UC San Diego

Research Theses and Dissertations

Title

Directional Irregular Wave Kinematics

Permalink

https://escholarship.org/uc/item/9v33t9gx

Author

Barker, Christopher H.
Publication Date
1998
Peer reviewed

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

 copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6 " $\times 9$ " black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additiona! charge. Contact UMI directly to order.

A Bell \& Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

NOTE TO USERS

> The original manuscript received by UMI contains broken, slanted and or light print. All efforts were made to acquire the highest quality manuscript from the author or school. Microfilmed as received.

This reproduction is the best copy available

UMI

Directional Irregular Wave Kinematics

be:
Christopher Hemingway Barker

B.A. (Oberlin ('ollege) [!9?
M.s. (I'niversity of Califomia. Berkeley) 199:3

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy:

in

Engineering-C'ivil Engineering in the

GRADI ATE DIVISION of the
「NIVERSITY of ('ALIFORNIA at BERIEELE)
('ommittee in charge:
Professor Rodney J. Sober. ('hair
Professor Robert L. Wiegel
Professor William ('. Webster
Dr. Steren . A. Hughes
Spring 1998

UMI Microform 9901987
Copyright 1998, by UMI Company. All rights reserved.
This microform edition is protected against unauthorized copying under Title 17, United States Code.

Directional Irregular Wave Kinematics

Coprioht Spring lam
か

(hristopher Hemingway Barker

The dissertation of Christopher Hemingway Barker is approved:

University of California at Berkeley

Spring 1998

To Domma Lohmann Barker.
 For her patienee and for being in my comer almost all the time.

To Ella and Etta. my rerer present furry friemels.

And to Marcia Gremblatt. for always being there on a parallel course to mine. ewn though she finished a few monthis too early!

Contents

1 Introduction and Review of Current Methods 1
1.! Backgroumd I
1.2 Methods for the laterperation of Irregular Viate Recomb 3
1.2.I (ilobal Merhorls. 1
1.2: Lowal Mothods 11
2 Two Dimensional LFI Theory 15
2. 1 Problem Formulation 1.5
-3.1.1 Dymamios 心
$\because .1$ Finding the Solntion
3 LFI Method for a Point Pressure Record 21
3.1 Formulation of Solution $\because 1$
3:ㄹ Formmation of the Optimization $\because 3$
3.3 ('ompentation Methools 2.
3.3.1 Pre-Processing of Record 26
3.3.: Optimization Procedure 30
3.1 Theoretical Recorts 3.
3.4. (hoosing Parameters of Solntion 10
3.5 Laboratory Measmements 50
3.(i Discussion
4 Three Dimensional LFI Theory 59
4.1 There Dimensional heas (i)
1:2 Prohkem Formmation (i)
4.3 Formulation of the Solntion in each Window (i. 3
4.3.1 Backgromid (i.)
1.3.: Dyamios (ifi
1.1 A Local Two-Dntersecting-Wave Theory (ii)
1.1.1 Nënematio il
5 Array of Water Surface Traces 72
-. 1 Formulation of Solution \because
$\therefore \therefore$ Fermulation of the Optimization i
5. 3 ('omputation Merthods i
ㅈ.3. 1 Pro-Proco-sing of Record -!

- 3.3 .1 Optimization Procedure - 1
- 1 Theoretioal Records 910
- . H. S Single Wave Recome 411

5. A.: Reconds of Two Intersectine Waro 10.1
\therefore I. $\overline{5}$ aboratory Measmements 116
5.j. L alootatory Experiment $111 i$
\therefore - \therefore : Laboratory Results. 115

- 6 (Discmerion $1 \because 1$
6 Array of Subsurface Pressure Measurements 123
(i.) Fommatation of Solntion $12: 3$
(i.2 Fommation of the ()ptimization $1 \because 6$
(i.:) (omputation Medhorl: 以
6.3.1 Pro-Procesing of Record 1•! !
6.3.: Opmimization Procerlure 1:9!
(i.) Theoretical Recoms $1: 9$

6. 1.1 Single Vare Recome $1: 3$
 $13: 1$
(i.) Field Measuremems 11.5
(i.i. 1 Ficld Rewnti- 11.5
(i.li Disulnsion 1.11
7 Conclusions 153
-.I Future Wirk 1.11
Bibliography 157
A Intersecting wave theory 166
A.I litrorluction $16 i i^{2}$
A.: Theoretical Backeromed 16isi
. .3 . Talytioal Veritioation 11in
S. 1 Smerical Veritication $16: 9$
. .. 1.1 Richardson Extrapolation 170
A.l.: More (omples heas $17: 3$
A. - Depthe of Validity. $1 i=$

Acknowledgements

The laboratory renth presenter in (hapter 3 were kimdly proviled hey Maray

The laberatory data presented in (hapter is were collected with the assistance of
 Waterways Fxperiment Station. ('oastal Engincering Researh (enter. Virkshore. Missisuppi.

 search (emter. Vackshurg. Miswissippi.

The Fortan code presented in Appendix I was based on code kindly provided bex Takumi Otyama of the Institute of Terhnolug. Shimizn (orporation. Tok yo. Japan.

Chapter 1

Introduction and Review of Current Methods

1.1 Background

 Kinowlerge of thid relorities and acrelerations are neresaty for the stme of the

 processes. For this reason it in important that wase measurements be interpreded an acruately as posible.

Despite the need for goed data on the kinemation of waves it is impractical to measure erery parameter of interest. In a given sthation. one might nerd to know the
 location. While. in the laboratory it might be posil) to measure these quatities at many locations. it wond be vere expensive and it is totally impractical in the hell. A pragmatic approach is to measure just a few quantities. and to nse a wave theore to compute the batance of the parameters. This approad can give a complete deaription of the kinematios from only a few measmements. Finfortmately: the accuracy of this appoach is limited be the accuracy of the adopted theory as well as the accuracy of the measmements themselves.

I nmmber of wave theories have been adopted in ant effort to describe the kintmatics of waves. The mose aressible and frequently here of these is diry wate theore falso known as linear theory or first oreler tokes theory . Diry wave theory is easy to mse. but has a momber of limitations. The sontre of these limitations is the simplifications of the quverning equations of gravity wates that are marle to linearize the equations. allowing a straight formand solntion. These simplificationsame marle in the free suface lesmatary comblitions and are justilied be an assmption of omall wave
 of the predicted kinematics. Vnfortmately. lhis compromise is at the free surface. which is the location of the greatest thorl relocities and acoelerations in watere and thas frequently the most important to the foreing of stranture. The asomption of small amplitule also remolers the theory inaderpate for large wares exactly those of greatest interest to coastal engineers.

In order to adelress these limitations. a momber of high oreler seady wate theories have beren dereloperl. ('ommonly in mes are Stokes. ('modal. and Fomrier wave theories. For a review of these ser Fenton (logot). In generat. Shoker medmeds are sheressful in derg water. ('modal methors in shallow water, and Fomber medhork in all repothe of water. Within thedr limitations. all threre of these methorl provile oxredlent predictions of the kinematics of steady waver. but are mot dimedty applicable to the irregular waver commonly fonmel in the field. With the possible exception of swell comblitions on a very mild-stoped loottom. Waves in the sea are mether stearly. madimertional mor monochromatic.

 tems. even the most compliaterlof high order stearly wate theories is guite acressible. Howerer. such higher oreler theories are not directle applicable to moti-rlirectional or molti-chromatir wases. The limearity of tiry theory allows superpestion. in whidi ants combination of waves of different frequencies or dirertions ran be combined to form a solntion. Superposition allows real sod states to he easily chararterized ber frequency and rlireetion seretra. While accessible. this methorl results in selntions for the kinematics of the waves that wo not satisfy the full free smface bomelary

Figur 1.l: hement of recod considered for ghobal appoximations
comblions. and the rem ned take into acomen the interaction betwen the inditidnal wave.

1.2 Methods for the Interpretation of Irregular Wave Records

 calcogres: ghobal and local approximations. (ilobal methons reck a solmion that matches ath entite measured recorl. or a single complete meantred wave. from troneh to following trongh. or zeturossing to zerocussing (Fig. 1.1). These methods apply the same frequence and wase number wor of frequencies and wave numbers for all $=$ (wertical watiant and $/$ (time).

Local methods. on the other hamd serk an appoximation wearli small heal segment of a measured wave. In these methods. the frequency and wave mumber still apply for all : but are allowed to ary with time. providing a separate solntion in cach small window in time (Fig. 1.2).

Figure 1.2: Segment of recome considered for local approximations

1.2.1 Global Methods

Spectral Methods

The most commonly used global methoel for the andysis of irregular wave is
 on a single peint measurement seek to define the sea state with a variance pectrme. Eive which peribes the contribution tw the variance of the water surface at each frequenes. as In practice the spectrmin is define in discrete form. with the water surface described by the superposition of many linear waves.
 momber of the mith wave. θ_{m}, is the direction of propagation of the mith wase and ${ }^{\prime}, \ldots$ is the phase of the mith wave at the origin of the coerdinate sestem.

The amplitules ate found from the discrete tariance spectrm.

$$
\begin{equation*}
a_{m}=\sqrt{2 E\left(\omega_{n},\right) \Delta_{m}} \tag{1.2}
\end{equation*}
$$

where $\Delta_{\text {a }}$ is the fregnemer spacing of the discrete spectrmm. The frequency and wave number of each of the $I /$ waves are related be the linear dispersion relation.

$$
\begin{equation*}
\dot{\sim}: \ldots=g h_{i, \ldots} \tanh k_{i, \ldots}, \tag{1.3}
\end{equation*}
$$

whereg is the acrelemtion of eravity and h is the mean water depth. The diepersion relation defines the phase yeed of eath component allowing cach aparate compenemt

 that all the waves are propagating in the same direction. Once the amplimde. fre-

 cach imdividual wawe a predicterl he limear wate theory.

Directional Spectra When meantements are taken by an atray of incmmems.

 different freguencior and directions:
where:
and Δ_{0} and $\Delta \theta$ are the sample pacing of the discrete spectrmin freppency and
 (Eq. 1.3). The directional pectrum is mally broken down inte two parts. the one
 D(ぶ, O):

$$
\therefore(\sim \cdot \theta)=I(\sim \cdot) D(\sim \cdot \theta)
$$

$$
\begin{equation*}
\left.\int_{-}^{\infty} \int_{-}^{-} D()_{\infty} \theta\right) d \theta d l_{\infty}=1 \tag{1.7}
\end{equation*}
$$

 Infortmately. all of these methods are limited in their ability to define acomately the DSF.

 a rey high reohntion computation of the spertrum of a stationary proces in the freppence demain. In the spatial domain. lex contrat. there are only a many data point as there are instmment in the partiontar measurement atray. This may be

 example. when data from an array of three instrment-is analyed be the standard
 and Datromple l!日f 1 . While these few coefficient- may serve well for dermiming interal properties. such as the mean diection and radiation sters. it is mot enemoh information to acomately sereify the complete kimematios.

Another diftionlty arises when dermining the pertrmin from measurement-other that wavestatis. Must often. shlenface presure gange or a combination of presure

 function is mus commonly deteminerl from limear wate theory. This nee of limear wave theory one aqain contribere to errore in stmations where linear theory is not
 ing the transer function from a suburface pressure measurement to the equiakent water surface.

The commonly nerd methork for deremining the DSF ate statistioal methods. in that they wer on the assmption that the phases of the individual compenents ate randomly distributed. This asmontion allows the DSF to be computed be disreqarding the phase information. Vormmately: withom the phase infomation it is imposible to reconstruct the detaled kimemation only statintial desoriptions and be formulated.
 mined these methods have a number of shoteomings when wed to prediet the kinematios of irtegular waves. Shortcomings include the inacouracies inherem in linear waw heory partimbaty in thallow water and with large wave.

An additional difficulty arises from the superposition of matly waves. This problem
 and Dean l!ng: Bishop and Donelan l!nal. Fundamentally: the diftionties arise from the appeximations made be linear wave theore in the free surface bemelaty conditions. In linear theory the free suface bemotary conditions are applied at the mean water level and thes predietions mate above that level are stictle ont of the solution domain. If the full free surface homdary courlitions ate not satistierl. the resuhtue predictions will be inacourate partiontarty near the free sufface. In particulat. She hepertolic function quotients that define the vertical variation of the kinemation berome very large in the region above the MIWI. for the high frecperney sand high wave momber) components. This results in substantal high freguenes Huctmation in the predicted kinematios near the crest.
 near surface kimematios ompirieal moditiontoms to . Airy theory have been adepted
 locally adjusts the vertical dimension to prevent the e eathation of the hepertoblic quotient. from being evalutated above the MWI.. The result is a hatridelobal-local methoel in that the frequency. wave mumbers. and amplitule of each wave are determined globally: but the coordinate semem is defined locally. varying with time.

The stretching method prodnces predictions of crest kinematios that serem tu match measured data better than simple linear superposition. but it melonger satisfies either the Laplace equation (mass consertation of of the full free surface bomdary conditions.

Another attempt to imptove on the accurace of determining the kinematios from directional spectea is the recent work be Prislin of al. (long). and Prislin and Zhang (199-). This method seeks to reconstrme wave kimematics from a directional seectrum using a serond order Stokestype interacting wave theory. The epectrum is
derompensed into a set of individual free waves. with from one to tive dientional free waves per fregurne. The efferts of the serond enter interactions are subtracterl from the measured weod to determine the amplitules and phases of the individual free
 finction and water surface that includes a full wet of mane free waves and the comer sponding second order bomad modes. The method succeds in ghobally reproducing the measmed kinematios in the given deep water fied recorde guite well. ahbomeh the larest ertors ate in the vicinty of the cest. Where velocities ate greatest and acouracy is mosi important.

Amother limitation of the Prislin and Zhang method is that the nonlinear interactions are computerl thromg the ne of a Stokestepe perturthation expansion in wate sterphes. Based on experience with steady waves. a seromb order expansion of this type is likely to be adeguate in deep water. but if the method were to be applied in transitional. and expecially in shallow water. a much higher order representation
 method in this maner. it wond increase the magnitude of the computation showathtially. perlape pohibitivels: Represeming an entire record in the olobal sense repmite many interacting free waves. (omsidering their interactions at high order wond pro-
 local. approach womblerel to consider far fewer interacting waves.

Other ghobal metheds rely on zero rosesiog analesis to idemify partionlar wate that are then analyerl be ming steady wase theory for a wate of the same height and period. This approach ath provide an order of magnithede estimate for the kinemation. but dees not take into acromet the detail of the record and the can not be experted to consistemty provide better than order of masnitule accurary.
 his numerical stream function method to irregular waven neeking a Fomier expanion
 The method optimizes the Fourier ampliturles to best solve the free surface bomdary conditions at the measured water surface eletations from trongh to following trongh. While this approach takes into accome the detail of the record. the method inchules

Figure 1.3: (oodinate syom for Lambrako-Baldock-Swan methoel.
only a simgle free mole. with all other included components being bomed modes taveline with the wave at the same phase seerl. thes representing an asommetric wave of permanemt form. I solution that dees not allow a change in form is milikels W acourately apture wave in deep water. where frequency dixpersion and leat io tramient extreme waves. or. indeed. in shallow water where shating efferts canse a chatere in form as the wave progres.
 denemining the kinematios of two dimensional irreqular wate that indure mans free morles. and thme motearly motion. Baldork and Swan later redined Lambrakos
 and Swan 1994) and then in shallow water (Baldock and Swan 199m, Baldock and Swan: method adopts the following petential function that is a domble Fomer expansion in pare and time:
 In this potential fimction each fregneney component (\quad mi) has a corresponding sen of wavelengthe (nk). allowing each component to travel at distimet phase sperds.

This appoedeh an accommedate both steady and metearly wave form in includine both a set of free waves and a correspomding sed of bomed modes. Perionlicity wer

 free sufface boundary conditions.

In order to acrommerlate the mateadiness of the wave proble. the erohtion of the wave in space mas be known. This is acomplished be applating the free surface bomblaty comditions at many locations in time and pace. Since the elevation of the water surface nsually is measured ouly at a single patial lecation. it is predicted at the other locations as pate of the solution. The petential function (E.q. I.N exactly satisties the hotom bemolary condition and mass conservation. In order to time the
 of coetficients that minimizes the sum of epates error in looth of the free surface bomblary conditions wer a orid of norles in time and prace.
 was ergally comsidered at all of the notes. mose of which were at locatione in which the water surface ele ation was also manown. This resulterl in solutions in which the error in the homblary conditions was greateat at the location of the measurement. The difticulty was mitigated be a weighting function. multiplying the denamic free surface lomotary condition errors at the measured location be a factor of on in the sum of sutares catculation. Worce the solution to match well at that point.
('omparisons of their mesults with laboratory data were quite gooel. but the metherl las a momber of limitations. These incluche a hage matrix of monown coefficiemts that

 from the measmement loration. remoring the forms from the actual measured data. The method makes no assumptions about the steadiness of the wate field: howerer. it extemds the horizontal botion assumption and introduces unneresary complication
 exprexion. This complication woml become at least an orker of magnimde greater if the method were extemed to indule the seromd herizontal dimension.

1.2.2 Local Methods

 wave theore to time the heation of the water surfare from a pressure reord. In this methed the wave in the region of each measmed point in comsidered tw in a small
 function.

$$
p=1, \text { int } 1,0, t, 1
$$

su hat:

$$
\therefore=\sqrt{-\frac{1}{p} \frac{\partial \sigma^{2} p}{\partial r^{2}}}
$$

$$
\therefore=\sqrt{\frac{-p,-1+2 \mu-p,-1}{p, ~} \Delta / 2}
$$

 trigomometric idemities.

$$
\therefore=\frac{1}{x} \cos ^{-1}\left(\frac{p,-1+p+1}{\because p}\right)
$$

Which is exact for a simmoil.
Once the frequency has been detemmed, the wave mmber in computed from the limear dispersion relation. Ex. L.3. The water surface eleation can then be computed with the limear pressure response function:

$$
\begin{equation*}
\mu_{n}=\frac{p, n}{l_{1}!} \frac{\cos \ln \left(t_{1}, l_{1}\right)}{\cosh \left(k_{n, i}, n\right.} \tag{1.13}
\end{equation*}
$$

Where: $:$ is the elevation of the pressure measurement alowe the bed. and h is the mean water depth its the method is a local methoel for the interperetation of a point
measurement the lueal mean water depth is merl. rather than the elobat till water

$$
\mu_{1}=\frac{m}{l!m} \frac{\cosh \left(h_{n}\left(h+\frac{m}{m}\right)\right)}{\cosh k \cdot n}
$$

 from the meanmed persure and lowal curature of the persume reod. While quite
 nor do the satisfy either mase conservation and or the free surface bomdary conditions. Deppite these limitations. the efticacy of these methed demonstrater the potential for the local approach.

To interper bettom pressure measurements in the context of the kinematio whike presering the full geverning equations. Fenton iflovis preented a method that emplosea local polyomial appoximation to the complexponemial finction. In Fenton: methorl. the potemtial function and water surface are represent bex mate pelymomiak in cach small window in time:

$$
\begin{aligned}
& \mu\left(x . \mu=\sum_{r=0}^{1 I} h_{i}(x-\cdot \cdot)\right.
\end{aligned}
$$

where $=x+i!!\cdot!=0$ at the herl. η is the water sufface, r is the wave colerity.
 change in form. While stadiness is not a valid assmption in the global semes. it is only applied locally. within a small window in time.

The methoel solves for the coeflicionts. ", and b, and the wave celerity. c. that satisfy the full nonlinear free surface bommary conditions and tit the measured peres sure recorl. This approach provides the complete kinematies and satistios the frill goveming equations. Based on a polymmial tariation with dephth. it works well in
 retically appopriate. . It the same time it may not le applicable in tranitional or deep water. where Stokes type methots. hased on an expenential ratiation in the rertial are theoretically more appopriate. In a later paper. Fenton and christian
 nipulation and was still fomd to be effertive in shathow water. In this ases. the local wave colerity was assmed to be that given ber long wave theory:

$$
r=v!\overline{!\prime \prime}
$$

While this is a reasonable appoximation for long waves in shallow water, it was not appopriate for shoter wate in deeper water. as might be experter from the polymomial form and the long wave colerity.
 the Local Fomerier Merhod for Irregular wave (LFI). This approch mphors a per tential fumetion representerl by a low orter Fonrier expansion in a small wimbow in time. It is a method derived for the atmber of a point water surfare trace. I.oral frequenc: wave momber. and the Fourier coetliciontsate somght that fit the measured record and the full free surface homelary combitions. The LIFI methed providen the complete kinematios sativien the fill governing equations. athl is succosfal in all depthe of water. I mote complete deacription of this method follows in (hapter \underline{O}. holeres method shows a great deal of promise. hut was only applied to the athatris of a water surface measurement at a simgle location.
 partiondarly in hatlow and transitional depth water. The I.FI methed is extemderd in this disemation to the interpretation of wave measmements from a peint presime sensor in (hapter 3.

Poim measurements provide no infomation about the directionality of the measured wave field. Wind seas are not mi-directional. and knowledge of directionalits has bern shown to be vers important in the prediction of the kinematios and forcing

Arage of measmements are fregmenty nsed in order to capture the directional
nature of the wave hedd. The LFI methed has been fint her extember in thi divertation to the interpetation of arras of water surfare measmements in ('hapter i. and array of presure sensors in (hapter (i)

Chapter 2

Two Dimensional LFI Theory

It is common to deplov a single measmement deviee to gather information about the wave fied at a given leration. Seasmement at a single peint in pace dees not gite any information abomt the diectionality of the sea state. but if the wave field is assmed to be logally two dimensional. a trasomable deseription of the kinematios ratl be extablisherl. This chapter outlines the LFI methed as it is applied to the interpertation of a time series from measurementstaken at angle location in pace. such as recorded be a pressure gange or wate satf.

