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Abstract

Incomplete surgical resection of head and neck squamous cell carcinoma (HNSCC) is the most 

common cause of local HNSCC recurrence. Currently, surgeons rely on pre-operative imaging, 

direct visualization, palpation, and frozen section to determine the extent of tissue resection. It has 

been demonstrated that optical coherence tomography (OCT), a minimally invasive, non-ionizing 

near infrared mesoscopic imaging modality can resolve subsurface differences between normal 

and abnormal head and neck mucosa. Previous work has utilized 2-D OCT imaging which is 

limited to the evaluation of a small regions of interest generated frame by frame. OCT technology 

is capable of performing rapid volumetric imaging, but the capacity and expertise to analyze this 

massive amount of image data is lacking. In this study, we evaluate the ability of a re-trained 

convolutional neural network (CNN) to classify 3-D OCT images of head and neck mucosa to 

differentiate normal and abnormal tissues with sensitivity and specificity of 100% and 70%, 

respectively. This method has the potential to serve as a real-time analytic tool in the assessment of 

surgical margins.
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Successful surgical treatment of head and neck squamous cell carcinoma (HNSCC) relies on 

margins clear of tumor. A pre-existing convolution neural network (CNN) was re-trained on 

histologically co-registered OCT images of HNSCC surgical margins to screen non-labeled OCT 

data. Accuracy of the CNN was assessed on nine patients undergoing tumor surgical resection. 

The re-trained CNN is capable of classifying 3-D OCT images of head and neck mucosa as 

normal and abnormal with sensitivity and specificity of 100% and 70%, respectively.

Keywords

optical coherence tomography; squamous cell carcinoma; squamous cell carcinoma of head and 
neck; oral cancer; head and neck neoplasms; margins of excision

Introduction

Successful surgical treatment of head and neck squamous cell carcinoma (HNSCC) and its 

precursor, squamous dysplasia, relies on margins clear of tumor. Depending upon the 

location within the head and neck, surgeons will resect from as little as a few millimeters in 

the larynx to up to two cm around tongue lesions to remove microscopic residual tumor in 

the tissue bed.1 Due to the complex geometry of the head and neck and the need for 

preservation of functionally important tissues, complete resection may be challenging. 

Computed tomography (CT), MRI or more recently ultrasound2 can aid in pre-operative 

planning of tumor resection but is limited in resolution and tissue contrast; it is largely used 

to macroscopically guide resection. Intraoperatively, surgeons visualize and palpate tissue to 

estimate the margins for resection. Most commonly, frozen section evaluation (read by a 

pathologist) provides rapid and reasonably accurate determination of the presence of cancer 

cells. However, frozen section is limited in terms of the total volume of tissue that can be 

evaluated as histologic processing and analysis takes considerable time.3 Thus, only a small 

sample of the true margin can be evaluated, leading to potential sampling error. Despite 

negative frozen sections, 27-40% of surgically treated HNSCC develop cancer recurrence.
4–6 This could be partially accounted for by the limitations and sampling error in the frozen 

biopsy sections along with artifact that occurs during sample preparation particularly in 

specimens with complex topology such as at the base of tongue and larynx.
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Non-invasive imaging modalities such as optical coherence tomography (OCT), 

fluorescence and fluorescence lifetime imaging, high-resolution microendoscopy, elastic 

scattering spectroscopy, and Raman spectroscopy may aid in the non-invasive assessment of 

tumor margins. These technologies could potentially be used in situ, as well as in specimens 

that have been freshly resected.4,7–8 Of the aforementioned imaging modalities, OCT is 

unique in that it provides real-time cross-sectional images at near histopathological 

resolution. Analogous to ultrasound, OCT relies on the changes or differences in tissue 

optical properties (chiefly changes in tissue refractive index) to generate high resolution 

anatomically stratified images. Tissue contrast does not: 1) depend upon biochemical 

absorbers such as in fluorescence imaging; 2) require the use of exogenous dyes, stains 

(requiring regulatory approval); and 3) require special modification of operating room 

ambient lighting such as in many fluorescent techniques. Optical coherence tomography has 

been shown to differentiate normal and abnormal oral mucosa. 4,8–16 However, direct 

subjective interpretation of OCT images by human observers requires extensive training.11 

Since contemporary OCT systems may acquire more than 40 images/second, the 

overwhelming amount of data generated poses a challenge for clinical interpretation.

