UC San Diego

Research Theses and Dissertations

Title
Directional Irregular Wave Kinematics

Permalink
https://escholarship.org/uc/item/9v33t9gXx

Author
Barker, Christopher H.

Publication Date
1998

Peer reviewed

eScholarship.org

Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/9v33t9gx
https://escholarship.org
http://www.cdlib.org/

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additiona! charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NOTE TO USERS

The original manuscript received by UMI contains broken,

slanted and or light print. All efforts were made to acquire

the highest quality manuscript from the author or school.
Microfilmed as received.

This reproduction is the best copy available

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Directional Irregular Wave Kinematics

by

Christopher Hemingway Barker

B.A. (Oberlin ('ollege) 1992
\LS. (University of C'alifornia. Berkeley) 1993

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy
in
Engineering-C'ivil Engineering
in the

GRADUATE DIVISION
of the
I'NIVERSITY of CALIFORNIA at BERKELEY

(‘ommittee in charge:

Professor Rodney .J. Sobey. (hair
Professor Robert L. Wiegel
Professor William (. Webster

Dr. Steven A. Hughes

Spring 1993

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 9901987

UMI Microform 9901987
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Directional Irregular Wave Kinematics

Copyrieht Spring [99x
by

Christopher Hemineway Barker

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The dissertation of Christopher Hemingway Barker is approved:

R. T Sobey 23Jaw 4¢

Chair 7 q Date
. .//// , .

e s 45478

/ / Date

Adof Folides sy ([ Fl- 1995

i Date

\ /o .
%ﬁf g/ /éu/zé—\ / ,}9? ;5
Date

University of California at Berkeley

Spring 1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To Donna Lohmann Barker.

For her patience. and for heing in my corner almost all the time.

To Ella and Etta. myv ever present furry friends.

And to Marcia Greenblatt. for always being there on a parallel course

to mine. even though she finished a few months too carly!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

1 Introduction and Review
of Current Methods

L.l Background . . oo

1.2 Methods for the Interpretation of '
[rregular Wave Records o 0 00 00 o0
1.2.1 Global NMethods 0000000000
1.2.2 Local Methods .00 00000

2 Two Dimensional LFI Theory

2.1 Problem Formmdation . . 0 o o o000 oL
200 Dynamies o000 0oL L
2.2 Finding the Solation . . 00 00000

3 LFI Method for a Point Pressure Record

3.1 Formulation of Solution . . .. .0 o000
3.2 Fornmmlation of the Optimization . . . . . ... .. ... . ...
3.3 Computation Methods 0000 000000000000
3.3.1  Pre-Processing of Record . 000 000000000
3.3.2 0 Optimization Procedure 0 00 00 00000000 L
3.0 Theoretical Records . o 00 0 000000000
3.1 Choosing Parameters of Solution . . .0 .. 000000 L.
3.5 Laboratory Measurements . .0 0000000000
3.6 Disenssion 0000000

4 Three Dimensional LFI Theory

L1 Three Dimensional Seas . . 0 0 0o o0 oL,
L2 Problem Formulation . . . . .. . . .. ..
1.3 Formulation of the Solution in each Window . . . . . . .. ... ...
3.0 Background ..o oL
1320 Dynamies L0000
.1 A Local Two-Intersecting-Wave Theory . 0 0 . 0 00000000 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59
GO
60
63
63
606

m



LD KNinematies o0 0 o o,

5 Array of Water Surface Traces
S.1 0 Formudarion of Solntion .
5.2 Formulation of the Optimization. . . . ... . 0.0 ... ...
2.3 Computation Methods 0000000000000
5.3.1 0 Pre-Processing of Record o L.
3.3.2 0 Optimization Procedure 0 00 0 00 000000

5.0 Theoretical Recovds o 0 0 o 0 o
5.0 Sinele Wave Records
3.2 Records of Two Intersecting Waves

-t

Laboratory Measurements . ... 000 0000
5.5.1  Laboratory Experiment .
5.5.2  Laboratory Resnlts

A6 Disensston oL L

6 Array of Subsurface Pressure Measurements
6.1 Formulation of Solution .
(.2 Formulation of the Optimization . .
6.3 Computation Methods
6.3.1  Pre-Processing of Record © . 0 0 0 00000000
6.3.2  Optimization Procedure
6.1 Theoretical Records . ..
G.L 1 Sinele Wave Records
6. 1.2 Records of Two llllvl'.\«'(‘ling’ Waves
6.5 Field Measurements .
6.0.1  Field Resulrs
6.6 Disenssion

7 Conclusions
.1 Future Work .
Bibliography
A Intersecting wave theory
A Introduetion 0000000000000 L
A2 Theoretical Backeround . . 00 0 000000
A3 Analvtical Veritication
AL Numerical Verification C e
AL Richardson Extrapolation . .0 00 00 0000000
AL2 More Complex Seas . . . o oL oL
A Depthsof Validieney . o000 000000 . e e e e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A BV )

/s =

=1 =1 =1~ =]

/

90

i)
105
116
[
1S
121

123
123
126
128
124
129
135

£35

139
LS
LD
151



v
Acknowledgements

The work described and the results presented herein, unless otherwise noted. were
obtained from rescarch funded by the Sconr Holes ar Inlet Structures work nnit of

the TS0 Ay Corps of Engineers. Coastal Fneineering Rescarch Center.

The laboratory results presented in Chapter 3 were kindly provided by Muorray
Townsend and John Do Fenton of the Anstralian Maritime Eneineerine Coopera-

tive Rescarell Center at Monash University, Melbourne, Australia.

The laboratory data presented in Chapter 5 were collected with the assistance of
Dr. Steven . Hughes and the technical statl of the U.S. Army corps of FEugineers.
Waterwayvs Experiment Station. Coastal LEneineering Rescavch Center. Vieksbhure.

Mississippi.

The Field data presented in Chapter 6 were provided by Gary L. Howell of the TS,
Army corps of Engineers. Waterwavs Experiment Station. Coastal Fueineerineg Re-

search Center. Viekshura. Mississippi.

The Fortran code presented in Appendis .\ was based on code kindly provided by

Takumi Obyama of the Institute of Technology. Shimizn Corporation. Tokvo. Japan.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction and Review

of Current Methods

1.1 Background

Wave Kinematies are involved in most processes that coastal eneineers stuey.
Knowledee of Huid veloeities and accelerations are necessary for the study of the
wave loading of structures throngh the use of the O Brien-Morison equation. Nnowl-
edec of the kinematics near the sea hed are necessary for studies of sediment transport
processes. For this reason. it is important that wave measirements he interpreted as
acenrately as possible.

Despite the need for good data on the kinematies of waves. it is impractical to
measiire every parameter of interest. [na given situation. one might need 1o know the
velocities, aceelerations. and pressure Huetnations throughout the depth at a given
location. While. in the laboratory. it might he possible to measure these gquantities
at many locations. it wonld he very expensive. and it is totally impractical in the
field. A pragmatic approach is to measure just a few qnantities. and to nse a wave
theory to compute the balance of the parameters. This approach can give a complete
desceription of the kinematics from ouly a few measurements. Unfortunately. the
accnracy of this approach is limited by the acenracy of the adopted theory. as well as

the accuracy of the measurements themselves,
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A number of wave theories have been adopted in an etfort to deseribe the kine-
matics of waves. The most accessible aud frequently nsed of these is Airv wave theory
falso known as linear theory or first order Stokes theory). \iry wave theory is casv
to nse. but has a number of imitations. The sonree of these limitations is the sim-
plifications of the governing equations of gravity waves that are made to lincarize the
equations. allowing a straiehtforward solution. These simplifications ave made in the
free surface houndary conditions and are justified by an assumption of small wave
amplitude. Simplifving the free surface bonndary conditions reduces the acenraey
of the predicted kinematies. Unfortunately. this compromise is at the free surface.
which 1s the location of the areatest Huid velocitios and aceelerations in waves. aned
thus frequently the most important to the forcing of structnres. The assumption of
small amplitude also renders the theory inadequate for large waves, exactly those of
greatest interest 1o coastal engineers,

In order to address these limitations. a nnmber of high order steady wave theo-
ries have been developed. Commonly in nse are Stokes. Choidal. and Fourier wave
theories. For a review of these. see Fenton (1990). [n ecneral. Stokes methods are
successful in deep water. Cnoidal methods in <hallow water. and Fourier methods in
all depths of water. Within their hmitations. all three of these methods provide ex-
cellent predictions of the kinematies of steady waves. but are not directly applicable
to the irregular waves commonly fonnd in the field. With the possible exception of
swell conditions on a very mild-sloped hottom. waves in the sea are neither steady.
unidirectional nor monochromatie.

Methods for the interpretation of measurements of real sea states relv on \irv wave
theory even more heavily than do steady wave methods, \With modern computer sys-
tems. even the most complicated of high order steady wave theories is quite accessible.
However. such higher order theories are not directly applicable to multi-directional or
multi-chromatic waves. The lincarity of Airy theory allows superposition. in whicl
any combination of waves of different frequencies or directions can be combined to
form a solution. Superposition allows real sea states to he casily characterized by
frequency and direction spectra. While accessible. this method results in solutions

for the kinematics of the waves that do not satisfy the full free surface houndary
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L "wave"

Fienre .1 Seement of record considered for global approximations

conditions. and thus do not take into account the interactions hetween the mndividual

waves,

1.2 Methods for the Interpretation of
Irregular Wave Records

Methods used for the illl('l'|)l'(‘laliull of irreeular wave records fall into two eeneral
categories: global and local approximations. Global methods seck a solution that
matches an entive measnred record. or a single complete measured wave, from troneh
to following trongh. or zero crossing to zero crossing (Fig. 1.1). These methods apply
the same frequeney and wave number (or set of frequencies and wave numbers) for
all = (vertical variation) and ¢ (time).

Local methods. on the other hand. seek an approximation to cach small local
segiment of a measured wave, [n these methods. the frequeney and wave number still
apply for all . bur are allowed to vary with time. providing a separate solution in

cach small window in time (Fie. 1.2).
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Local Segment

Fieure 1.2: Seament of record considered for local approximations

1.2.1 Global Methods
Spectral Methods

The most commonly used global method for the analvsiz of irreeular waves is
spectral analysis. coupled with superposition of linear waves. Spectral methods hased
on a single point measurement scek to define the sea state with a vatiance spectrm.
Lty which specifies the contribntion to the varianee of the water surface at cach
frequency. o In practice. the spectrum is defined in diserete forn, with the water
surface described by the superposition of many lincar waves.