2.1 Problem Formulation

The problem formmation for two dimensional irreqular wases has muth in common with classial steady wave theory: The How is assmed to be incompresible and irrotational. The kinematios can therefore be represented by a potential function. otre:.fl. Where

$$
"=\frac{i d}{i \cdot x} \quad \quad \pi=\frac{i \omega_{0}}{i=}
$$

and $"$ and w ate the horizontal and ventical velocities. respectively:

Field Equation The fied equation is mass consertation for irrotational flow. in the form of the Laplace equation:

$$
\Gamma_{\because}^{2}=\frac{i r_{0}}{\partial r_{0}^{2}}+\frac{\partial^{2} \cdot}{\partial I^{2}}=0
$$

Boundary Conditions The bommary conditions are the bemom bemmenty condition for a locally horizontal bed (BBC').

$$
\ddot{w}=\frac{i l}{i d}=0 \quad \text { at } \quad==-l
$$

the kimematic free surface bomblary condition (FFSBC ${ }^{\circ}$).

$$
\pi-\frac{\partial \|_{\eta}}{\partial t}-\| \frac{\partial \|_{\eta}}{\partial \partial_{r}}=0 \quad \text { at } \quad:=\eta
$$

and the dyamic free surface boundary condition (DFSB(').

$$
\frac{i \omega}{i \prime}+\frac{1}{2} u^{2}+\frac{1}{\underline{-}} \pi^{2}+!!\prime-\bar{B}=0 \quad \text { at } \quad:=\eta
$$

Where \Rightarrow is the eleration of the free surface. $!$ is the aceleration of gravit! and \bar{B} in the Bernonlli constant.

The kinematie free surface boundary condition (Eq. I. t) ind hates beth the tinne and spatial gradients of the water surface. When working with a subsurface gatge.
the lecation of the water suffare is manown and part of the -olmion. When workine with data from a water surface probe. the heation of the water surface at diemete
 to acommondate this latk of data. the kinematio free -ufface bemmetary condition is transformed to diminate the gradients of the water surface. Following loment
 dilferemiated following the motion:

Resultine in a morlitiod kimematio free surface bemolaty comdition:

$$
\begin{aligned}
& +"^{2} \frac{\partial \|}{\partial \cdot r}+u \pi \frac{i \|}{\partial \cdot r} \\
& +u w \frac{\partial u}{\partial i} \div \pi \cdot \frac{\partial u}{\partial!}=0 \quad \text { at }:=\|
\end{aligned}
$$

This new form of the bomdary condition does not ind hade the gradient of the water
 the dramic free -urface bommary condition complete dhe formulation.

Observational Equations In steaty wave theore periodie homolary combition are abse imposerl. foreing the solution to be periodic in both -pare and time. For ireeghlar wave howerer. the perioclicity is not known. Rather. the lumat whtion is detimed les a local seement of a measmed record within a small window in time. togenter with the fied equation and the bottom and free surface lommary comditions.

In order to define a solntion that fits the measured recod. whereational ergationate identiferl. These equations will be diferent depending on which quantity has been measurerl. In the case of a water suface measmement. lhey are the free surface bomodaty comditions. applied at the meastred ele vations at a mumer of perints in time thenghont the window (Soley l!nes). In the case of a pressure measurement. ther are the Bermoulli equation. applied at the elevation of the measurement. and alse at a mumber of points in time within the window (see ('hapter 3).

Solution in Each Local Window I form for the potential function in cach lexal
 be Solee (l!!!?:
where l° and $/$ are the known depth-miform Eulerian curem and mean water depth seer section 3.3.1 for a disension of these important parameters). I is the rmation orter of the Fomber series. 1 ate the Fourier coedficients. and w and k are the
 -atistios mase comerration and the BBC'. This form for the potemial function is periodie in space and time. however the periodicitien are not defined apriori. bint fomed to tio the record. detining a local frequency and wave umber.

The measmed record is broken down into individual sements. cach in a werate window in time. In each window. a different we of the patameters a. k. kir. and 1 are fombl to tit the segment of the measured record. This represemt that sement an a piere of a latere periodic wave. The entire record is then represented ber watate potential functions. cach applied to a particular window in time.

2.1.1 Dynamics

The potemtial function provides the complete kimematios and the dyamion are fomed themeh the unsteady Bermonlli equation:

$$
\frac{i d}{i t t}+\frac{1}{\underline{2}}\left(w^{2}+w^{2}\right)+!=+\frac{p}{1}-\bar{B}=0
$$

Where p is the mass density of the water. and p is total peresure. Total pereme bedow the water surface can be heoken down inte there compenents. Atmenpheric pressure (p.) is the persite of the atmosphere at the water surface. hardrustatie presure (pi) is the presure ia the water colmm due to gravity: in the absence of monion. Dyamic presinte (p f f is the component due to the motion of the flaid. Separating the see theree component: focmses attention on the laver motion.

$$
\begin{equation*}
p=p_{1}+p_{i}+p_{i} \quad \text { where } \quad p_{i}=-p_{i}, \quad \text { for }: \leq 1 \tag{1.!!}
\end{equation*}
$$

 intu Eq. コ. . The realt is:

$$
\begin{equation*}
\left.\frac{i l_{1}}{i t}+\frac{1}{\underline{2}} n^{2}+w^{2}\right)+\frac{p_{i}}{\prime \prime}-\bar{l}=0 \tag{1}
\end{equation*}
$$

The Bernoulli Constant

In a potential thow. the Bermonlli comstant is the same thonghom pace and time. For the percial case of wase motion. the value of the Bemonlli ronstath can
 equation (르) and the botom bomblary condition are applied at the lootom:

$$
\begin{equation*}
\frac{\partial w}{d t}+\frac{1}{\underline{-}} n+!2+\frac{m}{p}-\bar{m}=0 \tag{O}
\end{equation*}
$$

 How is perionlic. a time average wer a perion resmlts in:

$$
\frac{1}{\underline{I}} \overline{n_{i}^{\prime}}+!1=\frac{\bar{P}_{1}}{\rho}-\bar{B}=0
$$

Where the over-hats indicate time areraging.
In the rase of stedy periectic wave motion, the total remical momentum at ant herizontal location most be the same at the begiming and end of a periot. In weder for this to be the ase. the vertiol momontm ane aged wer a period must be a constant. In order for the momentmon to remain constant. the time areraged ne vertical force on the water colmmat that point must be zero. If the pressure at the water surface ($p_{\text {a }}$) is taken to be zero. then the foree of the presume at the bed must lee equal to the gravitational force on the columm of water. so that the mean presime on the bed is hedrostatio.

$$
\bar{p}_{i}=1, g(\bar{\eta}-\therefore,)
$$

resulting in a simple and exact expresion for the Bernonlli constant.

$$
\bar{B}=s \bar{\eta}+\frac{1}{\underline{2}} \overline{n_{i}^{\prime}}
$$

$$
\bar{B}=\frac{1}{\underline{I}} r^{2}+\frac{1}{1} \sum\left(\frac{j k \cdot 1}{\cos h_{1} j k \cdot h}\right)^{2}
$$

and all the terms in Eq. 2.10 are defined bey the potential function allowine the denamic presure to be computed from the kinematios.

2.2 Finding the Solution

The bulk of the I.FI methodis the proces of determining appopriate value for
 window intime. The rewht is a set of potential functions that completely describe the kinematies of the wate field in the region of the measurement. each separate windew in time being described bey a mique and independent potential function.

In the case of smberface measmements. the location of the water surface is alse reghied. Determination of the parameters of the potential fimerion as well as the lowation of the water surface. is accomplisherl themeh nonlincar optimization that matches the measured reood and minimizes the error in hoth free surface homedare
 water surface trace. The following chapter applies the methed to a suburface presure recoral.

Chapter 3

LFI Method for a Point Pressure Record

Presume gange ane relatively inexpensive and easy to deploce and an a result are frequenty wed in the field to measure wases partiontarly in shallow water. The -implest instrmont comists of a single subsurface pressure gange. While a single point measurement provide mo dieretional information a reanomable estimate for the kinemat io of the measured wase can be obtamed. This chapter dencribes a terhnique for applying the two dimensional LFI methed peremted in the previons diapter to the analysis of a peint suburface pressure trace.

3.1 Formulation of Solution

The thow is taken to loe two dimensional. with the governing equations dereribed in (hapter 2 . These inclucle the potemial function.

$$
\begin{equation*}
o(x .=f)=I \cdot x+\sum_{j=1}^{I} I_{j} \frac{\cos h_{1} j h_{i}(h+z)}{\cos h_{1} j h \cdot h} \sin j(h \cdot x-\infty) \tag{3.1}
\end{equation*}
$$

the modified kinematic free surface bomdary condition ($f^{\text {h }}$).

$$
\begin{aligned}
& f^{h}=\frac{\partial^{2}!}{\partial t^{2}}+!!\pi+\ddot{2}\left(\prime \frac{i \|}{\partial t}+\pi \frac{\partial \pi}{\partial t}\right)
\end{aligned}
$$

the Syamie free surface bomdare condition (f) ${ }^{\prime \prime}$.

$$
\begin{equation*}
f^{\prime \prime}=\frac{\partial)_{c}}{\partial t}+\frac{1}{2} u^{2}+\frac{1}{2} u^{2}+!\prime \prime-\bar{B}=0 \quad \text { at } \quad:==1 \tag{3.3}
\end{equation*}
$$

amel the mastady Bermonlli equation (f f^{H}).

$$
\begin{equation*}
f^{B}=\frac{i d}{i t t}+\frac{1}{\underline{-}}\left(n^{2}+w^{2}\right)+\frac{p_{i}}{p}-\bar{B}=0 \tag{:3.1}
\end{equation*}
$$

with the Bermonlli comstant defined as:

$$
\begin{equation*}
\bar{B}=\frac{1}{\underline{1}} \cdot \underline{2}+\frac{1}{1} \sum_{1}\left(\frac{j k \cdot 1}{\text { rosh.jkil }}\right)^{2} \tag{3.5}
\end{equation*}
$$

The moknown patameter. x. appears in the petemtal function only when compled with the patameter. f. It is convenient to solve for the non-dimensional parameter. fir. essentially a phase parameter in the potential function.

The action of waves is greatest near the surface. so that the Huid relorities and acceleration are largest near the surface and decay rapidly with depen. partiondarly in deep water. In addition. For pressure sensors placed at or near the bottom. the vertical compenent of the velocity is damper ont completely as expressed bex the bottom bondary condition. The problem then. is to extrapolate the motion of the Huid up whe surface. Where the motion is greatest. nsing only data extracted from the subsurface. Where the motion is much less.

 ate no data measured neat the surface, the free -nface hommary comblions remain appoperiate. and meresary to olefine the solmtion at that bommary.
 location of the the water surface was known. and the bemotary conditions comblat be directly applied at that location. Fafortmately. when workine from a suburface

 he applied is not known makes the problem more diffient. This is the complication that leads to the diflienties in finding full monlinear solntions to all free surface How problems. In order to apply the free surface bemmare conditions when working with a the potemtial function. in eadh window.

In order to locate the free surface the water surface is detimed at I - meface

 free surface boumdary comblions. Eq. 3.3 and 3.3 are applied at each -urface nede.

3.2 Formulation of the Optimization

 known as nonlinear optimization. The sestem in this ase comsists of the nonlinear Bermonlli eptation and the nonlinear free surface bomdary conditions. The free
 terms in dyamic free surface bomdary condition (the w' terms and \bar{B} in Eq. 3.3).

Figure 3. L: Shematio of orsem of equations in a window
 the application of the bommaty conditions at the manown and arring free surface.

Observational Equations The given form for the potemial fintion cond represent any periodic flow. subject to the botom homdary rondition. The FSBC- dedine the thow as a gratity-constramed. free surface How. The obrervational equatione are the equation- in the serom that fore the solution to tht the given recorl. Fior a
 the pressure measurement. The requited number of independent equations are er tablisher bex appling the Bernoulli equation at a number of time thromohent the window considered. The error in the Bernomli equation in the diference betwern the measured denamic preseme and that computed from the kimemation defined low the potential function. The solntion is the set of parameters in the penential finction and the set of water sufface modes that produces a predicted dyamic persome that

 mbinow parameters in the sestem. If there are more egmations than mbinowns. the solution and be define as that which results in the smalkes squated errem in the equations. This least squares formulation is also appopriate for a miquely defined

 -rstem is miquely -peritiod for $I+I=3+. J$ and oreroperition for $I+I>3-I$. resultine in the following least spares optimization:

$$
\begin{aligned}
& +\sum_{i=1}^{1} f^{H}\left(\mathrm{X}: I_{1, \ldots}=\ldots I^{-}\right.
\end{aligned}
$$

where $t_{\text {, }}$ ate the lowations in time where the water surface nomes. If.. ate someht. f. are the times within the window where the Bermonlli equation is applied. P'.. are the measured demamie pressure at t. and z_{i} is the elevation of the presume gange. Overspecification paticularly with additional mokes on the presume record. is arkantageons for an actual reoorl as a way to minimize the effert of any noise in the measurements. Additional nodes on the pressure record ako serve to emphasize the measured data. Which ditectly detime the local kimematios. The detaik of the volution to this s-riem of equations is given in the following sertion.

3.3 Computation Methods

The LFI methorl can be broken down inte the following sequence of steps:

1. Pre-processing of record.
(a) Determine estimate for level of noise in the record.
(b) Determine MIVI. and subtract hedrostatic pressure from record.
(c) Determine estimate for magnitude and diection of Eulerian current.
 interpolation.
(e) Sperifi pacing of vatput locations.
(f) ('ompute mean zero crosing frequenc:
(2) Xon-dimemsionalize recom and all parameters.
2. Primary value of mmerical solmion patameter are chowe n.
(a) Window widuh (T)
(b) Order of solution (./)
(10) Simber of sample locations on terord within each window / /

3. For each selected omput location. a window in the record is defined. and an LFI solution is computed.
(a) Intital guess for the optimization is computarl.
(b) Full nonlinear optimization for all makown compone onts of the potemial finction is computerl.
(a) Results are checked for spurions whation.
i. If ne solution. or a spurions oblation. is fomm the obluion parameters are adjusterl. and the optimization repeated.
ii. If a good volution is fomme progres to the nest window.

3.3.1 Pre-Processing of Record

Accommodating Measurement Error

Measurement ertor can be a major soure of ditficult: as the methed relies on
 kimematic free surface boundary condition (Eq. \because. .) was applied at the measured water surface. requiting an estimate for the time gradient of the surface. The estination
of the gradients from a measured recoral is vers semsitive to error in the record. and
 simple moving average tilter.

There are ne presure gradient terms in the Bemondi equations wo the application
 Seretheless measurement erver remains a problem in applyine the I.FI mothod to a persume recorl. When there is obsions noise in the record. an atternative to smoenthing in to substantally oversperify the sestem of equations. By taking many samplen on the pressure recorl in cach window. the least squates optimization may accommodate the errots in the measurements. This is preferable to smouthine as me moothing algorithon can reproduce lost data. but will rather impose some apriori asimption abom the nature of the record on the results. Areommotating the measurnent error with many samples on the presume recorl allows the least squares optimization to find the best tit withom imposing any further assmptions on the testults. This was the approad taken with the presenter labotatory data (section 3.-i). Records aemerated analyically bemer wate theory contamed no ertor. and therefore medired ne arecial accommodation.

The Mean Water Level

The mean water depth. K. is included in the peotential function (Ey. 3.I). This is an moknown value when the only data a ailable is a pressme recome While an appoximate depth of water is likely to be known at a given deplownem site. the water level thuetuater due to astrommical and stom tides. These promeses happen wer a much latger time seale than the perionds of wind gemerated waves. An extimate for the local mean water level (MIWL) can be detemined be averaging the measured pressure (after subtacting ont the atmospheric persure) wor a period of time that must be larger than a typical wave periorl. but smaller than the perion of tidal fluctuations. to accommodate changes in the mean water lerel. This mean persume is the local hydrostatic presisure. Which is used to compute the mean water level. and is subtracted from the pressure record to detime the dyamic pressure. White this is

 The mean water level is the mone appopriate reference frame as the method is lowal. and only considers a mall window in time at once. The elexations of the water surface nodes are fombl independentlys. withom any regnirement that the resultine meat water level be at the origin. Thus it is not necesary that the origin is at the exat MIVL. only that the it is neat the suface. In dathow water. the bed comble be med as the origin (Fenten l!sedi, but this womld not work well in deeper water. as the ate of primary interest. the water suface. would he far from the orioin.

The Eulerian Current

The depth uniform Enlerian morent. I. appears as a known parameter in the
 dication of the local current. Folike the mean water level. the Enterian curent is a whical parameter that defines the propagation medimm. and varying the value used for the current will hase a considerable effer on the result of the computation. In fact. as pinted out beyton (lania), any attempt waply a wate theory withom

The station is mot hopeless. howerer. The presene of the Finlerian onrent term in the peotential function draws attention to the fact that it is an impertant
 field experiments to establish a method of estimating the local current. This may he as staightorward as placing a corrent meter morbs. or as simple as ming tidal data to estimate the loral current. (antion must be taken with the later methorl. as the accurace of the estimate may not be consistent with the use of high order interpretation methods.

It is also assumed in the LFI method that local current is depth miform. Whthongh this is mulikely to be strictly tome. Kishida and Sobey (IONS) demonstrater that for steally waves a corrent profile with a realistic lewe of romicity was likely to yichl rery
-imitar restols as a depth miform curent protile for the wate generated kimematio. exen at high order. It is expected that these resolts ate applicable to irregatar waten as well. and thes the asomption of apth miform comen is rasonably appoptiate.

Another compliation to be considered is the direction of any local ament with respert to the propatation direction of the wates. Ther in Eq. 3.1 is har componem
 peint meantement. no information is araikable to indicate the wave direction. Even if the curcent mannitule and direction are known exatly: withont an extmate fer the

 of the local bathemetry and the wave climate could peovide this information. For example. wates that a beach tond to propagate almest perpendicular to the shore or if there are directional measurements taken neathe avalable. they conlel be combined with refraction computations to provide an extmate of the lomal propagationdirection. There must be some information available abont both the local Eulerian murent and the local wave propagation direction in order to interper acomately a peint meashement.
 analytially or in a laboratory Hume. In both cases. the Eulerian current and wave propagation direction ate known.

Spline of Record

In wrater tw asod beine restricted be the sampling rate of a particnlat ee of meantroments. a contimus recorl is computer by phene interpolation amone the meatured peints. This allows the window widths and the momber and lowation of samples in cach window to be chosen independently of the sampling frepuence of the data. (are must be takell. howerer. to be sure to indude an adergate sement of the record in each window. A window that includes only a single measured point is compmationally possible. Dut would result in misleading accuacy in the resultant solution.

Output Locations

The -pacinge of the desiere omput lecations must he chosen to determine the placement of the wimbers. The mothion in each window in expeeted to be mont acomate in the celtere and the a sparate window is cemered at cach location where
 on the pacine of the oup wind was.

Non-Dimensionalization

The comparisons of the creore in equations of different dimensional quatitice may result in sprion solutions that orer emphasize certain equations in the formutation. While the familiar dimensional forms of the equations have been presenter here for
 patameters before comphation. The mass demsity of water (p). arceleration of gatity
 define characteristic length. time and mass sales.

$$
\begin{aligned}
& \text { I.ength sale }=\text { yin: } \\
& \text { Time sale = } 1 / \boldsymbol{\sim} \\
& \text { 1:3.5 } \\
& \text { Marn Male }=\frac{1!!!}{n}
\end{aligned}
$$

3.3.2 Optimization Procedure

The primary process in the I.Fl methoel is a menlinear optimization of a worm
 as complex as this may have momerons local minima that reonl in -purion solmions. The beet way to avod these sohtions. and to ensure eflicient optimization. is to start with a good estimate for the mbnown in the system. and. in aldition. Whate a med of eriteria for idemifying spurions solutions.

Initial Estimate

The firn step in each wimbow is torotablish an intial estimate for the optimization
 of corter magnimes. The linear onbentace dyamie presome is:

$$
\begin{align*}
& \mu_{i}=\text { acosthir }-\infty
\end{align*}
$$

where it is the amplimate of the limear potemtal function. The wave mumber. k. and fregnence: are relater throngh the linear diversion relation:

$$
\begin{equation*}
\left|\omega^{\prime}-k \cdot l^{\prime} \|^{2}=!g+\tan h\right| \cdot l / \tag{3.3}
\end{equation*}
$$

 - Her of a local linear appoximation to waves from a peresure record. His mether
 of the water surface. I similar method is nsed here to determine the lirat estimate
 $P:=$ acosther - wht is avalable from the seromel deriative:

$$
\begin{equation*}
\dot{\sim}=\sqrt{-\frac{1}{\mu_{i}} \frac{\partial^{2} \mu_{i}}{\partial t^{2}}} \tag{3.10}
\end{equation*}
$$

This appreach reguires all estimate for the value of the second time derivative of
 available from the cubie spline of the measured points. This entmate. howerer. is ver sensitive to random eror in the measurements. Vielsen sugents extmating the ralue of the derivative through the ase of divided differences. This sohtion work well for a smooth simmodal record. hat is also rery semsitise to mise in the record. particularly in areas of small curtature: extimating a second derivative from a small segment of a noisy record can result in large crrors. In order to accommodate the ineritable noise in an actual record. a different approach is taken here.

In each window, a thial order polymomal is tit the therod in the leant -quates sense. The second derivative thenghom the window ran then be computed from this polsmomial. By ming more than four points in each window, any noise in the recorel

 the value of the second deriation thronghom the window. A we of fregterncios is compented from the extimate of the serond derivative at each of the considered mentes. The mean of these frequencies is used as a first estimate for the lumal frequence of the recored.

Amplitude and Phase Once the frequency is known the amplitule and patial phase (her of a paticular recorl can be fomd be rearanging the equation as a linear least spares problem bey separating the cosine and sine componemts:
where $"=\sqrt{h^{2}+r^{2}}$ and $k=\arctan (c / b)$. This results in flue following matrix "rpation in the moknown amplitules. b and \because.

The syom is determined if $p(t)$ is defined at two points. If $l>\ddot{O}$. the sorem is wer deermined and can be solver in the least suated sense bey comon algorithms in mumerical linear algehta libraries. This method porides a tirs estimate for the paramoters: $\%$. kir. and w.

