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Highly optimized fourth-order short-time approximation for path integrals

Cristian Predescu∗
Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry,

University of California, Berkeley, California 94720
(Dated: November 14, 2006)

We derive a fourth-order short-time approximation for use in imaginary-time path-integral simu-
lations. The short-time approximation converges for all continuous and bounded from below poten-
tials, attains quartic order of convergence for sufficiently smooth potentials, and utilizes statistically
independent random variables for its construction. These properties recommend the approximation
as a natural replacement of the trapezoidal Trotter-Suzuki approximation for physical systems with
continuous distributions.

PACS numbers: 05.30.-d, 02.70.Ss
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With the advent of massively parallel computational
architectures, path integral simulations are more and
more utilized for the evaluation of quantum statisti-
cal properties at a level of accuracy not attainable by
other techniques. The now-classical applications for low-
temperature Bosonic systems summarized in Ceperley’s
decade-old review1 are a vivid illustration of the physical
and numerical insights brought in by the path integral
formalism. Nowadays, the use of path integral simula-
tions as investigation tools is on the increase, whether
because the magnitude of the quantum effects is being
re-evaluated or because the numerical efficiency has im-
proved to the point that the utilization of more approx-
imate techniques is no longer warranted.2 Accordingly,
the computational trend is toward the development of
general purpose path integral techniques that are ro-
bust and efficient enough to be applied for systems of
increasing complexity. For those numerical algorithms
that are constructed via a Lie-Trotter product, a task of
immediate interest is the development of efficient general-
purpose short-time approximations.

In order to appeal to researchers of wide scientific in-
terests, a short-time approximation must satisfy several
stringent numerical requirements. As such, it should not
depend strongly on the form of the potential function.
The amount of pre-computation must be minimal. If
possible, the short-time approximation should be con-
structed in terms of the potential function alone. The
resulting Lie-Trotter product should converge for a suffi-
ciently large class of potentials, a class that is normally
expected to include the continuous and bounded from
below functions. For the resulting path-integral tech-
nique to be computationally efficient, the short-time ap-
proximation must exhibit a high order of convergence for
smooth enough potentials. However, this high conver-
gence order should not cause a significant decrease in the
quality of the Monte Carlo sampling. Such a situation
might appear when strongly correlated path variables are
utilized for the construction of the short-time approxima-
tion.

The short-time approximations developed so far at-
tempt to compromise on the aforementioned features.

For example, the Trotter-Suzuki trapezoidal approxi-
mation is a functional of the potential (therefore easy
to implement) and converges for all continuous and
bounded from below potentials. However, it can only
attain quadratic convergence, asymptotically.3,4 The
pair-product approximation considered by Pollock and
Ceperley5 is numerically stable and has cubic conver-
gence order, but, as its name implies, it only applies for
potentials that are sums of two-body terms. The partial-
averaging technique6 behaves extremely well numerically,
converging for a large class of potentials,7 but requires
the computation of the Gaussian transform of the po-
tential. The Takahashi-Imada8 as well as the Suzuki9
approximations, may achieve quartic convergence, but
require explicit knowledge of the first-order derivatives
of the potential and do not converge if these derivatives
are not finite. A similar objection can be raised of the
short-time approximations recently constructed by Bo-
gojević, Balaz̆, and Belić10 which, while featuring signif-
icant improvements in the asymptotic convergence, have
the drawback that require explicit knowledge of high-
order derivatives of the potential.

In a recent work,11 it has been argued that there exist
short-time approximations of the form

ρ
(ν)
0 (x, x′;β) = ρfp(x, x′; β)

∫

R
dµ(a1) . . .

∫

R
dµ(anν )

× exp

{
−β

nq∑

i=1

wiV
[
xr(θi) + σ

nν∑
k=1

akΛ̃k(θi)
]}

(1)

that have arbitrary convergence order for sufficiently
smooth potentials. In Eq. (1), ρfp(x, x′; β) is the den-
sity matrix of a free particle, β = 1/(kBT ) is the inverse
temperature, xr(u) = x+(x′−x)u is the reference path,
σ = (~2β/m0)1/2, and dµ(z) = (2π)−1/2 exp(−z2/2)dz
is the standard normal distribution on the real axis R.
The positive weights wi and the knots θi define a sym-
metric quadrature rule on the interval [0, 1]. In order for
the short-time approximation to possess the prescribed
convergence order ν, the quadrature rule as well as the
values Λ̃k(θi) must satisfy certain equations that will be
reviewed below. It is useful to regard the quantities Λ̃k(u)
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as continuous functions on [0, 1], although only their val-
ues on the quadrature knots are relevant. The functions
Λ̃k(u) must vanish at the end points of the interval [0, 1].
Finally, the covariance matrix

γ̃(u, τ) = uτ +
nν∑

k=1

Λ̃k(u)Λ̃k(τ) (2)

must satisfy the identity

γ̃(1− u, 1− τ) = 1− u− τ + γ̃(u, τ). (3)

This property ensures that the short-time approximation
defined by Eq. (1) is Hermitian. It can be enforced, for
example, by searching for functions Λ̃k(u) that are either
symmetric or antisymmetric.