To address this challenge, many research groups have developed automated or semi-

automated image processing techniques that provide quantifiable metrics to separate and 

categorize OCT images into healthy, dysplastic and malignant classifications. Prestin et. al 
demonstrated an offline digital morphometry image processing method that measured 

epithelial thickness in OCT images to grade the extent of dysplasia based upon normative 

values.17 Lee et. al demonstrated the ability to differentiate normal and pre-malignant 

dysplastic oral mucosa through the standard deviation of the scattered intensity signal at the 

epithelial lamina propria junction.18 Tsai et. al presented an OCT intensity image processing 

method sensitive to the cellular homogeneity or heterogeneity of the epithelium and 

basement membrane that was found to represent differences between normal and malignant 

mucosa.19 Lastly, Pande et al. introduced a method to quantify the depth resolved intensity 

structure of the tissue that encapsulates pre-malignant changes to normal oral mucosa in a 

hamster cheek pouch model.11 Previous literature has shown that OCT data indeed has the 

potential to distinguish tissue changes from dysplasia to carcinoma in situ to invasive cancer 

in the oral mucosa in images generated using 2-D scanning geometry. However, there are 

few studies exploring the use of 3-D OCT to evaluate these changes in part because of the 

sheer volume of data generated with such technology. Additionally, it is unclear whether a 

combination of the previously mentioned image classification approaches could provide a 

more robust and accurate bias free rubric. With the advent of highly-parallel graphical 

processing power and deep learning techniques, “intelligent” machine learning systems offer 

a means to classify data when certainty of diagnosis may be questionable or difficult to 

interpret. With machine vision classification, OCT may hold promise as a tool for screening 

or biopsy/margin guidance.

Artificial neural networks (ANN) are machine learning models that are capable of 

classifying input data in abstraction not readily achieved through human interpretation.20 

Artificial neural networks are comprised of several interconnected working units called 

neurons typically organized in layers. Each neuron in an ANN holds a value referred to as 

the activation that is a result of a weighted sum of all the previous neurons in the prior layer.
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21 Artificial neural networks can vary in their composition of layers and layer types to 

accomplish specific tasks. Deep learning ANNs refer to models that have several layers well 

beyond 2-3 layers of neurons seen in typical ANNs. Often times deep convolutional neural 

networks (CNN) are used in machine learning applications to classify images based on 

image structure and coloration. A deep CNN is comprised of several neural layers that 

conduct convolution, template matching of input data to pre-determine filters, and pooling 

operations, which condenses the input image data. Through the process of supervised 

learning, providing true labels to data, a CNN can be trained to classify image types. As 

labeled data is progressively fed into the network, the network improves its classification 

ability through adjusting weights located at each neuron.22

In order to overcome the often-large data sets needed to sufficiently train a new CNN, it has 

been shown that a pre-existing CNN can be re-trained using transfer learning, wherein the 

body of the CNN is kept and only the last fully connected layer is replaced with desired 

classification categories.23 Deep learning methods have found widespread use across fields 

such as bioinformatics,24 healthcare,25 and image recognition for skin cancer diagnosis.26 In 

this study, we retrained a preexisting CNN on a smaller data set, to classify 3-D OCT images 

of HNSCC and squamous dysplasia tissue margins.

Materials and Methods

Swept Source OCT Imaging System Probe

A vertical cavity surface emitting laser (VCSEL) OCT system with a microscope scanning 

probe was utilized to classify tissue as healthy or cancerous. A diagram of the system can be 

seen in Fig. 1.

