dynamic control, causal learning, dynamic deci-
sion making, reinforcement learning, control theory

Introduction
The principles of information, computation, and control
bridge the chasm between the physical world of cause
and effect and the mental world of knowledge,
intelligence, and purpose.

Steven Pinker (2018, p. 20)

Humans are daily met with the need to navigate and ma-
nipulate complex dynamic systems. Anyone who has been
involved in a particularly engaging conversation, or one that
escalates into a fight based on a shift in tone of voice, knows
that we regularly deal with systems that are highly sensitive
and involve complex dynamics. Our aim in this paper is to
provide tools for studying continuous goal-directed control
in complex dynamic natural environments. We do this by of-
fering (1) a class of environments with appealing formal fea-
tures, and (2) three candidate models of control behavior with
widely diverging assumptions about cognitive processes. We
hope that these environments, combined with candidate mod-
els, will aid researchers interested in this important topic in
cognitive science.

Previous studies of human control have have generally not
included an analysis of the formal properties of the dynamic
system under investigation, such as its learnability or control-
lability. We build on this literature by introducing a class of
dynamic systems composed of multiple components related
by an underlying causal Markov structure. The explicit def-
inition of underlying structure has two key favorable proper-
ties. Firstly, it enables us to systematically vary the environ-
ment that subjects interact with and so build an understand-
ing of the conditions under which people succeed or fail at
dynamic control. Secondly, as pointed out by Pinker (2018),
successful control involves learning and harnessing causal-
ity to accomplish one’s goals. Uniting causal learning and

complex dynamic control in a single task makes explicit the
connection between these key components.

We begin by briefly reviewing the literature on dynamic
control tasks, highlighting where we depart from previous
studies. We then provide a formal description of the “lan-
guage” we use to describe system dynamics. We next report
a novel experiment that investigates the extent to which peo-
ple learn and exploit knowledge of the causal structure of a
system to maximize reward. Finally, we introduce three can-
didate models that, when trained to optimize performance,
generally agree on the difficulty of different environments.
We conclude that people are capable controllers, but exhibit
significant deviations from optimality that may be fruitful in
guiding future research into the strategies and limitations of
their control behavior.

Past research

Complex dynamic control (CDC) tasks have come under a va-
riety of names. We follow Osman (2010) in grouping, under
the umbrella of CDC, tasks described as complex problem-
solving tasks, dynamic decision-making tasks, and process
control tasks.

Static control. Control of dynamic systems has been heav-
ily studied in static contexts (i.e., those where participants
have clearly delimited trials with time to plan their next ac-
tion). For example, Berry and Broadbent (1984) introduced
the sugar factory task, where participants attempted to main-
tain a level of production in a sugar factory by controlling
the number of workers employed. Hagmayer et al. (2010)
tested control behavior in environments defined by a sim-
ple causal structure, finding that people responded adaptively
when parts of the structure were lesioned, suggesting that
they had learned the causal model and were anticipating the
downstream effects of this intervention.

In the previous two studies, the dynamics simply involved
a decay in the variable participants were trying to control.
Other studies have introduced more complex dynamics, for
example Gureckis and Love (2009) put short- and long-term
rewards in competition in a task where the short-term choice
was had a larger immediate reward but decreased potential
future rewards. Schulz, Klenske, Bramley, and Speekenbrink
(2017) introduced a navigation task in which a ship is pushed
about in a nonlinear fashion depending on its value, finding
that people explore environments strategically, planning for-
ward to maximize information specifically relevant to future
control actions.

We differ from these previous studies in several respects.
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First, we present variables that change value, and can be con-
trolled, in continuous rather than discrete time. Second, while
a range of dynamics have been studied, they have all been
with respect to a single variable’s value. Our incorporation of
structure between multiple variables allows for complex be-
havior such as oscillations, chains of influence, and feedback
loops that have not been studied. Finally, by design, our envi-
ronments are easy to model formally, allowing us to explore
learnability and controllability at the computational level.
Micro-worlds. An important alternative approach to under-
standing control behavior are experiments on micro-worlds,
which involve asking participants to stabilize a complex dy-
namic system as it unfolds in real time (for summary, see
Brehmer, 2005). Unfortunately, the high ecological validity
of their systems results in unconstrained environments where
“one cannot be sure about the demands that a given micro-
world makes” (Brehmer, 2005, p. 87). We hope to contribute
to this literature by having a model that can optimally infer
the underlying structure, allowing us to identify which tasks
are more difficult by their nature, and which are more difficult
due to cognitive constraints.