\Y

oy by = Z t,, cos(h, (rcostl, +ysinf, ) —o,t+a,) ol

m=l
where 1 is the elevation of the water surface. &, and b, are the frequency and wave
number of the mth wave. 4, ix the direction of propagation of the mth wave and o,
ix the phase of the mth wave at the origin of the coordinate svsten.
The amplitndes are found from the discrete variance spect .

w, = 2B, )AL (1.2)

where A is the frequency spacing of the discrete spectrum. The frequency and wave

number of each of the M waves are related by the linear dispersion relation.

...‘,':I = _ljl\',,, tanh A',,,/I (1.3)
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where g is the aceeleration of eravity. and /is the mean water depth. The dispersion
relation defines the phase speed of cach component . allowing cach separate component
to move independently, without interaction with one another. Any Fulerian enrrent
i~ not included n this relation. and is cenerally ignored in spectral methods.

The diserete variance spectrium. F. can be computed from a water surface or <uh-
sirface pressure record Iln‘ullull thv 1se nf variations of the Fast Fourier '[.l'illl.\l'()l'lll
( Dean and Dalvvmple 1991 Newland 19935, .\ point measnrement provides no in-
formation about the direction of propagation of the waves, 6, . [t is usnally assumed
that all the waves are propagating in the same direction. Once the amplitnde. fre-
quency. wave nuniher and phase of cach individual wave are detined. the Kinematies
and dynamics of the wave field can he computed by superimposing the kinematies of

cach individnal wave. as predicted by linear wave theory.,

Directional Spectra \When measnrements are taken by an arrav of instrinments.
the directional nature of the sea can be described by a directional spectrum. St ).
In this case. the water surface is represented by a laree unmber of linear waves of

ditferent frequencies aud directions:

\

AY)
na.y. ) = Z Z ., costh o trcosfl, —ysint v — o+ a, Lt (1.0

wliere:

o= v 28w AN £1.5)

and Ao and A are the sample spacing of the discrete spectrum in freqnencey and
direction space. «, and b, are once again related by the linear dispersion relation
(L. 1300 The directional spectrum is nsually hroken down into two parts. the one
dimensional variance spectrum. Eic). and the divectional spreading fanetion (DSEF).
Die )

St )y = Eic)yDie. ) (1.6)

where Eiw) is the variance spectrum detined above. and

/ / Dic.ydbde =1 (L.
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There is a areat deal of iterature about how to hest determine the DSE from a variery
ol arrangements of measurements, Current practice is reviewed in Mansard (1997
Unfortunately. all of these methods are limited in theie ability to detine acenrately
the DSE.

The time series measurements used to determine the variance spectrnm commounly
include in excess of 1000 points in time. This mnch data in the time domain allows
a very high resolution computation of the spectrum of a stationary process in the
frequency domain. In the spatial domain. by contrast. there are only as many data
points as there arve instroments in the particnlar measarement array. This may he
as f[ew asx three. and perhiaps as many as a dozen. hut it is 1oo expensive to use
many more than that. A~ a result. there is little information to detine the DSE. For
example. when data from an array of three instrument s is analvzed by the standard
inear method. the DSE can be specitied by only tive independent coetlicients ¢ Dean
and Dalrviaple 1991). While these few coefficients mayv serve well for determinine
integral properties. such as the mean direction and radiation stress. it is not enonah
information to acenrately specify the complete Kinematies,

Another difficulty arises when determining the <pectrum from measurements other
than wave statls. Most often. subsurface pressiure ganees or a combination of pressure
ganees and orthogonal velocity eanges are nsed. In this case. the measured quantity
must be refated by a transfer function to the equivalent water surface. The transfer
function is most commonly determined from linear wave theoryv. This use of linear
wave theory once again contributes to errors in situations where linear theory is not
entirely appropriate. Bishop and Donelan ( 19571 discuss the ditlicnlties in determin-
ing the transfer function from a subsurface pressure measurement to the equivalent
water surface.

The commonly used methods for determining the DSE are statistical methods.
in that they rely on the assumption that the phases of the individual components
are randomly distributed. This assimmption allows the DSE to be computed by dis-
regarding the phase information. Unfortunately. without the phase information. it is
impossible to reconstrnet the detailed kinematies. only statistical deseriptions can be

formulated.
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FEven il a frequeney or frequeneyv-direction spectrum has heen acenrately deter-
mined. these methods have a number of shorteomings when nsed 16 prediet the kine-
matics of irreeular waves. Shortcomines include the inaccuracies inherent in linear
wave theory, particularly in shallow water and with large waves,

Anadditional difficulty arises from the superposition of many waves. This problem
i~ known as high frequencey contamination of the erest kinematies ( Forristall 1985: Lo
and Dean 1956 Bishop and Donelan 19571, Fundamentally. the ditfienltios arise
from the approximations made by linear wave theory in the free surface bhoundary
conditions. In lincar theory the free surface bhoundary conditions are applied ar the
mean water level. and thus predictions made above that level are strictly ont of
the ~olntion domain. If the full free surface boundary conditions are not satistied.
the resulting predictions will he inaccurate. particularly near the free surface. Iy
particular. the hyperbolic funetion quotients that define the vertical variation of 1he
Kinematics beeome very large in the region above the MWL for the high frequency
tand high wave nnmber) components. This results in substantial higl) frequency
fluctnations in the predicted kinematies near the erest.

Inan attempt to reduce the inaceuracies in linear superposition’s predictions of the
near surface kinematies. empirical moditications to Airv theory have been adopted
(Wheeler 1969: Lo and Dean 1986). This method. known as Wheeler stretehine.
locally adjusts the vertical dimension 1o prevent the evalnation of the hyperbolie
quotients from being evahiated above the MWL, The result is a hyvbrid slobal-local
method in that the frequeney. wave numbers. and amplitude of each wave are deter-
mined globally, hut the coordinate svstem is defined locally. varving with time.

The stretehing method produnces predictions of crest kinematies that seem to
mateh measured data better than simple linear superposition. but it no loneer satis-
ties cither the Laplace equation (mass conservation ). or the full free surface boundary
conditions.

Another attempt to improve on the accuracy of determining the kinematies from
directional spectra is the recent work by Prislin et al. (1997). and Prislin and Zhang
(1997). This method seeks to reconstruet wave kinematies from a directional spec-

trum using a second order Stokes-tvpe interacting wave theory. The spectrum is
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decomposed into a set of individual free waves, with from one to tive directional free
waves per frequency. The etfects of the second order interactions are subtracted from
the measured vecord 1o determine the amplitudes and phases of the individual free
waves throngh an iterative procedure. This vesults in an expression for the potential
funetion and water surface that includes a full set of many free waves. and the corre-
spounding second order hound modes. The method succeeds in globally reprodacine
the measured kinematics in the given deep water field records quite well. althoueh
the Targest errors are in the vicinity of the erest. where velocitios are areatest. and
accuracy s niost important.

Another limitation of the Prislin and Zhang method is that the nonlinear interac-
tions are computed through the nse of a Stokes-type perturbation expansion in wave
steepness. Based on experience with steady waves, a second ovder expansion of this
type is likely 1o be adequate in deep water. hut if the method were to he applied
- transitional. and especially in shallow water. a much higher order representation
would be necessary (Fenton 1990). While it is theoretically possible to extend the
method in this manner. it wonld increase the magnitude of the computation substan-
tially. perliaps prohibitively. Representing an entive record in the alobal sense requires
many interacting free waves, Considering their interactions at high order wonld pro-
diee huge nmbers of interacting terms that must be considered.  An aliernative.
local. approach would need to consider far fewer interacting waves.

Other global methods rely on zero crossing analvsis to identify particular waves
that are then analyzed by nsing steady wave theory for a wave of the same height and
period. This approach can provide an order of magnitude estimate for the kinematics.,
but does not take into acconnt the detail of the vecord. and thus can not be expeeted
to consistently provide better than order of magnitude acenracy.

To include the detail of the record in wave by wave analvsis. Dean (1965) adapted
his numerical stream funetion method 1o irregular waves. seeking a Fourier expansion
for the stream function that includes both cos jihe — ) and sin jihke — of) terms.
The method optimizes the Fourier amplitudes 1o hest solve the free surface houndary
conditions at the measured water surface elevations from trough to followine troneh.

While this approach takes into account the detail of the record. the method inchides
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: = ygiwater surface)

Fiaure 1.3: Coordinate svstem for Lambrakos-Baldock-Swan met hod.

ouly a single free mode. with all other included components heing bound modes
traveling with the wave at the same phase speed. thns representing an asvinmetric
wave of permanent form. .\ solution that does not allow a change in form is unlikely
to acenrately capture waves in deep water. where frequencey dispersion can lead to
trausient extreme waves. or. indeed. in shallow water where shoaling effects canse a
change in form as the waves progress.

Seeking to improve on global methods. Lambrakos ( 1951) developed a method for
determinine the kinematies of two dimensional irregular waves that inchides many
free modes. and thus nnsteady motion. Baldock and Swan later retined Lambrakos
method. applying it specifically to large transient waves. first in deep water ( Baldock
and Swan 1994, and then in shallow water (Baldock and Swan 19961, Baldock
and Swan’s method adopis the following potential function that is a double Fourier

expansion in space and time:

vVoovg
TR A Z Z coshi(nhzy (L, costnhe —met) + B, sintnkr — )
n=1 m=1
(1.8}
where koowo L., B,, are global constants. and = = 0 at the hed (Fig. 1.3).

In this potential function each frequency component (1ne) has a corresponding set

of wavelengths (nk). allowing cach component to travel at distinet phase speeds.
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This approach can accommodate both steady and unsteady wave forms by includine
both a set of free waves and a corresponding <et of bound modes. Periodicity over
time and space is assnmed. The record is not likely to be periodic. o the duration
ol the record is assigned as the fundamental period. (2772). and the fundamental
waveleneth, (23 /4) is fonnd as part of the solution. The method uses a nonlinear
optimization to tind the coctlicients. 4, and £, . the fundamental wavenumber.
b and the Bernonlli constant that prodinee a solttion that elobally satisfies the fufl
free surface houndary conditions.