Under the hypothesis that the weights wi sum to 1,
the Lie-Trotter products constructed from the short-time
approximations of the type given by Eq. (1) converge
for all continuous and bounded from below potentials (a
proof for the subsequence n = 2k − 1 can be found in
Ref. 12). Explicit approximations of order 4 have been
already constructed in the literature.11 Since then, in un-
published work, the present author has constructed ap-
proximations of order 5, with the purpose of providing
numerical evidence that approximations of higher orders
do exist. However, for example, the approximation of
order 4 utilizes four Gauss-Legendre quadrature knots
and three functions Λ̃k(u). Likewise, the approxima-
tion of order 5 utilizes five Gauss-Legendre quadrature
knots and four functions Λ̃k(u). These additional func-
tions overlap strongly and constitute three or four addi-
tional sampling layers in the Lévy-Ciesielski form13 of the
Lie-Trotter product. If the potential function is not suffi-
ciently smooth and the approximation fails to achieve its
highest possible convergence order, then the utilization
of 4 or 5 quadrature knots and the fact that the functions
Λ̃k(u) overlap strongly constitute a disadvantage in com-
parison with lower-order approximations that allow for a
higher Trotter index at the same computational effort.

In the present work, we shall construct a fourth-order
short-time approximation that has the following desirable
features that increase the efficiency of the approxima-
tion for potentials that are not very smooth: it only uti-
lizes three quadrature knots and two additional functions
Λ̃k(u). Moreover, the additional functions are shown to
have disjoint support on the set of quadrature knots.
Consequently, the functions constitute only one addi-
tional sampling layer in the Lévy-Ciesielski form of the
Lie-Trotter product. Therefore, the short-time approxi-
mation maintains a high sampling efficiency, which is the
more important feature when the potential is not suffi-
ciently well-behaved.

The equations that the quadrature rule and the val-
ues Λ̃k(θi) must satisfy have been formulated in terms
of generalized moments of Gaussian processes11 and sub-
sequently reformulated in terms of covariance matrices
alone.12 A short-time approximation of the form given

by Eq. (1) has convergence order ν if and only if the
equality of the (λ0, λ1, . . . , λd)-polynomials

∫ 1

0

dω(u1) · · ·
∫ 1

0

dω(ud)
[

d∑
i=0

d∑
j=0

λiλj γ̃(ui, uj)
]n

=
∫ 1

0

du1 · · ·
∫ 1

0

dud

[
d∑

i=0

d∑
j=0

λiλjγ(ui, uj)
]n

(4)

holds for all d and n such that d + n = ν. Here, u0 = 1,
γ(u, τ) = min{u, τ} is the covariance matrix for a stan-
dard Brownian motion, whereas dω(u) is a shorthand for
the discrete quadrature measure

dω(u) =
nq∑

i=1

wiδ(u− θi)du.

The number of functional equations that are generated
from this equality of polynomials increases quickly, in an
exponential fashion, with the order of convergence ν.11
Significant reductions in the number of equations can be
obtained by enforcing the equality γ̃(u, u) = γ(u, u) = u
on the quadrature knots, that is,

nν∑

k=1

Λk(θi)Λk(θi) = θi(1− θi), ∀ 1 ≤ i ≤ nq. (5)

In other words, we require that the discrete Gaussian pro-
cess utilized in the construction of the short-time approx-
imation matches exactly the variance of the Brownian
motion on the quadrature knots. Such an approximation
has been dubbed “reweighted.”11 Numerical experiments
suggest that this constraint is incompatible with orders
of convergence greater or equal to 5. The unpublished
example of order 5 constructed by the author does not
satisfy this constraint. Nevertheless, for the convergence
order 4, the constraint leads to a significant reduction in
the number of functional equations, which facilitates a
very compact solution.

