Lawrence Berkeley National Laboratory
LBL Publications

Title
OPM Schema Editor 2—A Graphical Editor for Specifying Object-Protocol Structures

Permalink

bttgs:ééescholarshiQ.orgéucgitem49v06r4x§

Authors
Chen, I.-M. A
Markowitz, V M
Pang, F

Publication Date
1993-07-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9v06r4x8
https://escholarship.org/uc/item/9v06r4x8#author
https://escholarship.org
http://www.cdlib.org/

/

]

LBL-33410
UC-405

3 E Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

, -
| Information and Computing

Sciences Division

OPM Schema Editor 2—A Graphical Editor for
Specifying Object-Protocol Structures

I.-M.A. Chen, V.M. Markowitz, F. Pang, and O. Ben-Shachar

July 1993

SoT
g5
“22
£ 90
o9
= 0 <<
s —
g | ' -
wi‘w !i : (8.
(}(s .
Z W
! Q
-
T o2
co T
< O w
- 52 ¢
Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 < 5
A

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-33410

OPM Schema Editor 2;A Graphical Editor for
Specifying Object-Protocol Structures

I-Min A. Chen, Victor M. Markowitz, Francis Pang, and Ofer Ben-Shachar

Information and Computing Sciences Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

July 1993

*Issued as Technical Report LBL--33410. This work is supported by the Office of Health and Environmental
};g;earch ;’rogram of the Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-

TAuthor's e-mail address: ichen@csr.lbl.gov phone: (510) 486-7264, fax: (510) 486-4004
*Author’s e-mail address: VMMarkowitz@Ibl. gov phone: (510) 486-6835, fax: (510) 486-4004
] , .

Author’s e-mail address: fran@csr.lbl.gov -phone: (510) 4864743, fax: (510) 486-4004

1 Author’s e-mail address: ofer@netcom.com phone: (415) 325-1214, fax: (415) 322-7470

OPM SCHEMA EDITOR 2

Contents

1 Introduction 1
1.1 The Object-ProtoCol MOGELcccicvieerirrenncsmsnsersssesisssssasssssonsssssssssarsssssass srssassasssasssssssssns 1
1.2 The OPM Schema EQItOr............cocevreeerieeesecsersvensesesnssencorsormasasarases .3

2 Starting the OPM Schema Editor. 5

3 Tutorial .6
31 Basic Editor Usage cererrertnseetesara st tesaessnnsteareanasanerarer e esenen 6

311 Starting the EQIOT ...t cstcennstnssasscscsessnsensesssanssssstssssssnsesssasseseseneass 6
3.1.2 Looking at an Existing SChema.....ccccvinersiecnncnmsissnsssssnnerisssesnmiessossssessssmssssossns 7
3.2 Specifying and Saving Schemas.. ttsessnssassenssienatnesesenbaas b et es 10
3.2.1 Specifying ObJEct ClASSES.....c.cccvuimrircenrssserciicesiorsaestuassnassasenssinscressmssssssessssossesseos 11
3.22 Specifying Protocol CIASSES.........ocvieesirerinissinrssesionnsestanrassasseonsssneasmssasscssvssn 13
33 SPECITYING AUIDULESccviriremeirrcissesisstiseasass s ssass sassacs sesacssnssbanse sessossnsssns sstsbesacsssnss 14
3.3.1 Specifying SImple AUNDULESccoverieiressiccnsucrssianniesrsrnsssmsesesesssssssessssnressnsas 14
3.3.2 Specifying Composite AUMDULESccvvimmireeiessiasinssesnmiesanimessoeressosesaseassssas 15
3.3.3 Composing and Decomposing AtbULESccceeeeniverneereiseeseresssererserassessensse 16
3.34 Specifying Input/Output AHIIDULES ... overeeeirrriecrcarsrnsstarnaencroseseiasotssens caraea 17
34 Specifying Value Classes.......c.vviireeormemniecssennsiisosmeseesestesesesnris sstsrsssssssansesessssssssasasssnes 18
3.4.1 Specifying Controlled Value Class........courrveneiisivssieensensesanes eereeresnensacsasreneesacs 18
3.42 Specifying Abstract Value CIASSeS.........ccecceticesrsseranrmsrersasssarmsassesessestanscssesens 19
35 Specifying AIbULE DEMVAONSccveruerecressrsseessesmsessssasserasssssssessssssssssassessasesessrmsssassas 21
3.5.1 Specifying Attribute Inverse Derivations.........cceiccsaimscseesssasssssssssssssssssssssseseas 21
3.5.2 Specifying Attribute Match Derivationsc..cccoeu.. eeeteeestnaatr et eaessontaraassesnen 22
3.5.3 Specifying Arithmetic Expression Derivations..............cueuececcrecsirnracsesasencsosnes 24
3.54 Specifying Aggregate Function Derivations.........ccccerecene teereesentesneasnsentaasesassnes 25
3.5.5 Specifying Attribute Composition Derivations...........cccuerereccurecsrecrersesarnsssisns 26
3.5.6 Specifying Attribute Subvalue Derivationsccccccecmemncrneerrnessecsesassiarercensens 27
3.5.7 Specifying Attribute Union Derivationscccccervieecmmcnennreceneseseenssesessesseasens 28
3.6 Specifying Protocol EXPanSIONS.........cuciceissesisamessssseessmesssssssesssassssnsisasssassssssossssorsssossans 28
37 Specifying Protocol COMNECHONSc..cvvsiecsrurorsescrscsaemsssessastesiossssssesaasaessassssasscsssassasssssnss 30
3.7.1 = Specifying Input or Qutput Is-a CONNECHONS.......veererssersserssmssenssssivsssanssnssesssees 30
3.7.2 Specifying Input From CONNECHONScccciemseseacernssnassssssessmsmssmesssssasssssansnsasiane 31

4 OPM Schema Editor Windows 33
4.1 General WINAOW SUUCHUTEcoccererrieacrvessnsecsseesessssssssesssasssoss sossosstssessssssssasesesonsssstsessssssans 33
42 WINAOW FIOW ...ooiicniitiiesiosesscssronstossecsiesisssorsssss ntsasmmssssssssstessrsasesssssssssssssssssuesessssssssass sos 35
43 Main Window .. .35
44 Define Object Class .37

441 AdQ OBJECE CIASS...c.cccieemeisisieiacassnnsionsesestorssnssensrssssssesssssonssssesessssosssnsssssasesensasanss 38
442 MOGQIfY ODJECE ClaSSciverecrrrrreneesenraessanssssessssssnsssssssssssnsasssnsasssssssns sessssrsansessnss 38
4.4.3 Delete OJECt CLASS ..cccovcvecrneerenrccaiserserassssesssssasasssensarssssnsressessosssassstassss ssaissanssanas 38
45 Define ProtoCo] CIASScccccvuvsuimuscnisscnrersermsssssssesssesssssnsssssassrssssssssssstssasistssss sntussasasnass 39
4.5.1 Add Protocol Class......coeeierennrecnnesnisaessassecassssens cerensriasintene 39
4.5.2 Modify Protocol ClIass.........ccererureerisesnsesassesesesesessssasenesesssnsssssasasas weierrsntrenaenane 40
4.5.3 Delete Protocol Classccuieereiaesnseiressiaeseessemssesssssassanses eresesisansesessisaereraas 40
4.6 DefiNe SUPETCIASS c.ooviciieiriinrsenseninisesstssssirisesaessosansssssssssssssssssss sissssssssessasssossasns sontnsssssasas 40

Contents

OPM SCHEMA EDITOR 2 Contents
4.7 Define Protocol EXPaNSIONcccoceiiiniiistieusseescsenssnssssissssssssssnsssssssssssserssassnssssssssssssias 41
4.8 Define SiMPIE AUADULE.......c...ovceceeeeeeccresenritnaesteceerenseseessasessasesassesestssssusssesssonssasss snssnmssnsns 43

48.1 AGQd SImple AHIDULEccocoeeriirecerrietneernesessestntessesreesssressstsssassaesssuesassasees 43
4.82 Modify Simple AUIDULEcoccuveirerirereeesentrimessrescssessisssrsssesscsescsss serssssssssnsnasess 45
4.8.3 Delete Simple AtHDULE.ouimciieiccinniiscnsiei i sssssessisssssessaesees 45
49 Define Composite AUMBULE............ouiiimiie it nesstsssessnnmessessstsstssesassessasassssssesenes 45
4.9.1 Add Composite AUIHDULEccccoveervererranrceerereesmsrsersasssnessssesssesessessessessssasscsnsen 45
492 Modify Composite AUMADULEc.cccceervernrnrerrerecnsanecnrenssnsessscssesssnsesnsessssssenanss 47
4.9.3 Delete Composite AUMDULE.........cccovueiisinsmissesssiosmssssnsinssssssessssssissisesssasinssse 47
4.10 Define Component AHDULEcccoeerrereeriernseieresesssessresssssssssssssrsssesesiserasssasess 47
4.10.1 Add Component AUMDULEconererrmereesensimesasesinssssesserssssssssssssessssassaseassassorases 47
4.10.2 Modify Component AUrIDULE.............cceecivcrieeenreresneseseessenseesssessesssassnns49
4.10.3 Delete Component AtHDULELccoceccreniraensiansasssssmsescansasassosssasssse ...49
4.11 Include Attributes into a Composite ABULEcouerrceeecmirrerrenssassraesescscseeae 49
4,12 Define INput/OULPUt AUIDULEccccvevrevereeerrnieresessasssesssssesssassesssssessassssesssessesessssssessssase 50
4.12.1 Add Input/Output AtTDULEcccoueiiiievnrerireerieisanecssnsseessessosssstasasssnsrsnsnsrossase 50
4.122 Modify Input/Output ARIIDULE.......o.ccveerrrerereereccsraresrresrssssesnsssessiosssesessessssssnsnse 52
_ 4.12.3 Delete Input/Output AUHDULEc...eoveeerersresrcesrnesnesesssessessssstesesssassessesssnessessnss 52
4.13 Define Controlled VAIUE CIASS.........ccieieevernrrernieessrensesrassessssnasssssssssssssnesssessosessssssssasnes 52
4.13.1 Add Controlled Value Class.......ueeccicnmnnismmisincssssssansssmisimsisssssssssssssssaes 53
4.13.2 Modify Controlled VAlUe CIass........c.oeereerruereranersncssnsesnsssernsssessssessesessssasssnssesses 53
4.13.3 Delete Controlled Value CIasscccceeineniecisacssmsanenensnssssssssscssssssensasssssssssssnens 54 .

414 Select Attribute Controlled Value Classcoeveereeereeeerveessnrssessssressssssssssesssssossarassaness 54
4.15 Select Primitive Value Class............... Heevesteasensre e sa st sae s s raneeaenass s te s e abanseresraerarasn 56
4.16 Select Abstract Value Class wtrererteranrrereraerannen Nesstesstesat seressbssesusast s att s aneserranrasesasts 56
4.17 Select Metaclass VAIUE CIASS..........cveurremssnmsusssmssssssnsssssssssmasssesssnasssssssesss .57
4.18 Define Attribute Inverse Derivationcccreinesecenenininsenesesnsnnscssnsssrasesesssnsassres 57
4.19 Define Attribute Matching Derivation............veeereeiveccrnencneessnsneesssssssssssssesseense ...59
4.20 Define Arithmetic Expression DeriVationccocecievecsseemmsmseseeasresssssosssassessssesassosases 62
421 Define Aggregate Function DEfivation...............eueieemnecsesivnnnsssnsssssssieissis s osensesssessens 63

422 Define Atribute Composition DeriVationccececvereerinrsrnsessssnsessesssesrerssnssesessesessesnens 64
4.23 Define Attribute Subvalue DeriVationcceceieereererieiessiesecserssessnsesmssssessessnsorsssesorsensences 65
424 Define Attribute Union DETIVAONccoeevecererriererrcssrensresssssssstassesssesserssssssasssssnsasssnssssnses 66
4.25 Define Input/Output Attribute Is-a CONNECHONcccoveererrerersrereresessesesesseseransasesssserassnens 67
4.26 Define Input Attribute From CONNECHON..........ecerereerenrirseirsesiesssnsarsersssssesessesnssosasnsseesessese 68
4.26.1 Add Attribute Input-From CONNECHON.........ccererreereeserrsseceserasecseassessarsssesassaesenanas 69
4.26.2 . Modify Attribute Input-From CORNECHONccovvvreirereesesesessersasrerssrenssesssserasee 70
4.26.3 Delete Attribute Input-From CONNECHON..........cceveeiereinerereenseesarsesseserassessessssens 70
References 7
A The Object-Protocol Model 72
Al AUIDULES «..ovvcrcctitssinesssiacsessssssssnsssastassasssssssssasmaseasstnsnssasssessessasaaseassssamsassenssssensrsssss 72
A2 OBJECE CLASSES.....ceonerirrisinssisinsasssasnensremsesessasssansasmisssssrssasssssassessastossssinsesssstsssonaseserensranses 73
A3 PTOLOCOL CLASSES.....0cccrerecerneccsiiaessessnsansnesesssnsessisssasasssessssaessanssnssssesssssnsness sasesasssnessssassassese 73
Ad INPUt aNA OQUIPUL ABIIDULESccerveerrerrenresersrersesesssssnsssnsssssssssnsssssssssessaesssssessssssssssssssases 74
AS DErivVed AUTDULEScociriinrirenerreraressencsnsnssesmessaressessssessressosessssssssnssssssessnssessrssessrassss 76

Abstract

This document describes an X-window based Schema Editor for the Object-Protocol Model
(OPM). OPM is a data model that supports the speciﬁcatioh of complex object and protocol classes.
Objects and protocqls are qualified in OPM by attributes that are defined over (associated with) value
classes. Connections of object and protocol classes are expressed in OPM via attributes. OPM supports
the specification (expansion) of protocols in terms of alternative and sequences of component (sub) pro-
tocols.

The OPM Schema Editor allows specifying, displaying, modifying, and browsing through OPM
schemas. The OPM Schema Editor generates an output file that can be used as input to an OPM schema
translation tool that maps OPM schemas into definitions for relational database management systems.

The OPM Schema Editor was implemented using C++ and the X11 based Motif toolkit, on Sun
SPARCstation under Sun Unix OS 4.1.

This document consists of the following parts:
1. A tutorial consisting of seven introductory lessons for the OPM Schema Editor.
2. A reference manual describing all the windows and functions of the OPM Schema Editor.

3. An appendix with an overview of OPM.

OPM SCHEMA EDITOR 2 Introduction

1 Introduction

This document describes the Object-Protocol Model (OPM) Schema Editor, a user-friendly inter-
active tool for specifying, displaying, modifying, and browsing OPM schemas.

The introduction describes briefly OPM and overviews the OPM Schema Editor. Section 2 contains
instructions on starting the OPM Schema Editor. Section 3 contains a tutorial for the OPM Schema Edi-
tor. The main window as well as all the dialog windows of the editor are described in detail in Section
4. The OPM data model is described in Appendix A.

1.1 The Object-Protocol Model

The Object-Protocol Model (OPM) is a data model for specifying complex object and protocol
structures. Such structures are specific to scientific applications such as molecular biology laboratory
information management systems (LIMS). OPM supports the specification of object and protocol
classes, object and protocol attributes, class hierarchies, derived attributes, and protocol expansion.

In OPM, an object class is identified by a class name, has a class description, and is associated with
attributes that qualify the object class. Attributes take values from value classes that are either other
object classes or system provided primitive value classes such as INTEGER or TEXT. For example, an
object class CHROMOSOME can have attributes name, map, and owner with value classes CHAR(80),
MAP and PERSON, respectively. Attributes can be associated not only with single value classes, but also
with union of value classes. '

Attributes in OPM can be simple or composite. A composite attribute consists of multiple com-
ponent simple attributes. For example, attribute address of class PERSON can be modeled using com-
posite attribute (number, street, city, state, zip_code) .

Note that the support for composite attributes and for associating unions of value classes with
attributes allows OPM schema designers to avoid the creation of object classes that are artificial, that is,
object classes that do not represent entities in the underlying application.

OPM supports the specification of subclass-superclass relationships in an object class (ISA) hier-
archy. A subclass is a specialization‘ of its superclasses, and inherits all the attributes associated with its
superclasses. Multiple inheritance is supported in OPM.

