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Abstract 
 

The Speed of Sight: How Characteristics of Alpha Oscillations Relate to Rhythmic 
Sampling and Time Perception 

 
Audrey Morrow 

Despite a large body of research indicating that alpha oscillations are involved 

in visual processing, and particularly that alpha frequency relates to temporal resolution 

and discriminability of stimuli, the mechanisms underlying exactly how alpha shapes 

our conscious perception are still unclear. According to one account, perception could 

be discretely windowed by each alpha cycle into a series of “snapshots” (discrete 

sampling theory), while another account posits that just the strength of perception 

continuously waxes and wanes across each alpha cycle (rhythmic sampling theory). 

This dissertation examines features of alpha oscillations in the context of these theories 

of perceptual sampling. We demonstrate that perception is unlikely to occur in discrete 

snapshots, given that an individual’s alpha frequency (IAF) does not relate to the 

magnitude of their percepts across similar visual illusions that are thought to depend 

on discrete sampling, nor does it relate to the timing of sensory responses associated 

with visual percepts. Finally, we find that alpha does not relate to a bias in duration 

estimation, which should occur if individuals accumulate varying amounts of visual 

information via discrete perceptual snapshots due to their varying IAFs. However, we 

found support for the role of alpha oscillations in modulating the strength of our sensory 

percepts by demonstrating that alpha phase – and its interaction with alpha power – 

relates to the strength of sensory responses associated with visual perception, and that 

IAF relates to individual differences in sensitivity when estimating and discriminating 
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the durations of visual events. These studies provide novel insights into how alpha 

oscillations play a role in visual processing, not just around the timing of a single alpha 

cycle, but also at longer durations of stimulus processing in a way that facilitates our 

perception of time. 
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CHAPTER 1: Introduction to Alpha Oscillations and Theories of 
Perception 

 
Our conscious perceptual experience does not always match the physical sensory 

stimuli which evoke that experience, as has been demonstrated by various visual and 

multisensory illusions. Theories of visual perception often try to explain the discrepancies 

between what is real and what is perceived by examining the neural dynamics associated with 

changes in perception, illusory or otherwise. Experimentally testing the predictions of 

theories of perception can help bolster our understanding of how neural dynamics shape our 

perceptual experience. 

Measuring Neural Activity 

To study temporal aspects of visual perception it is critical to understand how the 

neural activity underlying perceptual processes can be measured. Perception typically occurs 

in response to a stimulus, but perception can also occur in the absence of a stimulus, and 

ongoing neural activity can modulate these perceptual experiences. Two fundamental aspects 

of neural dynamics that underlie perceptual processing are neural oscillations and stimulus-

evoked responses. Neural oscillations are rhythmic patterns of electrical activity produced by 

local populations of neurons referred to as neural generators. The firing of a neuron is an 

electrochemical process in which charged chemicals initiate an action potential by moving 

into the cell body of the neuron; this creates a change in the electrical charge surrounding the 

neuron and also promotes the release of additional chemicals that signal for neighboring 

neurons to fire (Barnett & Larkman, 2007). When this process affects a population of neurons 

in the cortex, the electrical charge is often strong enough to travel through the skull and be 

measured with electrodes on the scalp via electroencephalography (EEG; Buzsáki et al., 

2012; Cohen, 2017; Jackson & Bolger, 2014). Importantly, this process is ongoing and often 

has characteristic temporal regularities, both locally and across brain layers and regions, that 
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are referred to as neural oscillations. 

Neural oscillations have several characteristics that can play different roles in 

cognitive and perceptual processing: frequency, amplitude, and phase. Oscillations are 

defined by their frequency-band range, as measured in Hertz (Hz) or cycles per second, and 

the brain region(s) or process they are associated with. Alpha oscillations, for example, which 

range from 7-14Hz, were discovered over posterior electrode locations, and subsequent 

research has shown activity in this frequency range (and cortical region) to be strongly 

associated with sensory perception (Hindriks et al., 2014; Hindriks & van Putten, 2013). 

Amplitude refers to the height of the wave, or the distance from the peak or trough to the 

mean position of the wave, and it relates to the amount or synchrony of neural activity at a 

given frequency, typically measured in microvolts (μV). Amplitude can be squared to give a 

measure of power (μV2) which represents the amount of energy of an ongoing signal at a 

particular frequency. Finally, phase captures the specific phase angle of an oscillation relative 

to a specific starting point, measured in degrees or radians. In other words, phase describes 

the shift in the wave relative to a reference angle of 0°. While intrinsically related, each of 

these attributes of neural oscillations can be extracted separately and can be studied alone or 

in combination with other oscillatory attributes, stimulus-evoked responses, and behavioral 

measures, to better understand their functional significance. 

Stimulus-evoked response refers to the simultaneous firing of action potentials in 

neurons that are specialized to process a given stimulus. Responses are driven by particular 

sensory properties of the stimulus such as color or spatial location as well as the cognitive 

mechanisms underlying processing that stimulus, such as surprise or decision-making (Luck, 

2005; Sur & Sinha, 2009). These responses do not occur in isolation in the brain (they tend to 

be understood as adding to the ongoing or background oscillatory activity), making them 
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difficult to detect in a single instance due to ongoing neural activity that is not associated with 

stimulus processing. Thus, in order to measure stimulus-evoked activity in humans using 

non-invasive methods, neural activity is typically averaged across a large number of trials 

causing the random activity to cancel out and the stimulus-evoked activity, which always 

occurs at a similar timepoint relative to the stimulus presentation, to emerge (Luck, 2005; Sur 

& Sinha, 2009). These stimulus-evoked responses may be referred to as event-related 

potentials (ERPs), referring to the electrical potential or voltage that changes in the 

population of neurons processing that stimulus “event”. It is important to study both ERPs 

and neural oscillations, and the interactions between these types of activity, to fully 

understand how perception varies from moment-to-moment within an individual, and how 

perception may be different across different individuals.  

Alpha Oscillations in Visual Perception 

Alpha oscillations are involved in many cognitive processes, from bottom-up sensory 

processing in sensory areas, to top-down, long-range communication between sensory and 

frontal areas (Clayton et al., 2018) and frequency, as well as amplitude and phase, are known 

to be involved in different aspects of perception. Alpha oscillations are typically around 10Hz 

in adults, but every individual has a specific peak frequency within the alpha-band range with 

the highest amount of power, referred to as the peak individual alpha frequency (IAF). IAF 

varies across individuals yet is relatively stable within an individual throughout adulthood 

(Grandy et al., 2013; Knyazeva et al., 2018). Alpha frequency is related to the temporal 

resolution of visual perception and the integration of multisensory information. Specifically, 

faster IAF is predictive of better discrimination between successive flashes of light and is 

associated with shorter binding windows within which a number of multisensory illusions 

occur (Cecere et al., 2015; Cooke et al., 2019; Migliorati et al., 2020; Noguchi, 2022; Samaha 
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& Postle, 2015; Venskus et al., 2021). These findings have been supported by research 

modulating IAF using rhythmic-transcranial magnetic stimulation (rTMS), highlighting a 

causal relationship between alpha frequency and improved sensitivity in visual detection (Di 

Gregorio et al., 2022). This wealth of research examining the role of IAF in visual perception 

suggests that alpha frequency is correlated with perceptual sensitivity, particularly around 

temporal aspects of perception.  

Alpha power has long been thought to be linked to cortical excitability in an 

inhibitory manner (Coffin & Ganz, 1977; Kelly et al., 2009; Melcón et al., 2023; Thut et al., 

2006). Reductions in alpha power are observed during states of spatial attention (Dockree et 

al., 2007; Gould et al., 2011; Thut et al., 2006), and increases in alpha power occur when 

participants close their eyes (Goldman et al., 2002). These changes in alpha power also relate 

to visual perception, such that participants are more likely to report seeing a near-threshold 

stimulus on trials when alpha power is low compared to trials when alpha power is high 

(Ergenoglu et al., 2004; Lange et al., 2013; van Dijk et al., 2008). It is also thought that 

prestimulus alpha power can drive sensory representations by modulating the strength of 

early sensory ERPs (Jensen & Mazaheri, 2010; Klimesch, 2011; Samaha et al., 2018). For 

example, Iemi and colleagues (2019) showed that stronger prestimulus alpha power in a 

passive viewing paradigm led to a reduced (inhibited) C1 response – the earliest ERP 

component, thought to reflect afferent activation of the primary visual cortex (V1). These 

findings highlight the role of alpha power in bottom-up sensory processing, but a large body 

of research has also focused on the top-down modulations of alpha-band activity. The 

literature has primarily focused on how alpha power changes in an inhibitory manner during 

preparatory visual attention (Foxe & Snyder, 2011), and an early macaque study 

demonstrated that attention can modulate alpha power even at the layer-specific level of 
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visual cortex (Bollimunta et al., 2011). In conditions with visual stimulation, the local field 

power (LFP) measure of alpha power decreased significantly in certain layers of visual 

cortex. This result indicates how top-down mechanisms such as attention can alpha modulate 

alpha power and support models of alpha oscillations as an inhibitory gating mechanism 

(Jensen & Mazaheri, 2010; Klimesch et al., 2007). Similar findings have been demonstrated 

in human studies and suggest that attention can affect the distribution of alpha power across 

cortical locations (not just layers) when attending to different spatial locations or features 

(Dockree et al., 2007; Gould et al., 2011; Thut et al., 2006). Additionally, these changes in 

alpha power are associated with improvements in task performance, and changes in the 

strength of ERPs (Foxe & Snyder, 2011; Fu et al., 2005; Kelly et al., 2008; Kelly & 

O’Connell, 2013; Sauseng et al., 2005; Slagter et al., 2016). Overall, alpha power seems to be 

related to both spontaneous cortical excitability and endogenous changes in excitability via 

attention. 

Several studies have also shown that the phase angle of prestimulus alpha is related 

to the perceptual detection and the strength of sensory responses. Specifically, research has 

demonstrated a relationship between prestimulus alpha phase and detection in tasks that use 

near-threshold stimuli, such that participants are more likely to detect or correctly 

discriminate stimuli at some phase angles compared to others (Busch et al., 2009; Busch & 

VanRullen, 2010; Mathewson et al., 2009; Ronconi et al., 2017; Samaha et al., 2015, 2017; 

Sherman et al., 2016), but see (Benwell et al., 2017; Ruzzoli et al., 2019). This variation in 

perceptual performance may be due to a phasic modulation of sensory responses. When 

examining the global field power associated with the time window of C1 (the earliest visual-

evoked response), Dou et al. (2022) found that GFP varied based on the alpha-band phase 

angle just before stimulus presentation. This finding suggests that alpha phase may be 
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modulating the strength of the sensory percept via the strength of early sensory activity. 

Interestingly, phase angle was found to interact with alpha power, such that phase angle 

modulated GFP response to a greater extent on trials with higher alpha power compared to 

trials with low alpha power (Dou et al., 2022). In other words, while phase, amplitude, and 

frequency likely each play specific roles in perceptual processing, these oscillatory features 

also interact in nuanced ways to shape our perceptual experience and are worth examining in 

a variety of contexts. 

Theories of Visual Perception 
To better understand how alpha oscillations relate not just to the sensitivity of 

perceiving an event, but the sensitivity of discriminating events in time, and the way we 

perceive time more broadly, it is important to understand temporal theories of visual 

perception. Driven by research highlighting the role of IAF in sensitivity of visual illusions 

(Chota & VanRullen, 2019), VanRullen (2016) proposed two possible theories of how alpha 

frequency might explain these different perceptual outcomes: the discrete sampling theory 

and the rhythmic sampling theory. 

The discrete sampling theory suggests that our perceptual experience is modulated by 

alpha cycles in a way that mimics the frame rate of a film (VanRullen, 2016). Each alpha 

cycle is thought to capture a “snapshot” of the visual environment that is taken at, for 

example, each peak of the wave. These snapshots then get stitched together to form our 

conscious visual perception, losing information that occurred between snapshots. If each 

alpha cycle provides an updated visual percept, IAF should relate to how quickly or slowly an 

individual updates their conscious perception. Thus, this theory has implications for temporal 

aspects of visual perception, such as the perception of certain visual illusions, and, perhaps, 

the perception of the timing or the durations of visual events. Individual differences in the 
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perception of illusions and durations should relate to IAF and IAF in general should relate to 

the timing of sensory responses that index the conscious perceptual experience. If the discrete 

sampling theory is an accurate description of the role of alpha in visual perception, we would 

expect that visual illusions that rely on motion stimuli are not actually processed as 

continuous motion but rather perceived as snapshots which are updated in our conscious 

perception to be moving. For example, in the flash-lag illusion, a stationary flash and a 

moving object that appear in the same location appear to be displaced such that the moving 

object is perceived to have appeared farther along in its trajectory. The magnitude of the 

illusion, or in the flash-lag example the amount of displacement of the moving object, should 

be greater for individuals with slower IAF and who update their percept less frequently and 

thus update the movement of the object later than individuals with faster IAF. This question 

is explored in depth in Chapter 2, by comparing the magnitude of two visual motion illusions 

and a control task. The discrete sampling theory could also relate to how an individual 

perceives time or, more specifically, durations of visual events. If each alpha cycle represents 

a snapshot of the visual environment, then individuals with faster IAF should take more 

snapshots may have a bias towards over-estimating durations. A study by Mioni et al. (2020) 

found a similar effect: when stimulating alpha frequency to be above or below IAF, 

participants tended to over- or under-estimate durations. However, given the stability of IAF 

across adulthood, it is possible that an individual learns to calibrate their time judgments and 

would show no bias at their own non-manipulated IAF relative to an individual with faster or 

slower IAF. In addition to variations in temporal perception, IAF should map on to other 

neural mechanisms, such as the timing of sensory ERPs. If the alpha cycle is actually 

modulating the timing of our visual percepts, so should it modulate the timing of stimulus 

processing; individuals with faster IAF who are updating their perceptual snapshots of visual 
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stimuli more often should also have faster (or earlier) sensory-evoked responses. In other 

words, the latencies of sensory ERPs should be related to the speed of IAF, a hypothesis that 

is evaluated in Chapter 3. Despite some evidence linking IAF to the magnitude of illusory 

percepts (Chota & VanRullen, 2019; Händel & Jensen, 2014), there is little evidence linking 

the magnitude of individual differences across different but related illusions, nor is there 

evidence that IAF is related to the timing of early sensory responses. Thus, to understand 

whether discrete sampling indeed plays a role in how we form our visual percepts, the timing 

of illusory percepts and the timing of sensory responses should be further evaluated in the 

context of IAF. 

The rhythmic sampling theory, on the other hand, suggests that our perceptual 

experience is modulated by alpha cycles in a way that mimics the brightening and dimming 

of a lightbulb (VanRullen, 2016). According to this account, the conscious representation of 

our visual environment is proposed to, for example, become stronger with each peak of the 

wave and weaker with each trough of the wave. Rather than updating the entire percept with 

each cycle, this theory proposes that our visual perception is continuous and instead, the 

strength or sensitivity of our perception changes throughout the alpha cycle. If our perception 

functions like the rhythmic sampling theory suggests, it would mean that individuals with 

faster IAF have more frequent fluctuations in the strength of their sensory representations 

than individuals with slower IAF. Thus, even though high (fast) IAF would theoretically lead 

to the experience of more weak representations in a second, it would also lead to the 

experience of more strong representations in that timeframe, which are critical for making 

perceptual judgements. In addition, IAF should relate to other underlying mechanisms of 

perceptual sensitivity, such as the strength of early sensory ERPs which have been thought to 

map on to the strength and saliency of the perceptual representation (Luck et al., 1990; Salti 
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et al., 2012; Woodman, 2010). Whether the prestimulus phase of IAF is linked to the 

magnitude of sensory responses is explored in Chapter 4. We would also expect behavioral 

differences according to the rhythmic sampling account, such that IAF should be related to 

sensitivity of perceiving ongoing or very brief visual stimuli given that the conscious visual 

percept is continuously representing actual physical stimuli. It has been demonstrated by 

some studies that participants with faster IAF are more sensitive at perceiving brief events 

(Chaumon & Busch, 2014; Tarasi & Romei, 2023; Zhou et al., 2021), but few studies have 

been done to explore whether participants with faster IAF are better at discriminating 

durations of visual stimuli. One study has explored the role of phase in duration perception, 

suggesting it relates to sensitivity in discriminating durations (Milton & Pleydell-Pearce, 

2016), but while phase is intrinsically related to alpha frequency, the relationship between 

IAF and duration perception sensitivity is not well understood. In Chapter 5, we evaluate the 

role of IAF in duration perception, with the hypothesis that the rhythmic sampling account 

would explain differences in task sensitivity, while the discrete sampling account would 

explain differences in bias in the task. This chapter is critical to understanding how these 

theories of visual perception play a role in more long-term perception. By evaluating the 

discrete and rhythmic sampling theory in the context of illusory perception, duration 

perception, and stimulus processing, we can establish support for which perceptual 

mechanism is underlying our visual processing. Overall, the studies outlined in the 

subsequent chapters help to expand on what we know of the role of alpha oscillations in 

sensory processing and shed new light on the role of alpha oscillations in the intriguing but 

understudied topic of time perception.  
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CHAPTER 2: No Evidence for a Single Oscillator Underlying Discrete 
Visual Percepts 

Published in the European Journal of Neuroscience as Morrow and Samaha (2022) 
 

Whether conscious visual perception unfolds continuously or as a series of discrete 

updates remains a topic of much debate (Anliker, 1963; Doerig et al., 2019; Fekete et al., 

2018; Harter, 1967; Herzog et al., 2020; James, 1980; Kristofferson, 1967a; Valera et al., 

1981; VanRullen, 2016; VanRullen & Koch, 2003; C. T. White, 1963; P. A. White, 2018). 

Vision appears continuous to introspection, yet a number of perceptual phenomena are 

difficult to reconcile with a continuously updating perceptual process (Herzog et al., 2020; 

Sokoliuk & VanRullen, 2019). The flash-lag effect and the Fröhlich effect are two such 

examples. In the flash-lag illusion, a brief stationary stimulus (the ‘flash’) is misperceived as 

lagging behind a moving stimulus when the two stimuli are, in fact, spatially aligned 

(Metzger, 1932; Murakami, 2001; Nijhawan, 1994). The Fröhlich illusion refers to the 

observation that the onset of a moving stimulus is often mislocalized as being further along 

the trajectory of motion than it really is (Fröhlich, 1923; Kerzel, 2010). Many variants of 

discrete sampling models have been proposed to account for each effect separately (for 

reviews, see: Herzog et al., 2020; VanRullen, 2016; P. A. White, 2018), but recently 

Schneider (2018) proposed a unifying account of both the flash-lag and Fröhlich illusions 

based on discrete sampling.  

In the model, a repeating process of sampling followed by reconstruction occurs, 

with the sampling process lasting for a specified duration (a ‘perceptual moment’). At the end 

of the perceptual moment, stimuli are registered in their last-known positions and this 

estimate forms the basis of the conscious reconstruction of events. Because moving stimuli 

will be in a different position at the end of the moment than a stationary stimulus, this leads to 

the kind of discrepancy observed between the flash and motion stimulus (flash-lag) or 



11 
 

between the onset of the motion and the position the stimulus is in when conscious perception 

was updated (Fröhlich). Thus, the duration of an individual’s perceptual moment is the sole 

parameter in the model and half of this quantity corresponds to the average flash-lag and 

Fröhlich magnitude. This single-parameter model (Schneider, 2018) provided good fits to a 

large flash-lag dataset from Murakami (2001). 

At the neural level, oscillations in brain activity have long been speculated to be 

involved in discrete perceptual sampling. For instance, within- and between-subject variation 

in alpha-band frequency (7-14 Hz) is predictive of temporal properties of visual (Baumgarten 

et al., 2018; Coffin, 1977; Coffin & Ganz, 1977; Gray & Emmanouil, 2020; Gulbinaite et al., 

2017; Kristofferson, 1967b; Minami & Amano, 2017; Ro, 2019; Samaha & Postle, 2015; 

Shen et al., 2019) and cross-modal perception (Cecere et al., 2015; Cooke et al., 2019; Keil & 

Senkowski, 2018), with higher-frequency oscillations being associated with finer-grained 

temporal resolution. Moreover, the phase of ongoing alpha activity predicts perception of 

near-threshold visual stimuli (Alexander et al., 2020; Busch et al., 2009; Dugué et al., 2011; 

Mathewson et al., 2009; Samaha et al., 2015, 2017; Sherman et al., 2016). Indeed, it has been 

shown that trial-to-trial variability in the magnitude of the flash-lag effect is predictable by 

the phase of ~7 Hz oscillations prior to flash onset (Chakravarthi & VanRullen, 2012), 

consistent with the model proposed by Schneider (2018). And a recent experiment presented 

a luminance-modulating annulus at 10 Hz surrounding a flash-lag display and found that the 

flash-lag magnitude was correlated with the phase of the luminance modulation, suggesting 

that entraining brain activity at an alpha frequency causes changes in flash-lag perception at 

that frequency (Chota & VanRullen, 2019). Thus, discrete sampling at alpha frequencies has 

been advanced as a possible explanation for the flash-lag effect (Chakravarthi & VanRullen, 

2012; Chota & VanRullen, 2019; Sokoliuk & VanRullen, 2019) and the Fröhlich effect has 

https://www.zotero.org/google-docs/?Wa5Fwa
https://www.zotero.org/google-docs/?pEzkiy
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been argued to follow from the same underlying mechanism as the flash-lag effect (Eagleman 

& Sejnowski, 2007).  

Importantly, variations in the flash-lag and Fröhlich effects, if driven by discrete 

sampling at alpha frequencies, should be seen across participants given that significant 

differences in peak IAF have been reliably observed (Grandy et al., 2013; Haegens et al., 

2014). Peak alpha frequency has been described as a trait variable due to evidence linking it 

to genetic factors (Bodenmann et al., 2009). Additionally, an average standard deviation of 

1Hz has been reported for IAF in age-matched participants, suggesting substantive variation 

across individuals (Klimesch, 1997). For these reasons, we expect that IAF will vary within a 

random sample, even without having recorded EEG data. 