To understand how this reduction appears, consider
the case d = 1 and n = 3 in Eq. (4). One computes

nq∑

i=1

wi

[
λ2

0 + 2λ0λ1γ̃(1, θi) + λ2
1γ̃(θi, θi)

]3

=
∫ 1

0

[
λ2

0 + 2λ0λ1γ(1, u) + λ2
1γ(u, u)

]3
du. (6)

Since γ̃(1, u) = γ(1, u) = u and γ̃(u, u) = γ(u, u) = u,
one sees that Eq. (6) holds true provided that the quadra-
ture scheme specified by the weights wi and knots θi in-
tegrates exactly all polynomials of degree greater or less
than three. Therefore, we require that

nq∑

i=1

wi(θi)k = 1/(k + 1), for k = 0, 1, 2, 3. (7)

Had we not enforced the equality γ̃(u, u) = u on the
quadrature knots, the number of resulting equations



3

TABLE I: Parameters defining the short-time approximation
of order 4.

i 1 2 3

wi 1/3 1/3 1/3

θi

`
2−√2

´
/4 1/2

`
2 +

√
2
´
/4

Λ̃1(θi) 0 1/2 0

Λ̃2(θi)
√

2/4 0
√

2/4

would have been significantly larger. We let it for the
reader to demonstrate by explicit computation that all
equalities of polynomials implied by Eq. (4) are satisfied
provided that the following equations, additional to those
expressed by Eq. (7), hold true:

nq∑

i=1

nq∑

j=1

wiwj γ̃(θi, θj)k =
∫ 1

0

∫ 1

0

γ(u, τ)kdudτ, (8)

for k = 1, 2, and

nq∑

i=1

nq∑

j=1

wiwjθiγ̃(θi, θj) =
∫ 1

0

∫ 1

0

uγ(u, τ)dudτ. (9)

Remembering the symmetry of the quadrature rule as
well as Eq. (3), we see that it is enough to check Eqs. (7)
for k = 0, 2 as well as Eqs. (8) for k = 1, 2. The remaining
two quadrature equations and Eq. (9) are then automat-
ically satisfied by symmetry. Thus, the final equations
read

nq∑

i=1

wi = 1,

nq∑

i=1

nq∑

j=1

wiwj γ̃(θi, θj) =
1
3
,

nq∑

i=1

wi(θi)2 =
1
3
,

nq∑

i=1

nq∑

j=1

wiwj γ̃(θi, θj)2 =
1
6
. (10)

To obtain the right-hand side values, remember that
γ(u, τ) = min{u, τ} and explicitly compute the right-
hand side integrals in Eq. (8).

In order to minimize the number of calls to the po-
tential function, we try to construct a solution that has
minimal nq. No solution exists for nq = 2. Indeed,
the quadrature rule would then be completely specified
and equal to the 2-point Gauss-Legendre rule. The co-
variance matrix γ̃(θi, θj) has the two diagonal elements
completely determined by Eq. (5). The two off-diagonal
terms are equal by symmetry and cannot accommodate
both the remaining equations involving the covariance
matrix, as it can be shown by explicit computation.
Next, we look for nq = 3. In order to minimize the
number of additional Gaussian variables, we try a so-
lution with nν = 1. Unfortunately, no such solution
exists. The reader can prove this assertion by observ-
ing that the symmetry requirements and Eq. (5) lead
to Λ̃1(u) = [u(1 − u)]1/2. This constraint completely
specifies the covariance matrix γ̃(θi, θj). The remaining
quadrature variables w1, w2, and u1 cannot accommodate
the four equalities in Eq. (10).

There are many possible solutions with nq = 3 and
nν = 2. The one we give has the additional property
that there are no quadrature knots θi such that Λ̃1(θi)
and Λ̃2(θi) are both different from zero (that is, the func-
tions Λ̃1(u) and Λ̃2(u) have disjoint support on the set of
quadrature knots). The solution is specified by the values
from Table I. The verification of Eqs. (10) is left as an
exercise for the reader, since it merely involves arithmetic
operations. We mention, however, that the present solu-
tion is the unique one for which Λ̃1(u) and Λ̃2(u) have
disjoint support on the set of quadrature knots. Because
of this property, the short-time approximation factorizes
as

ρ
(4)
0 (x, x′; β) = ρfp(x, x′; β)

{∫

R
(2π)−1/2e−a 2

1 /2e−βw2V [xr(θ2)+σa1Λ̃1(θ2)]da1

}

×
{∫

R
(2π)−1/2e−a 2

2 /2e−βw1V [xr(θ1)+σa2Λ̃2(θ1)]−βw3V [xr(θ3)+σa2Λ̃2(θ3)]da2

}
. (11)

Any Monte Carlo sampling involving the short-time ap-
proximation must proceed in two steps. In the first step,
one samples the variables x and x′ or, rather, the chain
that they form in the Lie-Trotter product. In the second
step, one keeps the variables x and x′ fixed and samples
the variables a1 and a2. As Eq. (11) shows, the variables
a1 and a2 are independent and can be tested for accep-
tance individually. These operations can be performed
with a sole evaluation of the action.

