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Unraveling plant–microbe symbioses using
single-cell and spatial transcriptomics

Plant ScienceOPEN ACCESS
Karen Serrano 1,2,3,5, Francesca Tedeschi4,5, Stig U. Andersen4,*, and Henrik V. Scheller1,2,3,*
Highlights
Beneficial plant–microbe interactions
are critical to plant productivity in both
natural and agricultural ecosystems
due to benefits such as improved plant
nutrition and abiotic stress tolerance.

The legume–rhizobia symbiosis and
plant–arbuscular mycorrhizal fungi
symbiosis both involve continuous
signaling and coordination between
two organisms.
Plant–microbe symbioses require intense interaction and genetic coordination to
successfully establish in specific cell types of the host and symbiont. Traditional
RNA-seq methodologies lack the cellular resolution to fully capture these com-
plexities, but single-cell and spatial transcriptomics (ST) are now allowing scien-
tists to probe symbiotic interactions at an unprecedented level of detail. Here,
we discuss the advantages that novel spatial and single-cell transcriptomic tech-
nologies provide in studying plant–microbe endosymbioses and highlight key
recent studies. Finally, we consider the remaining limitations of applying these
approaches to symbiosis research, which are mainly related to the simultaneous
capture of both plant and microbial transcripts within the same cells.
Within symbioses, the development of
novel microbial and plant structures is
driven by symbiosis-specific gene ex-
pression in a few specific cell populations.

Genetic engineering to take better
advantage of these interactions relies
on the identification of symbiosis-
responsive plant and microbial genes
that can serve as targets formodification.

Applying single-cell and spatial RNA-seq
to study plant–microbe endosymbiosis
can facilitate the identification of such
genes and improve our general under-
standing of the complex biology of sym-
biotic interactions.
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Transcriptomic investigations of plant–microbe symbioses
The field of plant transcriptomics has experienced rapid growth and comprehensive reviews
describe recent developments in plant single-cell transcriptomes [1–5]. Technological advances in
single-cell RNA-seq (scRNA-seq) and spatial RNA-seq present new opportunities for research
into complex plant–microbe interactions. scRNA-seq allows the study of gene expression occurring
in individual cells rather than whole tissue, providing more detail on heterogeneous cell populations.
scRNA-seq can be applied to investigate the response of individual plant cells to symbiotic infection,
revealing cell-type-specific gene expression. ST enables analysis of individual cells in fixed positions
within the tissue, providing the physical location of gene expression [6]. This methodology provides
insight into the spatial organization of plant and symbiont gene expression during symbiosis. In this
review, we focus on the utilization of high-throughput scRNA-seq and spatial RNA-seq technologies
to investigate beneficial plant–microbe interactions.

Open questions in plant–microbe endosymbiosis
Plant species engage in mutually beneficial interactions with a wide array of microorganisms. A
prevalent characteristic of such symbioses is the microorganisms’ capacity to promote plant
growth by facilitating the acquisition of scarce nutrients. By trading these nutrients, the microbe
receives carbon generated by the plant. The legume–rhizobial bacteria and the plant–arbuscular
mycorrhizal fungi (AMF) (see Glossary) interactions are two of the most well-explored endo-
symbioses, characterized by intracellular accommodation of the symbiont (Figure 1, Key figure).