Laser output light from the 200kHz SS VCSEL laser (ThorLabs, New Jersey) (λ0 = 

1310nm, Δλ = 100nm), was coupled into a fiber optic Michelson interferometer via a 1x2 

10:90 fiber coupler (FC) split between the reference arm (10%) and sample arm (90%). The 

output of the fiber coupler is fed into an in-line fiber optic circulator to collect the back 

reflected light from both the sample and reference arm. The sample arm is comprised of a 

typical 3-D scanning OCT imaging probe seen in Fig. 1. Input light into the probe is 

collimated and directed onto a pair of X-Y gold coated galvanometer mirrors. The beam is 

then scanned across a microscope scan (ThorLabs Scan lens) lens that focuses the light into 

the tissue. The reference arm of the OCT system is comprised of a tunable reflection style 

air delay. The reference and sample arm signals are then re-combined by a 2x2 50:50 FC and 

detected across a balanced photodiode detector. OCT interferograms were digitized with 

respect to an output frame trigger and a non-linear k-clock signal from the VCSEL laser. 

Raw data interferograms were processed at 200fps using a compute unified device 

architecture (CUDA) graphical processing unit (GPU) based computation.

Cancer Resection and 3-D OCT Imaging

Seven patients undergoing composite resection of head and neck squamous cell lesions, 

including squamous cell carcinoma and squamous dysplasia, at the University California 

Irvine Medical Center were prospectively enrolled and consented for this study. The study 
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abides by the institutional review board protocol (IRB 2003-3025). Of the seven patients 

enrolled, six were identified to have carcinoma and one identified to have dysplasia. Patient 

demographics are summarized in Table I.

Following resection, tissue specimens were transported to the pathology department and 

oriented by the operating head and neck surgeon. Tissue margins and areas grossly healthy, 

cancerous, or dysplastic were determined by the operating head and neck surgeon. 

Subsequently, these areas of clinical interest including, tissue margins and visible transition 

zones between normal epithelium and grossly visualized invasive cancer or dysplasia, were 

imaged with 3-D OCT, as seen in Fig. 2.

Several 7mm x 7mm 3-D OCT image volumes consisting of 1,000 B-scans were scanned in 

amosaic pattern along the margins and transition zones. These image volumes represent the 

regions where permanent section histopathology would be taken, providing a correlative 

gold standard for the OCT data. Each selected location was also imaged with conventional 

digital video accompanied by an audio dictation to aid in co-registration. Digital video 

acquired from an oblique angle displayed a co-registered red aiming beam that coincides 

with the physical location of the region imaged using OCT. Acquisition time for each 3-D 

volume was seven seconds. Following OCT imaging, permanent histopathology was 

performed on the main specimen and tissue margins were read by two pathologists. Each 3-

D OCT volume was compared to the histology report to determine the classification label 

associated with the given volume seen in Fig. 3.

OCT Image Pre-Processing

OCT raw interferogram data was converted into log-based power spectrum data and 

normalized. In order to enhance the gradients in tissue scattering properties the gray scale 

OCT data was mapped to a false color map. The lower limit of the colormap scale was set at 

zero and the upper limit of the colormap scale was empirically determined by the power 

spectrum histogram bin with the value at which less than or equal to 20 counts occurred, as 

seen in Fig. 4.

Cancer Net Transfer Learning

AlexNet by Krizhevsky et al.27 is a CNN that has been trained on 1.2 million high-resolution 

images of 1,000 different classes, Fig. 5. AlexNet was re-trained by a supervised learning 

technique using the MATLAB (Natick, MA) machine learning toolbox called transfer 

learning that builds upon the pre-existing CNN.

The CNN was loaded into MATLAB as an object comprising a series of layers. The last 

layer of the pre-existing CNN used for classification was removed and replaced with the 

custom classifiers of the head and neck mucosal tissues namely healthy, dysplasia, and 

cancer. A total of 33 image volumes each comprising of 1,000 B-Scan OCT images were 

acquired across 7 patients in this study. Twenty-one image volumes were co-registered with 

histopathological labels and thus were usable for training/validation and testing of the CNN. 

Of the 21 image volumes, approximately 30% or six patient-stratified volumes were used for 

training/validation, and the remaining 70% was used for testing. The allocated training/

validation data was furthermore randomly split into 70% for training and 30% for validation. 
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The six training data set volumes were labeled by gold standard histopathology, and 

included two volumes each of healthy, dysplasia, and cancer. Both the training and 

validation OCT B-scan images were randomly shuffled and loaded into data structures that 

could then be used to train the CNN in MATLAB. Using a single GPU (Nvida GTX 1080), 

the CNN was re-trained for 120 iterations. An internal validation was conducted as part of 

the training workflow, whereby the CNN was optimized after every five iterations of 

gradient descent and back propagation optimization. Real-time training accuracy and 

validation were plotted in MATLAB as seen in Fig. 6. The CNN is seen to converge to 

greater than 95% accuracy within 40 training iterations taking approximately 6 minutes and 

35 seconds. The re-trained neural network was then used to classify the 3-D OCT testing set.