OPM supports the specification of derived attributes using derivation rules involving attribute
inverse, attribute matching, attribute composition, attribute subvalue, attribute union, arithmetic expres-
sions, and aggregate functions. Attribute inverse and matching provide capabilities for cross referencing

values of two or more attributes. For example, let publication be an attribute of object class AUTHOR,

OPM SCHEMA EDITOR 2 Introduction

and let authors be an attribute of object class PUBLICATION, where publication is associated with value
class PUBLICATION, and authors is associated with value class AUTHOR. If publication is specified as the
inverse of authors, then for every (value of) publication, say paper, of a given AUTHOR, say John, the
value of attribute authors for PUBLICATION paper is John. ‘

Protocol classes in OPM are used to model processes such as laboratory protocols. Each instance
of a protocol class is an individual experiment. Given an input, a protocol instance (experiment) results
in an output, where both input and output consist of objects. OPM supports the recursive specification
(expansion) of protocols. Protocol expansion in OPM allows specifying a protocol in terms of alter-
native subprotocols, sequences of subprotocols, and optional subprotocols. A protocol class can be
associated with regular as well as input and output attributes. Input and output attributes are used for
specifying input and output connections between protocols. An input (or output) attribute is a regular
attribute with additional input (or output) statements indicating its relationship with other input or out-
put attributes. For example, if the result (dutput) of a CUT protocol is cut_gel, and CUT is followed by a
PURITY protocol that takes cut_gel (input) for purifying DNA, then CUT and PURIFY are related via their
input and output attributes, that is cut_gel. | ‘

OPM has constructs similar to other semantic and object-oriented data models. Thus, in OPM

(1) objects (instances) are classified into object classes and are qualified by attributes that take val-
ues from value classes;

(2) object classes are interrelated via attributes and specialization (isa) relationships;

(3) attributes can be defined using various derivation mechanisms, such as inverse and matching.
OPM has two constructs that do not appear in other semantic or object-oriented data models:

(1) the association of attributes with union of value classes;

(2) the definition of protocol classes.

The OPM data model is described in more detail in Appendix A. A full description of OPM can be
found in [1].

We intend to implement OPM interfaces on top of relational and object-oriented database manage-
ment systems (DBMSs). Currently, we develop an OPM interface on top of the Sybase relational
DBMS. For relational DBMSs such as Sybase, we use the Extended Entity-Relationship (EER) model
as an intermediate level between OPM and the underlying relational DBMS. Thus, we map OPM sche-
mas into EER schemas and queries, and subsequently map EER schemas and queries into relational
database schema definitions and SQL queries using existing EER to DBMS translation tools [3, 4]. The

mapping of OPM schemas into EER schemas and queries is described in [2].

OPM SCHEMA EDITOR 2 . Introduction

1.2 The OPM Schema Editor
The OPM Schema Editor is used to specify, display, modify, and browse OPM schemas. An OPM

schema generally consists of objects and protocol classes. Each class is associated with attributes.

The main menu of the OPM Schema Editor provides commands to create a new schema, load an
existing schema, save a current schema to a file and to invoke dialog windows for defining or modifying
OPM classes and attributes. ‘

The OPM Schema Editor starts by default a new schema. If an existing schema is needed, then
Open menu item must be used in order to load the schema. The current definition of the OPM schema
can be viewed via the editor windows. The New menu item resets the editor for a new schema. In order
to save the current schema, Save or Save As menu items can be used.

In order to add new object classes to the current schema, Define OPM Object Class menu item is
used. A new (empty) Object Class Definition Window (see Figure 4) will pop up for defining a new
object class. Define OPM Protocol Class or Define Controlled Value Class are used to add a new pro-
tocol class or a controlled value class, respectively.

The editor supports the definition of the following main OPM meta entities:
1.0bject Class,
2.Protocol Class,
3 Controlled Value Class,
| 4.Simple Attribu;e (for an object or a protocol élass),
5.Composite Attribute (for an objeét or a protocol class), and
6.Input/Output Attribute (for a protocol class).

The OPM Editor supplies a dialog window to define, display and modify each of the constructs
above. Each dialog window has buttons (such as New, Clear or Help) that invoke different actions or
functions. It is importaht to note that invoking New or Meodify commands in a window associated with
one of the main OPM meta entities, entails changing the current internal definition of the schema. When
a Modify command is invoked in another window of the editor, only the content of one of the main
OPM meta entities is changed without changing the current definition of the schema; the schema will be
changed only when the New, Modify or Delete button on the main OPM meta entity is invoked. Thus,
the state of each of the OPM meta entities is aiways reflected by the dialog window that represents it.

Print OPM in Latex and Print PostScript menu items output the current schema definition in

OPM SCHEMA EDITOR 2 ' ‘ Introduction

OPM schema definition language to a Latex file and a PostScript file, respectively.
Quit menu item allows leaving the editor. If there are schema changes that have not been saved, the

user will be required to confirm the quit action.

OPM SCHEMA EDITOR 2 Starting the OPM Schema Editor

2 Starting the OPM Schema Editor

The current version of the OPM Schema Editor can be run on a Sun SPARCstation running Sun OS
4.1 (or above) and X-Window R11.2 (or above). It is recommended to run the editor using the Motif
window manager (mwm). The editor supports all the standard X toolkit command line options plus one
of its own: nobell or nobells tum warning and error b&bs off. |

The editor requires the following four files: the file containing the editor executable code, the X‘
application defaults file, the UID file, and the configuration file. The editor executable code is called
editor, the X application defaults file is called SchemaEditor, the UID file is called Editor.uid, and the
configuration file is called metadb.i. The editor, Editor.uid, and metadb.i files should be in the current
working directory. However, if you have the metadb.i and Editor.uid files stored in, for example /
home/editor directory, you can use the following command to specify them to the editor:

setenv EDITOR_UID /home/editor/Editor.uid
setenv EDITOR_META /home/editor/metadb.i

The directory where SchemaEditor is installed is indicated using the following command:

setenv XAPPLRESDIR <directory>

If the SchemaEditor is installed at a certain location in the system, such as: /usr/lib/X11/app-defaults/
SchemaEditor, then it is loaded automatically and this step is not required.

In order to run the editor, first load the default environment with the following command

xrdb -load SchemaKEditor

next, start the editor by typing

editor
then click Continue on the copyright notice window.

For new users we recommend first the tutorial, a step-by-step, hands-on introduction to the editor

and its features (see next section).

OPM SCHEMA EDITOR 2 Tutorial

3 Tuatorial

This section contains a tutorial designed to help leaming the OPM Schema Editor. The first part of
the tutorial presents a predefined schema that represents a brief outline of the editor. The second part of
the tutorial is a guided step-by-step specification of a schema for a simple database. This part consists
of six lessons, each providing step-by-step instructions for completing the tasks.

3.1 Basic Editor Usage

3.1.1 Starting the Editor

The files required to run the editor as well as the command starting the editor are described in the
previous section. For running this part' of the tutorial an additional file, called Tutorial. OPM is needed.
For simplicity, put this file in the current working directory. ,

After starting the editor and clicking on the Continue button of the copyright notice, the editor’s

main window is brought up.

§ Schema Display Define

| Object Classes

The main window contains the main menu bar across the top, the classes listbox and its associated
option menu at the left, and the main window drawing area in the remainder of the window.
The first thing you can explore is the help tree: from the Help menu, select Help. The Help window

displays the topic of the main window. Help about other windows can be obtained by clicking on the

'OPM SCHEMA EDITOR 2 . Tutorial

topics listed in the Help Items List Listbox.
For details on a topic (i.e., on its sub-topics) click Down; to return to a higher level, click Up.

Help Items List

Help Window .
About DB Schema Editor »
Class Dialog

Attribute Di1alog

Component Attribute Definition Dia

KX TS
The main window. For help anywhere within the application, click on a Help butten, or press F1.

3.1.2 Looking at an Existing Schema

This section illustrates the schema specification process of the OPM Schema Editor.

Select Open from the Schema menu in the main menu bar. All the OPM schema files used by the
editor are assumed to have file extension .OPM. Therefore, a standard Motif file selection dialog box
listing all the files *.OPM in its Files Listbox will appear. Double clicking on Tutorial. OPM loads the
file into the editor.

Note that the Object Classes Listbox contains several entries: this is an alphabetically ordered list
of the object classes defined in this schema. The list of the protocol classes in this schema can be dis-
played by selecting Protocol Classes from the option menu heading the listbox. Similarly, the list of
controlled value classes in this schema can be displayed by selecting Controlled Value Classes from
the option menu heading the listbox.

Display the list of object classes and click on PERSON. A graphical representation of the PERSON
object class and its superclass is displayed in the main window drawing area. Now switch to Protocol

Classes in the option menu heading the listbox, and click on CREATE_SCHEMA_F!LE. For protocol classes

OPM SCHEMA EDITOR 2 Tutorial

such as CREATE_SCHEMA_FILE, a graphical representation of their expansion (i.e., their decomposition
into alternative or sequences of protocol steps), is shown (if specified, of course). Expansions are
explained in more detail later.

There are three modes for the graphical display in the main window. The default mode, which you
are seeing now, is called Class Links mode. Bring down the Display menu from the main menu bar and
switch to Class Hierarchy mode. Notice that now a complete hierarchy tree of the OPM object classes
is displayed. Switch to Detailed Links mode. This looks very much like Class Links mode.

Double clicking on any of the buttons displayed in the main window in any of the graphical display
modes will open the class definition window for that class. This is an alternative to double clicking in
the main window listbox.

In Class Links mode or Detailed Links mode, single clicking on any button that represents a class,
for example clicking on the SAVE_FILE button in the expansion diagrain of CREATE_SCHEMA_FILE, will
cause the graphical representation of that class to expand, that is, to replace the button. Clicking again
will reverse this expansion. The expansion of the graphical display is limited to a maximum of six lev-
els.

Unlike in Class Links mode, in Detailed Links mode (sub)protocols that are expanded inside the
expansion of another protocol are displayed without their attributes. Class Links mode therefore pro-

vides a more concise graphical representation.

Pbject Class Definitionlh

Object Class Name: IIPERSON Auributes

address: (COMPOSITE)
Description: | informaton about a person name: (TERT)

sex: (SEX: { "female

Superclasses
SUPERCLASS

{Modify Superclass| Define Atibute: | Simple & |

New Modify | | Delete : Help

Chogose a name for this class.

Return now to the list of object classes. You can look at the details of the PERSON class by double »

OPM SCHEMA EDITOR 2 : Tutorial

clicking on its name in the listbox. The editor opens the Object Class Definition window.This window
displays the name of the class, a description, its superclasses, and its attributes.

Look at the name attribute of object class PERSON by double clicking it in the Attributes Listbox
of the Object Class Definition window. Attribute name is a simple attribute, and a Simple A ttribute
Definition window is brought up.

: Definidon Constraints i
j Awribute Name: I neme I Identdfier: | No £]
Cless Name: [PERSON ! Values:
Null?: | Not Allowed =3 |

Value Class: - Derivation: :‘:}
TEXRT
Select Type: | Prmidve 1] ' Define Derivadon: | none e |
New | |Modiy | | Detete Undo Clear | § Close | | mew ||IE

, r'l‘hc wvalue classes for this araibute. l ”

The attribute name and the name of the class for this attribute are displayed at the top of the win-
dow. The value class of name is listed in the Value Class Listbox (it is primitive value class TEXT). The
attribute constraints displayed in the upper right part show that name is not an Identifier attribute, it is
Single valued, it is not allowed to have Null values. The Derivation Listbox is empty because name
does not have a derivation.

If you have tried to modify something in these windows and want to close them, a warning message
indicates that yoﬁr work is not saved. Go ahead and close them anyway, up to the main window. In the
main window, switch to the Protocol Classes option for the listbox. Double click on the CREATE_SCHE-
MA_FILE protocol.

Protocol Class Definition window is very similar to the Object Class Definition window. Proto-
col classes do not have superclasses, but have protocol expansions displayed in the Protocol Expansion
area. This window has an expansion expressing the fact that the CREATE_SCHEMA_FILE protocol consists
of three sub-protocols (steps), LEARN_OPM_EDITOR followed by ENTER_DEFINITIONS and SAVE_FILE.
Close the CREATE_SCHEMA_FILE Protocol Class Definition window.

OPM SCHEMA EDITOR 2 Tutorial

Protocol Class Name: {[CREATE_SCHEMA_FILE

output_file: (TEXT)

Description:

§ Protwcol Expansion

LEARN_OPM_EDITOR , ENTER_DEFINITIONS,
SAVE_FILE

|Define Expansion| Define Atwibute: | Simple @ | :

New Modify Delete , Help

The list of atributes defined for this class.

In the main window, display the controlled value classes by switching to the Controlled Value

Classes option of the main window Object Classes Listbox. Double click on the first entry.
~ The Controlled Value Class/Value window displays a controlled value class called SEX, consisting

of two values: male and female. The Value Type of both male and female is Character String. Any time
an attribute can take values from a finite set of predeﬁnéd (controlled) values, its value class can be
defined as a controlled value class. Close this window.

From the Schema menu in the main menu bar, select New. This selection clears the editor (i.e.,
removes the current schema, if any) and allows specifying a new schema from scratch. You are ready
for the second part of the tutorial. '

3.2 Specifying and Saving Schemas

This part of the tutorial guides you through a step-by-step specification of a schema for a simple
database. Suppose that you need to fill a position in your group.You will specify the schema of a data-
base that can be used by interviewers, keeping track of people, resumes, and the steps in the interview

process. The tutorial consists six lessons regarding the specification of:
1. object classes and protocol classes;

2. attributes for object and protocol classes;

10

r e

OPM SCHEMA EDITOR 2 Tutorial

S ontrol led Value Class/Value Bt

. Controlled Value Class Name: rssx

Value Type: | Character Saing ©3 |

Values in this class:

female
male

Delete Value

New Modify Delete

Fl’his button will close this dialog.

3. controlled value classes, and associating attributes with value classes;
4, derivation expressions for attributes;

5. expansions for protocol classes;

6. connections for input/output attributes of protocol classes.

Each stage of the schema specification process is based on the previous ones, so the lessons should

be done in order. It is worth saving from time to time partially specified schemas.

3.2.1 Specifying Object Classes

In order to define an object class, select OPM Object Class from the Define menu in the main
menu bar. An empty Object Class Definition window is brought up.

Call this class TRY by typing the name in the Object Class Name area. Note that you cannot type
in lower-case characters. Class names are always in upper-case characters, and the window automati-

cally converts the characters into upper-case. Type a short description in the Description area, and click

11

OPM SCHEMA EDITOR 2 ' - Tutorial

Description:

Superdlasses

[Modify Superclass| Define Atribute: [Simple o |

New Modify Delete Help

Choose a name for this class.

the New button. This new object class has been added to your schema. The schema will consist of more
than one object class, so you may want to change the name of this class. In the Object Class Name area
backspace over TRY, and type DOCUMENT. Try cliéking Close to close this window. The name change
has not been recorded, therefore a wamning dialog box is brought up. Click Cancel in the warning dialog
box, then click Modify to change the name of the class. _

If you want to reuse a class definition, then you can use a previously defined class and change the
name. Starting with the DOCUMENT class definition, change the name to RESUME and click New. Now
you have two classes.

Click the Modify Superclass button for defining a superclass for RESUME.

The Superclass Definition window shows that only DOCUMENT is a potential superclass for
RESUME, because it is the only other class defined so far. Click on DOCUMENT in the Potential Super-
classes Listbox. DOCUMENT is moved from this listbox to the Selected Superclasses Listbox. Click
Modify in the Superclass Definition window. Note that the newly defined superclass is now displayed
in the Superclasses Listbox of the Object Class Definition window. Click Close in the Superclass
Definition window.

Before proceeding with the schema specification, hit F1 on the keyboard. This is the help key; the
Help window is brought up. The topic shown is the Superclass field of the Object Class Definition

window. Anywhere in the application, if you are not sure how to use a button or what is the function of

12

a

OPM SCHEMA EDITOR 2 Tutorial
urclass Definitiong

Selected Superclasses Potential Superclasses
DOCUMENT

BT e~

Modify Delete All Undo Close Help

This button will modify the superclass of the current object class.

a menu, etc., you can click F1 when keyboard focus is on the widget in question. The help is context
sensitive and will display the appropriate topic. Click Modify in the Object Class Definition window,
to save the newly defined superclass, and close this window.

3.2.2 Specifying Protocol Classes

Protocol classes are used to keep track of procedures and processes. For this database, you may
want to keep track of interviews and phone calls. Bring up the Protocol Class Definition window by
selecting OPM Protocol Class from the Define menu in the main menu bar. An empty Protocol Class
Definition window is brought up.

Call this protocol class EVALUATE by entering this name into the Protocol Class Name area. Enter
a short description(e.g. “Evaluate a potential employee.”) in the Description area. Click New to add
this protocol class to database schema. Clear the window by clicking Clear, and enter a new protocol
class name, TELEPHONE. Click New. Clear the window again and enter INTERVIEW. Click New. Clear the
window oncé more and enter HIRE. Click New. Three more protocol classes have been added to the
schema. | '

You then realize that hiring a successful candidate is done only for one person, so it is not necessary
to keep track of the hiring in the database. To delete the HIRE protocol class, click the Delete button. A
warning is issued: “Are you sure you want to delete the current class?”. You confirm the deletion by
clicking OK, and the class is deleted. |

- You will define an expansion for a protocol class later. Now it is worth saving your work. From the

13

OPM SCHEMA EDITOR 2 Tutorial

ocol Class Definition]EiuiEumucussmen

R Prowcol Class Neme: | EVALUATE

Descripdon: lEvaluate a potental employee .

