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ABSTRACT OF THE DISSERTATION 

 

Connecting the dots between DNA, proteins, and disease:  
Identifying genetic variants and proteins relevant for studying venous 

thromboembolism 
  

by 

 

Terry Solomon 

 

Doctor of Philosophy in Biomedical Science 

 

University of California, San Diego, 2018 

 

Professor Kelly Frazer, Chair 

 

In order to prospectively identify individuals at risk for disease, it is important 

to identify markers that can be reliably measured and to understand the relation of 

these markers to the disease. For venous thromboembolism (VTE), large-scale 

genetic studies have had limited success identifying genetic variants and proteins 
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that contribute to disease risk. An alternative method is to focus on the intermediate 

steps between genetics and disease, such as protein levels. In this dissertation, we 

set out to identify genetic variants that contribute to blood protein levels and then 

identify blood proteins that can be used as biomarkers for venous 

thromboembolism. For the whole dissertation, we utilize the Tromsø Study, a single-

center, prospective, study of the inhabitants of Tromsø, Norway. These individuals 

allow us to identify genetic variants and proteins that are associated with VTE before 

any symptoms of the disease start, which is key when trying to pre-emptively identify 

and treat individuals that are at risk for developing VTE. In chapter two, we measure 

cardiovascular-relevant serum proteins using enzyme-linked immunosorbent 

assays. We then identify common and rare genetic variation that is associated with 

the levels of these proteins. In chapter three, we measure the plasma proteome 

using tandem-mass-tagged mass spectrometry. We then identify common and rare 

genetic variation that is associated with the levels of these proteins. We further 

investigate the underlying mechanisms of how genetic variation regulates levels of 

plasma proteins. In chapter four, we utilize the same plasma proteome that was 

measured in chapter three in order to identify proteins that are associated with risk 

of venous thromboembolism. Together, this work advances our understanding of 

how genetic variants ultimately result in diseases, via their effects on intermediate 

protein levels. 
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Chapter 1: Introduction 
 

Chapter 1.1: Background and Introduction 

 Venous thromboembolism (VTE) is comprised of deep vein thrombosis, 

where blood clots form in the deep veins, and pulmonary embolism, where these 

clots travel to the lungs, obstruct blood flow, and can result in death. VTE has an 

annual incidence rate of 1-2 per 1000 persons. Treatment involves prescribing blood 

thinners to prevent clotting, although this can lead to complications such as internal 

bleeding. Therefore, it is highly important to stratify individuals based on their 

molecular risk for VTE in order to decrease the economic, health, and morbidity 

burden that this disease has on society. 

 Often, stratifying high-risk patients is done by identifying protein relevant for 

the disease. In venous thromboembolism, the key proteins known to be involved are 

part of the coagulation cascade, a step-wise enzymatic procedure that results in the 

formation of a fibrin clot (Figure 1.1). The enzymes, cofactors, and activators of this 

pathway all circulate in the bloodstream inactive until an injury is sensed and the 

entire cascade is set into motion. Beyond the proteins involved in coagulation, there 

are only a few other proteins known to be involved in the etiology of VTE, such as 

GDF-15 and D-Dimer that have been identified as predictive biomarkers. Previous 

efforts to identify biomarker have been limited by the number of proteins tested and 

the limited number of studies that prospectively study VTE. 
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Figure 1.1 Coagulation Cascade from (Adams & Bird, 2009) 

 An alternative to regularly drawing blood in order to identify individuals with 

a high-risk for VTE is to identify genetic risk factors. This would enable patients to 

get genotyped for predictive variants once, and then based on their results, be 

stratified into high-, medium-, or low-risk categories that determine biomarker 

measurement and treatment schedules. Traditionally, large-scale studies such as 

genome-wide association studies (GWAS) have been performed to identify any 

genetic variants that are associated with having VTE. To date, 23 genetic variants 
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that are located in 15 loci have been found to be associated with VTE risk (Tregouet 

& Morange, 2018). From the largest VTE GWAS to date (7,500 cases and 50,000 

controls), Germain et al. identified 8 of these loci that had common genetic variants 

associated with VTE (Germain et al., 2015). It is thought that it would take vastly 

larger studies and variants with large effect sizes to be able to find associations 

using a GWAS approach (Tregouet et al., 2016). Thus, researchers should 

complement GWAS studies with other study types to identify risks for VTE. 

 One method that requires fewer samples is to study an intermediate 

phenotype instead of the final phenotype of venous thromboembolism. This 

technique enables researchers to study the genetic regulation of the underlying 

mechanisms of the disease, such as gene expression, protein levels, and biomarker 

or pathway-level impacts. Investigating these intermediate traits can be done 

utilizing quantitative trait loci (QTL) studies. There has been a flood of studies that 

focus on the effects of genetic variants on gene expression (expression quantitative 

trait loci – eQTLs) due to the relative ease of measuring the entire transcriptome. 

Recently, there have been a handful of studies that focus instead on blood protein 

levels, a step closer to disease than gene expression while still retaining the 

advantages of QTL studies. These type of studies have been limited by the relative 

difficulty in measuring a vast amount of proteins in a fiscally feasible manner.  

 The work of this dissertation focuses on the genetic regulation and disease 

contributions of serum and plasma proteins. In the second chapter, I investigate how 

genetic variation contributes to the serum levels of cardiovascular-related proteins. 
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In the third chapter, I investigate how genetic variation contributes to levels of the 

entire plasma proteome and the mechanisms by which these genetic variants are 

acting. In the fourth chapter, I identify plasma proteins that are biomarkers for 

venous thromboembolism risk. Together this work advances our understanding of 

how genetic variants ultimately result in diseases, via their effects on intermediate 

protein levels. 

Chapter 1.2: References 

Adams, R. L., & Bird, R. J. (2009). Review article: Coagulation cascade and therapeutics update: 
relevance to nephrology. Part 1: Overview of coagulation, thrombophilias and history of 
anticoagulants. Nephrology (Carlton), 14(5), 462-470. doi:10.1111/j.1440-
1797.2009.01128.x 

Germain, M., Chasman, D. I., de Haan, H., Tang, W., Lindstrom, S., Weng, L. C., de Andrade, M., de 
Visser, M. C., Wiggins, K. L., Suchon, P., Saut, N., Smadja, D. M., Le Gal, G., van Hylckama 
Vlieg, A., Di Narzo, A., Hao, K., Nelson, C. P., Rocanin-Arjo, A., Folkersen, L., Monajemi, R., 
Rose, L. M., Brody, J. A., Slagboom, E., Aissi, D., Gagnon, F., Deleuze, J. F., Deloukas, P., 
Tzourio, C., Dartigues, J. F., Berr, C., Taylor, K. D., Civelek, M., Eriksson, P., Psaty, B. M., 
Houwing-Duitermaat, J., Goodall, A. H., Cambien, F., Kraft, P., Amouyel, P., Samani, N. J., 
Basu, S., Ridker, P. M., Rosendaal, F. R., Kabrhel, C., Folsom, A. R., Heit, J., Reitsma, P. H., 
Tregouet, D. A., Smith, N. L., & Morange, P. E. (2015). Meta-analysis of 65,734 individuals 
identifies TSPAN15 and SLC44A2 as two susceptibility loci for venous thromboembolism. 
Am J Hum Genet, 96(4), 532-542. doi:10.1016/j.ajhg.2015.01.019 

Tregouet, D. A., Delluc, A., Roche, A., Derbois, C., Olaso, R., Germain, M., de Andrade, M., Tang, W., 
Chasman, D. I., van Hylckama Vlieg, A., Reitsma, P. H., Kabrhel, C., Smith, N., & Morange, P. 
E. (2016). Is there still room for additional common susceptibility alleles for venous 
thromboembolism? J Thromb Haemost, 14(9), 1798-1802. doi:10.1111/jth.13392 

Tregouet, D. A., & Morange, P. E. (2018). What is currently known about the genetics of venous 
thromboembolism at the dawn of next generation sequencing technologies. Br J Haematol, 
180(3), 335-345. doi:10.1111/bjh.15004 
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Chapter 2: Associations between common and rare exonic genetic variants and 
serum levels of twenty cardiovascular-related proteins - the Tromsø Study 
 

Chapter 2.1: Abstract 

Background: Genetic variation can be used to study causal relationships between 

biomarkers and diseases. Here, we identify new common and rare genetic variants 

associated with cardiovascular-related protein levels (protein quantitative trait loci, 

pQTLs). We functionally annotate these pQTLs, predict and experimentally confirm a 

novel molecular interaction and determine which pQTLs are associated with diseases and 

physiological phenotypes. 

Methods and results: As part of a larger case/control study of VTE, serum levels 

of 51 proteins implicated in cardiovascular diseases were measured in 330 individuals 

from the Tromsø Study. Exonic genetic variation near each protein’s respective gene (cis) 

was identified using sequencing and arrays. Using single site and gene-based tests, we 

identified 27 genetic associations between pQTLs and the serum levels of 20 proteins: 

14 associated with common variation in cis, of which six are novel (i.e. not previously 

reported); seven associations with rare variants in cis, of which four are novel; and six 

associations in trans. Of the 20 proteins, 15 were associated with single sites and seven 

with rare variants. cis-pQTLs for kallikrein and F12 also show trans associations for 

proteins (uPAR, kininogen) known to be cleaved by kallikrein as well as with NTproBNP. 

We experimentally demonstrate that kallikrein can cleave proBNP (NTproBNP precursor) 

in vitro. Nine of the pQTLs have previously identified associations with 17 diseases and/or 

physiological phenotypes.  
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Conclusions: We have identified cis and trans genetic variation associated with the 

serum levels of 20 proteins and utilized these pQTLs to study molecular mechanisms 

underlying diseases and/or physiological phenotypes. 

 

Chapter 2.2 Clinical Perspective 

Cardiovascular diseases, including coronary artery disease and venous 

thromboembolism, are the leading cause of death worldwide. Biomarkers are important 

tools to diagnose or measure risk of disease, but the causal relationship between 

biomarkers and diseases is often not clear. Genetic variants that affect levels of protein 

biomarkers could be used to examine causal relationships between biomarkers and 

diseases and to provide mechanistic insight into disease. In this study, we investigated 

whether genetic variants were associated with the levels of 51 serum proteins, 17 of which 

we had previously identified as predictors for myocardial infarction in the Tromsø Study. 

We analyzed genotype data from exome sequencing and exome arrays and investigated 

whether common and rare genetic variation located near the gene (cis) that coded for 

each protein was associated with protein levels. We identified 13 proteins associated with 

common cis variants and 7 proteins associated with rare cis variation; 8 of these proteins 

we had previously identified as biomarkers. To identify pathway-level regulation, we 

tested whether these significantly associated cis variants were also associated in trans 

with the levels of the other 50 proteins in this study. We identified that genetic variation 

affecting the levels of kallikrein, a protease involved in coagulation, also affect the levels 

of NTproBNP, a known biomarker for heart failure. We experimentally show that kallikrein 

can cleave proBNP into NTproBNP and BNP. Our study shows that identifying genetic 
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variants that affect protein levels can provide novel insights and expand our knowledge 

of the mechanisms of disease. 

 

Chapter 2.3: Introduction 

Recent advances in genetics have yielded an unprecedented number of loci 

associated with disease and are beginning to yield mechanistic insight, such as with the 

IRX3/5 association with BMI, which revealed brown adipose as an important regulator of 

body weight (Claussnitzer et al., 2015). Genetic variation underlying molecular 

phenotypes, such as proteins and transcript expression levels, can be important tools in 

constructing the effects of genetic variations into pathways, ultimately resulting in 

physiological understanding of diseases (Schadt, 2009).  Protein levels in particular may 

be more informative for understanding disease because there is often a poor correlation 

between transcript and protein levels (Anderson & Seilhamer, 1997). Several prior studies 

(Johansson et al., 2013; Lourdusamy et al., 2012; Melzer et al., 2008) have systematically 

identified genetic variations associated with protein levels and isoforms (protein 

quantitative trait loci or pQTLs). While most studies have focused on common variation 

(minor allele frequency ≥5%), rare variants, which can show strong loss of function 

effects, can be useful in understanding causality and pinpointing drug targets, such as 

deletion mutations in PSCK9 that abolish the PSCK9 protein and reduce LDL cholesterol 

levels (Cohen, Boerwinkle, Mosley, & Hobbs, 2006). Systematic screening for rare 

variation influencing a wide variety of proteins, however, has not yet been performed.  

Genetic variation is also useful in identifying causal relationships between 

biomarkers and diseases using tools such as Mendelian randomization (Lawlor, Harbord, 
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Sterne, Timpson, & Davey Smith, 2008) and could be used to ascertain how risk factors 

differentially affect various diseases, as well as trace causal pathways between risk loci 

and disease. We are investigating risk factors for cardiovascular diseases, including 

myocardial infarction (MI) and venous thromboembolism (VTE) in the Tromsø Study 

(Jacobsen, Eggen, Mathiesen, Wilsgaard, & Njølstad, 2012), a longitudinal prospective 

cohort study. We previously assayed 51 cardiovascular-related proteins in 419 first-ever 

MI cases and 398 controls in serum collected years prior to the MI event (Wilsgaard et 

al., 2015). Of the proteins measured, 17 were predictors for MI when considered 

individually after adjusting for traditional risk factors. Genetic variation associated with 

these protein levels could be used to study underlying mechanisms of cardiovascular 

diseases.  

Here, using whole exome sequencing data and HumanCoreExome BeadChips, 

we investigate if genetic variants are associated with the serum levels of the same 51 

cardiovascular-related proteins in 330 individuals chosen from the Tromsø Study because 

they did or did not go on to develop VTE during the 18 years of follow-up (mean time to 

VTE of 9 years). The serum samples were collected at study entry enabling us to identify 

pQTLs associated with baseline protein levels. We perform both common and rare 

variation association analyses in order to identify cis-pQTLs. Further characterization of 

the cis-pQTLs to determine if they also act as trans-pQTLs with any of the other 51 

cardiovascular-related proteins, recapitulated well-established physiological relationships 

between F12, kallikrein, uPAR, kininogen, and a recent genetic association with 

NTproBNP. We experimentally confirmed an inferred physiological interaction from the 

trans-pQTLs by showing that kallikrein cleaves proBNP in vitro. We then examine genetic 



9 
 

associations from genome-wide association studies on coronary artery disease (CAD) 

and VTE as well as published literature to identify physiological and disease associations.  

 

Chapter 2.4: Methods 

Chapter 2.4.1: The Tromsø Study 

The Tromsø Study is a prospective, single-site, cohort study of the inhabitants of 

Tromsø, Norway. In 1994-1995, 27,158 individuals filled out epidemiological surveys and 

donated (non-fasting) blood to the National CONOR Biobank (Jacobsen et al., 2012). 

These individuals were followed until 2013, with repeated surveys and identified in 

national registries that report various diseases and causes of death. In 2013, we identified 

individuals who between 1995 and 2013 had had an incident of VTE or death due to VTE, 

regardless of other comorbidities. We chose age and sex-matched controls randomly 

from the cohort. These samples were chosen for a currently ongoing case/control study 

of VTE. DNA and protein levels were ascertained from the blood collected in 1994. 

For this specific study, blood and non-fasting serum samples were collected from 

330 healthy individuals (166 males, 164 females) aged 45-75 (Supplemental Table 2.1). 

There were 196 individuals diagnosed with VTE between study entry (1994-’95) and the 

eighteen-year follow-up period (2013) and 134 controls without development of VTE 

during this period. Aspirin usage and other medication information were not collected for 

the Tromsø study. DNA was isolated from the blood for genotyping and serum samples 

were used to assay protein levels. The regional committee for medical and health 
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research ethics in North Norway approved the study, and all participants gave informed 

written consent.  