Refining the Linear Estimates These estimates for the parameters ran be phite poor. as they are all dependent on the initial estimate for the second time derivative
of the recorl. In order to improve them. the extimates are retined be optimizine for the bex least aname fit in the window.

$$
\begin{align*}
& \operatorname{miminize}_{\mathbf{X}}(\mathbf{X})=\sum_{i=1}^{I}\left(P_{i}-\operatorname{aros}\left(h_{i} r-\dot{-1},\right)^{-}\right. \tag{3.13}\\
& \mathbf{X}=(\ldots . k \cdot r \cdot u)
\end{align*}
$$

Where P^{\prime} :. is the modsured dyamic pressure at time 1 . The result of this optimization is a limear estimate for the pressure record that lits the measured recod most clusely in the wimlow.

Wave Number and Fourier Amplitudes Once the optimum initial frepmenc: phase and amplitude are fomme the wave nmber is computer with the limear dispersion relation (Eq. 3.9) and the first estimates for Fomerer amplitudes are computer as follow:

$$
1=\frac{11}{\mu_{0}} \frac{\cos h_{1} h_{1} \cdot h}{\cosh h \cdot\left(1+z_{i}\right)}
$$

$$
. I_{=}=I_{1}^{\prime}
$$

The value of 0 is now mitical and $n=19.1$ was fomel whe satisfactory.

Water Surface The lowation of the water surface at the i nodes thenghomt the window is estimated from the linear pressure response fimetion with stretchine (Nirlsen l!ser):
where $;$, is the vertical location of the pressure gange. and $1 /$ is the elemation of the water surface norle at t_{1}. $\mu_{f}(t)$ is computed from Eq. 3.s.

Nonlinear Optimization

Once there is a reasonable firs eximate for all the nuknomin whe in the potential finction. standarel monlinar optimization romtimes are adequate for this sestem. Fior

If the optimization rontine sucesesfully find a minmmm, the oblution is cherkerl
 following riteria:

- Viry lared or highly variable errors.
- Firs corler amplitude smaller than hioher order amplitudes.
- Vurealistically large or small frequence or wase mumber.
- Large discontimity bedwen windows in the predicterl water surface.
 more common for the romitue not to comerge at all.
 patamenere of the optimization. For the mext attempt the window widh is increaned
 the window width is increased once more to twiee the primary width (2-w). When increasing the window width is not sucossfal. the order of the potemtial finction is
 solution. the window is skipped. and futme analsis must be interpolated thromph that point. These adjustments are most likely to be needed in the long. Hat trongh of a shallow water wave. where the window nerels to be expanded tw imelule some corvature to indicate the frequence.

Difficultioe may ocem in aldition near zero arosings. Where there is abo lintle curature in the recorl. Here the effects of ampliturle and freguency may not be independent. as:

$$
\lim _{t \rightarrow 0} a \sin (\dot{\sim} t)=\| \omega t
$$

St the limit near the zero rewing. a and whate the ame effert. and the optimization romtine can mot distinguish them. Widening the window wednde more of the
 as well as in long. that tronghs.
 of a wave. In this case. the equations on either side of the erest are not independent.
 be hsing an asymmetric distribution of points in that window.

3.4 Theoretical Records

To aroid complications from measurement error in the initial texing of the metherl.
 This apperoach abso has the arkantage of poriding a solmion with the complete kinematics. to compare with results from the L.FI metherl. Field or laberatory data that includer a fill set of measmed kinematios are not a ailable. Fomber theory providen

 water depll. wase period. and wate height. This is meful for extablishing riteria for doosing the sohtion parameters. such as window width. mumber of medon in cach windore and order of the solutions.

Shallow Water To demonstrate the optimization procedure in a window. ligure 3.2 smmatizes the results from an initial estmate. Defore the timal optimization. This is a window near the crest of a sterp. shallow water wave gemerated be poth order
 period and zero Eulerian current. With the pressure record measured at the bottom. The parameters of the LFI sohtion are: sisth order ($. J=(6)$. and window width 1 wo secouds ($\bar{\pi})=0.9 T:$) . centered 0.es before the crest.

The top plot shows the measured dyamic pressum as given be the Fomier theory

Fignere 3:2: Rexult- in a window al initial ostimate

Figne 3.3: Final results in a window
 with the parameres of the perential function generater be the initial extimate. The secomed phe is the water surface as perlicted be Fomier theory and the eferations of the water surface notes esenerater be the initial extimate. . Xote that the location of the actual suface is given in the plet. hat it is not atailable to hedp determine the solution. These points were all generated bey the methed ontlined in the perviens section. with only the presure record as a guide.

The thied plot shows the noti-dimensional errors in the objective fundions: the Bernonlli equation and the free surface lomudary comditions (E.p. 3.:. 3.3. and :3. W. These are the errore that are minimizerl be the optimization to lime the sothtion. If the solution were perfect. the error in all equations thenelemt the winden wonlal be zero.

The initial estimater for the dramie pressure and the water surface have order of magniturle and trend agreement. The erros in the oljejective functions are on order
 pattern. and the fact that the sharp erest of the wase has mot berom matehed indicate that a beeter solntion can be fomed.

The result after the monlinear optimization are given in Fig. 3.3. . Wt this point the perdiction for the denamic persure is essemially exact. This is virmally alwars the
 The predictions for the water surface are abse extemely clowe. This is an impersive arhierement. as location of the water surface was fomel only be minimizing the erver in the free surface bomelary conditions. The non-rlimensional errors in the Bermonlli equation and free surface bondery conditions are on order of . (0) and show ne clear trend. The lack of trend indieates that the remaininge erver is ratume and a good solution has been fomed. The I.FI method was able wopture acomately the crest of a steep shallow water wave.

Figure 3 . I shows the results of the methorl for the complete shallow water steadywave. The LFI method limets the water surface and the kinematies on the surface essemially exactly. While these results show the complete wate. cach of the indicated points is in the center of a separate window, and each window was comphed com-

Figure 3.1: LFI predictions $(. J=(6)$ and analuical kinemation at the predieted water surfare for shallow water wate

Figure 3. i : Fiolution of the solution for a shallow water wawe
pletely independently of the ot her windurs. In this rase the patameters of the I.FI

 width of two seconds in one fifth of the period of the wave. and is a reasomable lemght of time to exteme the lecally steady approximation.

Evolution of the Solution Fig. 3.- Shows the evolution of the solution as the window is moved along the wate. The top tigure shows the non-dimensional rather of the lowal fumdamental wave number. f, and the local fundamental frequency a. The importance of the local nature of the solution is apparent in this figure. as the sobation varies substantially from window to window. The wave mumber and frequency both

 kinematios in the crest region are similar to those of a much higher frefuency lower
order wase and the tronel kinematios smilar to a lower fregnency wave.
 water wave. The wave was gemeated be loth order Fomior wave theory with patam-
 with the presume reord measured lom below the mean water level. The parameters

 nodeat $l=1=9$. rembling in 1.5 equations in 12 mbkowns in cach window. Once

3.4.1 Choosing Parameters of Solution

Fonlike steady wase theory where only the orler require prior speritiotion this I.FI application requires prior sercifation of fome parameters:

- Order of the solution (.J)
- Windon width (Tu)
- Nimber of mode on the water surface N,
- Simber of norlec on the pressine recomil/

Experimentation has demonstated that the resulting solutions are not highly semitive to the ralne of these pataneters: howeres. a reasomalle solution will not result if thene parameter ate not selected judicionsly: The experience acomited while developing the IFI methor on analytically generated records has provided some guthelime to help select appopriate values. Deppite these gudelines. individual judgment must be nised when applying the LFI method to a paticulat meanmed record.

Number of Nodes on the Water Surface and Pressure Record Mathomat-

 ically: the system of equations is pecitied if there are at least as many equations as mbnown parameters. In this case. $I+I \geq t+I$. While meeting this rriterion is

Figute 3.fi: L.FI predictions $\quad . J=1 /$ and analytical kinematios at the predicted water surface for deep water wate
the minimm mathematical regurement there are on her factors that mon he taken

 achieve a reprememion for the water surface of the ame order as the potemial finction being med. (ame must be taken with very low order whtions: for example.

 used. reqaralless of order.
 $f^{\prime \prime}$. at the $I+1$ peinto. To kerp the order of approximation cousistemt. The Bemombli
 and presume record moke wersperities the sehtion at all orders. This atranement of equations prowed effertive for all the examples given in this chapter on anatytially derived records.

While that appored was effection on the en few examples. it is impertant that the timal solution matches the measured record clowely: It - posible that thi - mpented atrangement of points wond allow the optimization romtine to he hiased towards the more mumerens free surface bomblaty conditions. giving a oblution that doen mot match the presume reorel well. The Bernomili equation cond her appled at more points on the pressure weorl than the mumber of metes detinine the water surface Lucreaning the mumber of peints at which the Bermonlli equation is apple will hift the emphasis of the optimization th the measured record. . Whlitional peint on the measured record can aloo he useful for accommodating measurement moise hat may. lo present in tield or laboratory records.

Order of Solution Similarly whigh orter weaty wate theors. the orter chomen for the solution is intluencel bey a number of factors inchuding the height of the wase. the depth of the water and the accurace desired. A- with steady wave the ery: higher order results in greater acouracy at the expense of complational simplicity. and is necessary for larger waves and for shallow water. The following examples will help to provide gntidelines for the order chosen.

Figure 3.i: ('rest of a shallow water wave at order

Figure 3.s: (rest of a shalluw water wave at order 2

Figure 3.!: (rest of a hallow water wate at order 3

Figure 3. 10: ('reit of a shallow water wave at order 4

Figure 3.11: ('rest of a hallow water wave at order is

Figure 3.1?: ('rest of a shallow water wase at order ${ }^{6}$

 erows in the Bomatary conditions and the Bernonlie equation ate of order 10^{-i}. These
 the order is incrased. the magnimbe of the errer increases. The inerease in the magnitule of the erross is due to the increase in the mmber of equations ineladerl. There are there additional equations inchuded in the optimization for earh increase

 the solution showly conterges to tery preciely match the shatp reest at sixth urder. In ascometric distribution of points was ned in this window to accommodate the stimetry about the crest.

Figures 3. $1: 3$ throngh 3.16 , show the crest of the same derp water wate as Fig. :3.ci. compuner to order 1 throngh 1 . Fien at first order. Fig. 3.1:3. the sohtion in very gooel. Deep water waves generally do not require a rery high orler solntion. linear wave thoory often beine reasonably adequate in these conditions. It $\%$ important to kerp in mind that. athomeh this solmion is tirs orter. it is still monlinear. havine fomel a minimum in the errors of the full nonlinear goterning equations. and the freguency and wave mmber ate free w ware not being bomm be the linear dispervion relationship. The local nature of the solution wonld allow it to change with time. accommodating an irrequlat protile at low order better than an equally low order glolal solution.

In this case. first order provides an acreptable solmion: howerer. the water surface is mow acemately matherl as the order is increased. and the solution comserged well at higher order. so there is little penalte in msing up to forth order. For an irregular record. higher order is more likely to be successful in matching the irregnlarity in the record. As the examples show. deep water waves can be well represented at low order. while higher order in necessary in shatlow water.

Figure:3.13: (rest of a deep water wave at order 1

Figure 3.14: ('rest of a deep) water wave at orler 2

Figure 3.lis: (rest of a derp water wate at onder :

Figure 3.16: ('rest of a deep water wave at orter 1

Window Width (hoice of window width is a batancelertwern indurling sulticient chranme in the record to irlentify the local waverespose while minimizing the extent
 rate of the data. The I.FI merhodemplogs a rabie spline for interpolation amono the measured points. This approde allows the selection window widthe and sampline locations withom heing restricterl he the data sampline locations. While h his frerdom
 are not contimons. it is impertant to be she that the window width dhesen inchades sulficient measured data penints to justify the order beine nsed. I nfortmately field data are oftem sampled at a frequency of as low as $1 H z$. In this cases a window width of onc temth the mean zerorrossing might be on oreler of 1 seromel. This wonld provide a maximmm of two actmal data points in each window. It maty mot be apropriate
 -hombl he used with data sampled at a higher rate. If that isnt persible. wider windows. and perhaps lower order solntions. shondrl be nserl.

In the rase of the theoretieal reconds ned in the previons sertion. Ihe data sam-
 ghemey. some gmideline for window width have bern retermimed. I primary window width of one tenth the aero rossing perion provides a good startine perint. lisug a smaller window often did mot allow romvergence of the solntion. It was meresaty to weasionally increase window width at some locations on the recome as discmsser in ardion :3.3.2. When a primary window width is dedermined that works for most
 width has been fomme.

In the case of the shallow water wate disemser in the previone sertion a wimdow
 fonmb order solution did not fully eapture the shatp crest of the wave. When a higher order solution was attempterl. the optimization wonld not converge with the given window width. A wider window had to be nsed in order to obtain a solntion of high cmotgh onder to capture the sharpe crest of the wave. and thus a window wirlth of o.eT: was ther in that example. In general. it has bern necessary to nse wider windows for
higher order solutions.

3.5 Laboratory Measurements

The following results nes labotatory data collected be Maray Townend and

 velocitios and water surface were measured at the same horizontal lucation along the Hhme: the presene at a rariety of eleations. and the horizontal and vertical velocitios at an cleation of - (l) s meters. with the origin at the mean water level. The till water Level was (.). meters. with the data sampled at fill Hzo.
 long comected be a ramp. I fake Hoor had been bill into the shatluwer workine section to bring the depth to l. Fim. Wone end of the thume is a hadrandically operated bottom homed wave patdle and at the other a beach that absorts a minimmu of 96°; of wate corge acrose the range of operating frequencies. The measmements were taken apposimately from the beach eme of the flume. The beadh length is (iili.

The wave surface was measured with a rapacitance wave prole will ppical cali-
 measured with Drack PD(R35/D) transherers locater in the Home neat the conter of a long (2,.m long ber high plywod board aligned with lhe direction of wave propagation. The measurement face of the probe was thesh with the bearel surface to eliminate local thow sotation. The R^{2}, whese from calibrations were in all case

 in twe dimensions.

One of the difticulties encoutered with pressure measurements is the question of what has acthally been measured. If the transdurer itself is absolutely acourate. the pressure recorded will be the actual pressure at the location of the transelucer. Infortmately. the presence of the instrment is likely to ater the fluw in it: virinite.
 sure that womblexist if the transhare were net there to disturt the flow. Smother

 and as a rexilt. the recorded signal cond be quite different from the actual presome.
 on a large plawod pand oriented in line with the Hme. The measurement fare of the inst rument was the with the sufface of the plyworl to minimize dyanic offects near the gange. The pane was large emongh for the bomdary layer to be fitly
 of the plowed afferting the measuremonts. This arranement is experted to have resulted in minimal dyamic efferts on the measured peresure.

There is no information avalathe about the frequency response of the premure
 help identify any potential problems. The top plot of figure 3.17 gives the meantred water surfare and subsurface presure for a shon segment of a record. There are some clear higher fregneney llucthations in the water suface that do mot appar in

This loss of high freguence information in the presure recods is contimed beg an examination of the discete Fourier transform of the erords. The secomp phe in figute 3.15 is the smoothed tatiance spertra of the two remeds from which the above segments were taken. The water surface recorl has a great deal more watiane at the higher freguences. Note that the epectem of the presume record has deraved to almost zero at $\omega^{-1}=\mathbf{n}^{-1}$ point. While there is still considerable watiane in the water surface at that frequence.

Linear wave theore prediets that the motion of high fregnency wave derays with depth much faster than low frequencies. In this example. the nom-dimensional water depthat the peak fregtency is $-\frac{1}{6} / g \approx 1$. This is generally considered intemerliate deptla water. and the decay with depth is expecterl to be moderate. At the frequeney Where there is esentially ne energy in the pressure recorl the non-dimensional water

 thome experiment

 to remain at half the water depth. the depth at which the prewne meanmement were taken.
 The solid line was computerl from the measured recotel. and the davered line was comphed from the water surface recore wing the linear presture reponse factor:

 diversion relationthip:
 that the los of high frequence information in the sulsurface presume record is the result of the predicted decay with depth of the energe at the higher fregtemeder rather

The limal phet in figme 3.15 is the opertrm of the water surface mered. The oblid line was computerl from the measured water suface. and the dashed lime was
 predicter seetrum of the water suface matches the measured epectmon well mat the peak freguence but stongly orer-predicts the high frequences. If this mether
 wond have to be established.

An examination of the top plot in tignere 3.12 revals what appare to be 1 wo dominant free morles in the water surface. There is a large low frequency mode with a period of approximately Es. and a higher fregnency mode with a perioel of appoximately ls. If the LFI method were applied to the water surface record bobery
 Toufortmately, the higher frequency mode has decaved with depth toe much to be

Figure 3. A: Measured and predicted water surface neat the crest of a hatp ware in the thime
 in predictions that apture the dominant low fregnency mode. and mise the higher freguency monde. If the higher frequency information is not in the local sement of the reand. it i not posible to reconstratit.
 be Fomber steady wave theory. These record had only a simele free monde. and the the L.FI mether was able tw identify that mode. In addition. in hatlow water. there is litule decay with depth of the wave action. amd the LFI method cond be expected to be effertive. as it was on the Fontier record. In derp water. the methed cath he offertive if the presine ganges are lorated near enomgh to the surface. For the deep water stealy wase presented previonsly (tigure 3.(i) the presure record was taken from a depth of one wave height below the water surface. one tenth of the total depth. At this depth. there is adegmate information to identify the action at a wide range of freguencies.
(iaron the limitations of the data. a segment of the record was chesen in which there did mot appar to be a suhbtantial high frequency componem to the water

Figure 3.l!: Sement of record from thame measmement-
 problems. and the LFI method can be applied.

While this partionlar seqment was chosen to minimize the offerts of the high
 measured water surfare and the L.FI predictions of the water surface in three windows in the virinity of a sharp orest in the recorl. The solntion parameters are: $I=3$. $T_{11}=0.3 T$. and $I=I=1$. Buth the pressure athd the velocitios were measmed

 the sery shatp peak of the rest. Varsing the solution parameter did not impowe the acomary at the crest. In fact. a smaller window width resulted in a discomimuty in the water surface between windows. The inability of the L.FI method to rapture the shatp erest is likely due to the missing high frequeney information. If the high frequency part of the signal is missing from the examined pressure record, there is the way tereapture that information. In order for the method to be more affertive in thi- sitmation. the pressure would have to loe measured at a depth clower to the water surface.
 the recorl from which the cees was taken. The water surface is capmerl faitly wedl. as ate both the vertical and horizontal velucities.

3.6 Discussion

The given results demonst rate the potemial of the L.FI method in the interperetation of submerged presume trace in a variete of conditions. In the ase of stedy waves the L.FI method accurately computed the detail of the wave. using onty data from a small window in time. In partientar. the method was able to capture the pronomed shatp crest of a steep, shallow water wave.

The method did not perform as well on laboratory records. failing to apture some of high frequency detall in the water surface. This is due to the limitations of subsurface pressure records. where much of the high frequency information is missing
from the recoral. The methol is likely to perform heeter in hallow water. or with recods that are measured cherer to the water surface. Dempite this limitation. the mether was able to apture much of the detail of a ireenglar labotatory reored and provide fairly acomate estimations of the lowal kimematios.

The and wis of reqular wave providen gudeline for the patameters be bered in the atalysin of irregular wases. In shallow water. higher orter sohtions and witer Windows must be used than in derp water. Window widthe of one tifth of the zere cossing period and a sixth order potential function are adequate for the shallowest wase and wimbew widhes as small as one tenth of the zere cossing period and a thitel order peomential function ate arlegute for deep water.

The laboratory resilts indicate that the methor require genel percision and care in the measmements. Ang high oder methor demands very acourate data. but this need is exarethated be the ill posed problem of detemining the near sufface kinematios from a subsuface recorl. While not particularly sensitive to random noise in the recorl. the decay with depth of the high frequence information makes it very diftioult w apture the high frequeney modes. Fundamentally. the I.FI method is desigmed to
 deray faster with depth. and if the measurements ate taken far below the surface. the dominan mode will always be one of lower frepleney moder. This difficulty womble be exacertater by any limitations in the frefiteney response of the gatges.

The computer resource requited for the method are substatial. hot not prohibitive. As computers contime to get faster. computation time is not the comsideration that it one was. The method was developerl and all computation done mesng the Matlab computational package. Matlab is an interpreted langhage that provides a rery ease to nse interface to a robust and complete library of computational and risualization romines. allowing for rapid detelopment of new methorls. Beine an interpered languge, the resulting coele is not as fast as it might be if the rout ine were programmed in a compiled langnage. such as Fortran or (. The computational speed is also atfecterl be the degree to which the program patues to provide vintal emput. Perhaps a better measure of the computational intensity of the methorl is a come of the total mmber fluating point operations (thops) used to compute the solution.

The examples in thi disertation were all computer on a Intel !ollatz Pentimn
 order of magnitude wimate. the shotest computation time for an example in this

 Hops for the shatlow water wate peremed in tigure 3. I. There are a munter of reasons for this large tatiation in computation time. The tirst is simply the nomber of wimber solutions computerl. . Se each window solotion is comphted erparately. the computation time increase linearly with the mumber of window rompoter. If compmational time is a comern. this can be taken intu acromm when choesing the output saring. The of her mason that the shallow water wase take much longer to compute is that there are a momber of wimbors that did not comeres with the first an of computational patameters. The optimization is rum for mans iterations Wensme that it wont converge. So the patameters are varied the computation is repeaterl. This proces take a great deal of time.

With further development. it may be pessible to determine a se of eriteria for the
 This wond be far more eflicient than simply attempting a solmion with a barioty of wates mat comeremoe is achierer.

Chapter 4

Three Dimensional LFI Theory

The previone chaptere were concerned with the determination of wave kinematios from the andysis of a time series of a single phesical guantite at a sugle location. By. asoming that the flow is two dimensional. a masomalle approsimation of the wave
 about the directionality of the sea state. There are some procoses in which the wave directions ate dierefly important. shelt as serliment tramport. Fien in shations where the wave directions are not direetly important. it has bern hown that emithine the diectional nat me of the sea result- in subtantial errors in the predietion of satar quatities. such an the maximum relocities and accelerations in a meanured waverent.