Ornstein-Uhlenbeck Process

An Ornstein-Uhlenbeck (OU) process is a stationary Gauss-
Markov process in continuous time that reverts to a sta-
ble mean (Uhlenbeck & Ornstein, 1930). It has been used
to model phenomena in physics (Lacko, 2012) and finance
(Barndorff-Nielsen & Shepard, 2001), and has also been stud-
ied in perception (Vul, Alvarez, Tenenbaum, & Black, 2009).
Because these processes are able to capture dynamic natu-
ral phenomena across a wide variety of domains, we believe
that the OU process is a reasonable formalism for modeling
causal relationships between continuous variables in continu-
ous time.
Generative model. In our environments, ∆xt—the change
in x from time t to t+1—is defined as follows:

∆xt = θ

[ n

∑
i=1

βY iX · yi
t − xt

]
+N(0,σ) (1)

where xt is the value of the process at time t, σ is the vari-
ance, and θ is a parameter greater than 0 that determines how
sharply the process reverts to the mean. That mean is deter-
mined by the direct causal parents of X by summing, over
each parent Y i, the product of the strength of the causal rela-
tion between Y i and X , βY iX , and Y i’s current value, yi

t . In this
study, we constrain the values βY iX so as to define three types
of causal relationships: “regular” (βY iX =1), “none” (βY iX =0),
and “inverse” (βY iX =-1). For more extensive treatment of
OU processes including how to optimally infer structure, see
Davis, Bramley, and Rehder (2018).

Experiment: Control Task

Method

Participants. 36 participants (20 female, mean age=33)
were recruited from Amazon Mechanical Turk using the psi-
Turk framework (Gureckis et al., 2016), which has been
shown to produce comparable results to lab experiments in
cognitive science (Crump, McDonnell, & Gureckis, 2013).
They were paid $3.50 for approximately 25 minutes, with ad-
ditional bonus based on performance (M=$0.52). Of the 36
participants gathered, 6 were excluded because they did not
use the arrow keys on more than 25% of the phases.

Materials and procedure. See Figure 1 for illustration of
a trial1. Each of the three variables was represented by a ver-
tical slider constrained to be between -100 and 100. The han-
dles of each slider presented a rounded integer value. One
slider, the “control” slider, could be intervened on with three
keys ‘o’, ‘k’, and ‘m’. As is intuitive on a QWERTY key-
board, the ‘o’ key increased the control slider (by 10), the ‘k’
key held the value steady, and the ‘m’ key decreased the con-
trol slider by 10. If the participant did not press a key, the
control slider would move according to the dynamics of the
OU system.

The other two sliders could not be directly controlled by
participants. One of these sliders, the “target” slider, had 20%
of its area colored green to indicate the reward region. For
each time step (100ms) that the target slider was in the green
region, $0.01 was added to their score (displayed at the bot-
tom of the screen). The top of the screen presented a timer
counting down from 20 seconds, at which point the phase fin-
ished.

Figure 1: Example of the interface used by participants. Par-
ticipants moved the control slider while observing the effects
on the target/auxiliary slider. The goal was to exert forces
on the control slider to keep the target slider within the green
region.

1For a demo of the experiment see
https://zach-davis.github.io/publication/dynamic control/
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In the instructions phase, participants were shown four
videos of an agent interacting with the structures to familiar-
ize them with the interface (participants were told the struc-
ture that the agent was interacting with). They were shown
examples of (1) a network with no connections, (2) one with
a single, direct “regular” relationship between controller and
target, (3) a single “inverse” causal relationship, and (4) an
indirect connection through the auxiliary slider (with both
links being regular). Participants were then presented with
a four question comprehension check. Questions established
that participants understood that the connections, but not re-
ward regions, stayed the same between Phase 1 and Phase
2, that the ‘o’ key moved the control slider up and the ‘m’
key moved it down, and that the reward would be a randomly
selected phase of the experiment. Participants could not con-
tinue without answering all questions correctly. The param-
eters used during training and the control task were θ = .1,
σ = 5, and βs were either -1, 0, or 1.