 

Chapter 2.4.2: Protein Quantification 

Protein levels were quantified using the same methods and at the same time as 

our previous MI study (Wilsgaard et al., 2015), but the samples from people that went on 

to develop VTE were not included in that study. Briefly, the literature was searched to 

create a list of over 900 cardiovascular-related proteins that might be potential biomarkers 

for myocardial infarction and atherosclerosis. This list was then prioritized to 165 

candidate proteins, of which 51 had sufficient commercially available reagents (two 

antibodies and purified protein for control) in order for Tethys Bioscience, Inc (Emeryville, 

CA) to perform successful sandwich ELISAs (Supplemental Table 2.2). Normal Human 

Serum from VWR (Radnor, PA), a pool made from 10-16% of Tromsø study samples, 

and dilution buffer were used as controls. Each anti-protein antibody was either directly 

conjugated to an AlexaFluor 647 or was biotinylated and detected with a streptavidin-

conjugated AlexaFluor 647. Each protein underwent 8 serial dilutions. All samples were 

performed in triplicate. The eight-point standard curve was measured in six replicates per 

plate. The AlexaFluor 647-labeled antibodies were detected using the Erenna System 

(Singulex, Inc., Alameda, CA). Emission from each labeled antibody is measured with a 

photon detector. The photon detector transmits an electronic pulse for each photon 

detected, and pulses are counted in 1-ms bins. Binned pulses that exceed a six standard 

deviation threshold above background are counted. Pulses are recorded as 

photons/minute. For each protein, it must be detected in >70% of samples, there must be 
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more than 2 logs of standard curve linear range in the ELISA, and there was less than 

20% of variance between within-plate replicates for the assay to be considered 

successful. All protein levels were quantile normalized and mapped to the normal 

distribution using qnorm in R and significance was tested using Z-scores. 

 

 

Chapter 2.4.3: Variant Identification and Annotation 

Genotypes were determined using either the Illumina Infinium HD HumanExome 

BeadChip (N=87) or whole-exome sequencing (N=243) using Agilent SureSelect 50 Mb 

or V4 capture kits and Illumina TruSeq paired-end 100bp cluster kits. Sequence reads 

were mapped to the reference human genome (hg19) using BWA (version 0.7.10-r789) 

(Li & Durbin, 2009) with default parameters and then processed using Picard (version 

1.115, tool Mark Duplicates) (http://broadinstitute.github.io/picard) and GATK (version 

3.3-0, tools RealignerTargetCreator, IndelRealigner, BaseRecalibrator, PrintReads, and 

HaplotypeCaller) (Van der Auwera et al., 2013). We previously showed that the 

concordance of the exome sequencing and array genotyping data used in this study is 

99.33%2, therefore we felt confident that we could combine the genotypes from both 

platforms. Using the array data or information from both on and off-target reads3 from the 

sequencing data, genotypes were imputed to the whole genome using Beagle (version 

4.0, r1398) (Browning & Browning, 2016) and haplotypes from unrelated individuals from 

the European (EUR) and East Asian (EAS) superpopulations of the 1000 Genomes 

Project Phase 3 (Abecasis et al., 2012) for sites with a combined MAF >1%. Due to the 
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difference in coverage and imputation quality between sites that were exome sequenced 

or assayed by array, we only used sites that had a call rate of >90% in their respective 

datasets, and then added in additional imputation sites passing QC thresholds (allelic r2 

of  >0.3). These two datasets were combined to get a final VCF with imputed and 

genotyped sites for both exome sequenced and exome genotyped individuals. Because 

the Tromsø Study is a population-based cohort study, it naturally includes some 

proportion of related individuals. Of the 330 individuals assayed, 20 were related to 

another individual in the study at an identity-by-descent value of 0.1 for exome sequenced 

individuals or 0.2 for arrayed individuals, based on genome-wide data.  

All significant common variants were annotated for functional effects using variant 

effect predictor (VEP)5, RefSeq genes, the hg19 reference genome, GeneVisible 

(http://genevisible.com/search) and ROADMAP6 data of the 28-state chromHMM for Liver 

(E066), HepG2 (E118), and Monocyte (E029) cells. All rare variants (MAF≤5%) were 

annotated using VEP, RefSeq, and hg19.  

 

Chapter 2.4.4: Statistical Analysis 

Associations were performed using EPACTS software (Hyuan Min Kang, 2014). 

We used sex, age at study entry, BMI at study entry, genotyping platform, and VTE 

case/control status as covariates. Three covariates (age at serum collection, sex and BMI 

at serum collection) were associated respectively with ten, ten, and thirteen of the 

phenotypes (the 51 protein serum levels) when performing linear regressions, defined as 

having an FDR-adjusted P-value <0.05, and were included for consistency. 
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For common variants (MAF≥1%) we used EMMAX (H. M. Kang et al., 2010) (a 

mixed model implemented in the EPACTS software package (Hyuan Min Kang, 2014)), 

using q.emmax to test for single-site association. For cis associations we included any 

imputed common variants located within the interval surrounding and including the gene 

(+/- 500kb from transcript start and stop positions) that encodes the protein(s) being 

tested (C3 and C3b share the same locus). For cis-acting-in-trans associations we tested 

all significantly associated common cis variants against each of the other 50 phenotypes. 

For trans associations we tested the 100,378 common variants found in the 50 intervals 

against each of the 51 phenotypes (Figure 2.1). 

SKAT-O (Lee, Wu, & Lin, 2012) was used to test clusters of rare variants 

(MAF≤5%) for association as implemented in EPACTS, using the skat-o version of the 

mmskat test. Rare variants were classified in three ways: 1) MAF≤5%: all rare variants 

located within the gene body and 2kb upstream; 2) Deleterious: all rare variants located 

in the gene body and the 2kb upstream region that were annotated as stop-gain, stop-

loss, start-loss, essential splice site disruption, frame-shift causing, or nonsynonymous 

using VEP annotations; and 3) CADD-score: all rare variants in the gene or the 2kb 

upstream region with a PHRED-scaled c-score >10, as determined by Kircher et al. 

(Kircher et al., 2014). 

We corrected for multiple testing by permuting the phenotype-genotype 

relationship 1000 times and for each permutation performing all variant-phenotype tests 

for each association type separately (e.g. cis, cis-acting-in-trans, or trans) (Hirschhorn & 

Daly, 2005). We obtained the lowest P-value from each permutation across all 

phenotypes and created a null distribution of minimum P-values. An association was 
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considered significant (family-wise P<0.05) if the nominal P-value was smaller than 95% 

of the null distribution (Supplemental Table 2.3).  

To test for multiple, independent variants in the same locus, the top variant was 

included as a covariate until there was no longer a significant association (family-wise 

P<0.05) detected for that protein. 

 

Figure 2.1 Overview of the three stages of association analyses 
A) cis: for each of the 51 phenotypes (protein levels), we tested the variants located in the cis 
gene loci for associations with their respective protein level, B) cis-acting-in-trans: we tested the 
significant cis-pQTLs from stage 1 for trans effects against each of the 50 other protein levels, 
and C) trans: we tested all variants in the 50 cis loci (C3 and C3b share the same locus) for 
association with each of the 51 protein levels. 

 

Chapter 2.4.5: Power Calculations  

We calculated power using an equation from the Abecasis laboratory 

(http://genome.sph.umich.edu/wiki/Power_Calculations:_Quantitative_Traits) for 

common variants and the SKAT R package (Wu et al., 2011) for rare variants. Power for 

the common variant analyses was calculated using a sample size of 300 individuals, a 

phenotypic variance (R2) from 0.0 to 1.0, and alpha levels of 6.97 x 10-7 for the cis 

association, 7.29 x 10-5 for the cis-acting-in-trans analysis, and 1.25 x 10-8 for the trans 

analysis (Supplemental Table 2.4, Supplemental Figure 2.1). Power for the rare variant 

analysis was calculated using a sample size of 300 individuals, an effect size (β in 
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standard deviations) from 0.0 to 5.0, the default haplotypes (European) for the SKAT 

package, a causal MAF cutoff of 5%, a sampling subregion length of 3kb, and alpha levels 

of 3.72 x 10-4 for the cis association, 5.30 x 10-5 for the cis-acting-in-trans, and 9.21 x 

10-6 for the trans associations (Supplemental Table 2.4, Supplemental Figure 2.2). We 

had 80% power to detect effects (R2) down to 0.113 for the cis, common variant analysis 

and effects (beta) of 1.25 for the cis, rare variant analysis (assuming that 50% of the 

variants are causal), which is comparable to other pQTL studies (Garge et al., 2010; 

Johansson et al., 2013; Kim et al., 2013; Lourdusamy et al., 2012; Melzer et al., 2008).  

 

Chapter 2.4.6: Clinical and Molecular Phenotype Association 

Significant pQTLs from this study were queried against the eQTLs found by Schadt 

et al. (Schadt et al., 2008) in liver cells and the GTEx database (Consortium, 2013) 

(version 4, build 200, accessed at http://www.gtexportal.org/home/) for all tissue types. 

Additionally, we determined if they (or a variant in LD) overlapped any of the variants 

identified as pQTLs in five similarly-sized independent studies that investigated protein 

levels in serum (Melzer et al., 2008) or plasma (Johansson et al., 2013; Kim et al., 2013; 

Liu et al., 2015; Lourdusamy et al., 2012; Melzer et al., 2008).  We examined pQTLs for 

clinical significance by determining if the variant has been previously identified and 

submitted to OMIM (Hamosh, Scott, Amberger, Bocchini, & McKusick, 2005), the GWAS 

Catalog (Welter et al., 2014), or GRASP v2.0 (Eicher et al., 2015).  We identified pQTLs 

that were also significant in large meta-analyses of individuals of European descent for 

CAD or VTE. Data on CAD was downloaded from www.cardiogramplusc4d.org. For this 

analysis, we only used the CARDIoGRAM GWAS results (Schunkert et al., 2011), as 
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these individuals are of European descent. Data on VTE was shared by the INVENT 

consortium (Germain et al., 2015). 

 

Chapter 2.4.7: In Vitro Assay of proBNP Cleavage 

We obtained native kallikrein from human plasma from EMD-Millipore (Darmstadt, 

Germany; cat no. 420307); recombinant proBNP from Abcam (Cambridge, Ma; cat no. 

ab151881); the kallikrein inhibitor, PPACK II, from Santa Cruz Biotechnology (Dallas, Tx; 

cat no. sc-203215). 354ng (374 nM) of kallikrein was incubated with 80ng (606 nM) of 

proBNP with and without 26.5ng (36.4 μM) of PPACK II for 30min, 60min, and 90min at 

37oC. The reactions were stopped by adding 4X LDS sample buffer and DTT, and heating 

them for 2min at 85oC. The proteins were run on a Tricine-SDS-page gel from 

ThermoFisher (Waltham, Ma), and either detected using the SilverQuestTM Silver Staining 

Kit from ThermoFisher (Waltham, Ma) or transferred to a PVDF membrane and detected 

using an anti-BNP antibody from Novus Biologicals (Littleton, Co; cat no. NB100-62133) 

and chemiluminescence. 

 

Chapter 2.5: Results 

Chapter 2.5.1: Study Overview 

The subjects were chosen as a sub-study from an ongoing case-control study 

examining the genetics of VTE, and include 196 individuals that developed VTE during 

the 18 year follow-up and 134 individuals that did not (Supplemental Table 2.1). Serum 

was assayed for the levels of 51 proteins using ELISAs (Supplemental Table 2.2). On 
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average, we obtained high quality protein measurements for 311 individuals per 

phenotype. We investigated if any of the protein levels were associated with VTE 

case/control status and found no significant associations. Knowing that the protein levels 

weren’t statistically associated with VTE enabled us to combine the VTE cases and 

controls in order to explore the effects of genetic variation on baseline protein levels. 

We performed high coverage (~100X) exome sequencing on DNA from blood 

samples for 243 individuals and assayed an additional 87 with HumanCoreExome 

Beadchips. We identified 158,137 variants (direct genotyping and imputation) in the 50 

intervals that encode the 51 proteins (Supplemental Table 2.5). The majority of imputed 

variants were intergenic or intronic because these were variants not already captured by 

the genotyping array or were outside of the exome-sequencing target regions 

(Supplemental Table 2.6). There was an average of 1,122 variants per locus with the 

AGER locus having the most variants (3,523) and the CD40LG locus having the fewest 

(441) (Supplemental Table 2.2).   

 

Chapter 2.5.2: Identifying cis-pQTLs from Common Variants 

To identify genetic variation associated with serum protein levels, we tested for 

association between variants within the gene’s cis locus and the normalized protein level 

for each of the 51 protein levels, adjusting for sample relatedness and population 

structure using a kinship matrix and including age, sex, BMI, genotype platform, and 

subsequent VTE status as covariates. Because of the high likelihood of linkage 

disequilibrium at the cis loci and slight correlations among protein levels, we accounted 
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for multiple testing by performing permutations to obtain a family-wise error rate. We 

identified significant associations (adjusted P<0.05, nominal P<6.97x10-7) (Table 2.1, 

Figure 2.2) for thirteen of the 51 phenotypes. To test for multiple, independent 

associations we performed sequential conditioning on the most highly associated variant, 

and found two independent cis associations for LP(a). Of the fourteen cis-pQTLs that we 

report, we have replicated eight known pQTLs and identified six novel pQTLs. The same 

variant or a variant in LD (r2>0.5 in EUR) has been previously reported for eight proteins 

with the same direction of effect that we found: AGT (Kim et al., 2013), C3 (Johansson et 

al., 2013), C3b  (Johansson et al., 2013), CHIT1 (Lourdusamy et al., 2012), F12 (Liu et 

al., 2015; Lourdusamy et al., 2012), LBP (Lourdusamy et al., 2012), one of the variants 

for LP(a) (Kyriakou et al., 2014), and MMP3 (Zhu, Odeberg, Hamsten, & Eriksson, 2006) 

(Supplemental Table 2.7). Of the six novel pQTLs that we identified, four proteins have 

not previously been reported to have a cis-pQTL (a2-AP, ANG, KLKB1, and MMP8) and 

two proteins have been previously associated with a pQTL, but the variant identified here 

is not in LD with the previous variant (KNG1 (Liu et al., 2015), (Lourdusamy et al., 2012) 

and LP(a) (Kyriakou et al., 2014)). rs3373402 in KLKB1 was previously reported to affect 

KLKB1 binding with kininogen (KNG1) but not affect KLKB1 levels in plasma (Katsuda, 

Maruyama, Ezaki, Sawamura, & Ichihara, 2007); therefore while this variant has been 

previously functionally characterized this is a novel pQTL. We annotated the 14 pQTLs 

for functional effects and identified their chromatin state in the tissue that they are most 

highly expressed in (Supplemental Table 2.8). Ten of the thirteen proteins are 

predominantly secreted by the liver. Five of the top variants are missense variants, three 

are in the UTR regions and five lie in predicted regulatory regions based on chromatin 



19 
 

state annotations. These analyses suggest possible mechanisms of action for some of 

the cis-pQTLs. 

Table 2.1 Significant cis-pQTLs from the common variant analysis. 

 

 

Figure 2.2 Association of cis variants with protein levels. 
Modified Manhattan plot showing the –log10 P-values for association between variants in each 
cis locus (interval encoding protein +/- 500kb) and the respective protein levels. The red dashed 
line indicates the study-wide significant P-value cutoff when only examining cis regions (6.9x10-
7) for a FWER <0.05. 
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Chapter 2.5.3: Identifying cis-pQTLs from Rare Variation 

We next tested whether the combination of multiple rare variants at each cis-locus 

was associated with protein levels. There were 3,675 rare variants identified across all 50 

loci. For rare variation association analyses, rare variants are grouped according to 

frequency or function and then jointly tested for association. Because functional prediction 

methods vary and it is currently unknown what method is superior (Santorico & Hendricks, 

2016), we used three different classifications (MAF, Deleterious, and CADD-score – see 

Methods). Across all loci there was a range of 1 to 90 variants used for each method, with 

the MAF method having the most rare variants and CADD scores having the fewest. To 

account for multiple testing, we tested all three classifications in each round of 

permutations to determine the family-wise error rate P-value cutoff. We performed a 

SKAT-O association test using the same covariates as for the common variant 

association. We identified eight cis-pQTLs that were significant using one or more 

classifications (adjusted P<0.05, nominal P<3.72x10-4) (Table 2.2, Supplemental Table 

2.9). Of these, cis rare variation has been associated with AGER (Hudson et al., 2008), 

Fetuin A (Yuasa & Umetsu, 1988), and LP(a) levels (Kyriakou et al., 2014); to our 

knowledge the other five associations are novel.  

Of the eight proteins associated with rare variation, three were also associated 

with a common pQTL (CHIT1, LP(a), and MMP8). For LP(a) and MMP8, a common pQTL 

(with a MAF<5%) was also present on the list of rare variants and removal of these from 

the rare variant analysis made the rare association non-significant (CADD nominal P-

value 0.148 and 0.469, respectively). For CHIT1, the common pQTL had a MAF of 18% 

and although not on the list of rare variants, when we included this variant as a covariate 
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in the rare variant analysis the association was nullified (nominal P-value 0.147). These 

results suggest that the rare variants in the CHIT1 locus were associated with CHIT1 

serum levels due to linkage disequilibrium with the common pQTL. Because the driving 

variant was common, we do not consider the CHIT1 association to be valid, resulting in 

seven proteins associated with rare variants. 