In order to capture the dieectional nature of the sea. an array of instrmemts mas be used. The result is a set of time series of a single phesioal quatutity a mumber of different locations. or a set of different phesical ghantities at the same or different locations. This chapter outlines a method for determining the directional kimematioof irregular seas that can be adapter to acommorlate virtmally ant combination of such time series.

Figure 1.1: (cordinate sistem med for $3-1$ methorl

4.1 Three Dimensional Seas

The development of the wo dimensional LFI method was donely andered to the rery complete moderstanding of two dimensional steaty water. In contrast the maderstanding of theer dimensional wave tieds is not meaty as complene. Murh of the literature on thee dimensional seas attempte to describe the metion thenegh the nese of a directional energ. spectmon. Far less attention hav been ditected the the retermination of the detailed kinematios of dirertionat seas.

4.2 Problem Formulation

The governing equations for thee dimensional gravity wates are a straight forwand extension of these in two dimensions to inchude the third dimension. The How is taken to be irrotational and incompersible and the the kinematios can be represented has

$$
\begin{equation*}
"=\frac{\partial O}{\partial x} \quad r=\frac{\partial \partial}{\partial!\partial} \quad \quad \because=\frac{\partial o \partial}{\partial z} \tag{-4.1}
\end{equation*}
$$

" and r are the horizontal velocities in the r and y directions. and w is the vertiod relocity.

Field Equation The field equation is mass conservation for ierotational thow. represented be the Laplace equation:

$$
\begin{equation*}
\Gamma_{0}^{2}=\frac{\partial^{2} 0}{\partial x^{2}}+\frac{\partial^{2} O}{\partial!y^{2}}+\frac{\partial^{2} \theta}{\partial I^{2}}=0 \tag{1.2}
\end{equation*}
$$

Boundary Conditions The bomdary conditions are the bottom bommaty condition (BBC') for a horizontal bed.

$$
\begin{equation*}
\pi=\frac{i(j}{i)}=0 \quad \text { at } \quad:=-l \tag{1.3}
\end{equation*}
$$

the dyamic free surface homdary condition 1 DFSBC' $)$.

$$
\begin{equation*}
\frac{\partial 0}{\partial t}+\frac{1}{2}\left(n^{\prime}+n^{2}+n^{2}\right)+!!-\bar{B}=0 \quad \text { at } \quad==\eta \tag{1.1}
\end{equation*}
$$

and the kinematic free suface homdary condition (FFSBC ().

$$
\begin{equation*}
\frac{\partial \partial_{\eta}}{\partial \eta}+" \frac{\partial \eta}{\partial \partial_{l}}+r \cdot \frac{\partial \eta}{\partial!\eta}-\pi=0 \quad \text { at } \quad==\eta \tag{1..7}
\end{equation*}
$$

Where η is the elevation of the water surface.
L- with the two dimensional formmation. the kinematic free sufface bomelary
 of these gratients is likely to be limiter. In the case of an array of water surface
 the measured elevations. Dut this would result in a low order estimate. and compenmel the ineviable error in the measurements. In the cane of subsurface measurements. there are no data as to the location or the gradients of the water surface.

To eliminate these gradients. a moditied kinematie free surface bomolary condition is definerl by differentiating the DFSBC following the motion (Longuet-Higgins L9io).
as was rlone in two dimensions in tertion 2.1 .

$$
\begin{aligned}
& M K F S B C=-!\left(K F S B C^{\circ}\right)+\frac{D}{D t}\left(D F S B C^{\prime}\right)=
\end{aligned}
$$

$$
\begin{align*}
& +u=\frac{\partial u}{\partial \mu_{x}}+u \cdot \frac{\partial \pi}{\partial)_{x}}+u \pi \cdot \frac{\partial u}{\partial \cdot x} \tag{1.6}\\
& +\pi r \cdot \frac{i!}{i!!}+r \cdot \frac{i_{n}}{\partial!!}+r \cdot r \cdot \frac{i I_{n}}{i!!} \\
& +m \cdot \frac{\partial u}{\partial z}+\pi r \cdot \frac{\partial r}{\partial z}+w_{z} \cdot \frac{\partial \pi}{\partial z}=0 \quad \text { at } \quad:=\|
\end{align*}
$$

This form does not include the gradients of the water surface, and all the terms are defined bey the perential function. Applying both the modified kinematio free surface bonndary condition and the dramic free surface boundary condition completer the formulation withont the need for knowledge of the gradients of the water surface.

Observational Equations The fiedd equation and the bomdary combitions deseribe a free surface peomential thow. In stealy two dimensional wase theory a wave height and periodicity in pare and time are sperified to complete the formulation. In the two dimensional LIFI theory ((hapter 2). a form for the potential function is chosen. with the parameters detemined to fit the free surface bemodary conditions and the measured record in a small window in time. In there dimensions. the per cess is essentially the same. I there dimensional form for the potential function will be presented. with parameters that are found to fit the measured records and the bomblaty conditions.

In orter to detine a solmion that lits the measured record. observational equations are establisherl. These equations are defined to make use of the particular quatities that have been measured. In the case of an array of water surface measurements. they are the free surface homdary conditions. applied at he measured elevations and horizontal locations at a mumber of points in time thronghont the window ((hapter i). In the case of an array of pressure measurements. they are the Bernoulli equation. applied at the clevation and horizontal locations of the measurements. and also at
a mmber of points in time within the window ((hapter ti!. The methoed cond be
 approptiate obserational equations. In addition to the aforenentioned water surface and persore measurments. these cond inchude water sufface gradient or acolera-
 of these.

4.3 Formulation of the Solution in each Window

4.3.1 Background

Two dimensional stealy wave theory provided the inspiration for the development
 not poride as solid a basis for nonlinear interpretations of directional seas. There has. howerer. been some work that can be meed an a basis for a directional LFI methorl. In an early athempt to explore the nonlinear nature of directional seas.
 in deep water throngh the ner of a donble perturbation expansion in the sterphes of the waves up to thitel order. The result was a peotential function that container terms representing the higher order interaction betwern the phases of the intersecting wave:

$$
\begin{align*}
& \sigma^{(1)}=f_{1}\left(=\dot{s}_{1}\right)+f_{2}\left(=r_{2}\right) \\
& g^{\prime \prime}=f:\left(2 b_{1}+r_{2}\right)+f:\left(5 r_{1}-r_{1}\right) \tag{1.5}
\end{align*}
$$

$$
\begin{aligned}
& \left.\check{r}_{n}=\left(k_{n} \cdot x-\dot{\sim}_{n}\right)+n_{1}\right)
\end{aligned}
$$

where $"=[1.2] .0^{(m)}$ is the m th order potential function. S_{t} and S_{t} are the phase functions of the two waves. $\mathbf{k}_{\text {, }}$ is the rector wave momber of waven. \mathbf{x} is the horizontal position vector. in and $\sigma_{\text {. }}$ are the angular frequency and initial phase of the mth wave. The fumetions. fi. were determined algehraically Is expanding the free surface boundary conditions in a Taylor series about the mean water level, and solving for
the potential function at rach order. Xonlinear fremency modnlation was mot taken
 the linear dispersion relation for water of intinite depth:

$$
\begin{equation*}
\therefore \quad=!\left|\mathbf{k}_{\ldots}\right| \tag{1.1}
\end{equation*}
$$

f_{1} and f_{2} are independent of each other. and are the familiar linear wave oblition:

The higher order terms are all functions of both waves. and the include die interace tion of the two waves.

A momber of inverigators subserpently expanded upon this work. Insu and (heon
 culties that arise from the assmption of the linear dispersion relation. Ther presenterl a more mature analysis. inchoding higher order modulation of the wate frequencies. and higher order self interactions of the individual waves. This rewited in a complete theory up to thited order for two interserting waves in derp water. Ifsn and
 imteractions of two steally waves to arbitrary orver.

Fxpanding upon this work. Ohyama. Jeng and Hsu (lag-at extember the perturbation expansion method in a mmber of ways. The mos recent rexsion of the mothorl accommodates any nomber of waves. allows for water of tinite depth. and is accurate to fourth order. This last method can compute the water surface and full kimematios of a highty irregular sea. as produced be a large mumber of intersecting waves. A more detaled disenssion of the methorl is given in . Lperedix A.

Ohyana. Jeng and Hsnis work suggests a form for the potemial function that can be med for a loral method for the recreation of thee dimensional kinemation from arrays of wave measurement devices. including water surface armas.s. preswere arats. directional current meters. or any combination of these.

The general form for the potential function representing I intersecting steaty
wave at order./ is:

$$
\begin{aligned}
& \cdots \cdot r \cdot!\cdot: \quad t=r_{:}^{r}+r_{n}^{n}!+
\end{aligned}
$$

$$
\begin{aligned}
& \left\lceil\vdots=\left(i_{1}, i_{2} \cdots . M_{1}\right)\right. \\
& \sigma_{01}=i_{1} \sin _{1}+i_{2} \operatorname{ra}_{2}+\cdots+i_{n} \\
& r_{n}=\left(k_{n, \ldots} r+k_{n},!-a t+\theta_{n}\right)
\end{aligned}
$$

 There is a sparate smmation for each wave considered.

S the notation in F.g. 4.10 is quite confusing. examples with two and there wates ate giten belows. With two wave $1 \times=2=$

$$
\begin{aligned}
& \text {.л...!. :. }!=r_{r} \cdot x+1!+
\end{aligned}
$$

$$
\begin{aligned}
& \therefore=\left(k_{5, \ldots, i}+k_{n, \ldots!}!-\dot{\sim}, t+0.1 \quad n=[1.0]\right. \\
& \mu_{1, \ldots}=\sqrt{\left(i_{1} k_{n, 1}+\left.i_{2} k_{\ldots, l_{1}}\right|^{2}+i_{1} k_{n, l_{1}}+\left.i_{2} k_{i_{1, \ldots}}\right|^{2}\right.}
\end{aligned}
$$

Aud with three wave (.1 = 3):

This form for the potential function exactly sation mase conservalion. int the form of the Laphaco equation. and the bottom bemondary condition for a locally horizontal
 as the int eraction of each wase with every other wave. The hatance of the soltion is
 1.6.

4.3.2 Dynamics

$$
\frac{i!)}{i!t}+\frac{1}{a}\left(a^{\prime}+r^{\prime}+a^{\prime}\right)+\frac{p!}{1}-\bar{B}=0
$$

The dynamie presure is the differeme between the total and hadrostatie presume $\left.1 p=p-p_{i}\right)$.

The Bernoulli Constant

In ('hapter 2. an explicit and exad expresion for the Bermonlli romstant \bar{B}. is
 can be established for mosteady three dimensional waves.

The Bernonlli equation is applied at the bed:

$$
\begin{equation*}
\frac{i)}{i d t}+\frac{1}{2}\left(u_{i}^{-}+\sqrt{n}\right)+\left(!=i+\frac{m}{1}=\bar{B}\right. \tag{1.11}
\end{equation*}
$$

Where the subseript. bindicates the value at the berl.
The two dimensional approad is based on anallesis first presenterl ber Lomomer-
 wates. the average orer either time or space of the pressure at the bed is the hedrostatic pressute. With mosteady wares. the pressure at the bed areraged were sare at any given time. or ateraged over time at any given location. is mot meressarily the
hadrostatic presture. If. howerer. an arerage is taken wer both time athe horizontal -pace. the remit must be the hadrostatic pressure.

$$
\overline{\overline{p_{n}}}=\mid, \underline{\prime \prime}\left(\overline{\bar{n}}-z_{i}\right)
$$

with the donble overline indieatime an arerage over time and horizontal pace. When the Bemoulli equation at the bed is averaged over time and horizontal pace. He arerage time gradient of the potential function is zero. fenting in a simple expersion for the Bermomelli comstant:

$$
\begin{equation*}
\left.\bar{B}=\frac{1}{-1} \overline{\overline{\underline{1 / 2}}}+\overline{\overline{l_{i}^{\prime}}}\right)+!(\overline{\bar{l}} \tag{i}
\end{equation*}
$$

For the potential function qiven 1, Eq. 1.10. and $==0$ at the mean water leved ($\overline{\bar{I}}$). \bar{B} becomes
giving a complete expresion for \bar{B} as a function of the parameters of the petemtial finction.

4.4 A Local Two-Intersecting-Wave Theory

While a latge mumber of intersecting waves conld capture a sea state of virthally. any complexit!: it would be difficult to distinguish betwen the effects of each individual wave. It is important to remember that the familiar directional seertmon description of a sea state is an integral deseription. While there are many different frequency and direction modes represented in the spectrme ther do not neresearily. all play a signiticant me in the kinematics the entire time. In fact. When wherving irregular seas. it is often the case that at any given time. there appers to be a single dominant wate of a particular frequency and diection. Over time. there is a series of such dominant waves. each of a different frequency and direction. The integral effect of this process is a bruad directional spectrum. but if time is separated into individual
small windown in each wimbow there mat be only one or two free wate dominating the motion.

Taking adranage of the local nather of the approadi. only one or two intersert ing free wates are consdered in cach window. While mulikely to capme the full complexity of a bearlly directional sea. this appoach shomble be able to capture the dominant modes in cadh window. The dieetion. freepency. and amplitude of the dominant morles will vary sumstantially from window to window as the de in the two dimensional approach. having an imegral effect that includes a large variai ion in dierectionality.

The two wate methed is expected to be particulaty effective for the case of standing wave or short rested wases. as wombl be fomm near a reflecting sufface when the incident wave field is almose midirectional. as it often is in shallow water.

Expanding E:q. L.11 to fomth order. the potential finction for two interserting wave is:
where:

$\left.s_{1}=\left(k_{n} \cdot r+k_{n, 1}!\right)-\omega_{1} t+a_{1}\right)$
$\therefore=\left(k_{2} \cdot t+h_{1}!!-\infty_{2} t+o_{2}\right)$

At first orter:

$$
\sigma_{1}=\left(. s_{1}\right) \quad \sigma_{2}=\left(s_{2}\right)
$$

At second order:

$$
\begin{array}{ll}
\sigma_{3}=\left(\Omega_{1}\right) & \sigma_{4}=\left(\varphi_{1} \varphi_{2}\right) \\
\sigma_{7}=\left(\varsigma_{1}+s_{2}\right) & \sigma_{1}=\left(\varsigma_{1}-s_{2}\right)
\end{array}
$$

At hird order:

$$
\begin{aligned}
& \sigma_{-}=13 . \omega_{1} 1 \\
& \sigma_{0}=\left(\ddot{n}_{1} \varphi_{1}+\dot{r}_{1}\right) \\
& \sigma_{11}=1 s_{1}+n_{2} 1 \\
& \pi, ~=(3) い \leq 1 \\
& \sigma_{11}=\left(2 n_{1}-\therefore 1\right. \\
& \sigma_{12}=\left(S_{1}-2 \cdot n\right)
\end{aligned}
$$

And al fourth order:

$$
\begin{aligned}
& \sigma_{1:}=\left(+4 . s_{1}\right) \\
& \sigma_{1 ;}=11.51 \\
& \sigma_{1:}=\left(3 \cdot r_{1}+n_{1}\right) \\
& \sigma_{16}=\left(3 \cdot M_{1}-. \because 1\right. \\
& \sigma_{1}=1 \ddot{n}_{1}+\dot{u}_{1} \dot{u}_{2} \mid
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{1: 1}=\left(s_{1}-3 s .1\right. \\
& \sigma_{21}=\left(s_{1}-3 s_{2}\right)
\end{aligned}
$$

$\sigma_{1}, \sigma_{2}, \sigma_{1}, \sigma_{1}, \sigma_{-}, \sigma_{n}, \sigma_{1:}$. and σ_{14} are self-wate interactions. The balance of the σ are wave-wave interactions.

Beranse the phases are arguments of the sine in the potemial function. a simple expansion of Eig. L.II results in redumbant teme that have been removed. For example if there are two compenemt:

$$
\left.B_{1} \sin \dot{s}_{1}-\dot{r}_{2}\right) \text { and } B_{2} \sin \dot{s}_{2}-\dot{s}_{1}
$$

Becather sine is an oflel function:

$$
\begin{equation*}
\left.B_{2} \text { sint } s_{2}-s_{1}\right)=-B_{2} \sin \left(s_{1}-s_{1}\right) \tag{1.20}
\end{equation*}
$$

the two components can be combiner into a single componemt:

$$
\left(B_{1}-B_{2}\right) \sin \left(s_{1}-s_{2}\right)=1, \sin \left(s_{1}-s_{2}\right)
$$

If hoth componemts were inchuled. the effects of B_{1} and B_{2} wonld be indist inguishable in the optimization: they must be combined into the single coeflicient. . I.
 phis $b_{r .} k_{4}$. w. and of for each of the two intersecting waves that must be fomel
for each window in time. It least 2 imberendent equation- must be dedined be applying a combination of each of the free surface bomotary condition- Eq. 1.1 and t. if and the observational equations at a momber of nowes thromehom cad window. The speritio combination of these equations will be determine bey the layont of the inst muments.

4.4.1 Kinematics

In order to apply the free suffer bomdary conditions. the finll kinemation most ler known. While the kinematics are completely sperition be the peotential function. Eq. L. N. some of the algebra may not be obvions. The fill expresions ate provided heres.

$$
\begin{align*}
& \bar{B}=\frac{1}{2}\left(r_{5}^{\prime}+r_{i}^{-2}\right)+\frac{1}{1} \sum_{i=1}^{l}\left(\frac{. L_{i}}{\cos h_{i} K_{i} h}\right)^{\underline{2}} \tag{i}
\end{align*}
$$

where:

$$
\begin{aligned}
& \mu=\sqrt{\left(\frac{i / \sigma}{i l \cdot}\right)^{\dot{\prime}}+\left(\frac{i / \sigma}{i!!}\right)^{-}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{i)_{\tau}}{i_{!}}=\left(m k_{i, 1}+\cdots k_{i n, 2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \pi}{i)}=-\left(1 m_{\infty}+11 \omega^{\prime}\right)
\end{aligned}
$$

The solution detaib for a given set of meanmement-are problem -peritic. These
 atray of pressme measurements in 'hapter (i.

Chapter 5

Array of Water Surface Traces

Water surface measurements are diffioult to ohtain and mot very commonly nsed for field measurements. but ther are rout inely wed in the laboratery Surface piercine wate gange are the must commonly and easily deploced of the methods for measurime
 information about the flumations of the water suface. The monderne kinematios most still be predieted witha wase theory. The following is a method for vereminine the kimematirs of waves in the region of an array of water sufface meantrements. It is ath extension of the L.FI method presented in the previons chapters. expanded to
 and results: in a complete prediction for the full kimematies in the vicinity of an array of water surface measurements. thronghout the depth of the water cohmm.

5.1 Formulation of Solution

As described in more detail in (hapter t. the flow is asomed to he irtotational and incompressible. with a potential function that repreconts either a single directional wave. of two eparate intersecting wave.

When the measurement is taken in a location that is far from reflecting surfaces. it can be eflective and straghtforwate to assme that the wave lield can locally be defined as a segment of a single stearly wave. This is quite simitar to the I.FI
 wave determined. The warye directional ternd of the sea tate is accommotated be detemining the direction in each window separately. allowing for a lluchation of the wave direction with time. from window to window. In this cane. the peremtial finction is Eq. L. It reduced to a single wave:

$$
\begin{aligned}
& \mu=\sqrt{6 \div+i \div}
\end{aligned}
$$

where V° and I^{\prime} ate the components of the known depth miform Eulerian current in the x and !/ diertions. h is the mean water depth. I is the truncation order of the
 f_{i} and $b_{i n}$ are the components of the local wate mmber in the .r and !f directions. and K is the magniturle of the lowal wave number.

When an array of water sufface gatges is placed near a reflecting suffere such as a sea wall. the resulting sea state is likely to contain simntaneons componeme in different directions. such as in a standing wave or then crested sea. Thin effect ant not be captured with a potemial function represemting a single progresive wate. It in posible. hemerer. to apture this type of sea with a petential function reprentine two intersecting wates. The potential fuction for two intersecting wate is F.f. 1. N. which is repeated here:
where:

$$
\begin{aligned}
& \therefore \quad \therefore=\left(k_{r, 1} \cdot l+k_{1,1}!-\omega_{1} l+a_{1}\right) \\
& \left.\therefore_{2}=\left(k_{r_{2}} r+k_{n, 2}!-\dot{u}_{2}\right)+0_{2}\right)
\end{aligned}
$$

. It first order:

$$
\sigma_{1}=\left(s_{1}\right)
$$

$$
\sigma_{1}=\left(. x_{2}\right)
$$

It sound order:

$$
\begin{aligned}
& \sigma_{3}=\left(\because_{1}\right) \\
& \sigma_{-}=\left(s_{1}+\dot{S}_{1}\right)
\end{aligned}
$$

$$
\sigma_{1}=\left(2 a_{2}\right)
$$

$$
\sigma_{10}=1 . s_{1}-\therefore_{2} 1
$$

It third order:

$$
\begin{aligned}
& \sigma_{-}=\left(3 r_{1}\right) \\
& \sigma_{13}=\left(r_{1}+r_{1}\right) \\
& \sigma_{11}=\left(r_{1}+r_{1}\right)
\end{aligned}
$$

$$
\sigma_{\mathrm{s}}=\left(3 \omega_{\mathrm{s}}\right)
$$

$$
\sigma_{11}=\left(2 u_{1}-\therefore 1\right)
$$

$$
\sigma_{12}=1 . \dot{\varphi}_{1}-2 r_{2} \mid
$$

Aurlat fourth order:

$$
\begin{array}{ll}
\sigma_{1:}=\left(1 s_{1}\right) & \sigma_{11}=\left(1 s_{2}\right) \\
\sigma_{1}=\left(3 s_{1}+r_{2}\right) & \sigma_{14}=\left(3 r_{1}-s_{2}\right) \\
\sigma_{1:}=\left(r_{1}+2 \varphi_{2}\right) & \sigma_{10}=\left(2 r_{1}-2 r_{2}\right) \\
\sigma_{1:}=\left(r_{1}+3 \varphi_{2}\right) & \sigma_{20}=\left(r_{1}-3 r_{2}\right)
\end{array}
$$

It might be possible to include a larger mumber of intersecting free wave in weder to capture a broadly directional sea. but it would introdnce addlitional compliation in distinguishing the effects of the indivirlual waves and will not be considered here. Buth of these potential fumetions satisfy the field equation (Laplace. Fig. L.E) and the bottom bomdary condition (Eq. 4.3) exactly. The batance of the solution is determined be the free surface bomblary conditions: the moditied kinematir free
arface homdary combition (f)

$$
\begin{align*}
& -\pi r \frac{i!}{i!!}+r \cdot \frac{i \partial_{4}}{\partial!!}+r u \frac{\partial u}{i!!} \tag{.7.3}
\end{align*}
$$

and the dyamic free sufface homelary condition $1 f^{D}$.

$$
f^{\prime \prime}=\frac{\partial d}{i d t}+\frac{1}{\underline{2}}\left(a^{2}+r^{2}+w^{2}\right)+!\prime \prime-\bar{B}=0 \quad \text { at } \quad:=1
$$

with the Bermoulli constant (\bar{B}) definel as:

$$
\bar{B}=\frac{1}{\underline{3}}\left(l_{3}+1 \frac{2}{n}\right)+\frac{1}{1} \sum_{=1}^{l}\left(\frac{1 \pi}{\cosh h, h}\right)^{2}
$$

The problen of detemining the kinemation of irregular waven from a sef of measured water surface tace is a mathematically better pered poblem than interpertine
 so that the solmion is determined be the bemolaries. While the complete bemmarien of the whtion domain ate not known. the bomdaty conditions and location of the bomblary are known at both the top and bottom of the solution domain. The bettom leomelary condition is well defined. and the lowation of the water surface is measured at a few locations in space and many points in time allowing the direct application of the free surface bemdary conditions. This is in contrast to working with subsurface records. in which the location of the free surface must be detemined in order to apply the free suface bomdary conditions. The need for horizontal bomdary combitions is eliminated by the assmed periodicity of the chosen potential fimetion. Howerer the fundamental wavelength(s) and period(s) must be fonnd as part of the solution.