Protocol Expansion

{Define Expansion| Define Awxibute: | Simple & |

New Modify Delete Clear Close Help

The list of atributes defined for this class.

Schema menu, select Save As. The file selection listbox allows you to choose a name for your new
schema. Remember to use a file name with extension .OPM such as Example.OPM or Employee.
OPM. Now that you have chosen a name for the schema, using Save instead of Save As will save sub-

sequent schema versions to the same file.

3.3 Specifying Attributes

3.3.1 Specifying Simple Attributes

Open an empty Object Class Definition window from the main menu. Specify an object class
called PERSON by typing this name in Object Class Name area. Click New to add this object class. In
order to define a simple attribute for a PERSON, click Simple in the Define Attribute option menu. A
Simple Attribute Definition window is brought up.

Call this attribute experience by typing this name in the Attribute Name area. A person can have
lots of job experience, so this attribute should be specified as multi-valued. Select Multiple from the
Values option menu. If you click New now, you will get an error. Attributes cannot be created without
a value class. You do not know what the value class is for this attribute, so you can try choosing a very
general value class. Select Metaclass from the value class Select Type option menu. In the Attribute

Metaclass Value Class window there are two choices: OBJECT_CLASSES and PROTOCOL_CLASSES

14

&

OPM SCHEMA EDITOR 2 ' Tutorial

d Awribute Neme: [oxperence

Class Name: I PERSON

Null?: [Allowed 5]

Value Class: Derivadon:
PROTOCOL __CLASSES

Select Type: | Metaclass © | Define Derivadon: | none } = |

New Modity Delete l Close l

I The derivation for this atibute.

(besides Undefined). Job experience refers to performing tasks in general, so let us choose PROTOCOL_-
CLASSES. Click Modify and close the Attribute Metaclass Value Class window. Now click New in
order to add this attribute to the schema. _

Note that the attribute and its value class are displayed and highlighted now in the Attributes List-
box of the Object Class Definition window. The highlighting indicates that this is the selected (current)
attribute. If you wish to delete or modify an attribute now, this is the one that would be affected.

3.3.2 Specifying Composite Attributes

The persons interviewed have addresses, and addresses are composite rather than simpie attributes.
Select Composite from the Define Attribute option menu in PERSON Object Class Definition window.
Call this attribute address by typing it in the Attribute Name area.

Now we show how to add the new component attribute street_address. After you click the Define
Component button, a new Component Attribute Definition window is brought up.
| Type in the attribute name in Component Attribute Name area in this window. This attribute is
associated with primitive value class TEXT. Click Primitive in Select Type option menu. Select TEXT in
Primitive Classes Listbox in Attribute Primitive Value Class window, click Modify, and then close
this window. Click New in the Componeni Attribute Definition window to add this component
attribute.

15

OPM SCHEMA EDITOR 2 Tutorial

Change the attribute name in Component Attribute Definition window to city and click New . A
second component with value class TEXT has been defined.

Component Attribute Name:

Value Class:
TEXT

Select Type: | Primitive & | Define Derivadon: | none & |

New Modify Delete

The value classes for this stribute.

Clear the component window by clicking Clear, enter a new name state and associate the attribute
with primitive value class CHAR(n). In the Length area of the Attribute Primitive Value Class window
enter the length for the CHAR(N) - in this case, 2. Click Modify, and state now is associated with value
class CHAR(2). Click New again in the Component Attribute Definition window. Close the Compo-
nent Attribute Definition window.

Remember to click New in the Composite Attribute Definition window to add the new composite
attribute to object class PERSON.

3.3.3 Composing and Decomposing Attributes

A composite attribute, such as the address attribute you have just created, can be broken into sim-
ple attributes. Display the composite attribute address by double clicking on its name in the Attributes
listbox of the PERSON Object Class Definition window.

Click on the button Decompose. As a result, the composite attribute address is replaced by its com-
ponents, street_address, city, and state, that are now simple attributes of the PERSON class. Close the
composite attribute window and verify this by looking in the Attributes listbox. There is no composite

attribute named address, but there are new simple attributes named street_address, city, and state.

16

4

OPM SCHEMA EDITOR 2 7 Tutorial

The reverse action is also very easy to carry out. Instead of specifying components for a composite
attribute one by one, a composite attribute can be defined by selecting its components from the list of
existing simple attributes.

In order to restore the composite attribute address, open the Composite Attribute window and
type the name address in the name field. Open the Include Components window by chckmg on the
Include Components button below the Components Listbox.

include Components)

Selected Atuaibutes Potentdal Atxibutes

city: (TEXT)
state: C(CHARC(2Z))D
street_address: (TE

o]

Click to add an attribute to the list of components.

The Include Components window allows YOu to select the attributes that will be moved from the
list of attributes to the list of component attributes for this composite attribute. Select street_address,
city, and state by clicking on them in the Potential Attributes Listbox. Confirm these selections by
clicking on the OK button. The Include Components window will be closed and the Composite
Attribute window will show that you have selected three new components. Click the New button now
in order to create the address attribute.

Close the Composite Attribute Definition window and verify the changes in the Attributes list-
box of the Object Class Definition window. PERSON class now has a new attribute called address,
while street_address, clty, and state attributes have been removed.

3.3.4 Specifying Input/Output Attributes

Only protocol classes can have input'or output attributes. Double click on TELEPHONE to bring up
the Protocol Class Definition window. Select Input/Output in the Define Attribute option menu, and
the Input/Output Attribute Definition window is brought up.

17

OPM SCHEMA EDITOR 2 Tutorial

Atribute Name:. I;eedng__dme
» Class Name: ITELEPHONE Nul?: | Allowed]

Vahlue Class: Connectdon:

DATETIME

EX
Select Type: Define Connecdon: § Outputis-a £ |

New Modify | | Delete

I The value classes for this atuibute.

Let us specify an attribute called meeting_time that represents a meeting time set up by telephone
for an interview. Bring up the Attribute Primitive Value Class window, select DATETIME, click Modify,
and then Close. The attribute has a name and a value class. This represents the result of an action (tele-
phone call), so it is an output attribute. Select Output in the Connection option menu. Click New in
order to associate this attribute with the TELEPHONE protocol class.

3.4 Specifying Vélue Classes

Four types of value classes are supported by the OPM Schema Editor: controlled, primitive,
abstract, and metaclass. Several primitive value classes and a metaclass have been already associated

with attributes up to now. The other two types of value classes are explained below.

3.4.1 Specifying Controlled Value Class

You need to keep track of the interview results. An interview can result in hiring the candidate
immediately, reject the candidate immediately, or postpone the decision (perhaps set up another inter-
view). Open the INTERVIEW Protocol Class Definition window, and specify an input/output attribute
called decision. Select Controlled from the value class Select Type option menu.,

An empty Attribute Controlled Value Class window is brought up, because there are no con-

trolled value classes defined for this schema.

18

OPM SCHEMA EDITOR 2 Tutorial

Click on the Define Controlled Value Class button to bring up the Controlled Value Class/Value
window; this window can also be brought up from the main menu bar, by selecting Controlled Value
Class under the Define menu.

Specify a controlled value class called DECISION by entering the name of the value class in the
Controlled Value Class Name area at the top of the window. The first (controlled) value for DECISION,
Hire, must be entered in the New Value area. Click the New Value button; Hire appears in the Values in -
this class Listbox. Enter Reject in the New Value area and click New Value again. Similarly, enter
value Uncertain. Click the New button and then close the window. The new controlled value class DECI-
SION is added to the schema. '

CControlled Value Class:

DECXSION: £ "RHRire™ , "Reject’”™ ., “"Uncerctca

I Define Conmwolled Vealue Class I

lModify] I Delete I [Undo] l Close I L Help J

i I Select o CTonrolled Vealue Class o be the value class of the attibute l

This new controlled value class is listed in the Controlled Value Class Listbox in the Attribute
Controlled Value Class window. In order to associate this value class with attribute decision, select the
DECISION in the listbox, and then click Modify. Close the Attribute Controlled Value Class window.
In the Input/Output Attribute Definition window, the new value class is now displayed. Select the
Output option for Connection and click New in order to associate this attribute with the INTERVIEW pro-

tocol class.

3.4.2 Specifying Abstract Value Classes

Clear the Protocol Class Definition window and specify a new protocol class called
READ_RESUME. Click New in order to add this class to the schema. Open the Input/OQutput Attribute

Definition window, and specify input attribute resume; specify this attribute so that it is not allowed to

19

OPM SCHEMA EDITOR 2 Tutorial

have null values. The value class of this new attribute should be RESUME, of course. Such a value class
(defined as an OPM class) is called abstract. Select Abstract from the value class Select Type option
menu. The Attribute Abstract Value Class window is brought up.

Selected Value Classes: Potendal Value Classes:

DOCUMENT
EVALUATE
INTERVIEW
PERSON
READ_RESUME
TELEPHONE

B -]

Mocufyl Delete Al Undo Ecmsel l Help |

I Abstract Velue Classes to be the value class of the atoibute, select an item _l

The Potential Value Classes Listbox contains all the classes that have been defined so far. Select
RESUME from this listbox. RESUME is moved from the Potential Value Classes Listbox to the Selected
Value Classes Listbox. Click Mddify and Close in this window. Click New in the Input/Qutput
Attribute Definition window in order to associate the attribute with its protocol class.

An attribute can have more than one abstract value class. For example, suppose that a candidate has
as reference a recommendation from a previous manager or co-worker. This reference could be in the
form of a person to contact or in the form of a recorded reference letter. Open the PERSON object class.
Open the Simple Attribute Definition window to add a simple multi-valued attribute reference. Open
the Attribute Abstract Value Class window, and select two object classes DOCUMENT and PERSON.
Click Modify. A reference attribute can be now either a DOCUMENT or a PERSON.

Note that an attribute does not need to be multi-valued in order to be associated with several value
classes. For example, a candidate can have only one reference, but the reference can be either a letter or
a person. |

Troubleshooting: If you ever see the Abstract Value Class Definition window completely empty
when you are trying to indicate an abstract value class, then you have not defined any classes yet. This

window will be empty as long as there are no defined classes.

20

OPM SCHEMA EDITOR 2 : Tutorial

3.5 Specifying Attribute Derivations
Derived attributes are associated with object or protocol classes, and are derived from other
attribute(s) using a derivation rule. An attribute can be associated with at most one derivation rule. Each

type of derivation has constraints and is defined in its own separate window. The seven types of deri-

vations rules are:

1. inverse: the derived attribute is the inverse of an attribute associated with another object or protocol

class;

2. match: the derived attribute matches an attribute of another object or protocol class on a component
attribute;

3. arithmetic: the derived attribute is computed from an arithmetic expression involving arithmetic

operators, constants, and other numeric attributes of the same object or protocol class;

4. aggregate: the derived attribute is computed by applying an aggregate function on a numeric
attribute of the same object or protocol class, or by counting the values of another attribute of the

same object or protocol class;
5. composition: the derived attribute is a composition of other attributes;
6. subvalue: the derived attribute is defined as a subvalue of another attribute from the same class;
7. union: the derived attribute is defined as the union bf other attributes from the same class.

A derived attribute cannot be an identifier, nor an input or output attribute of a protocol class. Com-

posite derived attributes are allowed in OPM only using attribute matching.

3.5.1 Specifying Attribute Inverse Derivations

Create a simple attribute candidate for object class RESUME, and associate this attribute with
abstract value class PERSON. Also create a simple attribute resume for object class PERSON; associate it
with abstract value class RESUME. After clicking New to add the attribute, do not close the Simple
Attribute Definition window. Instead, select inverse in the Define Derivation option menu. The
Attribute Inverse Definition window is brought up.

Because attribute resume is associated with only one value class RESUME, its inverse attribute must
be associated with RESUME. Conversely, the potential inverse attribute must be associated with value
class PERSON. RESUME is listed in the Classes Listbox in Attribute Inverse Definition window. The

RESUME object class has only one attribute, candidate, whose value class is PERSON and is listed in the

21

OPM SCHEMA EDITOR 2 " Tutorial

[RESUME candidate

n'

Modity |] Delete A1

. [Select a class to form the Inverse derivation.

Attributes Listbox. _

Select candidate in the Attributes Listbox. The new inverse definition, RESUME.candidate, is
listed in the Inverse of Listbox. Click Modify in order to update the attribute definition.

Inverse specifications can be mutual, therefore the editor asks if you want to specify PERSON.
resume as an inverse of attribute candidate of RESUME . Select Yes , and close the Attribute Inverse
Definition window. The inverse derivation is displayed in the Derivation area in the Simple Attribute
Definition window.)

Note that a simple br component attribute associated with an abstract value class can have an

inverse derivation, provided the attribute is not specified as an identifier.

3.5.2 Specifying Attribute Match Derivations

In the simplest case of matching, a simple attribute A of object or protocol class C, can match an
attribufe B of object or protocol class C, on attribute M only if (B, M) is defined as a composite attribute
of C,, A and B have identical value classes, and the value class of M includes C,.

Suppose that there are several positions available, and the positions are offered to all qualified
applicants by sending them letters on different dates. Furthermore, every applicant receiving an offer
letter records the letter date and the letter. First, create a new objeét class called LETTER without

attributes. Create a new object class called OFFERS associated with a composite attribute consisting of

22

OPM SCHEMA EDITOR 2 | Tutorial

three components: applicant, associated with abstract value class PERSON, send_date, associated with
primitive value class DATETIME, and letter, associated with abstract value class LETTER. Savé the OFFERS
object class, and then associate object class PERSON with a new composite attribute consisting of two
components: letter_date, associated with primitive value class DATETIME, and reply, associated with
abstract value class LETTER. Click New on the Composite Attribute Definition window to make the
change. Select match in the Define Derivation option menu in order to bring up the Attribute Match
Definition window. ‘

N BT ERR t trf Dute Ciateh Dot 1ni t1oniitad T
Cless Neme: | PERSON B

Matching Class: On Awxibute:
D

S T ———— I,
|« anam——————————— - 1 |~ enm——— . -]
Aceribute Match: Maeatching Actuributes:

Tetter_date Tetter
reply send__date

[X [==

‘Modlﬁyl rDe.leteAll] [Adde:dx] lDe.'lete.Matc.hI l Undo | IClnsel Lﬂe.\p]

: rSe.le.ct a matching stribute to match with the selected arribute on the Awribute Match list. J ‘

In the Attribute Match Definition window, the Matching Class Listbox lists only object class
OFFERS, since only OFFERS is qualified to be involved in an attribute matching with an attribute of object
class PERSON. The Attribute Match Listbox lists components (lefter_date and reply) of the new com-
posite attribute of PERSON; they are used to match component attributes of OFFERS.

Select OFFERS in the Matching Class Listbox. Component attribute applicant appears in the On
Attribute Listbox. After selecting applicant in this listbox, the other two components of the same com-
posite attribute éppear in the Matching Attributes Listbox: they are send_date and letter.

Select letter_date in the Attribute Match Listbox and send_date in the Matching Attributes
Listbox, and then click the Add Match button in order to match these two component attributes. Select
reply in the Attribute Match Listbox and then letter in the Matching Attributes Listbox, and then
click the Add Match button again. Click the Modify button in order to record this match derivation for

23

OPM SCHEMA EDITOR 2 : Tutorial

the composite attribute of PERSON. The matching expression appears in the Derivation area in Com-
posite Attribute Definition window. Click Modify button on the Composite Attribute Definition

window in order to update schema.

Note that only non-identifier simple or composite attributes can have a match derivation.

3.5.3 Specifying Arithmetic Expression Derivations

An arithmetic derivation defines the value of a numerical attribute in terms of the values of other
numerical attributes of the same class. For example, an applicant can request a certain salary. In order to
represent such a request, a new simple attribute called salary_requested is created for object class PER-
SON; this attribute is associated with primitive value class MONEY.

Expression Def ini t1on RIS

Atributes:

B Ataibute Neme: total_cost

experience_count
salary_requested

Class Name: PERSON

Arithmetic Expression:

salery_requested*2

BEEEHE

Modify | | Delete AR

Select attributes available and insert them to the current derivation.

The cost of a person, however, includes, in addition to the salary, benefits and overhead. Suppose
that on the average, an employee costs twice her/his salary. Create a new simple attribute called
total_cost for PERSON with value class MONEY. Click New to add this attribute. In the Simple Attribute
Definition window, select arithmetic in the Define Derivation option menu. The Arithmetic Expres-
sion Definition window is brought up.

Specify the arithmetic expression salary_requested * 2 by first selecting salary_requested in
Attributes Listbox, then clicking on the * function button, and finally by editing in the Arithmetic

Expression area in order to add number 2. All this can be also done by typing directly the expression in

24

OPM SCHEMA EDITOR 2 ' Tutorial

the Arithmetic Expression area. Click Modify in order to update the definition of attribute total_cost.
The derivation is displayed in the Derivation area in the Simple Attribute Definition window.
Remember to click Modify in order to save the change. Only simple attributes with numerical primitive
value classes INTEGER, SMALLINT, REAL, FLOAT, or MONEY can have arithmetic derivations, and such
attributes cannot be specified as identifiers.