Table 2.2 Rare variant cis-pQTLs that are significant using at least 1 of the 3 grouping 
methods. 

 

Chapter 2.5.4: Identifying trans-pQTLs  

To characterize potential downstream effects of cis-pQTLs, we investigated 

whether any of the common cis-pQTLs might also have trans effects (cis-acting-in-trans) 

on any of the other 50 protein levels.  After permutation to obtain adjusted P-values, we 

identified two cis-acting-in-trans loci, each of which was significantly associated with three 

proteins (adjusted P<0.05, nominal P<7.29x10-5) (Table 2.3). There was significant 

overlap in the proteins associated with the two loci and the associations were consistent 

with known physiological relationships between F12, KLKB1, KNG1, and uPAR, and the 

recently reported genetic relationship with NTproBNP (Musani et al., 2015) (Figure 2.3), 

despite none of the protein levels being strongly correlated (Supplemental Figure 2.3 and 
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Supplemental Table 2.10). We did not observe an association between the cis-pQTL for 

KLKB1 and F12 protein levels despite the known physiological relationships of KLKB1 

and F12 (Figure 2.3). Importantly, the genetic associations of KLKB1 and F12 with 

NTproBNP suggest that KLKB1 may physiologically cleave proBNP (the NTproBNP 

precursor). These findings illustrate how genetic variation can be used to identify 

potentially novel physiological relationships among proteins.  

We further performed a full pairwise association (trans) between any of the variants 

located in the 50 regions encoding the proteins used in this study and all 51 protein levels. 

After permutation adjusting (adjusted P<0.05, nominal P<1.25x10-8) we did not find any 

additional trans associations and none of the cis-acting-in-trans associations remained 

significant; however 11 of the 14 cis associations remained significant. 

Using a similar approach to the common variants, we tested if any of the rare 

variant cis-pQTLs were associated with any of the other 50 protein levels and did not 

observe any significant associations (adjusted P<0.05, nominal P<5.30x10-5). 

Additionally, we tested all 50 cis regions against all 51 protein levels in a pairwise manner, 

but did not identify additional associations (adjusted P<0.05, nominal P<9.21x10-6), 

although four of the eight rare cis associations were still significant at the more stringent 

threshold.  
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Table 2.3 cis-pQTLs that also act as trans-pQTLs 

 

 

Figure 2.3 Schematic showing proteins with identified trans associations and their nominal 
associations with SNPs in F12 and KLKB1. 
Previously known (solid) and proposed in this study (dashed) cleavage reactions are represented 
with arrows. Nominal P-values for the associations between protein levels and rs3733402 in the 
KLKB1 locus and rs1801020 in the F12 locus are shown respectively in orange and purple boxes 
next to the protein of interest. 
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Chapter 2.5.5: The Role of Kallikrein in proBNP Maturation 

We experimentally tested the cis-acting-in-trans associations suggesting that 

kallikrein (KLKB1) may physiologically cleave proBNP. ProBNP is produced as a pro-

peptide that may be cleaved intracellularly into BNP and NTproBNP, two biomarkers for 

heart failure (Clerico, Fontana, Zyw, Passino, & Emdin, 2007), before being secreted by 

cardiomyocytes in response to cardiac stress. Intracellularly, it is thought that furin or corin 

cleave proBNP (Semenov et al., 2010), but it is unclear which enzyme cleaves proBNP 

extracellularly when it is secreted intact (Tonne et al., 2011). To test whether kallikrein 

can cleave proBNP in vitro, we incubated increasing concentrations of kallikrein (74.8nM, 

374nM, 748nM, and 1497nM) with proBNP for 1 hour at body temperature (37oC) and 

saw progressive depletion of proBNP levels (Supplemental Figure 2.4). This depletion 

was prevented with the addition of PPACK II, a kallikrein-specific inhibitor. From this, we 

chose to incubate 374 nM of kallikrein with proBNP for 30, 60 or 90 minutes and again, 

we saw that the levels of proBNP decreased (Figure 2.4). These results suggest that 

kallikrein has the ability to cleave proBNP in vivo. 
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Figure 2.4 Kallikrein cleaves proBNP in vitro. 
A) A silver stain of recombinant proBNP and kallikrein incubated together for 30, 60, and 90 
minutes with and without a kallikrein-specific inhibitor (PPACK II) and B) a western blot of an 
identical experimental setup using an anti-BNP antibody. The silver stain binds all protein present 
and is a more sensitive procedure than using the anti-BNP antibody for the western blot. We 
believe that this explains why the amount of proBNP in the +/+/- wells visually appears to be 
different between the silver stain and western blot. 

 

Chapter 2.5.6: Annotation of pQTLs Using Existing Databases and GWAS 

We investigated whether the 14 common pQTLs that we identified were previously 

associated with gene expression levels (Supplemental Table 2.7) using eQTLs from the 

GTEx database (Consortium, 2013) as well as Schadt et al. (Schadt et al., 2008) to 

include additional data from liver samples, as many of the proteins studied are expressed 

in liver. In the GTEx database, the AGT pQTL was identified as an eQTL in ten tissues 
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(P-values from of 2.0x10-6 to 1.3x10-33), the CHIT1 pQTL is an eQTL in whole blood (P-

value 4.2x10-8), the F12 pQTL is an eQTL in liver (P-value 2.3x10-10) and the pQTL in the 

SERPINF2 locus (a2-AP protein) is an eQTL in six tissues (P-values from 5.3x10-7 to 

8.8x10-18). Additionally, the pQTLs for a2-AP, AGT, CHIT1, F12, KLKB1, and MMP3 were 

also identified as eQTLs for other nearby genes. In the Schadt dataset rs3748338 in the 

ANG locus is in LD (r2=0.24) with an eQTL for ANG (rs8008440). Thus, of the 14 common 

pQTLs, two have previously been identified as an eQTL for the cis gene, three as an 

eQTL for both the cis gene and other nearby genes, and three as an eQTL for nearby 

gene(s).  

We also looked up whether there are any known disease associations with the 

fourteen pQTLs that we identified using the GWAS catalog (Welter et al., 2014). GRASP 

(Eicher et al., 2015), and OMIM (Hamosh et al., 2005) (Supplemental Table 2.7). The 8 

known pQTLs along with the kallikrein pQTL are associated with a variety of phenotypes, 

including age-related macular degeneration (C3b), activated partial thromboplastin times 

(F12), serum metabolites (KLKB1), binding of LBP to LPS (LBP), and plasma 

plasminogen levels (LP(a)). In total, nine pQTLs (eight known and KLKB1) have been 

associated with 17 disease and/or physiological phenotypes.  

Finally, to investigate if the pQTLs identified here are associated with VTE or CAD, 

we examined the results of two previously published meta-analyses. The INVENT 

(Germain et al., 2015) study is a large meta-analysis of 7,507 cases and 52,632 controls 

to identify variants associated with VTE. The CARDIoGRAM (Schunkert et al., 2011) 

study is a large meta-analysis of 22,233 cases and 64,762 controls designed to identify 

variants associated with CAD, which is predominantly comprised of MI. Of 14 common 
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pQTLs, ten (71.4%) could be tested in the INVENT and CARDIoGRAM datasets 

(Supplemental Table 2.11). The KLKB1 pQTL (rs3733402) is significantly associated with 

VTE; however this association becomes non-significant when the analysis is conditioned 

on the top six SNPs associated with VTE from the literature. The KLKB1 pQTL 

(rs3733402) is also nominally associated with CAD (P=0.0086). The KNG1 pQTL 

(rs166479) had a nominal P-value <0.05 in the INVENT consortium. While one of the 

pQTLs for LP(a) (rs41272114) has previously been associated with CAD (Kyriakou et al., 

2014), it was not present in either dataset. Additionally, among the 17 protein biomarkers 

that we previously identified as being associated with first MI (Wilsgaard et al., 2015), we 

identified common cis-pQTLs for six (C3, C3b, KLKB1, LP(a), MMP3, MMP8) and rare 

cis-pQTLs for five (LP(a), MMP8, TAFI, and TIMP4). While we found pQTLs for these MI 

biomarkers, they weren't associated with CAD in the CARDIoGRAM study, which could 

indicate that the biomarkers are not causally related to CAD, but may also be a result of 

the relatively small sample size in the GWAS compared to typical Mendelian 

randomization studies. Thus, while CAD and VTE were not significantly associated with 

pQTLs, these loci could be used in further larger studies to elucidate functional 

mechanisms underlying disease.  

 

Chapter 2.6: Discussion 

Using a combination of exome sequencing and exome arrays in 330 individuals, 

we identified 27 genetic associations between pQTLs and the serum levels of 20 proteins: 

14 associated with common variation in cis, of which six are novel and have not been 

previously reported; seven associations with rare variants in cis, of which four are novel; 
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and six associations in trans. Ultimately, 15 proteins were associated with single sites 

and seven were associated with rare variants. The strongest associations were identified 

for cis variation near the gene locus, but by directly testing the cis-pQTLs, we also 

identified two that acted in trans. Despite the limitations of our study (including a relatively 

small sample size and lack of a formal replication cohort) the presence of robust 

associations suggest that exome analysis is an effective tool to identify genetic variation 

associated with serum protein levels and that larger sample sizes would likely capture 

additional trans effects.  

This is the first study, to the best of our knowledge, that uses exome data to 

investigate the effects of both common and rare variation on more than 50 protein levels 

and thus, provides insight into rare-variant association methods. For rare-variant analysis 

we used three different methods for grouping variants within a gene and accounted for 

the additional testing through permutation. Some associations were consistent across all 

three methods, such as LP(a), which carried a large number of variants (Supplemental 

Table 2.9) and for which rare variation has previously been associated with the protein 

level in the blood (Clarke et al., 2009). Others were only significant in one test, such as 

MMP8 when variants were grouped based on CADD score, which could be due to few 

variants with weak effects and would benefit from larger sample sizes to include more 

predicted functional sites. Variants with a MAF between 1% and 5% were tested in both 

the common and rare variant analyses. In two cases (LP(a) and MMP8) adjusting for the 

top common pQTL (with a MAF<5%) nullified the association. Additionally, for CHIT1, 

common variation (MAF>5%) was associated with rare variants through cryptic LD and 
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adjusting for the common variant also nullified the association. These data suggest that 

significant common and rare single sites may drive gene-based rare-variant associations. 

Of the fourteen common pQTLs, four are missense variants in the relevant gene. 

Of the ten other variants, three are intronic, two are in the exons of nearby genes, and 

five lie in regions that are predicted to have regulatory functions, such as interrupting 

protein-binding sites or splicing (Supplemental Table 2.8). Analysis of the function of 

sequences harboring the pQTL can elucidate the mechanism of the variant. For example, 

it has been shown that rs1801020 in the 3’ UTR of the F12 locus prevents translation of 

F12 (Kanaji et al., 1998). The mechanisms of the other four regulatory pQTLs are not yet 

understood, but the results shown here point to plausible mechanisms. For instance, ANG 

and RNASE4 are isoforms of the same gene with different functions and differential 

expression patterns that are influenced by CTCF (Sheng et al., 2014). The ANG pQTL is 

in the last exon of RNASE4, near a CTCF binding site which affects isoform expression 

levels (Sheng et al., 2014). This, and other potentially regulatory pQTLs, could be 

functionally tested using in vitro and in vivo assays for changes in gene or isoform 

expression. Thus, although we focused on exome sequences to generate genotypes for 

this analysis, imputation enabled us to identify many pQTLs with predicted regulatory 

effects. 

pQTLs can be used to understand the relationship between proteins and disease, 

either through tracing molecular impacts through pathways or through studies of 

Mendelian randomization. By examining potential trans associations with cis-pQTLs, we 

recapitulated known and recently reported relationships between these proteins. The 

relationships between F12, kallikrein, and kininogen comprise the start of the intrinsic 
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coagulation pathway (Bhoola, Figueroa, & Worthy, 1992), the association between 

kallikrein and uPAR has been previously explored (Portelli et al., 2014), and the genetic 

relationship between kallikrein and NTproBNP was identified in a recent GWAS (Musani 

et al., 2015). We show that kallikrein is able to cleave proBNP in vitro using purified 

reagents, suggesting that extracellularly, kallikrein could be responsible for cleaving 

proBNP into NTproBNP and BNP, although further experiments are necessary to verify 

that this reaction occurs naturally in plasma. We also identified 17 reported disease and 

physiological phenotype associations with nine of the pQTLs (eight previously known and 

one novel). Interestingly, five of the six novel pQTLs were not implicated in GWAS studies. 

This could reflect a bias in GWAS phenotypes studied or candidate proteins chosen for 

pQTL studies and supports further work identifying downstream effects of these loci. We 

observed a nominal association between KLKB1 and CAD, which we previously identified 

as a biomarker for MI, supporting further examination of this relationship in larger studies. 

Overall, these findings support the use of pQTLs to identify molecular and phenotypic 

effects of proteins and help to elucidate underlying mechanisms of disease.  

 

Chapter 2.7: Funding Sources 

This work was supported by an independent grant from the K.G. Jebsen 

Foundation in Norway and partially funded by Tethys Bioscience. TS is supported by an 

institutional award to the UCSD Genetics Training Program from the National Institute for 

General Medical Sciences, T32 GM008666.  

 



31 
 

Chapter 2.8: Acknowledgments 

Chapter 2, in full, is a reprint of material as it appears in Circulation: Cardiovascular 

Genetics, 2016, Terry Solomon, Erin Smith, Hiroko Matsui, Sigrid Braekkan, Tom 

Wilsgaard, Inger Njølstad, Ellisiv Mathiesen, John-Bjarne Hansen, Kelly A. Frazer. The 

dissertation author was the primary investigator and author of this paper.  

 The INVENT Consortium is comprised of Philippe Amouyel, Mariza de Andrade, 

Saonli Basu, Claudine Berr, Jennifer A Brody, Daniel I Chasman, Jean-Francois 

Dartigues, Aaron R Folsom, Marine Germain, Hugoline de Haan, John Heit, Jeanine 

Houwing-Duitermaat, Christopher Kabrhel, Peter Kraft, Grégoire Legal, Sara Lindström, 

Ramin Monajemi, Pierre-Emmanuel Morange, Bruce M Psaty, Pieter H Reitsma, Paul M 

Ridker, Lynda M Rose, Frits R Rosendaal, Noémie Saut, Eline Slagboom, David Smadja, 

Nicholas L Smith, Pierre Suchon, Weihong Tang, Kent D Taylor, David-Alexandre 

Trégouët, Christophe Tzourio, Marieke CH de Visser, Astrid van Hylckama Vlieg, Lu-

Chen Weng, and Kerri L Wiggins.  

 

Chapter 2.9: Disclosures of Conflict of Interest 

The authors declare that they have nothing to disclose. 

 

 

 



32 
 

Chapter 2.10: Supplemental Tables 

Supplemental Table 2.1 Cohort statistics 

 
Supplemental Table 2.2 The fifty-one proteins and 50 loci (C3 and C3b derive from the 
same gene and locus, but are considered two proteins here) used in this study. 
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Supplemental Table 2.2 The fifty-one proteins and 50 loci (C3 and C3b derive from the 
same gene and locus, but are considered two proteins here) used in this study, 
continued. 
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Supplemental Table 2.3 Number of tests performed for each type of association analysis 
and the P-value cutoffs using Bonferroni correction or permutations for a FWER < 0.05. 
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Supplemental Table 2.4 Amount of phenotypic variance explained (R2) and effect size (β) 
detected for the various analyses when there is 80% power. 

 

 

Supplemental Table 2.5 Number of variants that were directly genotyped or imputed for 
the exome sequenced and exome arrayed individuals. 