In the control task, participants initiated the trial by press-
ing the “Start” button and the sliders started jittering accord-
ing to an OU process, with unknown β weights driving the
movement (there were no causes outside the network). The
values of the sliders updated every 100ms, and each phase
lasted for 20 seconds. At any time, participants were free to
manipulate the control slider. After the first 20 second phase
for a structure, participants received a pop-up inviting them
to begin the second phase, and were reminded that the re-
ward region but not the connections would change. After the
second phase, the participants moved onto the next environ-
ment, repeating this process for each of the 12 structures (see
Figure 2). After controlling in all environments, participants
completed a brief questionnaire.

Models
In order to guide future research, we conducted preliminary
analyses to assess the controllability of these systems by dif-
ferent models. Each model we consider has a different rep-
resentation of the problem, from a Bayesian optimal learner
(CMBC), to a highly flexible learner of state-action reward
functions (DQN), to a limited agent that only learns whether
they are in a direct or reverse acting system (PID). The data
gathered in this paper are insufficient to distinguish between
these models, but we introduce these models as candidates
for how people approach complex systems, and in the discus-
sion propose possible future experiments using our paradigm
to more aptly distinguish between the models.

Causal Model Based Controller. The goal of the Causal
Model Based Controller (CMBC) agent is to use its best es-
timate of the causal structure of the environment to act flex-
ibly to maximize reward2. The CMBC agent, then, must es-
timate the probability of there being causal connections be-
tween sliders. For the current environment, causal strengths
are defined as β weights between sliders (see the generative

2It is important to note that the learning is all passive, reducing
uncertainty is not factored into the choice the CMBC agent makes.

model section). Given some movement of slider x, and the
values of other sliders yi, the likelihood of causal strengths βββ

is the density of ∆x for the following PDF:

P(βββ|∆xt ,yt)∼ N
(

θ

[ n

∑
i=1

βY iX yi
t − xt

]
,σ
)

(2)

For each observation, we jointly estimate the full
space of beta values for possible edges. For exam-
ple, for three variables there are six possible edges, βββ =
{βXY ,βXZ ,βY X ,βY Z ,βZX ,βZY}. Multiplying by the (initially
uniform) prior probability of each hypothesis and normaliz-
ing yields the posterior over hypotheses.

The CMBC uses its online estimate of the causal structure
of the environment to act. In particular, it imagines taking
each of the four possible choices available to it (‘o’, ‘k’, ‘m’,
or nothing). A given choice at time t will impact the con-
trolled variable’s state at time t +1. The CMBC then projects
forward the effects that this choice would have over time. For
this study, we project forward the impact of a choice for three
time steps from the time of the decision. Because the process
is stochastic, the impact of a choice will yield a probability
distribution over possible states of the target variable. For
each possible causal structure, it takes the integral of the ex-
pected distribution within the target range over all projected
time steps. The expected value of a choice (C) given a struc-
ture (S) is:

EV(C|S) =
∫ range max

range min
N(µT ,σ)dx (3)

where µT is the mean of the target variable’s distribution. The
CMBC then weights the expected value of some choice given
a structure by the probability of that structure:

EV(C,S) = EV(C|S) ·P(S) (4)

Marginalizing over structures gives the EV(C). The CMBC
agent chooses the action that maximizes expected value.

Deep Reinforcement Learning. To compare to the CMBC,
we considered a model-free reinforcement learning agent
based on a deep-Q learning network (DQN). This model rep-
resents the state of the art for sequential decision making in
complex environments similar to those studied here. Recently
DQNs have been used to push the limits of what reinforce-
ment learning algorithms can accomplish (e.g., learning to
play Atari at near human levels, Mnih et al., 2015).

This model is interesting to compare for a number of rea-
sons. First, a DQN is explicitly non-causal in that it has
no direct represention of the environment and is unable to
counter-factually plan future states and actions. At the same
time, such models are powerful tools for dynamic control be-
cause they can learn forward-looking policies by approximat-
ing the solution to Bellman’s equation. Related approaches
have been used to successfully model human performance in
discrete-time control and learning problems (e.g., Gureckis &
Love, 2009).
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To evaluate the ability of these networks to learn in the
OU environment, we constructed a neural network in pyTorch
(Paszke et al., 2017) with three layers. The input layer was
made up of 6 inputs, representing the current location of each
of the three sliders, the upper and lower bounds of the current
reward region of the target slider, and the distance of the tar-
get slider’s value from the mid-point of the target region. A
fully connected hidden layer with 256 (rectified linear) units
was in turn fully connected to an output layer with 4 linear
units representing the estimated Q-values of moving the con-
trol slider up, down, hold it steady, or do nothing.