[n order to accommodate the unsteadiness of the wave |)l'n|ih'. the evolution of
the wave i space must he known. This is accomplished by applving the free surface
boundary conditions at many locations in time and space. Sinee the elevation of the
water surface nsually is measured only at a single spatial location. it is predicted at
the other locations as part of the solution. The potential function (Eq. [.N) exactly
satisties the bottom boundary condition and mass conservation. In order to find the
solntion that hest tits the free surface boundary conditions. the method seeks a set
of coetticients that minimizes the sum of squares error in both of the free surface
bonndary conditions over a erid of nodes in time and space.

Baldock and Swan identified a difficulty in this basic method. as the squared error
was equally considered at all of the nodes. most of which were at locations in which
the water surface elevation was also unknown. This resulted in solutions in which the
error in the bonndary conditions was greatest at the location of the measurement.
The ditticulty was mitigated by a weighting funetion. multiplving the dvnamic free
surface houndary condition errors at the measnred location by a factor of 30 in the
sim of squares caleulation. to force the solution to match well at that point.

Comparisons of their results with laboratory data were quite good. hut the method
has a number of limitations. These include a hnge matrix of nnknown coeflicients that
must be found simultancously (20 M NV + 1) nuknowns. with typical values of M and N
of IN. for a total of 650 unknowns). and the method must solve for the water surface far
from the measurement location. removing the focus from the actual measured data.
The method makes no assumptions about the steadiness of the wave ticld: however. it

extends the horizontal bottom assumption and introduces unnecessary complication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[

i its attempt to capture an entire seament of an unsteady wave field with a sinele
expression. This complication would become at least an order of magnitide ercater

il the method were extended to include the second horizoutal dimension.

1.2.2 Local Methods

Nielsen 119560 1989 ) introduced a method that nses a local frequeney and linear
wave theory o find the location of the water surface from a pressure record. In this
method. the wave in the region of cach measured point is considered to be a small
~cament of a linear wave. so that the pressure record is locally represented by a sine

function.

p=\ sint . —a,) il.9
su that:
PoLap
| ! (110,

- = \/ —/—)7/7

Estimating the curvatnre by tinite ditferences, the local frequency bhecomes:

S — —_ +2 [ -
I el Sl il .2 (LD
\/ /ﬂ,,A/'

where A/ is the time spacing hetween points. Alternativelv. o can be computed from

- =i(-(,,——' <l_'_"ﬂ:_'_) i1.12)
N 2,

which is exact for a sinusoid.

triconometric identitios,

Once the frequeney has been determined. the wave number is computed from the
linear dispersion relation. . 1.3, The water surface elevation can then be computed
with the linear pressure response function:

o coshih, Iry "RET

" pg coshk, 3

where z, is the elevation of the pressure measurement above the hed. and Iris the

mean water depth (As the method is a local method for the interpretation of a point
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measurement. the local mean water depth is nsed. rather than the elobal <till water

depthn. This may be adapted somewhat by using a variation of Wheeler stretehine:

e (k. (h+=))

7Y coshi b, 2

. h

1

Niclsen also presented an alternative approach. which nses a semi-empirical trans-
fer function derived from Fourier wave theory to compute the water surface elevation
frone the measured pressure and local curvature of the pressure record. While quite
accnrate at reproducing the water surface. neither method supplies the kinematies,
nor do they satisfv either mass conservation and or the free surface houndary con-
dittons. Despite these limitations. the efficacy of these methods demonstrates the
potential for the local approach.

To tuterpret hottom pressure measurements in the context of the kinematies while
preserving the full governing equations. Fenton i 1986G) presented a method that em-
plovs a local polynomial approximation to the complex potential fanction. In Fenton's
method. the potential function and water surface are vepresented hy separate poly-

nomials in cach small window in time:

\/
. o s -
Ao —cl.oy)y+ v —cet y) = ; — ([ — ™! Y
= I -

\/
I/(.l’./):ZI)J(.I‘—('/ ) (L. 160

=0

where = = o 4+ 7y. y = 0 at the bed. 1 is the water surface. ¢ is the wave celerity.
and the o, and b, are real. The wave is assumed to propagate at <peed. ¢, without
change in form. While steadiness is not a valid assiumption in the elobal sense. it is
only applied locallyv. within a small window in time.

The method solves for the coefticients. a, and b, and the wave celerity. . that
satisfv the full nonlinear free surface houndary conditions and fit the measured pres-
sure record. This approach provides the complete kinematies and satisties the full

governing equations. Based on a polynomial variation with depth. it works well in
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shallow water. where Cnoidal methods with polvuomial vertical variation are theo-
retically appropriate. \t the same time. it may not he applicable in transitional or
deep water. where Stokes type methods. based on an exponential variation in the
vertical. are theoretically more appropriate. In a later paper. Fenton and Christian
CLONYY presented a stmplitied version of the method that required less aleebraic ma-
nipulation. and was still found to be effective in shallow water. In this case. the local

wave celerity was assumed to he that eiven by lone wave theory:
C= vy RN

While this is a reasonable approximation for long waves in shallow water. it was
not appropriate for shorter waves in deeper water. as might he expected from the
polynomial form and the long wave celerity.

To tind a method that could work in any depth of water. Sobey (14992) developed
the Local Fonrier Method for Trregular waves (LEFD. This approach emplovs a po-
tential function represented by a low order Fourier expansion in a <mall window i
time, It is a method derived for the analvsis of a point water surface trace. Local
frequencey. wave nnmber. and the Fourier coetlicients are sought that fit the measiped
record and the full free surface boundary conditions. The LEL method provides the
complete kinematies, satisties the full coverning equations. and is suceessful in all
depths of water. X more complete description of this method follows in Chapter 2.
Sobeys method shows a great deal of promise. but was only applied to the analvsis
of a water surface measurement at a sinele location.

Pressure sensors arve easy to deploy. and thus are often used to measire waves,
particularly in shallow and transitional depth water. The LEL method is extended
in this dissertation to the interpretation of wave measurements from a point pressure
sensor in Chaprer 3.

Point measurements provide no information abont the directionality of the mea-
sured wave ficld. Wind seas are not uni-directional. and knowledge of directionalits
has been shown to be very important in the prediction of the kinematies and foreing
of structures by real seas (Dean 1977: Forristall et al. 1975).

Arrays of measurements are frequently nsed in order 1o capture the directional
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nature of the wave tield. The LFI method has heen further extended in this disserta-

tion to the interpretation of arrays of water snrface measurements in Chapter 5. and

arrays of pressure sensors in Chapter 6.
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Chapter 2
Two Dimensional LFI Theory

[t is common to deployv a single measnrement device to gather information about
the wave field at a given location. Measurement at a single point in space does not
eive any information about the directionality of the sea state. hut if the wave field
i assumed 1o be locally two dimensional. a reasonable description of the kinematies
can be established. This chapter ontlines the LFI method as it is applied 1o the
interpretation of a time series from measurements taken at a single location in space,

stich as recorded by a pressure gange or wave statf,

2.1 Problem Formulation

The problem formulation for two dimensional irregnlar waves has mneh i common
with classical steady wave theory. The tlow is assumed to be incompressible and
irrotational.  The kinematies can therefore be represented by a potential funetion.
ot 2.t where

i)l) (’)(_')

= — =
i =

and « and « are the horizontal and vertical velocities. respectively.
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Fieure 2.1: Coordinate svstem nsed for the two dimensional metliod

Field Equation The ficld equation is mass conservation for irrotational fow. in
the form of the Laplace equation:
, (./':('J i/"r)
Vo = — 4 — = |} (2.2)
Aot i)z

Boundary Conditions The houndary conditions are the hottom houndary condi-

tion for a locallv horizontal hed (BBC).

i)y
w=— =1\ at c==h (2.3
)z

the kinematic free surface bhoundary condition (NFSBC).

an iy
w———=y— =1 at =y (2. h
7L a

and the dvnamic free surface houndary condition (DFSBC).

do L, 1, — -
7{; ‘ 5”- + 5“" +qy—0B=0 at =y (2.5)

where 1 is the elevation of the free surface. ¢ is the acceleration of aravity, and f3is
the Bernoulli constant.
The kinematic free surface houndary condition (Eq. 2.1} includes hoth the time

and spatial gradients of the water surface. When working with a subsurface salge.
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the location of the water surface is nnknown and part of the solution. When workine
with data trom a water surface probe. the location of the water surface at diserete
potnts i time is known. but the gradients in time and <pace are not. o order
to accommodate this lack of dara. the Kinematic free <surface houndary condition
15 transformed to eliminate the eradients of the water surface. Followine Lonenet-
Higeins 1 1962). the kinematic condition is subtracted from the the dyvnamic condition

differentiated following the motion:
S - D Ty
MENEFSBC = —gt INFSBC) = m( DESBC) i2.6)

Resultine in a moditied kinematic free surface bonndary condition:

iAo du A
— gt + 20— + 10—

at- )t 7L
L dJu

+ U — i —

da .

u e

- i =T — =} at T=
a: ()

This new form of the boundary condition does not inchude the gradients of the water
surface. Applyvine hoth the modified kinematic free surface boundary condition and

the dynamie free surface houndary condition completes the formulation.

Observational Equations In steady wave theory. periodic houndary conditions
are also imposed. forcing the solution to be periodic in both space and time. For
irregnlar waves. however. the periodicity is not known. Rather. the local <olution
is detined by a local seament of a measured record within a small window in tine.
together with the field equation and the bottom and free surface bonndary conditions.

[n order to define a solution that fits the measnred record. observational equations
are identitied. These equations will be ditferent depending on which quantity has
been measured. In the case ol a water surlace measnrement. they are the free surface
boundary conditions. applied at the measured elevations at a number of points in
time throughont the window (Sobey 1992). In the case of a pressure measurement.
they are the Bernoulli equation. applied at the elevation of the measurement. and

also at a number of points in time within the window (sce Chapter 3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



IN

Solution in Each Local Window .\ form for the potential function in cacli local
wittdow is based on Fonrier steady wave theory., This is the potential function nsed

by Sobey (1992):

<
-1

! b jhid =

. COSH Rt += 2, .

ot hy =100 + A — st Jthr — o i
: re ol kT S

=1

where (" and I ave the known depth-uniform Eulerian enrrent and mean water depth
tsee section 3.3 for a discussion of these important parametersy. ./ is the trnecation
order of the Fonrier series. L, are the Fourier coetficients. and o and A are the
local fundamental frequency and wave number. The above porential funetion exactlv
satisties mass conservation and the BBC. This form for the potential function is
pertodic in space and time. however the periodicities are not delined apriori. bt
found to fit the record. detining a local frequency and wave nmmber.