 

 

Supplemental Table 2.6 Type of variants that were directly genotyped or imputed for the 
exome sequenced and exome arrayed individuals. 
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Supplemental Table 2.7 Reported disease associations of the significant cis-pQTLs. 
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Supplemental Table 2.8 Functional annotations of the 14 significant cis-pQTLs using 
GeneVisble, variant effect predictor (VEP) and ROADMAP data of the 28-state chromHMM 
for Monocyte (E029), Liver (E066) and HepG2 (E118) cells. 
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Supplemental Table 2.9 List of rare variants that comprise each significant rare cis-pQTL 
association and their P-values from the single-site associations.  
An X means that the variant was used in the indicated clustering method. Gray regions mean that 
the collapsed region was not significant using that clustering method. 
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Supplemental Table 2.10 Pearson’s correlation between the proteins that were identified 
in the trans-pQTL analysis. 
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Supplemental Table 2.11 Lookup of common cis-pQTLs for their associations in the 
CARDIoGRAM and INVENT meta-analyses. 
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Chapter 2.11: Supplemental Figures 

 

 

Supplemental Figure 2.1 Power to detect common variation pQTLs with varying effect 
sizes in the three stages of analysis.  
A) Power curve for cis-pQTLs using the permutation cutoff of 6.91x10-7 as the alpha. B) Power 
curve for testing the cis-pQTLs acting-in-trans using the permutation cutoff of 7.29x10-5 as the 
alpha. C) Power curve for trans-pQTLs using the permutation cutoff of 1.25x10-8. The x-axis is 
measuring the amount of variance of the phenotype that a variant explains (R2). 
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Supplemental Figure 2.2 Power to detect rare variation pQTLs with varying effect sizes in 
the three stages of analysis. 
Effect size is measured in standard deviations (β). The top row assumes that all variants have an 
equal effect and that all variants are causal. The bottom row assumes that all variants have an 
equal effect and that half of the variants tested are causal. A) power to detect cis associations, 
alpha = 3.72 x 10-4; B) power to detect cis-acting-in-trans pQTLs, alpha = 5.30 x 10-5; C) power 
to detect trans associations, alpha = 9.21 x 10-6. The x-axis is measuring the effect size (β) in 
standard deviations. 
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Supplemental Figure 2.3 Pearson’s correlation of the protein levels. 
Dendrogram shows clustering based on correlation. Black lines are outlining the proteins 
identified in the cis-acting-in-trans analysis: F12, KLKB1, KNG1, NTproBNP, uPAR; 
corresponding values can be found in Supplemental Table 2.10. 
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Supplemental Figure 2.4 Silver stain of proBNP incubated for 1 hour with varying 
concentrations of kallikrein, with and without a kallikrein-specific inhibitor, PPACK II.  
Kallikrein concentrations are 74.8nM, 374nM, 748nM, and 1497nM. The upper bands are the light 
and heavy chains of kallikrein. The lower band is proBNP. 374nM of kallikrein was chosen to 
perform the silver stain and western blot in Figure 2.4 of the paper. 
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Chapter 3: Identification of common and rare genetic variation associated with 
plasma protein levels using whole exome sequencing and mass spectrometry 
 

Chapter 3.1 Abstract 

Background: Identifying genetic variation associated with plasma protein levels, 

and the mechanisms by which they act, could provide insight into alterable processes 

involved in regulation of protein levels. Genome sequencing has enabled the interrogation 

of common and rare genetic variants that affect protein levels, and advances in protein 

quantification (i.e. mass spectrometry) could reduce bias during protein quantification, 

and allow for the delineation of true associations from technical artifacts. Combining these 

techniques could enable the identification of common and rare genetic variation 

associated with plasma protein levels.   

Methods and Results: We utilized TMT-mass spectrometry to measure the levels 

of 664 proteins in blood plasma from 165 participants of the Tromsø Study. Integrating 

whole exome sequencing data, we identified 110 independent, significant associations 

between common and rare genetic variation with peptide and protein levels. We then 

leveraged genotype data to identify technical artifacts, and excluded 50 of these 

associations. We describe rare variation associated with the complement pathway and 

platelet degranulation. We then use literature and database searches to identify putative 

functional variants for each pQTL, and show that, pQTLs act through diverse molecular 

mechanisms that affect both RNA and protein metabolism. 

Conclusions: We show that, while the majority of pQTLs exert their effects by 

modulating a gene’s RNA, many affect protein levels directly. Our work demonstrates the 

extent by which pQTL studies are affected by technical artifacts, and highlights how 
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identifying the functional variant in pQTL studies can lead to insights into the molecular 

steps by which the protein is regulated. 

 

Chapter 3.2 Introduction 

 Blood plasma is comprised of proteins generated from cells involved in diverse 

processes including thrombosis, hemostasis, immunity, and hematopoiesis. As it contains 

proteins from a wide variety of cells, blood plasma is a source for many potential 

biomarkers (Jacobs et al., 2005), which if causally related to disease, may provide novel 

drug targets (Ong et al., 2009). Genetic variation that affects proteins can be used to 

assess the casual relationship between a particular biomarker and disease (Burgess, 

Timpson, Ebrahim, & Davey Smith, 2015), and the molecular function of the variant can 

provide insight into processes important to the protein’s abundance. In particular, rare 

variation has proved to be an effective route to identifying drug targets (Cohen, 

Boerwinkle, Mosley, & Hobbs, 2006) as rare variants can have larger, wide reaching 

effects. By examining the effects of variants associated with a particular protein on the 

levels of other proteins (MacKeigan et al., 2003), it may be possible to identify the 

pathways the protein is involved in. Additionally, examining whether these genetic 

variants act by modulating RNA or protein levels, and identifying the specific molecular 

mechanisms by which they act, could provide insight into alterable processes involved in 

regulation of protein levels, thus elucidating insights into targeted therapeutics.  

Recent advances in protein and genotype measurement, have enabled the 

interrogation of genetic variants that affect protein levels (protein quantitative trait loci, 

pQTLs) (Johansson et al., 2013; Kim et al., 2013; Liu et al., 2015; Melzer et al., 2008). 



60 
 

This advance has resulted in the identification of hundreds of plasma pQTLs in human 

samples, and is leading to insights into the proteomic consequences of risk for 

cardiovascular disease (Folkersen et al., 2017; Suhre et al., 2017). Previous pQTLs 

studies (Johansson et al., 2013; Kim et al., 2013; Liu et al., 2015; Melzer et al., 2008; 

Suhre et al., 2017), however, have been limited by utilizing assays which do not measure 

an entire protein (i.e. aptamer or antibody methods that only measure a single epitope), 

or by the range of genetic variation that they test (genotype arrays vs. sequencing). 

Additionally, these protein measurement methods can be affected by the presence of 

genetic variation that does not alter the protein’s level, but rather affects the assay’s 

quantification ability. By measuring the levels of multiple peptides in a protein through 

assays such as mass spectrometry, and identifying genotype data that includes complete 

coding information through exome sequencing, it could be possible to exclude pQTLs that 

are driven by artefactual associations and better identify potential underlying causal 

variants.   

In this study, we utilized TMT-mass spectrometry to measure plasma levels of 664 

proteins in 165 participants of the Tromsø Study who have high depth exome sequence 

data available. We identified 110 independent, significant associations between common 

and rare genetic variation with peptide and protein levels. Our subsequent analyses 

determined that while 60 of these were true associations, 50 were driven by previously 

unreported technical artifacts associated with the presence of genetic variation in coding 

exons. We examined common and rare associations for downstream effects on other 

proteins, and identified associations affecting the complement pathway and platelet 

degranulation. Using a combination of literature and database annotations, we identified 
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and described putative functional variants for each locus. We show that approximately 

half of the pQTLs could be explained by variants previously experimentally shown to 

influence the associated protein’s level. Causal variants most often affected RNA 

metabolism, however, many affected protein metabolism and would therefore not be 

detected in studies that solely examined gene expression. These results illustrate the 

potential for pQTL studies to characterize the effects of rare variation, and highlight a 

need for high throughput studies of protein levels to take into account technical artifacts 

caused by exonic genetic variation. 

 

Chapter 3.3 Methods 

Chapter 3.3.1 Data Sharing 

The Regional Committee of Medical and Health Research Ethics in North Norway 

approved this study, and all subjects gave their informed written consent to participate. 

The whole exome sequence and mass spectrometry data described in this study will not 

be made available, as the consent signed by the study participants does not allow the 

public release of these data. 

 

Chapter 3.3.2 The Tromsø Study 

The Tromsø Study (Jacobsen, Eggen, Mathiesen, Wilsgaard, & Njolstad, 2012) is 

a single-center, population-based cohort study of the inhabitants of Tromsø, Norway. 

27,158 individuals participated in the fourth survey of the Tromsø Study between 1994-

1995; baseline characteristics were collected using self-reported questionnaires, physical 
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examinations, and blood samples. Non-fasting blood was drawn from an antecubital vein 

to gather plasma and whole blood. Plasma was collected in 5ml vacutainer tubes 

containing EDTA as an anticoagulant, processed within 1 hour by centrifugation at 3,000g 

for 10 min, and collected and frozen at -70oC. Whole blood was used to prepare archive 

quality DNA, and was stored at the HUNT Biobank in Levanger, Norway. In the immediate 

4-12 weeks following the initial visit, 7,965 participants were invited for a follow-up for a 

more in-depth examination and additional blood sampling.  

All 27,158 participants were followed from the date of enrollment through 

December 31, 2012. All cohort members that experienced an incident venous 

thromboembolism (VTE) during the study period were identified by searching the hospital 

discharge diagnosis registry, the autopsy registry, and the radiology procedure registry at 

the University Hospital of North Norway, the sole hospital in the Tromsø municipality 

(Braekkan et al., 2008). The VTE events were thoroughly validated by review of medical 

records as previously described in detail (Braekkan et al., 2008). Out of the 710 incident 

VTE cases that were identified, 100 cases were sampled for this study such that the time 

of blood collection occurred prior to incident VTE (range of time to VTE: 1 month to 7 

years; average: 3.72 years). For each case, a paired control, matched on age and sex, 

was randomly sampled from the cohort. 

 

Chapter 3.3.3 Sample Preparation and Mass Spectrometry 

Plasma samples for this study were analyzed through TMT-multiplexed mass 

spectrometry by Proteome Sciences (London, England). Samples were visually inspected 
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for hemolysis, protein concentrations were determined using the Bradford assay, and 

samples were visualized on Coomassie stained SDS-PAGE 4-20% gradient gels. 25µL 

of each sample underwent albumin and IgG depletion using Qproteome Spin Columns 

from Qiagen (Hilden, Germany), with 100mM triethylammonium bicarbonate (TEAB) 

substituted for the buffer provided in the kit. Protein concentration was measured using a 

Bradford assay, and 17 samples were visualized on Coomassie stained SDS-PAGE 4-

20% gradient gels for quality control purposes. Samples were run as 25 separate TMT10-

plexes, with each 10-plex including: 1) four cases, 2) the respective four age- and sex- 

matched controls, and 3) two reference pools comprised of equal portions of all 100 cases 

or 100 controls, respectively. Specifically, 60 µg of protein from each depleted sample 

were brought to 0.1% SDS in 100 mM TEAB, reduced using tris(2-

carboxyethyl)phosphine, alkylated with iodoacetamide, and trypsin digested to produce 

peptides. Peptides were then mixed with their respective TMT10-plex reagent (Thermo 

Fisher, Massachusetts, USA) and the reaction was terminated using hydroxylamine. 

Samples were pooled into their TMT10-plexes and diluted to an acetonitrile concentration 

of less than 5% before being purified via Oasis HLB cartridges. 300 µg of each TMT10-

plex was fractionated into 8 fractions using HPLC (Waters Alliance 2695), desalted on 

Oasis HLB cartridges, and dried. Each fraction was run in duplicate for LC-MS/MS using 

an EASY-nLC 1000 system coupled to an Orbitrap Fusion Tribrid Mass Spectrometer 

(Thermo Fisher). Resuspended peptides were loaded onto a nanoViper C18 Acclaim 

PepMap 100 pre-column (Thermo Scientific), and resolved using an increasing gradient 

of 0.1% Formic acid in ACN through a 50 cm PepMap RSLC analytical column at a flow 

rate of 200 nL/min. Peptide mass spectra were acquired throughout the entire 
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chromatographic run (180 minutes), with FTMS scans at 120,000 resolving power at 400 

m/z followed by a top 10 high collision induced dissociation (CID) method for FTMS2 

scans at 30,000 resolving power at 400 m/z. For quantification, synchronous precursor 

selection was enabled, MS2 peaks were fragmented with higher energy collisional 

dissociation (HCD), and the TMT reporter ions were measured at 30,000 resolving power 

in the Orbitrap. 

For initial quality control analysis, peptides and proteins were identified using 

Proteome Discoverer (PD) v1.4 (Thermo Scientific). The 400 raw data files (200 samples, 

each performed in duplicate) were submitted to PD v1.4 using the Spectrum Files node. 

Spectrum selector was set to default, while SEQUEST HT was set to search against the 

human FASTA UniProt-KB/Swiss-Prot database (August 2015). Spectra were identified 

in PD with the settings: 1% FDR; one Rank 1 peptide per protein. Processing, 

normalization, and filtering were done by Proteome Science using their in-house software. 

To identify batch effects, samples were hierarchically clustered using Spearman's 

correlations. It was observed that participants with plasma samples from the initial sample 

donation clustered together (N=176), while participants with plasma samples from the 

follow-up visit clustered together (N=24) (Jensen). The top proteins that had differential 

levels of expression between the two clusters were associated with blood clotting in a 

gene ontology analysis, suggesting the batch effect could be due to variation in plasma 

preparation between the first and second visit; thus, these 24 participants were removed 

from any further analysis. 
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Chapter 3.3.4 Peptide and Protein Identification 

Peptide identification was performed on the 176 plasma samples collected from 

participants in the initial visit using Proteome Discoverer (PD) v2.1 (Thermo Fisher 

Scientific). MS2 data were searched against Gencode 19 (corresponding to Ensembl 75) 

(Harrow et al., 2012) and mapped to GRCh37 using the Sequest algorithm (Eng, 

McCormack, & Yates, 1994). A decoy search was also conducted with sequences in 

reverse order (Elias & Gygi, 2007). For the search, a precursor mass tolerance of 50 ppm 

was specified, and a 0.6 Da tolerance for MS2 fragments was specified. Static 

modifications of TMT10-plex tags on lysines, peptide n-termini (+299.162932 Da), and 

carbamidomethylation of cysteines (+57.02146 Da) were specified. Variable oxidation of 

methionine (+15.99492) was also specified in the search parameters. Data were filtered 

to 1% peptide and protein level false discovery rates using percolator (Kall, Canterbury, 

Weston, Noble, & MacCoss, 2007; Spivak, Weston, Bottou, Kall, & Noble, 2009). 

TMT reporter ion intensities were extracted from MS3 spectra for quantitative 

analysis, and signal-to-noise ratios were used for quantification. Spectra were filtered out 

if they had either above 25% isolation interference, or an average signal-to-noise ratio 

across samples in a TMTplex of less than 10. Protein level quantification values were 

calculated by summing signal-to-noise ratios for all remaining peptides belonging to a 

given protein. Data were first normalized in a multi-step process as previously described 

(Lapek, Lewinski, Wozniak, Guatelli, & Gonzalez, 2017), following which they were 

quantile normalized to a standard normal distribution. In summary, for each sample, 

peptide levels were calculated as the normalized signal-to-noise ratios for each peptide, 
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and protein levels were calculated as the normalized sum of signal-to-noise ratios for all 

of the peptides belonging to the protein. 

 

Chapter 3.3.5 Variant Identification and Annotation 

Of the 176 participants who donated plasma during the first visit, 165 had genotype 

data available from whole exome sequencing generated as part of an ongoing study of 

the genetics of VTE (Carson et al., 2014). The samples used in this study were sequenced 

using the Agilent SureSelect 50Mb capture kit and the Illumina TruSeq paired-end 100bp 

cluster kit to an approximate depth of 100X on an Illumina HiSeq 2000. As previously 

described for 39 of these 165 exomes (Solomon et al., 2016), sequence reads were 

mapped to the reference human genome (hg19) using BWA (Li & Durbin, 2009) (version 

0.7.10-r789) with default parameters, and processed using Picard (version 1.115) 

(http://broadinstitute.github.io/picard) and GATK (Van der Auwera et al., 2013) (version 

3.3-0). Using the information from both on and off-target reads (Pasaniuc et al., 2012) 

from the sequencing data, genotypes were imputed to the whole genome using Beagle 

(Browning & Browning, 2016) (version 4.0, r1398) with reference haplotypes from the 

unrelated individuals in the European (EUR) and East Asian (EAS) superpopulations of 

the 1000 Genomes Project (Abecasis et al., 2012) Phase 3, at sites with a combined MAF 

> 1%. To obtain the final genotypes for this study, we: 1) preferentially used genotypes 

that had a call rate >90%, and 2) used imputation genotypes with a Beagle QC threshold 

allelic r2 > 0.7. Finally, variants with a Hardy-Weinburg equilibrium p-value > 1x10-7 (as 

calculated in VCFtools (Danecek et al., 2011)) were included in the analysis. Variants 

were annotated using SNPEff v4.1 (Cingolani et al., 2012) and the highest impact 
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annotation reported for the canonical transcript was chosen. These annotations were then 

manually collapsed into larger categories (eg. stop-gain, stop-lost, and stop retained 

variant were all grouped into stop site) based on the first annotation listed per variant. 