The goal of this study was to test the proposition that, if the flash-lag and Fröhlich 

effects are driven by discrete sampling at the alpha frequency, then the magnitude of the 

illusion should be correlated across individuals. That is, given the relative stability of an 

individual’s alpha frequency (Grandy et al., 2013; Haegens et al., 2014), an individual with a 

large flash-lag magnitude (putatively caused by a lower alpha frequency and thus less 

frequent updating) should also have a large Fröhlich effect. Alternatively, no correlation 

between illusion strengths could indicate either that the Fröhlich and flash-lag do not reflect 

the same discrete sampling mechanism, or that they do reflect discrete sampling but at 

different frequencies that are not meaningfully related to one another across individuals. This 

latter notion is supported by a general lack of convergence in the literature on a single time 

scale of the ‘perceptual moment’ across tasks and stimuli, and a lack of a single oscillation 

frequency being related to temporal perception (Herzog et al., 2020; Ronconi et al., 2017; 

VanRullen, 2016). Thus, a correlation between illusion magnitudes would provide a 

compelling (albeit not sufficient) pre-condition for the theory that alpha sampling underlies 
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both illusions. There is also a more general question of whether the flash-lag and Fröhlich 

effects are based on the same mechanism (whatever that may be), which remains 

controversial (Kreegipuu & Allik, 2003; Krekelberg & Lappe, 2001; Whitney & Cavanagh, 

2000) but which can be informed by an individual differences approach. 

We quantified the magnitude of the flash-lag and Fröhlich illusion psychophysically 

by determining the spatial offset required between a motion stimulus and a stationary 

reference stimulus to make the two stimuli appear spatially aligned (i.e., the point of 

subjective equality; PSE). Robust flash-lag and Fröhlich illusions were present in our displays 

and despite the two displays being highly similar, we observed no correlation between 

individual differences in the illusion magnitudes. A Bayesian analysis provided moderate 

support for the null hypothesis of no correlation. It is possible that our stimulus parameters 

were ill-suited to detect a true relationship, or that a true relationship exists between each 

illusion and IAF, but the two illusions do not correlate with each other. However, follow-up 

research performed a robust examination of eight different motion position illusions across 

104 participants and found no significant relationship between the flash-lag and Fröhlich 

illusions (Cottier et al., 2023). Furthermore, Cottier et al. (2023) performed an exploratory 

factor analysis on clusters of illusions that did show significant correlations with one or more 

other illusions and found that each cluster was likely explained by a different factor or 

mechanism. Thus, we conclude that the lack of a relationship between the flash-lag and 

Fröhlich effects is because 1) these two illusions are supported by different mechanisms, 

perhaps based on sampling rates determined by different oscillatory frequencies in the brain 

or 2) distinct mechanisms not based on discrete sampling underlie each illusion. 

Method 
Participants 

Twenty-four participants (15 female, 8 male, 1 prefer not to say; age range: 18-29) 
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were recruited from the University of California Santa Cruz’s (UCSC) online psychology 

research pool. The experiment was approved by the UCSC Institutional Review Board. All 

participants had normal or corrected-to-normal vision and provided written consent to 

participate. One participant’s data was excluded for indicating, during debriefing, that they 

did not understand the instructions. As a result, their data did not follow a typical 

psychometric curve. 

A post hoc power analysis (G*power 3.1; Faul et al., 2007) indicated that 23 

participants achieved 80% power to detect a one-tailed correlation of magnitude 0.5 (alpha 

level = 0.05). Given that the theory we are testing proposes that both illusions are based on 

the same mechanisms of alpha-band sampling, this would predict a strong correlation 

between the two illusion magnitudes. Our group has published similarly sized samples when 

investigating individual differences in theoretically-large associations (Samaha & Postle, 

2015, 2017). However, we sought to quantify more precisely the degree of evidence in favor 

of the null hypothesis provided by our results by using Bayesian analyses (described later).  

Design 
The experiment took place in a dimly lit room with participants positioned in a 

headrest to maintain a distance of 74cm from the computer monitor. Stimuli were generated 

using Psychtoolbox-3 (Kleiner, 2007) running in the MATLAB environment (version 9.8) 

under the Ubuntu (version 18.04) operating system. Stimuli were presented on a middle-gray 

background of 50cd/m2 luminance on a gamma-corrected VIEWPixx EEG monitor (1920 x 

1200 pixels, 120 Hz refresh rate). A central fixation, consisting of a gray crosshair 

superimposed over a black circle 0.4° of visual angle, was present on the screen throughout 

each task. 

 

https://www.zotero.org/google-docs/?6CINeT
https://www.zotero.org/google-docs/?qnGtFO
https://www.zotero.org/google-docs/?qnGtFO
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Figure 1: Diagrams for the flash-lag, Fröhlich, and control tasks, and group-level 
psychometric functions. 

A) From top-to-bottom, example trials of the flash-lag, Fröhlich, and control tasks are 
shown. For the two illusion tasks (flash-lag and Fröhlich), participants judged the location of 
the vertical bars relative to the moving dot. All that differed between tasks was whether the 
moving dot appeared before the vertical bars (flash-lag condition) or after (Fröhlich) and 
whether the bars were presented briefly (8ms; flash-lag) or remained on screen throughout 
the trial (Fröhlich). In the example flash-lag trial, a positive offset is shown which refers to 
the fact that the vertical bars flashed further away from fixation than the moving dot. The 
cartoon head insert represents the perceived illusion and was not part of the display 
participants saw. In the flash-lag effect, the flashed bars appear to lag behind the motion 
stimulus which, for a positive offset, would manifest as the bars appearing to be aligned with 
the dot. In the example Fröhlich trial, the offset equals zero, but the initial position of the dot 
is perceived as advanced along the trajectory of motion. In the contrast discrimination 
(control) task, two wedges were shown simultaneously, one with higher contrast (the left 
wedge in this example) and participants judged the location with highest contrast. The white 
text shown in these schematics was not present on the actual displays. B) Group-level 
behavior (circles) and psychometric function fits (lines) for the two illusion tasks (top) and 
control task (bottom). In both the flash-lag and Fröhlich data, the PSE is reliably non-zero, 
indicating that a positive offset between the dot and bars are required for participants to 
perceive the two stimuli as being aligned. Contrast discrimination thresholds provided 
control data in that they were hypothesized to be independent of the illusion PSEs. Error bars 
represent ±1 SEM across subjects and sometimes too small to be clearly visible. 
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Flash-Lag Illusion 
 

A 0.3° black dot moved horizontally outwards from the center in either the left or 

right hemifield (randomly determined on each trial with equal probability). The dot trajectory 

started at 2° from central fixation and moved horizontally away from fixation for 2000ms at a 

speed of 6° per second. At a randomly selected interval between 500-1500ms during the dot’s 

trajectory, a set of vertical black bars (the “flash”) flashed above and below the dot for 8ms. 

The two bars were 0.13° W x 0.83° H with a distance of 0.83° between them. The flash 

appeared at one of 8 offsets (randomly selected with equal probability on each trial) from the 

set [-0.70°, -0.40°, -0.24°, -0.08°, +0.08°, +0.24°, +0.40° +0.70°] relative to the location of 

the moving dot, which translates to between 4.3° to 11.7° away from central fixation. This 

variation in offset caused the flash to appear “ahead of” or “behind” the dot to varying extents 

(Figure 1). 

Fröhlich Illusion.  
 

This task used the same parameters as the flash-lag for the moving dot and the set of 

bars except that the bars appeared first (either to the left or right if fixation, randomly 

determined), and remained on screen for 2000ms. The dot then appeared midway into the 

2000ms (between 500-1500ms) and immediately began moving (Figure 1). The bars were 

placed using the same set of possible offsets between the onset of the dot trajectory ([-0.70°, -

0.40°, -0.24°, -0.08°, +0.08°, +0.24°, +0.40° +0.70°], randomly selected on each trial), which 

translates to between 5° to 11° from fixation. Similar to the flash-lag illusion, this offset 

caused the dot to appear “ahead of” or “behind” the set of bars to varying degrees.  

Contrast Discrimination (Control) Task.  
 

In addition to the two illusion tasks, we included a third control task that was 
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intended to measure perceptual processes (here, contrast discrimination) different from those 

underlying the flash-lag and Fröhlich illusions. The control task was adapted using stimuli 

from (Iemi et al., 2019) and presented two checkerboard wedges to the left and right of 

fixation (Figure 1). The wedges corresponded to segments of an annular checkerboard with a 

spatial frequency of 5 cycles per degree. The two wedges appeared for 500ms in either the 

upper or lower hemifield with the inner edge of the wedges 3° from central fixation and the 

outer edge 10° away. The right wedge was designated a ‘standard’ and was held constant at 

0.8 contrast (i.e., 80% Michelson contrast) and the left wedge varied randomly across the 

following 10 levels [0.60, 0.740, 0.757, 0.774, 0.791, 0.808, 0.825, 0.842, 0.860, 1.0]. This 

task was a control in the sense that the specificity of any correlation observed between the 

flash-lag and Fröhlich illusions could be tested by comparing this effect to the correlation 

obtained between the illusion PSEs and contrast discrimination thresholds (which, we 

hypothesized, would be uncorrelated). 

Procedure 

Participants were instructed on each task before engaging in practice blocks of 20 

trials. Researchers monitored the practice blocks to ensure participants understood the task 

instructions and reviewed the response curves after each block. Additional practice blocks 

were conducted as necessary. The order of the three tasks was counterbalanced across 

participants. For all tasks, the intertrial interval varied randomly between 900ms and 1400ms 

and response duration was unlimited so that participants would focus on accuracy over speed 

of response. Participants were instructed to maintain fixation on the central crosshair 

throughout the whole trial and not to track the moving object. 

Participants completed 312 trials, split across three blocks, of each illusion task. 

Participants were instructed to respond using the “<” and “>” keys to indicate whether the 
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new object appeared to the left or right of the original object, respectively. In other words, 

participants responded to whether the flash appeared to the left or right of the moving dot in 

the flash-lag illusion or to whether the moving dot first appeared to the left or right of the 

stationary bars in the Fröhlich illusion. 

Participants completed 300 trials of the control task, split into three blocks. In this 

task, participants engaged in contrast discrimination between the two checkerboard wedges. 

The participants responded with the same “<” and “>” keys to indicate whether the left or 

right wedge, respectively, had a greater level of contrast.  

Data Analysis 

Psychometric Functions 
 

Responses were mirrored to remove relative location information (i.e., responses 

were re-coded to reflect “before” or “after” responses rather than “left” or “right” responses, 

the meaning of which was dependent on the hemifield of presentation). When analyzing data 

from the contrast discrimination task, the contrast of the variable-contrast wedge was 

expressed in units of absolute difference from the standard contrast wedge (i.e., 𝛥 contrasts = 

[0.008, 0.025, 0.042, 0.060, 0.2]) and accuracy (proportion correct) was computed for each 𝛥 

contrast level. 

A cumulative normal function was fit to each subject and task using maximum-

likelihood estimation as implemented in the Palamedes toolbox (version 1.9.1; Prins & 

Kingdom, 2018). For the flash-lag and Fröhlich task, the PSE and slope were free parameters 

whereas the lower and upper asymptotes of the curve were fixed at 0.02 and 0.98, 

respectively, to allow for lapses (Prins, 2012). For the contrast discrimination data, the 

threshold and slope were free parameters, and the guess rate was fixed at 0.5 and lapse rate at 

0.02. The across-subject correlation between psychometric parameters in each task was then 
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computed using a Spearman correlation (rho), to mitigate the influence of any potential 

outliers. 

Data from the right and left visual hemifield of each illusion task were initially 

analyzed separately to check for an effect of the visual field location on the correlations 

between illusion response curves. We fit the response curves for right and left hemifield trials 

for the flash-lag and Frohlich illusions separately in order to compare PSEs from the right and 

left visual field. The flash-lag illusion did not produce significantly different PSEs at right 

and left visual fields (t(22) = -0.67, p = 0.51), while the Fröhlich illusion did produce 

significantly different PSEs at right and left visual fields (t(22) = 2.68, p = 0.01) such that 

trials in the right visual field produce a larger Fröhlich effect. To ensure this significant 

difference in PSEs across hemifield was not masking potential correlation between illusion 

magnitudes, we performed a Spearman correlation of the flash-lag and Fröhlich PSEs for 

each visual field. Neither right nor left visual field trials show a significant correlation 

between illusion PSEs (right: r(22) = -0.29, p = 0.19; left: r(22) = 0.07, p = 0.75). Thus, we 

collapsed all trials for further analyses. 

Bayes Factor Analysis 
 

To interpret the weight of evidence our data provide for and against the null 

hypothesis of no correlation, we computed Bayes factors (BF). Here, BF reflects the ratio of 

likelihoods (L) of the data under the alternative hypothesis (the theory; H1) to that of the null 

hypothesis (H0); that is BF1,0= LH1/LH0. Thus, a BF increasing from 1 indicates more evidence 

for H1, whereas a BF approaching zero indicates increasing evidence for H0. Meaningful 

interpretation of a BF requires specifying an appropriate H1, which amounts to specifying a 

theoretically-plausible distribution of effects according to a theory (Dienes, 2014; Rouder et 

al., 2016). We specified two models of H1, corresponding respectively to weak and strong 
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versions of the theory that alpha-based sampling underlies both illusions.  

The first model instantiates the relatively minimal assumption that the theory just 

predicts a positive correlation (rho) between the flash-lag and Fröhlich effect. This was 

specified in the MATLAB implementation of the BF calculator by Zoltan Dienes 

(http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/Bayes.htm) as a uniform 

distribution spanning 0 (lower bound of rho) to 0.9 (upper bound of rho; values greater than 

0.9 were considered unrealistic). (Note that values were Fisher’s z-transformed prior to input 

into the calculator.) This expresses the view that the theory predicts some positive 

relationship that is equally likely to be of small, medium, or large effect size. We refer to this 

as BFU(0, 0.9),0. The actual mean and spread of the observed effect (“sample mean” and 

“sample SE” in the calculator) were taken as the Fisher’s z-transform of the actual rho value 

computed between the illusions with SE = 1/sqrt(df - 1). 

The second BF represents H1 in a more theoretically-motivated way using the ratio-

of-scales heuristic from Dienes (2019). This approach rests on the logic that, if the two 

illusions are caused by the same underlying mechanism, and because both are measured in 

the same units (PSE in degrees of visual angle, or DVA), a strong version of the theory 

predicts that they should be identical. That is, the slope (β) of a line fit to the Fröhlich by 

flash-lag PSEs (e.g., Figure 3A) should equal 1. This predicted effect size for H1 was 

specified in the Dienes code as a half-normal distribution (to reflect the directional nature of 

the hypothesis) with a mean of zero and an SD of β/2 = 0.5. Since the prediction that β = 1 is 

a maximum effect that assumes no error, the specification of a half normal with a mean of 

zero is a conservative estimate of the H1 mean since it predicts that smaller effects are more 

likely. Dividing the predicted value by 2 to achieve an SD of 0.5 is a further conservative 

correction that halves the predicted effect, as recommended in the literature (Dienes, 2014, 

http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/Bayes.htm
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2019). We refer to the BF according to this model of H1 as BFHN(0, 0.5),0. The observed β and 

SE from the data were estimated as the slope and standard error of an ordinary least-squares 

regression predicting the flash-lag PSE from the Fröhlich PSE and were input into the BF 

calculator. 

Results 
 

We quantified the magnitude of the flash-lag and the Fröhlich illusion within the 

same individuals to assess their correlation. The data were well-described by a psychometric 

function (R2 across all subjects in both tasks: mean = 0.98, range = [0.92, 0.99]; see Figures 1 

and 2). As a first step, we tested whether illusory percepts consistent with the flash-lag and 

the Fröhlich effects were observed in our displays. Because each illusion was quantified as 

the PSE whereby the offset between the dot and bar stimuli would be judged as either 

“before” or “after” 50% of the time, a PSE of zero DVA would correspond to veridical 

perception, or a 0ms difference between dot and bar stimuli. Consistent with illusory 

percepts, however, the mean (±SEM) PSE in the flash-lag task was 0.12 (±0.02) DVA or 20 

(±3.33) ms (given a dot speed of 6 degrees per second), which was significantly different 

from zero, as assessed with a repeated-measures t-test (t(22) = 5.74, p < 0.0001). The mean 

Fröhlich PSE was 0.15 (±0.03) DVA or 25 (±5) ms, which also differed from zero (t(22) = 

5.43, p < 0.0001). A positive PSE indicates, in the flash-lag case, that the bars needed to be 

flashed further from fixation than the moving dot by 20ms (0.12 DVA) in order to be 

perceived as aligned with the dot (i.e., to offset the illusory lag of the flash). In the Fröhlich 

task, the bars needed to be 25ms (0.15 DVA) further from fixation than the onset of motion in 

order for the motion onset to be perceived as aligned with the bars (consistent with a 

misperception of the motion stimulus as being advanced along the motion trajectory). Under 

comparable conditions to those used here, similar magnitude illusions have been reported for 
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both the flash-lag and Fröhlich effect (Eagleman & Sejnowski, 2007). Additionally, Kanai et 

al. (2004) found flash-lag effects in the range of 20-60ms, with the flash-lag magnitude 

increasing with increasing eccentricity of the moving stimulus, decreasing eccentricity of the 

flashing stimulus, and increasing distance between the stimuli, among other factors. Contrast 

thresholds from the control task were Δ0.024 (±0.002), indicating that observers could 

discriminate, on average, a contrast difference between wedges of 2.4% with 75% accuracy.  

 
Figure 2: Subject data and psychometric function fits for the flash-lag and Fröhlich illusion 
tasks. 

https://www.zotero.org/google-docs/?q1Hafo
https://www.zotero.org/google-docs/?9WcQtN
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Individual subject data, shown in circles, and psychometric function fit lines for the two 
illusion tasks. Dashed lines denote the PSE for each subject. P-values inset in each panel 
show the result of a one-tailed bootstrap analysis determining if a positive PSE was present 
for each subject (i.e., if the illusion magnitude was significant). 

We also checked whether participants showed significant illusory percepts at the 

single subject level using a bootstrap method. A bootstrap analysis was performed on each 

participant’s data where the total number of trials were randomly selected, with replacement, 

from each participant’s trials. This means a trial could have been left out or included multiple 

times in any given bootstrap sample. The bootstrap sampling procedure was performed 5,000 

times to create a distribution of PSEs for each participant from their own data. Using these 

distributions, we calculated the proportion of bootstraps that had PSEs below zero, which 

would indicate the lack of an illusory percept. This was done to generate a p-value (one-

tailed) for each participant for each illusion (Figure 2). A total of five and seven participants, 

for the flash-lag and Fröhlich illusions, respectively, did not have a significant illusory effect. 

These participants were not removed from the analysis, however, since all but two 

participants had a significant illusion effect in at least one of the illusions, and we are 

interested in the relationship (or lack thereof) between illusion PSEs in each subject. 

We next directly compared the magnitudes of the two illusions as well as the split-

half reliability of the PSE found for each illusion. The two illusions were of a comparable 

magnitude as they did not significantly differ from one another when assessed with a paired-

samples t-test (t(22) = 1.05, p=0.304). To ensure reliability of our PSE measurement (an 

important prerequisite for detecting a correlation across subjects), we performed a split-half 

reliability analysis by fitting psychometric functions to all odd or even trials from each 

illusion and computing the Spearman-Brown split-half reliability to quantify the proportion of 

variance explained in PSE by random variation (Eisinga et al., 2013; Salkind, 2006). A 

repeated-measures t-test showed that the PSEs derived from each half of the data were not 
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significantly different for either illusion task (Flash-lag: t(22) = 1.26, p = 0.22; Fröhlich: t(22) 

= -1.31, p = 0.20) and a Spearman correlation showed the PSEs from each half of the data 

were strongly correlated for both illusions (Flash-lag: r(22) = 0.82, p < 0.001; Fröhlich: r(22) 

= 0.91, p < 0.001). Finally, both tasks show high reliability according to the Spearman-Brown 

split-half reliability score, for which the flash-lag PSE was 0.915 and the Fröhlich PSE was 

0.967. This indicates that only about 8.5% and 3.2% of the variance in our quantification of 

the flash-lag and Fröhlich illusion PSEs, respectively, is due to random variation. 

Regarding our main hypothesis, we next asked whether the magnitude of an 

individual’s flash-lag illusion (flash-lag PSE), was predictive of the magnitude of their 

Fröhlich illusion (Fröhlich PSE). A relationship between the flash-lag illusion PSEs and the 

Fröhlich illusion PSEs would be expected if the two illusions result from each individual’s 

unique underlying oscillatory sampling frequency. However, the across-task correlation in 

PSEs was virtually zero (rho(22) = -0.001, p = 0.97, 95% bootstrap CI = [-0.41, 0.39], 

indicating no evidence for a relationship between these illusions (Figure 3A). To appreciate 

the uncertainty associated with each correlation value, we conducted a bootstrap analysis that 

randomly sampled with replacement 23 PSEs from the pool of all participant data, meaning 

that the same participant may be represented multiple times in a sample. This was done 

50,000 times to generate a distribution of samples. For each bootstrap sample, we correlated 

PSEs across tasks in order to also generate a distribution of correlations (Figure 3, right 

column), representing the uncertainty associated with the correlation between tasks. As 

evident from the bootstrap distributions presented in Figure 3A, the true correlation could 

plausibly span a wide range between ±0.4, though the mean of this bootstrap distribution is 

virtually zero (-0.006). 
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Figure 3: Across task correlations between psychometric thresholds for the flash-lag, 
Fröhlich, and control task pairs. 