The measured record is broken down into individual seaments. cacl in a <eparate
window in time. In cach window. a different <et of the parameters o, b hrand A
are found to fit the segment of the measiured record. This represents that seement as
a picce of a larger. periodic wave. The entire record is then represented by <eparate

potential funetions. each applied to a particular window in time.

2.1.1 Dynamics

The potential function provides the complete kinematies. and the dynamics are
found throngh the unsteady Bernoulli equation:
‘o

yl 2 . T -E_" )N
m—-ztu T+ gr+ - — 0D = (=)

: ;
where pis the mass density of the water. and pis total pressure, Total pressire below
the water surface can be hroken down into three components. Atmospheric pressure
(1) 15 the pressure of the atmosphere at the water surface. hydrostatic pressure (pi))
is the pressure in the water column dne to gravity. in the absence of motion. Dyvnamic
pressure (pg) is the component due to the motion of the Huid. Separating these three

components focuses attention on the wave motion.

P= Pyt pa+ o, where PL= —pygs for =<y (2.9)
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When atmospherie pressure is defined as zero. and dynamic pressure is substitnted
into Fq. 250 the resalt is:
o) I,

) )," T
7-{—:|u'+u")+l——[f:” (2.10)
( - ke

The Bernoulli Constant

[n a potential fHow. the Bernoulli constant is the same throughont space and
time. TFor the special case of wave motion. the value of the Bernoulli constant can
be computed if the kinematies are known ( Longnet-Higgins 19755, The Bernoulli

equation (2.8) and the bottom bhonndary condition are applied at the bottom:

i L, e
.—)—T——l/,f—}'-t/:;,—%-lL—[)’:U (2.11)
ot 2 ) Iz

where wi. pi. and = are the velocity, pressure. and elevation at the sea hed. If the

flow is periodic. a time average over a period results in:

| — I - 9 -
—u;+ g+ — =B =1 (212
-) '’ .
2 T

where the over-bars indicate tinme averaeine.

[ the case of steady periodic wave motion. the total vertical momentum at any
horizontal location must be the same at the beginning and end of a period. In order
for this to be the case. the vertical momentum averaged over a period must he a
constant.  In ovder for the momentum to remain constant. the time averaged net
vertical foree on the water colmnn at that point must he zero. If the pressure at the
water surface (p,) is taken to be zero. then the foree of the pressure at the hed must
he equal to the gravitational force on the column of water. <o that the mean pressure

on the bed is hvdrostatie,
Py = pati] — i) (2.13)
resulting in a simple and exact expression for the Bernoulli constant.

— | —
b’:yﬁ-{-;u; (2.1 h
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With = detined to he zero at the mean water level (77) and Fe. 2.7 as the potential
/ | |

finction. B hecomes tSohey 1992):

B =

<] —

y AR -
[+ -y [ (2.1
f —~ <(‘u.\'[lj/r/l> =t

and all the terms in Eq. 2,10 are defined by the potential function. allowine the
| A I

dynamic pressure to be computed from the kinematies,

2.2  Finding the Solution

The bulk of the LET method is the process of determining appropriate values tor
cach of the parameters. oo ko b and 4L in the potential function (Fq. 2.7y for each
window in time. The result is a set of potential finetions that completely deseribe the
kinematies of the wave field in the region of the measurement. cach separate window
in time being deseribed by a unique and independent potential funetion.

[n the case of subsurface measurements. the location of the water surface is also
required. Determination of the parameters of the potential function. as well as the
location of the water surface. is accomplished throngh nonlinear optimization tlhat
matches the measured record and minimizes the error in both free surface bonndary
conditions. Sobey (1992) applied the LET method 1o the interpretation of @ sinele
water surface trace. The following chapter applies the method to a subsurface pressure

recor | .
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Chapter 3

LFI Method for a Point Pressure
Record

Pressure ganges are relatively inexpensive and easy to deplov. and as a result are
frequently used in the field to measure waves, particnlarlv in shallow water.  The
stmplest instriment consists of a single subsurface pressure gange. While a sinele
point measnreinent provides no directional information. a reasonable estimate lor the
Kinematics of the measured waves can be obtained. This chapter deseribes a technigue
for applying the two dimensional LET method presented in the previons chapter to

the analysis of a point subsurface pressure trace.

3.1 Formulation of Solution

The How is taken to be two dimensional. with the soverning equations deseribed

in Chapter 2. These include the potential function.

J .
. cosh yjhth + =) | .
otz )y =00+ Z A, o b sin j(ha — o) (3.

the modified kinematic free surface boundary condition ( /&),
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/ = o +’l'l'+3(ll—.——:—,l-'_)
ar- at At
L Juar
+ut— +uwr—
o.r o
Ju NG
+uwr—+ T — =10 at S =y
)z 175
(3.2
the dyvnamie free surface boundary condition (f7).
[)_.(‘)('/, l 2, l 2 ___» ' o o
/m = FTI 5” -+ __)u +gy—B=10 at =y EET
and the unsteady Bernoulli equation  [#).
. o I , . ) .
/H=~_+—‘”-"f“")+[—’—[{=() (3.0
ot D p

with the Bernoulll constant detined as:

— , b :
B = l{'-+£§‘(—LL> (3.5)

2 L &= \ cosh jhh

The unknown parameter. . appears in the potential function only when conpled
with the parameter. A0 It is convenient to solve for the non-dimensional parameter.
koo essentially a phase parameter in the potential function.

The action of waves is greatest near the surface. so that the Huid velocities and
accelerations are largest near the surface and decay rapidly with depth. particularly
i deep water. o addition. for pressure sensors placed at or near the hottom. the
vertical component of the velocity is damped out completely. as expressed by the
bottom boundary condition. The problem. then. is to extrapolate the motion of the
Huaid np 1o the surface. where the motion is greatest. using only data extracted from

the subsurface. where the motion is mich less.
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Mathematically. this is an il posed problem as the flow is coverned by an elliptic
cquation (Laplace. Fq. 22200 in which the solution is determined by the honndaries,
but there are only dara at a <inele location. Some of these ditlicnltios can he <ur-
mounted throngh the application of the free surface honndary conditions. While there
are no data measured near the surface. the free surface houndary conditions remain
appropriate. and necessary to define the solution at that honndary.

When the LEL method was applied to a water surface trace 1Sobev 1992, the
ocation of the the water surface was known. and the boundary conditions conld
he directly applied at that location. Enfortunately. when workine from a <subsurface
pressure record. the location of the water surtace is not known. While the free surface
boundary conditions are well defined. the fact that the location at which they mnst
be applied is not known makes the problem more ditlicult. This is the complication
that leads to the dittienlties in finding full nonlinear ~solutions to all free surface How
problems. In order to apply the free surface houndary conditions when working with
a ~ubsurface record. the location of the water surface must he found. toeether with
the potential function. in cach window.

In order to locate the free surface. the water surface is defined at N <urface
nodes equally spaced in time throughont the window. The elevation of these nodes
i~ unknown. and will he soneht as part of the solution. Including the water <urface
nodes as part of the songht solution introduces \ additional nnknown parameters for
a total of 3+ ./ + N anknowns o each window (b baeo oo Yoo ooy The

free surface houndary conditions. Eeq. 3.3 and 3.20 are applied at each surface node.

3.2 Formulation of the Optimization

Finding the nnknown parameters in a nonlinear syvstem ol aleebraie equations is
known as nonlinear optimization. The svstem in this case consists of the nonlinear
Bernonlli equation and the nonlinear free surface boundary conditions.  The free
surface boundary conditions are nonlinear in two respects. involving second order
terms in dynamic free surface bonndary condition (the «* terms and B in Eq. 3.3).

and second and third order terms in the modified kinematie houndary condition (the
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Figure 3.1: Schematic of svstem of equations in a window

=t and v rerms in Fqo3.200 There is also a sieniticant noulinearity introdneed by

the application of the boundary conditions at the nnknown and varving free surface.

Observational Equations Tlhe given form for the potential function counld repre-
sent any periodic flow. subject to the hottom boundary condition. The FSBC< detine
the low as a geravityv-constrained. free surface tlow. The observational eqnations are
the (‘(lllelliulh in the svstem that force the solution to it the eiven record. For a
subsurface pressure record. this is the Bernoulli equation. applied at the location of
the pressure measurement. The required number of independent equations are es-
tablished by applving the Bernoulli equation at a number of times throuehout the
window considered. The error in the Bernoulli equation is the ditference bhetween the
measured dyvnamic pressure and that computed from the kinematies defined by the
potential function. The solution is the set of parameters in the potential funetion
and the set of water surface nodes that produces a predicted dynamic pressure that
matches the measured record. while simultanecously satisfvine the FSBCs.

A system of equations is specified if there are as many independent eqrations as
unknown parameters in the system. If there are more equations than unknowns. the
solution can be detined as that which results in the smallest squared errors in the

equations. This least squares formulation is also appropriate for a uniquely defined
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svstem. with an expected error of zero in all the equations. In order 1o specify the
solution to the LET formulation. the howndary conditions ¢f" and f5 i ave applied at
cach of the water sirface nodes. vielding 2\ equations. and the Bernoulli equation
(fB) is applied at 1 nodes on the pressure record within the local window (Fie. 3.1
There are a total of 3+ ./ + N unknowns (k. b oo oo 4y and g oyyvi. The
svstem is nnignely specitied for I+ N =3 + J and overspecitied for [+ N > 3 < /.

resulting in the following least squares optimization:

\
.o . N _ -l - 2 - N ‘,.. 2
unn;{mze O X) = Z/ (X, ) D, ST

n=1

I
+Z_/'.H<X: Pi,.z..r)? (3.6)
=1

X=ihihrioo Yoo o ooy

where £, are the locations in time where the water surface nodes. 1,.. are <ought,
t.are the times within the window where the Bernoulli equation is applied. ;.
are the measured dynamic pressures at £, and z, is the elevation of the pressure
vauge. Overspecitication. particularly with additional nodes on the pressure recored.
i~ advantageons for an actual record as a wav 1o minimize the effeet of anv noise in
the measurements. \dditional nodes on the pressire record also serve to emphasize
the measured dara. which directly detine the local kinematies. The details of the

solittion to this system of equations is given in the following section.