3.5.4 Specifying Aggregate Function Derivations

Similar to arithmetic derivations, aggregate function derivations define the value of a numerical
attribute in terms of other attributes of the same class. However, an aggregate derivation involves only
one multi-valued attribute that is not restricted to have numerical value classes. For example, an appli-
cant can have job experience from several positions. The number of positions held by an applicant can
be represented using an attribute that counts the number of different values associated with (multi-val-
ued) attribute experience.

Atwaibute Name:

experience

reference -

Class Name:

Functon:

Select 2 Primitdve Value Class to be the value class of the atibute.

Create a new simple attribute for PERSON called positions, associated with primitive value class
SMALLINT. After clicking New in order to specify this attribute, open the Aggregate Function Defini-
tion window by selecting aggregate in the Define Derivation option menu. The Aggregate Function
Definition window is brought up.

The Function option menu allows choosing one of several aggregate functions. Select the count

25

OPM SCHEMA EDITOR 2 ' Tutorial

aggregate function. The Attributes Listbox lists all the multi-valued attributes of PERSON that could be
involved in this derivation. Select experience from the listbox. Click Modify, and then close this win-
dow. The new aggregate function derivation is displayed in the Dérivation area in the Simple
Attribute Definition window. Remember to click Modify in this window in order to associate the
attribute definition with the new derivation expression.

An attribute associated with an aggregate function derivation cannot be an identifier.

3.5.5 Specifying Attribute Composition Derivations
Create a simple attribute cover_letter for the object class PERSON, and associate this attribute with
~abstract value class LETTER. Click the New button on the Simple Attribute Definition window and

select composition in the Define Derivation option menu. The Attribute Composition Definition
window is brought up.

Acvxibute Name: l cover_Jlettex

Class Name: l PERSON

Composidon Derivadon: I resume.candidate.reply

Acoributes: Value Classes:

LETTER

| = = R >]

I New I [De.letel [AUndo] I Close | I Help —l

The Attributes Listbox displays all simple or component attributes of class PERSON that are non-
derived or derived by inverse derivation and that are abstract. Click resume on the Attributes Listbox,
and it will be displayed in the Composition Derivation area. The value classes of resume will be dis-
played in the Value Classes Listbox. For every value class selected in the Value Classes Listbox, its
attributes that are non-derived or derived by inverse derivation will be displayed in the Attributes List-
box. If you click on an attribute in the Attributes Listbox, the same composition procedure is repeated.

Click on candidate, and then click on reply. The Attributes Listbox now is empty because there is no

26

OPM SCHEMA EDITOR 2 Tutorial

valid attribute associated with class LETTER.

Click New in the Attribute Composition Definition, and then click Modify in the Simple
Attribute Definition windows in order to save the changes.

3.5.6 Specifying Attribute Subvalue Derivations

First specify an object class MEMORANDUM with superclass LETTER, and then create a simple
attribute response for the object class PERSON, and associate this attribute with the abstract value class
MEMORANDUM. Click the New button on the Simple Attribute Definition window and select sub—
value in the Define Derivation option menu. The Attribute Subvalue Definition window is brought
up. |

All simple or component attributes of class PERSON that can be defined as subvalues of attribute -
response are displayed in the Attributes Listbox. For the current schema, only attribute reply is dis-

Atxibute Name: I response

Cless Neme: [PERSON —]

Derivadon: subvalue of l —I

Atuibutes: | reply

- - |

[Freas] [mac] [[Unao | [cicse | [Har |

;-_' l Select an atoibute here as the subvalue derivadon of the current atxibure.

played in the listbox. The value class of response (i.e., MEMORANDUM) is an immediate subclass of the
value class of attribute reply (i.e., LETTER). Click reply on the Attributes Listbox, and it will be displayed
in the Derivation: subvalue of area. Click both Modify in the Attribute Subvalue Definition and the
Simple Attribute Definition windows in order to save the changes. -

27

OPM SCHEMA EDITOR 2 Tutorial

3.5.7 Specifying Attribute Union Derivations

Specify three simple attributes for object class DOCUMENT: author, with abstract value class PER- -
SON, evaluate, with abstract value class EVALUATE, and contact, with abstract value class TELEPHONE.

PPYTIYPYOY A A A A A A AP .. ")
Arvoibure Name: l person_selected

Class Name: rDOCUMBNT

Dertvadon: I

Seclected Atuibutes: Potendasl Acwxibuces:

author
contact
evaluate

rModW] E:exe.te.Aul o [Undo l l Close I [Help l

l Select an atribute here il move it back to the Potendal Atuibutes list, and all]

Then specify another simple attribute, person_selected, and associate this attribute with abstract value
class PERSON or EVALUATE or TELEPHONE. Click the New button in the Simple Attribute Definition
window and select union in the Define Derivation option menu. The Attribute Union Definition win-
dow is brought up. o

Attributes author, contact, and evaluate will be displayed in the Potential Attributes Listbox.
The value class for attribute person_selected is the union of the value classes of attributes author, con-
tact, and evaluate. Click on each of the attributes displayed in the Potential Attributes Listbox, and
they will be entered into the Derivation area and listed in the Selected Attributes Listbox. Click Mod-

ify in the Attribute Union Definition and in the Simple A ttribute Definition windows in order to save |
the changes. '

3.6 Specifying Protocol Expansions

Protocol EVALUATE can be expressed in terms of (expanded into) simpler (sub-)protocols (steps) that
are involved in the evaluation process. '

28

OPM SCHEMA EDITOR 2 - Tutorial

First, specify an additional protocol class called REJECT representing the writing of rejection letters.
After specifying REJECT, open the EVALUATE Protocol Class Definition window. Click the Define
Expansion button in order to bring up the Protocol Expansion window.

The Protocol Expansion area is empty, and the Protocols Listbox lists four protocols that can
potentially be involved in this expansion. Note that EVALUATE is not listed because a protocol cannot be
defined in terms of itself. The expansion can be specified by typing directly in the Protocol Expansion
area or by using the Syntax buttons and selecting protocols from the Protocols Listbox.

Protocol Expansion 7 Provocols
READ RESUME, (REJECT OR TELEPHONE, n INTERVIEW

[INTERVIEW]I{ READ_RESUME
REJECT
TELEPHONE

(L 1l 1L e 1 1l -1 &

REJECT

e
@ S CRRIE NS>

' { undo | | clear | | Close | | Hep |

: l Type the expansion here. or click in the protocols list and on the syntax buttons to build an expansion l

The evaluation process consists of reading a resume, then either rejecting the applicant immediately
or deciding to telephone for arranging an interview. If the telephone conversation is not successful, you

may not wish to arrange an interview. Thus, EVALUATE is expanded as follows:

READ_RESUME, (REJECT OR TELEPHONE, (INTERVIEW))
The parentheses group elements together. Commas represent sequential steps: first read the resume,

then either reject or telephone. The square parentheses indicate an optional step: an interview may or

may not be arranged. This expansion can be expressed as follows using the Syntax buttons: click on

29

OPM SCHEMA EDITOR 2 ‘ Tutorial

READ_RESUME in the Protocols Listbox, click the comma button, click the left parenthesis button, click
on REJECT, click the or button, click on TELEPHONE, click the comma button, click the left square paren-
thesis button, click on INTERVIEW, click the right square parenthesis button, click the right parenthesis
button.

Click on Modify to associate EVALUATE with the new protocol expansion. The new protocol expan-
sion will appear in the Protocol Expansion area in EVALUATE Protocol Class Definition window. More-
over, a graphical representation of the expansion is represented graphically in the drawing area of the
Protocol Expansion window. Remember to click Modify in the Protocol Class Definition window to
save the change. _ 7

Troubleshooting: Without parentheses the expansion (READ_RESUME, REJECT OR TELEPHONE,
(INTERVIEW)) is quite different: it specifies the evaluation process as consisting of the following sequence
of steps: either read the applicant’s resume and then reject the applicant, or telephone the applicant and
possibly arrange an interview (operator “,” has higher precedence over or)!

Now try reverting all parentheses into sqhare parentheses in the expansion text. Click Modify. The
protocol expansion parser cannot interpret this new expression, and warns you of the error by indicating
the location of the error.

3.7 Specifying Protocol Connections

Connections between protocols are specified using input and output attributes. If an input or output
attribute A of a protocol class P is identical to an input or output attribute B of one of the subprotocols
of P, Q (i.e., @ is involved in the expansion of P, and B represents A in @), then B is specified as an
Input is-a or Output is-a relative to A. If an input attribute A of protocol class P takes its input from an
output attribute B of another protocol class @, then A is specified as an Input from relative to B.

3.7.1 Specifying Input or Output Is-a Connections

The EVALUATE protocol class should have an input attribute representing resumes. Bring up the
EVALUATE Protocol Class Definition window, and speéify an input attribute called resume with abstract
value class RESUME.

| Clearly, input attribute resume of sub-protocol READ_RESUME is identical to input attribute resume
of the higher-level protocol EVALUATE. Bring up the READ_RESUME Protocol Class Definition window,
and then the Input/Output Attribute Definition window for resume. Select Input is-a from the Define

Connection option menu. The Input/OQutput Is-a Definition window is brought up.

30

OPM SCHEMA EDITOR 2 Tutorial

o

put/Output 1s-a Definition]
The atribute’s inputis-a
Protocol Auributes
EVALUATE

Modify Delete

This button will close the Isa Dialog.

rrrrrrre.

The higher-level protocol class, in this case EVALUATE, is automatically displayed in the Protocol
area. The input attributes of this higher-level protocol class (in this case only one) are listed in the
Attributes Listbox. Select resume from this listbox, click Modify, and close this window. The input is-
a definition is displayed in the Connection area of the Input/Output Attribute Definition window.
Remember to click Modify before closing Input/Output Attribute Definition window.

An input attribute can have an input is-a connection if it is part of a higher level protocol, and the
connection must refer to an input attribute of that higher level protocol. In the example above the names
and value classes are identical for the connected attributes, but this is not a requirement. Similar con-
straints apply to the output is-a connection. As an exercise, create an output attribute decision for the
EVALUATE protocol class with a controlled value class DECISION, and connect output attribute decision of
protocol class INTERVIEW to it.

3.7.2 Specifying Input From Connections

The TELEPHONE protocol class has a meeting_time output attribute. A similar attribute can be con-
sidered as an input attribute for the INTERVIEW protocol class. Accordingly, specify an input attribute
time for protocol class INTERVIEW, and associate it with primitive value class DATETIME. In the Input/
Output Attribute Definition window select Input from from the Define Connection option menu.

The Input From Definition window is brought up.

31

OPM SCHEMA EDITOR 2 ' ' Tutorial

The anyibute input from

TELEPHONE

From Protocol Classes

READ_RESUME
REJECT

TEL FPHONE

B -

The From Protocol Listbox in this window lists all the protocol classes having output attributes
that can be connected to the current attribute. Select TELEPHONE in the From Protocol Listbox. The
name of the selected protocol appears in the The attribute input from area, and the Attributes Listbox
_ lists the output attributes of the selected protocol class: in this case, meeting_time is listed. Select this
attribute by clicking on it; its name is displayed in tne via area. Click New, and the input from definition
is displayed in the Connection area of the Input/OQutput Attribute Definition window. Remember to
click Modify before closing the Input/Qutput Attribute Definition window.

An input attribute of protocol class P can have an Input from connection either (1) if P is not a
sub-protocol of a higher-level protocol class, or (2) if P is a sub-protocol of protocol class @, and there
are other sub-protocols of Q preceding P in the expansion definition. The via attribute must be an output
attribute of the From Protocol. In some cases, there is a sequence of via attributes. In order to continue
adding via attributes, the most recent via attribute must be of abstract value cl.ass and the new via
attribute must be an attribute of that class.

32

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

4 OPM Schema Editor Windows

This section describes every window one may encounter while using the editor. The layout of every
window, buttons in the window, and the functionality of each button are described.

We start by presenting the general window structure, which is generic for all the windows in the
editor (see Figure 1). Then we present the OPM Schema editor window flow diagram in Figure 2.The
main menu, the functionality of each menu item, and how to use the main menu to start or end an appli-

cation is then explained. Finally, we will concentrate on specific functions for every individual window.

4.1 General Window Structure

All the windows in the OPM Editor follow the general window structure shown in Figure 1.

TITLE

Specific Part

Specific Buttons , Undo [Clear] " Close Help

Status Line

FIGURE 1. General Window Structure

A window can be divided into two parts: a window—§peciﬁc part and a generic part. The latter is

(almost) identical in all the windows except the main window. In the generic part of a window; there are:

1. a window title
2. astatus line_with instructions for next action;
3. an Undo button (undo the previous action);

4. a Close button (close this window);

33

OPM SCHEMA EDITOR 2 ’ v OPM Schema Editor Windows

5. aHelp buttoh (provide help for this window); and
6. an optional Clear button (clear this window).

All the command buttons are shown on the same row. Buttons common to all the windows are

grouped to the right hand side of the command button row.

4.2 Window Flow

The window flow for the OPM Editor is shown in Figure 2. Each box represents an editor window.
~ Two boxes are connected by an arrow if the window represented by the box to which the arrow is
directed, can be reached from the window represented by the box where the arrow starts, by selecting a

menu item or clicking a button.

4.3 Main Window

The main window of the OPM Schema Editor is shown in Figure 3.

j Schemsa Display Define

B ObjectClasses = §

FIGURE 3. OPM Schema Editor Main Window

We list only the functions of all the menu items in this subsection.
1. Schema

(a) New - create a new OPM schema.

34

OPM SCHEMA EDITOR 2

OPM Schema Editor Windows

OPM SCHEMA
EDITOR
MAIN

WINDOW

CONTROLLED
VALUE
CALSS/VALUE
WINDOW
PROTOCOL
EXPANSION
WINDOW
~ SIMPLE COMPONENT INCLUDE INPUT/OUTPUT
ATTRIBUTE ATTRIBUTE ATTRIBUTE
DEFINITION DEFINITION COMPONENTS ' DEFINTTION
WINDOW WINDOW WINDOW WINDOW
\4‘
ARITHMETIC ATTRIBUTE ATTRIBUTE INPUT/OUTPUT INPUT
EXPRESSION COMPOSITE MATCH IS-A FROM
DEFINITION DEFINITION DEFINITION DEFINITION DEFINITION
WINDOW WINDOW WINDOW WINDOW " WINDOW
J ATTRIBUTE
CONTROLLED
AGGREGATE ATTRIBUTE VALUE CLASS
FUNCTION SUBVALUE WINDOW
DEFINITION DEFINITION
WINDOW WINDOW
Y ATTRIBUTE
ABSTRACT
Amgm VALUE CLASS
WINDOW CONTROLLED
DEFINITION
WINDOW VALUE
ATTRIBUTE CLASS/VALUE
PRIMITIVE WINDOW
VALUE CLASS
WINDOW
ATTRIBUTE ATTRIBUTE
INVERSE METACLASS
DEFINITION VALUE CLASS
WINDOW WINDOW

FIGURE 2. Window Flow Diagram

35

OPM SCHEMA EDITOR 2 _ OPM Schema Editor Windows

(b) Open - open an existing schema.

(c) Append - append an existing schema to the current one.

(d) Save - save current schema.

(e) Save As - save current schema to a file.

(3] Pﬁnt OPM in Latex- output current OPM schema into a Latex file.

(g) Printin PostScript - output current OPM schema into a PostScript file.

(h) Quit - quit OPM editor. '

2. Display

(a) Clear - reset (clear) the display window.

(b) Class Hierarchy - the object class hierarchy of the current schema is graphically displayed if
this mode is on. ’ ' ,

(¢) Class Links - classes and their attributes are graphically displayed if this mode is on.

(d) Detailed Links - attributes of subprotocols involved in an expansion are also graphically dis-
played if this mode is on.

3. Define ,

(a) OPM Object Class - define a new object class. After this option is selected, a new (blank)
Object Class Definition window (see Figure 4) is brought up for adding a new object class. If
an existing object class is selected by double clicking the class name in the Object Classes
Listbox, then the definition of the selected object class will be displayed in the Object Class
Definition window (Figure 3).

(b) OPM Protocol Class - define a new protocol class (similar operation as define object class, but
using Protocol Class Definition window (see Figure 5) and Protocol Classes Listbox).

(c) Controlled Value Class - define a new contrdlled value class (similar operation as define object
class, but using Cdntrolled Value Class/Value window (see Figure 13) and Controlled Value
Classes Listbox). | .

4. Help
(a) About.

(b) Help.

The main window contains a listbox for listing in alphabetical order object classes, protocol classes

and controlled value classes. The listbox is headed by an option menu that allows selecting one of the

following display types:

36

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

1. Object Classes for displaying the object class names.
2. Protocol Classes for displaying the protocol class ﬁames.
3. Controlled Value Classes for displaying the controlled value class names.