Annotations of missense, synonymous, non-coding exonic, splice site, frameshift, stop 

site, and start site were considered to be exonic variants, while annotations of 3’UTR and 

5’ UTR were considered UTR variants. 

 

Chapter 3.3.6 Genetic Associations 

Associations between common genetic variants (MAF > 1%) and protein or peptide 

levels were calculated using EMMAX (H. M. Kang et al., 2010) from the EPACTS software 

package (Hyuan Min Kang, 2014). EMMAX is a linear mixed model which accounts for 

family relatedness and population stratification by including a kinship matrix. For common 

cis associations, genetic variants within 200kb +/- of the gene start and stop were tested 

for association with the protein encoded by that gene. While 8 subjects with 

peptide/protein quantifications and genotypes were required to obtain association 

statistics, significant associations were only observed with >70 measurements. 

Additionally, we modeled age, sex, BMI, smoking status, cancer status at the time of 

sample collection, VTE case-control status, and the TMT-multiplex experiment as 

covariates. Associations were considered significant if they had a peptide p-value less 

than 1.91x10-8 (0.05/ (466 variants per locus on average * 5608 peptides)) or a protein p-

value less than 1.62x10-7 (0.05 / (466 variants per locus on average * 664 proteins)). For 

common trans associations, all genetic variants were tested against each peptide and 

protein level. Rare genetic variation (MAF < 5%) association was calculated using SKAT-
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O (Lee, Wu, & Lin, 2012) from the EPACTS software package. SKAT-O collapses rare 

variants within a specified interval and performs both a burden test, and a kernel 

association test. Rare variants were collapsed using three methods: 1) MAF < 5%: all 

variants within the interval from 2kb upstream of the protein-coding gene to the 

transcription end of the gene; 2) Deleterious: all MAF <5% variants that were annotated 

using SNPEff v4.1 (Cingolani et al., 2012) as having a high or moderate effect impact; 

and 3) CADD-score: all MAF <5% variants with a PHRED-scaled CADD (Kircher et al., 

2014) score greater than 10. For rare cis associations, rare variants were collapsed using 

all three methods, and tested for association with the level of the protein encoded by that 

gene. Associations were considered significant if they had a peptide p-value less than 

2.97x10-6 (0.05 / (5608 peptides x 1 gene x 3 methods)) or a protein p-value less than 

2.51x10-5 (0.05 / (664 proteins x 1 gene x 3 methods)). For common trans associations, 

associations were considered significant if they had a peptide p-value less than 8.91x10-

12 (5 x 10-8 / 5608 peptides) or a protein p-value less than 7.53x10-11 (5 x 10-8 / 664 

proteins). For rare trans associations, rare variants were collapsed using all three 

methods for every gene that encodes one of the parent proteins, and were tested for 

association (Bonferroni corrected p < 0.05) with all peptide and protein levels. 

Associations were considered significant if they had a peptide p-value less than 4.02x10-

8 (0.05 / (5608 peptides x 654 genes x 3 methods)) or a protein p-value less than 3.78x10-

8 (0.05 / (664 proteins x 654 genes x 3 methods)). Multiple independent associations 

occurring at a locus were identified by repeating the analysis with the top variant as a 

covariate. This process was repeated, including all independent associations as 

covariates, until no new significant associations were identified. 
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Chapter 3.3.7 Identification of pQTLs that were Technical Artifacts 

Current mass spectrometry quantification techniques are limited to searching 

databases of known peptides (Wang & Zhang, 2013) that do not always contain alternate 

peptide sequences due to genetic variation. Therefore, genetic variants that alter peptide 

sequences could result in spectra that no longer match the database, and their absence 

could result in a false pQTL association. To identify pQTLs that were likely technical 

artifacts, we examined the exome sequence data to determine if the most strongly 

associated pQTL variant (sentinel variant), or variants in LD with the sentinel variant, 

resulted in a missense amino acid change in or near the associated peptide in our 

population. We then examined the impact of the missense variant and classified the 

artifact into three groups: homologue, digestion, or missense (Supplemental Table 3.1). 

If the missense amino acid change resulted in a peptide that was identical to a 

homologous protein through a BLASTp (Altschul, Gish, Miller, Myers, & Lipman, 1990) 

search, it was classified as a homologue artifact. If the missense amino acid flanked or 

fell within the digestion site of the peptide (1-4 amino acids from the peptide), it was 

classified as a digestion artifact. The remaining missense variants that disrupted the 

peptide itself were classified as missense artifacts.    

 

Chapter 3.3.8 Putative Functional Variant Identification 

To identify putative functional variants (PFVs) at each pQTL, we examined 

databases and published literature to find established research that linked protein levels 

to a variant in linkage disequilibrium (LD) with the sentinel variant through a specific 
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proposed or validated molecular mechanism (Supplemental Figure 3.1). For each PFV, 

we categorized the supporting evidence into three categories, which were based on 

whether the published evidence was experimentally validated through biological assays, 

associated statistically, or predicted based on functional characteristics (e.g. the variant 

was located in a promoter region):  

1. known - the PFV had been experimentally shown to affect the parent protein’s level 

through a particular molecular mechanism (Supplemental Figure 3.1A) 

2. likely – either the PFV had been experimentally validated to have a molecular 

mechanism that was predicted to affect the parent protein’s level, or the PFV was 

predicted to have a mechanism that had been experimentally shown to affect the 

parent protein’s level (Supplemental Figure 3.1B). 

3. suggestive - either the PFV was predicted to act through a specific molecular 

mechanism, and the PFV had been associated with the parent protein’s level; the 

PFV was associated with the parent protein’s level and a molecular mechanism 

had been previously predicted to affect the parent protein’s level; or the PFV was 

predicted to act through a molecular mechanism, and the proposed mechanism 

had been associated with the parent protein’s level (Supplemental Figure 3.1C) 

 

To obtain this information, we performed sequential database and literature 

searches. First, we identified all variants in LD r2>0.2 with the lead variant via HaploReg 

(version 4.1) (Ward & Kellis, 2012). We then examined whether any of these variants 

were documented in OMIM (Hamosh, Scott, Amberger, Bocchini, & McKusick, 2005), and 

whether the missense variants had been previously reported as associated with the 
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protein level (searching for the dbSNP identifier, the protein name, and the phrase “level”). 

For each protein, if there was at least one variant with mechanistic supporting evidence 

meeting “known” or “likely” criteria, we chose the variant with the most experimental 

evidence and labeled it the PFV. If no PFVs were identified for the protein, we next 

examined all missense, synonymous, 5’ UTR, and 3’ UTR variants. Using information 

from OMIM, genomic annotations from the UCSC Genome Browser (Kent et al., 2002), 

protein annotations from UniProt (The UniProt, 2017), and information regarding the 

position of the associated peptides relative to the protein from this study, we identified 

potential mechanisms by which the variant might act. We then performed literature 

searches of the dbSNP identifier, the protein name, and the potential mechanisms 

(alternative splicing, isoform, glycosylation, degradation, miRNA, promoter, enhancer, 

gene expression, maturation, cleavage, protein stability, or protein folding). Literature 

suggesting an established association was further investigated to determine the strength 

of the evidence. Within each protein, we labeled the variant with the best supporting 

evidence as the PFV, and categorized the strength of the evidence according to the three 

categories above. In the case where little or no mechanistic evidence had been 

established we labelled the sentinel variant as the PFV, and created a new category for 

this lack of evidence: “unknown”. We then annotated the PFVs with their variant type (e.g. 

missense, intergenic) using SnpEff v4.1 (Cingolani et al., 2012), and determined if the 

PFV was an expression quantitative trait locus (eQTL) in the GTEx (Consortium, 2013) 

Portal (accessed 03/08/2018). An eQTL was considered to be in the “same” tissue if it 

was identified in the tissue with the highest expression level of the associated gene, and 

in an “other” tissue if the eQTL was identified in a different tissue. Finally, the mechanism 
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of each PFV was classified based on the evidence gathered above into the following 

categories: 1) affecting RNA metabolism (promoter, isoform expression, nonsense-

mediated decay, gene deletion, and miRNA processing), or 2) affecting protein 

metabolism (protein degradation, glycosylation, and secretion). 

 

Chapter 3.4 Results 

Chapter 3.4.1 Data Generation 

We examined peptide and protein levels from plasma, and genotype data from 

whole exome sequencing of blood DNA, from 165 individuals from the Tromsø Study 

(Figure 3.1A). These individuals and data were part of an effort to identify predictive 

biomarkers for venous thromboembolism (Jensen et al., in preparation). To assess 

peptide and protein levels, we performed TMT-multiplexed mass spectrometry on blood 

plasma, identifying 5,608 peptides, corresponding to 664 proteins and 655 genes. Of the 

5,608 peptides, 1,430 (25%) were present in all samples, 3,394 (61%) were identified in 

at least 50% (82 individuals), and 5,052 were identified in at least 5% (N=8, the minimum 

number required to perform genetic analysis) (Figure 3.2A). The identified peptides had 

an average length of 14.5 amino acids (range: 6 to 43) (Supplemental Figure 3.2A). We 

observed an average of 8.5 peptides mapping to each protein (range: 1 to 291) (Figure 

3.2B); protein levels were calculated by summing these peptide measures. The functions 

of the proteins that were measured were consistent with their role in plasma, with the 

most enriched pathways (Reactome (Fabregat et al., 2018) pathway analysis FDR < 0.05) 

including the immune system and hemostasis (Figure 3.2C & Supplemental Figure 3.2B). 

From the whole exome sequencing data, we identified 501,682 genetic variants directly, 
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and an additional 2,647,181 variants through imputation. Of the 3,148,863 total variants, 

2,624,979 were evaluated in common variant analyses (minor allele frequency (MAF) ≥ 

1%), and 1,690,437 were evaluated in rare variant analyses (MAF <5%) (Figure 3.2D). 

While most variants were noncoding (intergenic or intronic) regions, a total of 182,828 

(5.8%) were located in UTR and exonic regions (Figure 3.2E). Overall, these analyses 

generated information on 664 proteins and 3,148,863 variants for genetic association 

analyses. 

 

Figure 3.1 Study overview.  
165 individuals from The Tromsø Study were followed from 1994-2013. Between 1994 and 1995, 
blood plasma and whole blood were collected; blood plasma and whole blood were processed 
and subsequently used for protein quantification by mass spectrometry and whole exome 
sequencing, respectively. These analyses identified 5,608 peptides and 664 proteins from 
plasma, and 3,148,863 variants from whole blood, across all individuals.  
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Figure 3.2 Description of protein and genotype data 
(A) Cumulative distribution plot showing the number of peptides identified in at least N samples. 
5,052 peptides were identified in at least 8 samples (blue), 3,394 peptides were identified in at 
least 82 samples (red), and 1,430 peptides were identified in all 165 samples (green). (B) 
Histogram showing the number of peptides identified for each of the 664 parent proteins. A mean 
of 8.45 peptides per parent protein were identified (dotted line). (C) Bar plot showing the q-values 
from Reactome pathway analysis that were enriched for plasma proteins. The significance 
threshold of –log10(0.05) is shown by the red dotted line. (D) Histogram of the minor allele 
frequencies in this study for all 3,148,863 genetic variants identified across individuals. (E) Bar 
plot of the number of identified genetic variants within each SnpEff annotation. The number of 
variants with each annotation is also listed next to each bar. 

 

Chapter 3.4.2 Identification of Peptide and Protein cis pQTLs 

We first identified cis pQTLs, i.e. those located near the gene encoding the plasma 

peptide and/or protein. We identified all variation within +/- 200 kb of the corresponding 

gene for each of the 5,608 peptides and 664 proteins. We tested for association between 
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genetic variants and peptide or protein levels using EMMAX, a linear mixed model that 

includes a kinship matrix to account for population structure and family relatedness. 

Additionally, we modeled age, sex, BMI, smoking status, cancer status at the time of 

sample collection, VTE case-control status, and the TMT-multiplex experiment as 

covariates (see Methods). We identified 148 peptides and 31 proteins with significant 

associations (Bonferroni adjusted p < 0.05) with 80 and 31 cis genetic variants, 

respectively. Next, we identified additional independent significant pQTLs for each of the 

148 peptides and 31 proteins by performing a step-wise analysis conditioned on the most 

significant variant, and found six peptides and two proteins that had a second cis genetic 

variant. In total, we identified 33 pQTLs associated with the levels of 31 proteins and 154 

pQTLs associated with the levels of 148 peptides (Supplemental Table 3.1). 

 

Chapter 3.4.3 Integration of Peptide and Protein pQTLs 

As we expected that the peptide pQTLs would also be protein QTLs for the parent 

protein, we investigated if differences between peptide and protein pQTLs could reflect 

technical artifacts introduced by genetic variants affecting the quantification 

process/pipeline. To examine the concordance between peptide and protein pQTLs, we 

determined the parent protein for all 154 peptide pQTLs and 33 protein pQTLs. We 

identified 67 unique parent proteins, of which 24 were associated with both a peptide 

pQTL and protein pQTL, 36 were only associated with peptide pQTL(s), and 7 were only 

associated with protein pQTL(s). For the 24 parent proteins with both peptide and protein 

pQTLs, we identified independent pQTL signals by examining whether the variants were 

the same or in linkage disequilibrium (LD; r2 > 0.2). We created three classifications for 
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each independent pQTL: 1) those only associated with peptide levels (peptide-only 

pQTL), 2) those only associated with protein levels (protein-only pQTL), or 3) those 

associated with both peptide and protein levels (both pQTL). From this process, we 

obtained 91 independent pQTLs: 58 peptide-only pQTLs (43 parent proteins), 10 protein-

only pQTLs, and 23 both pQTLs (22 parent proteins) (Supplemental Table 3.1). Using the 

exome sequencing data, we examined whether the peptides that were associated with 

the pQTLs (either directly or indirectly through LD with a polymorphic variant) affected the 

quantification process either by: 1) altering the sequence of the peptide, 2) altering the 

effectiveness of the trypsin digestion site, or 3) resulting in the association with a 

homologous protein (rather than the original parent protein). In total, 43 of the 91 

independent pQTLs affected the quantification process by one of these three 

mechanisms and appeared to be technical artifacts. The majority of artifact pQTLs were 

peptide-only pQTLs (39 of the 43), however, we also found one protein-only pQTL, and 

three both pQTLs, to be technical artifacts. After removing these technical artifacts, the 

resulting data set had 48 independent associations: 9 protein-only pQTLs, 19 peptide-

only pQTLs, and 20 both pQTLs. Of note, 32 of these associations were novel pQTLs  

(Johansson et al., 2013; Kim et al., 2013; Liu et al., 2015; Lourdusamy et al., 2012; Suhre 

et al., 2017; Sun et al., 2017) (Supplementary Table 3.1). 

 

Chapter 3.4.4 Collapsing Variants to Identify Rare-variant cis pQTLs 

To identify rare variants associated with protein levels, we tested the cumulative 

effects of sets of rare variants on peptide and protein levels. We collapsed rare variants 

using three different criteria: 1) MAF < 5%: all variants within the interval from 2kb 
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upstream of the protein-coding gene to the transcription end of the gene with a minor 

allele frequency <5%; 2) Deleterious: all MAF <5% variants that were annotated using 

SNPEff(Cingolani et al., 2012) as having an effect impact of high or moderate; and 3) 

CADD-score: all MAF <5% variants that have a PHRED-scaled CADD (Kircher et al., 

2014) score greater than 10. For each peptide or protein measured, after collapsing the 

rare cis variants for their corresponding gene, we identified associations between the 

peptide, or protein, and rare variation using the optimal unified test SKAT-O (Lee et al., 

2012) that combines a kernel test with a burden test. We identified 16 rare cis pQTLs (12 

associations with peptides and 4 associations with proteins), of which 10 were 

independent: 6 peptide-only, 2 protein-only, and 2 both rare pQTLs (Supplemental Table 

3.2). As with common variation, we examined the associations for technical artifacts, and 

found that all of the peptide-only pQTLs overlapped a rare missense mutation; they were 

therefore excluded. As the threshold used for identifying common variation was MAF > 

1%, some variants were included in both common and rare tests; we removed these 

associations, resulting in a total of 3 independent rare cis pQTLs, of which 2 were 

previously reported (Brantly, Courtney, & Crystal, 1988; Stengaard-Pedersen et al., 

2003). Thus, while genetic variation was associated with substantial artefactual pQTLs in 

cis rare variant analysis, the associations identified after filtering corresponded to 

established protein-level associations. 