The target objective for training was the standard “on pol-
icy” Q-learning algorithm that learns how an action might ef-
fect future states of the system as well as the value of each ac-
tion at the current time (Watkins & Dayan, 1992). For the first
1000 trials of learning the the model choose actions based on
a linearly decaying epsilon-greedy choice rule, there after us-
ing softmax (Sutton & Barto, 1998). For each time step the
target slider was maintained in the target reward region the
network earned 10 units of reward. Furthermore, to punish
extreme deviations from the target the reward was the neg-
ative of the absolute value of the distance between the tar-
get slider and the center of the reward region anytime the
slider moved outside the target window. Learning was ac-
complished via gradient descent on the smooth l1 loss of the
difference between predicted and actual Q-values for each ac-
tion. To speed learning, the network maintained a buffer of
past state-action-reward-next state transitions and randomly
sampled 64 of these each trial for use in a single batch gradi-
ent update. Specific network parameters were set as follows:
discount rate (γ = 0.98), learning rate (η = 0.001), and soft-
max temperature (τ = 8).

Even with these powerful learning features, the DQN is at
a disadvantage in learning the task because it comes with ran-
domly intialized weights and can only learn the objective of
the task by experiencing certain state-action transitions paired
with reward. As a result it cannot learn to perform the task in
real-time (e.g., using the same number of time steps as hu-
man participants). However, it can still provide insight into
the relative difficulty of learning each environment. To eval-
uate this, we ran the DQN 200 times on each structure with a
given reward region, froze the weights, and had the network
try to maximize reward on the trained reward region as well
as a new reward region (identical to phase 1 and phase 2 for
participants).
Proportional-Integral-Derivative. The Proportional-
Integral-Derivative (PID) controller adjusts its actions based
on a proportion of its error—the difference between desired
and observed outcomes. It has been found to be a good model
of how people generate predictions in dynamic environments
(Ritz, Nassar, Frank, & Shenhav, in press), but has yet to be
applied as a model of people’s decision-making in dynamic
control tasks. It operates by computing and storing a history
of prediction errors, and performing some simple operations
over this history. The form we use for the PID controller is:

ut = KPet +KI

t

∑
n=1

en +KD(et − et−1) (5)

where ei is the error at time i and KP, KI , and KD refer to the
proportional, integral, and derivative components of the con-
troller, respectively. The first component—Kpe(t)—is known
as the “proportional” term. It is identical to the delta-rule
(Widrow & Hoff, 1960), adjusting the state some proportion
of the way towards the desired setpoint as a function of the
currently observed difference between observed and desired
states. The second component—Ki ∑

t
n=0 en—is known as the

“integral” term, computing a (signed) sum of previous errors.
This component corrects for the system consistently over- or
under-shooting the target. The final, “derivative” term, is
rarely used and so we set KD to 0 for our purposes.

Error is the key operator in a PID controller. The controller
is given a setpoint (the mean of the target region), and at each
time point subtracts the value of the target variable from the
setpoint to get et . This is stored in a buffer, and the desired
value for the control state (ut ) is computed as in Equation 5.
The control action (‘o’, ‘k’, or ‘m’) that moves the control
variable closest to ut is chosen as the action. Note that, be-
cause it has no capacity to project forward the OU dynamics,
the PID does not have the option to not act.

In practice, PID controllers are built with the knowledge
of whether increasing the control variable will result in an
increase or decrease in the target variable. Of course, in
our task agents must learn this relationship. For this rea-
son we build an additional component on top, to estimate
whether the control variable is positively or negatively re-
lated to the target variable. This involves a simple timelagged
correlation between control and target variables, of the form
ρ(Controlt−1,Targett). The agent begins by randomly as-
suming a positive or negative connection, and if a correlation
is found to be significant (p<.05) then it sets the sign of KP,
KI , and KD to be the same as the sign of the correlation coef-
ficient.