3.3 Computation Methods

The LED method can he bhroken down into the following sequence of steps:
. Pre-processing of record.

ta) Determine estimate for level of noise in the record.
(b1 Determine MWL and subtract hydrostatic pressure from record.

(¢} Determine estimate for magnitude and divection of Eulerian current.
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() Detine a continnons record from the diserete observations by cubie spline

imterpolation.
(el Spectfy spactug of ont put locations,
(f) Compute mean zero crossing frequency.

(2) Non-dimensionalize record and all parameters.
2. Primary values of nnmerical solution parameters are chosen.

ta) Window width (7))
{hy Order of solution (./)
(et Number of sample locations on record within cach window (/)
() Number of water surface nodes within each window (V)
3. For cach selected output Jocation. a window in the record is defined. and an
LET solution ix computed.
ta) Initial gness for the optimization is computed,

(hy Full noulinear optimization for all unknown components of the potential

function is computed.
(e Results are checked for spnrious solution.

i. If no solution. or a spurions solution. is found the solution parameters
are adjusted. and the optimization repeated.

1. If a good solution is found. progress to the next window.

3.3.1 Pre-Processing of Record
Accommodating Measurement Error

Measurement error can be a major source of ditticulty, as the method relies on
the details of a small segment of the record. [n Sobey's work (1992). the primitive
Kinematic free surface houndary condition (Eq. 2.4) was applied at the ineasured water

surface. requiring an estimate for the time gradient of the surface. The estimation
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of the eradients from a measured record is very sensitive 1o error in the record. aned
thus Sobey found it necessary to smooth field and laboratory measurements with a
simple moving average filter.

There are no pressure gradient terms in the Bernoulli equation. <o the application
of the LFT method 1o a measnred pressnre trace should he less sensitive 1o noise.
Nevertheless. measurement error remains a problen in applvine the LET method 1o a
pressure record. When there is obvious noise in the record. an alternative to <imooth-
e is to substantially overspecify the system of equations. By taking many samples
on the pressure record in cach window. the least squares optimization mayv accomimo-
date the errors in the measnrements. This is preferable 1o smoothine. as no stmoot hine
algorithin can reprodunce lost data. but will rather impose some apriori assumption
about the nature of the record on the results. Accommodating the measurement error
with many samples on the pressure record allows the least squares optimization to
find the best fit without imposing any further assnmptions on the results. This was
the approach taken with the presented laboratory data (Section 3.3). Records gener-
ated analytically by Fonrier wave theory contained no error. and therefore required

no special accommodation.

The Mean Water Level

The mean water depth. h.is ineluded in the potential funetion (Eq. 3.1). This
ix an unknown value when the only data available is a pressure record. While an
approximate depth of water is likely to be known at a given deplovment site. the
water level Huetuates due to astronomical and storm tides. These processes happen
over a much larger time scale than the periods of wind generated waves. An estimate
for the local mean water level (MWL) can be determined by averaging the measnred
pressure (after subtracting out the atmospherie pressure) over a period of time that
must be larger than a typical wave period. but smaller than the period of tidal
luctuations. to accommodate changes in the mean water level. This mean pressure
is the local hydrostatic pressure. which is nsed to compute the mean water level. and

is subtracted from the pressire record to detine the dyvnamic pressure. While this is
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not an exact procedure. the MWL s not a critical parameter. as £ is onlyv used 1o
locate the ortgin of coordinates i the [)(;l(‘nlinl function. Note that the result is a
local MWL shich could he quite ditferent than the alobal <till water level (SWL).
The mean water level is the more appropriate reference frame. as the method is local.
and only considers a <mall window in time at once. The elevations of the water
surface nodes are fonnd independently. without any requirement that the vesultine
mean water level he at the origin. Thus it is not necessary that the oriein is at the
exact MWL only that the it is near the surface. In shallow water. the bed conld he
used ax the origin (Fenton 19561, bt this wonld not work well in deeper water. as

the arvea of primary interest. the water surface. wonld he far from the origin.

The Eulerian Current

The depth uniform Eulerian current. {70 appears as a known parameter in the
potential function. Eq. 3.1, Unfortunately. a measured pressire record gives no in-
dication of the local current. Unlike the mean water level. the Enlerian enrrent is a
critical parameter that defines the propagation medinn. aud varvine the value used
for the current will have a considerable effect on the results of the computation. In
fact. as pointed out by Fenton (198%a). any attempt to apply a wave theory withont
knowledee of the local current will he inacenrate. even at only tirst order.

The situation is not hopeless. however. The preseunce of the Folerian enrrent
term in the potential function draws attention to the fact that it is an importam
parameter. even if it is taken to be zero. This should enconrage investigators planning
ficld experiments to establish a method of estimating the local current. This may be
as straightforward as placing a current meter nearby. or as simple as using tidal
data to estimate the local current. Caution must he taken with the later method.
as the accuracy of the estimate may not he consistent with the use of high order
interpretation methods.

[t ix also assumed in the LFI method that local enrrent is depth uniform. Althongl
this is nulikely to be strictly true. Kishida and Sobev (1988} demonstrated that for

steady waves. a current profile with a realistic level of vorticity was likely to vield very
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stmilar results as a depth uniform current protile for the wave generated kinematies,
even at hieh order. Tt is expected that these results are applicable to irreeular waves
ax welloand thus the assimption of depth uniform eurrent is reasonably appropriate.

Another complication to be considered is the direetion of any local enerent with
respect to the propagation direction of the waves, The {7 in Fq. 3.1 i< the component
of the local cnrrent in the direction of wave propacation. In the case of a <inale
point measurement. no information is available 1o indicate the wave direction. Fyen
if the current magnitude and direction are known exactlv, without an estimate for the
propagation direction of the waves. an accurate estimate for {7 is not available. Once
agaln. further information could be nsed to lll'll) resolve this (“Hi(‘llh_\‘. hnowledee
of the local hathymetry and the wave climate could provide this information. For
example. waves near a heach tend to propagate almost perpendicular 1o the shore. or
il there are directional measurements taken nearby available. they could he conthined
with refraction computations to provide an estimate of the local propagation direction.
There must he some information available about hoth the local Eulerian enrrent
and the local wave propagation direction in order to interpret acenrately a point
measurement.

The pressure records used for the examples in this chapter were generated either
analvtically or tn a laboratory Hume. In both cases. the Fulerian eurrent and wave

propacation direction are known.

Spline of Record

[n order to avoid being restricted by the sampling rate of a particular et of
measiurements. a continuous record is compnted by spline interpolation amone the
measnred points. This allows the window widths and the number and location of
satiples i each window to he chosen independently of the sampling frecquency of the
data. Care mnst be taken. however. to he sure to include an adequate seement of
the record in each window. A window that includes only a single measured point is
computationally possible. hut would result in misleading accuracy in the resultant

solution.
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Output Locations

The spacine of the desived output locations must he chosen to determine the
placement of the windows.  The solution in each window is expected to be most
accurate in the center. and thus a separate window is centered at cach location where
ontput is desived. Ax cach window is computed independently. there is no restriction

on the spacing of the output windows,

Non-Dimensionalization

The comparisons of the errors in equations of ditferent dimensional quantities may
result in spurious solutions that over emphasize certain equations in the formulation.
While the familiar dimensional forms of the equations have been presented here for
claritv. all parameters and variables are non-dimensionalized hy physically identitiable
parameters hefore compntation. The mass density of water i p). acceleration of eravity
1. and the mean zero crossing frequency of the measired record (o0) are nsed to

define characteristic length. time and mass scales.

Leneth scale = g/ @0

Time scale = 1/« '

-

Mass scale = —

3.3.2 Optimization Procedure

The primary process in the LFL method s a nonlinear optimization of a svstem
tvpically involving up to 11 algebraic equations in 12 unknown parameters. .\ svstem
ax complex as this mayv have nnmerons local minima that result in spurions solutions.
The hest way to avoid these solutions. and to ensure etficient optimization. is to start
with a goud estimate for the unknowns in the svstem. and. in addition. to have a set

of eriteria for identifving spurious solutions.
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Initial Estimate

The tirst step in cach window is to establish an initial estimate for the optimization
procedure. Linear swave theory can be used to produce estimates for the parameters
of correct maanitudes. The linear subsurface dynamic pressure is:

i = U COs | b — o)

.(‘()S[l/-'(/l + ) t3.8N)

o = ,i._
cosh ih

where Uis the amplitude of the linear potential function. The wave nmmber. k. and

frequency. «.are related throneh the linear dispersion relation:

(o — bl = agh-tanl bl 13.9)

Frequency Nielsen (1956, 1989) established a method for determining the param-
cters of a local linear approximation to waves from a pressure record. His method
determined a local frequency and wave number that could he used to tind the location
of the water surface. .\ similar method is used here 1o determine the tirst estimate
for the local frequency and wave nnmber. Frequeney of a sinusoidal sienal of the form
P = wcos the — of) is available from the second derivative:

;

Loy
- \/ IE

This approach requires an estimate for the valie of the second time derivative of

£3.10)

the record throughout cach window. An estimate for the second derivative is directly
available from the cubic spline of the measured points, This estimate. however, is
very sensitive to random errvor in the measnrements. Nielsen sugoests estimating the
value of the derivative through the use of divided ditferences. This solution works
well for a smooth. siunsoidal record. hut is also very zensitive to noise in the record.
particularly in areas of small curvature: estimating a second derivative from a small
segment of a noisy record can result in large errors. In order 1o accommodate the

inevitable noise in an actual record. a ditferent approach is taken here.
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[ ecach window. a thivd order polvnomial is fit to the record in the least <quares
sense. The second derivative thronghont the window can then be computed from this
polynomial. By using more than four points in each window. any noise in the record
i <moothed ont by the least sqnares (it This approach proved to he consistently
reliable for artificially generated noisy records. resulting in reasonable estimates for
the value of the second derivative thronghout the window. \ et of frequencies is
compnted from the estimate of the second derivative at cach of the considered nodes.
The mean of these frequencies is used as a first estimate for the local frequeney of 1he

l‘('('ul'([.

Amplitude and Phase Ounce the frequency is known. the amplitude and <patial
| : |
phase thary of a particalar record can be found by rearranging the equation as a linear

least squares problem by separating the cosine and sine components:

Pi. =  acosther =ty = beosef, + esinet, 1311

where ¢ = 'b* + ¢ and ko = arctan(¢/b). This results in the following matrix
equation in the unknown amplitudes. b and .