The legume–rhizobia interaction is characterized by a complex biological process leading to the
formation of specialized structures called nodules where the bacteria reside and convert atmo-
spheric nitrogen into a form usable by plants. Nodulation has been extensively investigated at
cellular, molecular, and physiological levels and requires the activation of temporally and spatially
coordinated programs in a limited number of root cells [7,8]. This involves sophisticated communi-
cation, mediated by flavonoids and nodulation (Nod) factors. Legumes release flavonoids into the
soil to recruit potential symbiotic partners. Rhizobia sense flavonoids and produceNod factors in
response. Nod factors, in turn, trigger a response in the root that leads to root hair curling and
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Figure 1. An overview of the legume–rhizobia and plant–arbuscular mycorrhizae (AM) symbioses and the corresponding
microbial structures. The legume–rhizobia symbiosis is characterized by rhizobial infection of root cells that causes curling
of root hairs and the development of infection threads. Infection threads extend through the root hair into cortical cells and
culminate in the formation of specialized structures called nodules in which bacteria convert atmospheric nitrogen into a
form usable by plants. The legume rewards the bacteria with carbon. The AM fungi–plant symbiosis involves controlled
intracellular and intercellular fungal hyphal colonization of the plant root and culminates in the formation of arbuscules,
highly branched fungal hyphal structures in which soil nutrients are transferred from the fungus to the plant host in
exchange for carbon. Single-cell and single-nucleus RNA-seq technologies and both targeted and non-targeted spatial
RNA-seq technologies have evolved over recent years and hold great potential as tools to study the complexities of plant–
microbe endosymbioses. The ultimate goal of such studies is to simultaneously capture microbial endosymbiont and plant
host RNA during these interactions to study cell-type-specific infection expression patterns in a spatially resolved manner.
Figure created with BioRender.com.
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Glossary
Arbuscular mycorrhizal fungi (AMF):
a type of soil fungus that can colonize the
roots of most vascular plants to form
arbuscules and transfer soil nutrients to
the plant host in exchange for carbon.
Arbuscules: highly branched fungal
hyphal structures that form within root
cortical cells and are the site of nutrient
transfer between mycorrhizal fungi and
host plants.
Barcode: a segment of short sequence
of DNA that is used to identify or localize
a specific molecule of interest.
Flavonoids: a group of polyphenolic
secondary metabolites that initiate and
regulate nodulation. Legume roots
release flavonoids into the rhizosphere to
signal rhizobia and promote their
production of nodulation factors.
Infection thread (IT): a plant-host-
derived tubular compartment that allows
apoplastic infection of the plant by
rhizobia.
In situ hybridization (ISH): a within-
tissue nucleic acid detection and
localization technique that relies on
labeled probes with sequences
complementary to the target nucleic acid.
Myc factors: refers to both
chitooligosaccharides and
lipochitooligosaccharides (LCOs)
secreted by AMF to trigger plant
symbiotic responses.
Nod factors: diffusible LCOcompounds
released by rhizobia in response to
flavonoids present in root exudate and
recognized by the legume plant to activate
a symbiosis signaling pathway.
Nodules: specialized structures that
form on the roots of legumes through
a symbiotic association with soil
bacteria known as rhizobia. Rhizobia
fix atmospheric nitrogen gas into
ammonia in nodules, subsequently
utilized in the synthesis of amino acids
and nucleotides.
Protoplast: an isolated cell created by
mechanical or enzymatic removal of the
surrounding cell wall.
Pseudotime analysis:
computationally placing cell data from a
scRNA-seq library along a simulated
temporal trajectory based on how their
transcriptional profiles progress to
model the real-time progression of a
target biological process.
Resolution: refers to the size of capture
spots or voxels in spatial transcriptomic
technologies, which translates to the
scale of cellular detail that the
methodology is able to profile.
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Rhizobia: a type of soil bacteria that
can colonize the roots of legume plants
to form root nodules and fix atmospheric
nitrogen for the plant host in exchange
for carbon.
RNA-seq library: a pool of DNA
fragments from an RNA-seq experiment
that contain barcodes and adapter
sequences specific to each sequencing
platform.
Strigolactones: carotenoid-derived
phytohormones that function as
signaling molecules and promote the
branching of mycorrhizal hyphae.
Transcriptomics: the study of an
organism’s transcriptome, which
includes all genomic transcripts in
various forms of RNA. This is also
commonly referred to as ‘RNA-seq’.
Unique molecular identifiers (UMIs):
index tags added to each molecule in
sequencing libraries to distinguish
between them and to more accurately
quantify the number of molecules in a
sample.
Voxel: the 3D analog of a pixel; refers to
the individual capture oligo spot on a
slide-based spatial transcriptomic
technologies.
culminates in the formation of an infection pocket and the development of infection threads (ITs).
ITs extend through root hairs towards cortical cells and ramify in nodule primordia, which are
formed by dividing cortical cells, facilitating the release of rhizobia into nodules. The perception of
rhizobia in root hairs of legumes such as Phaseolus, Glycine, and Lotus spp. induce the formation
of nodules that lose their meristematic activity over time (determinate nodules), while other legumes
like Pisum sativum and Medicago truncatula form indeterminate nodules with a persistent
meristem [9].