If an object class is selected in the listbox (and the Class Links mode is on), a diagram representing
the selected class, its superclasses, its subclasses, and its attributes is displayed in the main window
drawing area. If a protocol class is selected in the listbox, a graphical representation of its expansion (if
any) is displayed in the main window drawing area. These diagrammatic representations have buttons
representing class names. Double clicking on these buttons, just like double clicking on list elements,
brings up the class definition window for the selected class.

If a controlled value class is selected in the listbox (and the Class Links mode is on), then the con-
trolled value class name together with all the values and/or ranges of this class are displayed in the main

window drawing area.

4.4 Define Object Class

An object class has a class name, an optional class description, and a set of associated attributes. A

specialization class (subclass) has one or more superclasses.

Object Class Name: , Atxibutes

Description:

Superclasses

{Modify Superclass| Define Atribute: [Simple ©1]

New Modify Delete Inde Help

Choose aname for this class.

FIGURE 4. Object Class Definition Window

37

' OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

A new object class can be added and an existing object class can be modified or deleted using the
Object Class Definition window (Figure 4)

4.4.1 Add Object Class

Before being added, an object class must be associated with a non-null distinct (unique) class name.
The class name must be in upper case letters and cannot exceed 32 characters. Class description is
optional and cannot exceed 256 characters.

~ The attributes and/or superclasses of an object class can be specified either before adding the class,
or after adding the class using the New button.

An object class can have multiple object superclasses. All the superclasses defined for the current
object class are listed in the Superclasses Listbox. After Modify Superclass button is used, a Super-
class Definition window (Figure 6) is brought up for adding new superclasses or for deleting existing
superclasses. '

The attributes of the current object class are listed in the Attributes Listbox. An attribute can be
added/modified/deleted using the Define Attribute button. If no attribute in the listbox is highlighted,
then using the Simple button brings up a new Simple Attribute Definition window (Figure 8), and
using the Composite button brings up a new Composite Attribute Definition window (Figure 9). If
there is a selected attribute, then using the above mentioned buttons brings up an attribute window for
the selected attribute.

4.4.2 Modify Object Class

Object class names, deécriptions, superclasses and attributes can all be modified. The text in Object
Class Name or Description area can be edited in order to change the class name or description, respec-
tively. Clicking Modify Superclass or Define Attribute button allows modifying the superclassés or
attributes of a class. The procedure to modify the superclasses and attributes is the same as the proce- -
dure described in previous subsection. After all the desired changes have been made, the schema is
updated using the Modify button.

4.4.3 Delete Object Class

Delete button allows deleting the current object class definition after the user confirms the action.

33

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

4.5 Define Protocol Class

A protocol class has a class name, an optional class description, and a set of associated attributes.
If the protocol can be expanded into several subprotocols, then a protocol expansion is also specified. A

new protocol class can be added and an existing protocol class can be modified or deleted using the Pro-
tocol Class Definition window (Figure 5).

Protocol Class Name:{] . B Auibutes

Descripdon:

':f Protocol Expansion

[~ > |
{Define Expansion| Define Attribute: | Simple 2}
New Modify Delete Unde Clear Close Help

Choose aname for this class.

FIGURE 5. Protocol Class Definition Window

4.5.1 Add Protocol Class

Before being added, a protocol class must be associated with a distinct non-null class name. The
class name must be in upper case letters and cannot exceed 32 characters. Class description is optional
and cannot exceed 256 characters.

The attributes of a protocol class can be specified before adding the class, or after the class has been
added using the New button.

The attributes of the current protocol class are listed in the Attributes Listbox. An attribute can be .
added/modified/deleted using the Define Attribute button. If no attribute in the listbox is highlighted,
then using the Simple button brings up a new Simple Attribute Definition window (Figure 8), using
the Composite button brings up a new Composite Attribute Definition window (Figure 9), and using

the Input/Output button brings up a new Input/Output Attribute Definition window (Figure 12). If

39

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

there is a selected attribute, then using the above mentioned buttons brings up an attribute window for
the selected attribute.

Protocol expansion can be specified only after an expanded protocol has been added to the schema
using the New button. The protocol expansion is displayed in the Protocol Expansion area. Click the
Define Expansion button to bring up a Protocol Expansion window (Figure 7) for specifying or mod-

ifying a protocol expansion.

4.5.2 Modify Protocol Class

Protocol class names, descriptions, expansions and attributes can all be modified. In order to
change a class name or a description, the text can be edited in the Protocol Class Name or the Descrip-
tion area, respectively. Click Define Expansion or Define Attribute button to modify protocol expan-
sion or attributes of the class. The procedure to modify expansion and attributes is the same as the
procedure described in previous subsection. Changes are finalized (i.e., recorded as schema updates)
using the Modify button.

4.5.3 Delete Protocol Class

The current protocol class can be deleted using Delete button, after the user confirms the action.

4.6 Define Superclass

A subclass has one or more superclasses, and it inherits all the attributes of its superclasses.A class
cannot be specified as a superclass of itself. Moreover, subclasses of a class cannot be specified as
superclasses of this class. _

The Superclass Definition window (Figure 6) is used to define superclasses of an object class.
There are two lists of class names displayed in this window. The Selected Superclasses Listbox and the
Potential Superclasses Listbox are complementary. An object class (except for the current one and its
subclasses) is listed in exactly one of the listboxes. The Selected Superclasses Listbox contains all the
superclasses of the current class. Transitive superclasses can be either included or not. Clicking on a
class name in the Selected Superclasses Listbox moves this class from the Selected Superclasses List-
box to the Potential Superclasses Listbox, and vice versa.

The Delete All button allows clearing the Selected Superclasses Listbox, and moving all the object
classes to the Potential Superclasses Listbox.

After all the superclasses are properly selected, the Modify button must be used in order to update

40

OPM SCHEMA EDITOR 2 : OPM Schema Editor Windows

Selected Superclasses Potential Superclasses

<

E Modify E Delete Al Unde Close

This button will modify the superclass of the cuarrent object class.

FIGURE 6. Superclass Definition Window

the Object Class Definition window with the new superclass information.

4.7 Define Protocol Expansion

Protocol expansion allows specifying alternative protocols, sequences of protocols, and optional
protocols; “or”’, “.”, “[”" and “]” are used to denote alternative, sequences of, and optional protocols,
respectively, and parentheses are used for specifying complex protocol compositions. Operator *,” has
~ higher precedence than or. For example, if P is a protocol whose expansion is (4, B, [C]) or D, then pro-
tocol P is defined as either (i) the sequence of protocols A followed by B and followed by optional pro-
tocol C, or (alternative) (ii) protocol D alone. The protocol expansion must be acyclic, that is, if a
protocol class P, is involved in the expansion of protocol class P, then P; cannot be involved in the
expansion of P, or any subprotocol of P..

The protocol expansion is displayed in the Protocol Expansion working area in the Protocol
Expansion window (Figure 7). Protocol expansion can be directly specified in the working area, or can
be specified using the listbox and function buttons provided for defining protocol expansion.

The protocol class names that can appear in the protocol expansion of the current protocol class P;
are listed in the Protocols Listbox. A protocol P, can be used in the expansion of P, if P; and P, are dif-
ferent, and P; does not appear in the expansion of P; or any subprotocol of P; (transitively).

When a protocol name is clicked in the listbox, the selected protocol class name will be highlighted

and inserted into the Protocol Expansion working area. Clicking the six function buttons (“or”, “,”,

41

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

“U", “T7, “C’, “)™) causes the corresponding symbol to appear in the working area. In a protocol expan-
sion expression, two protocol names must be separated by operators “or” or “,”. If a protocol name is
appended immediately after another protocol name in the expansion, then the editor automatically adds

¢« 7

a “,” between the two protocol names.

' fUndoJ [cxwl iClose.I [Help‘ |

~ l Type the expansion here, or click in the protocols list and on the syntax buttons to build an expansion 1 _

FIGURE 7. Protocol Expansion Window

A protocol can have at most one higher level protocol. That is, if a protoéol class P, is contained in
the expansion of protocol class P, then P; cannot be contained in the expansion of other protocol
classes.

A graphical representation of the protocol expansion is also displayed in the “protocol drawing
area”. This drawing area will be updated every time a new and correct protocol expahsion is entered
after Modify button is pressed. "

Clicking the Clear button clears the Protocol Expansion working area and the “protocol drawing

”

area .

After the protocol expansion is specified, the Modify button must be used in order to update the

42

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows -
Protocol Class Definition window with the new protocol expansion.

4.8 Define Simple Attribute

Each simple attribute has an attribute name, an associated value class, and a set of attribute con-
straints. If the attribute is derived, then an attribute derivation is also specified.

Caenuiner
Vases:

Null?: | Allowed 3|

Value Class: : ‘ _ Derivadon:

Select Type: | Conoolled & | Define Derivetion: | none = |

New Modify Delete

8 | The derivedon for this ataibute.

FIGURE 8. Simple Attribute Definition Window

4.8.1 Add Simple Attribute

The name of the current (object or protocol) class is displayed in the Class Name area. An attribute
name, a value class and associated constraints must be provided before a new attribute can be added.

All the explicitly defined and inherited attributes of a class must have distinct, non-null names.

Attribute names are in lower case letters and cannot exceed 32 characters.

| The Yes option for the Identifier button indicates that the attribute is (part of) an object identifier;
No indicates that the attribute is not (part of) an object identifier. The Single option of the Values button
indicates that the attribute can have only one value associated with it; if an attribute is associated with
a set of values, then the Multiple option must be selected.

The Allowed option of the Null button indicates that the attribute can have null values; if the

attribute is not allowed to have null values, then the Not Allowed option must be selected. Note that an

43

OPM SCHEMA EDITOR 2 _ OPM Schema Editor Windows

attribute that is (part of) an object identifier, cannot have null values.

Each attribute must have an associated value class. The value class of the current attribute is listed

in the Value Class Listbox. The Select Type option menu can be used for defining or modifying the

value class. An attribute can be associated with one of the following four types of value classes:

1.
2.
3.

4.

Controlled: An Attribute Controlled Value Class window (Figure 14) is brought up.
Primitive: An Attribute Primitive Value Class window (Figure 15) is brought up.
Abstract: An Attribute Abstract Value Class window (Figure 16) is brought up.

Metaclass: An Attribute Metaclass Value Class window (Figure 17) is brought up.

When the type of value class is changed, the user is informed that the previously defined value class

is destroyed. After the attribute name, value class and attribute constraints are specified, the attribute is -

associated with the current class using the New button.

For a derived attribute the derivation rule can be specified after the attribute has been associated

with a class using the New button.

The derivation rule of an attribute (if any) is displayed in the Derivation box. In order to define or

modify a derivation rule, the Define Derivation option menu must be used. An attribute can have at

most one derivation. There are eight options for attribute derivations:

1.
2
3.
4
5.
6.

7.
8.

none: This attribute has no derivation. A previously defined derivation will be removed.

. arithmetic: An Arithmetic Expression Definition window (Figure 20) is brought up.

aggregate: An Aggregate Function Definition window (Figure 21) is brought up.

. composition: An Attribute Composition Definition window (Figure 22) is brought up.

inverse: An Attribute Inverse Definition window (Figure 18) is brought up.
match: An Attribute Match Definition window (Figure 19) is brought up.
subvalue: An Attribute Subvalue Definition window (Figure 23) is brought up.

union: An Attribute Union Definition window (Figure 24) is brought up.

If an attribute has been previously defined as derived and its derivation type is changed (e.g., from

an inverse attribute to an arithmetic expression derived attribute), then a confirmation of the change will

be required.

Note that an attribute which is (part of) an identifier cannot be a derived attribute. Moreover, only

simple, single-valued attributes can have arithmetic expression or aggregate function derivation. These

44

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

attributes must be primitive and associated with one of the following value classes: INTEGER, SMALLINT,
REAL, FLOAT, or MONEY.

4.8.2 Modify Simple Attribute

Attribute names, value classes, constraints and derivation rules can be modified. Changes one final-
ized (i.e., are recorded as schema updates) using the Modify button. |

The modification of attribute constraints, value classes, and derivation specifications are carried out
as described in the subsection Add a Simple Attribute .

4.8.3 Delete Simple Attribute

An attribute can be deleted using the Delete button. Deletion is carried out only after the user con-
firms the action. : \

4.9 Define Composite Attribute

Each composite attribute has an optional attribute name, a set of component attributes, and associ-
ated constraints. The constraints on composite attribute are applied to each of the components. A com-
posite attribute can be associated with an attribute matching derivation.

4.9.1 Add Composite Attribute

The name of current (object or protocol) claSs is displayed in the Class Name area. The name for
a composite attribute is optional. If such a name is provided, then it must be unique within the class, in
lower case letters, and must not exceed 32 characters. Constraints are defined as follows. The Yes option
for the Identifier button indicétes ihat the composite attribute is (part of) an object identifier; No indi-
cates that the attribute is not (part of) an object identifier.

“The Single option of the Values button indicates that every component attribute can have only one
value associated with it; if all component attributes can be associated with sets of values, then the Mul-
tiple option must be selected. The Allowed option of the Null button indicates that the attribute can
have null values. Note that if the attribute is (part of) an object identifier, then it cannot have null values.

The component attributes of a composite attribute are listed in the Components Listbox. Compo-
nent attributes can be added/modified/deleted using the Define Coinponent button. If a component
- attribute is highlighted, then Define Component button brings up a Component Attribute Definition

window (Figure 10) for modifying the attribute. Otherwise, a new Component Attribute Definition

45

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

window (Figure 10) is displayed for the definition of a new attribute. After all the necessary information
(except the derivation) is specified, the attribute can be associated with the current class using the New

button. If the composite attribute is derived, then the derivation can be specified after associating the
attribute with the current class.

 Values:

Null?: [Allowed t2a |

Derivadon:

&= - - §
[Define Component] [inciude Components] Define Derfvadon:

New Modify Delete Decompose Undo

- l Choose whether this atribute is Idendfier or not.

FIGURE 9. Composite Attribute Definiton Window

The derivation rule of a composite attribute (if any) is displayed in the Derivation box. The deri-
vation rule can be defined or modified using the Define Derivation button:

1. none: This attribute has no match derivation. A previously defined match derivation will be
removed.

2. match: An Attribute Match Definition window (Figure 19) is brought up.

Whenever the derivation type for an attribute is changed, the user is asked to confirm the change.

Note that an attribute which is (part of) an identifier cannot have a derivation.

Component attributes of a composite attribute can also be defined by including existing simple
attributes of the target object or protocol class. Selecting Include Components button will bring up an
Include Components window (Figure 11) for including simple attributes as components of the current

composite attribute.

The Decompose button decomposes the composite attribute. That is, all the component attributes

46

A3

OPM SCHEMA EDITOR 2 | OPM Schema Editor Windows

become simple attributes of the target class.

4.9.2 Modify Composite Attribute

Attribute names, component attributes, constraints and derivation rules can be modified. Changes
are finalized (i.e., recorded as schema updates) using the Modify button.

The modification of attribute constraints, components, and derivation specification is carried out as
described in the subsection Add a Composite Attribute.

4.9.3 Delete Composite Attribute

An attribute can be deleted using the Delete button. Deletion is carried out only after the user con-

firms the action.

4.10 Define Component Attribute

Each component attribute must have a distinct attribute name, and must be associated with a value

class. A component attribute can have an attribute derivation.

4.10.1 Add Component Attribute

In order to add a component attribute to the composite, a name for the component attribute must be
specified first. Although the name of the composite attribute is optional, every component attribute of a
composite attribute must have a name. Such a name must be distinct, in lower case letters, and should
not exceed 32 characters.

Every coniponent attribute must have an associated value class. The value class of the current com-
ponent attribute is listed in the Value Class Listbox. The Select Type option menu can be used for
defining or modifying the value class. A component attribute can be associated with one of the follow-
ing four types of value classes:

1. Controlled: An Attribute Controlled Value Class window (Figure 14) is brought up.

2. Primitive: An Attribute Primitive Value Class window (Figure 15) is brought up.
3. Abstract: An Attribute Abstract Value Class window (Figure 16) is brought up.
4. Metaclass: An Attribute Metaclass Value Class window (Figure 17) is brought up.

When the type of value class is changed, the user is informed that the previously defined value class

is destroyed.

47

» OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

B ponent Attribute Definitionk

Component Atribute Name: I E
Value Class: Derivadon:
Select Type: { Controlled & | Define Derivation: §| none 3 |
New Modify Delete Undo Clear Close Help
The value classes for this attribute.

_ FIGURE 10. Component Attribute Definition Window
After all the necessary information (except the derivation) is specified, the component attribute is
added to its composite attribute using the New button. If a component attribute has an attribute deriva-
tion, then this derivation can be specified after adding the attribute. v
The derivation of a component attribute (if any) is displayed in the Derivation box. The derivation
rule can be defined or modified using the Define Derivation button: |

1. none: This attribute has no derivation. Previously defined derivation will be removed.
2. arithmetic: An Arithmetic Expression Definition window (Figure 20) is brought up. |
3. aggregate; An Aggregate Function Definition window (Figure 21) is brought up.