 

Chapter 3.4.5 Trans Associations 

To identify downstream targets and pathways associated with pQTLs, and gain 

insight into the functional mechanism of the identified pQTLs, we tested for association in 
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trans. We first tested all 2.6 million variants with MAF >1% genome wide for association 

(trans pQTLs) with each of the 5,608 peptides and 664 proteins; this method did not find 

any trans pQTLs at genome-wide significance (peptide P < 8.91x10-12; protein P < 

7.54x10-11). To increase our power, at each of the 655 loci encoding the measured 

proteins of this study, we performed association analyses using each of the three rare 

collapsing criteria to identify trans association with any of the peptides or proteins 

encoded at the other 654 loci. We identified 9 associations between rare variation and 

peptide levels (i.e. rare peptide-only trans-pQTLs) (Supplemental Table 3.3). One of the 

associations was a rare peptide-only trans-QTL between variation in FCN3, and levels of 

a peptide in the complement component C8 beta chain (C8B). FCN3 is an activator of the 

lectin complement pathway, and its pathway includes C8 in its final stages (Garred, 

Honore, Ma, Munthe-Fog, & Hummelshoj, 2009). Notably, this variation was just below 

the significance threshold for being a rare peptide-only cis QTL for FCN3 (Figure 3.3A). 

We therefore examined the full established pathway of the lectin complement (Garred et 

al., 2009). We observed that rare variation in FCN3 was associated with 8 other members 

of the lectin complement pathway at a nominal P < 0.05: C4a, C4b, C4BPa, C5, C6, C8b, 

C8a, and C8g (Supplemental Table 3.4), suggesting that the rare variation in FCN3 was 

broadly associated with the levels of proteins in the complement pathway. We next 

examined the other rare trans pQTLs, and identified five loci associated with levels of 

SERPINA1 (alpha-1-antitrypsin): CD109, CFL1, CLU, HYOU1, and RARRES2 (Figure 

3.3B). Of the five genes, four encode proteins involved in platelet degranulation 

(Reactome (Fabregat et al., 2018) enrichment FDR = 7.2x10-6). As alpha-1-antitrypsin is 

secreted into the plasma via platelet degranulation, these results suggest that rare 
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variation in proteins associated with platelet degranulation could be important modulators 

of alpha-1-antitrypsin levels. The fifth gene, HYOU1, has not been implicated in platelet 

degranulation, but is upregulated in response to hypoxia (Schofield & Ratcliffe, 2004), an 

important risk factor for blood clotting (Reitsma, Versteeg, & Middeldorp, 2012). Overall, 

these results suggest that rare variation in proteins can be associated with protein levels 

of downstream targets. 

 

Figure 3.3 Pathways identified from rare variation analyses 
(A) An overview of the lectin complement pathway showing the relationship between FCN3 
(Ficolin 3; teal) and the complement pathway. Nominal p-values are shown for the association 
between rare variation at the FCN3 locus and levels of the complement pathway proteins. C4, 
C3, C5, C8, and C6 were associated at P < 0.05 (purple), C2, C9, C7, or C5b were not associated 
(gray). (B) STRING database diagram of the five proteins associated with rare SERPINA1 
variation (each labeled with their nominal association p-value). Connections between proteins are 
colored based on their evidence (see legend and STRING documentation). 
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Chapter 3.4.6 Identifying Putative Functional Variants 

Due to linkage disequilibrium (LD), the most strongly associated variant (sentinel 

variant) may not be the causal variant. To enable the examination of the distribution of 

functional mechanisms underlying the common pQTL associations, it is therefore 

necessary to examine variants in LD with the sentinel variant to identify the variants that 

could be driving the association (putative functional variants (PFVs)). Across all pQTLs, 

we observed an average of 151 variants in LD with the sentinel variant. Next, using a 

combination of database and literature searches, we identified candidate variants at each 

pQTL locus (Figure 3.4A; see methods). We categorized the strength of published 

evidence supporting a specific proposed or validated molecular mechanism according to 

four categories ordered by strength: 1) known; 2) likely; 3) suggestive; or 4) unknown (see 

methods). We selected the PFV at each locus as the variant with the strongest functional 

evidence (Supplemental Table 3.5). In total, we found 18 known, 5 likely, 5 suggestive, 

and 20 unknown PFVs; notably, 14 of the 23 PFVs with at least known or likely evidence 

were not the sentinel variant. Additionally, while a large proportion of the sentinel variants 

were intronic, the PFV annotations showed a redistribution to intergenic and coding 

annotations (Supplemental Figure 3.3A). Thus, approximately half of the pQTLs could be 

explained by variants previously experimentally shown to influence the associated 

protein’s level. 
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Figure 3.4 Putative functional variant analyses 
(A) Cartoon illustrating the genomic locations of variants with particular annotations and 
mechanisms, relative to the gene body of the pQTL. For example, Indel annotated variants were 
only located within gene exons, but variants that have an underlying mechanism of “isoform” could 
be found in introns, exons, or the 3’ UTR.  The three pQTLs where the PFV was a large genic 
deletion arae not illustrated. (B) Stacked barplot of the number of PFVs associated with each 
mechanism, subset by whether the mechanism affects the RNA molecule, or the protein directly. 
(C) Stacked barplot of the number of PFVs with each SnpEff annotation, subset by whether the 
PFVs’ mechanism affects the RNA molecule, the protein directly, or is unknown. (D) Stacked 
barplot of the number of PFVs that were eQTLs in GETx, subset by whether the PFVs’ mechanism 
affects the RNA molecule, the protein directly, or is unknown. 
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Chapter 3.4.7 Examining the Functionality of PFVs 

To examine the relative role of different stages of protein level regulation – from 

gene expression to post-translational modifications – we further classified the PFVs by 

their molecular mechanism of action using the mechanism linked to the variant during 

PFV identification. We found the 28 PFVs with suggestive or better evidence to affect a 

wide range of processes, including 19 (68%) involved in RNA metabolism (7 affected the 

promoter, 4 affected isoform expression, 1 created a transcript that underwent nonsense-

mediated decay, 3 resulted in gene deletions, and 4 affected miRNA processing), and 9 

(32%) involved in protein metabolism (6 associated with protein degradation, 2 altered 

glycosylation, and 1 affected secretion) (Figure 3.4B; Supplemental Figure 3.3B). We next 

examined if the functional annotation of the variant was correlated with whether the 

mechanism influenced RNA or protein levels. We observed that PFVs associated with 

protein levels directly were more often missense variants, whereas PFVs that affected 

RNA levels were primarily located in non-coding regions (Figure 3.4C). The PFVs that did 

not have an established mechanism (unknown) were annotated as both missense and 

noncoding variants, suggesting that some of the unknown PFVs affect protein levels 

directly, whereas others affect RNA. As variants associated with RNA metabolism would 

also be expected to show association as an expression QTL (eQTL), we also examined 

whether these were more often identified in GTEx. We observed that PFVs which affected 

RNA levels, and were not deletions, were more likely to have been identified as an eQTL 

(69%, 11/16) than protein PFVs (22%, 2/9) (Figure 3.4D). The unknown PFVs were 

identified as eQTLs at an intermediate level (40%, 8/20), consistent with this group 

affecting both RNA and protein levels. These results suggest that, while variants that 
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affect protein levels often work through mechanisms associated with RNA, and therefore 

can be detected through eQTL analyses, many variants affect protein levels without 

affecting RNA levels, and act through molecular mechanisms that are more challenging 

to measure with current high throughput methods. 

 

Chapter 3.5 Discussion 

In this study, we leveraged TMT mass-spectrometry and deep whole exome 

sequencing data to identify 60 pQTLs (48 common cis, 3 rare cis, and 9 rare trans) 

associated with 96 unique peptides and 30 proteins across the genome (Supplemental 

Table 3.6). We then utilized published papers and public databases to examine 

established molecular mechanisms underlying these pQTLs, and examine how often the 

mechanisms affected RNA or protein metabolism. We showed that, while the majority of 

pQTLs exert their effects by modulating the gene’s RNA, many affect the protein directly 

through processes such as degradation, glycosylation, and translation. Our work thus not 

only shows the importance of identifying functional variation by directly assaying protein 

levels, but also highlights how identifying the functional variant in pQTL studies can lead 

to insights into the molecular steps by which the protein is regulated. Based on the types 

of protein mechanisms that have been described, these results suggest that improved 

high throughput methods to assess variants that affect protein translation, modification, 

and degradation are needed.  

It is currently unclear how often high throughput protein assays have technical 

artifacts resulting from genetic variants that affect the ability to correctly quantify peptide 
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levels due to alterations of coding sequence through missense changes, isoform usage, 

or cleavage patterns. By integrating the individuals' genotypes within coding sequences 

with standard TMT mass-spectrometry quantification techniques, we were able to identify 

pQTLs that were driven by genotype induced technical artifacts and exclude them. We 

observed the largest impact at the level of peptide-only associations, with the majority of 

independent associations (67%) being driven by technical artifacts. The majority of 

independent associations at the protein level (88% of both pQTLs and protein-only 

pQTLs), however, were unaffected. These findings illustrate the importance of filtering 

variants that affect peptide quantification, and using quantification techniques that 

measure proteins at multiple locations and are therefore are more resilient to peptide 

based quantification artifacts.  

Rare variation is likely to be an important contributor to variation in protein levels. 

By focusing on the proteins that we measured, we identified trans associations between 

rare variation in FCN3 and the complement cascade. An individual who was homozygous 

for a rare frameshift variant in FCN3 has been reported to have a deficiency in 

complement activation (Munthe-Fog et al., 2009); however, this variant was not reported 

in our study. Our finding thus provides additional evidence that rare variation in FCN3 is 

associated with variation in levels of the complement pathway proteins in the general 

population. Additionally, we identified five protein loci with rare variation associated with 

levels of alpha-1 antitrypsin. Four of the proteins have been characterized as being 

involved in platelet degranulation, while the fifth, HYOU1, has been shown to act as an 

oxygen-inducible chaperone for proteins in the endoplasmic reticulum of macrophages 

(Ozawa et al., 2001). Alpha-1 antitrypsin deficiency is a well-established genetic condition 
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that predisposes an individual to chronic obstructive pulmonary disease, liver cirrhosis, 

and hepatocellular carcinoma (Stoller & Aboussouan, 2012). While over 120 alleles of the 

SERPINA1 gene have been implicated in alpha-1 antitrypsin deficiency, variation in 

genes other than SERPINA1 have not yet been described (Stoller & Aboussouan, 2012). 

While the individuals in this study have not been found to have alpha-1 antitrypsin 

deficiency, the finding that rare variation in many genes can contribute to alpha-1 

antitrypsin plasma levels could have implications for the genetic architecture of the 

disorder.  

Due to the fact that our analyses are based on high throughput data, the novel 

associations that we identified should be further validated by replication in an independent 

data set. As many of our findings were consistent with previous work, we expect that the 

majority of the novel associations will be replicated in future studies. Additionally, the 

annotation of PFVs may have been biased for finding missense variants, as we relied on 

published literature and databases, and past protein research may have focused on 

studying missense variation. However, as the majority of the PFVs that we identified were 

regulatory in nature, and the class of unknown variants showed annotations consistent 

with them affecting both RNA and protein metabolism, we believe that PFV annotations 

were likely not strongly biased for previously characterized missense variants. 
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Chapter 3.8 Supplemental Tables 

(see downloadable file for Chapter 3 Supplemental Tables) 

Supplemental Table 3.1 Single-site association of cis genetic variants with peptides 
and/or proteins. 
Protein Name corresponds to the gene name. Ensembl ID is the GRCh37 Ensembl ID for the 
transcript tested. Peptide Sequence is the amino acid sequence of the peptide tested. This is N/A 
if the association was at the protein level. Sentinel Variant is the rsID for the most significantly 
associated genetic variant. P-value is the p-value of that variant’s association with the tested 
peptide or protein. Beta is the effect on the normalized peptide or protein level that corresponds 
to each additional copy of the effect allele for the most significant variant. R2 is the amount of 
variance in the peptide or protein level that is explained by the most significant variant. Number 
of Samples lists the number of individuals that the association was calculated in. pQTL Type is 
whether the association was for a peptide or protein. Number of Peptides Collapsed into 
Measurement for proteins lists the number of peptides that were summed together to get the 
protein level. This is N/A for peptides. Conditional Association Result is primary for the first 
significant variant identified in a locus and secondary if there was an additional variant associated 
when the first was taken into account. Integrated pQTL Class is whether the association is a 
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peptide-only pQTL, protein-only pQTL, or both pQTL. LD Between Peptide pQTL and Protein 
pQTL is whether the sentinel variant was identified or was in LD (R2) with another variant that 
was identified in this study as a pQTL for that Protein Name. As multiple peptides or proteins can 
correspond to the same variant, the independent pQTL column is 1 for each independent pQTL 
and 0 for each repeat. The Artifact column is 1 if the pQTL was deemed an artifact and 0 if not. 
The Artifact Type lists the evidence supporting whether the variant was deemed an artifact. The 
In Final Analysis column gives a 1 if the pQTL was an independent pQTL and not an artifact and 
was thus kept for further analysis. Previously Reported cites the pQTL paper that has previously 
published this association. [sort table by Protein Name, Integrated pQTL Class, In Final Analysis 
for clarity] 

Supplemental Table 3.2 Grouped association for cis genetic variants with peptides and/or 
proteins. 
Protein Name corresponds to the gene name. Ensembl ID is the GRCh37 Ensembl ID for the 
transcript tested. Peptide Sequence is the amino acid sequence of the peptide tested. This is N/A 
if the association was at the protein level. Rare variant criteria is whether the association was 
found using the MAF < 5%, Deleterious, or CADD-score grouping criteria. P-value column shows 
the p-value of that region’s association with the tested peptide or protein. Number of Samples 
lists the number of individuals that the association was calculated in. Integrated pQTL Class is 
whether the association is a peptide-only pQTL, protein-only pQTL, or both pQTL. Rare Variants 
in Peptide determines whether one of the rare variants tested fell within the peptide sequence 
and is thus likely an artifact. The Artifact column is 1 if the pQTL was deemed an artifact and 0 if 
not. Significant in Cis Single-site Analysis column is a 1 if an association was already seen for 
that peptide or protein in the single-site analysis. The In Final Analysis column gives a 1 if the 
pQTL was not significant in the cis single-site analysis and not an artifact and was thus kept for 
further analysis. Previously Reported Citation lists the PubMed ID of any papers that describes 
an association between one of the underlying rare variants and levels of the protein. 

Supplemental Table 3.3 Grouped association for trans genetic variants with peptides. 
Protein Name corresponds to the gene name. Ensembl ID is the GRCh37 Ensembl ID for the 
transcript tested. Peptide Sequence is the amino acid sequence of the peptide tested. Locus is 
the genetic locus that was associated with the peptide. Rare variant criteria is whether the 
association was found using the MAF < 5%, Deleterious, or CADD-score grouping criteria. P-
value column shows the p-value of that region’s association with the tested peptide or protein. 
Number of Samples lists the number of individuals that the association was calculated in. 

Supplemental Table 3.4 Association of variants in FCN3 with proteins in the Lectin 
complement pathway. 
Protein Name corresponds to the gene name. Ensembl ID is the GRCh37 Ensembl ID for the 
transcript tested. Peptide Sequence is the amino acid sequence of the peptide tested. Rare 
variant criteria is whether the association was found using the MAF < 5%, Deleterious, or CADD-
score grouping criteria. P-value column shows the p-value of that region’s association with the 
tested peptide. 