- - r -

coswefy sinwly Ly
cosety sinwt Py
h .
= (3.12)
.
coswty sinety [)I.Id

The system is determined if py(t) is detined at 1wo points. If [ > 20 the svstem is
over determined and can be solved in the least squared sense by common algorithms
in numerical linear algebra libraries. This method provides a first estimate for the

parameters: a. ho. and @,

Refining the Linear Estimates These estimates for the parameters can he guite

poor. as they are all dependent on the initial estimate for the second time derivative
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of the record. Tn order to improve them. the estimates are relined by optimizine for
the best feast squares fit in the window.

I

minimizeN X = Z (P —acosihr — o))’
X - (3.13)

X =ta.bewr. o)

Where £, is the measured dynamic pressure at time £, The result of this optimiza-
tion is a linear estimate for the pressure record that fits the measured record most

('Iu.\'(‘l_\' in the window.

Wave Number and Fourier Amplitudes Ounce the optimnm initial frequency.
phase and amplitude are found. the wave munber is computed with the lincar disper-
ston relation (Fe. 3.9, and the first estimates for Fourier amplitudes are computed

as follows:

a cosh Ah

- P cosh Ml + o

A (3.1 0

Ao =04y (3.1

The valne of o is not eritical and o = 0.1 was found 1o he satisfactory.

Water Surface The location of the water surface at the N nodes throughout
the window is estimated from the linear pressure response function with stretehing
i Nielsen 1989):

_ patd,) cosh (b (I + il )/’pg/) )

(3.16)
P cosh hth + )

.

where 2, is the vertical location of the pressure gange. and 1, i~ the elevation of the

water surface node at £,. py(f) is computed from Eq. 3.5
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Nonlinear Optimization

Ouce there is a reasonable first estimate for all the nuknown values in the potential
function. standard nonlinear optimization rontines are adequate for this svstem. For
the results given. the Levenbere-Marqgnardt algorithim was used as implemented by
the MATEAB Optimization Toolbox (Grace 1992},

If the optimization rontine suceessfully finds a minimum. the solution is checked
to see it a clearly spurious solution is founud. Spurions <olutions are identitied Hy the
following eriteria:

e \ery laree or highly variable errors.

e First order amplitude smaller than hicher order amplitudes.

o Unrealistically large or small frequency or wave mimber.

o Laree discontinuity hetween windows in the predicted water surface.

[t is unnsnal for the optimization routine to converge to a spurious solution. It is far
more common for the routine not to converae at all.

If no solution is found. or a spurions <olution is found. it is necessary to revise the
paraineters of the optimization. For the next attempt. the window width is inereased
by a factor of 1.5 (157, and the procednre is repeated. If this is not successful.
the window width is increased once more to twice the primary width (27,0, When
iereasing the window width is not successful. the order of the potential funetion is
decreased until a solution is found. If none of these adjustments result inan acceptable
solution. the window is sKkipped. and future analyvsis minst be interpolated throngh
that point. These adjustments are most likely to he needed in the lone. tlat troueh
of a shallow water wave. where the window needs to be expanded to inclnde some
curvature to indicate the frequency.

Difficulties mav occur in addition near zero crossings. wlere there is also little
curvature in the record. Here the effects of amplitude and frequency may not bhe

independent . as:

lim asin(et) = awl (3.17)
t—U
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At the limit near the zero erossine. o and & have the same etfect. and the optimization
rontine can not distinguish them. Widening the window to include more of the
surronnding record avoids this diftieulty, and is generally suceessful in this <sitnation
as well as in lone. Hat troughs.

Another complication can he a record that is exactlv svinmetrie abont the crest
of a wave. In this case. the eqnations on either side of the crest are not independent
This sitnation is nnlikely to arise in a field record. and can easilv he accommaodated

by nsing an asvinmetrie distribution of points in that window.

3.4 Theoretical Records

To avoid complications from measurement error in the initial testing of the method.
pressure records generated by Fourier Steady wave theory (Sobev T[98 were nsed.
This approach also has the advantage of providing a solution with the complete kine-
matics. to compare with results from the LEL method. Field or laboratory dara that
incliudes a tull set of measured kinematics are not available. Fourier theory provides
a near-exact solution for irrotationar steady waves and can he applied at any deptls
( Rienecker and Fenton 1951 Sobeyv 1989). The use of analvticallv generated records
also allows the method 1o he tested under a laree range of conditions. by varvine
water depth. wave period. and wave height. This is useful for establishine criteria for
choosing the solution parameters. such as window width. number of nodes in cach

window. and order of the solution.

Shallow Water To demonstrate the optimization procedure in a window. fignre 3.2
summarizes the results from an initial estimate. before the tinal optimization. This
is a window near the crest of a steep. shallow water wave generated by ISth order
Fourier theory. The parameters of the wave are: S water depth. 3m wave height. Tos
period. and zero Eulerian enrrent. with the pressure record measnred at the hotton,
The parameters of the LFT solution are: sixth ovder (./ = 6). and window width two
seconds (7y = 0.275) . centered 0.9s hefore the erest.,

The top plot shows the measured dynamic pressure as given by the Fonrier theory
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acnerated record. and the valies compted frum' the Bernoulli equation i Eq. 3. 1.
with the parameters of the potential function generated by the initial estimate. The
second plot is the water surface as predicted by Fourier theory and the elevations of
the water surface nodes generated by the initial estimate. Note that the location of
the actnal surface is eiven in the plot. but it isx not available to help determine the
solution. These points were all generated by the method outlined in the previons
section. with onlyv the pressure record as a euide.

The third plot shows the non-dimensional errors in the objective funetions: the
Bernoulli equation and the free surface honndary conditions (Eqs. 3.2. 3.3, and 3. 1)
These are the errors that are minimized by the optimization to lind the solution. [f
the solution were perfect. the error in all equations thronelout the window wonld he
zero,

The initial estimates for the dynamic pressure and the water surface have order of
magnitiide and trend agreement. The errors in the objective functions are on order
of .03 and show a svstematic pattern. particularly in the Bernonlli equation. This
pattern. and the fact that the sharp crest of the wave has not been matched indicate
that a better solution can be found.

The results after the nonlinear optimization are eiven in Fie. 3.3, At this p(ﬁllt the
prediction for the dyvnamic pressure is essentially exact. This is virtually alwavs the
case. ax the pressure record is available. and the solation is optimized to that record.
The predictions for the water surface are also extremely close. This is an impressive
achievement. as location of the water surface was found only by minimizine the errors
in the free surface boundary conditions. The non-dimeusional errors in the Bernoulli
equation and free surface honndary conditions are on order of .001. and show no clear
trend. The lack of trend indicates that the remaining error is random. and a good
solution has been found. The LFI method was able to capture accurately the crest
of a steep shallow water wave.

Figure 3.1 shows the results of the method for the complete shallow water steady
wave. The LET method finds the water surface and the kinematies on the surface
essentially exactly. While these results show the complete wave, cach of the indicated

points s in the center of a separate window. and each window was compnted com-
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Figure 3.1: LFI predictions (./ = 6) and analytical kinematics at the predicted water

surface for shallow water wave
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Fienre 3.5: Evolution of the solution for a shallow water wave

pletely independently of the other windows. In this case. the parameters of the LFI
solttion arve: primary window width of 2« (7 = 0.27.). with a sixth order potential
function (. = 6. seven samples on the pressure record. and seven water surface nodes
t/ =N =7\ resulting in 21 equations in 16 nnknowns in cach window. The window
width of two seconds is one tifth of the period of the wave. and is a reasonable length

of time to extend the l()(‘a“_\' .\"(‘El(l}' appmxilnaliun.

Evolution of the Solution Fig. 3.5 shows the evolution of the solution as the
window is moved along the wave. The top figure shows the non-dimensional values of
the local fundamental wave number. A, and the local fundamental frequeney. . The
unportance of the local nature of the solution is apparent in this figure. as the solution
varies substantially from window to window. The wave number aud [requency hoth
increase to maximum magnit ude near the crest (1 < fe. < 7). and have lower values
in the trough region (near to. = 3 and /. = 9). This pattern suggests that the

kinematies in the crest region are similar to those of a much higher frequency lower
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10
order wave, and the troneh kinematies similar to a lower frequency wave.

Deep Water Ficure 3.6 shows the resalts of the LET method for an entire cdeep
water wave, The wave was eenerated by 10th order Fourier wave theory, with param-
eters: 1O0m water depth. 10m wave heiehit. 10s period. and zero Falerian current.
with the pressure record measured 10m helow the mean water level, The parameters
of the LET solution are: Primary window width of Isim, = 0.172). with a fourth order
potential function ./ = ). five samples on the pressure record. and five water surface
nodest/ = N = 5. resulting in [5 equations in 12 unknowns in cach window. Onee

again. the LET solntion matches the actnal solution essentially exactly.

3.4.1 Choosing Parameters of Solution

Unlike steady wave theory where only the order requires prior specitication. this

LET application requires prior specification of fonr parameters:
e Orvder of the solution (./)
o \Window width (7,

Number of nodes on the water snrface (N

Number of nodes on the pressure vecord (1)

Experimentation has demonstrated that the resulting solntions are not highly sensi-
tive to the values of these parameters: however. a reasonable solution will not result
if these parameters are not sclected judiciously. The experience acquired while devel-
oping the LET method on analyvtically eencerated records has provided some enidelines
to help select appropriate values. Despite these guidelines. individual jndgment must

be nsed when applving the LET method to a particnlar measured record.
Number of Nodes on the Water Surface and Pressure Record Mathemat-

ically. the system of equations is specitied if there are at least as many equations as

unknown parameters. In this caxe. [+ N > 1+ ./, While meeting this criterion is
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the minimum mathematical requirement. there are other factors that must he taken
into acconnt to assure a reasonable physical solution. The local water surface is rep-
resented by N nodes in each window. Detinine the surface with N = ./ + 1 points
achieves a representation for the water surface of the same order as the potential
function being nsed. Care must be taken with very low order solutions: for example.
2 points woutld define the water surface to fivst order. but would provide no indication
of the curvature of the surface. A< a rule of thumb. at least three points shonld be
nsed. regardless of order.