What are the requirements for successful intracellular rhizobial infection? How does the plant
decide which root hair among thousands should respond to the rhizobia facilitating the initiation
or progression of intracellular ITs? Classical transcriptomic approaches applied to whole roots
and root hairs of legume models have brought us closer to answering these questions [10,11].
These studies were able to capture infected cells but could not distinguish between the transcrip-
tional signatures of root hairs that were successful in IT formation and those that were unsuccess-
ful but still exhibited a symbiotic response.

The plant–AMF symbiosis is defined by the controlled fungal colonization of roots, which culmi-
nates in both extra- and intraradical hyphal networks as well as branched structures called
arbuscules in cortical cells that facilitate metabolite transfer [12]. Intercellular passage and subse-
quent intracellular accommodation of the fungus involves novel gene expression in both colonized
and non-colonized adjacent plant cells and continuous signaling between the partners [13–15].
Nutrient-stressed plant roots exude strigolactones into the soil, which stimulate AMF spore
germination and hyphal branching towards the root [16,17]. AMF exude Myc factors [18] in
response, which trigger plant transcriptional and physiological responses. Following physical
contact, hyphae enter the epidermal cell layer and subsequently travel inter- and intracellularly to
the inner cortical cells in which arbuscules will form [19]. Once inside the cortical cell, the fungus
penetrates the plant cell wall and the plant synthesizes a new peri-arbuscular membrane to
surround the arbuscule, equipped with proteins responsible for facilitating metabolite exchange
[19–21]. A suite of physiological changes occurs in the cell to accommodate and maintain the
arbuscule, including, but not limited to, a reduction in vacuole size and organelle compaction
[21]. Arbuscules are transient structures [22]; thus, the window for this exchange is limited.

Due to asynchronous colonization, multiple fungal structures exist within different cell types simul-
taneously, which precludes efforts to tackle the complexities of the transcriptional programs
involved in this symbiosis with traditional RNA-seq methods. How can the individual stages of
arbuscular mycorrhizal symbiotic development be distinguished when they occur simultaneously
in the root tissue? How do colonized cells and adjacent non-colonized cells differ in their tran-
scriptional signatures? How does the fungus control its development in the root and subsequent
metabolite transfer from the soil? Many traditional transcriptomic studies of AMF-inoculated and
mock-inoculated roots frommany different plant and fungal partners have identified thousands of
differentially regulated genes under mycorrhizal conditions [23–32]. Insights from studies utilizing
laser-capture microdissection [14,15] have revealed the importance of including non-colonized
cells adjacent to arbusculated cells. Furthermore, research regarding the genetic landscape
and expression patterns of AMF [33–42] has greatly expanded our knowledge of the symbiont
in this interaction. Advances in RNA-seq technology will enable research into cell-type-specific
responses from both partners.

The commonalities between these endosymbioses continue to emerge, supporting the theory
that rhizobia co-opted existing cellular programs for the AMF symbiosis for bacterial accommo-
dation [43,44]. Due to large differences in culturability between bacteria and fungi, research into
1358 Trends in Plant Science, December 2024, Vol. 29, No. 12
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endosymbioses has focused on the legume–rhizobia symbiosis. The common symbiotic signaling
pathway (CSSP), in particular, has been the focus as it includes genes with similar functions in both
symbioses [7,45]. However, additional genes with roles in both symbioses that fall outside this
pathway and numerous genes within the pathway with fine distinctions in their functions exist in
either pathway [45]. The details of how these two systems overlap and how each influences the
other during co-infection are likely to be revealed with further transcriptomic analysis.

A transcriptomic toolbox for symbiosis research
Novel transcriptomics technologies are revolutionizing gene expression analysis, providing
unprecedented insights into the complexity of biological systems. These advances mark a step for-
ward to uncover fundamental cellular andmolecular processes in symbiosis. However, as RNA-seq
methodologies continue to rapidly diversify across various platforms, it is important to understand
the unique features and applications of each method. This knowledge is crucial to make an
informed choice on how to most effectively answer open questions in plant–microbe interactions.