In the remainder of the work, we verify numerically the

order of convergence of the technique for a sufficiently
smooth potential. The physical problem we treat is that
of a He atom moving in a double-well potential described
by the equation

V (x) = A cosh(ax)−B cosh(bx),

with a = 5.79 Å
−1

, b = 1.518 Å
−1

, A = 0.121 K,
and B = 9.564 K. The parameters are chosen so that
to model a physically reasonable one-dimensional cage
for the He atom. The mass of the atom is taken to be
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FIG. 1: Numerical demonstration that the convergence order
of the short-time approximation given by Eq. (11) is 4, at least
for the He cage problem. For comparison, the convergence
order of the trapezoidal Trotter-Suzuki approximation is also
featured.

m0 = 4 amu and the temperature is set to T = 5.11 K.
At this temperature, the He atom mostly resides in its
quantum groundstate. We employ the matrix multipli-
cation technique to study the convergence order for the
partition function. The details of the procedure can be
found elsewhere.11 The study relies on the fact that the
slope αm+1 − αm of the sequence

αm = m2 ln
[
1 +

Z2m−1(β)− Z2m+1(β)
Z2m+1(β)− Z(β)

]

converges to the convergence order in the limit that the
Trotter index 2m + 1 goes to infinity. Here, Zn(β) and
Z(β) represent the partition function computed from the
n-th order Lie-Trotter product

ρn(x, x′; β) =
∫

R
dx1 . . .

∫

R
dxn ρ

(4)
0

(
x, x1;

β

n + 1

)

. . . ρ
(4)
0

(
xn, x′;

β

n + 1

)
(12)

and the exact partition function, respectively. The nu-
merical results presented in Fig. 1 demonstrate that the
convergence order of the technique is indeed 4. When
comparing with the trapezoidal Trotter-Suzuki approx-
imation, we see that the maximal convergence order is
attained for relatively large Trotter indexes. This trend
demonstrates that improving the convergence orders in-
definitely may not necessarily lead to spectacular numer-
ical gains. The reason is that systematic errors compara-
ble to the statistical Monte Carlo errors may be achieved
for relatively low Trotter indexes, for which the maximal
convergence order is not yet attained.

To summarize, the short-time approximation consid-
ered in the present work satisfies most of the require-
ments enumerated in the introductory paragraphs. As
such, it is convergent for all continuous and bounded from

below potentials and, provided that the potential func-
tion is sufficiently smooth, achieves quartic convergence.
Its construction is realized solely in terms of the potential
function, which makes the approximation numerically ap-
pealing. The two additional Gaussian variables utilized
in the construction can be sampled independently and
simultaneously in a Monte Carlo simulation. We would
like to emphasize that the stringent requirements in the
second paragraph are consistent with the general expec-
tations in chemistry, where the potentials necessarily con-
tain dominant three-body terms and are sufficiently com-
plex to render the use of derivatives or explicit Gaussian
transforms a tough computational task. Nevertheless,
for certain physical applications with less-complex po-
tential functions, some of the path-integral techniques
mentioned in the introductory paragraphs might prove
to be a computationally more efficient alternative. Also,
one could envision scenarios where the two-body part of
the potential function is handled by means of the pair-
product approximation, whereas the remaining many-
body part, which is a smooth function, is treated by
means of the fourth-order approximation.

Sure enough, higher-order short-time approximations
are desirable, but future work will have to weigh the gains
against the possible loss of Monte Carlo sampling effi-
ciency. Most likely, higher-order approximations exhibit
a strong overlap of the functions Λ̃k(u) on the quadrature
knots, property that diminishes the efficiency of Monte
Carlo samplers. Again, we are thinking of those situa-
tions where the derivatives of the potential function are
either not defined or poorly behaved, as magnitude. In
such cases, the higher convergence order does not help
much. Nevertheless, the superior efficiency of the Monte
Carlo samplers facilitated by the lack of overlap of the
functions Λ̃k(u) on the quadrature knots is always guar-
anteed, whether the potential is smooth or not.

The present development relies heavily on the avail-
ability of a Feynman-Kac formula. It can in principle
be extended to some other situations where the poten-
tial might be temperature dependent (perhaps as a result
of integrating out some bath variables) or for stochastic
processes in continuous time for which a drifting term is
present, such as the Smoluchovski equation. Although
we have kept the nomenclature of Lie-Trotter product,
the convergence of the ensuing product form does not fol-
low from the Trotter theorem, but is a consequence of the
Feynman-Kac formula.12 On the other hand, for the situ-
ations where a Feynman-Kac formula is not available, the
present approach cannot be applied. Examples of such
situations are provided by the real-time propagation or
by the statistical mechanics of those systems that are es-
sentially quantum-mechanical and for which no classical
Hamiltonian is available.14 It is quite intriguing to notice
that in these latter situations one can construct general-
ized forms of the Lie-Trotter exponential product that
exhibit high convergence orders, whether because the
short-time approximations themselves are bounded15,16

or because the non-comuting operators making up the
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Hamiltonian are bounded.17
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