A) Correlation (left) and bootstrap analyses (right) revealed virtually zero correlation 
between the flash-lag and Fröhlich illusion PSE. This indicates that the magnitude of one 
illusion is not predictive of the magnitude of the other. B) No correlation was found between 
Fröhlich PSE and contrast thresholds. C) An unexpected medium-sized positive correlation 
was observed between flash-lag PSE and contrast threshold, indicating that an individual 
capable of discriminating a small change in contrast has a smaller magnitude flash-lag 
effect. We speculate that this may be due to the very brief flash used in our display (8ms), 
accurate perception of which may be aided by a lower contrast threshold. Lines of best fit are 
shown in grey and Spearman rho values with 95% bootstrap CI are provided. 
 

A Bayesian analysis (Dienes, 2014) that quantified the likelihood of the data 

belonging to the null hypothesis (H0) of no correlation versus the alternative hypothesis (H1) 

of a positive correlation (a weak version of the theory), indicated that the data are 5.56 times 
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more likely to have been generated under the null (BFU(0, 0.9),0
 = 0.179). Using a hard version 

of the theory to model H1, according to which the two PSEs are equal, resulted in a BFHN(0, 

0.5),0
 = 0.419, indicating that the null is 2.38 times more likely than the alternative. Thus, 

depending on the exact implementation of the theory, the data are approximately 2 to 5 times 

more likely under the null. 

Next, we tested for associations between contrast discrimination thresholds and PSEs 

in each illusion task. As shown in Figure 3C, contrast thresholds were positively correlated 

with flash-lag PSEs (rho(22) = 0.42, p = 0.04, 95% bootstrap CI = [-0.03, 0.72]), indicating 

that individuals capable of discriminating smaller differences in contrast had smaller flash-lag 

illusions. (We speculate on the reason behind this correlation in the discussion.) No 

correlation was observed between contrast thresholds and the Fröhlich PSE (rho(22) = -0.08, 

p = 0.71, 95% bootstrap CI = [-0.51, 0.35]). Because contrast thresholds unexpectedly 

explained variance in the flash-lag effect, we sought to test if an effect of Fröhlich PSE on 

flash-lag PSE emerged when controlling for the influence of contrast discrimination. 

However, a multiple regression model that predicted individual differences in the flash-lag 

PSE using the Fröhlich PSE and contrast thresholds (as a covariate) did not reveal an 

association between the two illusions (β = 0.07, SE = 0.15, t(22) = 0.45, p = 0.66), consistent 

with the results from the main correlation analysis. 

For completeness, we also analyzed correlations between the slope of the 

psychometric functions from each task. Whereas the PSE in the illusion tasks capture the 

magnitude of each illusion (and is therefore the quantity of interest for the theory under 

consideration), the slope of the psychometric function reflects the general reliability or 

sensitivity of an individual's perceptual system as it captures the degree to which changes in 

the stimulus value translate to changes in behavior. We found a medium sized positive 
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correlation between the flash-lag and Fröhlich slopes (rho(22) = 0.41, p = 0.05), indicating 

that an individual who is more sensitive to changes in offset in the flash-lag illusion is also 

more sensitive to changes in offset in the Fröhlich illusion. It is possible the correlation 

between slopes could be due to a shared mechanism underlying the sensitivity of illusory 

percepts, such as rhythmic sampling. 

Discussion 
This study assessed the theory that the same mechanism of discrete perceptual 

sampling - oscillations at a given frequency - could explain the flash-lag and Fröhlich 

illusions. We induced illusory percepts in both the flash-lag and Fröhlich displays, yet the 

correlation between illusion sizes was virtually zero. A Bayesian analysis allowed us to 

determine the likelihood of our data being obtained from the hypothesized distribution 

according to alpha-based sampling theory. The BF indicated that responses to the flash-lag 

and Fröhlich illusion tasks were between 2.4-5.5 times more likely to come from the null 

distribution than various theory-derived alternatives. While additional research using EEG or 

MEG is needed to further support these conclusions, our current data suggest it is unlikely 

that a single oscillator, assumed to vary in frequency across subjects, is underlying individual 

variations in the flash-lag and Fröhlich effects, as this should drive a correlation between 

illusory percepts across tasks.  

Although we observed moderate evidence for a null effect, there are several 

underlying reasons for obtaining null results. It could still be that discrete sampling theory is 

true and is neurally instantiated via oscillations, but that these two illusions rely on different 

frequencies which are themselves uncorrelated. A large body of work has linked alpha-band 

oscillations to temporal windows of processing (Cecere et al., 2015; Coffin & Ganz, 1977; 

Cooke et al., 2019; Grabot et al., 2017; Gray & Emmanouil, 2020; Kristofferson, 1967b; 
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Minami & Amano, 2017; Samaha & Postle, 2015; Shen et al., 2019; Valera et al., 1981; Wutz 

et al., 2018) and even specifically to the flash-lag illusion (Chakravarthi & VanRullen, 2012; 

Chota & VanRullen, 2019). On the other hand, lower-frequency oscillations in the theta range 

are also often implicated in establishing temporal windows of perception (Nakayama et al., 

2018; Wutz et al., 2016; for review see VanRullen, 2016). Indeed, even different tasks within 

the same subjects can reveal different frequencies related to the temporal parsing of visual 

stimuli (Ronconi et al., 2017), indicating that multiple and task-dependent rhythms may 

underlie the perceptual moment. Consistent with these variations in temporal parsing of 

visual stimuli is the problem of “multiple temporal resolutions”, as outlined by Herzog et al. 

(2020). Different perceptual phenomena attributed to discrete sampling have been explained 

by appealing to window sizes ranging from 3ms up to 450ms depending on the processing 

demands elicited from the particular visual features (Drissi-Daoudi et al., 2019; Holcombe, 

2009). One possibility is that differential top-down attentional control is allocated during 

perception of the different tasks/stimuli, resulting in variations in duration of temporal 

integration windows. Our results are compatible with a model according to which the flash-

lag and Fröhlich effect are driven by discrete sampling but at different frequencies or 

temporal sampling rates. However, on this theory, our finding that the two illusions were of 

very similar magnitude (Figure 1) may still require further explanation, as different neural 

frequencies or sampling rates underlying the two different illusions would likely result in 

different magnitudes of illusions even at the group level.  

A second possible interpretation of our null effect is that these illusions do not rely on 

discrete sampling at all, contra Schneider (2018). Other viable accounts of the flash-lag and 

Fröhlich effects have been put forth and recently defended. Regarding the flash-lag, a recent 

review argues that motion extrapolation is currently the best account (Hogendoorn, 2020). 
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Motion extrapolation refers to the prediction of a moving object's trajectory based on its 

recent past. This is distinct from discrete sampling (or the related post-diction account of the 

flash-lag) in that the motion percept is not reconstructed after the fact, but is instead based on 

a prediction about where the stimulus will be. Motion extrapolation mechanisms have been 

observed as early as the retina (in some species) and could therefore begin very early after 

motion onset to produce a percept of the motion stimulus that is advanced with respect to a 

stationary flash (Hogendoorn, 2020). Regarding the Fröhlich effect, it has been argued that 

metacontrast masking plays a crucial role (Kerzel, 2010). In metacontrast masking, the mask 

and target do not overlap and stimulus onset asynchronies between 40-100ms between target 

presentation and mask presentation create strongest masking effects (Kerzel, 2010). It has 

been proposed that metacontrast masking suppresses the initial trajectory of the moving 

stimulus, thus creating the illusion that it begins farther ahead than its true starting location 

(Piéron, 1935). Because the moving dot is already along its trajectory when the flash appears 

in the flash-lag effect, this masking effect of the beginning trajectory would not affect 

perception in the flash-lag illusion. Thus, it remains an open possibility that these two 

illusions are based on different mechanisms, either one of which may not be discrete 

sampling.  

A third possibility is that our stimulus design was suboptimal for detecting a true 

relationship. For instance, an unexpected correlation was found between PSEs in the flash-lag 

illusion and the contrast discrimination task. The control task was primarily administered to 

rule out the possibility that any observed correlation between the two illusion PSEs was a 

trivial reflection of any two tasks being correlated across individuals. Although this point is 

moot since no correlation was observed between the two illusion tasks, we speculate that the 

observed correlation between contrast thresholds and the flash-lag PSE might have occurred 
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since the flash in our flash-lag display was very brief (8ms) and perhaps having a lower 

contrast threshold could translate to more veridical flash localization and a smaller flash-lag 

effect. A longer flash should reduce variance in flash-lag estimates due to individual 

differences in contrast perception. However, a multiple regression model of our data that 

included contrast discrimination thresholds as a covariate still failed to find any relationship 

between the two illusions. Future studies should consider increasing the flash duration to 

facilitate perception of the flash, while also keeping in mind how the speed and proximity of 

the moving dot may interact with a longer flash and impact illusory effects. An additional 

stimulus consideration that may affect both the flash-lag and the Fröhlich effect is the 

interaction of each illusion with low-level motion processing. The flash-drag effect suggests 

that moving stimuli may distort the surrounding visual space and, thus, would affect 

perception of any nearby stationary stimuli (Whitney & Cavanagh, 2000). Moving the bars 

farther away from the horizontal trajectory of the dot in both illusion tasks could help to 

mitigate any distortion caused by low-level motion processing. 

Lastly, a lack of variation in individual sampling rates or illusion magnitudes could 

also produce no correlation between PSEs. That is, no correlation would be expected if for 

every subject the true magnitude of each illusion were the same and variability in PSEs were 

due solely to response bias or some other factor. However, this account would also violate the 

hypothesis that individual differences in peak alpha frequency are modulating individual 

differences in visual sampling rates, since the distribution of peak oscillation frequencies in a 

random sample of the population is known to vary (Grandy et al., 2013; Haegens et al., 

2014), and the same should be expected of our sample. Additionally, the split-half reliabilities 

of our PSE estimates were each very large (>0.9), making it unlikely that random variation in 

PSE estimation was masking any true cross-task correlation. 
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Although it can be difficult to know the source of a null effect, even if evidence in 

support of the null can be shown (as with our Bayesian analysis), our data can inform future 

studies. The task parameters used in this study produced the expected illusory effects of the 

flash-lag and Fröhlich illusions on average (though not significantly for several subjects) and 

such parameters could be used to test other perceptual phenomena or mechanisms related to 

discrete sampling theory. Alternatively, adjusting these task parameters or comparing the PSE 

across additional tasks could provide further insight into how individuals sample visual 

information, or more specifically, what stimulus designs might better capture the 

hypothesized “perceptual moments”. Although our current data do not support the hypothesis 

that individual differences in perceptual moments are driving these two visual illusions, these 

findings are not sufficient to rule out discrete sampling theory altogether. They are also not 

sufficient to rule out the role of alpha oscillations or other frequencies in perceptual sampling 

in the two illusions in different ways. However, it should be noted that the correlation 

between psychometric function slopes lends more support to the rhythmic sampling theory, 

which suggests that alpha oscillations modulate the strength of percepts and may explain why 

some participants show more sensitivity or seemingly have more precision in their perceptual 

experience of both illusions. Future studies would benefit from measuring oscillatory activity 

during both tasks to further explore the underlying perceptual mechanisms. 
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CHAPTER 3: Individual Alpha Frequency Appears Unrelated to the 
Timing of Early Visual Responses 

Published in Frontiers in Neuroscience as Morrow, Dou, and Samaha (2023) 
 

Brain dynamics in the alpha-band (7-14 Hz) have been shown to predict various 

aspects of visual perception, such as the probability of target detection as well as temporal 

properties of perception. Although there is much evidence to support the involvement of 

alpha power in the suppression of neural activity and perceptual reports (reviewed in Samaha 

et al., 2020) as well as growing evidence regarding the relevance of alpha phase (VanRullen, 

2016), it is less clear how alpha frequency may be involved in shaping visual information 

processing. Two theories have been proposed for how alpha-band frequency dynamics may 

relate to variations in visual perception: the rhythmic perception account and the discrete 

perception account (VanRullen, 2016). The rhythmic perception account proposes that alpha 

oscillations reflect phasic changes in neuronal excitability which principally modulate the 

intensity of perception and/or sensory responses. On the other hand, the discrete perception 

account suggests that alpha oscillations are involved in the timing and discretization of 

sensory events. According to these accounts, an individual’s alpha frequency would either be 

related to the frequency and duration of excitability changes (rhythmic perception) or the 

discretization rate of perception (discrete perception). As recent reviews (Kasten & 

Herrmann, 2022; Menétrey et al., 2022) and experiments (Morrow & Samaha, 2022) have 

pointed out, current evidence does not clearly support one account over the other. 

Studies have demonstrated a relationship between an individual’s peak alpha 

frequency (IAF) and temporal properties of their perception but have not necessarily 

disentangled rhythmic from discrete perception. For example, several studies have linked 

variation in IAF to the temporal resolution of visual (Baumgarten et al., 2018; Coffin & 

Ganz, 1977; Gray & Emmanouil, 2020; Samaha & Postle, 2015) and multisensory perception 

https://www.zotero.org/google-docs/?nJZ9Sf
https://www.zotero.org/google-docs/?nJZ9Sf
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(Cecere et al., 2015; Cooke et al., 2019; Migliorati et al., 2020; Noguchi, 2022; but see 

Buergers & Noppeney, 2022), typically finding that higher alpha frequencies correspond to 

shorter windows of integration. These experiments, however, do not rule out intensity-based 

accounts whereby IAF is related to the duration of the period of excitation and inhibition. For 

instance, according to the rhythmic perception account, one of the stimuli in each trial (or the 

gap between stimuli) may be more likely to be missed (rather than integrated) due to a longer 

integration window (Fan, 2018). This account would be consistent with a growing body of 

literature demonstrating that alpha-band phase modulates perceptual detection (Ai & Ro, 

2014; Alexander et al., 2020; Busch et al., 2009; Dugué et al., 2011; Mathewson et al., 2009; 

Samaha et al., 2015, 2017) and neuronal responses (Dou et al., 2022; Dougherty et al., 2017; 

Haegens et al., 2011; Spaak et al., 2014). 

Here, we sought neural evidence for the hypothesis that IAF modulates the timing of 

sensory processes, which would be consistent with the discrete perception account. 

Specifically, we examined whether individual differences in alpha frequency predict the 

timing of early visual responses with a focus on the striate and extrastriate visual evoked 

potentials. We examined data from two studies that used high-contrast checkerboard stimuli, 

which are known to elicit large C1 event-related potential (ERP) responses. We extracted IAF 

from a prestimulus window in order to assess whether the frequency of prestimulus alpha-

band activity modulates the onset and peak latency of early visual-evoked potentials. If alpha 

frequency is related to the discretization of visual perception, then we might expect higher 

frequencies to be associated with earlier onset sensory responses (i.e., quicker perceptual 

updates). 
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Method 
Task-Irrelevant Viewing Paradigm 
 

Two electroencephalogram (EEG) datasets were analyzed in this study due to the 

comparable stimuli used across the two experimental designs. The first dataset comes from a 

study conducted by Iemi et al. (2019) and is available for download at https://osf.io/yn6gb/. 

The data were collected from 27 participants (Mage = 26.33, SEM = 0.616; 14 female) with 

normal or corrected vision, although three participants’ data were excluded from the analysis 

because they either did not finish the experiment or did not exhibit the C1 component in the 

lower visual field (LVF). In the original experiment, a pair of task-irrelevant, full-contrast 

checkerboard wedges were presented for 100ms in either the upper (UVF) or LVF (Figure 4). 

These wedges were designed with spatial frequency, location, and size characteristics that 

should activate the primary visual cortex in both hemispheres and produce a constructive 

summation of electrical fields, resulting in robust C1 responses (Figure 5). Participants were 

presented with an arrow at fixation indicating leftward or rightward direction while the task-

irrelevant checkerboard stimuli were presented in UVF or LVF with equal probability. 

Participants were tasked with reporting the direction of the central arrow using the “<” or “>” 

key for left or right, respectively, while ignoring the checkerboards. Experimental blocks 

were 90 trials each with 60 stimulus-present trials and 30 stimulus-absent trials randomly 

distributed. Participants completed 9 blocks, totaling 810 trials. This dataset was collected 

from 64 channels arranged according to the International 10-10 system using a BioSemi 

ActiveTwo system with a 1024 Hz sampling rate. All channels were referenced online to the 

CMS-DRL ground electrodes. More detail of experimental procedures can be found in the 

original study (Iemi et al., 2019).  

https://osf.io/yn6gb/
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Figure 4: Stimulus Design for the task-irrelevant viewing and covert attention paradigms. 

Data sets were analyzed from two different experimental designs that both presented large 
checkerboard wedge stimuli to either the upper or lower visual field to evoke a large C1 
component response. A) In the task-irrelevant viewing paradigm, a fixation was presented for 
a variable inter-trial interval (ITI) and then two full contrast checkerboard wedges were 
presented for 100ms to either the upper or lower (pictured) visual field. A question mark then 
appeared to signal to the participant to push a button with their dominant hand to indicate 
which direction a fixation arrow had pointed during the stimulus presentation. B) In the 
spatial attention task, a cue highlighted either the upper or lower half of the fixation for 
200ms and indicated to participants to covertly shift their attention to the upper or lower 
visual field. After a 1200ms cue-target interval (CTI), the same two checkerboard wedges 
were presented for 80ms, except the right wedge varied in contrast between 60-100% while 
the left wedge was held at 80% contrast. Participants were then asked to indicate which 
wedge had a greater level of contrast via button press (“<” or “>” for left or right, 
respectively). 

Covert-Attention Paradigm 
 

 The second dataset comes from a cued spatial attention experiment that was 

conducted in our lab which has not yet been published. This study was approved by the 

Institutional Review Board of University of California Santa Cruz (UCSC). Twenty-one 

participants from the UCSC community completed the experiment (Mage = 22; SEM = 0.941; 

15 female, 4 male, 1 non-binary, and 1 undisclosed). Three participants were excluded from 

the analysis for either poor task accuracy (1 participant) or the lack of a clear C1 ERP 
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response (2 participants). All participants had normal or corrected-to-normal vision and were 

compensated with course credit and a $20 gift card. Data and task scripts can be found at 

https://osf.io/5egkp/. 

This cued attention experiment used an adapted version of the checkerboard stimuli 

for a covert-attention cued contrast discrimination task. This task also presented the two 

checkerboard wedges to either the upper or lower visual field, but participants were instructed 

to attend to the cued visual field and report which wedge had a greater contrast. The right 

wedge was fixed at 80% contrast while the left wedge varied between 60-100% contrast. On 

each trial, a fixation consisting of a white cross centered within a black circle of 0.5 degrees 

of visual angle (DVA) on a 50% gray background was present on the screen for the duration 

of the experiment. The top or bottom of the fixation circle turned white for 200ms to indicate 

for participants to shift their attention to the cued visual field. After a cue-target interval of 

1200ms, the two bilateral checkerboard wedges were presented to either the upper or lower 

visual field. The stimulus code was copied from Iemi et al. (2019) and consisted of wedge 

segments taken from a radial checkerboard pattern with 15 circles and 68 radial lines, with 

the first, inner circle beginning 3 DVA from central fixation and the final, outer circle ending 

10 DVA from central fixation. The wedges were presented for 80ms, and participants had 

800ms to respond with “<” or “>” button press according to whether they perceived the left 

or right wedge to have a great amount of contrast, respectively. The right edge was always 

presented at 80% contrast and the left wedge varied in contrast such that it was randomly 

presented at either 60%, 100% or one of eight linearly-spaced contrast levels between 74% 

and 86% contrast. Participants completed 10 blocks of 100 trials each, within which the cue 

was valid 80% of the time. This second dataset was recorded from 64 electrodes 

corresponding to the International 10–10 system using an actiCHamp EEG system with a 
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1000 Hz sampling rate. All channels were referenced online to channel Cz. The stimulus 

presentation was controlled by Psychtoolbox 3 (Kleiner, 2007; Pelli, 1997) running in the 

MATLAB environment on an Ubuntu operating system. 

EEG Preprocessing 

Raw data from both datasets were preprocessed in the same way using custom 

Matlab scripts in conjunction with EEGLAB toolbox functions (Delorme & Makeig, 2004). 

Datasets were high-pass filtered at 0.1 Hz and low-pass filtered at 40 Hz using a zero-phase 

Hamming-windowed sinc FIR filter, downsampled to 500Hz, and epoched to include trial 

data from 2s before through 2s after stimulus onset. The data were manually inspected to 

remove trials and channels with artifacts such as muscle movement or eye blinks that 

overlapped with stimulus presentation. Noisy channels were interpolated and an independent 

components analysis using the INFOMAX algorithm (EEGLAB function binica.m) was used 

to remove ocular artifacts. For the task-irrelevant viewing dataset, an average of .58 

electrodes were interpolated using spherical spline interpolation and an average of 30.46 trials 

were rejected for each participant. For the covert attention dataset an average of 3.4 

electrodes were interpolated using spherical spline interpolation and an average of 164.6 trials 

were rejected for each participant. Data were then re-referenced to the average of all channels 

and baseline corrected using a 200ms prestimulus baseline window. 

Analysis  
The goal of our study was to extract the IAF for each subject along with the timing of 

their early sensory responses (with a focus on the C1 component). To this end, we first 

identified the electrode for each subject that had the largest C1 amplitudes for upper and 

lower visual fields. For 73% of subjects, POz was the best C1 electrode, 9% had PO4, 7% 

had PO3, 7% Pz, 2% P1, and 2% Oz. These electrodes were used for all subsequent analyses.  
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Individual Alpha Frequency Computation (IAF) 
 

IAF was computed from data from a 500ms prestimulus window. Each trial was 

zero-padded (frequency resolution 0.15 Hz), tapered with a Hamming window, and linearly 

detrended before performing an FFT (Samaha & Postle, 2015). Single-trial power estimates 

were log10 transformed and IAF was computed as the local maximum in the trial-averaged 

spectrum within a frequency range from 7 to 14 Hz (Figure 5). 

 
Figure 5: The C1 and N150 Event-Related Potentials (ERPs) and an individual power 
spectrum. 