Results
A paired-samples t-test did not reveal a significant differ-
ence in performance between phases of the study (M=4.25,
SD=14.12); t(29)=1.65, p=.11, so we collapse over phase in
figures and analyses.

To compare participant judgments to model predictions,
we had the models perform the task. Figure 2 shows the re-
ward curves for each agent (including participants). It is im-
portant to note that the models were fit to maximize perfor-
mance on the task, not to most closely match participants3.
Also worth noting is that the reward curves for participants,
CMBC, and PID are on their first experience of a new struc-
ture, whereas the reward curve for the DQN is after extensive
training on that structure (200 play-throughs).

3Parameters chosen to maximize task performance were γ, η, and
τ for the DQN; KP and KI for the PID; and no parameters for the
CMBC
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Figure 2: Proportion of possible reward received per-time step over the course of a trial for each agent. Green lines represent
participants; red lines the CMBC; purple lines the PID controller; and blue lines the Reinforcement Learning agent. Error bars
for participants denote 95% confidence intervals (from normal approximation to the binomial). The graphs in the corner of each
plot label the causal structure that determined the dynamics of the environment with the node at the top of the triangle mapped
to the control slider and the node on the left mapped to the target slider. Solid arrowheads denote regular connections (β = 1),
white arrowheads denote inverse connections (β =−1).

The first thing to note is the surprisingly poor performance
of the DQN. In fact, in phase 1 the DQN was at or even ex-
ceeded the performance of the CMBC. However, its perfor-
mance collapsed in phase 2, suggesting that its state-action
representations were not flexible enough to accommodate
new goals. None of the CMBC, PID, or participants exhibited
such dramatic differences between phases. While interesting,
this idiosyncrasy clouds analyses of the controllability of dif-
ferent environments, and thus we exclude the DQN from the
following discussion on their formal properties.

As can be seen, the models and participants generally agree
on the difficulty of different structures. For example, for par-
ticipants, the CMBC, and the PID, reward curves in Cells A
and B (direct links) have higher plateaus than Cells C and
D (indirect links). This is because noise propagates through
causal links. In an environment with a direct control-target re-
lationship, a control action has a direct influence on the prob-
ability distribution of the target. For an indirect control-target

relationship, a control action influences the probability distri-
bution of an intermediate variable, which then further spreads
the distribution of the target.

Of course, the most dramatically different environments
are cells E and L. In these environments, holding the control
variable at any point trends the target toward 0, because the
control variable exhibits a direct influence on the target, but
also an indirect (and hence time-lagged) influence of the op-
posite sign. The mean that the control variable trends to, then,
is the function Controlt−Controlt−1. Learning this function,
and planning far enough ahead to exploit a strategy that maxi-
mizes reward, would be an interesting problem in hierarchical
planning that we do not investigate here.

While there are qualitative similarities in performance be-
tween the models and participants, there are also significant
departures. For example, people underperform the CMBC
and PID in cells G, H, and J. These environments all involve
exogenous influences—in the form of feedback loops and
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oscillations—interfering with intended control actions. Fu-
ture models of heuristics, strategies, or processing limitations
may shed light on the reason(s) for this underperformance.

To test the extent to which the models and participants
agreed on the relative difficulty of environments, we cor-
related participant reward curves with the models. Partici-
pant judgments correlated with predictions from the CMBC
(r=.86, p<.001), the PID controller (r=.84, p<.001), and the
DQN agent (r=.63, p<.001). Note that these models are
highly correlated with one another, so future experiments are
needed to pull the models apart.

Discussion
In this paper, we presented a new class of environments that
can be systematically varied in order to test people’s ability
to learn and control dynamic systems. We found that people
and our models generally found the same environments easy
or difficult, although differences exist that may be informative
about people’s strategies or cognitive limitations. We expect
that this new class of environments will be useful to the field
as a test bed, and to draw links between the formal analyses in
the causal literature and the sophisticated but black-box style
learning of contemporary control tasks.