scRNA-sequencing involves key steps such as single-cell (or single-nucleus) isolation and capture,
cell lysis, reverse transcription, cDNA amplification, andRNA-seq librarypreparation. The first step,
separating and isolating intact plant protoplasts or nuclei, is critical. If the integrity of these biological
entities is compromised, this could decrease the detection of uniquemolecular identifiers (UMIs)
and genes. There are distinct differences between cellular and nuclear transcriptomes in plants. The
cellular transcriptome contains transcripts from the nuclear and organellar compartments, while the
nuclear transcriptome is less complex and contains polyadenylated mRNA transcripts and rRNAs.
Thus, while nucleus extraction is often quicker and more adaptable, the nuclear transcriptome
may fail to capture important biological processes involved in mRNA processing, RNA stability,
and metabolism [2,46]. Protoplasting of plant tissues, however, involves cell-wall-degrading en-
zymes, which may induce artificial stress responses. Additionally, Van den Brink and colleagues
[47] revealed dissociation-induced transcriptome changes as the potential outcome of the physical
dissociation process during single-cell isolation in animal cells. To test the validity of protoplasting,
researchers combined the scRNA-seq data for all captured cells from plant root into a pseudo-
bulk dataset and compared this dataset with a conventional bulk RNA-seq dataset of non-
protoplasted plant root tissues and found that the two datasets were highly correlated with each
other, regardless of the presence or absence of protoplasting-induced genes [48,49]. Despite
their potential limitations, both scRNA-seq and single-nucleus RNA-seq (snRNA-seq) are valid
methodologies.

To date, the main high-throughput technology for sn/scRNA-seq in plant single-cell transcriptomics
is Chromium, a microfluidics-based method provided by 10X Genomics [50]. In brief, single cells or
single nuclei are encapsulated along with gel-bead-containing barcoded oligonucleotides, reagents,
and oil to create gel beads in emulsion (GEMs) in which the reverse transcription of polyadenylated
mRNA occurs. When the GEMs are broken and the barcoded cDNAs are released, the entire
cDNA content of a single cell or nucleus will have the same barcode, allowing the sequencing
reads to be mapped back to their original single cell/nucleus of origin (https://www.10xgenomics.
com). Emerging technologies that do not rely on complex instruments have been developed with
the prospect of reducing costs and increasing accessibility. Particle-templated instant partitions
(PIPseq™) can simultaneously segregate complex cell mixtures into partitions with barcoded
template particles that can be processed for scRNA-seq (https://www.fluentbio.com/technology/).
Another rising technique is Evercode™ from Parse Bioscience. The Evercode™ combinatorial
barcoding technology uses particle-templated emulsification to enable single-cell encapsulation
and barcoding of cDNA in droplet emulsions, providing a simple, flexible, and scalable next-
generation workflow for scRNA-seq (https://www.parsebiosciences.com/technology).
Trends in Plant Science, December 2024, Vol. 29, No. 12 1359

https://www.10xgenomics.com
https://www.10xgenomics.com
https://www.fluentbio.com/technology/
https://www.parsebiosciences.com/technology
CellPress logo


Trends in Plant Science
OPEN ACCESS
ST enables the preservation of a cell’s position and thus spatial tracking of gene expression [51].
Plant–microbe endosymbioses are restricted to specific cell types and manifest in various unique
symbiotic structures within and between plant cells. Therefore, it is critical to preserve the spatial
landscape. There are many reviews that cover all recently developed spatial technologies
[52–55], but here we focus on two main types: (i) spatial barcoding-based transcriptome wide;
and (ii) targeted in situ hybridization (ISH) based.

Untargeted technologies include ST [56], Slide-Seq/V2 [57,58], high-definition ST (HDST) [59],
deterministic barcoding in tissue (DBIT-seq) [60], Seq-Scope [61], and Stereo-Seq [62]
(Table 1). All of these allow transcriptome-wide capture of mRNA transcripts from fresh-frozen
or formalin-fixed paraffin-embedded tissue sections and rely on positional next-generation
sequencing to generate spatially resolved transcriptomic libraries. These technologies differ
greatly in their resolution, capture efficiency, and accessibility, all of which can significantly
impact the quality of the resulting libraries [63]. ST, first developed in 2016 and commercialized
in 2018 by 10X Genomics as Visium, is the most widely used. Tissue sections are fixed to spatial
gene expression slides engineered to enable spatially barcoded mRNA capture from ~5000
voxels. Cells are permeabilized directly on the slide, releasing mRNA onto the capture oligos
within the voxels, and reverse transcription and subsequent cDNA library construction is per-
formed. Given that Visium is commercially available and relatively adaptable, the main limitation
Table 1. Overview of transcriptome-wide spatial methodologies