Convolutional Neural Network Output Classification

The output of the final layer of CNN provides a probability that a given OCT B-scan is 

healthy, dysplastic or cancerous. These probabilities are then mapped to an RGB spectrum 

cancer score scaled from 0-10 to ease the interpretation of the 3-D volumetric OCT data 

visually Fig. 7. Volumetric classification of an entire OCT into either normal or abnormal 

categories was determined by the distribution of images classified as healthy, dysplastic, or 

cancerous by the CNN Fig. 8. Three-dimensional OCT volumes were characterized as 

normal or abnormal depending on the majority probability provided in Eqn. 1.

Sensitivity and specificity of the CNN classification was calculated using the provided main 

specimen pathology report and histology slides. Image volumes utilized for CNN training 

were not included in the sensitivity and specificity calculation. In addition, OCT data sets 

without corresponding histopathology were not included.

Results

Three-dimensional OCT volumes from seven patients with head and neck squamous cell 

lesions, including six squamous cell carcinoma and one squamous dysplasia, were classified 

with CNN and included in the sensitivity and specificity assessment. The respective number 

of abnormal and normal OCT volumes can be seen in Fig. 9. The calculated sensitivity, 

specificity, and accuracy of the CNN to correctly classify an unknown OCT 3-D volume as 

positive for cancer was found to be 100%, 70%, and 82% respectively. Figure 7 shows that 

abnormal OCT volumes have a higher number of cancerous frames determined by the CNN.

Discussion

Resection of head and neck tumors is largely based on clinical judgment of visual 

inspection, palpation, and frozen biopsy. Due to the complex geometry of the head and neck 

and the need to preserve organ functionally, full resection of the identified tumor may be 

challenging. Frozen biopsies are limited to small sizes that inhibit the complete sampling of 

the resected bed, and have technical artifact induced by rapid freezing. Thus, there has been 

a push towards developing non-invasive imaging technologies and analytical models to 

identify the presence of cancer during surgical margin evaluation. In this study, we have 

identified and shown that wide field 3-D OCT coupled with a CNN can classify normal and 

abnormal head and neck mucosal tissues. We have shown the use of transfer learning 
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through successfully retraining an existing CNN with a smaller training data set. To the best 

of our knowledge, this study is the first investigation of using a CNN to classify normal and 

abnormal head and neck mucosal tissue, showing potential to rapidly interpret intraoperative 

tissue margins.

There are several competing technologies in the field of head and neck imaging diagnostics. 

The most studied modalities include fluorescence and fluorescence lifetime imaging,28 high-

resolution microendoscopy,26 elastic scattering spectroscopy,29 Raman spectroscopy,30 and 

OCT.4 There are many advantages and disadvantages to each of these technologies, some of 

which are due to the limitations in light tissue interactions. For instance, Raman 

spectroscopy, which relies on the inelastic scattering of monochromatic light that probes 

molecular bond vibrations, creates a biochemical “fingerprint” of the target tissue.8,31,32 

However, the Raman signals are very weak and often requires a lengthy integration period of 

20 seconds to several minutes for one frame, making it an inaccessible tool for real time 

usage.

Optical coherence tomography may provide a useful tool for intraoperative evaluation of 

HNSCC, as it is a non-invasive and wide-field imaging modality capable of rapidly 

producing images at mesoscopic scale. This tool provides topographic as well as depth 

resolved information at micron scale resolution. Massive data sets are easily attainable due 

to its short acquisition time, allowing for volumetric data. High-speed 3-D OCT imaging 

allows for comprehensive spatial assessment of HNSCC, as cancer cells invade into the 

basement membrane and into local tissue. Intraoperatively, 3-D OCT can serve as a means 

of “navigation” of the tissue landscape. As can be seen in Fig. 7, the anterior margin of the 

presented specimen contained a portion of cancerous and dysplastic labeled images, that 

may have been missed with a traditional 2-D approach. Interestingly, this patient was found 

to have clean frozen biopsies intraoperatively and a positive anterior margin in permanent 

section, requiring further surgical intervention beyond the initial surgery. With the use of 3-

D OCT, the entirety of the margin was scanned for refined spatial accuracy.