When working with a point measurment, the fumbamental frequency is fairly well detined be the time erolntion in the window chosen. as long as the window is wide enough. There is no ditect information arailable alout the patial evolution of the signal. however. so the wave mmber is determined only through the application of
 about the spatial erolution of the signal. helping to better define the fumbament wase momber. This misally result in faster and mome robmst comergence of the optimization.

5.2 Formulation of the Optimization

The formatation of the optimization for the I.FI method as appled to the interpertation of an array of water surface measmements has a great deal in common with the formulation for a subsurace perentere reod (chaper 3) and a peint water surface meantromen (bobey lege). Less detail is presented here than in the previons chapter. hat the framework will be peremerd. with an emphasis on the arditional information necesary for applying the methorl to an array of measurements.

Observational Equations The governing equations presented in the previons ser-
 in an athitary direction. The observational equations are the equations in the sestem that fore the solution to fit the given meatimed recend. As the location of the water
 and 5.1 . applied at the horizontal location of cach of the nodes in the array. Sulficient independent equations ame defined be appleing the boundary conditions at a number of times along the measured records. Within the window in time considered (Fig. S. 11. The solmion is the set of parameters in the potential finction that result in the least errer in the FSBC:

In oreler to seerify the solntion. there must be at least as mane independent equations as there are maknown parametere in the sytem of equations. The free surface bomolary conditions ($f_{m, n}^{K}$ and $f_{m, \ldots}^{I}$) are applied at cach of the .1 measured lucations and at $I /$ time samples in the window. resulting in $2 . / X$ independent equations. In the single wave case. there are $4+J$ monkown parameters songht in

Fignte i.l: Schematie of wom of equations in a window

where:

$$
\mathrm{X}=\left(k_{1}, k_{n}, \ldots, 1, \ldots, \ldots \ldots, 1,1\right.
$$

for the ohe wate case, and:

$$
\mathbf{X}=\left(k_{1,1} \cdot k_{1,1} \cdot w_{1} \cdot a_{1} \cdot k_{5,2} \cdot k_{1,2} \cdot w \leq a_{2} \cdot l_{1} \ldots \ldots l_{1}\right)
$$

 the measumed ele ation of the water surface at time $/$, and gatige $"$.

As with the analysis of a pressure rerorl oremperiticat ion can be helpfinl in arcommodating the measurement errore in field records. Sore than the minimmm momer of time amples in the window may be required to define the shape of the water sufface in cach window. This is less likely to be neeresary with twe waves than with one. as the number of monown parameters is much larger. It should be kept in mind. howerer. as it would be a factor for low order solutions with a large number of measurement locations.

5.3 Computation Methods

The L.FI mer hool for an atray of water satfare meanarement - an be breken down into a similar sequence of stepr as with the amallsis of a presure recond:

1. Pre-processing of recomil.
(a) Determine eximate for lexel of mise in the remert.
(1), Determine atimate for magninde and direction of Enderian amrent.
(c) Detime a set of combintous records from each gatuge from the discrete oharrations lex cobir phline interpolation.
(d) Specify pacine of ontput lorations.
(a) ('ompute mean zero cossing freduenc:
(f) Xin-dimensionalize reoord and all parameters.
2. Primary values of mumerical sohtion parameters ate chosen.
(a) Window width(-1)
(b) ()rder of solmion $1 . / 1$
(1) Ximber of time samples of the water surface reconds within ead window (.1/)
3. (ilobal sohntion is compued on an emime wase to provide first eximater for local uptimization
4. For each selecterd entput leeation. a window in the recod is defined. and the an LFI solution in computiorl.
(a) Initial gness for the optimization is determined from the gholal solmion.
(b) Full nonlinear optimization for all manown components of the peotential function is computerl.
(c) Results ate checked for spurions solution.
i. If no solution. or a epmions solmion. is fomm the whtion patameters are adjusted. and the optimization repeated.
ii. If a good solution is fomml. progres to the next wimbers.

5.3.1 Pre-Processing of Record

Accommodating Measurement Error

 whtion relies on the detail contaned in a small sement of the reord. In applate
 a simple moving aterage filter to tied and labotatory data. In hiv work. the primitise kinematic free surface bomblary combition was med. regniting an extimate for the local gratients in the water sufface. In the current work. a moditied version of the
 makes the methed less sensitive to moses. so it was not neressary wapply and tiltering for the result- peresented here.

If there is sulstantial noise in the measured recorl. the sotem of equations can be shbstatially wersperitied allowing the least splate optimization to acommotate the mose in the recod. When this is pessible. it is preferable te applying a smoothing filter to the recod. as it che not impose any assmptions on the nature of the record. Howerer. if the error band are very large on the data, it may still be neressary to apple tiltering to the raw measurments.

The Mean Water Level

The mean water depth. h. must be perified as patt of the potential fimetione Sh a time series of the water surface is provided it is a simple matter to compme a mean of the meastmed records. The mean honk he taken over a period murh longer than a tepical wave periorl. but short enongh to accommorlate changes in the local water lesed due to astronomical and storm tides. In keeping with the looal nature
of the appreach, this is the beal mean water level, mather than a ghot till water level. which might be different. and womble lese appoptate. So with mbutace measmements. the previon of this ralue is not ritial. as h is only ued to lowate the origin of the coodinate sotem for the potemtal finetion.

The Eulerian Current

 medimm of the waves. and an acrurate estimate of its magnitule and direction is imporant. The measured water sufface trace pervere no infomation about the corrent field. so the information needs to be provided from other semeres. See herion 3.3.1 for a detailed discossion of this important parameter.

Spline of the Records

As with the precione chapter. a set of comtimmone recods is computed ber abie Fhime interpolation among the measured peints at each gatere allowing complete Hexibility in the dovere of window widthe and lowation of samples in time of the records.

Output Locations

The spacing of the desired ontput location mast be chosen to determine the placement of the windows. Each window is computed independently su there is no restriction on the spacing of the ontput windows. In addition tw selecting the oup put spacine in time. in can be usefinl when hsing an amay of instrmemto de demine a single central location within the array at which to define the solntion.

Non-dimensionalization

In order to prevent spurions solutions due to the comparisons of errors of different rimensional quantities. all parameters and variables are mon-dimensionalized before computation with sales defined be the same phesically identifiable patameters used
in（＇hapter 3：the mass density of water tph acoleration of gravity ith．and the mean zero crosing freguency of the measured recond（ん：）

$$
\begin{aligned}
& \text { Length sale }=!\text { ! } / \\
& \text { Time sale }=1: \omega \\
& \text { |ラ.ラ } \\
& \text { Maso vale }=\frac{\text { m! }!}{n!}
\end{aligned}
$$

5．3．2 Optimization Procedure

The nomlinear optimization in the LFI method for the amaly sis of aray of water surface measurements is tery similar to that meed for the analysis of a monface pressme trace．In the single wave approadt．the solution is somewhat easier．The potemial function nsed by the single wave appoach is almost the same as that new with a peomt measurement（both（hapter 3 and Sober（l992））．with the addition of a dientional component to the wase momber．This results in a single adrlitional moknown．lut the array of measurements provides at least three limes as much data． with ganges at at least there spatial lowations to seecify miquely the directional tricture of the sed．The optimization tends to converee mome rapidy and robstly． than with a single point measnement．

When applying the methorl with the two wave potemtal fumetion．there ate mant more mbinows．and the optimization one again becomes somewhat temmons．．W with the previons chapter．in is esential to identify a goor initial estimate to redne the chances that the optimization will conserge to a spurions minimum．

Global Solution

The strength of lucal methods is that they seek a single wolution for only a short segment of a record at a time．The downside is that a single shent segment often may not contain sufficient information to identify the directional nature of the wave field．In the methorl presented in the previons chapter the initial estimate could be computerl from the data in the current window．In contrast．when working with spatial arrass．it is neressary to examine a larger segment of the record．for example
 dieertional temed of the ware fied. This ghobal solution can then be refined te tit a -mall segment wery forell: This approth is med to entablish the imitial entimate for the optimization procednre in ead window.

For the initial estimate to the ololal solmion it is assmerl that the water sufface records can be appoximaterl with limar wave theory:

$$
\eta=a \cos \left(k_{1} r_{n}+t_{n} l_{1, n}-+t_{1, n}+a\right)
$$

for the single wave methorl. and
 potential finction of the uth wave.

Directional Trend The first step in todetemine the directional trend of the wave tield. This determination is acomplisherl bexamining the qradients of the water suface themohout the segment considered. Fitimater for the patial gradients and the elecation of the water surface at the center of the array are computed be finte differemereproximations. The water sufface is expanded in a two dimemsional Taytor wries about the renter of the array:

$$
\begin{equation*}
\eta(x \cdot!)=\eta(x \cdot!)+(x-x) \frac{\partial \eta}{\partial)_{l} r}+\left(!!-!\frac{\partial!}{\partial!!}+\ldots\right. \tag{5.10}
\end{equation*}
$$

where r and !y are the coordinates of the comer of the artay. This expansion is writen for each of the I measured ganges. at each of the $/ / /$ points in time. revitinge

$$
\begin{aligned}
& \text { (.7.11) }
\end{aligned}
$$

 $\stackrel{H}{\circ}$ are the water surface and gradients of the water surface at the comer of the
 there are there ganges. the gradients ate miguely speritied. If there are more the -gomis solver in the least spated sense.

The water surface in taveling einher tomatel or away from the direction of the water suffare slope depending on whether it is movine np or down at the time. The diection is the detemined be the spatial gradient of the water urface, and the sign of the time gradient. vedting a se complex ditection vertome:

$$
\vec{l}_{\ldots,}=\operatorname{ion}\left(\frac{i \|_{l_{1}}}{i \|}\right)\left(\frac{i \|_{l_{1}}}{i l_{r}} \div i \frac{i \|_{l_{1}}}{i l_{r}}\right)
$$

 an explicit piecewise polymmial exprosion that cond be dirertly differentated to

 instod. This algotithomporides a smothing patameter. p. that ran be wet atme value between 0 and 1 . where $p=0$ results in the linear regression tit, and $p=1$ result in the "matmal" obbic spline. The smoothing patameter may ber vared to accommodate varging levels of noise in the record. For the examples in this chapter. $\rho=0 .!$ was found to lee satisfactors.

Figure in: Direction vectore for a shot creoted wave

For the sugle wave methed. it is expected that the individual dienetions will vary aromed a central dominant direction and the propagation direction extimate is the orientation of the mean of the complex diection vertors:

$$
\theta=\operatorname{angle} \cdot\left(\frac{1}{M} \sum_{i}^{M} \pi_{m}\right)
$$

For the two wase methorl, is is expected that the propagation directione at each point in time will vare aromel two dominant directions. In the ase of a standing

 ditertion vectors. $\bar{D}_{\text {,., }}$ is divided into two sets. The two deminant directions are detined as the angles of the means of the sets of direction rectors within greater

Han and les than the mean direction leer Fig. i.․․ $:$

$$
\begin{array}{ll}
\theta_{1}=\text { angle }\left(\frac{1}{M_{1}} \sum_{1}^{M_{1}} \vec{D}_{\ldots}\right) & \text { where: } \\
\bar{\theta} \leq \text { angled } \vec{D}_{\ldots} 1<\bar{\theta}-\bar{\theta} \\
\theta_{2}=\text { angle }\left(\frac{1}{M_{2}} \sum_{1}^{U_{2}} \vec{D}_{\ldots}\right) & \text { where: } \\
\bar{\theta}-\pi \leq \text { anoled } \vec{D}_{\ldots},<\bar{\theta}
\end{array}
$$

Frequency Once the dominant directions have been identiferl. the appeximate frequency must be determinerl. This is accomplished be examinine the water suffare at the conter of the arras. as interpotater be the finite diferemer appoximation deseribed above (Eq. i.ll). The methor used is idential to that med in the twe dimemsional method. ('h. 3):
 direction extimate. If the wase field is mimotal it is expected that there will bee at single dominant local frequency. The calcolated frequencies at each time step will be similat in mathimele. and the mean wer the record is used an the first extmate of the fregmery for the single wave. In the wo wave metherl it is assmmed that the bimental sea in the result of reflection. so that the frequency of the incident and reflected moden shonlef be the same and the mean frequence is used as the first estimate for bork

Wave Numbers Once the frequency is known. the wave mumbers are extimaterd from the linear dispersion relation.
where l^{\prime}, is the component of the Enlerian curent in the direction of the wh wave.

$$
r_{n}=\sqrt{r_{n}+r_{n}} \cos \left(\tan ^{-1}\left(\frac{r_{u}}{r_{n}}\right)-\theta_{n}\right)
$$

Amplitudes and Phases The amplimeles and phases of a pationlar meord and
 the cowine and sine compenents as was done in chapter 3 :

$$
\begin{align*}
& a=\sqrt{l^{2}+a^{2}} \tag{.i.1}\\
& n=\arctan (-r / b
\end{align*}
$$

for the single wave methorl. and

$$
\begin{align*}
& \|_{1}=\sqrt{b_{i}^{\prime}+c_{i}^{\prime}} \\
& "_{2}=\sqrt{\frac{1-2}{2}+\cdots} \\
& a_{1}=\arctan \left(-\sigma_{1} / l_{1}\right) \\
& n_{2}=\arctan \left(-c_{2} b_{2}\right)
\end{align*}
$$

 points in time for the single wave method. and at fore peint in time for the two wave methorl. The exsem is sulved in the least squared sense in the case of more perims.

Refining the Linear Estimates Thene procelures result in very rough estimates for the patameters of two interserting linear waves. The estimates are then refined by optimizing for a beet linear wave theory fit to the record:

$$
\left.\operatorname{minimize}_{\mathbf{X}}\right)(\mathbf{X})=\sum_{n=1}^{1} \sum_{m=1}^{1 /}\left(1 / \ldots, \ldots-f^{\prime \prime}\left(\mathbf{X}: x_{n, \ldots}, l_{1,} t_{m}\right)^{2}\right.
$$

where:

$$
f^{\prime \prime}\left(\mathbf{X}: x_{n}, l_{l,}, t_{m}\right)=a \cos \left(k_{j} . l_{n}+k_{1}, y_{1}-\dot{\prime} l_{\ldots}+a\right)
$$

$$
\begin{aligned}
& \mathbf{X}=(k \cdot k \cdot n \cdot n) \\
& k=V^{\frac{2}{2}+k \cdot \frac{1}{2}}
\end{aligned}
$$

for the simgle wase merhul. and:

$$
\begin{aligned}
& l=\sqrt{1 \because+l \cdot i}
\end{aligned}
$$

for the two wave merhud. The frequencies are determined from the limear dispersion relation:

$$
\dot{\cdots}=\sqrt{!k_{i}, \text { tanlu } k_{n}, h}+k_{i} l
$$

 water suffer that tits the measmere recome most chosely in the seoment romsidered.

This procedtre has been perfomed on a segment of the reoord large emomole bo rexolve the dieretional stmetme of the wate tield. matally a complete wate from rem to following crest. or tomeh to following trongh. The tinal sep in computing the
 orrer global solmtion to this larger segment of the recore The initial parameters for this full order global optimization are provided hy the computed lineat lit to the water surfare recomes. with the ampliturles arlinsted for the potent ial function:

$$
\begin{equation*}
1,=\frac{a_{n}!l}{a_{n}} \tag{.1.1.1}
\end{equation*}
$$

The higher otder Fonrior amplimen are all initially sed to zero.
Fsing these linear ware theory extimates as the firs gitess. the full order opt imiza-
 the record. The patameters of the potential function comphted ber this optimization ate then used as the initial estimate for the timal optimization in cath defined smatl window in time.

Phase Shift The phase patameters. 0_{1} and 12 ate we for the phaw of the elobat
 the center of the window. The initial extmate for the phase in each wimber most be shifterl to accommolate the change in the time reference frame.

$$
\left.a_{n}=-\infty_{n} \Delta t+n_{1, \ldots, n, t, a l} \quad \quad \text {, }, \underline{2} 3\right)
$$

where Δt is the differeme betwen the time in the two reference frames.

Nonlinear Optimization in Windows

Once the global solution is computerl it is need as the firs ques for the parameters
 nonlinear optimization romine. For the results given, the l.erentere- Marquardt algo-

 see if it is a clearly spurions sohtion. Spurions solutions can be identited be the same eriteria med in chapter $3:$

- Very large or sistematically variable errors.
- First order amplitude smaller than one of the higher order amplitudes.
- 「"urcalistically laree or small freguence or wase number.
- Large discontimity between the windurs in the predicted kinematios.
 far more common for the romtine not to comered at all.

If no solntion or a spurions solution is fomme it is neressaty to revise the pat rameters of the solution as was discossed in section 3.3 .3 . These revisions inchede increasing the width of the window. and if that is not suceessful, decreasing the order of the solntion. If neither of these adjustments result in an acreptable solution. the window is skipped and fume analisis must be interpolated throngh that point. Is with the analysis of a point pressure measurement. these arljustments are most likely:
 in the recome. The additional data provided be the array of measurements. and the fact that the ele ation of the water surface is measmed. prowide for a mum more so-
 adjustments are meresary less ofen with an atray of water surface meantrements.

Locating the Water Surface at the Array Center

Once the solution is fomul. the potential fimetion and thes the complete kine-
 to be most accurate at the center of the arrat. and it in oftem comsenient thave a selution at a single peint. so the water suface at the center of the array mot ber fomm. This is acomplished bey setting wanother optimization problem with the clevation of the water suface at a few modes in time thenghom the window at the maknowns.
 zontal location of the cemer of the arrat: at $.1 /$ peints in time thronghont the solution
 Face and the two bemdary conditions provide two independent equations. The water
 least spared semse. Each peint in time is imdependent. but the soxem can be se mp to solve for a momber of peints at once. Enomeln peints shonld be fomme to perify the shape of the water surface thromphont the window. For the result- given here.

 comsistenly amd rapidly comerese to a solntion.

5.4 Theoretical Records

5.4.1 Single Wave Records

The following result ate from "measurel" data generated be Fomier toady ware
 that preside the completekinematios. This apporeh provides a completere of data
 We the ine itable errors of data colleded in the lidel or the lateratory. Theoretical
 measured kinematios to compate with the results are not atailable.
 - 3. The atray is an eprilateral triangle with the same dimensions as the DM(i-l
 immommer requited to provide directional information. . Aditional measurements wond provide orersperilication. and can casily be arcommorlated in the formmation. Withactial tied data, additional measmements ate recommemed as increasing the mumber of instrments wonld poride redhudancy in the ase of instrment failnte. as well as helping to accommorlate measurement ertor.

Figure $\overline{5} . \mathrm{t}: \mathrm{LFI}$ perdictions $(. J=3$ and exact kinematios at the center of the array at the predicted water surface for a steady deep water wase
 the following patameters: wave height $=10 \mathrm{~m}$. period $=10$ womb. water deph $=$ 100 m. zero Enlerian cument. and direction of travel 10 degreen from the x-axis. This is a fairly large wave in derp water. The window width is 1 ser. $1 / 10$ the \%ere reosine periond and the LFI solntion is computed to third order $(j=3$. The I.FI methed hav captured the location of the water surface and the kinematics at the surface exsentially. -xactly. While limear wate theory might do an alequate jol of appoximatine much of the kimematios of a deep water stearly wave like this. it is important to remember
 surcomeding that point. In this case. the window width is 1 : 10 of the zero croseing period. or ls. The local nature of this methor extends its applicalility to irregular wave records.

Fig. i.j is a stearly , hallow wave generated les wh order Fomer theow with the following parameters: wave height $=3 \mathrm{~m}$. period $=10$ secomds. water depth $=\boldsymbol{i}$ m. zero Finlerian curremt, and ditection of trasel 10 degrees from the x-anis. This is a fairly extreme wave in shallow water. The window width is 1 ser.. 1 / 0 the zere rossing period atal the L.FI sohtion is computed to third order. . Wo whth the deep water wave. the I.FI methorl has captured the location of the water surface and the

Choice of Order

In order to detemine the order neressary to acomatel! apture the kinematio of measmed waves. it is pationdarle nseful to examine a window near the cere of a wave. The reest is mathy the region that requires the highest oreler solmion. This is particularly tre for shallow water waves. but higher urder wave theore in all depthe
 and the trungh llatter. (apturing this sharp crest requires a high order solution.