Supplemental Table 3.5 Annotation of all pQTLs. 
Protein Name corresponds to the gene name. Putative Functional Variant (PFV) is the rsID of the 
proposed functional variant. Sentinel Variant is the rsID of the pQTL. Level is whether the 
association is a peptide-only pQTL, protein-only pQTL, or both pQTL. LD between PFV and 
Sentinel lists the r2 between the two variants from HaploReg. Sentinel P-Value lists the lowest p-
value of a peptide or protein found with the sentinel variant. PFV P-value lists the corresponding 
p-value between the PFV and the same peptide or protein measured for the Sentinel P-value. 
PFV in OMIM lists the OMIM ID if the PFV was reported in OMIM. Sentinel SNPEff Annotation 
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lists the functional annotation from SNPEff for the sentinel variant. PFV HaploReg Annotation lists 
the functional annotation and gene locus from HaploReg for the PFV. PFV SNPEff Annotation 
lists the functional annotation from SNPEff for the PFV. Tissue is the tissue with the highest 
expression of the protein according to GTEx. PFV eQTL Tissue lists whether the PFV was an 
eQTL in GTEx in the same tissue as the Tissue column (“Same”), a different tissue (“Other”), or 
was not an eQTL (“none”). Strength is whether the evidence supporting the mechanism was 
classified as “known”, “likely”, “suggestive”, or “unknown”. Mechanism lists the category of the 
mechanism of action. Affected Molecule lists whether the PFV affects RNA levels, Protein levels, 
or unknown. PMIDs lists the papers with evidence supporting the mechanism. 

Supplemental Table 3.6 All pQTLs identified in this study. 
Type of Association is which analysis the pQTL was identified in. Protein Name corresponds to 
the gene name. Ensembl ID is the GRCh37 Ensembl ID for the transcript tested. Associated 
Protein is the ensemble ID if the pQTL was identified at the protein level. Associated Peptides 
lists the amino acid sequences of all peptides that were associated with that variant. Sentinel 
Variant is the rsID of the pQTL or the name of the gene locus if this was a rare pQTL. Integrated 
pQTL Class is whether the association is a peptide-only pQTL, protein-only pQTL, or both pQTL.  
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Chapter 3.7 Supplemental Figures 

 

Supplemental Figure 3.1 Schematic showing the categories of strength of supporting 
evidence for PFV classification 
(A) Known: the PFV had been experimentally shown to affect the protein’s level through a 
particular molecular mechanism. (B) Likely: either the PFV had been experimentally validated to 
have a molecular mechanism that was predicted to affect the protein’s level, and the variant was 
previously associated with the protein’s level (top), or the PFV was predicted to have a mechanism 
that had been experimentally shown to affect protein’s level, and the variant was previously 
associated with the protein’s level (bottom). (C) Suggestive: either the PFV was predicted to act 
through a specific molecular mechanism, and the PFV was previously associated with the 
protein’s level (top), the PFV was associated with the protein’s level and a molecular mechanism 
had been previously predicted to affect the protein’s level (middle), or the PFV was predicted to 



90 
 

act through a molecular mechanism, and the proposed mechanism had been associated with the 
protein’s level (bottom). 

 

Supplemental Figure 3.2 Data characterization of the plasma peptides and proteins 
(A) Histogram of the distribution of the number of amino acids within each of the 5,608 quantified 
peptides, with the mean of 14.5 amino acids indicated by the dotted black line. (B) Bar plot of the 
top 25 pathways from Reactome pathway analysis. Dotted line indicates significance at FDR q < 
0.05. 
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Supplemental Figure 3.2 Characterization of putative functional variants 
(A) Barplot showing the number of sentinel variants (blue) or PFVs (red) in each SnpEff 
annotation. (B) Barplot of the number of PFVs with each mechanism. 
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Chapter 4: Discovery of novel plasma biomarkers for future incident venous 
thromboembolism by untargeted SPS-MS3 proteomics. 
 

Chapter 4.1 Abstract 

Objective: Prophylactic anticoagulant treatment may substantially reduce the 

incidence of venous thromboembolism (VTE) but entails considerable risk of severe 

bleeding. Identification of individuals at high risk of VTE through the use of predictive 

biomarkers is desirable in order to achieve a favorable benefit-to-harm ratio. 

Therefore, we aimed to identify predictive protein biomarker candidates of VTE. 

Approach and Results: We performed a case-control study of 200 individuals 

that participated in the Tromsø Study, a population-based cohort, where blood 

samples were collected before the VTE events occurred. Untargeted TMT-SPS-

MS3-based (tandem mass tag-synchronous precursor selection-mass 

spectrometry) proteomic profiling was used to study the plasma proteomes of each 

individual. Of the 501 proteins detected in a sufficient number of samples to allow 

multivariate analysis, 46 proteins were associated with VTE case-control status with 

p-values below the 0.05 significance threshold. The strongest predictive biomarker 

candidates, assessed by statistical significance, were transthyretin, vitamin K-

dependent protein Z, and protein/nucleic acid deglycase DJ-1. 

Conclusions: Our untargeted approach of plasma proteome profiling 

revealed novel predictive biomarker candidates of VTE and confirmed previously 

reported candidates, thereby providing conceptual support to the validity of the 

study. A larger nested case-control study will be conducted to validate our findings. 
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Chapter 4.2 Introduction  

Venous thromboembolism (VTE), a collective term for deep vein thrombosis 

and pulmonary embolism, has an annual incidence rate of 1-2 per 1000 persons 

(Heit, 2015). The health burden caused by VTE is immense, and it is expected to 

grow with the aging of the population and the increasing prevalence of major risk 

factors for VTE such as obesity and cancer (Afshin et al., 2017; Ferlay J, 2012; W. 

Huang, Goldberg, Anderson, Kiefe, & Spencer, 2014; "Thrombosis: a major 

contributor to the global disease burden," 2014). Prophylactic anticoagulant 

treatment in situations of high VTE risk provides an effective strategy for VTE 

prevention but entails a substantial risk of severe bleeding (Cohen et al., 2008; 

Mayer, Streiff, Hobson, Halpert, & Berenholtz, 2011). Thromboprophylaxis with 

anticoagulants should therefore be targeted towards individuals with the highest 

VTE risk in order to achieve a favorable benefit-to-harm ratio. 

VTE is a complex disease that occurs as a result of interactions between 

inherited and acquired factors (Rosendaal, 1999). Several genetic variants and the 

levels of numerous plasma proteins, mostly with roles in coagulation or fibrinolysis, 

have been shown to be associated with VTE (Bruzelius et al., 2016; Christiansen et 

al., 2006; Fashanu et al., 2017; Germain et al., 2015; Heit, 2015; Karasu, Baglin, 

Luddington, Baglin, & van Hylckama Vlieg, 2016; Meltzer et al., 2010; Norgaard, 

Nielsen, & Nordestgaard, 2016; Puurunen et al., 2016; Reitsma & Rosendaal, 2004; 

Ridker, Cushman, Stampfer, Tracy, & Hennekens, 1997; Tsai et al., 2002; van 
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Hylckama Vlieg et al., 2015; van Montfoort et al., 2013). However, few prospective 

studies have successfully shown associations between protein biomarker levels at 

baseline and risk of future incident VTE (Christiansen et al., 2006; Fashanu et al., 

2017; Puurunen et al., 2016; Ridker et al., 1997; Tsai et al., 2002). The discovery of 

novel biomarkers for risk prediction of incident VTE in the general population is 

therefore warranted. Furthermore, the identification of individuals at high risk of VTE 

is challenging, as it requires integration of both clinical risk factors and biomarkers. 

Current risk prediction models for VTE are often restricted to patient subgroups and 

they have shown limited predictive power, particularly in validation studies 

(Bruzelius et al., 2015; de Haan et al., 2012; Folsom et al., 2016; Greene et al., 

2016; Mahan, Burnett, Fletcher, & Spyropoulos, 2017; Park et al., 2017; Pepin et 

al., 2016; Puurunen et al., 2016; van Es et al., 2017).  

The proteomic profile of blood plasma is influenced by both genetic and 

environmental factors that may affect the risk of VTE. Combined with the minimal 

invasiveness and cost of blood sampling, blood plasma is a clinically attractive and 

relevant specimen for the discovery of novel biomarkers for VTE. Recent advances 

in mass spectrometry technology have increased the feasibility of mass 

spectrometry (MS)-based biomarker discovery studies. Improved accuracy in 

relative protein quantification combined with the development of sample 

multiplexing protocols have made MS an attractive technology for plasma biomarker 

discovery (Cominetti et al., 2016; Dayon, Nunez Galindo, Corthesy, Cominetti, & 

Kussmann, 2014; McAlister et al., 2014; Ting, Rad, Gygi, & Haas, 2011). 
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This study was designed to identify novel plasma protein biomarkers for 

future incident VTE. We combined Tandem-Mass-Tag (TMT)10-plexing with 

synchronous precursor selection (SPS)-MS (MS3) to generate untargeted 

proteomic profiles (McAlister et al., 2014). Our study included 100 individuals who 

developed VTE and 100 age and sex-matched control individuals selected from a 

population-based cohort where plasma samples were collected before the VTE 

events occurred. To our knowledge, this study is the first to employ untargeted 

plasma proteomic profiling with the objective to discover predictive biomarkers for 

incident VTE, and is the first to take advantage of the improved accuracy of MS3 in 

a larger plasma proteomic study. We identified a panel of 46 biomarker candidates 

worthy of further investigation and validation. 

 

Chapter 4.3 Materials and Methods 

Chapter 4.3.1 Source Population 

Participants were recruited from the fourth survey of the Tromsø Study 

conducted in 1994-95, where all inhabitants of Tromsø (Norway) older than 24 years 

of age were invited to participate in a prospective health survey (Jacobsen, Eggen, 

Mathiesen, Wilsgaard, & Njolstad, 2012). The participation rate was 77% with 

27,158 individuals attending the first visit. Additionally, a subset of the participants 

was invited for a more extensive examination, and 7,965 individuals participated in 

the second visit. Those who did not consent to medical research (n=300), who were 

not officially registered as inhabitants of the municipality of Tromsø at baseline 
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(n=43), and those with a known pre-baseline history of VTE (n=47) were excluded 

from the study. The remaining participants (n=26,768) were followed from the date 

of enrollment until September 1, 2007. All first lifetime events of VTE occurring 

among the participants during follow-up were identified from the discharge diagnosis 

registry, the autopsy registry, and the radiology procedure registry at the University 

Hospital of North Norway, which is the sole hospital in the Tromsø region. Trained 

personnel adjudicated each VTE by extensive medical records review. A VTE was 

adjudicated if the presence of signs and symptoms of deep vein thrombosis or 

pulmonary embolism were combined with objective confirmation by radiological 

procedures, which resulted in treatment initiation (unless contraindications were 

specified) as previously described (Braekkan et al., 2010). In total, 462 VTE events 

occurred in the follow-up period. 

 

Chapter 4.3.2 The Study Population 

From the source population, we established a case-control study of 100 VTE 

cases and 100 controls. For each VTE case, an age- and sex-matched control was 

randomly sampled from the source cohort. Cases were prioritized according to the 

shortest time from blood sampling to VTE, and the first 100 case-control pairs where 

both plasma samples passed quality control (as described below) were included to 

form our case-control study. 
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Chapter 4.3.3 Ethics Approval 

All participants provided informed written consent to participate in 

accordance with the declaration of Helsinki. The study was approved by the 

Regional Committee of Medical and Health Research Ethics. 

 

Chapter 4.3.4 Plasma Collection and Base Line Characteristics 

Baseline characteristics including age, sex, and anthropometrics were 

collected by physical examination at study enrollment. Height and weight were 

measured with subjects wearing light clothing and no shoes. BMI (Body mass index) 

was calculated as the weight in kilograms divided by the square of height in meters 

(kg/m2). Non-fasting blood samples were drawn from an antecubital vein into 5 mL 

vacutainer tubes containing EDTA (Ethylenediaminetetraacetic acid) as an 

anticoagulant (K3-EDTA 40 μL, 0.37 mol/L per tube). Blood samples were 

processed within 1 hour by centrifugation at 3000 g for 10 min at 22°C, and plasma 

was collected and frozen in 1 mL aliquots. The plasma samples were stored at -

70°C until analysis. 

 

Chapter 4.3.5 Quality Control 

The plasma samples obtained from the Tromsø Study were inspected 

visually for signs of hemolysis and the protein content was determined by Bradford 

assay (Biorad, Hercules, CA, USA). Signs of sample protein degradation were 
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assessed by Coomassie Blue visualization of 10 µg of protein from each sample 

separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis on a 4-20% 

Criterion, gradient gel (Biorad, Hercules, CA, USA). The first 100 sample-pairs 

where both case- and control samples passed quality control as assessed by 

hemolysis, protein concentration (mean ± 2 standard deviations), and sodium 

dodecyl sulfate polyacrylamide gel electrophoresis band pattern were included in 

the study. After albumin and IgG depletion, 17 samples were picked randomly for 

quality control on sodium dodecyl sulfate polyacrylamide gel electrophoresis as 

described above and passed quality control (Supplementary Figure 4.1). 

 

Chapter 4.3.6 Sample Preparation, Digestion, Labeling, and Multiplexing 

Plasma samples were depleted for albumin and IgG on Q-proteome spin 

columns (Qiagen, Hilden, Germany, Cat#: 37521) following the manufacturer’s 

instruction replacing the kit buffer with 100 mM triethylammonium bicarbonate. From 

each depleted plasma sample, 60 µg of protein was brought to 0.1% sodium dodecyl 

sulfate in 100 mM triethylammonium bicarbonate, reduced (tris(2-

carboxyethyl)phosphine), alkylated (iodoacetamide) and digested with trypsin. TMT-

labeling was performed by mixing the tryptic peptides with their relevant TMT-10plex 

reagent in accordance with a labeling plan that randomized each sample pair to 25 

multiplexed experimental samples. Labeling reactions were terminated with 

hydroxylamine before each of the 25 multiplexed samples were combined from their 

respective labeled peptides according to the labeling plan. Multiplexed samples 
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were diluted to an acetonitrile concentration below 5% before solid phase 

purification on Oasis HLB-cartridges (Waters, Saint-Quentin, France) was 

performed and samples were eluted according to manufacturer’s instructions. 

 

Chapter 4.3.7 Sample Fractionation, Liquid Chromatography and Mass 

Spectrometry 

Strong cation exchange chromatography on a polySULFOETHYL-A column 

(PolyLC, Columbia, MD, USA) on a high-performance liquid chromatography 

system from Waters Alliance (2695) (Saint-Quentin, France) was used to separate 

300 µg of peptide from each experimental sample into eight fractions. The fractions 

were desalted on Oasis HLB cartridges and dried (Waters, Saint-Quentin, France). 

Each peptide fraction was re-suspended and analyzed in duplicate by liquid 

chromatography-MS3 using an EASY-nLC 1000 system coupled to an Orbitrap 

Fusion Tribrid mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). 

Re-suspended peptides were loaded onto a nanoViper C18 Acclaim PepMap 100 

pre-column (Thermo Fischer Scientific) and resolved using an increasing gradient 

of 0.1% Formic acid in acetonitril through a 50 cm PepMap RSLC analytical column 

(Thermo Fisher Scientific, Waltham, MA, USA) at a 200 nL/min flow rate. Peptide 

mass spectra were acquired throughout the chromatographic run of 180 min using 

a top 10 high-energy collision induced dissociation method for Fourier Transform-

MS2 scans following each Fourier Transform-MS scan. SPS of several MS2 

fragment ions followed by higher energy collisional dissociation fragmentation 
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released the reporter ions, which were detected in the Orbitrap at a resolving power 

of 30000 at 400 m/z (McAlister et al., 2012). Proteomic Sciences (Cobham, United 

Kingdom) performed the plasma sample quality control and subsequent steps for 

the generation of 400 raw-data files. 

 

Chapter 4.3.8 Mass Spectrometry Data Analysis 

Proteome Discoverer v2.1 (Thermo Scientific) was used as a data processing 

interface for all raw files, which were processed together to yield an accurate false 

discovery rate (Savitski, Wilhelm, Hahne, Kuster, & Bantscheff, 2015). The false 

discovery rate was set to 1% for both peptide and protein levels using a reverse 

database strategy (Elias & Gygi, 2007).We used spectrum selector default settings 

and SequestHT to identify peptides mapping to the Genecode human proteins 

sequence database (Gencode 19) (Eng, McCormack, & Yates, 1994). Oxidized 

methionine was included as a variable modification. Carbamidomethylation of 

cysteine, and 10-plex TMT-labels on peptide amino-termini and lysines were 

included as fixed modifications. Trypsin was selected as proteolytic enzyme and a 

maximum of three potential missed cleavages was allowed. Reporter ion signal-to-

noise ratios were extracted with the reporter ions quantifier node in Proteome 

Discoverer were exported for relative quantification.  
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Chapter 4.3.9 Data Processing and Analysis 

Peptide level filtering excluded peptides with isolation interference greater 

than 25% or average reporter ion signal-to-noise ratios below 10. Peptide level 

signal-to-noise ratios were summed to estimate protein abundances enforcing the 

principle of parsimony. Values from technical duplicates were averaged if both 

values were available, otherwise non-missing values were used. Data was 

normalized in a two-step process as previously described (Lapek, Lewinski, 

Wozniak, Guatelli, & Gonzalez, 2017).  