Prior HNSCC OCT studies have characterized carcinoma in situ and dysplasia as early stage 

epithelial thickening and nuclear atypia with a heterogenous scattering profile4,18,20,14,33 

Invasive cancer has been characterized by the loss of stratified squamous epithelium and 

basement membrane disruption, in addition to previously mentioned factors 4,18,20,14,33,34 

There are unique methods of analyzing the above scattering profiles pertaining to each 

condition, including standard deviation and exponential decay constant of the depth resolved 

intensity signals, segmentation of visible layers, and average deviation of the basement 

membrane.20,15 However, these image processing techniques have been used to classify 

lesions using individual 2-D OCT images lacking a spatial understanding of the changing 

tissue anatomy in 3-D.19, 20, 14 No automated approach has been adapted to handle the large 

HNSCC 3-D OCT data sets.

Convolutional neural networks are powerful as they are capable of determining distinct 

features of an image that provide the highest accuracy in classification power. As an image is 

processed by a CNN, it undergoes convolution and pooling operations that condense the 

complex image data to representative abstract mathematical matrix. Through this data 
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abstraction, often times relevant complex mathematical representations of images are 

determined that would other wise be challenging to determine by the naked eye. Previous 

work has shown the efficacy of using CNN to diagnose various ophthalmic and skin disease 

pathologies, suggesting that CNN could be used to classify OCT images of varied disease 

pathologies, provided a substantially large labeled data set.35–37 Here, we describe the use of 

a CNN in assessment of HNSCC margins, in hopes that this processing pipeline may be 

used in future OCT HNSCC investigations.

Six thousand images from four patients were utilized as a training data set. Although a 

limited number of training images were used, a re-trained CNN was capable of separating 

normal and abnormal mucosa. Retraining a pre-existing CNN can greatly reduce the size of 

training data required, which enables the use of CNN to be practical. We see comparable 

sensitivity and specificity of OCT classification using our algorithm compared to surgeon 

and pathologist readings in Hamdoon et al. (85%,78%, respectively).4 With a sensitivity and 

specificity of 100% and 70% respectively, our CNN may incorrectly classify normal tissue 

as abnormal, which will err on the clearing of resected margins, at the cost of potentially 

removing un-involved tissue. Although this study showed the efficacy of using a small 

training data set to retrain a pre-existing CNN, the use of a larger training data set with 

varied differentiated pathologies would likely improve classification accuracy. This is in part 

due to the wide heterogeneity of head and neck lesions, which can vary from well 

differentiated to extremely poorly differentiated tissues, as well as level of vascularity and 

inflammation. In addition, limited penetration depth of OCT at ~1-2mm may miss cancers in 

the deep margin leading to false negatives. Albeit there are physical limitations of OCT, 

classification can be improved by training the network with sufficiently large datasets of 

variable tissue type, confirmed by detailed histopathological sectioning.

Although our results show encouraging preliminary findings with a re-trained CNN, we note 

that a histopathologic label for each individual B-scan was not attainable for each volume. In 

our study, a single histopathologic section provided from an area identified by the 

pathologist was used for the CNN classifier. Finer histopathological sections across a block 

specimen are impractical in the clinical setting and are typically not provided due to the 

considerable time required for serial sectioning. This multi-step process for permanent 

histology sheds light on the current shortcomings in pathology that could benefit from future 

improvements in automation.

There have been several iterations and improvements to neural network structure since the 

beginning of this investigation. Several recent publications discuss the implementation of 

shallower feedforward static neural networks such as ELHnet, that balance the possibility of 

overfitting and classification power.38,39 Such neural network structure would decrease 

training time and permit simultaneous OCT image acquisition and classification. Future 

work to re-fine, optimize and expand upon the implementation of the CNN used for 

classification of HNSCC OCT images will be conducted.