A) Average ERPs of LVF (blue line) and UVF (red line) stimuli in the task-irrelevant viewing 
dataset (left) and the covert-attention task (right). ERPs were recorded from the individual 
electrode with the largest C1 component. The C1 peaked around 90ms and the N150 peaked 
within the time window of 100ms to 200ms. B) Average ERPs (left) of one individual 
participant with points showing the onset time (light blue dots) and peak time (green dots) of 
the C1 and N150 components. The same participant’s power spectrum from prestimulus data 
is shown in the right panel. Peak frequency was defined as the frequency with largest 
amplitude in the range form 7-14 Hz. 
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ERP Latency Measures 
 

We used two different approaches to compute the latency of the early sensory 

responses (the C1 component and the subsequent N150 component). First, we identified the 

peak latency of the C1 and N150. C1 peaks were identified by recording the timing of the 

local maximum (LVF stimulus) or minimum (UVF stimulus) ERP voltage in a 40-96ms 

window after stimulus onset. Due to the large C1 peaks overlapping and influencing the later 

N150 component, a different window was used for the UVF and LVF N150 peaks. N150 

peaks in the LVF were identified from within a 96-230ms window, and N150 peaks in the 

UVF from within a 120-230ms window. Because the peak latency is an arbitrary waveform 

feature and possibly contaminated with noise, we additionally computed the onset latency of 

each component, measured as the 50% fractional latency (Luck, 2005). Onset latency was 

computed as the timepoint at which each ERP reached 50% of its peak amplitude value 

relative to 0µV. For analyses involving the N150 onset measures, two participants were left 

out from the attention task and four participants were left out from the task-irrelevant viewing 

dataset due to positive N150 peak amplitudes. Lastly, we also computed difference scores 

between the C1 and N150 component latencies to derive a measure of the relative timing 

between ERP components. Specifically, we subtracted C1 peak latencies from N150 peak 

latencies and C1 onset latencies from N150 onset latencies separately for UVF and LVF. 

These difference scores were used to capture the possibility that IAF was related not to the 

absolute latency of the responses but to the relative latency with which the responses were 

generated in the visual system. Thus, we derived a total of 12 latency metrics: C1 peak and 

onset, N150 peak and onset, and C1-N150 peak and onset difference, each for upper and 

lower visual field stimuli.  
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Figure 6: Peak frequency of the difference ERP for the combined tasks and the correlation 
between task-irrelevant viewing and covert attention paradigm peak frequencies. 

The left panel shows the grand average difference ERP (LVF-UVF), which captures 
spatially-specific activity and boosts the signal-to-noise ratio in our data. The middle panel 
shows the grand averaged power spectrum of the difference ERP within the post-stimulus 
time window of 0ms to 500ms, revealing a clear alpha peak. The right panel illustrates the 
relationship between peak frequency of difference ERP (computed between 7 and 14 Hz) and 
IAF. Dots represent individual participants from the task-irrelevant viewing dataset and 
triangles represent participants from the covert attention task. The black lines represent the 
least-squares fit. A Spearman correlation showed no significant relationship between these 
two peak frequencies for the aggregated data nor when each task was analyzed separately. 

Peak Frequency of the ERP 
 

Because the detection of ERP components uses some arbitrary waveform features 

(e.g., peak, or 50% latency) and because the N150 component was difficult to identify clearly 

for all subjects and visual field locations (see Results), we supplemented our main analysis 

with the following more agnostic, data driven approach. Based on the fact that the difference 

between the UVF and LVF stimuli reflect spatially specific responses, we computed the LVF 

minus UVF difference ERP. This has the added benefit of increasing the signal-to-noise 

(since the first few deflections in the ERPs have opposing polarities) and also has spectral 

energy with a peak in the alpha-range (see Figure 6). Thus, we also computed the peaks from 

the FFT of the difference ERP (0-500ms post-stimulus) as a more general measure of 

spatially-specific neural response latencies, as higher frequency ERPs correspond to smaller 

delays between peaks. We searched for peaks between 7 and 14 Hz at the best C1 electrode, 
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in keeping with all prior analyses. This approach also has the benefit of summarizing the 

frequency of an individual’s visual ERP in a single metric (since it collapses across visual 

fields, and we do not need to hand-pick different components and time windows). 

Statistical Analysis 
 

Our primary analysis involved correlating IAF with each measure of component 

latency using Spearman correlations and data pooled across both studies. We supplemented 

this analysis with separate Spearman correlations run each task separately. We additionally 

checked for correlations of latency metrics between upper and lower visual fields as an 

internal consistency check. Lastly, we compared C1, N150, and the differences in latency 

metrics (N150 - C1) across the two tasks using independent-samples t-tests to assess any 

differences in component timing between the two datasets.  

Results 
 

As shown in Figure 5, despite being collected in different labs and with different 

monitors, stimulus timing, and EEG systems, the ERPs were highly similar. In order to assess 

any differences in component timings across the two datasets, we ran an independent-samples 

t-test comparing the various components of interest across the two tasks. Regarding the C1 

component, we found no significant task difference for the UVF C1 peak latencies (t(40) = -

1.05, p = .30), but we did find a significant task difference for the LVF C1 peak latencies 

(t(40) = -2.12, p = .04). An opposite pattern was seen for C1 onset latency such that there was 

a significant task difference for UVF C1 onset latencies (t(40) = -3.16, p < .01) but there was 

not a significant task difference for LVF C1 onset latencies ( t(40) = -1.88, p = .07). This 

indicates that C1 onset latencies tended to be earlier for the attention task, although this was 

not replicated across visual fields or latency metrics (e.g., onset versus peak). Regarding 

N150 latencies, there was a significant task difference in UVF N150 peak latencies (t(40) = 
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2.74, p < .01), but no significant task difference in UVF N150 onset latencies (t(34) = 1.72, p 

= .09). We found no significant differences for either LVF N150 latency measure across tasks 

(peak:  t(40) = -0.94, p = .36; onset:  t(34) = -0.99, p = .33). This indicates that the attention 

task was associated with earlier onset N150, although only for the UVF and for one latency 

metric. Regarding the difference in ERP component latencies (N150-C1) across tasks, results 

showed a significant task difference for the UVF (peak: t(40) = 3.33, p < .01; onset: t(34) = 

2.80, p < .01), but not in the LVF (peak: t(40) = -0.32, p = .75; onset: t(34) = -0.60, p = .55). 

Again, these task differences were confined to the UVF. Finally, there was no significant 

difference in peak alpha frequencies between the two datasets (t(40) = 0.08, p = 0.94).  

We speculate that any differences in ERP component timing across the experiments 

could be due to the different recording environments and equipment. Specifically, the task-

irrelevant viewing paradigm used a CRT monitor which tends to have lower absolute 

luminance outputs which would affect the absolute contrast of the stimuli. Because our focus 

is on the C1 component, which is generally not very sensitive to task differences, and because 

any overall difference in component timing should not preclude observing an effect of 

individual differences, we aggregated data across the two studies for our main analysis. 

However, we also report correlations for each task separately to assess any task-related 

differences. 

As a sanity check before our main analysis, we examined correlations between the 

UVF and LVF ERP component timings across subjects, as we would expect the timing of 

these events to be related. We combined datasets for this analysis, given that we were 

comparing across subjects. Indeed, the UVF and LVF C1 peak and onset latencies were 

significantly correlated across visual fields (peak: r(40) = .39, p = .01; onset: r(40) = .36, p = 

.02). There was no significant correlation for the UVF or LVF N150 peak or onset latencies 
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(peak: r(40) = .21, p = .18; onset: r(34) = .29 p = .09), although the relationships were both 

positive. We expect more variation in the latency of N150 measures as they are affected 

differently by the overlap of the polarity-reversing C1 responses for UVF and LVF. As a 

result, we also see no significant relationship between C1 and N150 peak and onset latency 

differences (peak: r(40) = .15, p = .35; onset: r(34) = .18, p = .29). This result confirms that 

the C1 shows reasonable within-subject consistency in timing across the two visual field 

locations. 

 
 
Figure 7: Relationships between IAF and the latencies of ERP components. 

The LVF (blue shapes) and UVF (red shapes) stimulus correlations between peak, onset, and 
difference latencies. Dots represent individual participants from the task-irrelevant viewing 
dataset and triangles represent participants from the covert attention task. The black lines 
represent the least-squares fit describing how the onset and peak latencies of C1 and N150 
change as IAF changes. A) There were no significant Spearman correlations between IAF 
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and C1 onset latency (left two columns) and N150 onset latency (right two columns). B) 
There were no significant Spearman correlations between IAF and C1 peak latency (left two 
columns) and N150 peak latency (right two columns). C) No significant Spearman 
correlations were found between IAF and the difference in onset latency (left two columns) 
and peak latency (right two columns). 

Our main analysis evaluated the relationship between IAF and C1 latency measures 

pooling data across tasks (Figure 7). We found no significant correlation between IAF and C1 

peak latency for either visual field (UVF: r(40) = .09, p = .59; LVF: r(40) = .08, p = .61) or 

C1 onset latency for either visual field (UVF: r(40) = -.08, p = .62; LVF: r(40) = .06, p = 

.69). Additionally, there was no significant correlation between N150 peak latency and IAF 

for either visual field (UVF: r(40) = -.13, p = .41; LVF: r(40) = .12, p = .45), or between 

N150 onset latency and IAF (UVF: r(34) = -.25, p = .15; LVF: r(34) = .10, p = .51). 

Similarly, there was no significant correlation between the differences in peak latencies and 

IAF for either visual field (UVF: r(40) = -.25, p = .15; LVF: r(40) = .08, p = .65), or the 

differences in onset latencies and IAF (UVF: r(34) = -.24., p = .16; LVF: r(34) = .07, p = 

.68).  

To determine whether participants within each task showed any different effects, we 

also report correlations separated by task. For the task-irrelevant viewing paradigm, there 

were no significant correlations between IAF and any of the ERP components or the latency 

differences between components in the UVF (Table 1). Additionally, there were no 

significant correlations between C1 peak latency or C1 onset latency for the LVF (Table 1), 

but there were significant positive correlations between IAF and N150 peak latency (r(22) = 

.52, p < .01), and N150 onset latency (r(18) = .47, p = .04), and subsequently, the difference 

in peak and onset latencies between the components in the LVF (peak: r(22) = .43, p = .03; 

onset: r(18) = .50, p = .02). For the covert-attention task paradigm, there were also no 

significant correlations between IAF and any of the ERP components or the latency 
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differences between components in the UVF (Table 1), although a negative correlation 

between IAF and the C1 peak latency was marginally significant (r(16) = -.45, p = .06). For 

the LVF, no significant correlation was found between IAF and either C1 components, the 

N150 peak latency, or the difference in latency between component peaks (Table 1). There 

was a significant negative correlation between IAF and N150 onset latency for the LVF 

stimuli (r(16) = -.53, p = .03) as well as between IAF and the difference in latency between 

component onsets (r(14) = -.53, p = .04). 

 
 
 

Task-irrelevant viewing Covert-attention task 

Upper Visual 
Field 

Lower Visual 
Field 

Upper Visual 
Field 

Lower Visual 
Field 

r p r p r p r p 

C1 peak 
latency 

.15 .47 .27 .19 -.44 .06 -.25 .31 

C1 onset 
latency 

-.02 .92 .08 .73 -.38 .12 -.10 .69 

N150 peak 
latency 

-.16 .46 .52 .009* -.03 .90 -.41 .09 

N150 onset 
latency 

-.33 .15 .47 .04* -.11 .69 -.53 .03* 

Peak latency 
difference 

-.17 .43 .43 .03* -.25 .32 -.37 .13 

Onset latency 
difference 

-.30 .20 .50 .02* .05 .87 -.53 .04* 

Table 1: Correlations between Individual Alpha Frequency (IAF) and sensory ERP peak and 
onset latencies. 

IAF was correlated with C1 and N150 ERP peak and onset latencies, as well as the 
differences between component peak and onset latencies, using a Spearman correlation. For 
the N150 onset latency and onset latency difference measures, two participants were removed 
from the covert-attention task and four were removed from the task-irrelevant viewing 
paradigm. The full dataset was used for all other correlations. Asterisks indicate significant 
correlations (p < .05). 
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Lastly, as a data-driven approach to estimating the relative latency of each 

participant's evoked response, we considered the correlation between IAF and the peak 

frequency of the ERP difference wave (LVF-UVF; see Method). We found no significant 

relationship between IAF and peak frequency of the difference ERP waveform for either task 

(task-irrelevant viewing: r(22) = .06, p = .77; covert-attention task: r(16) = .12, p = .64), or 

for the two tasks combined (r(40) = .05, p = .73). 

Discussion 
 

Our main analysis found no significant correlations between IAF and any of the ERP 

peak, onset, or latency difference measures when collapsing across tasks. While we did find a 

few significant correlations when examining tasks separately, specifically driven by the N150 

ERP, these relationships were only seen in one visual field (LVF), and were in different 

directions for the different tasks, making the results difficult to interpret according to either 

discrete or rhythmic perception account. We thus interpret these specific and opposing 

significant correlations as likely reflecting noise (i.e., type 1 error given that many 

correlations were computed and a Bonferoni correction for the number of comparisons would 

result in no significant correlations). Our main focus was on the C1 ERP was the component 

since our stimuli were designed to elicit this response, subjects had clear C1 components, and 

it is the first visual-evoked response, potentially being most susceptible to modulation by 

alpha frequency given putative generators in the visual thalamus and primary visual cortex 

(Dougherty et al., 2017; Hughes & Crunelli, 2005; Lőrincz et al., 2009). However, the lack of 

a relationship between IAF and C1 peak or onset latency in the main and task-specific 

analyses suggests that the frequency of alpha is unrelated to the timing with which visual 

responses first arrive in the primary visual cortex. 

We also found that IAF was not reliably predictive of N150 latency, nor the 
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difference between C1 and N150 latency metrics in any of our pooled analysis. However, we 

did find significant positive correlations between IAF and N150 onset latency and IAF and 

onset latency differences in the LVF for the task-irrelevant viewing paradigm, meaning that 

as IAF increased across participants, N150 onsets occurred later in time and the difference 

between C1 onset and N150 onset increased. However, we found significant negative 

correlations between IAF and these same components in the LVF for the covert-attention 

task. In other words, as IAF increased across participants, the N150 onset occurred earlier in 

time and the difference between C1 onset and N150 onset decreased. It is unclear what theory 

would predict a different direction of correlation under different task demands, or what theory 

would predict a correlation between IAF and ERPs in only one visual field; given the lack of 

a clear theoretical explanation, the fact that the results would not survive a correction for 

multiple comparisons, and that the results are based on smaller sample sizes, we do not put 

much weight on these results. 

Overall, our findings suggest that alpha frequency does not modulate the timing of 

neural responses associated with early perceptual processing, an effect we would expect to 

see if alpha oscillations were indeed responsible for discretizing perceptual events as 

theorized by the discrete perception account. While it is true that these results do not rule out 

discrete perception, they suggest that any discretization of percepts that may manifest in 

behavior likely results from later perceptual processing, as opposed to through these early 

sensory ERP components. Thus, there is little evidence to suggest that alpha oscillations are 

responsible for driving changes in the latency of neural events, as suggested by the discrete 

perception account. However, the prediction that alpha oscillations modulate the strength of 

sensory responses is supported by prior work (Dou et al., 2022) 

The lack of a relationship between IAF and the peak frequency of the ERP difference 
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waveform (Figure 7) also supports the lack of a relationship between alpha frequency and 

neural response latencies. One reason for the null effect could be related to the stimulus used 

here. A seminal study by VanRullen and Macdonald (2012) showed that, when participants 

viewed a stimulus that randomly modulated in luminance at 160 Hz over a 6 second period, 

there was a cross-correlation between the EEG signal over occipital electrodes and the 

luminance values that lasted up to 1 second and which, importantly, fluctuated at an alpha 

frequency (so-called alpha “echoes”). This implies that a unit change in luminance causes a 

long-lasting reverberation in the alpha frequency. Interestingly, the frequency of an 

individual’s alpha echo was found to strongly correlate with their resting IAF (VanRullen & 

Macdonald, 2012), which would imply that the timing of neural responses to a luminance 

change is related to IAF.  

We suggest two possible interpretations of our null results in light of the VanRullen 

& Macdonald (2012) finding. First, our stimuli were defined by their contrast rather than their 

luminance (each increase in brightness was canceled out by a decrease in brightness 

elsewhere in the stimulus). Thus, it remains possible that the timing of luminance responses is 

perhaps related to alpha frequency in a way that contrast responses are not. Second, we 

measured ERP onset metrics, not alpha echoes. ERPs likely reflect a mixture of some steady-

state response (as in the alpha echo) and various onset and offset responses caused by the 

sudden appearance and disappearance of the stimulus. Thus, it remains possible that only the 

steady-state component of the visual response is related to alpha frequency, but not the onset 

or offset transients. This would imply that the alpha echo approach measures a qualitatively 

different aspect of visual processing than ERPs. 

Our results also have implications for the idea that visual ERP components are 

generated by a phase-rest of ongoing oscillations (Gruber et al., 2005; Klimesch et al., 2007). 
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Although our conclusions are restricted to the alpha-band, the lack of correlation speaks 

against the idea that stimulus onset resets ongoing alpha oscillations and that this is what 

produces (or contributes) to ERP generation. If the C1 or N150 were generated by a phase 

reset, we would expect a strong correlation between the frequency of the oscillations being 

reset and the timing of the ERP components, which was not found. Instead, it is likely that 

these early visual components reflect additive neural activity that sums with ongoing or 

background neural oscillations (Iemi et al., 2019).  

Future research could further assess whether IAF is related to the latency of other 

early sensory responses, such as the P1 and N1, as these ERPs were not clear in our datasets 

due to the high-amplitude C1 response. It is possible that there may be instances where 

discrete perception occurs and different ways that discrete perception may manifest. 

However, given that alpha frequency was not related to the latency of the earliest visual ERP 

(C1), our findings are inconsistent with the notion that alpha is modulating the timing of 

afferent visual responses. 
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CHAPTER 4: Prestimulus Alpha Phase Modulates the Strength of Early 
Visual Responses 

Published in NeuroImage as Dou, Morrow, Iemi, and Samaha (2022) 
 

Visual perception depends not only on physical stimulus properties, but also on 

intrinsic neural dynamics at the moment a stimulus is presented. Several experiments have 

demonstrated that the phase of prestimulus alpha-band (7-14 Hz) oscillations is associated 

with fluctuations in subsequent perceptual reports (Alexander et al., 2020; Busch et al., 2009; 

Busch & VanRullen, 2010; Harris et al., 2018; Mathewson et al., 2009; Samaha et al., 2015, 

2017). However, the neurophysiological locus of phasic alpha inhibition is difficult to infer 

from perceptual reports alone. Specifically, the functional role that alpha oscillations play in 

perception has largely been attributed to two contrasting hypotheses, with human evidence in 

favor of either (or both or neither) remaining sparse. On the one hand, alpha generators have 

been observed in relay sectors of the visual thalamus and are postulated to phasically inhibit 

afferent visual input in a feedforward manner (Hughes et al., 2011; Hughes & Crunelli, 2005; 

Lörincz et al., 2008; Lőrincz et al., 2009). On the other hand, evidence also suggests that the 

direction of influence of alpha activity propagates backwards along the visual hierarchy, 

reflecting a feedback influence upon the visual cortex (Bastos et al., 2015; Buffalo et al., 

2011; Halgren et al., 2019; Rassi et al., 2019; van Kerkoerle et al., 2014). 

 Perceptual reports could, in theory, be modulated either by feedforward or feedback 

alpha activity. Thus, although these two hypotheses are not mutually exclusive, human 

evidence supporting either one is lacking. Here, we tested whether there was a relationship 

between prestimulus alpha phase and the earliest visual-evoked response in the human 

electroencephalogram (EEG), which could provide evidence for a feedforward account given 

some further assumptions.  

In the current dataset, human subjects passively viewed large, high-contrast 
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checkerboard wedges in the upper and lower visual field (U/LVF). The visual stimuli used 

here can elicit robust C1 event-related potentials (ERP), which peak between 70-80 

milliseconds post-stimulus (Clark et al., 1994; Di Russo et al., 2002, 2003; Kelly et al., 2008). 

According to the cruciform model of primary visual cortex, folding patterns in the cortical 

sheet of primary visual cortex (V1; but not V2 or V3) (Clark et al., 1994; Jeffreys & Axford, 

1972; Kelly et al., 2013) are such that UVF stimuli produce a negative-going C1 ERP and 

LVF stimuli produce a positive-going C1 (when using an average or mastoid reference) with 

a scalp focus over central parieto-occipital electrodes (Di Russo et al., 2002, 2003; Vanegas 

et al., 2013). Specifically, when the upper visual field is stimulated, the visual information is 

transmitted from the retina to the lateral geniculate nucleus (LGN), which projects this input 

onto the lower bank of the calcarine sulcus of V1. This produces a negative C1 component on 

the scalp, owing to the orientation of pyramidal neurons in the lower bank. When the lower 

visual field is stimulated, the visual information is projected on the upper bank of the 

calcarine sulcus of V1 through the LGN, producing a positive C1. As the polarity of the C1 is 

closely related to retinal location, it has been thought to reflect afferent V1 input (Clark et al., 

1994; Di Russo et al., 2003, 2002; Kelly et al., 2008). Therefore, we hypothesized that if 

alpha arises from visual thalamus (LGN), and phasically gates afferent cortical input, then 

alpha oscillations should modulate the initial stimulus-evoked response in V1. We found that 

the phase of ongoing alpha oscillations modulates the global field power (GFP) of the EEG 

during this first volley of stimulus processing (the C1 time window). On the standard 

assumption (Buzsáki et al., 2012; Cohen, 2017; Jackson & Bolger, 2014) that this early 

activity reflects postsynaptic potentials relayed to visual cortex from the thalamus, our results 

suggest that alpha phase gates visual responses during the first feed-forward sweep of 

processing.  



