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Background: The upper-airway microbiome is involved in asthma exacerbations despite inhaled 

corticosteroid (ICS) treatment. Although human genetics regulates microbiome composition, its 

influence on asthma-related airway bacteria remains unknown.

Objective: We sought to identify genes and biological pathways regulating airway-microbiome 

traits involved in asthma exacerbations and ICS response.

Methods: Saliva, nasal, and pharyngeal samples from 257 European patients with asthma were 

analyzed. The association of 6,296,951 genetic variants with exacerbation-related microbiome 

traits despite ICS treatment was tested through microbiome genome-wide association studies. 

Variants with 1 × 10−4 < P < 1 × 10−6 were examined in gene-set enrichment analyses. Significant 

results were sought for replication in 114 African American and 158 Latino children with 

and without asthma. ICS-response–associated single nucleotide polymorphisms reported in the 

literature were evaluated as microbiome quantitative trait loci. Multiple comparisons were adjusted 

by the false discovery rate.

Results: Genes associated with exacerbation-related airway-microbiome traits were enriched 

in asthma comorbidities development (ie, reflux esophagitis, obesity, and smoking), and were 

likely regulated by trichostatin A and the nuclear factor-κB, the glucocorticosteroid receptor, 

and CCAAT/enhancer-binding protein transcription factors (7.8 × 10−13 ≤ false discovery rate ≤ 

0.022). Enrichment in smoking, trichostatin A, nuclear factor-κB, and glucocorticosteroid receptor 

were replicated in the saliva samples from diverse populations (4.42 × 10−9 ≤ P ≤ .008). The ICS-

response–associated single nucleotide polymorphisms rs5995653 (APOBEC3B-APOBEC3C), 

rs6467778 (TRIM24), and rs5752429 (TPST2) were identified as microbiome quantitative trait 

loci of Streptococcus, Tannerella, and Campylobacter in the upper airway (0.027 ≤ false discovery 

rate ≤ 0.050).

Conclusions: Genes associated with asthma exacerbation–related microbiome traits might 

influence asthma comorbidities. We reinforced the therapeutic interest of trichostatin A, nuclear 

factor-κB, the glucocorticosteroid receptor, and CCAAT/enhancer-binding protein in asthma 

exacerbations.

Graphical Abstract
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INTRODUCTION

The human microbiome involves all the microorganisms inhabiting the human body.1 The 

elevated number of bacterial species and their genetic diversity at different body sites 

have aroused interest in investigating the influence of the microbiome on human diseases, 

especially in asthma and allergies.1 Previous studies reported that the airway and gut 

microbiome composition and microbial exposures during the lifespan contribute to asthma 

pathogenesis and treatment response.1,2 These microbial communities are influenced by 

host genetics and environmental factors, leading to high interindividual variation.3 However, 

little is known about host genetic variants modifying the composition of the upper-airway 

microbiome. Previous studies have reported both an important contribution of human 

genetics in the oral microbiome composition, but little effect on the nasal microbiome, 

and so its influence is not completely understood.3-6

Microbiome genome-wide association studies (mbGWAS) have revealed single nucleotide 

polymorphisms (SNPs) regulating the microbiome composition, known as microbiome 

quantitative trait loci (mbQTLs). However, most mbGWAS have focused on analyzing the 

gut microbiome, and other asthma-relevant tissues have been barely examined.4,7 To date, 

only 4 mbGWAS have investigated the influence of host genetics on the upper-airway 

microbiome.3,5,6,8 These studies have reported that mucosal immunity genes and immunity-

related pathways are relevant to regulating the nasal microbiome.3,8 In addition, the 

heritability of the oral microbiome has been estimated at more than 50%, and the influence 

of host genetics on the oral microbiome is potentially higher than that of environmental 

factors.5,6

Nonetheless, there is no study evaluating the effect of genetic loci on airway bacteria 

previously related to asthma pathogenesis.1 Recently, our group has identified multiple 

upper-airway microbiome biomarkers with a protective role for asthma exacerbations despite 

inhaled corticosteroid (ICS) treatment.2 We hypothesize that host genetics regulate the 

upper-airway microbiome diversity and composition involved in asthma exacerbations 

and ICS response. This study aimed to identify genetic variants and biological pathways 

regulating airway microbiome traits involved in asthma exacerbations despite ICS treatment.