Detining the water surface at J = 1 points provides 20 = [y equations ( f7 and
S oat the J +1 pointsi. To keep the order of approximation cousistent. the Bernonlli
equation is also applied at JJ + 1 points within cach window. Using JJ+ 1 water surface
and pressure record nodes overspecilies the solution at all orders. This arraneement
of equations proved effective for all the examples given in this chapter on analvtically
derived records,

While that approach was effective on these few examples. it is important that the
final solution matches the measured record closely. Tt's possible that this snegested
arrangement of points would allow the optimization routine to he biased towards
the more nnmerous free surface honndary conditions, eiving a solution that does not
match the pressure record well. The Bernoulli equation could he applied at more
points on the pressure record than the number of nodes detinine the water sarface.
[nereasing the number of points at which the Bernoulli equation is applied will <hift
the emphasis of the optimization to the measured record. Additional points on the
measired record can also be useful for accommodatineg measurement noise that mav

be present in field or laboratory records,

Order of Solution Similarly to high order steady wave theory. the order chosen
for the solntion is intlnenced by a number of factors including the height of the waves.
the depth of the water. and the accuracy desired. As with steady wave theory. higher
order results in greater acenracy at the expense of computational simplicity, and is
necessary for larger waves and for shallow water. The following examples will help to

provide guidelines for the order chosen.
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Fioures 3.7 throueh 3.12 show the crest of the same <hallow water wave shown in
Fig. 3.1 compnuted 1o orders ./ = 1 through 6. \t tirst order. the non-dimensional
errors in the Boundary conditions and the Bernonlli equation are of order 107, These
are small ervors. but the sharp curvature at the crest has not heen captured.  \s
the ovder i~ increased. the magnitude of the errors inereases. The inerease in the
macenitiude of the errors is due 1o the increase in the nnmber of equations ineluded.
There are three additional equations included in the optimization for cach inerease
in order (the two FSBCs at each additional water surface node. and one additional
pressure record node). hut there is only one more parameter in the solution vector.
[1n order 1o hest satisfy this system. the optimization tinds a <olntion that results in
shightly more error in cach equation. The magnitude of the errors does inerease. hut
the solntion slowly converges to very precisely mateh the sharp crest at sixth order,
An asymmetrie distribution of points was nsed in this window 1o accommodate the
svimmetry about the crest,

Fignres 3.13 throngh 3.16 show the crest of the same deep water wave as Fig. 3.0.
compitted to orders | through L Even at first order. Fie. 3.13. the solution is very
good. Deep water waves generally do not require a very high order solution. linear
wave theory often being reasonably adequate in these conditions. [t's important to
keep in mind that. although this solution is lirst order. it is still nonlinear. havine
found a minimnm in the ervors of the full nonlincar governing equations. and the
frequency and wave number are free to vary. not bheing honnd by the Tinear dispersion
relationship. The local nature of the solution would allow it to change with time.
accommodating an irregnlar protile at low order hetter than an equally low order
global solution.

[ this case. first order provides an acceptable solution: however. the water surface
is more accurately matched as the order is increased. and the solution converged well
at higher order. so there is little penalty in using up to fourth order. For an irregular
record. higher order is more likely to be successful in matching the irregularity in the
record. As the examples show. deep water waves can be well represented at low order.

while higher order in necessary in shallow water.
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Window Width Choice of window widtl is a halance hetween inelnding <ntlicient
curvature in the record o identify the local wave response while minimizine the extent
ol the locally steady approximation. Another factor to he considered is the sampling
rate of the data. The LET method emplovs a cubie spline for interpolation amone
the measured points. This approach allows the selection window widths and sampline
locations without being restricted by the data sampling locations. While this freedom
ix very nsefull it can he deceiving. as the data are not trulyv continnons. \s the data
are not continnoits. it is important to be sure that the window width chosen includes
sulficient measured data points to justify the ovder being used. Unfortunately, tiekd
data are often sampled at a frequencey of as low as [Hz. In this case. a window width
of one tenth the mean zero crossing might be on order of 1 second. This would provide
a maximnm of two actual data points in cach window. It may not he appropriate
to attempt a high order solution with such little hard data. Ideallv. the LEL method
should be used with data sampled at a higher rate. If that isnt possible. wider
windows. and perhaps lower order solntions. shonld he used.

In the case of the theoretical records used in the previons section. the data sam-
pling rate conld be arbitrarily high. Withont being restricted by measnrement fre-
quency. some guidelines for window width have been determined. A primary window
width of one tenth the zero crossing period provides a good starting point. Using
a <maller window often did not allow convergence of the solution. It was necessary
to vccasionally incerease window width at some locations on the record. as discnssed
in section 3.3.20 When a primary window width is determined that works for most
of the record. while needing to be inereased at a only a few locations. the optinnm
width has been found.

[ the case of the shallow water wave disenssed in the previous section. a window
width of 0.17% was successful for up to a fourth order solution. Unfortunately. the
fourth order solution did not fully capture the sharp crest of the wave. When a higher
order solution was attempted. the optimization wounld not converee with the given
window width. A wider window had to be used in order to obtain a solution of high
cnough order to capture the sharp crest of the wave. and thus a window width of 0.27.

was used in that example. In general. it has been necessary to use wider windows for
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higher order solutions.

3.5 Laboratory Measurements

The following results use laboratory data collected by NMurray Townsend and
John Fenton at the Australian Maritime Engineering Cooperative Rescarch Center at
Monash University, Melbourne. Anstralia in June. 1996, The dynamic pressure. thnid
velocities and water surface were measured at the same hiorizontal location alone the
tflume: the pressure at a variety of elevations. and the horizontal and vertical velocities
at an clevation of -0.8 meters.with the origin at the mean water level. The still water
fevel was 1.55 meters. with the data sampled at 60 Hz.

The wave Hume i< 52m loug by 2.2m wide with two working sections lm and 2.5m
long connected by a ramp. .\ false Hoor had heen built into the <hallower workine
section to bring the depth to 1.53m. At one end of the thunme is a hydranlically oper-
ated bottom hinged wave paddle and at the other a heach that absorhs a minimim
of 96 of wave energy across the range of operating frequencies. The measurement s
were taken approximately 22m from the heach end of the Hume. The beach leneth is
Gm.

The wave surface was measured with a capacitance wave probe with tvpical cali-
hrations providing a correlation coefficient R* areater than 0.999. The pressiure was
measured with Drnck PDCR35/D transducers located in the flume near the center
of a long (2.5m long by 2m high) plywood board aligned with the direction of wave
propagation. The measarement face of the probe was flush with the board surface
to eliminate local tlow separation. The R° values from calibrations were in all cases
above 0,999, Fluid velocities were measured with a factory calibrated \lee electronies
ACM230-A\ electromaguetic current meter which is capable of velocity measurements
in two dimensions.

One of the difficulties encountered with pressure measurements is the guestion
of what has actually been measured. If the transducer itself is absolutely accurate.
the pressure recorded will be the actual pressure at the location of the transducer.

Unfortnnately. the presence of the instrument is likelyv to alter the tlow in its vieinity.
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creatine substantial ditferences hetween the pressure at the transducer. and the pres-
sure that wonld exist if the transducer were not there to disturh the tow. \nother
sonree of error s the frequeney response of the transdieer (Raichlen et al. 1990:
[ppen and Raichlen 19570, The frequency response of pressure transducers is not Hat.
and as a resulte the recorded signal could he quite ditferent from the actual pressure.

[n the experimental setup described above. the pressure transducers were monnted
on a large plywood panel oriented in line with the Hume. The measnrement face of
the instrument was Hush with the surface of the plywood to minimize dyvnamic etfects
near the ganee. The panel was laree enongh for the boundary laver to he fullv
developed near the surface of the plywood. 1o prevent edege effects from the edge
of the plywood atfecting the measurements. This arrangement is expected to have
resilted in minimal dynamie etfects on the measured pressure.

There is no information available about the frequency response of the pressure
transducers used for this experiment. However. a spectral analvsis of the records can
help identify any potential problems. The top plot of tieure 3.17 gives the measured
water surface and subsurface pressure for a short scement of a record.  There are
some clear higher frequeney fiuctuations in the water sirface that do not appear in
the pressure record. In this particular segment. there is a sharp secondary crest in
the first trongh (near the 25 pointj in the water surface record.,

This loss of high frequency information in the pressure records is confirmed by
an examination of the discrete Fourier transform of the records. The second plul in
ficure 3,17 15 the smoothed variance spectra of the two records from which the above
seements were taken.  The water surface record has a ereat deal more variance at
the higher frequencies. Note that the spectrum of the pressure record has decaved 1o
almost zero at = = =7 point. while there is still cousiderable variance in the water
surface at that frequency.,

Linear wave theory predicts that the motion of high frequency waves decavs with
depth much faster than low frequencies. In this example, the non-dimensional water
depth at the peak frequency is 20 /g = 1. This is eenerally considered intermediate
depth water. and the decay with depth is expected to be moderate. At the frequency

where there is essentiallv no energy in the pressure record. the non-dimensional water

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Water Surface and Dynamic Pressure

Variance Spectrum of Water Surface and Pressure

0-3 4 T T T T —
—
- = 0. at 2 = -0.5h
0.2r i
N |
0.1 4
/ B I
4 ~
O( . 1 1\ \\:"l\_\\’\——& ! L L }
0 1 2 3 4 5 6 7 8 9 10
Variance Spectrum of Dynamic Pressure ‘
0.1 ' ' o o ' ‘ ! — Measured |
- -~ Predicted }
, 0.05+ 5
1=s \ 1\
|
0 L L ! L ! 1 L 1 !
0 1 2 3 4 5 6 7 8 9 10
Variance Spectrum of Water Surface
0.3 i T T T T ' T —— Measured
- - Predicted
0.2 ~ i 4
i
IIIJ.N {
0.1+ .
s
y }
0 i 1 =3 = i vl 1 1 ]
0 1 4 ? 6 7 8 9 10
« (=77)

Fignre 3.17: Water surface. pressure record. and variauce spectra of records from

thime experiment
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depth is o7l g = 250 which is considered 1o be deep water. Ty deep water. the
action of the waves decayvs very quickly with depth. o that little euereyv is expected
to remain at hall the water depth. the depth at which the pressure measurement s
were taken.