52 
 

Method 
The EEG Dataset 

The EEG dataset was originally collected by Iemi and colleagues (2019) and is 

described in more detail in the original manuscript or the Method section of Chapter 2. In the 

original study, prior analyses focused on the relationship between prestimulus alpha power 

and C1 responses, but not on alpha phase. In short, 27 participants (mean age: 26.33, SEM = 

0.616; 14 female, 13 male; three left-handed) with normal or corrected vision were presented 

with a pair of task-irrelevant, full-contrast checkerboard wedges for 100ms either in the upper 

(UVF) or lower visual field (LVF) with equal probability. The C1 component can be 

consistently elicited by checkerboard stimuli on these stimulation trials. To ensure central 

fixation, the fixation mark turned into either one of two equally probable targets (‘>’ or ‘<’) 

for the duration of stimulus presentation. In 33% of trials, only this small central fixation 

change occurred (FIX trials), giving us a control condition where no C1-eliciting stimulus 

was presented. The inter-trial interval between stimuli was uniformly selected between 1.8 

and 2.4 s. Each subject underwent 810 trials. 

The EEG was recorded from 64 electrodes corresponding to the extended 

International 10–10 system using a BioSemi ActiveTwo system at a sampling rate of 1024 

Hz. All channels were referenced online to the CMS-DRL ground electrodes. One participant 

did not complete the experiment. We excluded one participant from the analysis because their 

C1 component was not detected in the LVF after preprocessing. A total of 25 participants 

were included in the analysis. 

EEG Preprocessing 
Raw data were preprocessed using custom MATLAB scripts (version R2019b) and 

the EEGLAB toolbox (Delorme & Makeig, 2004). Continuous recordings were high-pass 

filtered at 0.1 Hz using a zero-phase Hamming-windowed sinc FIR filter (as implemented in 

https://www.zotero.org/google-docs/?TQu8pC
https://www.zotero.org/google-docs/?zpYhHZ
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the EEGLAB function “pop_eegfiltnew.m”). EEG data were then downsampled to 500 Hz 

and segmented into epochs centered on stimulus onset using a time window of -2000ms to 

2000ms. Individual trials containing eye-blinks and other artifacts during stimulus 

presentation were inspected visually and removed from data (M = 34.96, SEM = 6.14). Noisy 

channels were spherically interpolated (M = 0.46, SEM = 0.25) and independent components 

analysis implemented with the INFOMAX algorithm (EEGLAB function “binica.m”) was 

used to remove components reflecting ocular artifacts (M = 1.08, SEM = 0.05). Data were re-

referenced offline to the mean of all electrodes and a prestimulus baseline of -200ms to 0ms 

was subtracted from each trial. 

Stimulus-Evoked Responses 
To rectify the polarity of the EEG during the C1, which is reversed for UVF 

compared to LVF stimuli (Figure 8) and to provide a global measure of the visual-evoked 

response during the early sweep of cortical activation, we computed the global field power 

(GFP) of the EEG during the C1 time window. The GFP has been used in prior literature to 

examine prestimulus phase effects on stimulus-evoked responses rather than analyzing the 

event-related potential (ERP) directly, since the ERP may trivially sum or cancel with the 

phase of ongoing oscillations (Busch & VanRullen, 2010). For the single-trial circular-linear 

association analysis (wITPC; see below), we computed GFP on single trials by taking the 

spatial standard deviation of voltage averaged over a 20ms window centered on each 

participant's C1 peak (defined at the electrode with the largest difference between UVF and 

LVF stimuli in the time window between 50 to 96ms post-stimulus; see Figure 8). For the 

alpha phase binning analysis (FFT; see below), we first computed the ERP for each alpha 

phase bin and visual field location and then computed the GFP as the spatial standard 

deviation of each ERP (sometimes referred to as the global mean field power). Then we 
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averaged GFP over a 20ms window centered on each participant's peak GFP response, found 

by searching within the same time window as the C1 (50-96ms).  

 
Figure 8: Lower visual field, upper visual field, and fixation stimulus conditions and their 
stimulus-evoked responses. 

A) The stimuli were task-irrelevant, bilateral, full-contrast checkerboard wedges designed to 
elicit a robust C1 component. The stimuli were presented in the lower visual field (left 
column, LVF), upper visual field (middle column, UVF), or were absent (right column, FIX) 
with equal probability. B) ERPs (red line) were computed for the subject-specific electrodes 
with the largest C1 activity. Shaded time windows indicate the time range of the C1 
component. The polarity of the C1 reversed across fields of stimulation (LVF versus UVF) in 
a manner consistent with striate generation. The C1 was absent on FIX trials. Topographical 
plots show ERP averaged across 50-96ms. The GFP (blue line) was calculated by taking the 
spatial standard deviation of voltage averaged over a 20ms window centered on each 
participant's C1 peak within 50-96ms. GFP provides a global measure of neural response 
magnitude that also rectifies the polarity reversal of the C1.  

Single-Trial Circular-Linear Association (wITPC) 
We took two complementary analysis approaches to study the influence of 

prestimulus phase on GFP amplitudes during the C1 time window. We first compute the 

weighted intertrial phase coherence (wITPC; Cohen, 2014; Cohen & Voytek, 2013; Samaha 

et al., 2017) as a means of exploring circular-linear associations between single-trial phase 
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and GFP across a range of frequencies and time points. wITPC is computed as the resultant 

vector length, or inter-trial phase clustering (also called the phase-locking factor or inter-trial 

coherence), of phase angles across trials once the length of each vector has been weighted by 

the linear variable of interest (here GFP). Note that oscillation amplitude information in this 

analysis is ignored. wITPC was computed separately for each subject, visual field location, 

time-frequency point, and electrode. Phase was extracted via complex Morlet wavelet 

convolution at integer frequencies between 3 and 30Hz, with wavelet cycles increasing 

linearly from 3 to 8 as a function of frequency. A post-wavelet downsampling factor of 5 was 

applied to speed up subsequent analyses.  

Permutation-based statistics were used for both trial-level and group-level analysis. 

At the trial level, the wITPC value for each condition, time-point, frequency, electrode, and 

subject was converted to a z-score relative to a null distribution obtained by recomputing 

wITPC across 1,000 sets of randomly re-ordered trials. Thus, a positive z-score indicates that 

trials with large GFP values tend to cluster around a specific phase angle more so than would 

be expected under a randomized association. These wITPC (z) values were then tested 

against zero at the group level using a one-tailed, repeated-measures t-test (since negative 

wITPC (z) is difficult to interpret), with an alpha of 0.01. Only the electrode with largest C1 

for each subject was used in the group level analysis, though Figure 9 displays the 

topography of average wITPC (z) across all electrodes. For 80% of subjects, this electrode 

was POz, 12% PO4, 4% PO3, and 4% Oz. The result of this t-test produced a map of 

significant time-frequency pixels for each visual field location (i.e., Figure 9). A cluster-

based permutation test was conducted to control for the number of comparisons across times 

and frequencies using the cluster size statistic (Cohen, 2014). On each of 10,000 

permutations, a random half the subject’s wITPC (z) values were multiplied by -1 and a one-
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tailed t-test with alpha set to 0.01 was conducted on this permuted data. The size of the 

largest significant cluster in the null map was recorded, building a distribution of significant 

cluster sizes expected under the null hypothesis of no phase-GFP coupling. Only significant 

clusters in the real data that exceeded the 95th percentile of the distribution of null hypothesis 

cluster sizes was considered significant. Lastly, to visualize wITPC (z) across frequencies 

during the prestimulus period, wITPC (z) was averaged across the time window -300 to 0ms 

relative to stimulus onset and plotted as a function of the phase-providing frequency (see 

Figure 9, right panel). 

 
Figure 9: Single-trial time-frequency circular-linear association between phase and Global 
Field Power (GFP). 

Pseudo-color plots show subject-averaged wITPC(z), which describes the normalized 
coupling strength between phase across times and frequencies and GPF during each 
individual’s C1 time window. The phase-providing electrode was chosen for each individual 
based on the largest C1 amplitude, but the distribution of wITPC(z) across the scalp from -
300 to 0ms and 7-14 Hz is shown in the topographical plots in the right-hand panel. 
Significant (cluster-corrected) time-frequency points are delimited with a gray line and 
reveal a modulation of GFP by alpha-band phase (and some adjacent frequencies) just prior 
to and during stimulus onset for both LVF and UVF stimuli. The effect was absent on FIX 
trials, when no C1-eliciting stimulus was presented. The right-hand panel shows the 
wITPC(z) across frequencies for the period from -300 to 0ms relative to stimulus onset. A 
peak in coupling is noticeable in the 7-14 Hz range. Shaded bands indicate ±1 SEM across 
subjects.  

Prestimulus Alpha-Band Phase Binning (FFT) 
To complement the mass-univariate results obtained via wITPC with a more 

hypothesis-driven analysis of alpha, we conducted a Fast Fourier Transform (FFT) of 500ms 
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of prestimulus data only and sorted GFP in the C1 time window into different bins of 

prestimulus alpha phase. This analysis allowed us to 1) better characterize the effect size of 

prestimulus alpha phase in terms of GFP amplitude modulation, 2) tailor the analysis to each 

individual’s peak alpha frequency, and 3) rule out any contamination of the results by post-

stimulus data since only a prestimulus window was extracted for phase sorting.    

Prestimulus data were extracted from the same set of subject-specific electrodes with 

the largest C1 response and just from -500 to 0ms relative to stimulus onset for each trial. 

Prestimulus phase was extracted from single-trials by first linearly detrending each data 

segment, multiplying the data with a Hamming window, performing an FFT, and extracting 

the phase angle from the complex Fourier coefficients. Alpha band phase was extracted at 

each participant’s peak alpha frequency within the range 7-14 Hz, taken from the power 

spectrum of the same prestimulus data. Single trials of LVF, UVF and FIX conditions were 

then separately sorted into 7 equally-spaced bins between -180° to 180°. Following prior 

work (Busch & VanRullen, 2010; Harris et al., 2018), to account for potential individual 

differences in the specific phase of GFP coupling (related to anatomical differences in how 

the oscillation field projects to the scalp or differences in V1 conductance latencies), phase 

bins were circularly-shifted to align the phase bin with the largest GFP amplitude at 0°. This 

phase bin was then removed from statistical analysis and visualization to remove bias.  

For statistical analysis, we conducted a 2 × 7 repeated measures ANOVA with visual 

field (UVF or LVF) and phase level (1:7, non-shifted) as the within-subject factors. For the 

GFP in the circularly-shifted phase bins, a 2 × 6 repeated measures ANOVA was conducted 

with factors, visual field and shifted phase level (excluding the center phase bin used for 

aligning). Statistical tests were reported for both the shifted and non-shifted data. Lastly, we 

examined whether any effect of alpha phase on GFP depended on the power of prestimulus 
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alpha by additionally sorting trials according to visual field, phase, and high versus low 

prestimulus alpha power using a median split of power averaged over a 4 Hz window 

centered on each participant’s IAF. We conducted the same ANOVAs as above but with the 

additional factor power (high or low) and an interaction term between phase and power. 

Results 
 

We quantified early visual cortical input in response to task-irrelevant, bilateral, full-

contrast radial checkerboard patterns presented in UVF and LVF in separate trials. The 

stimuli used in this experiment (originally reported in Iemi et al., 2019) produced robust C1 

responses with polarities, topographies, and timings consistent with striate genesis (Figure 8). 

The mean amplitude of the C1 component at subject-specific electrodes were 5.26 µV (SEM 

= 0.61) for LVF and -6.11 µV (SEM = 0.56) for UVF and the average C1 peak latencies were 

75.12ms (SEM = 1.27) and 79.36ms (SEM = 1.27) for LVF and UVF respectively. Note that 

bilateral stimulation (likely producing constructive signal interference across left and right 

V1) gave rise to C1 amplitudes two to three times larger than the typical C1 (Di Russo et al., 

2002, 2003; Kelly et al., 2008; Vanegas et al., 2013), giving us a strong signal to analyze with 

respect to the ongoing alpha phase. We used the GFP during the C1 time window as a metric 

of early V1 input in order to rectify the polarity of the C1 (making larger responses always 

positive; Figure 8) and because voltage at a single electrode may simply cancel/sum with the 

phase of ongoing oscillations recorded at that same electrode. For these reasons, GFP has 

been used in previous research to link prestimulus phase to post-stimulus EEG responses, 

where, for instance, it was found that ~7 Hz phase modulates GFP to near-threshold stimuli 

around 450ms post-stimulus (Busch & VanRullen, 2010). As a control, to ensure that alpha 

phase was not trivially related to post-stimulus GFP in the C1 time window, we also analyzed 

a subset of trials (~33%) which contained only a small change at fixation (FIX trials), but no 



59 
 

C1-producing stimuli. Following the C1 component, we observed a negative going 

component peaking between 100ms and 200ms relative to stimulus onset (N150) and a 

positive going component between 200ms and 300ms relative to stimulus onset (P250) for 

both LVF and UVF. The GFP of N150 (within the time window of 120ms to 200ms) and 

P250 (within the time window of 200ms to 280ms) were also computed in the following 

analysis in order to test the specificity of any effect found in the C1 time window. 

We computed circular-linear associations using the weighted inter-trial phase 

coherence (wITPC; Cohen, 2014; Cohen & Voytek, 2013; Samaha et al., 2017) to describe 

the relationship between single-trial GFP amplitudes (averaged over a 20ms window centered 

on the C1 peak for each subject) and oscillatory phase across a range of time and frequency 

points surrounding stimulus onset (extracted via Morlet wavelet convolution). When 

normalized with respect to the mean and standard deviation of a permuted wITPC 

distribution, this metric takes on z units that reflect the strength of phasic coupling between 

the linear variable (GFP) and circular variable (phase) relative to a null hypothesis 

distribution. As seen in Figure 9, significant (cluster-corrected) wITPC was found between 

GFP in the C1 time window and prestimulus phase for both LVF and UVF trials, but not on 

FIX trials. For LVF stimuli, GFP was predicted by phase in a cluster of time-frequency points 

spanning 9-18 Hz and -130 to 120ms from stimulus onset, with a maximum wITPC (z) = 1.74 

at 12.35 Hz and 0ms. For UVF stimuli, GFP was predicted by phase in a cluster spanning 3 to 

13 Hz and -150 to 85ms with a maximum wITPC (z) = 1.65 at 10 Hz and -10ms. We suspect 

that differences in the frequency range of clustering across visual fields partly reflects 

contamination of phase estimates by the ERP, as the first few peaks in the ERP waveforms 

occur at lower frequencies for LVF compared to UVF stimuli (see Figure 8B). No significant 

phase-GFP coupling was observed on FIX trials (where only a small fixation change 
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occurred) suggesting that the positive effects on L/UVF trials are not a trivial result of phase 

predicting GFP at any post-stimulus window but instead depend on the presence of a C1 

component.  

Scalp topographies from prestimulus time points (Figure 9, right panel) indicate an 

occipital and frontal distribution, consistent with the scalp distribution of the effects of alpha-

band phase on visual cortex excitability inferred from TMS-EEG experiments (Dugué et al., 

2011; Samaha et al., 2017). To understand whether this frontal component of the topography 

reflects the phase of an additional frontal alpha source, or the opposing phases of a single 

dipole located intermediate between visual and frontal sensors, we computed the difference in 

the phase angle of coupling between prestimulus (-300 to 0ms) alpha (10 Hz) and C1 GFP at 

occipital electrode POz and at frontal electrode AFz, which captures the topography in Figure 

9. If the frontal and occipital components represent two ends of a dipole, then the phase of 

maximal coupling (defined as the phase angle of wITPC) should be 180 degrees out-of-sync 

(e.g., the alpha phase predictive of GFP is near the trough over visual electrodes, but the peak 

over occipital electrodes). A circular V-test (as implemented in the circ-stats toolbox for 

MATLAB), which tests for clustering around a specific direction confirms that the 

differences in phase coupling between frontal and occipital channels is significantly clustered 

around 180 deg for UVF, LVF, and FIX trials (Vs > 10.80, ps < .001), but not at 0 deg for all 

conditions (Vs < -10.80, ps > .10). This suggests that the frontal component is likely just one 

side of a dipole possibly originating from a central source projecting to both occipital and 

frontal channels. 

Although a phase effect is expected to be maximal immediately prior to and during 

stimulus processing and to decay as a function of time before stimulus onset, as has recently 

been confirmed empirically (Alexander et al., 2020), it is nevertheless important to confirm 
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that any prestimulus phase effect is not confounded by post-stimulus data, which can occur 

when using a sliding window analysis as done here with wavelets. To this end, we ran an 

additional analysis using a fast-Fourier transform (FFT) of the 500ms preceding stimulus 

onset to exclude any post-stimulus contamination. The FFT approach has the further 

advantage of allowing us to extract phase at each participant’s IAF to complement our mass-

univariate wavelet-based approach with a more hypothesis-driven analysis focused on alpha-

band oscillations. We sorted post-stimulus GFP in the C1 time window by 7 levels of 

prestimulus alpha-band phase. A 2 × 7 repeated measures ANOVA on post-stimulus GFP 

with visual field (UVF or LVF) and phase level (1:7, non-shifted) as factors revealed a 

significant main effect of phase level (F(6, 144) = 3.57, p < .01). No significant main effect 

of visual field (F(1, 24) = 1.12, p = .30) or an interaction effect (F(6, 144) = .91, p = .49) 

were found. We conducted a one-way ANOVA on the GFP on FIX trials with phase level 

(non-shifted) as within-subjects factor and found no main effect of phase level (F(6, 144) = 

.41, p = .87).  

To account for potential individual differences in phase effects (Busch et al., 2009; 

Busch & VanRullen, 2010; Harris et al., 2018), we re-ran the above analyses after circularly 

shifting alpha phase for each subject such that the phase with peak GFP became the center 

phase, which was then removed before statistical testing (Figure 10A). We used 2 × 6 

repeated measures ANOVA on the GFP, with factors visual field and shifted phase level 

(excluding the center phase bin used for aligning). The effect of visual field (F(1, 24) = 1.14, 

p = .30) and the interaction between visual field and shifted phase level (F(5, 120) = .60, p = 

.70) were not significant. However, as shown in Figure 10B, there was a significant main 

effect of shifted phase level (F(5, 120) = 5.41, p < .001). For both LVF and UVF, GFP 

amplitude decreased as prestimulus alpha phase deviated from the central phase bin, 
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indicating that prestimulus alpha oscillations influenced the early sensory response to the 

U/LVF stimuli. In addition, the effect of shifted phase level on the GFP on FIX trials was not 

evident (F(5, 120) = .73, p = .60) from a one-way ANOVA. This was in line with the results 

of the wITPC analysis, confirming that the phasic effect relies on the presence of a C1 

component. 

 
Figure 10: Global Field Power (GFP) as a function of prestimulus alpha phase estimated via 
FFT. 
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A) To rule out post-stimulus contamination of phase estimates, single trials were sorted into 7 
equally-spaced phase bins between -180° to 180° determined from an FFT using only 
prestimulus data (-500 to 0ms). The phase bins were circularly-shifted to align the phase bin 
with the largest post-stimulus GFP in the C1 time window to 0°. This central bin was then left 
out from plotting and statistical tests. Time courses show the prestimulus alpha phase 
modulates GFP for both LVF and UVF trials. No obvious GFP response or modulation by 
alpha phase was observed within the C1 time window on FIX trials (right). B) Averaged GFP 
over a 20ms window centered on each participant's peak GFP response within the C1 time 
window decreases monotonically as the shifted phase bins deviate from the removed central 
bin for both LVF and UVF stimuli. This indicates a phasic effect of prestimulus alpha which 
was absent on FIX trials. Error bars represent ±1 SEM across subjects. C) Same convention 
as panel B but broken down by high and low prestimulus alpha power (median split). Note 
that higher alpha power is associated with higher GFP regardless of the presence of the C1-
eliciting stimulus simply because larger amplitude alpha implies more spatial variance 
(which is the basis of GFP). Importantly, alpha phase interacts with amplitude in predicting 
GFP only on U/LVF trials, not on FIX trials. Error bars represent ±1 SEM across subjects. 

Theoretically, the effects of alpha phase may depend on alpha power (Jensen & 

Mazaheri, 2010; Klimesch et al., 2007; Mathewson et al., 2011). To test this, we separately 

classified single trials of LVF, UVF and FIX conditions into high and low power relative to 

the median power and then sorted trials into 7 equally-spaced phase bins for each power 

level. GFP was averaged over a 20ms window centered on the GFP peak in each power and 

phase level. As shown in Figure 10C, after circularly shifting alpha phase and removing the 

center phase bin for each subject, a 2 (visual field) ×  2 (power level)  × 6 (shifted phase bin) 

ANOVA revealed significant main effect of prestimulus alpha power (F(1, 24) = 12.33, p < 

.01) and shifted phase (F(5, 120) = 3.78, p < .01). The interaction effect between prestimulus 

alpha power and shifted phase was also significant (F(5, 120) = 3.53, p < .01), indicating that 

prestimulus alpha phase effect was stronger with strong prestimulus alpha power. Only the 

power effect was significant on FIX trials (F(1, 24) = 12.33, p < .01). It might seem 

surprising that high prestimulus power was associated with higher C1 GFP given previous 

results showing an inhibitory role of alpha power on C1 ERP amplitude (Iemi et al., 2019). 

Recall, however, that GFP is computed as the standard deviation across electrodes and when 

alpha power is high, there is, all else being equal, more variability in the signal across the 
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scalp. Thus, this rather trivial effect shows up even in the absence of any C1 component, as 

seen in FIX trials (Figure 10C). Importantly, though, the phase effect (and its interaction with 

power) is only found in U/LVF trials. 

To test whether prestimulus alpha phase influences only the initial stimulus-evoked 

response in V1 (GFP during C1 time window) rather than later components, the same FFT 

analysis was applied to examine the alpha phase dependency for subsequent peaks in the GFP 

(i.e.,~150ms and 250ms). The post-stimulus GFP surrounding the 150ms peak and 250ms 

peak were separately sorted into 7 equally spaced bins based on prestimulus alpha-band 

phase. Two 2 × 7 repeated measures ANOVAs on post-stimulus GFP with visual field (UVF 

or LVF) and phase level (1:7, non-shifted) as factors were conducted. For the 150ms GFP 

peak, no significant main effects of the phase level (F(6, 144) = .47, p = .83) and visual field 

(F(1, 24) = 1.74, p = .20) and no significant interaction effect (F(6, 144) = .73, p = .62) were 

found. For the 250ms GFP peak, only the main effect of visual field was significant (F(1, 24) 

= 36.83, p < .001), and the main effect of phase level (F(6, 144) = .52, p = .79) and the 

interaction effect (F(6, 144) = 1.08, p = .38) were not significant.   