Deep Water A window near a crest of the deep water stedy wate given in Fig F. 1 has been computed at oders I through t. The results in that window are given in

Figure - $)$: $:$ LFI predictions ($/=3$) and exact kinematios at the center of the array at the perdicted water surface for a steady shallow water wave

 water wate at order 1
(rest of a deep water wave

Figure s^{-7} : Free surface and velocities at the center of the amat. for a rleep water wave at order 1
(rest of a dexp water wate

Figure is: Fre surface bomblary condition ertore for a deep water wave at orter:
('rest of a derp water wave

Figure $5.9:$ Free surface and velocities at the center of the arrat for a deep water wate at orter ?

Fioure i.lo: Free suface bomdary rombion emors for a deep water wave at order:3
(reat uf a decep water wave

Figure i. 11 : Feresurace and velocitios at the center of the array for a deep water wave at orrer:3
(reot of a deep water wave

Figure ja: Fee surface bomdary combition erron- for a deep water wave at order !
(rest of a decp) water wave

Figure \bar{j} : 3: Freesurface and velocities at the center of the array for a deep water wate at order 4

 suface and the relocities at the suface at the center of the arraty: The acthal rathen
 for comparison when analszing field records.

The dies order computation results in errors in the free surface boundary conditions of only order 10^{-i} (Fig. is (i) as well as very accurately predicting the velocities at the water sufface at the center of the array (Fig. S.a). It is a suprisingly aronrate first order solution. This is beranse of the local nature of the method. When a simgle first order whtion is nsed to capture the entire wave. the error is larger. of order 10^{-8}. It alow shomld be noted that this tirst order solmion is not the same as a lineat wave theore solmion, eren locally: The full nonlinear bomblary conditions are preservel. and the freguency and wave number are free to vary and are not bomm fex a dispersion relationship. For steady waves in deep water. linear wave theory is fairly acmate. Linear theory is mot. however a local solmion and is not directly applicable tw irreqular waves.
 10^{-6}. and the relocities at the surface match the Fomer solution vismally perfectly.
 tw decline. and the water surface velorities continue to match the Fonter soltion well. In deep water. for wates of this height. secomed orter is more than adeghate to apture the surface kinematies of this wave. Higher order solutions ate likely whe neressary to rapture the irregularity of tield records. even in deep water.
('hoier of orter is dictated by the desired accurary of the solmion. and ler the ease of convergence to the sulution. As there are more free paraneters at higher orter. a higher oreler solntion will alway have smaller errore in the free surface homdary conditions. In the case of this example. the solntion conserged at all orders very quickly. so there is little peotity in using thind or fourth order. With an irreqular record, in contrast, convergence can be more difficult, and it is occasionally neressary to resort to lower order.

S the order is increased there are more free patameters. atm cate mus be taken to inchule sufficiont peints in each window. . L- dismeserl above for fairly low orders and an array of measmements. the limiting factor is the minimm mumber of peints
 equations. The above examples were computed from an artay of there peints. and so required a minimmof ofly one sample to perify the system at firs and serond order. and two point: for \quad 保 to orders. When attempted. the solution wond mot conterge with only one sample. With two samples. the optimization algorithm fomm a rasonable solution. but this small mamber of amples wond not define the dape of the water surface adequately if were part of an irreghlar reoord and wo there peint -
 lee med. and more may be necesary to arcommodate a highly irregular poofile or the inevitable measurement error in a field record.

In the case of theoretically generated records the neerl for more sampling of pointpeser no problem. but with fied recoms. there are limitations as to the parine of the sampled peints. In order to free up the spacing of points for the LFI method. peint-ate sampled from a cubie spline interpolation of the actual record. This allows the poim- to be sampled antwhere within the window. White computationally it is powible to sample as many points as neressary in a small window. if that wimbor is. in fact. relined bey only a conple of actual data peints. it is now appopriate to ter W tit a high order solntion to a segment defined by only a few olvertational points. In order to include sufficient actual data peints to jusify the increased order. the window mast be increased in size. While incrasing the size of the window permits a higher oreler solution. it also compromises the local nature of the methorl. The poal of the LFI method is for the solution to be as lucal as possible. which is achieved be selecting as small a window as possible at faity low order.

Shallow Water I window near a crest of the shallow water steady wave given
 throngh 5.2.3. These figntes are amabous to those previonsly discossed. hat on a shallow water wave.
(rest of a hallow water wate

Figure $\mathrm{i} .1 \mathrm{l}:$ Fere surface bomdary condition ertore for a hallow water wave at order 1
('rest of a shallow water wase

Figure $\boldsymbol{\pi} .1$: : Free surface and velocities at the center of the array for a shallow water wave at order 1
(rest of a blallow water wate

 watcr wave at orfer:
('rest of a hatlow water wate

 for a shallow water wate at order?
('ren of a hallow water wase

Fiome s. N: Feresurface bemmary conditionemore for a shallow water wate at order 3
('eest of a shallow water wate

Figure - . 19: Freesurface and velocities at the center of the array for a shallow water wave at order 3

 water wave at order!
('rest of a shallow water wave

Figure $5.2 l:$ Freesurface and velocities at the center of the array for a shallow water wave at order 1
(rest of a Matlow water wave

Figure jop: Frer surface homblary condition errose for a hallow Water wase at order :
('rest of a hallow water wave

Figure $\bar{x} \boldsymbol{D} 3:$ Free surface and volocities at the cemter of the amay for a hallow water wave at order :)

In this ase the tirst order compmation result - in substatial errem in the free
 leocities at the water surface at the cemer of the array as well as it did in deep water

 shallow water are highly nomlinear. and a first order solution simply an not capture the sharp crest.
 lout sill of order 10^{-2}. and still maler predieting the horizontal velocition at the -urface. It thirel and fourth order. the errors in the free surface bemmary conditions contime to derline but the water surface velocities do not matreh the Fomier solmtion

 wave. In the case of this example. the solution converged at all orders very quickle:
 convergence will be more difficult, and it may sometmes be neresary were to lower order.
 for ampled in each window. This is not likely whe a limitation with the single wave form with an array of measurememis. as it is likely to be necesary womerefy the -risem in order to define the curvature within the window.

5.4.2 Records of Two Intersecting Waves

In order to derelop, the method nsing two intersecting waves theoretical water surface records were generated low Ohyma* fourth order interserting wave theors
 irrotational intersecting waves that is accurate to fourth order. and applicable in deep water (see Appendix A). As the resulting water surface from intersecting wates can be guite complex. a desired wave height cat not be specitied. Rather. the amplitude of the first order component of each of the intersecting free waves is specified. The
firs order components are the largest compenent- of the resulting wave lied and the gite an apposimation of the size of the resuhting wave. This wave theory as-mme a zero Finlerian current.
 gencrater be two idential intersecting wave traveling in opposing directions. The parametere of the wave are: Period $=10$ ser.. first orter amplitule $=3 \mathrm{~m}$. propagation directions. 1.5 and $1!5$ degrees from the x axis. in deep water. The L.FI method tw thire orter $(. /=3)$ timds the kimematios at the water surfare ahmos exactly: While these results show the complete wave. it is impertan to keep in mind that as with all the previons resilts. earh of the indiated peints is in the remter of a separate window, and was computed independentr of the other windows. In this case the standarl window width was 1 ser.. or one tenth the zero-crosing period of the wave. with a thited order petential function $(I=3)$ a ad fom water -urface medes
 worspecification. with 24 equations in 20 manowns

Short Crested Wave Figure i.e. is the water surfare at a peint in time of the

 tirst urder amplimdes $=3 \mathrm{~m}$. propagation directions. 30 and 1.0% degrees from thex
 wave. The LFI methed to thirel order again tims the kinematice for this wate almost exactly. In this case. the standard window width was also 1 sere. or ofe tenth the zero-rowsing peried of the wave. with a third order potential function (.I $=\mathbf{3}$) and four water surface node: $(. M=4$ in cach window. for a slight orersperification. with II eqnations in 3 (maknowns.

Choice of Order

Lo with the previous examples with steady waves. it is usefill to examine a window near the crest in orter to determine the order neressary to accurately apture the

Figure -2.2 : LFI predictions $1 . I=3$) and exact kinematies at the center of the array: at the predicted water surface for a standing wave

Fiemeres: Water - meface of hort comed wave al $t=0$

 in tigure T
kimematios of a short crested wave.

 ditions at each of the measured nodes. These are the data that would he analyzed in a practiral sithation. Figs. $\overline{2} 29$. $5.31 .5 .3: 3$. 5.3 give a comparison betwern the predieted and actual walues for the water surface and the velocities at the surface at the

Figure $\boldsymbol{\pi} . \frac{1}{2}:$ L.FI predictions $(. /=3)$ and analytical kinematies at the predicted water surface for a shot cresterl wase
(rext of a shot rested wase

 crested wate at order 1
('rest of a shot erested wave

Figure i.en: Free surface and velucities at the cemer of the array for a short cresterl wave at order 1

 cresterl wave at order \because

('rest of a short cresterl wave

Figure $\overline{3} .31$: Free surface and velocities at the center of the array for a short crested wate at order ?
(rest of a hort crestorl wate

Figure j. 3o: Free surface bomdary condition emore for a thent rested wave at order 3
(rest of a short crested wawe

Figure \quad.33: Freesurface and velocities at the center of the array for a shon crested wave at order 3

 ceroded wase at order 1
('rest of a short crested wase

 for a short cresterl wave at order 4

 tield recomb.

 molerestimatine the horizontal velocities (Fig. 天.gen. . Is with the teady deep water wave previonsly disused. the first order solution is quite reasomable. This is beramee of the local nature of the medhod. and the fact that it is net a linear colntion. The full
 are free to vars. and are now iomod be a dispersion relationship.

 It thiad and fourth order. the errors in the free surface bomdaty combitions comiture to dedine and the water surface velocities comime te math the theoretical whtion well.

Is with the single wate mothod. choiere of urder is dietated be the dexited arGuace of the whtion and be the ease of consergence of the optimization. For the

 sperification and sutficient peint- to detine the shape of the water umace thenghom

 seren peint-in time ($M=\overline{7}$) womld have to be nsed in each window. Sampline this many point: in a smole window wond require wery dosely paced data or a wider window. Thother solution wond be to mee an array with additional meanmement locations. . In artay of fome ganges. for example. would provide eight efpations per point in time. and womblallow a tifth order solution to le computed from five point
 shallow water. where higher order solutions are necessary:

able for intersecting wave is only acourate to form order. and only heme applialle
 lation in shallow water. When the methot is applied in hallow water. the lemons leamerl in the two dimensional ase hombl be applied. and a higher order suhtion. perhape whifth urder. shomild be need.

It is also the case that the Ohyama solution is a single solution that is acturate
 window in time tobereresented be a migue solution. representing the entire record with far more acmary than a global solution of the same order.

Choice of Window Width

So mentioned in the previons sertion. it is important to kerp the window widthat a minimum. For the short crested wase shown in Figure $-.2 \overline{-}$. the standard wimher
 window to (1.1.iT: at there locations in order to timd a solution. This indicate that the standard window width is set close to the smallest size lhat would be effertive.
 the lecal curature and include sufficient data point- to reasombly expect to detime a high order solmion. Most often. the limiting factor will be the sample rate of ile data. Fior example. the above examples ate componed for a shot crested wate with a period of ten seronds. In those examples. the window width of 1 : It the period (1) was adequate to capture most of the wave. Vuformately: fiefle reords are often sampled at ouly 1 Hz. At this sampling frequency: and a one second winduw. there would be a maximmon only twe data peints in each window. and it may be neressaty. to widen the window to include more data.

Effects of Array Size

The examples above are all computed from data sampled be a fairly small array (Fig. i.3). The l.fin size of the array is about 0.01 of the wavelength of 10 . wave in deep water. That paticular size was chosen becanse it has the same dimensions as
 A small artay has the adrantage of having a small distance to interpolate to the
 the same patt of the wave. The disadrantage of a small array is that the differencer

 implicates that a gange spacing of about one temth of the experterl rlominant wave lomoth might le an oplimmon spacing.

5.5 Laboratory Measurements

The results from the analysis of analytically derived records given in the previons
 also beren very mseful in hepping to determine the range of sohmion parameters that
 samples taken in each window. The question still remains. howerer. as lo how wedl the method works with actual irregular wates.

5.5.1 Laboratory Experiment

The following rembts are taken from a laboratory experiment perfomed together with Dr. Steven A. Hughes at the (oastal Enginering Researd (enter. Arme (orps
 waves were generated in a 0 . IGm wide thme bex a programmable. hedrandically driven. piston type wave board wee Fig. $\mathbf{8 . 3 6}$). At the other end of the flume was a beach with $1: 30$ slope and a single layer of wave-aboothing horsehair matting. This beach has been shown to have bulk reftection coefficients that vare from abont is, for

Figure i.3li: Shematio of wase thme
 signiticant wave height and h is the water depth) (Sultan l!ne: Sultan and Hoghes 19913).

The water surface was measured be eapacitance wave reds. catibnated with a cubic calibation function. The velocity data were collected ming a Dantek laver boppler
 burel a 2 -watt argon-ion laser equiperd with a fiber-optic probe that measures two orthogonal water velocity components (horizontal and vertical). Velocity data were converted in real time to engimering mits (m / s) and writento a computer tile simmatmeonsly with the wave rud lata.

The wave rods and LDD were placed near the middle of the thume. with the wave rods arranger in an equilateral triangle with leg length of 0.1 inn (see fig. is.3T). The L.D) was situated to measure the horizontal and vertical velocities at the center of the arras. at a variety of vertical elerations. The thume was allowed to reach quiescence in hetwen mus. and the waves were measured for only a shot time after stating the

 W travel from the meanmement location to the bead. and for the reflected waves to travel back to the stuly location. Thes the first llw of the recorl ate asured of being montaminated bere remion from the beach. Fing only the hegiming of the
 the Finterian curent is taken to be zero.

5.5.2 Laboratory Results

Figure - $.3 \times$ shows a sample wave taken from an irregular wate record measured

 water wepth was (0.35m. With the velocities measured be the LD) at all ele ation of

 the L.FI method at the center of each computed window. The solid line in the water surface plot is the measured electation at wave roel 2 . at the same x coordinate as the center of the arras. The circles are the water surface elevations at the comer of the

 of a ample wate in a thome

Figure \boldsymbol{j}. 10 : (omphted and measured velucities near the crest of a cample wave in a llume
array as computerl ley the I.FI methorl.
This solution was computerl to thided order. with a winduw width of 1 lo the mean
 in each windew. providine substantial worseritiotion of the w-rme and allowine the -hape of the water surface to be well define in each window. The first tronel is fairly Hat. ath the optimization did not consereete a solution quickly with the small window. Ifter the wimbw was widened. the optimization conterged quick! te the given rexults.

The I.FI mether has aptured the detail of the kinematios of this irrenglat wave vere well. The comparinons to the measured data are giten just below the tronghs of

 were the measured water surface. The computed water surface was fomel from the predicted kinematios and it mathes the measured water surface almost exactly: The arcurate computation of the water surface indicates that the perdieterl kimematios neat the anface may: in fact. Ioe more acrumate than the predictions at the elecation where the kimematios were measured. This is to he expected. as the data med to compute the solution was measured at the surface. and thes the westis should be
 as the satface is the location where the water velorities and acrelerations are greatent.

 match exactly but the magnitude and trend ate very close. The rexults ate simitar in the other windows.

5.6 Discussion

The LFF method is an effective and efficiont way to re-reate the kinematios of irregular waves from the measmements of an array of wave rods. It is able to capture the kinematies from primarily mi-directional seas as well as the seas near a reflect-
ine surface. The local mature of the appoarh allows a monlinear whinon withom prohibitive computational conts. ming a fairly simple form for the peremial fimetion. and allowine the parameter of the potential finction to datme with time.

The examples in this (hapter were all computed ming Mati.ab maning mader
 -hallow water steady wase Fig i.j) took the lonest to compute. abom : 3min. and

The examples given in this chapter provide gudance as to the parameters of a solution to be applied to tied records. Far from retlecting surfares. using a potential function representing a single wate is effective. Near a reflecting -ufface a potential function representing two monlinear intersecting waves is capable of capheng the standine or hort cesterl waves that are likely to derelop.

Window widths of t It of the zero rossing period are small enomgh to maintain the local nature of the solution. and rapture the detail of the record. while bering

 in the recoral to timel a solmion. The widening of the window is most often meerled in long. flat tronghs in shallow water. or near zero crossings of the recond. In either

L.ow order solmions are quite adequate for deep water waves. For most waves. second order is arlequate. For the very seepest waves. slighty higher order may be appropriate. and there is little computational penalty in including the higher oreder terms. In shallow water. higher order solutions ate necessary. Third order is adequate in many cases. but including up to lifth order is recommended for exteme wares. When attempting a high orter solution such as this with the two wave methorl. it may be neressary to nse arrays with more than three ganges in order to provide sufficient equations to specify the solution.

Chapter 6

Array of Subsurface Pressure Measurements

Itrays of sulsurface presure gatuges are installed in the sea in order to capture diectional wave fiefl data. These instruments have an adantage wer artays of water surface wave rok at they are momed below the surface where they are lese staceptille to damage. bey either the strong wave fores experienced durias stoms. as well as tandalism or accidents with vessels.

Infortmately: the reason they are lese susceptible to damage from wate force is berause they ate placed under the surface. oftern at the sea bed. where the action of wates is the smallest. This leats to the mathematirally ill-poserl problem disentsed in chapter 3. This difficulty is somewhat mitigated be the arderl information made a a alable be the multiple ganges in the arras: but still limits the ability to determine the detail of the kinematice paticularle when there is a bot of high frequener enerey int the sea state.

6.1 Formulation of Solution

The lessons leatned in the previons chapters provide for a fairly st raight forward letermination of the formulation for adapting the LFI method to the analesis of artays of pressure ganges. The formulation for a single subsurface pressure gange was
premed in chapter 3 . and for arrays of water suface measurements in diapter
 arays of water surface measurements. with the addition of the need w deremine the location of the water sufface as was done with the amalysis of a suburface presume trave. The following deseription includes the required infomation: greater derail has been eiven in previons chapters.

The How is asomed to be irrotational and incompressible. with a potemtial finmtion that represents either a single directional wase. or two separate interacting
 to a single wave:

$$
\begin{aligned}
& \mu=\sqrt{1 \cdot \frac{1}{5}+1 \cdot \frac{1}{4}}
\end{aligned}
$$

where l^{\prime}, and $F_{"}$ are the components of the known depth miform Einerian current
 Fomber series. I, are the Fomber coefficients. a is the lowal fundamental frequenc: b_{i} and $b_{\text {, }}$ ate the compenents of the local fundamental wave mumber in the .r and ! directions atol h^{-}is the magnitule of the local wave monber.

The ponemtial function for two intersecting waves to fourth oder is Eig. 1.N. repeated here:
where:

$$
\begin{aligned}
& \left(\sigma^{\prime} K_{i} \mu_{0} K_{i}=\right)=\frac{\cosh K_{i}(h+=)}{\cosh K_{i} h} \quad K_{i}=\sqrt{\frac{i) \sigma_{i}^{2}}{\dot{\partial} x^{2}}+\frac{i) \sigma_{i}^{2}}{\dot{j}!}} \\
& \therefore=\left(k_{i .1} r+k_{i, 1!}!-\dot{\sim}_{1} t+n_{1}\right) \\
& \therefore=\left(b_{2} . r+b_{!!!}!!-u_{2} \mid+n_{2}\right)
\end{aligned}
$$

It tirs orter:

$$
\sigma_{1}=\left(s_{1}\right) \quad \sigma_{2}=1 \dot{n}_{2} 1
$$

. It eromel order:

$$
\begin{aligned}
& \sigma_{:}=12 ら! \\
& \sigma_{1}=|\underbrace{}_{n}| \\
& \sigma_{i}=1 r_{1}-n_{n} \\
& \sigma_{10}=n_{1}-n_{1}
\end{aligned}
$$

At third order:

$$
\begin{array}{ll}
\sigma_{-}=\left(3 r_{1}\right) & \sigma_{1}=\left(3 r_{1}\right) \\
\sigma_{1},=\left(r_{1}+r_{1}\right) & \sigma_{11}=\left(2 r_{1}-\dot{S}_{2}\right) \\
\sigma_{11}=\left(r_{1}+n_{1}\right) & \sigma_{12}=\left(r_{1}-2 r_{2}\right)
\end{array}
$$

. Ind at fommborder:

$$
\begin{aligned}
& \sigma_{1:}=\left|1 n_{1}\right| \\
& \sigma_{11}=11 . \dot{n} 1 \\
& \sigma_{15}=\left\{3 r_{1}+i_{1}!\right. \\
& \sigma_{11}=\left(B s_{1}-n_{2}\right. \\
& \sigma_{1}-=\left(\ddot{n}_{1}+\dot{n}_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{1},=1 s_{1}+3 n_{2} \\
& \sigma_{21}=1 n_{1}-3 n_{2}
\end{aligned}
$$

 bottom homdary condition (Eq. 1.3) exactly: The rest of the oblution in detemined by the free surfare bommaty combitions: the moditied free smface bomdary condition (f)

Whe Bermonlli equation f^{H},

$$
f^{H}=\frac{\partial_{0}}{a t}+\frac{1}{-\quad-n^{2}}+r^{2}+a^{-} 1+\frac{p_{i}}{p^{\prime}}-\bar{B}=0
$$

with the Bernonlli constant (\bar{B}) , letined as:

$$
\begin{equation*}
\bar{B}=\frac{1}{\underline{1}}\left(1 \because+1 \frac{1}{3}\right)-\frac{1}{4} \sum_{=1}^{1}\left(\frac{1 K}{\cos h h}\right)^{2} \tag{i.1i}
\end{equation*}
$$

In orter to apply the free surface innmbary conditions. the location of the free

 the horizomal lowation of the cemer of the atras. and equidistantly pacer in time thronghont the window. The ele ration of the en noeles is manown and will be conght as patt of the whotion.