RESULTS AND DISCUSSION

A schematic overview of the available data and workflow of this study is represented in 

Fig E1 (in the Online Repository available at www.jacionline.org). A total of 257 saliva, 

232 pharyngeal, and 229 nasal samples from European individuals with asthma from the 

Genomics and Metagenomics of Asthma Severity (GEMAS) study were analyzed in the 

discovery phase.9 Their main demographic and clinical characteristics are summarized in 

Table I. Briefly, subjects had a median age of 39.0 years (interquartile range, 18.0-59.0 
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years) and 61.5% were female. More than 88.0% of patients had severe persistent asthma 

and 25.8% had a poorly controlled disease. Furthermore, 20.4% of patients reported 

gastroesophageal reflux disease (GERD), 31.7% obesity, 69.3% atopy, and 27.7% recent 

antibiotic treatment, and 28.3% were smokers.

Human genome-wide genotypes were imputed using the TOPMed Reference Panel, and 

microbiome profiling was conducted by targeted sequencing of the 16S ribosomal RNA 

gene (V3-V4 region), as described elsewhere.2 mbGWAS were conducted to test for the 

association of 6,296,951 genetic variants with microbiome traits through regression models 

adjusted for age, sex, and ancestry. We aimed to identify genes and biological pathways 

associated with microbiome traits (3 alpha diversity indices and 18 bacterial genera) 

previously associated with asthma exacerbations despite ICS treatment in the GEMAS 

study.2 Independent suggestive mbQTLs identified in a total of 24 mbGWAS (P < 1 × 10−5) 

were included in a gene-set enrichment analysis. After multiple comparisons adjustment 

(false discovery rate < 0.05), we observed an enrichment in genes previously associated 

with major asthma comorbidities, including reflux esophagitis (a main consequence of 

GERD),10 obesity, and smoking. Furthermore, gene-set enrichment analysis revealed that 

genes suggestively associated in the mbGWAS partially overlapped with genes whose 

expression is regulated by trichostatin A (TSA) and transcription factors, including the 

nuclear factor-κB (NF-κB), the glucocorticosteroid receptor or GR (encoded by the nuclear 

receptor subfamily 3, group C, member 1 or NR3C1 gene), and CCAAT/enhancer-binding 

proteins (CEBPs) (Fig 1 and Table II). The robustness of these findings was ensured by 

varying the input P-value threshold for genetic variants selection to include in the analysis 

(ie, P < 1 × 10−6 and P < 1 × 10−4). Enrichment results remained significant (P <.05) 

after varying this parameter, indicating that our findings are not dependent on the arbitrary 

P-value threshold for variant selection. Stratified analyses by biological sample showed that 

these enrichment terms were driven by microbiome traits from different body sites (Table 

II).

Significant results from the salivary microbiome were followed up for replication in 158 

Latino children with and without asthma from the Genes-environments & Admixture in 

Latino Americans (GALA II) study and 114 African Americans from the Study of African 

Americans, Asthma, Genes & Environments (SAGE). Their characteristics are summarized 

in Table I. Bioinformatic analyses were conducted using similar procedures as in the 

discovery phase. Enrichment in smoking, TSA, NF-κB, and GR was replicated in the 

mbGWAS of saliva samples from both African American and Latino children with and 

without asthma (4.42 × 10−9 ≤ P ≤ .008) (Table II).