After circularly shifting alpha phase for each subject such that the phase with largest 

C1 GFP became the center phase, we used a 2 × 6 repeated measures ANOVA on the GFP 

for the 150ms and 250ms peaks separately, with factors visual field and shifted phase level 

(excluding the center phase bin used for aligning). For the 150ms GFP peak, the main effects 

of the phase level (F(5, 120) = 1.58, p = .17) and visual field (F(1, 24) = 2.8, p = .11) were 

not significant. There was a significant interaction effect between phase level and visual field 

(F(5, 120) = 2.69, p < .05). For the 250ms GFP peak, the main effect of visual field was 

significant (F(1, 24) = 34.20, p < .001), whereas the main effect of shifted phase level (F(5, 

120) = 1.65, p = .15) and the interaction effect (F(5, 120) = .10, p = .99) were not significant.  
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One limitation of shifting the phase bin based on the C1 GFP for the 150ms and 

250ms GFP peaks is that the phase dependences for those two later components may be at 

different phase angles compared to C1 GFP. To address it, we then circularly shifted alpha 

phase for each subject centering on the bin with the largest 150ms GFP peak and 250ms GFP 

peak separately. The center bins were removed from following statistical testing. The same 2 

× 6 repeated measures ANOVAs described above were conducted for both peaks. We did not 

observe any significant effects (ps > .17) from this analysis. Taken together, these results 

show prestimulus alpha phase fails to shape the components during later time windows of 

sensory processing, which may reflect a greater mixture of top-down and bottom-up 

processing, or may simply be further removed in time from the prestimulus data used to sort 

responses. 

Discussion 
 

We investigated the influence of alpha oscillations on visual responses by testing the 

relationship between prestimulus alpha phase and post-stimulus GFP measured at the time of 

the earliest visual-evoked potential in V1, corresponding to the C1 ERP component. 

According to the “standard model” of EEG genesis, scalp voltage is thought to primarily 

reflect the postsynaptic potentials of pyramidal neurons (Cohen, 2017; Di Russo et al., 2002), 

meaning the C1 is potentially generated by afferent synaptic input onto V1 from the 

thalamus. Indeed, a monkey experiment looking at the likely homologue of the C1 

component suggests a contribution from layer 4 thalamocortical afferents (Tenke et al., 

1993), although intralaminar synaptic activity within V1 likely also contributes to the C1 

(Foxe et al., 2008). Using single-trial circular-linear associations between prestimulus phase 

and post-stimulus GFP, we found a significant effect within the frequency ranges of 9-18 Hz 

for LVF and 3-13 Hz for UVF, with maximum effects of alpha in both cases. An additional 
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analysis using an FFT ruled out the potential smear of post-stimulus responses into the 

prestimulus window and confirmed the significant modulation of prestimulus alpha phase on 

GFP during the C1 time window. Analysis of FIX trials, with no C1-producing stimulus, 

strongly suggest that the effect on U/LVF trials are not a trivial result of pre-and post-

stimulus signal autocorrelation. Thus, our results demonstrate that prestimulus alpha phase is 

predictive of sensory responses in the early stages of visual processing. 

What is the biological mechanism underlying alpha oscillations that accounts for 

these findings? The LGN plays a key role in generating the alpha band (7–14 Hz) oscillation 

measured over visual cortex (Bollimunta et al., 2011; Hughes et al., 2011; Hughes & 

Crunelli, 2005; Lopes da Silva et al., 1973; Lörincz et al., 2008; Lőrincz et al., 2009). Of 

particular relevance for explaining the current finding is the model of Lőrincz et al (2009), 

which is based on a combination of in vivo and in vitro recordings of the cat LGN that 

demonstrated the existence of a specialized subset of LGN neurons that are intrinsically 

bursting, and which synchronize at alpha frequencies via gap junctions (Hughes et al., 2011). 

These thalamic bursting neurons were found to drive the local field potential in the LGN and 

the concurrent scalp EEG at an alpha rhythm that phasically inhibited, via interneurons, the 

relay mode LGN neurons that carry the afferent visual signals to V1. This model seems well 

suited to explain the phasic modulation of early visual responses in humans that we observed. 

Assuming that EEG signals principally reflect postsynaptic electrical potentials (Buzsáki et 

al., 2012; Cohen, 2017; Jackson and Bolger, 2014), and activity in the C1 time window 

reflects from afferent input to V1, a simple model that can explain our findings is that alpha is 

gating the output of neurons that are leaving the LGN (optic radiations), as shown in Figure 

11. The optic radiations release excitatory neurotransmitters to the postsynaptic terminal in 

V1, generating an excitatory postsynaptic potential (EPSP) putatively underling the C1 (or at 
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least parts of the C1 waveform). Therefore, oscillatory gating in the thalamus could explain 

the phasic modulation of the C1 GFP that we observe, consistent with the model of Lőrincz et 

al (2009). Note also that a previous analysis of these same data focused on spontaneous alpha 

amplitude fluctuations and found that prestimulus alpha amplitude modulates C1 amplitude 

(Iemi et al., 2019). 

 
Figure 11: Possible neural circuit for the modulation of the C1 component by alpha 
oscillations. 

Assuming that EEG is primarily sensitive to postsynaptic potentials, then afferent input onto 
V1, putatively generating the C1 component, could be modulated by ongoing oscillations in 
the thalamus. 

One could argue that alpha observed at the scalp level is a mixture of many different 

components as we could not measure alpha at the thalamus directly. Speculatively, however, 

our results showed an occipital and frontal distribution of the effect of alpha-band phase with 

an opposing phase relationship consistent with a dipole originating at a more central source, 

possibly near the thalamus. However, our suggestion of a thalamic origin comes not from 

having source-localized alpha, but by observing an effect of prestimulus alpha on putatively 

afferent V1 input. Although this early feedforward inhibitory model of alpha could explain 

the present findings, we certainly do not intend to downplay the possibility that alpha 

oscillations also influence the visual cortex from higher- to lower-order cortex in a feedback 
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manner, as has been argued from both monkey and human data (Bastos et al., 2015; Buffalo 

et al., 2011; Halgren et al., 2019; van Kerkoerle et al., 2014). These two accounts of alpha are 

not mutually exclusive. Additionally, if the C1 is generated, in part, by intralaminar activity 

within V1, then there is the possibility that alpha activity feeding back into V1 impacts the 

C1. Either way our results constrain the modulation of visual-evoked responses by alpha 

phase to early visual cortex, whether via feedback or feedforward phasic inhibition. 

Several experiments in humans have highlighted a relationship between prestimulus 

alpha phase and different aspects of visual performance in near-threshold detection or 

discrimination tasks (Busch et al., 2009; Busch & VanRullen, 2010; Mathewson et al., 2009; 

Ronconi et al., 2017; Samaha et al., 2015, 2017; Sherman et al., 2016), but see (Benwell et 

al., 2017; Ruzzoli et al., 2019). Given our results suggesting an impact of alpha phase on 

early visual responses, a reasonable hypothesis is that the gating of early visual responses 

may underlie the effect of alpha phase on behavior, yet no study has directly linked early 

sensory responses, alpha phase, and psychophysical performance. Behavior in 

psychophysical tasks may also be altered by phasic effects of feedback alpha activity, 

however, sufficient models have not yet been developed that would predict different behavior 

effects of top-down versus bottom-up alpha effects in visual cortex. As our experiment was 

designed to study spontaneous alpha, it also remains possible that effects of prestimulus 

phase on sensory responses differs under conditions where stimuli are predictable or task-

relevant. For instance, there is discrepancy in the literature as to whether the impact of alpha 

phase on perception does (Busch & VanRullen, 2010), or does not (Harris et al., 2018) 

depend on top-down attention. Resolving this debate may also shed light on the feedforward 

and feedback contributions to phasic effects of alpha on perception. Moreover, the precise 

effect of alpha phase on behavior is itself still not clear, as one report has found effects of 
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alpha phase on response criterion, rather than detection sensitivity (Sherman et al., 2016), 

another paper found effects on discrimination accuracy (putatively reflecting sensitivity 

changes; Samaha et al., 2015), and most other studies have only analyzed hit rates (Alexander 

et al., 2020; Busch et al., 2009; Busch and VanRullen, 2010; Dugué et al., 2011; Harris et al., 

2018; Samaha et al., 2017), which are ambiguous between a change in sensitivity or criterion 

(Samaha et al., 2020). Moreover, several studies have reported no phase effects on stimulus 

detection/discrimination (Benwell et al., 2017; Chaumon and Busch, 2014; Ruzzoli et al., 

2019), though a recent experiment, optimized in many ways to detect an effect, found a rather 

large change in detection rates of ~20% between stimuli presented during the peak versus 

trough of occipital alpha (Alexander et al., 2020). Model-based approaches (Zazio et al., 

2020), as have recently been applied to the study of oscillatory amplitude dynamics (Samaha 

et al., 2020), may serve well to better understand the link between oscillatory phase, sensory 

responses, and perceptual behavior.  
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CHAPTER 5: Sensitivity in Duration Perception is Related to an 
Individual’s Alpha Frequency 

 
Time perception can take many forms, from the sensory perception of sub-second-long 

stimuli to the cognitive processing involved in perceiving the passage of minutes- or hours-

long events. Despite the seemingly simple nature of perceiving the duration of brief events, 

the neural mechanisms underlying this process are not well understood. Specifically, it 

remains unclear how information about the timing or duration of a sensory event is being 

processed at the neural level and what, if any, is the role that neural oscillations play. One 

potential explanation for how the brain processes timing information is through frequency 

channels that facilitate the maintenance and spread of stimulus information from sensory 

areas to other brain areas (Ayhan et al., 2009, 2011; Bruno et al., 2010, 2013; Bruno & 

Cicchini, 2016). Generally, oscillatory activity in the alpha-band range (7-14 Hz) has been 

shown to be related to the strength and speed of visual processing. 

An individual’s alpha frequency (IAF) has been found to be related to temporal 

discriminability of visual stimuli (Battaglini et al., 2020; Drewes et al., 2022; Samaha & 

Postle, 2015) and temporal aspects of cross-modal binding (Baumgarten et al., 2018; Cecere 

et al., 2015; Keil & Senkowski, 2017), suggesting a relationship between alpha frequency and 

the duration of temporal binding windows in perception. Additionally, support for the 

rhythmic sampling theory suggests that alpha oscillations play a role in the strength of our 

sensory representations (Keitel et al., 2022; VanRullen, 2016). This may explain why 

individuals with faster IAF, or more frequent increases in sensory representation strength, are 

more sensitive at discriminating visual and multisensory stimuli. While the rhythmic 

sampling theory is typically evaluated through measures of the strength of sensory-evoked 

responses (Dou et al., 2022; Jensen & Mazaheri, 2010), or temporal binding phenomena 

occurring around the duration of a single alpha cycle (~100ms; see Samaha & Romei, 2024 
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for a review), the theory could also apply to the processing and representation of stimuli over 

time. Individual differences in duration perception of sensory events, particularly on the order 

of hundreds of milliseconds (ms), may be driven by the number of alpha cycles involved in 

stimulus processing. There is a wealth of behavioral research on the perception of peri-second 

sensory durations, but current evidence directly assessing the role of alpha frequency in 

duration perception is limited and conflicting.  

Duration perception has been studied using a variety of tasks and, while it has been 

evaluated in different sensory modalities and even in multimodal contexts, duration 

perception is often studied in the visual modality. In a series of foundational studies, Efron 

(1970) demonstrated that there seems to be a minimum perceptible (visual) duration. In these 

studies, two flashes were presented with varying degrees of overlap and with either the first 

or second flash changing in duration while the other was held at 500ms. Participants tended 

to perceive the two flashes as simultaneous up to an average gap of 105ms between onsets, 

which, interestingly, is roughly the length of the average alpha cycle. Additionally, the slope 

of performance changed markedly once the first flash exceeded roughly 120-130ms in 

duration, while the duration of the second flash did not significantly alter gap perception. 

These findings were thought to highlight the minimum perceptible stimulus duration for each 

participant. Perception scaled in a graded fashion such that as stimuli became increasingly 

longer than these minimum perceptible durations, shorter gaps between stimuli were able to 

be perceived. Taken together, these findings suggest that the minimum perceptible duration 

may vary based on the type of stimulus that is perceived (a flash or a gap between flashes) 

and these percepts vary across individuals. 

It is important to note that Efron's (1970) study was severely underpowered, with a 

sample size of two participants, but additional studies have found 100ms to be a critical 
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window for perceptual processing (Grondin, 1993; Jazayeri & Shadlen, 2015). This 100ms-

window is critical in determining whether multisensory events are bound together or not, and 

the specific length of the binding window varies based on an individual’s alpha frequency 

(IAF; Migliorati et al., 2020; Stevenson et al., 2012; Venskus & Hughes, 2021) and with the 

manipulation of alpha frequency via non-invasive brain stimulation methods (Venskus et al., 

2021). Efron (1970) also found individual differences in the duration of the minimum 

percept, and similar individual differences in duration perception have been supported by 

subsequent research (Ivry & Schlerf, 2008; Williams et al., 2019). This critical window of 

duration perception not only has provided a framework for future studies in selecting 

appropriate ranges for stimulus durations, but also highlights a possible link between duration 

perception and the alpha frequency, which has a cycle-length of around 100ms.  

Given the behavioral research and the considerable amount of research linking an 

individual’s IAF to their ability to temporally discriminate visual and multisensory events 

(Cecere et al., 2015; Migliorati et al., 2020; Samaha & Postle, 2015; see Chapter 1 for 

additional details), it is reasonable to hypothesize that visual alpha oscillations are involved in 

duration perception, at least for visual events, if not also for multisensory events. In fact, it 

has long been proposed that alpha oscillations may be used as a clocking mechanism and 

contribute to the timing of psychological processing, such that alpha cycles at roughly 100ms 

were thought to define psychological moments (Ellingson, 1956; White, 1963). Some early 

research suggested a link between alpha and individual variation in temporal estimates at 

intervals between 2-8s (Legg, 1968), and temporal productions of 10s intervals (Ross, 1968). 

However, other research found weak or no evidence linking intra- or inter-individual 

fluctuations in alpha, respectively, to estimates of 10s-time intervals (Surwillo, 1966). Other 

methods of duration perception were examined by Cahoon (1969), who found a positive 



73 
 

relationship between endogenous alpha (driven by internal processes), but not exogenous 

alpha (driven by external stimulation), on verbal timing estimates and the timing of motor 

tapping, but not on reproductions of temporal intervals. It was concluded that Cahoon’s 

(1969) findings aligned with the theory of alpha as an internal clock mechanism, yet 

subsequent evidence supporting the theory is still limited. 

Since the wave of research in the ‘60s, there have been very few studies looking at 

how alpha oscillations relate to time perception. Two studies have specifically examined the 

role of alpha frequency in duration perception, but the results are inconclusive and somewhat 

conflicting. In one study, participants engaged in a two-alternative forced-choice (2AFC) 

temporal judgment task where they were asked to report whether the second interval was 

longer or shorter than the first interval (Milton & Pleydell-Pearce, 2017). The trial consisted 

of four 10ms flashes presented both above and below fixation to indicate (1) the start of the 

trial, (2) the onset of the first interval, (3) the offset of the first interval/onset of the second 

interval, and (4) the offset of the second interval. The first interval was always 400ms and the 

second interval varied according to participant performance on a staircase task which began 

with intervals at 200 and 600ms. Alpha phase at the onset of each interval and IAF were 

examined. The proportion of trials where participants reported that the second interval was 

longer varied significantly by alpha phase bins (Milton & Pleydell-Pearce, 2017). The point 

of subjective equality (PSE, or the interval duration at which participants were equally likely 

to say the second interval was longer or shorter than the first), was significantly correlated 

with IAF. However, IAF was not related to the slope of individual psychometric functions, 

suggesting alpha frequency did not modulate sensitivity in discriminating interval durations. 

Another study used tACS at participants’ IAF or IAF +/- 2 Hz while participants 

engaged in a temporal generalization task (Mioni et al., 2020). In this task, participants 
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compared target intervals to a learned 600ms standard and responded according to whether 

the target interval was equal or different in duration. The target intervals could be between 

300-900ms in duration in 100ms steps. All stimuli were black circles presented centrally on a 

gray background. This study found that manipulating alpha frequency had a significant effect 

on perceived duration, such that speeding up alpha frequency led to more over-estimation of 

durations, while slowing down alpha frequency led to more under-estimation of durations. 

These changes did not relate to increases or decreases in precision of duration estimation, 

indicating the involvement of alpha oscillations in duration perception but not temporal 

variability (Mioni et al., 2020). These studies both found no relationship between alpha 

frequency and duration perception sensitivity, despite prior work suggesting alpha 

frequency’s role in visual and multisensory sampling. Both studies also found that alpha 

oscillations play a role in some form of bias in duration perception (a shift in PSE or tendency 

to over-/under-estimate) but link these biases to different characteristics of alpha (phase angle 

or exogenous frequency). 

Across both studies we see design considerations that make the results difficult to 

compare and interpret. First, the design in Mioni et al. (2020) introduces a training block 

where participants practice estimating the duration of the standard interval. Training on 

multisensory integration tasks can lead to changes in the width of the temporal binding 

window (Navarra et al., 2005; Powers et al., 2009; Stevenson et al., 2013), a measure often 

associated with IAF (Cecere et al., 2015; Venskus & Hughes, 2021). Mioni and colleagues 

(2020) were not looking at multisensory integration and are manipulating IAF with tACS 

during the target interval presentations (as opposed to during the training of the standard 

intervals), making it important to consider how training may interact with comparisons 

between these stimuli in the control tACS condition. Second, Milton & Pleydell-Pearce 
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(2017) use empty intervals that share a very brief (10ms) onset-offset marker to indicate 

when the first interval is ending, and the second interval is beginning. It seems likely that 

participants were still estimating their perception of the first interval’s duration while they 

were simultaneously being presented and asked to track the duration of the second interval, 

making it potentially difficult for participants to process these intervals accurately or even as 

two separate intervals. Third, while both studies used a relatively short standard interval 

(either 400 or 600ms), the interval did not capture durations around the alpha cycle (100ms) 

or longer durations (around 1s) that would have been comparable to prior work from the 60’s. 

Additionally, the presentation order for these standard intervals was not counterbalanced with 

the target intervals in Milton & Pleydell-Pearce’s (2017) 2AFC task. The temporal order 

effect (TOE) also suggests that participants show bias for perceiving one interval as longer 

when intervals are subsequently presented (Grondin, 2010), making counterbalancing in these 

temporal discrimination tasks critical. 

The goal of the current study was to use a comprehensive set of tasks and stimuli to 

more rigorously evaluate the role of alpha frequency in duration perception. Participants 

performed duration discrimination tasks that expanded on work by Milton and Pleydell-

Pearce (2017) and Mioni et al. (2020) by including short, medium, and long standard interval 

durations, counterbalancing the presentation of standard and comparison stimuli, and 

introducing a “filled” interval type. The experiment also included a duration estimation task 

similar to early temporal estimation tasks by Cahoon (1969) and Legg (1968). It was 

expected that IAF would relate to sensitivity in discriminating durations, but perhaps to 

different extents for the different stimulus lengths, and a bias to over- or under-estimate 

durations.  
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Method 
Participants 

 
This study was approved by the University of California Santa Cruz Institutional 

Review Board. Fifty-five participants with a mean age of 21.46 (SD = 5.16) were recruited 

from UCSC’s SONA systems, the online psychology research pool, as well as from the 

Samaha Lab. The study consisted of two days of testing; the first day of testing took no more 

than 1.5 hours and involved the completion of questionnaires and behavioral tasks. 

Participants received 1.5 SONA research credits and a $10 Amazon gift card. The second day 

of testing, which had to be completed within 1-12 days of the first, took no more than 3.5 

hours and involved the completion of behavioral tasks with simultaneous EEG recording. 

Participants were rewarded with 3.5 SONA research credits and a $30 Amazon gift card. The 

sample consisted of 68.52% of participants who identified as female, 24.07% who identified 

as male, and 7.41% who identified as non-binary. The participant sample was 45.45% 

White/Caucasian, 25.45% Asian (35.71% did not specify, but of those who did specify, 

Indian-identifying participants made up 14.29% and those who identified as either Chinese, 

Cambodian, Filipino, Japanese, Persian, Taiwanese, or Vietnamese each made up 7.14%), 

20% Hispanic/Latino, and 9.09% multiracial (20% Black/Southeast Asian, 20% 

White/Indian, 20% White/Filipino, 20% White/Taiwanese, and 20% White/Chinese). 

Participants all had normal or corrected-to-normal vision. 

Procedure 

 
Each day, participants signed a written consent form and filled out some basic 

questions about their state that day (e.g. tiredness, hours since they last ate, etc.) before 

completing additional tasks. On day one, participants answered demographic questions and 

completed the Comprehensive Autistic Trait Inventory (CATI; English et al., 2021) and the 



77 
 

Prodromal Questionnaire-Brief (PQ-B; Loewy et al., 2005). Participants then completed a 

short task to estimate their critical flicker frequency (CFF; Wells et al., 2001), which they did 

on both testing days prior to the duration perception tasks. Participants then did at least two 

practice blocks of each task (more if their performance was low or participants reported 

having difficulty with the task) and then one experimental block of each task where there was 

no feedback. On day two, participants were fitted with the EEG cap and then completed one 

practice block and two experimental blocks of the duration estimation task. Participants then 

completed one practice block and five experimental blocks of each duration discrimination 

task, with the static and dynamic conditions counterbalanced. Finally, participants sat with 

their eyes closed for two minutes in order to collect resting state data at the end of the session. 