6.2 Formulation of the Optimization

The formatation of the optimization for the Lef method as applied to the interpretation of an array of presone measmements has a great deal in common with the formulation for an array of water sufface measmementsand the formulation for a whlo-
 with ang additional infomation minue to the appliation to a presome arras:

Observational Equations Theolservational equationsare the equations that confine the solntion to tit the measured recorls. The predieted suburfare pressure is atailable from the Bermonli equation. Eq. (i.). Which is applied at the location of the ganges in the array to dedine the obserational equations. The ertor in the Bernonlli equation is the differene bedween the measured dyamic pressure at the given lecation and time and the demamic presume predieted from the kinematies defined bex.
the potential finction. Sufficient independent equations ate dedinerl by appline the Bermontli equation at a mumber of points in time thromehom the considered windew.

In order to perify the solution to a sistem of equations. lhere must be at least as many independent equations as manown parameters in the sotem. In order to sereify the whtion to the I.FI formmation for a presome armat the benndary
 "quations. and the Bermonlli equation $1 f_{1}^{H}$, is applied at l times on each of the A measured presume recode within the lenal window, yedtine $I /$ erpations. In the

 nomlinear least ognares uptimization.
where:
for the one wate case and:

$$
\mathrm{X}=\left(k_{1,1} \cdot k_{1,1} \cdot w_{1} \cdot o_{1} \cdot k_{s, 2} \cdot k_{1,2} \cdot w_{2} \cdot o_{2} \cdot l_{1} \ldots \ldots \mid / \cdot / / 1 \ldots / 1 /\right.
$$

 are the coordinates of the center of the array: and $\eta_{n, \prime}$ is the cheration of water surface noele \quad In.

As with the previons analysis. overspecitication is heppful in accommodating the measurement errors in fiedrl records, as well as being reguired te detine the shape of measured records and water surface in cach window.

6.3 Computation Methods

The LIFI method for an artay of presome meastremedts can he broken down inte the ame seguence of step as with the atalys of a water surface atray:

1. Preprocessine of record.
(a) Detemmime estimate for level of mose in the record.
(1) Determine MIWL and subtract hedrostatio peresime from the records.
(は) Determine ovimate for magnitule and direction of Enterian anrent.
 serations ber colbe spline interpolation.
(a) Sperify pacing of oupput locations.
(f) (ompute mona zoro crossing frequenc:
(2) Non-dimensionalize reood and all parameters.
\because Primary values of momerical solution parametera are chosen.
(a) Winduw width (a)
(b) Oreler of solntion (.J)
(a) Ximber of time sample of the pressure reconds within each window $1 / 1$
(d) Nimber of water surface node within cach window (.1/)
2. (ilobal solution is computer on an entire wase to provide firs eximates fin lowal optimization
3. For wach selected onf put location. a window in the recom is defined. and an I.FI solution is computerl.
(a) Intial guess for the optimization determined from the ghobal whtion.
(1) Finll nonlinear optimization for all manown components of the potential function is computed.
(6) Results are checked for purions solution.
 are aljusterl. and the optimization tepeated.
ii. If a geod solmion is fomme proves to the next winduw.

6.3.1 Pre-Processing of Record

The preprocessing of the measured records in exsemially the same as pronemed in the previons chapters. Estimates for the mean water level $(/)$ and Enlerian curem
 the measured recorls are compmed to provide contiments records for computation. athel the desired omput locations are chosen. The records and all patameters and vatiables are non-dimensionalizer be the following patameters: the mass density of water iff. arceleration of gravity (gh and the mean zero crosing fregneme of the measured records (wi)

6.3.2 Optimization Procedure

 measurements is very smilar to that wed for the athalsis of a simgle -mburface pressure trace. In the single wase appoach. the solution is somewthat easier. The potential finction neerl by the single wave approach is almust the same as that meed
 of a directional componem to the wave monher. This results in a single additional
 with ganese at at least there patial locations to seecify miquely the directional structure of the sea. The result is that the optimization tembe to conserge more rapidly and robustly that with a single point meastrement.

When applying the merhol with the two wave potential function. there are far more mentows. and the optimization once again becomes somewhat mons. As with the previous chapters. it is essential to identify a good initial estimate to reduce
the chanco that the optimization will converer to a pminns minimmm.

Global Solution

As with arrays of water surface measurements a inele dort soment of the meat sured presume records often may not contain stficiem infomation to identify the directional trem of the wave fied. . We a result. it is meresary to examime a lateer sement of the recorl. for example an entire wave from ctest to crest or trongh to tromgh. to get a general sense of the directional trend of the wate field. This ghobat sohtion ran then be refined to tit a small segment very closely. This approach is merl to establish the initial extimate for the optimization procedure in cach window.

The procedure for computing the intital estimate to the gholal solution for an aray of presene measurements is vithally identioal to that meed in the pervions chapter for arrays of water surface measmements. It will he omt lined here. For more retail. see section -. 3.3 .

For the intial estimate. it is assmed that the pressure recorts can be approximaterl with limear wave theory:
for the simgle wate methed. and
for the wo wave method. where:

$$
\begin{align*}
& K=\sqrt{k i \frac{1}{2}+k i \frac{i}{4}} \tag{6.10}
\end{align*}
$$

I, is the amplitude of the linear petential function of the wh wate. and zi, in the elecation of the pressure array:

Directional Trend I tirs extmate for the directional trend of the wave hodd is computed from the eradient-of the dyamic presure. A we of complex direction vertors ate computerl:

$$
\vec{\Pi}_{\ldots}=\operatorname{sig} n\left(\frac{i p_{i, \ldots}}{i \|}\right)\left(\frac{i \mu_{i, \ldots}}{\partial, r}+i \frac{i p_{i, \ldots}}{\partial l_{i}}\right)
$$

The -patial eqarlients are estimater from finite difference apposimation from the
 We Beod latat of the eximated dyamic presure at the center of the arrase

For the single wave methed the extimated propaqation ditection is the orientation of the mean of the complex direction vertors:

$$
\theta=\operatorname{angle}\left(\frac{1}{M} \sum_{1}^{M} \vec{l}_{n}\right)
$$

For the two wave method. the two dominant popagation ditertions ate detinerl as the angles of the meath of the sets of diection vertors within ir greater than and less than the mean dierection:

$$
\begin{array}{ll}
\theta_{1}=\text { angle }\left(\frac{1}{M_{1}} \sum_{1}^{M_{1}} \bar{D}_{\ldots}\right) & \text { where: } \\
\bar{\theta} \leq \operatorname{angle⿻} \bar{D}_{\ldots,} \leq \bar{\theta}+\bar{\pi} \\
\theta_{2}=\text { angle }\left(\frac{1}{M_{2}} \sum_{1}^{M_{2}} \bar{D}_{\ldots}\right) & \text { where: } \\
\bar{\theta}-\pi \leq \text { angled } \vec{D}_{\ldots,}<\bar{\theta}
\end{array}
$$

 at the center of the array.

$$
\dot{\omega}_{\ldots}=\sqrt{-\frac{1}{\rho_{t, \ldots}} \frac{\partial^{2} p_{i}}{\partial t^{2}}}
$$

where $\frac{10, t}{t^{-}}$is computed from the same smoethed pline used above. For the two wave methert, is is assmed that the bimedal sea is the result of reflectiont. so that the same fredueney is used as the tirst estimate for hoth waver.

Wave Numbers The wave numbers ate estimated from the lineat dispersion relation.
wherel in the compenent of the Enlerian current in the dire tion of the wh wave.

$$
\begin{equation*}
r=\sqrt{1+1}+\cos \left(\tan ^{-1}\left(\frac{1}{\Gamma}\right)-\theta\right) \tag{11.11i}
\end{equation*}
$$

Amplitudes and Phases The amplitules and phases the rewod are fennd ber - parating the conime and sine components what the equations and be whed a a linear least ograren problem.

$$
\begin{align*}
& "=\sqrt{h^{2}+r^{2}} \\
& n=\arctan (-r / b)
\end{align*}
$$

for the ingle wave me hod. athl

$$
\begin{align*}
& \|_{1}=\sqrt{b_{i}^{2}+\cdots \frac{i}{i}} \\
& ":=\sqrt{\underline{2}+\cdots} \\
& n_{1}=\operatorname{arctant}-r_{1} / h_{1} \\
& H_{2}=\arctan -\sigma_{2} h_{2}!
\end{align*}
$$

Refining the Linear Estimates These romgh wimates are relined ly opimizine for a bes linear wave theory tit to the record:
where:

$$
\begin{aligned}
& \mathbf{X}=\left(k_{1}, k_{i}, \ldots, a\right) \\
& K=\sqrt{6+6!}
\end{aligned}
$$

for the single wave methorl. and:

$$
\begin{aligned}
& A_{i}=\sqrt{1 \cdot \pi+b}
\end{aligned}
$$

for the two wate medhorl. The frequencies are determinerl from the lineat dispersion relationi:

$$
\begin{equation*}
\dot{n}_{n}=\sqrt{!h_{n} \tanh k_{n} h}+\Lambda_{n} l_{1} \tag{16.20}
\end{equation*}
$$

where $1_{\text {, }}$ is delined be Fi. (i. Lt This opimization results in a linear extmate for the dramie presine that fits the measured records most closely in the segment considered.

The linal step in computing the initial estimates for the tital windew-hewindow optimization is to compute a full order ghobal solution to this latge segment of the record. The initial patameters for this full orter global optimization are provided bex the computed linear tit whe water sufface records. with the ampliturde adjuterl for theporential function:

The higher orter Fomrior amplitudes are all initially sed to zero.

Water Surface The location of the water sufface at $.1 /$ nodes in the conter of the array thomghom the segment is estimated from the linear pressure response finction with trething (Nielsen l!sen):

$$
\begin{equation*}
\eta_{m}=\frac{m_{f \cdot}\left(t_{m}\right)}{\left.l_{1}\right)} \frac{\cosh \left(\bar{h}_{1}\left(h+p_{m}\left(t_{m}\right) / m\right)\right)}{\cosh \overline{h_{1}}\left(1+z_{i}\right)} \tag{6.2.2}
\end{equation*}
$$

where \bar{b} is the mean of the two wave mmbers. $z_{\text {, }}$ is the ele ation of the presinte array. and $y_{1,}$ is the elevation of the water surface node at the center of the array at $t_{\text {,... }} f_{f}\left(t_{m}\right)$ is computed from Eq. (i.s or Eq. (6.!).

 the record. The patameters of the potential function computed he hai whemization ate then meed as the intial estimate for the final opimization in wath definer small window in time.

Phase Shift The phase parameters ot and 0_{2} are adjusted to arcommetate the change in the time reference frame from the global to the local selntion:

$$
\begin{equation*}
a=-\dot{a} \quad \Delta t+a, \ldots \text { platal } \tag{6.2:3}
\end{equation*}
$$

Where Δt is the difference betwern the time in the two reference framer.

Nonlinear Optimization in Windows

The established ghobal solation is used as the tirst gues for the paramenes in cach window. and there parameters are refined in the same manner as the previons dhapters belsing Fq. 6.i with any standard nonlinear optimi\%ation romtine.

The resmbing solution is then cherked to see if is clearly qurions. tpurions solutions ran be idemitied bex the same eriteria userl in the previons chaptere:

- Very large or sistematioally variable errors.
- First order amplitude smaller than one of the higher order amplitulen.
- Varealistically large or small frequency or wave number.
- Large discomimity betweon the windows in the predicted kinematios.

If no solntion or a spurions solution is fomad. the patameters of the solution are revised for another attempt. These revisions include increasing the wirlth of the window, and decreasing the order of the solntion. If neither of these adjustments: result in an acreptable solution. the window is skipped. and future analysionnis be interpolated through that point.

Ls with the analysis of a point pressure measurement these adjust ments are most likely to be needed in the long. Hat tronghs of shallow water waves or near zero

Crossinge in the reord. The alditional data provided le the array of measurements provides for a more rohns optimization than with a simgle subsurface presure meat surement. As well as providing additional data. the patial aray provides information about the evolution of the wave tield in pace. helping to define the local wave number more clearts: This is in contrast to the analysis of a peint measurement where the - patial coblution of the wave tied mast be dememine en entirely from the measured temporal colntion. conpled with the governing equations. As a result. adjusting the solmion parameters is neressary less often than with a single measurement.

6.4 Theoretical Records

6.4.1 Single Wave Records

The following result- are from "measured" data qemerated be Fomier stealy wave
 the complete kimematies. The data med are a simmation of data that might be col-

 measmements would provide oresperification. and can easily be acommodated in the formulation.

Shallow Water Figure (i.j is a stearly shallow wave gemeraterl loy lith order Fomier theory with the following parameters: wave height $=3$ m. period $=10 \mathrm{~s}$. water deph $=$. m . ditection of tracel 10 degrees from the x-axis. and an opposing Eulerian curent of $2 \mathrm{~m} / \mathrm{s}$. This is a near limit wave in this depth water. With this opposing current. The pressure array is locaterl at the hottom. The parameters of the L.FI solution are: window widh $=1 \mathrm{~s}\left(\pi_{0}\right)=(0.1 T:)$. fifth order $(. J=i)$. with $(i$ samples on the water sufface. and (i samples on each of the pressure records $(.1 /=I=(i)$ resulting in 30

equations in lis mbnowns.
The oolid line ate the drumie persure water sufface, and kinemation as computed from the Fomber solution. The circles ate the predictions of the L.FI mether with ead circle being located at the comer of a separate windew. The kinematio-

 crest of this shallow water wase. The adritional data provided be the there gatere allowed for a narvower window than with the single measurement. even at this high orter.
 theory with the following patameters: wave height $=10 \mathrm{~m}$. periorl $=10$. water deph $=$ Inom. direction of tavel 10 denges from the x-axis. and zeru Finlerian current. The presure array is located lom below the surface. The parameters of the L.FI wothtion are: window width $=1$: $(\pi=0.1 T: 1$. secomed order.$/=2)$ with 3 samples on the water surface. and 3 samples on each of the pressure records $(1 /=I=3)$. resulting

 at $==-1.5$ m for a steady shallow water wate.

 at $==-\bar{m}$ for a stearly deep water wave.
in 1ㄹ equations in ! maknowns.
The LFI method has caphered the location of the water suface and the kimematio-
 kimematics of a more iremondar recorl. and can be included with little compmational penalty.

6.4.2 Records of Two Intersecting Waves

 This mothod provides the complete kinematios. is applicable in deep water. and ansmes a zero Eulerian curren (see appendix . W.

Standing Wave Figure fi.t shows the results of the method for a standing wave. The patameters of the Ohyama solmion ate: period $=10$. first order amplitudes $=$

 the the water surface and the kimematios at the elevation of 3 m below the surface. just below the trongh of the wave. While these results shew the complete wave. it is
 peins is in the center of a sepatate window, and was computed independenty of the
 a thire order potemial function $(. I=3$) Four water surface moden $(.1 /=11$ and six amples on the presume recods $/ I=(i)$ distributed equally in time in each window.

Short Crested Wave Figure fisf shows the results of the method for the short crested wate shown in Figure (i.5 The patameters of the wate ate: period $=10 \mathrm{~s}$. firs order amplitules $=$ 3m (resulting in a wave height of just orer lim) propagation directions: 30 and 1.0 degeres from the x axis. in deep water. The pressure array

Figure (i. $:$: L.Fl predictions $(. I=3$) and exact kinematics at the conter of the armay at $:=-3 \mathrm{~m}$ for a standing wate.

Figure (6.i: Water sufface of hort rested wate at $1=0$
 atain linds the kinematios for this wave almos exactly: In this case. the tandard window widhh was also $1:\left(T_{0}=0.1 T_{:}\right.$) with four water surface nowes $1.1 /=1 /$ and six sample on the pressure records $(I=()$ a listributed miformly in time in each

Figure bi.i is the same short crested wave. but compleded with the single wave metheof of the LFI solution. In this case. the LFI solmion still mathes the measured presime recod lery well as is rithally always the case as these measmement-are part of the optimization. The predicter water sufface is also fairly acourate. lint with the predicted crest slighty underestimated. The vertical velocity is ako faity accurate. The L.FI predietions for horizontal velocitios. on the other hand are very different from the Ohyama solution. The resulting discontinnities in the predietions for the horizontal relocities make it clear that something important is misime from the solution. The single wave method is simply not able to capture a shert eresterd sa made up of two distinct ditectional components.

Figure (i.fi: LFI predictions (.) $=3$) and exact kinematios at the center of the array at $:=-3 \mathrm{~m}$ for a short crested wave.

Figute (i.i: LFI predictions ($I=3$) and exact kinematios at the center of the arma at $:=-3 \mathrm{~m}$ for a short crested wave computed with the single wave methorl.

Choice of Order

 tially the same as for a single pressure measurement. Ser chapher 3 for a detaled
 with higher than thire oder mblikely we neensaty in depp water. Shallow water may require up to lifth or sixth order in order to apture near limit waves.

Choice of Window Width

 as it is for the amalysin of a single persure meanmement. or array of water surfare measurements. Window widths of a minimmon abom lith the zero croseme period ate reguired. with the werasional need tw widen the windows neat zero crusings. The adelitional data provided log the array of presure measurement-allowed a solntion to a vere step shallow water wave at high order with a window width of $19.1 T$. Where a similat solution required the window width whe dombled to $0.9 T$: when there was

Number of Nodes on the Water Surface and Pressure Records

The eriteria dereloped in the previons chapters for the mumber of water surface noeles are applicable here. $I+1$ peints are regured to sperify nuiquely a Fomber seriow of order I. In order to keep the order of the water surface comsistent with the order
 same mumber of points on the measured pressure records is usually adeguate. For the stanting athl shot-crested waves. additional equations were needed to -perify the solution. so $I=I+3$ peints on the pressure records were med. The results are not highly sensitive to this parameter. provided sutficient samplo are nsed to define the lecal curvature and sperify the system of equations. More peints on the measured pressure records will assist in accommorlating noise in the record.

6.5 Field Measurements

Tho following result are from data porided be (iary I. Howell of the i's Amy

 on the hottom. so that the presure semsor diaphagms were positioned o.elm from the bed.

6.5.1 Field Results

 period $=$ i.fis. peak diection $=\times 3^{\circ}$ from true morth. in a depth of appoximately 7.!m.

The top plot is the dyamic pressure at the cemer of the artay: The solid line is the appoximate mosured presure. computed lie linear interpolation from the there measmed peituts in the arras: The circles are the whes predicted ber the I.FI methot. The other four plots are the predicted water surface and the there
 was used. with the following parameters: third order (./ = 3). fome water surface moder and four sample on the pressure records $I=. I=11$. and a window width of
 about the Einlerian emrent. so it is taken as zero.

Window Width lathe previons section. resultson theoredically generated records indicated the succesful solntions were powible with quite narrow windows. generally one tenth of the zero crossing period. When working with this tield rerord. the optimization comerged with a window widh that narow. but it resulted in wild thathations in the predieterl propagation dieection from window to window. Figure (i.!) is the same segment of the record as in figure (is. computed with the same parameters.

Figure 6.s: LFI predictions $(. /=3)$ of kinematios at the center of the array at the water surface for a lield recomel.
 discontimities in the horizontal whecity in the x direction thied phot. near beth arests. Figure 6 i. 10 shows the parameters of the potential function from thi - ohtion
 a suden hift in diection of $\mathbf{x} 0^{\circ}$ at the first crest. and over 100° at the aecome eres. This would result in moralistic predictions of hage acrelerations. Figure (i. 11 dows the parameters of the solution computerl with $\bar{T}=0.3 T$. With the wider winduw. the propaqation direction varies smoothly aromed the peak ditection of the record. $\theta=53^{\circ}$.

Array Size The need for a fairly wide window for the fied solution is likely due (1) the small size of the pressme gange artay: (ompact size is one of the major artantages of the D)W(i-l arras: as it is a simgle mit that is casily deploperl. lint it makes it suscoptible to diffionties with local analys. The peopasation direction within each window is detemined her the spatial gradients of the dyamic presure. as extimater bey the measmements. In segments of the record where the quadients are small. the predieter direction of propagation ran fluctuate a great deal with only small change in aty of the measured values. These change comble the tersult of
 case. the large resulting change in predicted propaqation direction can lee a somere of arror.

The linear dispersion relation pertiets that the watelength corresponding to the
 atray is only 1.6 m on a side. Which is abon 0.0 .4 of the approximate waveleneth of the peak period waves. D- a result, near the reest of the wave. where the water sufface is close to horizontal. all three ganges are near this point. and the local estimate of the gradient of the pressure is very semsitive to small flucthations. This effect is mitigated lex using a larger window in time. so that a part of the wave with a higher grarlient is part of the window. allowing the propagation direction whe better defined. and smoothing ont any measurment errors. Ls minimum window size haw been detemined to be about $1 / 10$ of the zero crossing freguency: an array size of

Figure (6.9 : LFI predictions $(. I=3$) of kinematios at the conter of the atray at the water surface for a fied record, using a natow window.

Figure (i.It: Paramerers of the I.FI solution for a tield record. wing a narrow window $(\pi)=0.1 T$) .

Figne (i.ll: Parameters of the L.FI solution for a field record. nsing a wide wimbur $\left(T_{1}\right)=0.3 T:$.
 with the smaller windew:

6.6 Discussion

The I.FI methed can beraplied to interpetation of recods from arratre of presine measurements. It is effective for records from primatrily mimodal satas. as well as the himodal seas that are generated mear reflectime surfaces. The remblt of the andesis is a complete description of the kinemation of the waves thromphon the water depth. in the vicinity of the arras. The medtod is lecal in that a separate potential function is nsed to describe each small segment of the recorl. nsing information from only that
 of gravity water. includine the full nomlinear free surface bomelaty conditions.

Cing a potential function representine a single progressive wave. the method has been shown whe effective on theoretically eenerated records of stedy wates in heth derp and shallow water. This formulation is appopriate in luration far from reflerting sufaces. where the sea state is expected to be mimorlal. When the methorl is applied with a potential function representing two intersecting wase it in effective in acomately captming the kinematios of standing and shert ereoted wase as result from the reflection of steally wave from a rellecting surface. sud as a wa wall. This two wave formulation is appopriate near such reflecting suffaces. where the sea state is likely to le bimorlal.