Technology Methodology Commercially available? Capture area size Resolution/detection
limit (ISH)

Refs

ST Untargeted, transcriptome-wide
capture

Visium by 10X Genomics 6.5 × 6.5 mm 55 μm [56]

Slide-Seq Untargeted, transcriptome-wide
capture

See Slide-Seq V2 66 tissue sections over
39 × 39 mm2

10 μm [57]

HDST Untargeted, transcriptome-wide
capture

N/A 5.7 × 2.4 mm 2 μm [59]

DBIT-seq Untargeted, transcriptome-wide
capture

AtlasXomics 3.8 × 3.8 mm 50, 25, and 10 μm [60]

Seq-Scope Untargeted, transcriptome-wide
capture

N/A 0.8 × 1 mm 0.6 μm [61]

Slide-Seq V2 Untargeted, transcriptome-wide
capture

Seeker by Curio Bioscience 3 × 3 mm or 10 × 10 mm 10 μm [58]

Stereo-Seq Untargeted, transcriptome-wide
capture

STOmics by BGI 13.2 × 13.2 cm 0.22 μm [62]

MERFISH Targeted, ISH MERSCOPE by Vizgen 2 × 1.5 cm 10 000 genes [64]

seqFISH Targeted, ISH See seqFISH+ 0.5 × 0.5 mm 250 genes [65]

seqFISH+ Targeted, ISH GenePS by Spatial
Genomics

1 × 1 mm 10 000 genes [66]

Molecular Cartography Targeted, ISH Molecular Cartography by
Resolve Biosciences

26 × 26 mm 300 nm/100 genes [67]

DSP Targeted, ISH GeoMX DSP by NanoString 35.3 × 14.1 mm 50 μm/whole
transcriptome

[68]

Split-FISH Targeted, ISH N/A Varies, 3 × 3 mm in original
study

317 genes [69]

EEL-FISH Targeted, ISH Esper High Plex Assay by
Rebus Biosystems

24 × 24 mm 5000 genes [70]

PHYTOMap Targeted, ISH N/A Whole mount 100 genes [71]
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of this method is the resolution of ~55 μm, which for many tissues is above single cell. To date,
two untargeted technologies can achieve submicrometer resolution: Seq-Scope and Stereo-
Seq. Seq-Scope indirectly measures mRNA at ~0.6-μm resolution [61]. Another advantage of
Seq-Scope is that its high capture efficiency (~4700 UMIs/cell) is comparable with that of
scRNA-seq methodologies [61]. Stereo-Seq, or spatial enhanced-resolution omics sequencing,
uses DNA nanoball (DNB) technology for RNA capture [62]. Stereo-Seq achieves the highest
density of capture spots and highest resolution of all spatially barcoded methods [62].

ISH-based methodologies all rely on direct labeling of transcripts in tissue sections to detect
target gene expression. The main methodologies include MERFISH (MERSCOPE) [64],
seqFISH/seqFISH+ [65,66], Molecular Cartography [67], digital spatial profiling (DSP) [68], Split-
FISH [69], EEL-FISH [70], and plant hybridization-based targeted observation of gene expression
map (PHYTOMap) [71] (Table 1). Building off the original single-molecule FISH (smFISH) technology
[49,72], two methodologies were developed to allow simultaneous detection of dramatically more
RNA molecules: seqFISH/seqFISH+ and MERFISH (now commercially available as MERSCOPE).
Molecular Cartography is another commercially available smFISH-based technology. It has high
sensitivity and is currently limited to a panel of 100 genes [67]. Last, PHYTOMap was developed
specifically for whole-mount plant tissue. In PHYTOMap, gene-targeted DNA probes are
hybridized to targets directly within fixed whole-mount plant tissues and amplified in situ [71].