4. composition: An Attribute Composition Definition window (Figure 22) is brought up.
5. inverse: An Attribute Inverse Definition window (Figure 18) is brought up.

6. subvalue: An Attribute Subvﬂue Definition window (Figure 23) is brought up.

7. union: An Attribute Union Definition window (Figure 24) is brought up.

A component attribute can have at most one derivation. If the composite attribute containing the
component attribute is an identifier or is derived using attribute match, then the component attribute

cannot have a derivation. After attribute derivation is defined, click Modify button to associate the com-

43

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

ponent attribute with the new derivation.

4.10.2 Modify Component Attribute

Attribute names, value classes and derivation rules of component attributes can be modified.
Changes are finalized (i.e., recorded as schema updates) using the Modify button.

The modification of value class associations and derivation specifications is carried out as
described in the subsection Add a Component Attribute.

4.10.3 Delete Component Attribute

A component attribute can be deleted using the Delete button. Deletion is carried out only after the

user confirms the action.

4.11 Include Attributes into a Composite Attribute
Component attributes of a composite attribute can be defined one by one using the Component

Attribute Definition window. Alternatively, existing simple attributes of the target object or protocol

class can be included as components of a composite attribute using the Include Components window
(Figure 11).

nclude Components

Selected Attributes ' Potental Atributes

Close Help

This button will save your changes into the Cornposite Attribute Dialog.

FIGURE 11. Include Components Window

The Selected Attributes Listbox and the Potential Attributes Listbox are complementary. An

existing simple attribute of the current class is displayed in one (aﬁd only one) of the two listboxes.

49

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

Selected Attributes Listbox contains all the attributes that will be included as components of the com-
posite attribute.

Initially, the Selected Attributes Listbox is empty, and the Potential Attributes Listbox contains
all the simple attributes defined for the current class. When an attribute name is selected in the Potential
Attributes Listbox, this attribute is moved from the Potential Attributes Listbox to the Selected
Attributes Listbox, and vice versa. o

After all the included attributes are properly selected, the OK button must be used in order to

record the change to the schema.

4.12 Define Input/Output Attribute

Input/output attributes are associated only with protocol classes. Every input/output attribute has an
attribute name, attribute constraints, is associated with a value class, and has an input/output connection

specification.

Aturibute Name: |

Class Neme: | Null?: | Allowed €3 {

vane Gas: Comsctn:

B
Select Type: Define Connectlon:

News Modify Delete

[The caonnectdons for this ataibute.

FIGURE 12. Input/Output Attribute Definition Window

4.12.1 Add Input/Output Attribute

The name of the current protocol class is displayed in the Class Name area. A new attribute must =~
have an attribute name, a value class, defined constraints and an input/output connection specification

before being associated with the protocol class.
50

OPM ASCHEMA EDITOR 2 OPM Schema Editor Windows

An input/output attribute must have a distinct non-null name within a protocol class. Such a name
is in lower case letters and cannot exceed 32 characters.

The Single option of the Values button indicates that the attribute can have only one value associ-
ated with it; if the attribute can be associated with sets of values, then the Multiple option must be
selected. | ‘

The Allowed option of the Null button indicétes that the attribute can have null values; if the
attribute is not allowed to have null values, then the Not Allowed option must be selected.

Every attribute must have an associated value class. The value class of the current input/output
attribute is listed in the Value Class Listbox. The Select Type option menu can be used for defining or
modifying the value class. An input/output attribute can be associated with one of the following three |
types of value classes:

1. Controlled: An Attribute Controlled Value Class window (Figure 14) is brought up.

2. Primitive: An Attribute Primitive Value Class window (Figure 15) is brought up.
3. Abstract: An Attribute Abstract Value Class window (Figure 16) is brought up.

When the type of value class is changed, the user is informed that the previously defined value class
is destroyed.

After all the necessary information is specified, the input/output attribute is associated with the pro-
tocol class using the New button. | '

An input/output attribute can have an associated connection statement. In order to define a correct
input/output connection, the protocol expansion of the current protocol class should be first defined and
saved, and ihe input/output attribute should be (correctly) associated with a value class.

Input/output connections are listed in the Connection box. Connections are defined or modified
using the Define Connection optioh menu; |

1. Inputis-a: An Inputh'utput Is-a Definition window (Figure 25) is brought up.
2. Input from: An Input From Definition window (Figure 26) is brought up.
3. Output is-a: An Input/Output Is-a Definition window (Figure 25) is brought up.

An attribute can be either an input attribute or an output attribute, but not both. If an attribute is
changed from an input attribute to an output attribute, then the from-statement will be lost and the user
is notified of this loss.

After the input/output connection is specified, click Modify button to associate the connection to

the current attribute.

51

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

4.12.2 Modify Input/Output Attribute

Attribute names, value classes, constraints and input/output connections of input/output attributes
can be modified. Changes are finalized (i.e., recorded as schema updates) using the Modify button.

The modification of attribute constraints, value classes, and connection specxﬁcatxons is carried out
as described in the subsection Add an Input/Output Attribute.

4.12.3 Delete Input/Output Attribute

An input/output attribute can be deleted using the Delete button. Deletion is carried out only after

the user confirms the action.

4.13 Define Controlled Value Class

A controlled value class is a primitive value class with enumerated atomic values or ranges. For
example, a controlled value class COLOR with Character String type has values: red, yellow and green.
Another controlled value class AGE_GROUP with Numeric Constant type has values 20-55.

A controlled value class can be defined or modified using the Controlled Value Class/Value win-
dow (Figure 13).

Conuoolled Value Class Name.: l

Vealue Type: . Cheracter Suwing l

Values in this class:

=
| | |

l New Value.—l LModiﬁr Value.l l Delete Value I LClear Input J

l Newwr I 'Modiﬁvl lDe.Iete.I ‘ Undo l ‘ Cle.arJ Icn:seJ [Help |

FIGURE 13. Controlled Value Class/Value Window

52

OPM SCHEMA EDITOR 2 _ OPM Schema Editor Windows

4.13.1 Add Controlled Value Class

Before being added, a controlled value class must be associated with a distinct non-null (unique)
class name. This name must be in upper case letters and cénnot exceed 32 characters.

A controlled value class can have Character String or Numeric Constant value type. The value type
determines the data type of user’s input. Thus, an input value n is considered as a number if the value
type is Numeric Constant, and is considered as a string “n” if the value type is Character Strihg.

The values of a controlled value class are added one by one as follows: first the new value is
entered in the New Value area; then the insertion is finalized using the New Value button. The enteréd
new value is listed in the Values in this class Listbox.

Values in a controlled value class with Character String value type are distinct character strings that
do not exceed 80 characters. Values in a controlled value class with Numeric Constant value type are
numbers or ranges. A range is represented as: a - b, where a and b are both numbers. Negative numbers
are enclosed in parentheses. For example, (-5) - 10 is a range with lower bound -5 and upper bound 10.

A value is modified or removed from the current value class as follows:

1. the value is first selected by clicking on it in the Values in this class Listbox;
2. the selected value is highlighted and copied to the New Value area;
3. if the value is modified then

(a) the value is modified in the New Value area, and the change is finalized using the Modify
Value button; the highlighted value in the listbox is replaced by the new value;

(b) if the New Value button is used instead of the Modify Value button in the previous step, then

the edited value is inserted as a new value into the controlled value class;
4. the highlighted value in the listbox can be removed by using the Delete Value button.

The Clear Input button clears the New Value area. v
After all the values of a controlled value class are defined, the controlled value class is added to the

current schema using the New button.

4.13.2 quify Controlled Value Class

An exisﬁng controlled value class can be modified using the Modify button. All the values in a
controlled value class as well as the name of the controlled value class can be modified. The procedure

to add, modify or delete a value in an existing controlled value class is the same as the value modifi-

53

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

cation procedure described in Add a Controlled Value Class.

The value type of a controlled value class can also be modified. It is always possible to convert
Numeric Constant type to Character String type. All the numbers and ranges defined in the controlled
value class are converted into strings. A controlled value class with Character String value type can be
converted into Numeric Constant type only when all the values defined in this class can be converted
into numbers and/or ranges; otherwise, an error message will be issued and the value type remains
Character String.

4.13.3 Delete Controlled Value Class

An existing controlled value class can be deleted using the Delete button. Deletion is carried out

only after the user confirms the action.

4.14 Select Attribute Controlled Value Class
All the predefined controlled value classes together with their values are listed in the Controlled

T

Attribute

Controlled Vealue Class:

RE
E " Define Controlled Value Class I
Modifyr Delete Undo Close Help
~_ Edect a Contuoolled Value Class to be the value class ofthe —‘

FIGURE 14. Attribute Controlled Value Class Window

Value Class Listbox. For example, if there is a controlled value class called COLOR with three values:
red, yellow and green, then it is displayed as: COLOR: {“red “,’yellow *,’green*} (for the definition and

54

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

modification of controlled value class see section Define Controlled Value Class).

The highlighted value class in the listbox will be the value class associated with current attribute.
For adding or modifying a controlled value class of an attribute, the desired value class name must be
first selected in the listbox (the class name will be highlighted), and then the Modify button must be
used. '

If the attribute is associated with a new (not previously defined) controlled value class, then the
Define Controlled Value Class button must be used first in order to define the controlled value class.
The Define Controlled Value Class button brings up the Controlled Value Class/Value window
(Figure 13) for the definition of a new controlled value class. After the new controlled value class is
added, the name of this new class is listed and highlighted in the Controlled Value Class Listbox. The
Modify button is then used in order to associate the attribute with this value class.

The value class of an attribute is deleted using the Delete button. A controlled value class is pre-

served in the current schema after such a deletion.

Primitive Classes:

BOOL EAN
CHAR{(N)D
DATETIME
FLOAT
IMAGE
INTEGER
MONEY
REAL
SMALLINT
TEXT
TIMESTAMP
VARCHAR(N)

Modify Close Help

Select a Primitive Value Class to be the value class of the attribute on the

FIGURE 15. Attribute Primitive Value Class Window

55

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

4.15 Select Primitive Value Class

In order to allow selecting a primitive value class, the Primitive Classes Listbox lists all the system
defined primitive classes.

A primitive value class can be selected by clicking on it in the listbox. The selected primitive value
class will be highlighted. If this primitive value class has “(n)” at the end, then the attribute length must
be specified; a length is a positive integer.

After a value class is selected (and a length defined), the attribute is associated with the value class
using the Modify button.

4.16 Select Abstract Value Class

An attribute can be associated with one or several abstract value classes (i.e., value classes that are

defined as object classes).

ttribute Abstract Value Cla

Selected Value Classes: Potential Value Classes:

E Modify l Delete All Undo

Abstract Value Classes available, select an item here will move it to the

F!GURE 16. Attribute Abstract Value Class Window

The Selected Value Classes Listbox and Potential Value Classes Listbox are complementary. The
name of an OPM class (including the current one) is listed in exactly one of these listboxes. The
Selecied Value Classes Listbox contains the value classes selected for the attribute.

A class selected (clicked on) in the Selected Value Classes Listbox, is moved from the Selected

Value Classes Listbox to the Potential Value Classes Listbox, and vice versa.

56

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

The Delete All button can be used to clear the Selected Value Classes Listbox, and thus move all
the classes to the Potential Value Classes Listbox.

The selected value classes are associated with the atiribute using the Modify button.

4.17 Select Metaclass Value Class

There are two Metaclasses in OPM: OBJECT_CLASSES and PROTOCOL_CLASSES.

Metaclass:

Modify

This button will modify the value class of the attribute on the

FIGURE 17. Attribute Metaclass Value Class Window

A user can select a metaclass using the Metaclass option menu; the default option is Undefined.
The selected (option) metaclass is highlighted. The highlighted value class in the Metaclass option
menu is associated with the attribute using the Modify button.

A metaclass can be deleted as the value class of an attribute using the Delete button.

4.18 Define Attribute Inverse Derivation

The current class name and attribute name are displayed in the Attribute Name and Class Name
areas, respectively (at the top of the window). An attribute can be specified as inverse of multiple
attributes; all these attributes are listed in the Inverse of Listbox.The object ciasses that are defined as
value classes of the current attribute are listed in the Classes Listbox. When a blass name in the Classes
Listbox is selected (clicked on), the (simple or component) attributes of that class will be listed in the

Attributes Listbox.

In order to define an attribute A as an inverse of the current attribute, class O, of A must be first

57

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

f Auribute Name:

Class Name:

Inverse of

[+

Maodify

‘ l Select & class to form the inverse derivadon.

FIGURE 18. Attribute Inverse Definition Window
selected. As a result, the attributes of O, are listed in the Attributes Listbox. Subsequently, the name of
attribute A is selected in the Attributes Listbox and the name of the select attribute prefixed by the
name of its class (i.e., O,.A) is inserted into the Inverse of Listbox

An attribute inverse definition can be removed by selecting (clicking on) the attribute name in the
Inverse of Listbox. In order to remove all attribute inverse definitions (i.e., clear the Inverse of List-
~ box), the Delete All button is used.

After the inverse derivation of the current attribute is defined, the derivation is associated with the
attribute using the Modify button. A message will be brought up to ask whether you want to make this
attribute an inverse of corresponding attribute(s) of the selected class(es). Click Yes will add the current
attribute to the attribute inverse derivations of all the attributes specified in the Inverse of Listbox.

The following constraints must be satisfied when an attribute inverse is defined: -

1. The value classes of the attributes defined as inverses of the current attribute must contain (or be

equal to) the object class of the current attribute.

2. Attributes defined as inverses must either be non-derived, or defined as inverses of the current
attribute.

3. Only one attribute can be selected from each class.

58

OPM SCHEMA EDITOR2 OPM Schema Editor Windows

4. If the current attribute is associated with the union of value classes V; or ... or V,, then only sim-
ple attributes of these classes V,, ..., V, are listed in the Attributes Listbox (no composite or
component attributes).

4.19 Define Attribute Matching Derivation

The name of the current class is displayed in the Class Name area at the top of the window. The
néme of the attribute that is to be matched (i.e., the attribute is associated with a match derivation) is
listed in the Attribute Match Listbox as follows: if the attribute is a simple attribute, then its name is
listed in the listbox; if the attribute is a composite attribute, then all the names of the component
attributes are listed in the listbox. |

Class Name: l

Matching Class:

EX BX
Acxibute Match: Matching Ataxibutes:

a4

X] [~ =

[Moml 'DeleteAllJ [AddMatch] h)eletexvxamh] | UndLl | close J [Hep |

l Seclect a matching attribute to match with the selected atribute on the Ataibute Match lise, I

FIGURE 19. Attribute Match Definition Window

The Matching Class Listbox lists the classes that can be used in the matching derivation; how to
determine whether a class can be used or not in the matching derivation of the current attribute is
explained in more detail later in this subsection.

The matching is defined as follows:

59

OPM SCHEMA EDITOR 2 ' OPM Schema Editor Windows

1. A claés name is selected in the Matching Class Listbox, and as a result the components of a
composite attribute of that class satisfying the matching constraints are listed in the On
Attribute Listbox.

2. Next, a match on attribute B, is selected in the On Attribute Listbox, and as a result the compo-
nent attributes that belong to the same composite attribute as B,, except B,, are listed in the
Matching Attributes Listbox.

_3. An attribute is selected in the Attribute Match Listbox (listing the simple or components
attributes to be matched) and then its matching attribute is selected in the Matching Attributes
Listbox;

4. The match association in the previous step is defined using the Add Match button. As a result,
the selected matching attribute is included in parentheses in the Attribute Match Listbox
appended after the matched attribute, and is removed from Matching Attributes Listbox. (For
example, if attribute A, matches A,, then A, (4,) will replace the original item A, in the Attribute
Match Listbox; A, is removed from Matching Attributes Listbox.) If an attribute already has a
matching attribute, then Add Match replaces the matching attribute.

- The matching attribute of an attribute selected in the Attribute Match Listbox can be removed
using the Delete Match button. A removed matching attribute is returned to the Matching Attributes
Listbox. _ '

All the matching attributes can be removed from all attributes listed in the Attribute Match List-
box using the Delete All button. The removed matching attributes are returned to the Matching
Attributes Listbox.

Note that after a matching is sp_eciﬁed, the Matching Class Listbox cannot be changed. This list-
box can be changed only if all matching attributes are removed (using Delete All).

After the matching derivation is correctly defined, the match derivation is associated with the cur-
rent attribute using the Modify button. | '

The attribute matching derivation must satisfy the following additional constraints:

1. In the Matching Class Listbox only classes that have a composite attribute that contain a com-

ponent attribute whose value class includes the class of the current attribute are listed.

7

2. A simple attribute can match only a composite attribute with two components. A composite
attribute A with n components can match only another composite attribute B with (n+1) compo-

nents. Consequently:

60

OPM SCHEMA EDITOR 2 | " OPM Schema Editor Windows

(a) For a simple attribute match, only component attributes of binary composite attributes are listed
in the On Attribute Listbox.