Participants were allowed to take breaks between blocks, as needed, and were welcome to 

quit the experiment at any time should they no longer be interested in participating.  

Questionnaires 
 

Participants were asked to complete two questionnaires, the CATI and the PQ-B, so 

that we could assess the extent to which autistic and prodromal traits in a normal healthy 

population relate to variations in IAF and duration perception. Cognitive impairments can 

vary widely in the Autism Spectrum Disorder (ASD) population and may be linked to 

variations in IAF (Dickinson et al., 2018). Research indicates that individuals with ASD have 

atypical sensory processing, characterized by improved perception of local features, or detail, 

and impaired perception of global structure, or contextual information (for reviews see Chung 

& Son, 2020 and Dakin & Frith, 2005). However, there is conflicting evidence around 

whether individuals with ASD have normal or enhanced processing of time intervals (Poole 

et al., 2022; Wallace & Happé, 2008). Individuals with schizophrenia and schizotypal 

disorders, on the other hand, tend to have impairments in visual perception and visual 
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working memory (Tek et al., 2002), which are thought to underlie difficulties in temporal 

processing and time perception (Roy et al., 2012), and have lower IAF on average (Ramsay et 

al., 2021; Sponheim et al., 2023; Trajkovic et al., 2021). Particularly, a meta-analysis 

suggests that individuals with schizophrenia are less accurate at discriminating durations and 

have the tendency to overestimate durations (Thoenes & Oberfeld, 2017). Thus, we wanted to 

explore varying amounts of autistic and schizotypal traits in the normal population related to 

variations in temporal perception. 

To measure autistic traits in the neurotypical population, we used the CATI (English 

et al., 2021), a 42-item inventory that asks participants to rate how much they agree with 

statements associated with traits typically seen in the ASD population. Responses are given 

via a 5-point scale ranging from “Definitely Disagree” to “Definitely Agree”. The items come 

from one of six main categories of traits (Social Interactions, Communication, Social 

Camouflage, Cognitive Rigidity, Repetitive Behavior, and Sensory Sensitivity) and include 

statements like, “Metaphors or ‘figures of speech’ often confuse me,” and “I feel discomfort 

when prevented from completing a particular routine.” Answers for each of the items were 

totaled for each participant, providing a score between 42-210. 

The PQ-B (Loewy et al., 2005) was used to measure schizotypal or prodromal traits 

in the neurotypical population, an inventory consisting of 21 items asking about thoughts, 

feelings, and experiences within the past month. Items were responded to with a “yes” or 

“no” and included statements such as, “Do familiar surroundings sometimes seem strange, 

confusing, threatening or unreal to you?” and “Have you felt that you are not in control of 

your own ideas or thoughts?”. If the participant responded “yes”, a follow-up distress scale 

item asked whether the experience caused the participant to feel “frightened, concerned, or it 

causes problems” on a 5-point scale ranging from “Strongly Disagree” to “Strongly Agree”. 
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Participant scores were computed in two ways: 1) by totaling the number of “yes” responses 

to get a score between 0-21, and 2) by totaling the values of the distress scale responses to get 

a score between 21-105. We were primarily interested in the first score which provided a 

numerical range of the prodromal experiences across individuals. 

Critical Flicker Frequency (CFF) 
 

The CFF was used as a marker of an individual’s temporal resolution in their vision 

(Cass et al., 2011; Eisen-Enosh et al., 2017). Temporal resolution is an aspect of visual 

processing that is strongly correlated with IAF in related tasks such as the two-flash fusion 

illusion (Drewes et al., 2022; Samaha & Postle, 2015). Individual differences in CFF are also 

related to IAF in clinical populations with hepatic encephalopathy (Baumgarten et al., 2018; 

Butz et al., 2013; Esmat et al., 2017; May et al., 2014). We thus hypothesized that 

performance on the CFF task might relate to duration perception, and administered this task 

across both days of testing to provide a baseline measure of temporal discrimination abilities 

that can be compared against performance on duration perception. We used the Flicker-

Fusion system by Lafayette Instruments, which is designed to provide a clear measure of an 

individual’s CFF or, more specifically, the rate at which participants perceive a flickering 

stimulus as opposed to a continuous stimulus presentation. Participants viewed a flashing 

light through a viewing chamber and reported whether they perceived the light as flashing or 

continuous. The light was presented binocularly at the same rate to each eye and the rate of 

presentation adaptively changed according to participant responses. Initial changes were on 

the magnitude of +/-5 Hz, with final changes on the magnitude of +/- 0.1 Hz, and participants 

performed the task until the Flicker-Fusion system had identified the participant’s CFF, 

which took just a few minutes of testing. 
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Figure 12: Diagram of duration perception tasks. 

A) Duration estimation task. Participants were presented a dot either above or below the 
central fixation and asked to report how long they perceived the dot to be. Responses were 
recorded with a mouse click along a slider of possible durations. B) Duration discrimination 
task. Participants were presented a dot above fixation, followed by a dot below fixation, or 
vice versa (dot presentation alternated by block) and were asked to report which dot they 
perceived as being longer in duration. Responses were recorded with a button press of “<” 
to indicate the first dot was longer or “>” to indicate that the second dot was longer. C) A 
cartoon of the dynamic stimulus. The luminance value of the stimuli in the dynamic duration 
discrimination task condition randomly modulated with every screen refresh (120 Hz) 
throughout the stimulus presentation, ranging from 0-0.5 or black to gray. 

Duration Estimation Task 
 

Participants performed a duration estimation task in which they were asked to 

provide an estimate of the duration of a visual event (Figure 12A). In both the practice and 

experimental blocks, participants observed a dark gray dot presented on a medium gray 

background either 3 degrees of visual angle (DVA) above or below the central fixation. The 

dots could be between 300-1100ms in 100ms intervals and were presented for a pseudo-

randomly selected duration such that each duration was presented an equal number of times 
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during the block. Participants were provided a slider that appeared along the horizontal 

meridian of the response screen and displayed a number line of possible interval durations, 

ranging from 100-1400ms in 100ms intervals. The slider provided numbers outside of the 

range of actual durations to reduce bias when reporting the shortest and longest possible 

durations. Participants selected the perceived duration of the dot by increasing or decreasing 

the value on the slider bar by moving the mouse right or left, respectively, and clicking to 

record their response. The current value was displayed on the screen in numerical values and 

was represented on the slider by a green dot which appeared at a random starting location on 

each trial. The inter-trial interval (ITI) ranged between 1.2-1.8s after the response was input. 

This long ITI was intended to ensure participants had enough time to refocus on the central 

fixation after the response screen is removed. The practice block was 48 trials long and 

provided feedback displaying the actual stimulus duration if participants were incorrect in 

their estimate or “Correct!” if participants were correct. The experimental blocks were 90 

trials long with each possible duration presented 10 times, totaling 180 trials. 

Duration Discrimination Task 
 

The duration discrimination task was a two-interval forced choice (2IFC) task in 

which participants were asked to report which of two visual stimuli they perceived to be 

longer in duration (Figure 12B-C). This task had two conditions: a “static” condition, where 

the stimulus was the same gray dot as presented in the duration estimation, and a novel 

“dynamic” condition where the dot varied randomly in luminance values between medium 

gray (0.5 luminance) to black (0 luminance) on every screen refresh of the monitor (120 Hz). 

There is evidence that unit changes in luminance are cross correlated with the broadband 

EEG signal in a manner related to the participant’s IAF (VanRullen & Macdonald, 2012), 

suggesting that our dynamically modulating stimulus should elicit a strong response at the 



82 
 

alpha frequency and allow for a robust evaluation of the role of IAF in duration 

discrimination. To make the dynamically modulating stimulus, we created random luminance 

sequences for each dot presentation on each trial, and then normalized the sequences using an 

inverse discrete Fourier transform to ensure the dot had equal energies at all frequencies. 

Besides the introduction of a flickering dot, the dynamic task was identical to the static task. 

The order of these conditions was counterbalanced across experimental sessions. 

In both duration discrimination conditions, participants observed the first dot either 3 

DVA above or below the central fixation, and then a second target on the opposite side of 

fixation, with the presentation order counterbalanced across blocks so that participants could 

always expect the location of the first dot as well as the second dot. In other words, whether 

the first stimulus was presented above or below fixation alternated from block to block but 

was held constant across the block. For all blocks, one target (the “standard”) was presented 

for a standard duration of 100, 600, or 1200ms, and the other target (the “comparison”) was 

presented for a fraction of the standard duration (either 50%, 70%, 90%, 110%, 130%, or 

150% of the standard duration). In this way, the comparison was always proportional to the 

standard, allowing for more variability in comparison durations at the longer durations and 

less at the shorter durations (Haigh et al., 2021). There were six presentations of each 

standard and comparison pair, resulting in 30 trials for each standard duration and 108 trials 

for each block. The practice blocks used comparison durations that were 50%, 80%, 120%, 

and 150% to give participants exposure to some of the easier discriminations and allow them 

to learn the task, as well as some discriminations of medium difficulty as practice for the 

experimental block. There were 48 trials total, again with equal presentation of each standard 

and comparison pair. For all blocks, the presentation order of the standard and comparison 

varied each trial. Participants will respond with a button press to indicate whether the first 
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(“<”) or the second (“>”) target was longer in duration. 

EEG Preprocessing 

All EEG data that was collected was high pass filtered at 0.1 Hz, downsampled to 

500 Hz, and re-referenced using a median reference. Trials were epoched based on the onset 

time of the stimulus (the first stimulus for the discrimination task) to include 500ms of pre- 

and post-stimulus data based on the longest possible stimulus duration(s) for each task. We 

also epoched the eyes-closed data into 105 1s-long “trials” prior to manual inspection. All 

task data was then manually inspected to identify trials with muscular artifacts within a -500 

prestimulus to -500 post-stimulus window or eye-blinks overlapping the stimulus 

presentations and channels with consistent or excessive line noise. After removing selected 

trials (estimation task: M = 14.62, SD = 19.83; discrimination task: M = 67.30, SD = 54.98) 

and interpolating selected channels (estimation task: M = 2.71, SD = 1.76; discrimination 

task: M = 3.56, SD = 1.86) using spherical interpolation, an independent components analysis 

(ICA) was conducted, and ocular artifact components removed (M = 1.71, SD = 0.72). Eyes-

closed data was manually inspected for noisy channels (M =  2.13, SD = 1.42) and trials (M = 

5.46, SD = 7.09) to be interpolated and rejected, respectively, but no ICA was run for this 

data. Finally, all data was average re-referenced again and task data was baseline corrected 

using a 200ms prestimulus baseline window. 

A fast-Fourier transform (FFT) was used to identify peak alpha frequency for each 

individual (Figure 13). The 500ms prestimulus window from each trial, or the entire 1s trial 

from the eyes-closed data, was zero-padded, linearly detrended, and tapered using a 

Hamming window. The FFT was performed across the length of the prestimulus window for 

each epoch. Power was then averaged across trials using the electrodes with the highest alpha 

power (O1, O2, PO7, and PO8) to identify the frequency within the alpha-band range (7-14 
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Hz) that had the most power for each participant, resulting in their IAF. If participants did not 

have a clear alpha peak, they were assigned a peak of 10 Hz. Only one participant did not 

have a clear peak in the eyes-closed data, providing the best estimate of IAF across 

participants (there were 3, 3, and 2 participants without peaks in the EEG data for the 

estimation, static discrimination, and dynamic discrimination tasks, respectively). The eyes-

closed alpha peaks were therefore used in analyses comparing task performance to IAF, and 

the task EEG data was used only in single trial analyses of alpha frequency. 

 

Figure 13: Topoplot of alpha power and power spectra for eyes-closed resting state data. 

The average power spectrum (black line) shows the average peak alpha frequency (black dot) 
is at 10 Hz. Colored lines are power spectra for individual subjects and emphasize the 
variability in peak frequencies. The inset topoplot demonstrates electrode locations (from left 
to right: PO7, O1, O2, PO8) with the highest alpha power during eyes-closed recording, 
which were used in the FFT to determine each individual’s peak alpha frequency.  

A frequency sliding approach based on equations from Cohen (2014) was used to 

extract instantaneous alpha frequency at the trial level (the dotheslide.m script can be found at 
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https://samahalab.ucsc.edu/resources). We computed the instantaneous frequency for each 

trial and electrode using a sliding window across -600 to -200ms prestimulus range and an 

alpha band range centered around each participant’s IAF +/- 2 Hz. For the discrimination task 

data, we found the instantaneous frequency from before each stimulus presentation, organized 

by whether the stimulus was the standard or comparison (“stimulus frequency”). This allowed 

us to evaluate differences in stimulus processing that may be driven by instantaneous alpha 

frequency. We also averaged the standard and comparison prestimulus alpha frequencies to 

assess how this related to potential trial-to-trial changes in performance (“trial frequency”). 

Behavioral Data 

For the duration estimation task, we explored measures of estimation accuracy and 

error. More specifically, we calculated participant’s average estimates at each possible 

duration and their coefficient of variance (CV) in estimates at each possible duration and 

averaged each of these across durations to have a single value of estimates and CV of 

estimates for each participant. The CV provided an unbiased measure of the variance in 

estimates, as it corrects for the larger variance inherent in estimates of longer durations. This 

measure can be interpreted as a precision measure (as variation in estimates decreases, 

precision inherently increases). To further evaluate performance, we also calculated 

participant’s average error, absolute average error, and the SD of error at each possible 

duration and then averaged each of these values across durations. 

Participant performance on the discrimination tasks was modeled by fitting a logistic 

psychometric function (Palamedes toolbox version 1.10.4) to the proportion of times 

participants chose the comparison stimulus as “longer” for each of the possible comparison 

durations. This was done separately for each standard duration and each condition. 

Additionally, separate psychometric functions were fit to high and low frequency trials 
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median split by instantaneous trial frequency for each participant, and to trials based on 

whether the prestimulus instantaneous frequency was higher or lower for the comparison 

stimulus than the standard stimulus. For all data fitting, alpha was set to the range of 

comparison values, β was set to -10 to 100 to capture the expected positive slope, and the 

lambda and gamma values were fixed at .05 to denote the lower and upper bounds. Slopes 

were not normally distributed, so we applied a log10 transformation to all slope data. We 

used the slope parameter output as a measure of sensitivity for each condition (100ms, 

600ms, and 1200ms standards, static and dynamic conditions) and then averaged the slopes 

by the main effects of interest (standard durations and stimulus types). In other words, to 

analyze each the average performance at each standard duration, we averaged the static and 

dynamic conditions, and to analyze the average performance of each task condition, we 

averaged across all standard durations. 

Statistical Analyses 
The main goal was to evaluate the role of IAF in duration perception across 

individuals. We used Spearman correlations to examine the relationship between IAF and 

several duration estimation measures: mean estimates, CV of estimates, mean error, absolute 

mean error, and SD of error. As an additional test of the main duration estimation effects of 

interest, we ran t-tests on the mean estimates and CV comparing participants with high and 

low IAF, median split. For the duration discrimination task, we also used Pearson correlations 

to assess the relationship between IAF and the slopes for each of the conditions and the mean 

slopes across conditions. Mean duration discrimination performance (slope grand mean) was 

moderately correlated with age (rho(53) = .28, p = .04), and thus we performed all of the 

aforementioned correlations after correcting for age in each measure of performance using a 

linear model (both age-corrected and non-age corrected results can be found in Table 2). 
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Finally, given the number of variables in question in the duration discrimination task and 

their potential relationships, we used a mixed effects model to predict duration discrimination 

slopes using the interactions between IAF and standard duration, IAF and task condition, 

each of their main effects, and participant age. 

It is also possible that duration perception changes with moment-to-moment changes 

in alpha frequency and so we performed within-subjects analyses on the instantaneous 

frequency measures extracted from each trial. For the duration estimation task, we binned 

mean estimates and CV of estimates using a median split of instantaneous trial frequency. We 

then performed t-tests to evaluate mean estimates and CV of estimates in high versus low 

frequency trials. We also binned the slopes of psychometric fits from the duration 

discrimination task by trials with high versus low instantaneous trial frequency as well as for 

trials with high versus low comparison stimulus frequency. We then performed t-tests 

comparing average slopes for high and low instantaneous alpha frequency at the stimulus 

level and trial level. 

We were also curious about the extent to which CFF, CATI, and PQ-B scores related 

to IAF and duration perception sensitivity, as well as how the sensitivity measures across 

tasks related to one another. Given the non-normal distribution of CFF, CATI, and PQ-B 

scores, we computed separate Spearman correlations between IAF and each of these 

variables. We also used a Spearman correlation to explore the relationship between the CATI 

and PQ-B scores and participants’ mean estimates, CV of estimates, and duration 

discrimination slope values. Additionally, we wanted to compare our main measures of 

interest across tasks to see how duration estimation related to duration discrimination. We 

computed a Spearman correlation between the mean slope of the duration discrimination task 

(taken across all conditions) and the CV of estimates as well as between the mean slope of the 
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duration discrimination task and the gran mean of estimates from the duration estimation 

task. Lastly, we checked whether the CV of estimates and grand mean of estimates were 

correlated using a Spearman correlation. 

Results 
 

Duration Estimation 

Generally, participants performed as expected on the duration estimation task (Figure 

14). Average estimates were near veridical for medium durations (600-800ms) and beginning 

to decrease for longer durations (90-1100ms) as predicted by prior research (Wearden et al., 

2007), although average estimates for shorter durations (300-500ms) tended to be higher than 

the actual durations. We were primarily interested in looking at participants’ average 

estimates at each duration, to get a measure of bias, and their variation around those 

estimates, to get a measure of precision. We found that average estimates (Figure 14) were 

not significantly related to IAF (rho(52) = .08, p = .57), nor were they significantly different 

when median split by IAF (t(54) = .50, p = .62). However, the CV of estimates (Figure 14) 

was significantly negatively correlated with IAF (rho(52) = -.30, p = .03), such that faster 

IAF was associated with a lower CV, or a lower amount of variance in their estimates. 

Additionally, the CV was significantly different for groups with high IAF compared to low 

IAF, median split (t(54) = -2.63, p = .01), such that individuals with faster IAF had 

significantly lower CV of their estimates. We also explored whether IAF was related to 

participant error in estimates and the deviation of those errors, to get additional measures of 

bias and precision. There was no significant correlation between any of the residual error 

measures (mean error, absolute mean error, and SD of error) and IAF (see Table 2). Finally, 

we split trials based on each participant’s trial alpha frequency median split to explore trial-

to-trial variability in estimate. We found no significant difference between high and low trial 
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frequency and average estimates (t(54) = -.95, p = .35) or CV of estimates (t(54) = 1.32, p = 

.19). 

 
Figure 14: Duration estimation task measures correlated with IAF and median split by IAF. 

Mean estimates are plotted in the top row and the coefficient of variance (CV) of estimates 
are plotted in the bottom row. A) Participants were split by the median IAF, and their mean 
estimates and CV of estimates are plotted for every actual duration that was presented in the 
duration estimation task. Participants with high IAF are shown in blue and participants with 
low IAF are shown in red (error bars are SEM). Asterisks indicate significance (p < .05) B) 
Mean estimates and CVs of estimates were averaged across all durations and corrected for 
age. Plots show the correlation between IAF and the residuals for mean estimates and CV of 
estimates, where each blue dot indicates an individual participant. Bolded fit lines indicate 
significance (p < .05). 
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to improve as durations became longer (Figure 15A), despite the comparison durations being 

proportionally matched, thus satisfying Weber’s law (Haigh et al., 2021). However, we also 

found that individual differences in slopes across all durations were generally moderately 

positively correlated to one another (ranging from rho(52) of .30-.59; see Figure 15B). 

Psychometric functions fit the duration discrimination data well for all participants and tasks 

except one participant who did not have a fit for the 1200ms dynamic condition. Given the 

correlation among slopes from the different tasks, we imputed this missing data by averaging 

the participant’s 1200ms static slope and 600ms dynamic slope to be used in the following 

results. The correlations between IAF and the residual psychometric function slopes (after 

correcting for age) for each of the averaged conditions are shown in Figure 16. 

 Age-corrected Non-age-corrected 

Estimate Standard 

Error 

t(323) p 

Duration Estimation Measures  

Mean Estimates .08 .57 .05 .72 

CV of Estimates -.30* .03* -.28* .04* 

Mean Error .13 .36 .03 .84 

Absolute Mean Error -.18 .20 -.07 .61 

SD of Error -.18 .20 -.08 .55 

Duration Discrimination Measures  

Mean Slope .29* .03* .21 .12 

Mean Static Slope .37* .005* .31* .02* 

Mean Dynamic Slope .13 .35 .09 .52 

Mean 100ms Slope .30* .02* .26 .05 

Mean 600ms Slope .26 .05 .18 .19 

Mean 1200ms Slope .17 .22 .07 .63 

Table 2: Age-corrected and non-age-corrected statistical results of duration estimation and 
duration discrimination analyses. 
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Each measure was corrected for age using a linear model to account for the amount of 
variance explained in the performance measure by participant age. These measures were 
used in the main correlation analyses described in Chapter 5. Non-age-corrected 
correlations were also performed and are provided in the final two columns of the table. 
Asterisks indicate significant correlations (p < .05). 
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Figure 15: Psychometric function fits for the duration discrimination task by conditions, and 
a correlation matrix of key measures. 

A) The proportion of times participants chose the comparison stimulus as being “longer” 
than the standard stimulus is plotted against what fraction the comparison duration was 
relative to the standard stimulus. Psychometric function fits (lines) are shown alongside 
actual data (dots with SEM error bars). High IAF participants are plotted in blue and low 
IAF participants are plotted in red for the 100ms standards (top row), 600ms standards 
(middle row), and 1200ms standards (bottom row) for the static (left column) and dynamic 
(right column) conditions. B) A correlation matrix showing the Spearman correlation 
strength between each duration discrimination condition (from top to bottom, or left to right: 
static 100ms, static 600ms, static 1200ms, dynamic 100ms, dynamic 600ms, dynamic 
1200ms), age, IAF, CFF, and the CV of estimates (the sensitivity measure in the duration 
estimation task), and the mean estimate (the bias measure in the duration estimation task). 