We provide a proof-of-concept for the use of 3-D OCT and applied machine learning 

algorithms to rapidly classify normal and abnormal head and neck lesions. This tool has the 

potential to assess tissue margins of the resected specimen. With developments towards an 

Heidari et al. Page 8

J Biophotonics. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intraoperative tool, these techniques can be used for tissue evaluation prior to excision or can 

guide frozen sections by identifying potentially involved areas of the resection bed. 

Furthermore, these approaches may aid grossing technicians and pathologists by indicating 

areas of interest closest to the specimen edge where histological sections should be 

evaluated.

Conclusion

It has been shown for the first time that non-invasive 3-D OCT imaging of HNSCC margins 

can be classified into normal and abnormal tissue pathologies by re-training a pre-existing 

CNN, without the need of an expert reader. Such a technologic pairing could provide great 

utility as an adjunct to current methods for surgical margin assessment. Future studies 

include mosaic scanning of the entire surface of the main specimen. Acquiring a 

comprehensive end-to-end data set representation of the specimen would allow for precise 

co-registration between the histopathological sections and the scanned area. Additionally, 

future studies to optimize the CNN architecture to simplify the number and variety of layers, 

will be conducted to reduce the overfitting of data and significantly improve training time.
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Figure 1: 
Optical and electrical schematic for the VCSEL-SS OCT system and scanning probe utilized 

for this study. ODL: Optical delay line used to match the optical path length of the sample 

arm, FC: In line fiber optic coupler used to split and combine the laser light used in the 

interferometer, D: Balanced photodiode used to detect the interference OCT signal, C1,2: 

Fiber optic in-line circulator used to direct the representative sample and reference beams.
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Figure 2: 
Representative areas imaged for two of the six HNSCC cases. Green bars and arrows 

indicate scanned area and scanning direction. (a-c) Series of 3-D OCT volumes acquired 

from anterior to posterior aspect of the resected tongue specimen. (d-f) Series of 3-D OCT 

volumes acquired for the superior and anterior aspect of the resected tonsil and soft palate 

specimen.
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Figure 3: 
(a,d) Visible light photograph of a resected specimen with red bars and arrows indicating 

scanned area and scanning direction. (b,e) Corresponding H&E histology sections. (c,f) 

Corresponding false colored OCT image that has been preprocessed for convolutional neural 

network training.
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Figure 4: 
(a) Image of the normalized OCT power spectrum data of a single B-scan. (b) 

Corresponding histogram of the normalized power spectral data. (c) Power spectrum data of 

the representative B-scan with rescaled colormap.
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Figure 5: 
(a) Schematic block diagram of AlexNet showing convolution, max pooling and fully 

connected layers of the CNN. (b) 96 convolutional 11 x 11 x 3 kernel filters. Adapted from 

“ImageNet Classification with Deep Convolutional Neural Networks” by Krizhevsky A. et 

al. (2012)22.

Heidari et al. Page 20

J Biophotonics. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
Accuracy and loss training record for the supervised transfer learning of AlexNet with the 

OCT head and neck images obtained in this study.
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Figure 7: 
CNN classification probability output and false color mapping
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Figure 8: 
(a-c): Labeled and orientated visible light images of a tongue specimen scanned with 3-D 

OCT. Green bars and arrows indicate scanned area and scanning direction. (d-f) 

Corresponding H&E stained histology sections (g-i) CNN classification of the scanned area 

indicated in (a), (b) and (c), with the Z axis as the classified probability and the X axis as the 

B-Scan number out of 1000 total B-scans in a single OCT-3-D volumetric data acquisition. 

The Y axis was arbitrary determined for graphical visualization.

Heidari et al. Page 23

J Biophotonics. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9: 
Spatial representation of neural network classification for 3-D OCT volumes.
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Equation 1: 
Calculated probability for labeled OCT 3-D volumes as normal or abnormal
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Table 1:

Patient Demographics

Number of Patients 7

Male 5

Female 2

Types of Cancer

Squamous Cell Carcinoma 6

Squamous Dysplasia 1

Margin Classification

Positive Margins 3

Negative Margins 4

Cancer Locations

Tongue 3

Tonsil 1

Soft Palate 1

Floor of Mouth 1

Lower Lip 1

Buccal Mucosa 1
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