(b) For a composite attribute match, if the attribute is an n-ary composite attribute, then only com-
ponent attributes of (n+1)-ary composite attributes are listed in the Qn Attribute Listbox.

3. An attribute A can match an attribute B from the Attribute Match listbox only if A and B have

the same value class.

4. The value class of an On Attribute must include the current object class. Consequently, in the
On Attribute Listbox are listed only the names of attributes that are associated with value

classes that include the current object class.

An matching example is given irhmediately bélow.

An Example:
Let object classes TRANSLATES and GENE be defined as follows:

OBJECT CLASS TRANSLATES:

DESCRIPTION: gene translates protein at some cell
ID: (gene, at_cell, protein)
ATTRIBUTE (gene, at_cell, protein): (GENE, CELL, PROTEIN) single-valued not null

OBJECT CLASS GENE:

DESCRIPTION: gene
. ID: gene_name '
ATTRIBUTE gene_name: CHAR(80)
ATTRIBUTE (translate_protein, translate_at): (PROTEIN, CELL)

Suppose a match derivation for the composite attribute (translate_protein, translate_at) of object
class GENE is defined as: match (protein, at_cell) of TRANSLATES on gene. Components translate_protein
and translate_at are listed in the Attribute Match Listbox.

All the (object and protocol) classes that have attributes that satisfy the matching constraints are
listed in the Matching Class Listbox. Suppose that TRANSLATES is selected in the Matching Class List-
box. Since the current composite attribute has two'componénts, ohly a composite attribute of TRANS-

LATES consisting of three components can be selected for matching, that is, composite attribute (gene,

61

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

at_cell, protein).

Among the component attributes of (gene, at_cell, protein) only attribute gene has value class
GENE , and therefore only attribute gene is listed in the On Attribute Listbox.

If attribute gene is selected in the On Attribute Listbox, then the other two components, at_cell
and proteln, are listed in the Matching Attributes Listbox.

Next, translate_protein is selected in Attribute Match Listbox, and protein is selected in the
Matching Attribute Listbox; using the Add Match button the attribute name translate_protein in
Attribute Match Listbox is replaced by: translate_protein (protein), and attribute protein is then
removed from the Matching Attributes Listbox.

The same procedure is repeated in order to match transiate_at and at_cell.

4.20 Define Arithmetic Expression Derivation

The current class name and attribute name are displayed in the Class Name and Attribute Name
‘areas, respectively, at the top of the window. The arithmetic expression derivation to be associated with

the attribute is displayed in the Arithmetic Expression working area. The arithmetic expression can be

prossion Definiti

Auribute Name: Atributes:
Class Name: B
Arithmetic Expression: E _
-~ |
Modify Delete All : Undo Close | Help

This text input shows the current derivaton being edited.

directly edited in the Arithmetic Expression working area, or can be expressed using the Attributes
Listbox and the operator buttons. |

62

OPM SCHEMA EDITOR 2 : OPM Schema Editor Windows

All the single-valued simple and component attributes of the current class (except the current
attribute), associated with an INTEGER, SMALLINT, REAL, FLOAT, or MONEY value class are listed in the
Attributes Listbox. Only these attributes can be used in the arithmetic derivation.

An attribute name selected in the Attributes Listbox is inserted into the Arithmetic Expression
working area. Selecting (clicking on) a special operator button (+, -, *,/, (,)) results in inserting the cor-
responding symbol into the Arithmetic Expression working area as well.

The Arithmetic Expression working area can be cleared using the Delete All button.

After the arithmetic expression derivation has been defined, the attribute is associated with the

arithmetic expression derivation using the Modify button.

4.21 Define Aggregate Function Derivation

The current class name and attribute name are displayed in the Class Name and Attribute Name
areas, respectively, at the top of the window. An aggregate function derivation consists of an aggregate
function (count, min, max, sum, average) and an attribute name. All the multi-valued (simple or com-

ponent) attributes of the current class are listed in the Attributes Listbox.

l Acibute Neme:

Class Name:

Function: § Undefined ©

Modify

Select a Primitive Value Class to be the value class of the attribute.

FIGURE 21. Aggregate Function Definition Window

First, one of the functions in the Function option menu (count, min, max, sum, average) must be

selected. Then, an attribute name listed in the Attributes Listbox is selected (clicked on); the selected

63

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

attribute is highlighted.

If the selected function is min , max , sum or average , then only multi-valued attributes associated
with an INTEGER , SMALLINT , REAL , FLOAT , or MONEY value class are listed in the Attributes Listbox.
‘ The Function selection and the attribute selection in the Attributes Listbox can be cleared using

the Delete All button. '
After the aggregate function derivation has been defined, the attribute is associated with the deri-
vation using the Modify button. '

4.22 Define Attribute Composition Derivation

A simple or component attribute C can be derivedas: A, A;.... . A, (n2 2),‘where A, is an attribute
associated with the current class, A, is an attribute associated with the value class(es) of A,, etc.
Attributes A, A,, ... , A, are all simple or component attributes; they are either non-derived or derived
by inverse derivation. Attribute A, can either be an abstract attribute or a primitive attribute.

Attribute composition derivation is defined in the Attribute Composition Definition window
(Figure 22).

Atoibute Name: r]
Class Name: r]
Composidon Derivadon: r]
Acoibutes: Value Classes:

3 LNe.wJ | Derere |

[Undo I l Closcl l Help]

FIGURE 22. Attribute Composition Definition Window

The current attribute name and class name are displayed at the top of the window in the Attribute

Name area and Class Name area, respectively. The attribute composition derivation is displayed in the

64

OPM SCHEMA EDI TOR 2 OPM Schema Editor Windows

Composition Derivation area.

In the beginning, all local (i.e., not inherited) non-derived or inverse derived, simple or component
attributes (not composite attributes) associated with the current class, O;, except the current attribute are
displayed in the A ttributes Listbox. | |

When an attribute is selected in the Attributes Listbox, this attribute is highlighted and displayed
in the Compaosition Derivation area. The value class(es) of this selected attribute will be listed in the
Value Classes Listbox. This»Value Classes Listbox is for display only; it is non-selectable.

In the case of controlled value class, primitive value class or metaclass value class, the.Attri'butes
Listbox remains unchanged.

_ In the case of an abstract value class:

- if the value class consists of a single abstract object class, O,, then all locally simple or component
attributes of O, are displayed in the Attributes Listbox.

- if the value class consists of a union of the object classes, O j,OF - OF O; , then local simple or
: m
component attributes that are associated with O i) and ... and O; are displayed in the Attributes
m

Listbox; for each such attribute, A, O i A,..,and O ; A must be associated same value class.
m

The selection in the Attributes Listbox can be repeated. The selected attribute name is appended at
the end in Compositiqn Derivation area. (A dot “.” is automatically added between any two attribute
names.) The value class of a newly selected attribute is again displayed in the Value Classes Listbox.

The definition of composition derivation stops either at a non-abstract attribute, or when the user
ends selecting attributes. i
After the derivation has been defined, the attribute is associated with the new derivation using the

New button. The Delete button removes the composition derivation.

4.23 Define Attribute Subvalue Derivation

An attribute A, of an object or protocol class O, can be defined as: subvalue of A,, if the value class
of A, is a subclass or subset of the value class of A,. Attribute subvalue derivation is defined in the
Attribute Subvalue Definition Window (Figure 23).

The current ciass name and attribute name are displayed in the Class Name area and Attribute
Name area, respectively. Derivation: subvalue of area displays the attribute subvalue derivation.

Suppose A is the current attribute. A simple or cofﬁponent attribute of the current class (except for
the current attribute), B, is listed in the Attributes Listbox if:

65

OPM SCHEMA EDITOR 2 ' OPM Schema Editor Windows

I e A R RNt t = 1 bute _Subvalus Dofinition RNy
; Araibute Name: l j

Cleass Name: I l

Derivadon: subwvalue of I 1

Ataibutes:

X - |

IModxfyl [De.leteJ LUndo l lClose.J [Help l

- I This button will modify the subvalue derivatdon of the atafbute on the Attrfbutej e

FIGURE 23. Attribute Subvalue Definition Window

l.attribute B is associated with a value class consisting of a single class, Oy , attribute A is asso-

ciated with a value class consisting of a single class, O, , and O is an immediate or transitive
superclass of O ;

- 2.attribute B is associated with a value class consisting of a union of value classes, O B, OF -
or O . Attribute A is associated with a value class consisting of a single or a union of classes,
n
0,,and O, is contained in 031 or..or Op .
n

After an attribute is selected in the Attributes Listbox, the selected attribute name is displayed in

the Derivation: subvalue of arca. The attribute is associated with the derivation using the Modify but-
ton.

Delete button removes the subvalue derivation.

4.24 Define Attribute Union Derivation

Attribute union derivation is defined in the Attribute Union Definition window (Figure 24).
The current class name and attribute name are displayed in the Class Name area and Attribute
Name area, respectively. Derivation area displays the attribute union derivation.

Selected Attributes Listbox and Potential Attributes Listbox are complementary. Suppose that

66

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

wl Lorel SRR R RPN ¢ 1~ § btate Ursd oo Def‘in 1t 3 Or T TNy
Aroxibute Name: l l

Class Name: I l

Derivadon: L 1

Selected Awaibutes: Potendal Ataibutes:

IModxfyl lDexetcAnl [Undd [Close I L He.lpJ

- l Select an sttribute here will move it back to the Potendal Atwurdbutes list, and all l -

FIGURE 24. Attribute Union Definition Window

the current attribute is B. Simple or componeht attributes (except B) associated with the current class
and that have value classes that are subsets 6f (or equal to) the value class of B are displayed in one (and
only one) of the two listboxes. Selécted Attributes Listbox contains the attributes that will be included
in the derivation. ‘

~ An attribute that is selected (clicked on) in the Potential Attributes Listbox is moved from the
Potential Attributes Listbox to the Selected Attributes Listbox, and vice versa.

Delete All button removes the attribute union derivation; the Derivation area and Selected
Attributes Listbox are cleared, where the attributes in Selected Attributes Listbox are moved to the
Potential Attributes Listbox.

After the union derivation has been defined, the attribute is associated with the derivation using the
Modify button.

4.25 Define Input/Output Attribute Is-a Connection

This attribute is specified as associated with an input/output is-a connection; the type of connection
(input is-a or output is-a) is displayed at the top of the window.

If the protocol expansion of a protocol class P, contains another protocol class P,, then protocol P,

_is a direct generic (higher-level) protocol of P,. A protocol class can only have one direct generic pro-

67

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows

tocol. An input (output) attribute cannot have an input (output) is-a statement unless the current protocol
class has a generic protocol. If an input attribute A, of protocol class P, is-a P,.A,, then P, must be the
direct generic protocol of P,, and A, must be an input attribute of P,. A similar constraint applies to out-
put attribute with is-a statement. '

The Protocol area displays the name of the direct generic protocol of the current protocol. Input
attributes or output attributes (depending on whether the attribute is an input or an output attribute) of
the generic protocol are listed in the Attributes Listbox. The input (output) is-a connection is specified
by selecting an attribute from the Attributes Listbox; the selected attribute is highlighted in the listbox.

The input (output) is-a connection is removed by using the Delete button; the highlight for the pre-

The ataibute’s inputis—-a

Protocol Autxibutes

SHOTGUN_PROTOCOL

Modify Delete

Choose an attribute for this Isa.

FIGURE 25. Input/Output Is-a Definition Window

viously selected attribute in the Attributes Listbox removed.
After the input/output attribute connection has been defined, the attribute is associated with the con-
nection using the Modify button.

4.26 Define Input Attribute From Connection

An input attribute from connection must satisfy the following constraints: if attribute A of protocol

P, is an input attribute specified as input from P, via B,, B,, . . . , B,, then:

68

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows
1. if P;is mentioned in the protocol expansion of a protocol class P,, then P; must also be mentioned
in the same protocol expansion, and P; must immediately precede P;;
2. B, must be an output attribute of P;;

3. Forevery B,,, 2 < m< n: B, is an attribute of class O,.,, where O, is a value class of attribute B, .

4.26.1 Add Attribute Input-From Connection

The From Protocol Listbox lists the names of the protocol classes that can be used in the input-
from connection statement of the current attribute. If the current protocol class, P, has been mentioned
in a protocol expansion, then the From Protocol Listbox lists only the names of the protocol classes
that immediately precede P, in the protocol expansion; otherwise, the From Protocol Listbox lists the

names of all the protocol classes except P..

B The atibute input from

: From Protocol

FIGURE 26. Input From Definition Window

An input attribute from connection is added as follows:
1. A pi’otocol name is selected (clicked on) in the From Protocol Listbox; the selected protocol
name is highlighted, and is displayed in The attribute input from area. As a result of this selec-

tion, the output attributes of the selected protocol class are listed in the Attributes Listbox.

69

OPM SCHEMA EDITOR 2 ’ OPM Schema Editor Windows

2. Anattribute, B, is selected in the Attributes Listbox. As a result, the name of attribute B is listed
in the via part (only the attribute name, not class-name.attribute-name, is listed). Following this
selection, the value classes of B are listed in the Classes Listbox with the first value class high-
lighted (selected by default).

3. Acclassis selected in the Classes Listbox. The attributes of this highlighted class are listed in the
Attributes Listbox. An attribute name is selected in Attributes Listbox. As a result of this selec-
_tion, the name of the selected attribute is appended to the list of attributes already in the via area;

attribute names in the via area are separated by commas (,).
4. The selection of a class name in the Classes Listbox and of an attribute name in the Attributes

Listbox can be repeated until the input attribute from connection specification is completed. -
After the input attribute from connection has been defined, the attribute is associated with the con-
nection using the Modify button.

4.26.2 Modify Attribute Input-From Connection

An input attribute from connection can be modified following a procedure similar to that described
in the previous subsection. After the input attribute from connection has been modified, the attribute is

associated with the modified connection using the Modify bution,

4.26.3 Delete Attribute Input-From Connection

Delete button deletes this input-from connection. An input attribute from connection can be deleted
using the Delete button.

70

L}

OPM SCHEMA EDITOR 2 , , References

References

(1]

(2

(31

(4]

Chen, I-Min A., and Markowitz, V.M., The Object-Protocol Model, Lawrence Berkeley Labo-
ratory Technical Report LBL-32738, 1993.

Chen, I-Min A., and Markowitz, V.M., Mapping Object-Protocol Schemas into Extended
Entity-Relationship Schemas and Queries, Lawrence Berkeley Laboratory Technical Report
LBL-33048 1993.

Markowitz, V.M., Wang, J., Fang, W. SDT 6.1. . A Schema Definition and Translation Tool for
Extended Entity-Relationship Schemas, Lawrence Berkeley Laboratory Technical Report
LBL-27843, 1993. |

Markowitz, V.M., and Shoshani, A., Object Queries over Relational Databases: Language,
Implementation, and Applications, Proceedings of the 9th International Conference on Data

Engineering, 1993.

71

OPM SCHEMA EDITOR 2 The Object-Protocol Model

A The Object-Protocol Model

In the Object-Protocol Model, objects are qualified by attributes and are classified into object
classes. Certain objects, called protocols, have additional specific characteristics and therefore are clas-
sified into protocol classes. Each object or protocol class has a distinct class name. An OPM schema
consists of one or several object and/or protocol classes.

Object and protocol class names are classified in OPM into two system metaclasses called OBJECT_-

CLASSES and PROTOCOL_CLASSES, respectively. OBJECT_CLASSES contains the names of the object
classes defined in the current OPM schema, and PROTOCOL_CLASSES contains the names of the protocol -
classes in the OPM schema. The content of the system metaclasses reflects the status of an OPM schema, -

and cannot be changed directly by users.

A.1 Attributes

Attributes in OPM are identified by attribute names, take values from value classes, and can be char-
acterized by attribute constraints. All the (local and inherited) attributes associated with an object or pro-
tocol class must have distinct names.

’ An attribute can be simple or composite. A simple attribute is assigned an attribute name and is asso-
ciated with either a single value class or a union of several value classes. A composite attribute consists
of several component attributes enclosed within parentheses. The name of a composite attribute is
optional. However, each component attribute must have a distinct name and an associated (single or

union) value class. The constraints associated with a composite attribute apply to all the component

attributes. Composite attributes in OPM cannot be nested; that is, a component attribute cannot be a com-

posite attribute.
Depending on the type of the associated value class, an attribute can be primitive or abstract. A
primitive attribute is an attribute associated with one of the following primitive value classes:
1. a controlled value class of ehumerated atomic values, such as integers (e.g., CONTROLLED VALUE
CLASS NUMBER_1{1, 2, 3}), or strings (e.g., CONTROLLED VALUE CLASS PROJ_TYPE{“overlap”,

L2 I 7 P

“homologs™, “single”, “nonoverlap™});

2. aclass of atomic values of one of the following types: BOOLEAN, BINARY(n), CHAR(N),
VARCHAR(N), INTEGER, SMALLINT, REAL, FLOAT, DATETIME, TIMESTAMP, MONEY, TEXT, IMAGE;

3. one of the system metaclasses.