GERD, obesity, and smoking are well-known risk factors for asthma susceptibility, asthma 

exacerbations, and corticosteroid unresponsiveness.10-12 Different mechanisms have been 

suggested to explain how GERD affects asthma, including inflammatory lung injury and 

vagal nerve stimulation by gastric acid.10 Furthermore, TH2 cytokines and eosinophilia 

might mediate the coexistence of asthma with eosinophilic esophagitis, another allergic 

disease that mimics GERD symptoms.13 However, inconsistent data have been reported 

about the effectiveness of GERD therapies in asthma, suggesting that the underlying 

mechanisms between GERD and asthma are not fully elucidated.10 Similarly, asthma and 
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obesity are 2 highly heritable traits with shared mechanisms including genetic factors.14 

The knowledge of the genetics of asthma and obesity is limited due to the polygenic 

character of these traits,14 and it has been hypothesized that genetic polymorphisms might 

exert an effect on the obese asthma phenotype through other omic layers.11 A shared 

feature among these 3 comorbidities is their impact on the airway, salivary, and/or gut 

microbiome compositions.11,12,15 Moreover, bacterial dysbiosis is considered a link between 

GERD, obesity, and asthma.11,15 Our study provides novel insights into the shared influence 

of human genetics on the upper-airway microbiome composition involved in asthma 

exacerbations and the development of major asthma comorbidities.

In addition, we observed an enrichment in genetic signatures related to TSA and genes 

regulated by NF-κB and the GR in lung inflammation bronchial epithelial cells. GR is 

the main mediator of the anti-inflammatory effect of glucocorticosteroids by interacting 

with transcriptional coactivators and corepressors (eg, histone deacetylase 2 and NF-κB).16 

Large evidence supports that deficiencies in GR expression and activity are involved in 

steroid-resistant asthma.16 NF-κB is a proinflammatory transcription factor involved in 

airway inflammation in patients with asthma.17 Alterations in NF-κB–related pathways 

partially explained the heterogeneity response to asthma therapies, including ICS.17 TSA 

is an inhibitor of histone deacetylases that regulates NF-κB–driven inflammatory gene 

transcription and has been demonstrated to reduce airway inflammation in murine asthma 

models.18 A previous meta-GWAS in European children with asthma exacerbations despite 

ICS treatment showed enrichment in a TSA genetic signature.19 Our findings reinforce the 

potential therapeutic use of TSA in asthma by regulating genes involved in ICS response 

and microbiome composition. Nevertheless, further studies are required to evaluate the 

safety and efficacy of TSA as an asthma treatment. In addition, we reported enrichment in 

DNA motifs for CEBP-α and CEBP-β, transcription factors related to the pathophysiology 

of asthma.20 The potential corticosteroid unresponsiveness and airway cell proliferation 

in asthma have been related to a lack of CEBP-α in bronchial cells in these patients.20 

CEBP members are implicated in corticosteroid response, and their expression patterns are 

regulated by glucocorticosteroids and bronchodilators.20

In addition, we assessed the potential role of SNPs previously associated with ICS response 

by GWAS as mbQTLs of microbiome traits involved in asthma exacerbations despite ICS 

treatment (see Table E1 in this article’s Online Repository at www.jacionline.org). Among 

the 21 independent SNPs selected from the literature, 3 SNPs were identified as mbQTLs 

with a false discovery rate < 0.05 (Table III and Fig 2). The SNP rs5995653, located in the 

intergenic region of APOBEC3B-APOBEC3C, was associated with the relative abundance 

of Streptococcus in the nasal microbiome (β for the A allele, 0.34; SE, 0.11; P = 1.90 × 

10−3) and the presence of Tannerella in the pharyngeal microbiome (β for the A allele, 

−1.06; SE, 0.33; P = 1.31 × 10−3). Moreover, the SNPs rs6467778 (TRIM24) (β for the A 

allele, -−0.36; SE, 0.11; P = 1.45 × 10−3) and rs5752429 (TPST2) (β for the G allele, 0.26; 

SE, 0.09; P = 4.74 × 10−3) were associated with the relative abundance of Campylobacter 
in the pharyngeal microbiome. All these associations remained robust in sensitivity analyses 

after adjusting for asthma exacerbations and potential confounders from the nasal and 

pharyngeal microbiome composition (all P < .05, Table III).
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Genetic loci at APOBEC3B-APOBEC3C, TRIM24, and TPST2 have been associated 

with asthma exacerbations and ICS response in multiple populations, including African 

Americans, Latinos, and European descendants.21-23 APOBEC3B-APOBEC3C are 

members of the cytidine deaminase gene family, highly expressed in the lower airways, 

and implicated in innate immunity and host defense against viral infections.21 TRIM24 
regulates IL-1 receptor (IL-1R) expression in T cells, a protein whose expression in sputum 

is associated with severe asthma and participates in IL-1–mediated exacerbations.24,25 On 

the other hand, TPST2 encodes a sulfotransferase that regulates the sulfation of chemokine 

receptors involved in asthma TH2 inflammation.23 Our findings suggest that ICS-response–

related APOBEC3B-APOBEC3C, TRIM24, and TPST2 genetic loci affect airway bacteria 

associated with asthma exacerbations.