I mumber of parameters must be serified to extablish a solution. induding the order. window width. umber of water surface nodes detined. and number of samples on the measured records. The example in this chapter indicate that the eriteria nex to define these parameters are similar to those dereloped in the analysio of point presume records and arays of water surface measmements. Fairly low order solmions (. $/=2$ or 3 a are effective in deep water. while shallow water reguires higher order solutions (.J = jor (i).

Window widths of $1 / 10$ the zero crossing period of the record are effective on theoretical records. With field records. howerer. When the array nsed is small (less
that 1 It a typical wavelength. the predietions of the propatation direction can be very semsitive to subte flathations in the measure record. In order to find a
 frepuenc: This includes more of the record in the window, allowing the popaqation divection to be more dearly defined.

The examples in this (hapter were all computer ming M. WTatB ruming moter
 shallow water starly wate (Fig bi.2) took the lenges to compute. abont (itmin. and

 and the fied record fige (i.) took limin. and tio 10 thops.

Chapter 7

Conclusions

This disw ration examines the problem of determining the kinematio of three di-
 and results. lead to the following cond hasions:

- ('urrembly ned global methode are inadequate for determining accurately the kincmatios of irregular waves.
- Linear superposition does mot satisfy the nomlinear free surface bomblary conditions. resultine in lange errow in the predieter kinematios neat the water surface.
- Dieetional spertal methons generally distegaral the phase information. making it imposible to determine the detailed kinemation of diredional sas.
- (ilohal methods of high comoh order to acmately solve the free surface bommary combitions in three dimensions are peohibitively compmationatly. intensive.
- The Local Fourier Methor for Irregular waves (LFI) can acourately deseribe the kimematios of two and the dimensional iregular seas be satisfing the full free surface bomudary conditions.
- The local nature of the IIFI method allows it to atinfe the monlinear free sufface homalary conditions at low order bex timding apatate solntion in wach of a requence of small windows in time.
- The LFFI method provides an acomate two dimensional dereription of the kinematics of irreqular seas measured by a single water suface gange or shburface presure qatuer.
- The LFI methor provides an acomate there dimensional description of the kimematios of irregular seas measured ber arrats of water surface qatges or atrats of sulsurface pressure ganges. induding the bimodal seas resultine from reflection from a wertical surface. suh as a sea-wall or berakwater.
- When working with subsurface presisure records. the I.FI method is limited in it: capability to capture the high frequency components of the seat state that decay rapidle with depth.
- In order to acourately caphere the detail of the measured records. the I.FI method requires very acourate data, will high ampling rates.
- The L.FI medtoel can be adapted to vithally any arranerment of wave measuring instrments.
- The I.FI method required smbatatial. hut mot prohibitive. computational renomres.

7.1 Future Work

The result: presemed indicate the promise of the I.FI method. and local med horls in wencral. There is still much work to be done before the method could be considered nsable as a "hlack hox" corle.

Much of this work revolves aromed determining the numerical details of the monlinear opt imization. While the presented results provide some guidelines to determining approptiate parameters. considerable judgment and experimentation with ang given recom is required. In the future. it may be possible to establish criteria for definine the following numerical solution parameters:

- Wïdow width
- Order of the potential function
- Nimber of water virface nome
- Ximber of samples of the measured record
- Simber of iterations allowed in the optimization

Some of the arteria that might he nised to help detine the we value ate:

- Com-dimemonomal deph
- Vred mumber
- Lomal cirtature of record

In principle the I.FI merhod mas be extended to arditional atranements of intruments. While it is staightorwats. in theory: to alapt the methen to virtmatly

 linear optimization. Different optimization probleme tend to be migur. and rephire subtantial experience in order to detemine the appepriate apprath.

The experience gathed in appling the I.FI mothod to a variet of atranementof instrment helps demonstrate the need for appopriate data. Whe her this par-
 acourate data is paramome. The deoign of a tied data collection progam inheremply inchules assmptions as to how the rewhthe data will le athalyad. (inremtly used data collection programe are often designerl with the assmption that the data will ber
 may not be appopriate for the nonlinear analysis needed to determine the detailed kinematies of a measured wave fied.

Some of the consideratione that should be inchuded in the dexign of a fied measurement program are:

- Arays size appopriate for the analysin method chemed and wate tied experterl.
- Measurement or perdiction of the heral current hedd.
- Sampling rate that capture the detail of the recort.

 mote acomate. the moderstanding of the comples proceses in the orean and coasts that ate moderl ler waves will increase as well. This moterstanding shomblead to safer
 have on the semsitive coastal emsirommen.

Bibliography

Baldock. T. F. and (․ Swan (19smis. Fxtreme waves in hallow and intemediate

 . 1.5 C .

 Ipplial ()eran Rearareh í 16:5 1ï.

Boelge. K. R. and R. (i. Dean (I!Nit). Wave measmement with diferemtial presume

Bomes. E.. H. (iunther. and ('. L. Vincent (1!si). Similatity of the wind wave

('haplin. J. and Ki. Anastasion (1980). Some implications of recent adrances in wave
 Volme 1. pp. 31 !!. . $\mathrm{L}(\mathrm{E} \mathrm{E}$.
('haplin. J. R. (l!ns(). Derelopments of a stram-function theor: ('om.alel Eingi-

('happelear. J. E. Itogil. Direct mmerical alculation of wave propertien. Journal

('hen. Y'. Y'. Agsis. The standing gravity waves. Terhnical report. The Institute of Harbome and Marine Techomog in Taiwan. in Chinese.

Datmridi. K.-F. and W.-D). Eqgert (Inso). Investigations on irregular wase in

Dean. R. (i. (1) (in). Stream finction representation of nonlinear ocran wases. Jone-

 Tichumolot!! (onfartuce.

Dean. R. (i. (1990). Strean function wate theory and applications. In J. B. Hentich
 Texas: (iulf Publishing.
 aritutiols. World Scientitic.

Dold. J. and D. H. Peregrine (I!sth) Sterp manteade water waves an efficient com-
 Enyinc ring. Vohme 1. pp. 95.) 967. AS' E.

Dnncan. P. E. and K. R. Drake (I!日!) . A note on the simmation and analysis of
 Drake. K. K.

Fenton. I. D. (l!nig). Polvomial appoximation and water wases. In Promeding-

Fenton. J. D. and W. D. Meker fosen). On calculating the lengthe of water waver.

Fenton. J. D. and M. M. Rienerker (lan(o). Acomate numerical nolntions for non-

Forristall. (i. Z. (I!ns.) Inegular wate kinemation from a kimematio bommary com-

Forristall. (i. Z. (I9xif). Kinematics in the crests of storm waves. In Promeding- of

Forristall. (i. Z... E. (i. Ward. V: J. (ardone, and L. E. Borgmann l!!is). The directional spectra and kinematios of surface gravity wave in tropioal stom

(ioda. Y. (196i-). The fourth order approximation to the pressure of standing waves. (onsolal Einginerring in Japan It). 1-11.
 Iuc.
 in! \therefore 品

Itamm. L... P. A. Madsen. and D. H. Peregrine (199:3). Wave dansformation in the

 perionlic waves in thallow water part 2 . astmonetric wasen. Journel of fluid

Herters. T. H. ald R. T. (iuza lamb. Wind-wave monlinearity observed at the

 and Octan Einginerring. Viol. I. pp. 97-17. Honston. Texas: (inlf Publishing.

 1:3!2.1 [3:

Kibhida. X. and R. J. Soler (I!sxi, Stoke theory for wave on a linear shat

 pr.

 1 1:3.

 Prentice-llall.

 The Xational Researeh Comucil of ('anarla.

 ing.

 man Licientila and Terhnical.

Ohrama. T. and K. Nadaoka (l!ght. Transfomation of a monlinear wave train
 !。
 pation of directional how and fixed platorm mosurement- of Paditio swell.

Prislin. [.. .I. Zhang. and R. J. Sermore (1997). Deterministic decomporition of

Raichlen. F.. J. D. Ramsden. and I. R. Walker (lamod). Bottompresime due to lone waves: labotatory and tiold measurements. In Procredinge of the lute rantional

 waven. Journal of Fluid Morhamio: lif. 301 3O1.
 lishers.

Roberts. A. J. (I!N:3). Highty nomlinear shorterested water waves. Journal of Fluid

Rotman. J. IV. (I!s:). Steep standing waves at a Huid interface. Journal of Fluid Mrchanios İ, 2x3-306.
 Prention-Hall.

 Siume rical Me thod. in Fluid. 9. $11 . i 31+16$.

 Kluwer . Arademic Publishers.
 1pplitd (orean Reatarch 19 . ! :3 10.).

Steele. K. E... ('.-('. Teng. and J). W. ('. Wang (lemel. Wavedirection measmements

 surement of skew and symmetric wave pattems. Jourual of fluid Mechous

 ing Waterwas: Experiment Station. Vickshurg. Mississippilish.

Sultan. … J. and S. A. Hughes (1993). Iregular wave-induced velocition in shallow

Swan. ('. (19m)a). A riscons modification to the owcillatory motion hemeatha series of progressive gravity waves. In A. Tormmand O. T. (indmestad (Eds.). Water

 Sethertamb: Society for 「ulerwater Terhologe:

Wheeler. J. D. (IgG9). Merthod for calculating fores poduced be irregular waver.

Zelt. J. . I and (). T. Gudmestad (1995). Fluid accelerations muler irregular wave. Applird Oreall Reararth 17.13 it.

Appendix A

Intersecting wave theory

A. 1 Introduction

The theory of multiple wave interactions presented be Ohama. Jeng, and Hon (IO9.7a) has been nsed for two puposes in this work. The mose important function was to stoges a form for a general thre dimensional potemial fumetion representime interacting waves. The form chosen is presented in (hapter f. It also providerla theoretical method for gemerating a complete. consistent set of recorde to nse for the derelopment and testing of the L.FI mether. This appendix presents a review and detailed critigue of the intersecting wave theors.

A. 2 Theoretical Background

Ohyama ot al. \therefore method is an extension of well accopted ather verified methorls. It is exsentially a Stoke lype expansion in the wate seepmess. As - heh. it is expected have greatest applicability in deep water. The llow is taken to be irrotational and incompressible. and thus the goveming equations are the same as those twed in chapter t and for most finite deph irrotational wave theory:

- Mans consertation (Laplace equation) (Eq. L.:)
- Bontom boundary condition (Ey. 4.3)

- Moditied kimematic free suffare homdary comelition (Eq. L. (i)

There is no acommontation for an Enlerian current. athongh it migh asily be inchated in finme work. The momedimemsional potemial fumetion, water mefare, and
 is a typal ware nmber and "is a typiral amplinde of the firs order compenent of the water surface.
 the freplonery of the ith wave at order n. The serephese of all the interserting wate
 to ner an expanion parameter based on the pheseal wave height rather than the amplimde of the firs order componem (Fenton lomot. This is mot leasible with intersecting waves as there is me cleaty defined wave heright. While net ideal. stoken metheds haved on this tion order expansion parameter can be effective skjeltreia
 near limit waves or shallow water.
(ate man be taken when computing a given order solntion when multiple part of the solution ate all expanded in a perturbation series. In this case. the potemtial
 function and water surfare are dependent on the full oder frequenc: Ledeally: a given order component will depend only mpen parameter of the same orter. In this ases. howerer. the full order frequency must first be computed and then meed as the frequency at all orders. If the order of the frequency used was matched to the orerer of η or obeing computerl. the resulting solutions would be ont of phase. with.

 full order frequencios at all odero of orat $1 /$.

The first order solution for X interserting wave is the familiar superperition of limear waves:

$$
\begin{align*}
& \Delta^{(1)}=\sqrt{\text { ! } / 2: \text { tanh } k / h}
\end{align*}
$$

The higher order solution are computen be applying the Laplace equation. the

 potential function. Which was not presenterd.

A. 3 Analytical Verification

Ohyama et al. provided a mumber of comparisons with other wave theories. When the methorlis applied for a single wave componemt. it represents a storly wave. and as such shand be expected to provide the same solution as conventional stoke theory: The ambers peremerl a comparison with the Fenton (l!sital solution. The Fenton solution is hased on an expansion patameter based on the wave height. rather that the first order amplitude: $i=k \cdot / I / 2$. By solving for i in terms of the e. The two sotutions were fomen to coincide exactly:

When applied for two wate componemt of the ame wavelengeth. ame amplimbe. and opposing dieretions. the solution is a standing wate. The resulting solution
 for one coefficient. The anthors sugest that the slight dierrepater is the result of a typeraphical error in (hens paper.

Ohyama et al. abow indicated that they compared their whotion with those fer
 fomul essmially perfect agrerment.

A. 4 Numerical Verification

The above theoretical verifieations indirate that the methed is correct when reduced to two particnlar simplitications. It remains to verify that the method is acomate when applied to a more complex sitmation. Winh a mumber of intersectine waves of differem heights. directions and wavelenge his.

The actual computation of the gemeral solmion is quite complicater and contains a very large momber of coefficients that mast be computed. Deppite this complesity. once the coele is written and delmgend. it is a trivial matter for monern computer to alculate the full solution. It is mot. howerer. a trivial inatter to write the coske without erress ore indect. to find the likely spographical errors in the publisherl
 erratum (Ohyama et al. log-in).

In additional error has been fond and contirmed bey persomal commmication

As a result of the complexity of the computational corle. it is alvisable to nse mumer-
ial methodis terify the validity of the solution and resulting computational cole. The following results were perluced be a Fortran coele derised from the coele writen and gemeromsly provided by Takmi Ohyama that was need to compute the water surface phos given in (Ohyama en al. lognal. The coole was expanded to compute the full kimematio.

A.4.1 Richardson Extrapolation

 for mmerical werification of wave theory code. Richardson extrapelation (alow known as extrapolation th the limit) is a method tratitionally wed to increase the acruater
 arlaptation. the methorl is used to simultaneomely check all the terme in the oblution. and to provide an estimate of the order of the accuracy of the result.

The form of Ohrama of al. solution solves the field equation (Laplaceland the bot tom homdary condition exactly. It is expectedto satinfy the free surface bommary conditions to the order it is applied. The following methol calculater the weder of acomary of the free surface bomblary conditions. ('lassical Richardson extrapolation is ned to eraluate the error of a solution at a given point in time and pace. By: taking adantage of the periodicity of wave motion. Fentonㄷariation ran be need to evaluate the sohmion thromehom a complete wave.

Single Wave

The solution for a single wave is perioelic and smomedre abont the crest and then the error in cad of the bemodaty conditions can be expanded in a single sided Fontior series:

$$
E(c)=\sum_{k=1}^{k=0}\left(r_{k} \cdot(c) r^{k-/ t}\right.
$$

Fomrier (iomponent. (k)	11	1	\because	3	$!$	-	(i
Order of LFSBC' ertor	\because	2.11	2.11	$\because .11$	\cdots	2.11	$\underline{-11}$
Order of DFSCBC error	3.1	\because	\because	\cdots	2.0	2.10	$\because 1$

Table . I. : Oreler of artors for a single wave comprited to order 1

Fomrier (omponent. (k)	0	1	\because	3	4	7	6
Order of KFSBC error	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Order of DFSBC error	3.19	3.0	3.0	3.0	3.0	3.0	3.0

The magnitule of this ervor. and the sach of the coefficients can be expatmed in a first order Taydor series.

$$
\begin{equation*}
\left(k_{k}\left(c_{k}\right)=r_{k} c_{i}+1\right)\left(\varepsilon_{k}^{\prime}\right) \tag{.1.}
\end{equation*}
$$

These coedficients ate a function of the small patameter. a and thes are a finction of " at mh urder. $\varsigma_{k}=6^{\prime \prime}$.

$$
(i, 10)=3_{i} e^{2}+()\left(a^{2}+4\right)
$$

When the discreet transfoms of the errors are computed for two different value of . an approximation for the $" k$ can be computed, giving an appoximation to the order of the ertors of each harmonic in each lommary condition.

$$
\left.n_{k}=\frac{\log \left(c_{k}\left(e_{2}\right) /\left(c_{k}\left(c_{1}\right)\right)\right.}{\log \left(t_{2} / f_{1}\right)}+O\left(c_{1} \cdot\right)_{2}\right)
$$

Table d. 1 presents the results for a single wave. computed to order 1 in dep water
 serond order in hoth of the bomdary conditions. indieating that the comprotation is accurate to first order.

Tables A.I throngh A. 4 present the results for the same wave computed to serond throngh fometh order. These results indicate that the error in both bombiary

Fomrier (ommenent. k \%	$1)$	1	-	.	$!$	-	1.
Order of LFSBC error	1.1)	1.0	1.0	1.0	1.0	1.11	1.11
()rder of DFSBC error	1.11	3.9	1.0)	4.1	1.11	1.0	1.1

[able . . 3: ()rder of errors for a single wave computerl worder 3

Fonrier (omponent. $\mathrm{kl}^{\text {a }}$	0	1	\cdots	3	4	-	(i
Orter of KFSBC error	- . 0	5. 0	- . 11	- I^{10}	$\therefore .11$	- 7.1	- 3.1
Order of DFSBC error	4.8	- 0	\%. 0	- 0	5. 0	- .10	- 010

Table A. 1 : Order of errors for a single wave computed to order 1
conditions is of at least one order higher than the order meed to compute the rexilts. These resilts serve to contirm the efficacy of the Richardson extrapotation methorl. as well as the arcurary of the wave theory up w fourth oder.

Standing Wave

 wo waves of the same wavelength and amplitude. and opposing directions. In this case. the wave is not steatly and the errors in the free surface bemblary conditions must be considered for a full period in time and full wavelength in pace. The extrapolation to the limit method can be extended to this case be expanding the free surface errors in a two dimensional Fourier series (Newland 199:3).

An estimate of the orter of the errors can then be computerlin a similar mamer as Eq. A. 10. The results of this computation for a standing wave in deep water $t \cdot / h=100$. $\epsilon_{1}=0.01 . \epsilon_{2}=0.0 \underline{2}$ are given in Tables A. $\overline{5}$ and A. 6 . There are no values given for the zeroth order in time of the kinematic boundary condition because ('ie)k.u for both values of are zero to the precision of the calculation. so the values computed are spurions. These results indicate that Ohyama et al.s methorl is also accurate to

Fommier ('ompnoment. (k)	11	1	\because	3	1	\%	$1{ }^{1}$
$1=1$	-	-	-	-	-	-	-
$1=1$	- .11	- 1.1	- 7.11	- $\mathrm{O}_{0} 0$	- 7.11	- 1.11	- 7.11
$1=1$	- 9.7	-. ${ }^{\text {a }}$	I.	- 7.1	6.2	-i.i	6.1
$1=3$	- . 0	- . 11	9.11	- 9.0	- 0	5.11	- 8.1
$1=1$	1.19	$1 .!1$	6.1	- 010	-	$\therefore .2$	- 3
$1=.7$	1.9	- 1.1	4.1	- 1.11	- 7	5.1)	- 8.0
$1=6$	- 01	9. 11	5. 1	- 010	5. 0	5.11	5.3

Fomrier (omponemt. (k)	11	1	\because	3	1	I	$1 ;$
$1=1)$	3.10	-. 11	5. 5	7. 11	-	5.0	- 1
$1=1$	3.1	- 7.1	1.1	- 0.1	$1 .!$	-. 11	-. 01
$1=1$	5.1i	- . 11	- 5	- 20	6.7	5.1	5.3
$1=3$	- .1	. 7.1	- 7.1	- 1.1	5.0	5.11	- 7.11
$1=1$	6.1	- 2	6. 3	- 1.1	Si	$\therefore . \overline{ }$	5.3
I=.7	4.9	-. 0	\therefore -	- 7.1	$\therefore .1$	5. 0	1.9
$1=1 ;$	5.3	- 0	5.9	. .10	1.7	-. 0	- .3

appeximately fifth order for a standine wave.

A.4.2 More Complex Seas

Fentonis methor relies on the periodicity of the solution to be tested. If the solntion is not perionlic in pace and time. then the errors in the homelary comelitions will not be periodic. and the Fourier expansion camot be strictly appled. Fomer coefficients conld still be computed ber assmming periorlicity. but the discontimity generated be the assmption of periodicity wonld generate spurions results. These conld be minimized ber taking a large number of points over a large range in time and space. but this would become very computationally intensive.

The accuracy of any appoximate solution can be measured be examining the

order (in)		-"	IFSSBC ertor	1)FSBC crmor
1	1	111^{-1}	$1 .!2) \cdot 11^{-2}$	$1.03 \cdot 10{ }^{-2}$
\because	1	10^{-2}	$3.13 \cdot 11^{-7}$	$1.11 \cdot 11^{-}$
3		$\cdot 100^{-!}$	$1.29) \cdot 10^{-1}$	$9.33 \cdot 111^{-1}$
1	1	. 100^{-1}	$3.12 \cdot 11^{-4}$	$1.10 \cdot 10^{-1}$

 partiontarly powerful mether for examining the se errors. in that it consilers an entire wavelengthat period at once and give an entimation of the order of acruracy of the solution. I simpler appreach can alow be nefol and be miversally applierl. In the
 ate exactly satisfied at all oders of appoximation. If the solution is acomate. the errors in the free surfare bomblaty combitions will derease with each increase in the order of appoximation. While this method does mot gratather that the solmion is
 in the acouracy of the rewhlt at the order in which the ertor orme.

 a grid of points ene wavelength in both horizontal directions. and wer one period. In this ane the errors in the free surface bomatary conditions decreane with increasing order of solition. It shonld be noted. however. that the errors do not decrease as much as ${ }^{\prime \prime}$. This might be patiatly due to the fact that the frempency is expressed to only second order. Includine the fourth order frequence womb probaldy reduce the error at fomth order. This behasior watants clomer examination, particulaty if the method were to be expanded to higher order.

A. 5 Depths of Validity

Sthe method is very smilar to Stoke theory it is experted whe valis in a simitar ratue of depths. Stokes theory is valid if both and the parameter. ((him)'. . imitar to the l'red momber, are small (Fenton lanial. This indieates that the methed has optimal applicability in deep watere and should not be applied in shallow water.

- 1993. Applied Image. Inc.. All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