 

Chapter 4.3.10 Post Normalization Data Quality Control 

Proteins with measurements in all samples were used in unsupervised 

hierarchical clustering of Spearman’s correlations between individual samples, and 

the heatmap.2 function in R was used to visually identify batch effects from TMT-

label, experimental sample number, or Tromsø survey visit number. 

 

Chapter 4.3.11 Statistical Analysis  

Univariate and multivariate linear regression adjusting for age, sex, and BMI 

were performed to identify VTE-biomarker candidates with significantly different 

protein expression levels between cases and controls. To stabilize estimates in the 

multivariate linear regression, 10 measurements were required per explanatory 

variable, i.e. only proteins with valid measurements in at least 40 samples were 
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analyzed. Regression coefficients were standardized according to the standard 

deviation of the control group. We used a significance threshold of p < 0.05. All 

analysis were performed in R (version 3.3.3) using standard packages. 

 

Chapter 4.4 Results 

We established a case-control study of 100 VTE cases and 100 controls 

matched for age and sex with plasma samples available from the Tromsø Study that 

passed quality control procedures (Figure 4.1) (baseline characteristics in 

Supplementary Table 4.1). TMT10-multiplexing and liquid chromography-MS3 was 

used to generate plasma proteomic profiles of each individual sample in 25 

multiplexed mass spectrometry experiments. We identified and performed relative 

quantification of 6,117 peptides mapping to 681 proteins in 200 human plasma 

samples (Figure 4.2A). Of the 681 proteins identified, 287 proteins (42%) were 

measured in all samples and 431 proteins (63%) were measured in more than half 

of the samples (Figure 4.2B). Of the 681 proteins, 488 proteins (71%) were identified 

by more than one peptide and a median of three peptides per protein were used for 

identification (Figure 4.2C). A two-step normalization was performed to account for 

slight differences in pipetting and TMT-labeling efficiency, and to allow comparison 

of relative protein levels across all samples in the study (Supplementary Figure 4.2A 

and 2B). A heatmap of Spearman’s correlations revealed two clusters of highly 

correlated samples. These clusters contained almost exclusively samples collected 

at the second visit of the Tromsø survey, and only a single sample collected at the 
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second visit was not found in these two clusters (Supplementary Figure 4.2C). 

Therefore, the 24 samples collected at the second visit were removed from the 

analysis. Additionally, eight samples obtained from participants with active cancer 

at the time of blood sampling were removed (i.e. individuals diagnosed with cancer 

within 5 years before to 1 year after blood sampling). Baseline characteristics of the 

study participants after the removal of these 32 samples are summarized in Table 

4.1. Data normalization and clustering analysis were re-performed. Clustering 

analysis revealed no batch effects of MS experiment number or TMT-label and 

indicated appropriate data normalization (Figure 4.2D). The normalized protein 

estimates from two technical replicates showed high correlations (range [0.80-0.98], 

median 0.91). 
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Figure 4.1 Study Overview 
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Figure 4.2 Characterization of proteins identified 

Number of peptides (red) and proteins (black) identified in each multiplex sample. 
The sum of identifications in two technical replicates is shown (A). The number of 
proteins identified in a given number of multiplexed experiments. The dashed lines 
indicate identification in half of the TMT reactions (B). The number of proteins 
identified by a given number of peptides. For each protein, the sum of peptides 
across the dataset is provided (C). Heatmap of Spearman's correlation clustering 
for the study summarized in Table 4.1. Colors on axis indicate TMT-label (vertical) 
and multiplex sample number (horizontal) (D). 
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Table 4.1 Baseline characteristics of the study after removal of Tromsø Study 
second visit samples and participants with active cancer. 

Abbreviations: Deep vein thrombosis (DVT), pulmonary embolism (PE). 

 Cases Controls 

Participants 80 86 

Median age, y [range] 65 [28-83] 65 [28-83] 

Sex, male 32 (40%) 39 (45%) 

BMI, kg/m2 (mean ± SD) 27.0±4.1 24.7±3.5 

Years to VTE, mean [range] 3.82 [0.09-6.85]  

DVT 55 (69%)  

PE 25 (31%)  

Cancer (at event) 17 (31%)  

Unprovoked 34 (43%)  

 

 The normalized relative protein levels were regressed on age, sex, BMI, and 

VTE status in a multivariate linear model. To yield stable estimates we required a 

minimum of 40 measurements for a protein to be considered. The obtained p-value 

for the association with VTE status was used to evaluate the biomarker potential for 

each protein. Out of the 501 proteins tested in the multivariate analysis, 46 proteins 

had p-values below the 0.05 significance threshold (Figure 4.3 and Supplementary 

Table 4.2). For the proteins that were identified in too few samples to be considered 

in multivariate analysis, univariate statistics are provided in Supplementary Table 

4.2. 
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Figure 4.3 Volcano plot of plasma proteins identified in 40 or more samples. 
For each protein, the standardized regression coefficient for VTE-status is plotted against -
log (p-value). The multivariate model 10 included age, sex, and BMI as covariates. The 
black dashed line indicates a p-value of 0.05. The three candidates with lowest pvalues are 
indicated by their protein name. ProZ: Vitamine K-dependent protein Z, DJ-1: 
Protein/nucleic acid deglycase DJ-1 

 

Based on statistical probability, the strongest biomarker candidate identified 

in this study was transthyretin with a nominal p-value of 0.00015 (Figure 4.3). We 

also found vitamin K-dependent protein Z (ProZ) to be overexpressed in cases 

although with a less extreme p-value of 0.0018 (Figure 4.3). Interestingly, the third 

lowest p-value was obtained for protein/nucleic acid deglycase DJ-1 (DJ-1) (p = 

0.0055), which is also the candidate with the largest effect size (Figure 4.3). Figure 
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4.4 shows the relative protein estimates for cases and controls for each of the three 

aforementioned biomarker candidates. 

 

Figure 4.4 Boxplot of the relative plasma protein levels of transthyretin (A), DJ-1 (B), 
and ProZ (C) in cases and controls. 
The regression line for VTE status is shown in blue. AU = arbitrary units. 
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We found a significant inverse correlation (Pearson’s R = -0.41, p-value = 

0.0046) between the plasma levels of transthyretin and DJ-1 (Figure 4.5). Sequence 

analysis revealed that the proposed optimal target sequence for DJ-1-mediated 

proteolysis is closely resembled by the 34-37th amino acids in transthyretin and may 

suggest that DJ-1-mediates cleavage of transthyretin after position V36 (Mitsugi et 

al., 2013). 

 

Figure 4.5 Scatter plot of relative transthyretin levels versus DJ-1 levels 
Controls are shown in blue and cases in red, with corresponding regression lines. The black 
regression line is created with respect to all samples. AU = arbitrary units. 

 

In our panel of predictive biomarker candidates, we found coagulation factor 

IX, galectin-3-binding protein, and both subunits of the heterodimeric S100A8/9 

(correlation between subunits R2 = 0.96) to be differentially expressed in cases and 
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controls (Supplementary Figure 4.3A-C and Supplementary Table 4.2). These 

biomarker candidates have previously been linked to VTE in retrospective case-

control studies (Heikal et al., 2013; van Hylckama Vlieg, van der Linden, Bertina, & 

Rosendaal, 2000) or in animal models of VTE (DeRoo et al., 2015; Wang et al., 

2017). Moreover, our candidate list included proteins related to the complement 

system and the ProZ-dependent protease inhibitor. The previously described 

predictive VTE biomarker von Willebrand factor showed differences in expression 

levels in the expected direction (i.e. overexpressed in VTE cases) without reaching 

statistical significance (p-value = 0.16) (Smith et al., 2010; Tsai et al., 2002). 

(Supplementary Figure 4.3D and Supplementary Table 4.2). 
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Chapter 4.5 Discussion 

In this study, we present a large-scale MS3-based plasma proteomic profiling 

with the objective to discover novel biomarker candidates with the potential to 

predict incident VTE in the general population. We identified a panel of 46 biomarker 

candidates that included transthyretin, ProZ, and DJ-1 as the most promising 

candidates. Moreover, we revealed a negative correlation between transthyretin and 

DJ-1 that might suggest a mechanistic implication of these biomarkers in the 

pathogenesis of VTE. Finally, we support the concept that the proteins galectin-3-

binding protein and S100A8/S100A9, previously reported to be involved in VTE 

pathogenesis using mouse models, are predictive biomarker candidates in humans. 

Moreover, the identification of galectin-3-binding protein and S100A8/9 as 

biomarker candidates, and the expected direction of difference in von Willebrand 

factor expression, lend conceptual support to the validity of this study. 

Of the 681 proteins identified, 501 proteins were detected in a sufficient 

number of samples to allow multivariate analysis. We chose to present all proteins 

with p-values below 0.05 as biomarker candidates. This resulted in a panel of 46 

proteins. When 501 statistical tests are conducted at a 0.05 significance threshold, 

25 type I errors are expected. In a discovery study, the aim is to identify as many 

promising candidates as possible. Therefore, we omit control of the study-wide type 

I error rate since limitation hereof will increases the chance of type II error. Inflation 

of the type II error will erode the objective of a discovery study when followed up by 
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a validation study. Therefore, we promoted all candidates with p-values below 0.05 

to our future validation study. 

As we identified a high number of candidate plasma proteins associated with 

VTE, it is possible that many proteins act together to increase risk. The associations 

of VTE with elevated thrombin potential and hypofibrinolytic capacity support this 

notion (Karasu et al., 2016; Meltzer et al., 2010; van Hylckama Vlieg et al., 2015). 

Indeed, knowledge about non-linear interactions between single risk factors, such 

as the non-additive effects of prothrombin mutation 20210A and factor V Leiden 

(Simone et al., 2013), will be of pivotal importance to meet the challenge of VTE 

prediction and suggests a need for the development of panels of cooperating 

biomarkers (Demler, Pencina, & D'Agostino, 2013).  

The strongest plasma biomarker candidate that we identified, transthyretin, 

forms a homotetramer that has two binding sites for thyroxine (Pettersson, 

Carlstrom, & Jornvall, 1987). Transthyretin misfolding can lead to amyloidosis, 

which affect as much as 25% of the elderly population, and may be linked to VTE 

through low-grade inflammation (Saghazadeh & Rezaei, 2016; Tanskanen et al., 

2008). Interestingly, the inverse correlation between transthyretin and DJ-1 

identified in this study is consistent with a previously reported proteolytic role for DJ-

1 towards transthyretin reported in a study that also found an association between 

transthyretin amyloidosis and the secretion of an inactive form of DJ-1 (Koide-

Yoshida et al., 2007). An alternative mechanistic explanation to DJ-1-mediated 

protection against VTE could be a reduction of advanced glycation end-products 
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that may contribute to VTE development (Richarme et al., 2015; Wautier & Wautier, 

2013). 

This study showed an upregulation of ProZ in subjects who later developed 

VTE, which might be surprising given its regulatory role in coagulation. Deficiency 

in ProZ has previously been associated with increased risk of VTE in retrospective 

studies (Al-Shanqeeti, van Hylckama Vlieg, Berntorp, Rosendaal, & Broze, 2005; 

Bafunno, Santacroce, & Margaglione, 2011; Sofi et al., 2010). However, in these 

studies blood was sampled after the occurrence of VTE entailing the risk of reverse 

causation. We note that plasma levels of ProZ are known to be affected by warfarin 

treatment and oral contraceptive use, and that a more controversial inverse 

relationship with interleukin-6 levels has been described (Al-Shanqeeti et al., 2005; 

Bafunno et al., 2011; Miletich & Broze, 1987). In plasma, ProZ is bound to a 

stoichiometric excess of protein Z-dependent protease inhibitor and promotes its 

inhibition of coagulation factor Xa (Han, Fiehler, & Broze, 1998). However, ProZ 

also impairs antithrombin mediated inhibition of coagulation factor Xa, which in 

combination with the vulnerability of protein Z-dependent protease inhibitor function 

to lipid oxidation may result in a procoagulant effect of ProZ in microenvironments 

with high levels of oxidative stress (Han et al., 1998; X. Huang et al., 2017). Our 

study is the first prospective study to assess the association between ProZ plasma 

levels and risk of future incident VTE. 

The strength of our study lies in the combination of an epidemiological study 

design with the hypothesis free discovery approach offered by MS3-based 



118 
 

proteomics. The source cohort is recruited form a single-centered survey of the 

general population with a 77% participation rate that limits selection bias. Important 

to the discovery of predictive biomarkers, blood samples were drawn years before 

the VTE events occurred, and the VTE-events were well validated without 

knowledge on the proteome status. Additionally, we exploited the improved 

quantitative accuracy of MS3 and obtained individual untargeted plasma proteomic 

profiles (Ting et al., 2011). 

In general, an important limitation of the data-dependent MS approach is the 

decreasing detectability of proteins with their decreasing abundancy. For example, 

we detected candidates like DJ-1, structural maintenance of chromosomes protein 

5, and complement component C1q receptor in just enough samples to allow 

multivariate assessment. The statistical significance of these candidates was driven 

by large effect size, which may suggest these candidates to be the stronger 

predictive biomarkers for VTE. We offered univariate statistics for proteins that were 

detected in too few samples to yield stable estimates. 

In conclusion, we present a large-scale MS3-based plasma proteomic 

profiling study designed to discover biomarker candidates with the potential to 

predict incident VTE in the general population. In a prospective case-control design 

with a discovery approach, we identified a panel of 46 biomarker candidates 

including transthyretin, ProZ and DJ-1. The biomarker candidates will be further 

validated in a larger, nested case-control study.    
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Chapter 4.7 Supplemental Figures 

 

 

Supplemental Figure 4.1 Comassie Blue stain of SDS-PAGE-separated proteins 
from 17 randomly picked samples. 
After sample depletion, 10 µg of protein was analyzed in each lane. The fraction of protein 
recovered after depletion is given as a percentage of the initial protein content above each 
lane. 
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Supplemental Figure 4.2 Boxplots of raw (A) and median normalized (B) relative 

protein estimates from each TMT label in experimental sample 1 replicate 1 

(used for illustration). Heatmap of unsupervised clustering of Spearman’s correlations of all 
samples. Tromsø Study visit number is indicated above the heatmap (1st visit in grey, 2nd 
visit in black). VTE-status is indicated to the left of the heatmap (cases in red, controls in 

green) (C). SNR = signal-to-noise ratio.  
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Supplemental Figure 4.3 Boxplot of the relative plasma protein levels of coagulation 
factor IX (A), galectin-3-binding protein (B), S100A8 (C), and von Willebrand factor 
(D) in cases and controls. 

The regression line for VTE status is shown in blue. AU = arbitrary units.  
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Chapter 4.8: Supplemental Tables 

Supplemental Table 4.1 Baseline characteristics of full case-control sample set. 
DVT = deep vein thrombosis, PE = pulmonary embolism 

 

 

 

 

 

 

 

 Cases Controls 

Participants 100 100 

Median age [range] 65 [28-83] 65 [28-83] 

Sex (male) 43 43 

BMI (mean±SD) 27.0±4.1 24.8±3.6 

Years to VTE (mean & [range]) 3.82 [0.09-6.85]  

DVT 70  

PE 30  

Cancer (at event) 23  

Unprovoked 40  
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(see downloadable file for Supplemental Table 4.2)  

Supplemental Table 4.2 Transcript identifier for all identified proteins 
Transcript identifier for all identified proteins is given with the number of peptides used for 
identification. For each protein, the number of detections in case- and control samples is 
provided. The standardized regression coefficients and p-values for VTE-status are 
provided for multivariable linear regression with adjustment for age, sex, and BMI and for 
univariate linear regression. Corresponding Uniprot protein or Ensemble gene descriptions 
are provided. 
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