Although the data gathered in this experiment were not
sensitive enough to distinguish between the models’ ability
to predict human behavior, the incorporation of causality in
our dynamical system allows for a diverse range of future ex-
periments to further test people’s flexibility in control. Future
experiments could test people’s sensitivity to switching re-
ward variables, counterfactuals, or multiple target or control
variables. These studies would allow for a deeper investiga-
tion into the conditions under which people are model-based
controllers—learning the structure of the environment and us-
ing it to plan actions—or doing something more model-free
(akin to the DQN or PID agents). In a slightly different vein,
the system described in this paper could be used to study a
type of real-time ‘systems programming’, where dynamical
systems are learned individually and then linked up into a
larger structure.

Problem-solving, here operationalized as the ability to ma-
nipulate one’s environment in service of some goal, is fun-
damental to higher-level cognition (Newell & Simon, 1972).
Problems that we have to solve in our everyday lives do
not often come pre-packaged or with clearly delimited tri-
als. Rather, we must deal with control problems of unknown
structure, learning through noisy feedback as we attempt to
gather rewards. Impressively, people are able learn how these
systems work, and can leverage this knowledge to be robust
and flexible in controlling complex systems.

References
Barndorff-Nielsen, O. E., & Shephard, N. (2001). Non-Gaussian Ornstein-

Uhlenbeck-based models and some of their uses in financial economics. Jour-

nal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2),

167-241.

Berry, D. C., & Broadbent, D. E. (1984). On the relationship between task per-

formance and associated verbalizable knowledge. The Quarterly Journal of

Experimental Psychology, 36(2), 209-231.

Brehmer, B. (2005). Micro-worlds and the circular relation between people and

their environment. Theoretical Issues in Ergonomics Science, 6(1), 73-93.

Crump, M. J., McDonnell, J. V., & Gureckis, T.M. (2013). Evaluating Amazon’s

Mechanical Turk as a tool for experimental behavioral research. PloS one,

8(3), e57410.

Davis, Z. D., Bramley, N. B., & Rehder, B. E. (2018). Causal Structure Learning

with Continuous Variables in Continuous Time. In Proceedings of the 40th

Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive

Science Society.

Gureckis, T. M. & Love, B. C. (2009) Learning in Noise: Dynamic Decision-

Making in a Variable Environment. Journal of Mathematical Psychology, 53,

180-193.

Gureckis, T. M., Martin, J., McDonnell, J., Rich, A. S., Markant, D., Coenen,

A., ... & Chan, P. (2016). psiTurk: An open-source framework for conducting

replicable behavioral experiments online. Behavior research methods, 48(3),

829-842.

Hagmayer, Y., Meder, B., Osman, M., Mangold, S., & Lagnado, D. (2010).

Spontaneous causal learning while controlling a dynamic system. The Open

Psychology Journal, 3, 145-162.

Lacko, V. (2012). Planning of experiments for a nonautonomous Ornstein-

Uhlenbeck process. Tatra Mountains Mathematical Publications, 51(1), 101-

113.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M.

G., ... & Petersen, S. (2015). Human-level control through deep reinforcement

learning. Nature, 518(7540), 529.

Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104, No. 9).

Englewood Cliffs, NJ: Prentice-Hall.

Osman, M. (2010). Controlling uncertainty: a review of human behavior in com-

plex dynamic environments. Psychological bulletin, 136(1), 65.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., ... & Lerer,

A. (2017). Automatic differentiation in PyTorch.

Pinker, S. (2018). Enlightenment Now: The Case for Reason, Science, Human-

ism, and Progress. Penguin.

Ritz, H., Nassar, M. R., Frank, M. J., & Shenhav, A. (in press). A control theo-

retic model of adaptive learning in dynamic environments. Journal of Cogni-

tive Neuroscience.

Schulz, E., Klenske, E., Bramley, N., & Speekenbrink, M. (2017). Strategic

exploration in human adaptive control. In Proceedings of the 39th Annual

Conference of the Cognitive Science Society. Austin, TX: Cognitive Science

Society.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction

(Vol. 1, No. 1). Cambridge: MIT press.

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the Brownian

motion. Physical review, 36(5), 823.

Vul, E., Alvarez, G., Tenenbaum, J. B., & Black, M. J. (2009). Explaining human

multiple object tracking as resource-constrained approximate inference in a

dynamic probabilistic model. In Advances in neural information processing

systems (pp. 1955-1963).

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3-4), 279-

292.

Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. Stanford Elec-

tronics Labs. (No. TR-1553-1).

286