Decoding symbiosis: transcriptomic research on the legume–rhizobial and
plant–mycorrhizal interactions
Pioneer scRNA-seq work in Arabidopsis thaliana roots [49,73–77] paved the way for the tran-
scriptomic investigation of various biological processes across diverse plant species. More
recently, scRNA-seq and spatial RNA-seq transcriptomics have been applied to study plant–
microbe endosymbioses (Figure 2 and Table 2). Cervantes-Pérez et al. applied snRNA-seq to
M. truncatula roots inoculated with the rhizobium Ensifer meliloti at 2 days post-inoculation (dpi)
[78]. This provided a comprehensive annotation of M. truncatula root cell type as well as an
analysis of the transcriptomic response of cells to rhizobial infection. Gene expression patterns
were unique to specific cell types, indicating a cell-type-specific role for certain genes in nodula-
tion. This study confirmed decades of research in legume nodulation, identifying key genes and
pathways involved in nodulation, including genes related to cell division, signaling, and nutrient
transport [78]. Moreover, it led to the discovery of genes that had not been previously highlighted
by bulk transcriptome analyses. Another scRNA-seq analysis in M. truncatula infected with
E. meliloti was conducted by Ye and colleagues using indeterminateM. truncatula nodule proto-
plasts at 14 dpi [79]. This study improved our understanding of the early stages of root nodulation
through the identification and characterization of 13 distinct nodule cell clusters. Additionally,
pseudotime analysis revealed that two groups of apical meristematic cells diverge into symbiotic
and nonsymbiotic fates. Last, investigation of nitrogen assimilation in nodules provided insight into
how uninfected cells may play a role in the overall nodule functioning. Taking a new approach, Liu
and colleagues focused on the earliest stages of signaling between plants and bacteria. Liu applied
time-course snRNA-seq toM. truncatula symbiotic roots at 30 min, 6 h, and 24 h after Nod factor
treatment [80]. Significant reprogramming of gene expression in the epidermis and cortex was
observed as early as 30 mpi, with most of these changes restored at 6 h. A coexpression module
enriched for known symbiotic nitrogen fixation genes was further explored and revealed the
involvement of MtFER in rhizobial perception. The researchers demonstrated that MtFER can
promote root growth and impact symbiotic and defense-related gene expression [80]. The most
recent single-cell transcriptome dataset inM. truncatula from Pereira et al. [81] provides a detailed
exploration of root nodule symbiosis (RNS) development. Covering four RNS stages (0, 24, 48, and
96 hpi), the study aimed to understand the cellular response to rhizobia infection focusing on the
Trends in Plant Science, December 2024, Vol. 29, No. 12 1361
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Figure 2. Recent transcriptomic discoveries in plant–microbe endosymbioses [48,78–82,86]. Summary of the
key findings from recent literature analyzing plant–microbe endosymbiosis via single-cell (sc)/single-nucleus (sn) and spatial
RNA-seq. Each publication is referenced using the author and publication date and is displayed next to a schematic of
what symbiotic system was analyzed. Abbreviations: AMF, arbuscular mycorrhizal fungi; dpi, days post-inoculation; hpi,
hours post-inoculation; mpi, minutes post-inoculation. Figure created with BioRender.com.
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cortex and pericycle layers crucial for nodule formation. To overcome the limitation of rare cells
responding to rhizobia infection, the authors integrated single-cell data from both wild-type and
hypernodulating mutant plants. This approach allowed the authors to discover important genes
and transcriptional dynamics across nodule development stages. For instance, it uncovered how
MtHB1 suppresses auxin signaling genes during early cortex cell differentiation, activates auxin
biosynthesis genes in developing nodule primordia, and manages cytokinin inactivation and
degradation in distinct nodule compartments. Despite its thorough insights into nodule meristem
Table 2. sc/snRNA-seq symbiosis studies

Cell/nucleus number Median genes per cell/nucleus Refs

28 375 nuclei 1053 [78]

10 814 protoplasts 1620 [79]

26 712 nuclei 1018 [80]

25 024 protoplasts 1500 [48]

16 211 nuclei Not reported, 36 131 total genes [81]

26 712 nuclei 1342 [82]

16 890 nuclei 1120 [86]

1362 Trends in Plant Science, December 2024, Vol. 29, No. 12
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formation from cortex cells, the study has limitations in capturing all cell lineages and developmental
phases. Nonetheless, it lays the groundwork for future comparative analyses between lateral root
and nodule development, utilizing the identified cell types and lineages for deeper exploration.