This study has several strengths. First, we integrated microbiome data from 3 different 

asthma-relevant body sites with human genome-wide data to conduct the first mbGWAS 

in patients with persistent asthma. Second, we followed reference guidelines and 

recommendations for microbiome profiling to ensure the robustness of sequencing 

assays while controlling for many potential confounders in microbiome studies.2 

Third, the reliability and robustness of our findings were ensured by correcting for 

multiple comparisons, adjusting for covariates, replicating in independent populations, 

and conducting sensitivity and stratified analyses. Nevertheless, some limitations must 

be acknowledged. First, our sample size is limited to identify genome-wide significant 

associations. However, enrichment analyses were used as a powerful tool to identify 

plausible findings in the absence of genome-wide results.8,19 Second, although we reported 

evidence of replication in the salivary microbiome, we were not able to replicate the results 

from the nasal and pharyngeal samples because we only had access to studies with human 

genome-wide genotype data and 16S-ribosomal RNA–sequenced bacterial communities 

profiled in saliva samples. Third, the targeted metagenomic approach (16S ribosomal RNA) 

does not allow us to study the host genetic influence on specific bacterial species and other 

microorganisms involved in asthma exacerbations and ICS response.

In conclusion, genes suggestively associated with asthma exacerbation–related microbiome 

traits might have an influence on major asthma comorbidities development in diverse 

populations (ie, reflux esophagitis, obesity, and smoking). Those genetic loci are 

significantly more likely to be regulated by TSA and NF-κB, GR, and CEBP transcription 

factors than expected by chance. Finally, we reported that ICS-response–related genetic 

loci (APOBEC3B-APOBEC3C, TR1M24, and TPST2) are associated with airway bacteria 

related to asthma exacerbations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations used

CEBP CCAAT/enhancer-binding protein

GEMAS Genomics and Metagenomics of Asthma Severity

GALA II Genes-environments & Admixture in Latino Americans

GERD Gastroesophageal reflux disease

ICS Inhaled corticosteroid

mbGWAS Microbiome genome-wide association study

mbQTL Microbiome quantitative trait locus

NR3C1 Nuclear receptor subfamily 3, group C, member 1

NF-κB Nuclear factor-κB

PC Principal component

SNP Single nucleotide polymorphism

TSA Trichostatin A
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Key messages

• Genes associated with exacerbation-related microbiome traits are related 

to the susceptibility to major asthma comorbidities (ie, reflux esophagitis, 

obesity, and smoking).

• TSA and multiple transcription factors have a potential therapeutic interest in 

asthma exacerbations treatment by targeting genes that regulate exacerbation-

related airway bacteria.

• ICS-response-related genetic loci (APOBEC3B-APOBEC3C, TRIM24, and 

TPST2) affect airway bacteria associated with asthma exacerbations.
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FIG 1. 
Bar plots of the most relevant significant gene-set enrichment results for each database. The 

−log10 of the P value adjusted by the false discovery rate (FDR) is represented on the x-axis.
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FIG 2. 
Violin plots and bar plots of the relative abundance or presence, as appropriate, of 

the following mbQTLs pairs: A, Streptococcus-rs5995653, B, Tannerella-rs5995653, C, 
Campylobacter-rs6467778, and D, Campylobacter-rs5752429. The following associations 

followed a dominant genetic model: Streptococcus-rs5995653 (β for the AA/AG genotype, 

0.45; SE = 0.13, P = 5.5 × 10−4) and Campylobacter-rs6467778 (β for the AA/AG genotype, 

−0.43; SE = 0.13; P = 9.1 × 10−4).
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