An abstract attribute is an attribute whose associated value class is an OPM class or a union of OPM

72

™

OPM SCHEMA EDITOR 2 The Object-Protocol Model

classes.

Attributes can be characterized by the following types of constraints: single-valued (the default) or
multi-valued; and can be null (the default) or not null.

A.2 Object Classes

An object class is identified by a unique object class name, and can be described using a class
description. Each object class is associated with one or several (member) attributes.

An attribute can be associated directly only with one object class. However, subclasses inherit all the
attributes of their superclasses. A subset of the attributes associated with an object class is specified as the
identifier for the obj'ccts in that class; object identifiers are used to distinguish among the objects
(instﬁnces) of an object class.

There are two main types of object classes in OPM: base object classes and specialization (subset)
object classes. Specialization is an abstraction mechanism that allows defining object classes consisting
of subsets of objects of other (generic) object (super) classes. A base object class is an object class that
is not specified as a specialization (subclass) of any other object class. A base object class must be asso-
ciated with an object identifier. A specialization object class is not associated directly with an identifier,
and inherits the attributes of all its (direct and transitive) object superclasses, including the identifier;
these attributes are called its inherited attributes. The specialization object classes form directed acyclic
graphs. A '

The following is an example of a base object class called PROJECT:

OBJECT CLASS PROJECT
DESCRIPTION: Defines laboratory projects.

ID: project_id

ATTRIBUTE project_id: INTEGER single-valued not null
ATTRIBUTE project_parent: PROJECT multi-valued can be null
ATTRIBUTE sponsored: SPONSOR multi-valued

ATTRIBUTE project_team: PERSON multi-valued not null

A.3 Protocol Classes

Laboratory (and other) protocols are modeled by protocol classes. Like base object classes, protocol
classes have class names, (optional) class descriptions, identifiers and are associated with (member)

attributes.

73

OPM SCHEMA EDITOR 2 The Object-Protocol Model

A protocol may consist of several steps or subprotocols. Protocol modeling is characterized by the
recursive specification of protocols in terms of component subprotocols, called protocol expansion. Pro-
tocol expansion allows specifying alternative protocols, sequences of protocols, and optional protocols;
“or”, “,”, and “[]” are used to denote alternative, sequences of, and optional protocols, respectively, and
parentheses are used for specifying complex protocol compositions. For example, if P is a protocol
whose expansion is (4, B, [C]) or D then protocol P is defined as either (i) the sequence of 'protocols A
followed by B and followed by optional protocol C, or (alternative) (1) protocol D alone.

In addition to regular attributes (e.g., representing various protocol parameters, such as time and tem-
| perature), a protocol class has in general attributes representing the input and output of the protocol.
* These input and output attributes can only be associated with protocol classes. Input and output attributes
of protocol classes are defined immediately below.

A.4 Input and Output Attributes

Input and output attributes of a protocol class specify the input and output of this protocol, and the
relationship between the protocol and its subprotocols and/or inter-protocol relationships (connections).
Input and output attributes can be only simple attributes, and can be associated only with protocol classes.-

If a protocol P, is expanded into several sub-protocols, then the input and output attributes of P, must
be referenced in the input and output attribute definitions of its sub-protocols. Relationships between
input and output attributes of sub-protocols and input and output attributes of higher level protocols are
expressed in OPM using input is-a . . . and output is-a . . . statements.

If a protocol P; is followed by protocol P;, then the input of P; will include some or all of the output
of P, Input-output protocol connections are expressed in OPM using input from . . . via . . . statements.
For example, suppose that a protocol for DNA packaging consists of three sub-protocols: PACKAGE,
DIGEST and ADD. Part of the input of DIGEST comes from the output of PACKAGE. Therefore, protocol
DIGEST is defined as:

PROTOCOL CLASS DIGEST
DESCRIPTION: digest
ID: digest_id :
ATTRIBUTE digest_id: INTEGER single-valued not null
ATTRIBUTE enzyme: ENZYME input |
ATTRIBUTE dna: PACKAGED_DNA input

from PACKAGE via packaged_dna

74

OPM SCHEMA EDITOR 2 The Object-Protocol Model

ATTRIBUTE linear_dna: LINEAR_STICKY_DNAoutput
As already mentioned above, input and output attributes specify how sub-protocols are connected.

When an input or output attribute correspdnds to an attribute of a higher-level (generic) protocol, this cor-

respondence needs to be specified as shown in the following example:

PROTOCOL CLASS DNA_PACKAGING

DESCRIPTION: packaging DNA for insertion
ID: protocol_id
EXPANSION: PACKAGE, DIGEST, ADD

ATTRIBUTE protocol_id: INTEGER single-valued not null
ATTRIBUTE dna_sample: DNA_SAMPLE input '
ATTRIBUTE vector: VECTOR . input
ATTRIBUTE enzyme: ENZYME input
ATTRIBUTE markers: MARKERS input

~ ATTRIBUTE repackaged_dna: REPACKAGED_DNA output

PROTOCOL CLASS PACKAGE

ID: package_id »
ATTRIBUTE package_id: INTEGER single-valued not null

ATTRIBUTE dna_sample: DNA_SAMPLE input
isa DNA_PACKAGING.dna_sample
ATTRIBUTE vector: VECTOR input
’ isa DNA_PACKAGING.vector
ATTRIBUTE packaged_dna: PACKAGED-DNA output

PROTOCOL CLASS DIGEST
ID: digest_id
ATTRIBUTE: INTEGER single-valued not null
ATTRIBUTE enzyme: ENZYME input
isa DNA_PACKAGING.enzyme
ATTRIBUTE dna: PACKAGED_DNA input
from PACKAGE via packaged_dna
ATTRIBUTE linear_dna: LINEAR_STICKY_DNA output

75

OPM SCHEMA EDITOR 2 The Object-Protocol Model

PROTOCOL CLASS ADD

ID: add_id
ATTRIBUTE add_id: INTEGER single-valued not null
ATTRIBUTE markers: MARKERS input
isa DNA_PACKAGING.markers
ATTRIBUTE linear_dna: LINEAR_STICKY_DNA input
from DIGEST via linear_dna
ATTRIBUTE repackaged_dna: REPACKAGED_DNA output

isa DNA_PACKAGING.repackaged_dna

A5 Derive;d Attributes

Derived attributes are associated with an object or protocol class and are derived from other
attributes using a derivation rule. There are seven types of derivation rules:

1. arithmetic expression involving other attributes;
aggregate functions involving other attributes;
attribute inversion;

attribute match;

attribute composition;

A R i

attribute subvalue;
7. attribute union.

A simple attribute can be associated with one of the seven types of the derivation rules listed above.
A composite attribute can be associated only with attribute matching. However, composite attributes that
are not specified using attribute matching can contain components that are specified using attribute
inverse, attribute composition, attribute subvalue, attribute union, arithmetic expression or aggregate ,
function derivation. _

An arithmetic derivation rule for a derived attribute associated with object or protocol class O; con-
sists of operators (+, -, *, /), constants, and other numeric attributes of O,. Attributes involved in an arith-
metic expression must be single-valued, simple or component attributes that are not associated with
derivation rules. G

An aggregate function derivation rule for a derived attribute associated with object or protocol class

0, consists of aggregate functions min, max, sum, or avg applied on a numeric attribute of O,, or aggre- «

76

OPM SCHEMA EDITOR 2 The Object-Protocol Model

‘gate function count applied on an attribute of O,. Attributes involved in an aggregate function derivation
rule must be simple or component attributes that are multi-valued and are not associated with derivation
rules. |

The following object class definition contains two examples of derived attributes involving aggre- -

gate function expressions:

OBJECT CLASS SPONSOR
DESCRIPTION: sponsor of a project
ID: sponsor_id
ATTRIBUTE sponsor_id: INTEGER single-valued ot null
ATTRIBUTE sponsor_name: CHAR(80)
ATTRIBUTE (account, project, amount): (ACCOUNT, PROJECT, MONEY) multi-valued
ATTRIBUTE total_amount: MONEY
DERIVATION: sum of amount
ATTRIBUTE no_of_projects: INTEGER
DERIVATION: count of project

We use below the following notation: if A denotes an attribute of object or protocol class O, and x
denotes an object instance of O, then A (x) denotes the set of A values for x.

An attribute A of object or protocol class O, can be defined as the inverse of an attribute B of object
or protocol class O; iff '

1. the value class associated with A, V(A), is O; and the value class associated with B, V(B), is O;;

2. if A is a simple attribute, then B can be either specified as inverse of A or it is not specified as a

derived attribute;
3. if A is a component attribute, then B must be specified as inverse of attribute A.

If A is defined as the inverse of B, then for every object x of O,, whenever object y of O; belongs to
A (x), x belongs to B(y).
An attribute A of object or protocol class O; can be defined as the inverse of attributes B,,.., B,,, where

B, is associated with class O, and has value class V(B)),1 < k< m, iff

1. A is associated with a union of value classes V(A,), . .., V(4,), so that m = n and for every pair
V(A and V(B,), 1 <k<m, V(A,) is O, and V(B,) is O;,

71

OPM SCHEMA EDITOR 2 ' ‘ : ' The Object-Protocol Model

2. B can be specified as inverse of A or it is not specified as a derived attribute.

If A is defined as the inverse of B, or . . . or B,, then for every object x of O,, whenever object y of
O,, 1 k< m, belongs to A (x), x belongs to B, (y).

The following object class definitions contain examples of derived attributes defined using inversion:

OBJECT CLASS CHROMOSOME
ID: chromosome_number
ATTRIBUTE chromosome_number: INTEGER single-valued

ATTRIBUTE has_map: MAP multi-valued
. DERIVATION: inverse of MAP.has_chromosome
ATTRIBUTE owner: PERSON single-valued
OBJECT CLASS MAP

ID: map_id

ATTRIBUTE map_id: INTEGER single-valued

ATTRIBUTE has_chromosome: CHROMOSOME multi-valued

DERIVATION: inverse of CHROMOSOME has_map

ATTRIBUTE owner: PERSON single-valued

OBIJECT CLASS PERSON
ID: social_security_no :
ATTRIBUTE social_security_no: CHAR - single-valued not null
ATTRIBUTE owns: MAP or CHROMOSOME multi-valued
DERIVATION: inverse of (MAP.owner or CHROMOSOME.owner)

A simple attribute A of object or protocol class O; can be defined as matching an attribute B of
object or protocol class O, on attribute, C, iff (B, C) is defined as a composite attribute of O,, the value
class of C includes O, and the value classes of A and B are identical.

If A is defined as matching B of O, on C then for every object x of O;:

1. if there exists an object y of O; so that object x of O; belongs to C(y), then A(x) and B(y) are equal;

78

OPM SCHEMA EDITOR 2 ' The Object-Protocol Model

2. if there does not exist an objecty of O, so that object x of O, belongs to C(y), then A(x) is empty; if

A does not allow null values, then for every object x of O, there must exist an object y of O; so that
x belongs to C(y).

A composite attribute A = (4,, . . ., A,) of object or protocol class O; can be defined as matching
composite attribute (B,, . . ., B,) of O, on attribute C, iff (B,, . . . , B,, C) is defined as a composite
attribute of O, the value class of C includes O,, and the value classes of A, and B,, I < k< n, are identical.

IfA=(A,,...,A,) is defined as matching (B,, .. ., B,) of O, on attribute C, then for every object
x of O;. :

1. if there exists an objecty of O; so that objecix of O, belongs to C(y), then the set of tuples (4,(x), .

.-, A(x)) and the set of tuples (B,(y), - . . , B.(y)) are equal;

2. if there does not exist an object y of O, so that object x belongs to C(y), then A(x) is empty; if A

does not allow null values, then for every object x of O, there must exist an object y of O, so that x
belongs to C(y). '

The following object class definitions contain examples of derived attributes defined using match:

OBJECT CLASS TRANSLATES

DESCRIPTION: gene translates protein at some cell
ID: (gene, at_cell, protein)
ATTRIBUTE (gene, at_cell, protein): (GENE, CELL, PROTEIN) single-valued not null

OBJECT CLASS GENE
ID: gene_name
ATTRIBUTE gene_name: VARCHAR(80) single-valued not null
ATTRIBUTE (translate, at_cell): (PROTEIN, CELL)
DERIVATION: match (protein, at_cell) of TRANSLATES on gene

OBJECT CLASS PROTEIN
ID: protein_name
~ ATTRIBUTE protein_name: VARCHAR(80) single-valued not null
ATTRIBUTE (gene, at_cell): (GENE, CELL)

DERIVATION: match (gene, at_cell) of TRANSLATES on protein

79

'OPM SCHEMA EDITOR2 " The Object-Protocol Model

OBIJECT CLASS CELL
ID: cell_name :
ATTRIBUTE cell_name: VARCHAR (80) single-valued not null
ATTRIBUTE (gene, protein): (GENE, PROTEIN)
DERIVATION: match (gene, protein) of TRANSLATES on at_cell
An attribute of an object or protocol class O, , A, can be derived by composing attributes A, , A,, ..

..A,, n22, whereeach A, (I <j<n)
1.is a local attribute (not an inherited attribute);
2.is either a simple or a component attribute;
3.is either non-derived or an inver;e attribute;
4.cannot be an input or output attribute of a protocol class.

The composition of attributes A,, A,, ... , A, is denoted 4, . A, A,.
Attribute A, must be a simple or composite attribute of O,. If the value class of A; (I <j<n-— 1) con-

sists of class O , then A;, ;must be an attribute of O, . If A; is associated with a value class consisting
J . J

of a union of classes, O, or..or O, ,thenclasses O, ,..,and O, musthave an attribute A;,,
. Iy Im J1 Im

associated with the same value classes.
The following object class definition contains an example of a derived attribute defined using com-

position:

OBJECT CLASS PERSON
ID: social_security_no ,
ATTRIBUTE social_security_no: CHAR(11) single-valued not null
ATTRIBUTE primary_account: ACCOUNT single-valued |
ATTRIBUTE sponsor_names: CHAR(80) multi-valued
DERIVATION: primary_account.Sponsor.Sponsor_name

OBJECT CLASS ACCOUNT
ID: account_no _
ATTRIBUTE account_no: INTEGER single-valued not null
ATTRIBUTE sponsor: SPONSOR : multi-valued

80

OPM SCHEMA EDITOR 2 The Object-Protocol Model

OBJECT CLASS SPONSOR
ID: sponsor_name v
ATTRIBUTE sponsor_name: CHAR(80) single-valued not null

In the example above, the composition derivation for sponsor_names involves attribute
primary_account which is an attribute of PERSON and has value class ACCOUNT; attribute sponsor which
is an attribute of ACCOUNT and has value class SPONSOR; and attribute sponsor_name which is a prim-

itive attribute of SPONSOR. »

Let B be a simple or component attribute of an object or protocol class O;, so that B is not a derived
attribute, nor an input or output attribute. A simple or component attribute A of O, can be defined as a
subvalue attribute of B, if the value class of A is V,,, the value class of B is Vg, and

1.0, = Oy, Vg = Opg,and 0, is an immediate or transitive subclass of Opg; or

2. Vp consists of a union of classes, O B, OF...Or o B, and V, (consisting of a single class or a

union of classes) is a subsetof V. -

The following is an example of an attribute defined using the subvalue derivation:

OBJECT CLASS DEPARTMENT

ID: department_name

ATTRIBUTE department_name: CHAR(20) single-valued not null

ATTRIBUTE employees: EMPLOYEE multi-valued not null

ATTRIBUTE engineers: ENGINEER - multi-valued
DERIVATION: subvalue of employees

Class ENGINEER is a subclass of EMPLOYEE. The range of attribute employees consists of the
employees in a given department, and the range of attribute engineers consists of the subset employees

who are engineers in the same department.
A simple or component attribute A of an object or a protocol class O, can be defined as the union

attribute of other attributes, B, , ..., B, (n22) if
1.B;, ..., and B, are simple or component attributes of O;;

2.B,, ..., and B, are not derived, nor input or output attributes of a protocol;

81

OPM SCHEMA EDITOR 2 : The Object-Protocol Model

3.the union of the value classes of B, ... , B, is equal"to the value class of A.

The folloWing is an example of an attribute specified using union derivation:

OBJECT CLASS PROJECT

ID: project_id : '

ATTRIBUTE project_id: INTEGER single-valued not null
ATTRIBUTE company_sponsors: COMPANY ‘multi-valued
ATTRIBUTE government_sponsors: GOV_DEPARTMENT multi-va_lued

ATTRIBUTE all_sponsors: COMPANY or GOV_DEPARTMENT multi-valued
DERIVATION: company_sponsors or government_sponsors

82

-
,‘_"_: ad

| |
LAWRENCE BERKELEY LABORATORY ‘

=3
0= ¢

UNIVERSITY OF CALIFORNIA . =2
TECHNICAL INFORMATION DEPARTMENT : | 0=
BERKELEY, CALIFORNIA 94720 =1