Two additional studies were conducted using legume species that form determinate nodules.
Frank, Fechete, et al. used scRNA-seq of Lotus japonicus at 10 dpi to define root hair and cortical
cell populations involved in rhizobium infection [48]. More than 500 genes with enriched expression
in nodulation-associated cells were identified, providing a valuable resource for further analysis. The
researchers were also able to validate a new nodulation gene, LjSYMRKL1, with expression spe-
cific to infected root hair and cortical cells. Last, scRNA-seq of protoplasted root susceptible
zones of the cyclopsmutant allowed the identification of gene expression associated with infection
failure [48]. Liu et al. [82] combined snRNA-seq and spatial RNA-seq on nodules (12 and 21 dpi) in
Glycinemax as well as the root regions where nodules formed.While root cell types could be easily
identified, the lack of marker genes for G. max nodules made it difficult to assign cell clusters. To
tackle this issue, they utilized Stereo-Seq and tracked gene expression in nodules at the same
developmental stage. Using histological features and deconvolution of spatial and snRNA-seq
expression data, they classified most major cell types of the root and nodule [82].

Research on plant–pathogen interactions [5,10,83–85] demonstrated the utility of novel
transcriptomic methodologies to analyze plant–fungal relationships. Single-nucleus and ST
were applied for the first time to the AMF symbiosis between M. truncatula and Rhizophagus
irregularis [86]. Serrano, Bezrutcyzk, et al. combined Chromium and Visium to construct a spa-
tially resolved transcriptome map containing genes from both species at 28 dpi. Fungal nuclei
were not captured by the Chromium platform. However, Visium did allow plant and fungal tran-
scripts to be captured simultaneously, with over 12 000 fungal transcripts captured across the
nine capture areas [86]. The resulting datasets present a novel transcriptomic resource for the
arbuscular mycorrhizal symbiosis community; however, the limited resolution of the spatial
technology did not allow cell-type-specific analyses of the fungal transcripts, as most voxels
may contain different cell types. Spatial technologies with increased resolution, such as Stereo-
Seq and Seq-Scope, also have the potential to capture fungal transcripts and represent great
tools to disentangle the cell-type-specific transcriptomic signature of the arbuscular mycorrhizal
symbiosis.

Limitations to transcriptomic investigation of symbiosis
Identifying cell types from transcriptome data relies on manual annotation of clusters using
reference marker genes. For non-model plant, bacterial, and fungal species without an available
curated database of marker genes, this can be a difficult and time-consuming task. This issue is
exacerbated when profiling rare cell types, which require processing of large cell populations,
adding to experimental costs. The capture of low-abundance cells engaged in early responses
in root hair or cortical cells may demand increased sequencing depth, subsequently elevating
the overall expense and length of analyses. Several groups are working on developing solutions
that will allow enrichment of low-abundance cells [87], such as the development of ONE-SENSE
[88] and DA-Seq [89].

scRNA-seq and spatial RNA-seq studies generate an immense amount of data. The need for
standardized and accessible experimental workflows, data processing/analysis pipelines, and
data deposition practices increases with the method’s popularity. scRNA-seq datasets face
significant challenges, necessitating stringent quality control, normalization to correct for biases
and batch effects, and the use of dimensionality reduction techniques like PCA, UMAP, or
tSNE, along with robust clustering algorithms to identify distinct cell populations. Differential
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Outstanding questions
What open-access resources need
to be created for a comprehensive
single-cell, spatially resolved atlas of
plant–microbe endosymbiosis to come
to fruition?

What advances can be made in
transcriptomic techniques to enable the
simultaneous capture of transcripts from
both prokaryotic and eukaryotic partners
in symbiotic interactions, overcoming
current challenges associated with low
bacterial mRNA content and the lack of
polyadenylation in bacteria?

What method development is needed
to transcriptionally profile rhizobial and
mycorrhizal co-infection in plants and
reveal how these two symbionts coexist
within the same plant?