First, we wanted to evaluate whether IAF was related to duration discrimination 

sensitivity overall. We found that sensitivity (slope), when averaged across all conditions, 

was significantly correlated with IAF (rho(52) = .29, p = .03). Exploring this relationship 

further, we found a significant correlation between IAF and the average slope for the static 

condition (rho(52) = .37, p < .01), but not for the dynamic condition (rho(52) = .13, p = .35). 

Finally, we were interested in understanding how duration discrimination performance 

changed across the different standards. There was a significant correlation between IAF and 

sensitivity discriminating 100ms standards (rho(52) = .30, p = .02) and a moderate correlation 

between IAF and sensitivity discriminating 600ms standards (rho(52) = .26, p = .05). No 

significant relationship was found between IAF and sensitivity discriminating 1200ms 

standards (rho(52) = .17, p = .22).  
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Figure 16: Correlations between IAF and slopes for all duration discrimination task 
conditions. 

Plots show the correlation between IAF and residual duration discrimination slopes, which 
have been corrected for age and averaged across duration discrimination task conditions of 
interest. The average slope across all conditions is plotted in the top left, with task types 
plotted in the top rightmost plots (from left to right: static condition, dynamic condition), and 
standard duration conditions are plotted in the bottom row (from left to right: 100ms, 600ms, 
1200ms) and). Each blue dot indicates an individual participant. Asterisks indicate 
significance of p < .05 (*) and p < .01 (**). 

Our linear mixed effects model captured the relationship between IAF and all of the 

variables in the duration discrimination task. We found that participant performance (non-

age-corrected slopes) could be predicted using IAF, age, standard duration, and stimulus type 

(static or dynamic) as predictor variables (R2 = .72). Specifically, age (β = 0.02, SE = 0.005, 

t(323) = 3.06, p = .002), IAF (β = 0.10, SE = 0.03, t(323) = 2.83, p = .005), and standard 

duration (β < 0.001, SE < 0.001, t(323) = 13.52, p < .001) were significant predictors of slope 

as a measure of task performance. While stimulus type was not a significant predictor of 
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performance, it significantly interacted with IAF to predict performance (β < -0.05, SE = 

0.02, t(323) = -2.42, p = .02), indicating that the relation between the duration discrimination 

sensitivity and IAF was, somewhat surprisingly, stronger for static compared to dynamic 

stimuli. There was no significant interaction between IAF and duration as a predictor 

variable, suggesting that the IAF relation to duration discrimination sensitivity was not 

strongly dependent on overall stimulus duration. 

The within-subjects analysis for the duration discrimination task looked at high and 

low instantaneous alpha frequency at both the stimulus frequency level (where trials were 

sorted by whether the comparison stimulus had higher or lower prestimulus alpha frequency 

than the standard stimulus) and trial frequency level (where trials were sorted by whether the 

average prestimulus frequency before each stimulus was higher or lower than the median 

frequency). Given the reduced number of trials, several psychometric functions did not have 

good fits. Out of the 165 slopes fit for each analysis, there were a total of 11 slopes for the 

stimulus frequency analysis and 5 slopes for the trial frequency analysis that needed to be 

imputed. To do so, we averaged those same participants’ data from the two most similar 

conditions. Slope, averaged across all conditions, was not significantly different for trials 

with higher frequency compared to trials with lower frequency (t(54) = -.13, p = .89). Slope, 

on average, was also not significantly different on trials where the comparison stimulus had a 

higher frequency compared to trials where the standard stimulus had a higher frequency 

(t(54) = 1.69 , p = .10). However, given the somewhat larger difference between trials in the 

stimulus frequency analysis, we explored additional effects. In the static condition, we see a 

similarly small difference such that on trials where the comparison stimulus had a higher 

frequency, the slopes are slightly (though not significantly) steeper (t(54) = 1.75 , p = .09). 

We do not see any difference in the dynamic condition (t(54) = 0.87 , p = .39). When 
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exploring the effect across standard durations, there is no difference at the 100ms standard 

(t(54) = 1.09 , p = .28), the 600ms standard (t(54) = 1.37 , p = .18), or the 1200ms standard 

(t(54) = -0.27 , p = .79). 

Exploratory Measures 

We were interested in evaluating whether IAF or duration perception performance 

related to the magnitude of trait-like scores across participants (Figure 17A). No significant 

correlation was found between IAF and individual’s CATI scores or PQ-B scores. The CATI 

and PQ-B scores also did not significantly relate to any of the main performance measures of 

interest (mean estimates, CV of estimates, and duration discrimination slopes). Given the 

relationship between CFF and IAF in clinical populations, we compared CFF to various 

measures. First, we explored potential correlations between IAF with the CFF averaged 

across days as well as the CFF from only the second day, the same testing session where we 

measured IAF. Neither CFF score was significantly correlated with IAF (average CFF: 

rho(53) = -.09, p = .51; day 2 CFF: rho(53) = -.15, p = .26). We also evaluated whether the 

CFF from the first day, the testing session where participants completed the trait 

questionnaires, was correlated with either questionnaire score (Figure 17B). We found a 

moderately weak, non-significant, correlation between CFF and CATI scores (rho(53) = .24, 

p = .08) and PQ-B scores (rho(53) = .23, p = .09). We also looked at whether the different 

performance measures for the different duration perception tasks were related. We found that 

the average CV of estimates and the average slopes of the psychometric fits were 

significantly negatively correlated across participants (rho(53) = -.56, p < .001). Interestingly, 

we also found that participant’s average overall estimates correlated significantly with the 

average slopes of the psychometric fits  (rho(53) = .41, p < .01). Finally, the average CV of 

estimates and the average overall estimates were significantly negatively correlated (rho(53) 
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= -.43, p < .01). 

› 
Figure 17: Distribution of CFF, CATI, and PQ-B scores across the sample, and correlations 
between Day 1 CFF and the CATI and PQ-B scores. 

A) Histograms demonstrate the number of participants with each trait-like score that was 
measured in the experiment: critical flicker frequency (CFF), Comprehensive Autistic Trait 
Inventory (CATI) and the Prodromal Questionnaire (PQ-B). B) A Spearman correlation was 
computed between the Day 1 CFF scores and the CATI scores (left) and PQ-B scores (right) 
as an exploratory measure of the relationship between traits that were expected to, but did 
not relate to, IAF. Neither correlation reached statistical significance. 

Discussion 
 

This study highlights the relationship between IAF and individual variation in 

duration perception, particularly around duration perception sensitivity. IAF did not relate to 

a bias or tendency to over- or under-estimate durations, but instead related to the precision of 

visual duration estimates and the sensitivity with which participants discriminated visual 
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durations. In other words, participants with faster IAF did not demonstrate an overall bias or 

shift in their average estimates, nor were they more accurate in their estimates, as measured 

by the absolute error of estimates, but they did show greater precision in their estimates, as 

measured by the CV of estimates. Participants with faster IAF were also more sensitive at 

discriminating two similar durations, as measured by the slope of their psychometric 

functions, than participants with slower IAF. Importantly, these two measures were related: 

less variance in estimates (greater precision) was associated with a steeper slope (better 

discriminability). Our duration discrimination findings are consistent with, and expand upon, 

the vast literature supporting the role of IAF in sensitivity discriminating quick successive 

visual stimuli and multisensory stimuli (Cecere et al., 2015; Cooke et al., 2019; Di Gregorio 

et al., 2022; Migliorati et al., 2020; Noguchi, 2022; Samaha & Postle, 2015; Venskus et al. 

2021), and our duration estimation findings provide novel evidence that the sensitivity driven 

by IAF also plays a role in overall precision of estimating the duration of visual events. 

We explored performance on the duration discrimination task and how it related to 

IAF and found that the relationship changed with stimulus type and duration, though the latter 

variable was not a significant predictor of performance in the mixed effects model. We found 

that the relationship between IAF and sensitivity was strongest for short standard durations 

(100ms; Figure 16), regardless of whether the stimulus was static or dynamic (see Figure 15 

correlation matrix), but that relationship decayed as the length of the stimulus increased. 

There was a low to moderate correlation at medium standard durations (600ms), and a weak 

to no correlation at long standard durations (1200ms). These findings reinforce the idea that 

the alpha cycle characterizes the minimum perceptible duration, and other percepts are built 

up of multiples of these cycles. The 100ms standard is roughly the average alpha cycle, and 

thus discrimination around this standard (where comparisons ranged from 50-150ms) should 



98 
 

most prominently highlight the differences in duration discrimination across individuals as 

IAF varies. The 600ms standard also captured this range, given that the closest comparisons 

were 60ms above or below the standard, and while still significant, the strength of correlation 

between performance and IAF is decreased at this standard duration. The correlation was no 

longer significant between performance and IAF at the 1200ms standard duration, where the 

nearest comparisons were 120ms above or below the standard, which is nearly outside of the 

alpha cycle range except for those individuals at the lower end of the alpha-band range (8.3 

Hz or less). In our mixed effect model, the standard duration was a significant predictor in 

performance on the task (performance improved for longer durations), but it did not 

significantly interact with IAF as a predictor. In other words, the improved performance on 

longer durations was likely unrelated to IAF. A possible explanation for the role of IAF in 

short duration discrimination is that these shorter durations rely more on sensory 

mechanisms, comparable to the research on temporal resolution and temporal binding of 

stimuli. Meanwhile, longer durations may begin to recruit additional cognitive processes and 

rely more heavily on visual working memory than sensory perception for the comparison of 

durations. 

The role of IAF in duration discrimination was specific to the static condition. We 

found a significant relationship between IAF and the average sensitivity on trials where 

participants observed a static stimulus but found no relationship on trials where participants 

observed a dynamically modulating stimulus. This finding was supported by our mixed 

effects model that indicated the stimulus type alone did not significantly predict performance 

but did significantly interact with IAF to predict performance. In other words, participants 

performed similarly, on average, across the task conditions, but the relationship between IAF 

and task conditions differed enough to significantly affect the prediction of performance in 
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the model. The dynamic stimulus was modulating randomly in luminance but with equal 

energy at all frequencies, and thus was not designed to entrain alpha. However, these types of 

random luminance changes are known to cross-correlate with EEG activity in the alpha-band 

range for up to 1s (VanRullen & Macdonald, 2012). Although the luminance changes are 

typically correlated with alpha activity at the participant’s IAF, it is possible that the long-

lasting activity generated while observing these stimuli may have interfered with participants’ 

spontaneous ongoing alpha rhythms. If IAF was modulated at all during stimulus processing, 

it may have affected the observed relationship between participants eyes-closed IAF and 

duration discrimination performance without necessarily affecting overall performance on the 

task. Alternatively, these stimuli may have simply been more cognitively-demanding for 

participants to observe and duration perception in this task may have recruited more cognitive 

mechanisms, as opposed to sensory mechanisms where IAF would have played a greater role. 

Anecdotally, participants reported using different strategies for the different conditions, and 

even attempted to “count” the flickers, despite the fact that individual luminance changes 

were imperceptible to participants, given that they occurred at 120 Hz. Likely participants 

were counting the number of large, perceptible, luminance changes in the stimulus, which 

may not have always been aligned with stimulus duration. Overall, it seems the role of IAF 

may be heavily dependent on the type of stimulus being tracked, and future research should 

further explore what stimulus properties engage IAF for duration perception. 

We performed single-trial analyses to explore within-subject changes in alpha 

frequency and how that related to performance on duration perception tasks. There was no 

effect of trial frequency on either bias (mean estimates) or precision (CV of estimates) 

measures in the duration estimation task, or on sensitivity (slope) in the duration 

discrimination task. Despite IAF modulating precision and sensitivity in these tasks at the 
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subject level, it seems that duration perception may be relatively stable within an individual 

despite spontaneous changes in alpha frequency. This finding is supported by theories of time 

perception that suggest it is an inherent process modulated by an internal clock mechanism 

(Karmarkar & Buonomano, 2007; Surwillo, 1966; Treisman, 1963; Treisman et al., 1990). 

Assuming this temporal clock is modulated by an individual’s IAF, minute changes in alpha 

frequency might be taken into consideration and temporal judgments may be interpreted 

relative to the individual’s typical clock speed. This internal clock theory may also explain 

why we did not find a difference in sensitivity on trials where the frequency was faster for the 

comparison stimulus versus trials where the frequency was faster for the standard stimulus. 

While bias did not seem to be affected by alpha frequency in duration estimates at the subject 

level, nor does the point-of-subjective-equality (the point at which participants are equally 

likely to choose the standard and comparison as being “longer”) visually appear different 

across these trials, it still may be pertinent to statistically evaluate bias in duration 

discrimination at the single-trial level. It could also be interesting to group trials by 

performance (over- or under-estimates or correct or incorrect discriminations), and then 

evaluate whether alpha frequency is significantly different on those trials. The first pass of 

single-trial analyses, however, does not indicate that moment-to-moment changes in alpha 

frequency relate to participant sensitivity in duration estimation or discrimination.  

The final analyses examining IAF’s relationship to the CFF and CATI and PQ-B 

scores and CATI and PQ-B scores to task performance were somewhat exploratory in nature, 

and we failed to find any significant relationships across the measures. Research on patients 

with hepatic encephalopathy shows that IAF correlates with CFF (Baumgarten et al., 2018; 

Butz et al., 2013; Esmat et al., 2017; May et al., 2014). However, it is likely that CFF and 

IAF are uniquely correlated in these clinical populations, perhaps due to other underlying 
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mechanisms that drive these patients to have lower IAF on average compared to healthy 

controls (Butz et al., 2013; Götz et al., 2013; May et al., 2014). Similarly, IAF varies in 

populations with ASD (Dickinson et al., 2018) and schizotypal disorders (Ramsay et al., 

2021; Sponheim et al., 2023; Trajkovic et al., 2021), and duration perception varies in 

populations with ASD (Poole et al., 2022; Wallace & Happé, 2008) and schizotypal disorders 

(Roy et al., 2012; Tek et al., 2002; Thoenes & Oberfeld, 2017). Thus, it was hypothesized if 

variations in IAF are underlying the distortions in duration perception in both of these 

populations, we might expect that as the magnitude of these traits varies in normal healthy 

adults, so would IAF. However, there were no significant correlations between IAF and ASD 

traits (CATI) or schizotypal traits (PB-Q), perhaps due to the non-normal distribution of trait 

scores whereby individuals tended to score low in both of these traits (see Figure 17A). While 

we found lower IAF to be associated with reduced duration perception sensitivity, it is likely 

not driven by the magnitude of ASD or schizotypal traits in those individuals. 

Our main results contradict some recent literature exploring the role of IAF in 

duration perception, which found evidence that IAF relates to bias, but not sensitivity (Mioni 

et al., 2020). However, it is likely that this effect is driven by the manipulation of IAF with 

tACS, where +/- 2 Hz changes in alpha frequency were induced in participants. Mioni et al. 

(2020) asked participants to learn a 600ms standard and then, after receiving tACS, observe 

stimuli of varying durations and report whether they were the same as or different from the 

learned standard. The research showed that speeding up or slowing down alpha frequency led 

to more over- or under-estimations of comparison durations, respectively. In our study, we 

found no relationship between IAF and this type of estimation bias, either at the subject or 

trial level, though our within-subject analysis examined endogenous, trial-to-trial changes in 

alpha frequency. While we did find a relationship between IAF and duration discrimination 
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sensitivity overall, unlike Mioni et al. (2020), the results from our dynamic duration 

discrimination condition might relate to their null sensitivity findings. We found no 

relationship between IAF and sensitivity for the dynamic condition of the duration 

discrimination task, which induced an ongoing alpha rhythm reflective of the luminance 

changes in the stimulus. It is possible that, if duration perception is driven by one’s 

endogenous alpha rhythms, performance could change and introduce a bias when alpha is 

manipulated to be outside of the participant’s alpha frequency range. The stimuli being 

compared in the Mioni et al. (2020) study were presented either at the participant’s IAF 

(standard) or when their alpha frequency was stimulated to be faster or slower (comparison). 

It is interesting to note that their study also did not find a within-subjects difference in 

sensitivity and provides additional motivation to explore potential bias in our single-trial 

analysis of prestimulus alpha frequency. Given the evidence, however, it seems likely that 

endogenous changes in alpha frequency are not sufficient to induce a bias in duration 

perception if they fall within the typical internal clock range. 

Overall, the rhythmic sampling theory could explain our main findings, as the theory 

would suggest that individuals with faster IAF have a more frequent strengthening of their 

visual perception, which is suggested to occur with each alpha cycle. This larger 

accumulation of strong sensory representations over a duration could provide an overall more 

accurate representation of that duration, particularly when comparing two similar durations. 

Further supporting this theory and interpretation of our findings is the fact that the sensitivity 

measures (CV of estimates and slope in discriminations) were significantly negatively 

correlated across tasks; as discrimination sensitivity increased, the amount of variance in 

estimates decreased. While this correlation is not sufficient to conclude that these processes 

are supported by the same underlying mechanism, it is a necessary relationship to observe if 
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IAF is indeed the mechanism driving the magnitude of sensitivity across participants in both 

tasks. This study highlights the role of IAF in duration perception, specifically by supporting 

improved duration discrimination sensitivity for short durations and static stimuli. Given that 

IAF was also related to precision – albeit not accuracy – in duration estimates, our pattern of 

findings lends further support to the rhythmic sampling theory of visual perception by means 

of alpha frequency. 

As a final analysis, we were also able to look at correlations between different 

measures of task performance and duration perception, a comparison that – to the authors’ 

knowledge – has not been done before. First, the two main duration estimation measures were 

significantly negatively correlated, such that as average estimates increased, the variation of 

estimates decreased, meaning those participants with higher estimates were more precise. 

While we did not expect our measure of bias (average estimates) to be related to our precision 

measure (CV of estimates), both could be explained by the rhythmic sampling account. 

Perceptual strengthening (and weakening) would be occurring more often for individuals with 

faster IAF, but not to the extent that it would induce as strong of a bias in estimates as we 

would expect if those participants were perceiving additional visual samples, as suggested by 

the discrete sampling account. Importantly, there was not sufficient difference in average 

estimates across participants in a way that meaningfully related to IAF. We also compared 

duration discrimination sensitivity (slope) to the duration estimation task and found that as 

precision in duration estimates increased, so did discriminability (which also related to IAF). 

Taken together, these results indicate a specific relationship between alpha frequency and the 

specificity of visual percepts. However, we also found that average estimates related to 

discrimination sensitivity. It is difficult to explain why the tendency to estimate durations as 

longer would relate to duration discrimination sensitivity, and additional research should 
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these measures in different duration perception tasks to see how they relate. As a whole, these 

somewhat exploratory findings provide novel evidence of the relationship between 

performance measures on these rather different duration perception tasks. 

Additional duration perception tasks and stimulus types should be explored in the 

context of IAF to better understand the mechanisms underlying temporal processing and 

duration perception. A large sample size, such as that used in this study, is critical for 

analyzing individual differences in IAF and temporal perception (Samaha & Romei, 2024). 

Several results from both the duration estimation and duration discrimination tasks should be 

explored further. For example, given the somewhat unintuitive relationship between average 

duration estimates and other duration perception measures, future studies should test different 

duration estimation designs. Previous duration estimation tasks have used interval 

reproduction methods, whereby participants use a button press or saccade to recreate the 

stimulus observed on each trial (Grondin, 2010; Jazayeri & Shadlen, 2015; van Wassenhove 

et al., 2019). An interval reproduction design could yield better measures of accuracy and 

error than our design, which asked participants to report the perceived duration in a more 

forced-choice manner by using a set scale of possible durations separated by 100ms intervals. 

This could be especially helpful for capturing estimates of shorter durations, which are likely 

recruiting more sensory mechanisms than longer durations which potentially rely on more 

cognitive mechanisms. Additionally, according to the duration discrimination task, the role of 

IAF in duration perception seems to vary with interval length, and this could provide a more 

nuanced view of duration estimation at shorter intervals. 

Future studies should also examine how different duration discrimination task 

designs relate to IAF. It was hypothesized that introducing a dynamic and visually-

stimulating condition would engage participants in a way that recruited IAF more, being that 
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IAF is so strongly related to visual perception. Instead, we found that IAF was only related to 

static duration discrimination, and the lack of a relationship with dynamic duration 

discrimination could have been driven by the features of our dynamic stimulus. To maintain a 

dynamic stimulus design but reduce visual stimulation and the possibility that the flickering 

stimulus induced non-spontaneous alpha activity, future research could change the stimulus 

luminance or color slowly over the stimulus duration, varying the rate on each trial. This 

would also reduce participants’ ability to attempt to “track” the dynamic changes, as occurred 

with our stimulus design. However, our current results seem to indicate that the mechanisms 

for which IAF is helpful in duration perception may rely less on visual cues than expected. 

Thus, another important future direction is to evaluate the role of IAF in filled versus empty 

intervals, as has often been done in behavioral duration perception studies (Buffardi, 1971; 

Hasuo et al., 2014; Wearden et al., 2007; Williams et al., 2019). Introducing an empty versus 

filled paradigm would allow researchers to see whether IAF plays a unique role in perceiving 

static filled intervals or is also recruited for perceiving empty intervals. It also seems that IAF 

plays a greater role in facilitating the discrimination of short durations (around 100ms), 

seeing as we did not observe a correlation between IAF and discrimination of 600ms 

standards (though this could, in part, be due to the inclusion of the dynamic condition in the 

analysis) or 1200ms standards. Future research should compare the relationship between IAF 

and performance across multiple short standard durations  (for example, 100-500ms 

standards, in 100ms intervals) to see where the role of IAF in duration discrimination begins 

to break down. 

Finally, we did not find significant results at the single-trial level, which could be 

explained by the small number of trials in the analyses when broken down by both condition 

and instantaneous frequency. Future research that aims to explore trial-to-trial differences in 
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alpha activity should consider including a greater number of trials in their experiment to get 

at the more nuanced role that alpha frequency may play in duration perception within an 

individual. Implementing these design considerations would further our understanding of how 

alpha frequency supports temporal perception.  
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