How could trajectory inference analysis
be adopted to model the developmental
progress of colonization?
expression analysis and lineage inference using algorithms such as Monocle require careful
parameter tuning to ensure accurate and valid results. Many researchers are publishing
transcriptome data for the same species using similar methodologies, but without a public
centralized database for symbiosis research with established experimental standards it is difficult
to compare data across multiple studies. Recent efforts such as SpatialDB [90], a public web
curation of spatially resolved transcriptome data, and the Plant Cell Atlas Consortium [91], a sci-
entific framework focusing on building a single-cell multiomics atlas of developing model plants,
are laying the groundwork, but standard repositories are for more specialized efforts.

Another major obstacle is that it is not currently possible to capture both plant and bacterial tran-
scripts simultaneously in the same cells. Plant mRNA transcripts are relatively easy to separate
from rRNAs because they are polyadenylated, but bacterial mRNAs are less abundant and less
stable and lack polyadenylation [92]. Quantifying gene expression from bacterial symbionts
using scRNA-seq requires very efficient counterselection against bacterial rRNAs, likely coupled
with deep sequencing to detect bacterial mRNAs in an RNA pool dominated by plant transcripts.
Furthermore, polyadenylation of bacterial mRNAs following rRNA depletion would be required to
allow compatibility with standard scRNA-seq procedures, including the 10X Chromium protocols
(https://www.10xgenomics.com). To capture bacterial single-cell data, bacterial cells would have
to be physically separated from plant cells, as previously demonstrated in A. thaliana leaves [93],
prior to the application of prokaryotic scRNA-seq techniques such as microSPLiT [94] and
PETRI-seq [95], precluding simultaneous capture of information from both host and symbiont.
Spatial transcriptomic methods have the same challenges with respect to the detection of
microbial mRNAs but are able to capture polyadenylated fungal transcripts [86], and spatial
metatranscriptomics (SmT) allows the capture of bacterial and fungal microbial signatures
for community structure analysis via 16S, 18S, and ITS probes [84]. Spatial, hybridization-
based methods should in principle be able to capture both plant and bacterial mRNAs but re-
quire the design of specific probes, necessitating prior knowledge of both host and symbiont
target genes.

AMF contain multinucleate hyphae in a connected cytoplasmic space and have an extremely high
number of nuclei in each cell, approximately two orders of magnitude higher than any fungal
relatives [96,97]. Additionally, the diameter size of these nuclei can vary significantly between
species and between life stages of the same species [97], which can complicate nucleus
capture and filtering during snRNA-seq workflows. However, AMF currently remain more amena-
ble than rhizobia to within-host single-cell analysis because of their polyadenylated mRNAs.
Capturing single-cell rhizobial transcriptional signatures, together with those of their host plant
cells, in ITs and nodules will have to await further technological developments, where a likely first
step would rely on spatial, in situ hybridization-based technology (Table 1).

Concluding remarks and future perspectives
Plant–microbial endosymbioses have distinct biological characteristics that limit the power of
traditional transcriptomic approaches. Novel technologies represent great potential for their appli-
cation to studies of such symbiotic relationships as they enable cell-type- and morphological-
feature-specific analyses of gene expression from both partners. Here, we provide an overview
of the main single-cell and spatial methodologies that have emerged over recent years
and speak to their advantages and disadvantages. Scientists have applied some of these
sc/snRNA-seq or ST approaches in isolation or in unison to analyze the gene expression
occurring between two species in either the plant–mycorrhizal or the legume–rhizobial symbiosis.
This research has enriched our understanding of plant–microbe endosymbiosis, particularly
the legume–rhizobial symbiosis, to which many groups have applied sc/snRNA-seq and
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identified new marker genes for symbiotic structures and processes as well as new symbiosis-
specific candidate genes for functional characterization. For the arbuscular mycorrhizal symbiosis,
pioneering work that combined snRNA-seq and spatial RNA-seq constructed a spatially resolved,
high-resolution map of gene expression from both species and identified thousands of symbiosis-
responsive fungal transcripts for the first time. However, these studies are limited by the current
technologies. Future method development, particularly the development of a spatially resolved
single-cell platform that allows concurrent prokaryotic and eukaryotic transcript capture, will have
increased power to answer outstanding questions. As data are generated, the creation of a public,
centralized database with standards for data collection and analysis that allows users to browse
scRNA-seq and spatial RNA-seq data across species will prove critical to the effort of building a
single-cell gene expression atlas for endosymbiosis (see Outstanding questions).
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