The third plot in ieure 307 is the spectrnm of the subsurface pressure record.
The solid line was computed from the measured record. and the dashed line was
computed from the water surface record. using the linear pressure response factor:

coshibih + ) >
(50N

coshihh)

a =, ()

where afey and o, (o) are the magnitude of the pressure and water surface amplitude
spectra at a eiven {requency. and the wave munber. A0 is computed from the lincar

dispersion relationship:
(w = A = gl tanhichl e300

The predicted spectrnm matches the measured spectrum very closelv, This indicates
that the loss of hieh frequencey information in the subsurface pressure record is the
result of the predicted decay with depth of the energy at the higher frequencies. rather
than a result of the frequency response of the pressinre ganee nsed.,

The final plot in fieure 317 is the spectrum of the water surface record. The
~olidd line was computed from the measured water surface. and the dashed line was
computed from the pressure record. also nsing the linear pressure response factor. The
predicted spectrum of the water surface matches the measured <peetvum well near
the peak frequeney. bhut strongly over-predicts the high frequencies. IF this method
were used to predict the water surface. a somewhat arbitrary high frequeney cut off
wotld have to be established.

An examination of the top plot in figure 3,17 reveals what appears 1o he two
dominant free modes in the water surface. There is a large low [requency mode
with a period of approximately 250 and a higher frequeney mode with a period of
approximately Is. If the LEL method were applied to the water surface record (Sobey
[992). the moving widow could capture a different dominant mode in cach window,

Unfortunately. the higher frequency mode has decaved with depth too much to he

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Water Surface
0.25 T r : r

,/ 0.05r -

N

1.2 1.4 1.6 1.8 2 22 2.4 2.6 2.8
time

f Original Record
-0.1r l— LFI Estimate

Figure 30180 Measured and predicted water surface near the erest of a sharp wave in

the Hume

clear in the pressure record: applyving the LET method to the pressure record results
in predictions that capture the dominant low frequency mode. and miss the higher
frequency mode. If the higher frequency information is not in the local seement of
the record. it s not possible to reconstruet it

[ the previous section. the LD method was applied to pressure records generated
by Fourier steady wave theory. These records had only a sinele free mode. and thns
the LT method was able to identifv that mode. In addition. in <hallow water. there
is little decay with depth of the wave action. and the LET method could be expected
to he effective. as it was on the Fourier record. Tn deep water. the method can he
effective if the pressure ganges are located near enongh to the surface. For the deep
water steady wave presented previously tfiegnre 3.6) the pressure record was taken
from a depth of one wave height below the water surface. one tenth of the total
depth. At this depth. there is adequate information to identify the action at a wide
range of frequencies.,

Given the limitations of the data. a seement of the record was chosen in which

there did not appear to be a substantial high frequency component to the water

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Dynamic Pressure

1000 T T T
500
I, 0
-500
_1000 1 - 1 1 . |
0 1 2 3 4 5 6 |— Measured Record
04 Water Surface o LFI Estimate

Horizontal Velocity
0.4 T T T T ' T T T
0
o o -
@) o) o
" O 4
o
-04 | L L ! ] 1 L It
0 1 2 3 4 5 6 7 8 9
Vertical Velocity
0.2 T T T T ’ T I RS
e -

Figure 3.19: Segment of record from Hume measurements

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




6

surface record. and thus the effect of the high frequeney decay shonld canse few
problems_and the LFI method can be applied.

While this particular scgment was chosen to minimize the effects of the hieh
frequency decay. it was not possible to eliminate it entirely. Fieure 3008 <hows the
measured water surface and the LET predictions of the water surface in three windows
in the vicinity of a sharp crest in the record. The solution parameters are: J = 3.
=037 _and [ = N = [ Both the pressure and the velocities were measured
at an clevation of 0.8m below the MWL with the mean water depth 1.55m. The
LET method located the water surface fairly accurately. although it clearly missed
the very sharp peak of the crest. Varving the solution parameters did not improve
the acenracy at the crest. In fact. a smaller window width resulted in a discontinuity
in the water surface between windows. The ability of the LET method 1o capture
the sharp erest is likely due to the missing high frequeney information. If the high
frequency part of the signal is missing from the examined pressure record. there is no
way to recapture that information. In order for the method to be more effective in
this sitnation. the pressure would have to bhe measured at a depth closer to the water
surface.

Franre 3,19 shows the results of the LED method applied to the entire scement of
the record from which the crest was taken. The water surface is captured fairly well.

as are both the vertical and horizontal velocities,

3.6 Discussion

The eiven results demonstrate the potential of the LFL method in the interpre-
tation of submerged pressure traces in a variety of conditions. In the case of steady
waves. the LFT method accurately computed the detail of the wave. nsing only data
from a small window in time. In particular. the method was able to capture the
prononnced sharp crest of a steep. shallow water wave.

The method did not performn as well on laboratory records. failing 1o capture
some of high frequencey detail in the water surface. This is due to the limitations of

subsurface pressure records. where much of the high frequency information i< missing
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from the record. The method is likely to perform hetter in <shallow water. or with
records that are measured closer 1o the water surface. Despite this limitation. the
method was able to capture mneh of the detail of a irreeular laboratory record. and
provide fairly accurate estimations of the local kinematies,

The analysis of regular waves provides guidelines for the parameters 1o he nsed
in the analysis of irregular waves. In shallow water. higher order solutions and wider
windows must be nsed than in deep water. Window widths of one tifth of the zero
Ccrossing |u‘l‘im[ and a sixth order potential function are eult‘q!lalv for the shallowest
waves. and window widths as small as one tenth of the zero crossing period and a
third order |)ul¢‘nlia[ function are ;u|(‘(||1at¢‘ for ([(*v]) water.

The laboratory results indicate that the method requires good precision and care in
the measnrements. Any high order method demands very aceurate data. hut this need
is exacerbated by the ill posed problem of determining the near surface kinematies
from a subsurface record. While not particularly sensitive to random noise in the
record. the decay with depth of the high frequencey information makes it very ditlicult
to capture the high frequency modes. Fundamentally, the LET method is desiened 1o
capture the dominant free mode in cach given window. s the higher freqneney modes
decay faster with depth. aud if the measurements are taken far helow the surface. the
dominant mode will always he one of lower frequency modes. This ditficulty would
he exacerbated by any limitations in the freqiencey response of the ganges.

The computer resources required for the method are substantial. bhut not pro-
hibitive. As computers contine to get faster. computation time is not the considera-
tion that it once was. The method was developed and all compntation done using the
MATLAB computational package. MATLAB is an interpreted language that provides
a very casy to nse interface 1o a robust and complete library of computational and
visualization rontines. allowing for rapid development of new methods. Being an in-
terpreted langnage. the resulting code is not as fast as it might be if the routines were
programmed in a compiled langnage. such as Fortran or C. The computational speed
is also atfected by the degree to which the program pauses to provide visual output.
Perhaps a hetter measure of the computational intensity of the method is a count of

the total number floating point operations (Hops) nsed to compute the solution.
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The examples in this dissertation were all computed on o Intel 90MIz Pentinm
processor hased PCwith 32MDB of RAM. running the Linux operating svstem. A< an
order of magnitude estimate. the shortest computation time for an example in this
chapteris Ly minntes and 7.8 - 10" Hops for the complete laboratory record presented
in figure 3.1 The longest computation time required was 71 minutes and 552 . [g"
Hops for the shallow water wave presented in fignre 3.1, There are a number of
reasons for this large variation in computation time. The tirst is simply the mumber
of window solutions computed.  \s cach window solution is computed separately.
the compntation time increases linearly with the nnmber of windows computed. If
computational time is a concern. this can be taken into acconnt when choosine the
ontput spacing.  The other reason that the shallow water wave takes mnel loneer
to compute is that there are a nmumber of windows that did not converge with the
first set of computational parameters. The optimization is run for many iterations
to ensure that it won't converge. \s the parameters are varied. the computation is
repeated. This process takes a great deal of time.

With further development. it may bhe possible to determine a set of eriteria for the
computational parameters by examining the seament of the record in a given window.
This would be far more efficient than simply attempting a solution with a variety of

values nntil convergence is achieved.
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Chapter 4

Three Dimensional LFI Theory

The previous chapters were concerned with the determination of wave kinematies
from the analvsis of a time series of a single physical ¢uantity at a single location. By
assuming that the How is two dimensional. a reasonable approximation of the wave
kinematics can be found. Unfortunately. this analvsis does not eive any information
about the directionality of the sea state. There are some processes in which the wave
directions are directly important. sncl as sediment transport.  Even in situations
where the wave directions are not directly important. it has heen shown that omittine
the directional natnre of the sea results in substantial errors in the prediction of sealar
quantities. such as the maximum velocities and aceelerations in a measured wave crest.
or the resultant forcing on structures (Dean 1977 Forristall et al. 197N,

In order to capture the directional nature of the sea. an array of instriments must
bhe used. The result is a set of time series of a single physical quantity at a mumber
of ditferent locations. or a set of ditferent phyvsical quantities at the same or ditferent
locations. This chapter outlines a method for determiniug the directional kinematies
of irregnlar seas that can be adapted to accommodate virtnally any combination of

such time series.
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Figure L1 Coordinate svstem used for 3-d method

4.1 Three Dimensional Seas

The development of the two dimensional LET method was closelv anchored to
the very complete understanding of two dimensional steady waves. [n contrast. the
nnderstanding of three dimensional wave Helds ix not nearly as complete. Much of
the literature on three dimensional seas attempts to deseribe the motion throngh the
ise of a directional energy spectrim. Far less attention has been direeted 16 the

determination of the detailed kinematies of directional seas.

4.2 Problem Formulation

The governing equations for three dimensional gravity waves are a straight forward
extension of those in two dimensions to include the third dimension. The How is taken
to be irrotational and incompressible. aud thus the Kinematics can be represented hy
a potential function. o(e.y. 2 ). in a Cartesian coordinate svstem (Fie. 1.1). where:

Ao o Jo»

= -— = —_ i = -—
. y =

(-1.1)

u and ¢ are the horizontal velocities in the . and y directions. and w is the vertical

velocity,
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Field Equation The ficld equation is mass conservation for irrotational flow. rep-
resented by the Laplace equation:

, ‘).’(7 -}.3(: ‘)'ll,'
AR = o + ro e = () (4.2

P— —— T TS
)= y- ‘)=

Boundary Conditions Tlie boundary conditions are the bottom honndary condi-

tion (BBC) for a horizontal bed.

o
o =) at == (1.3

S

the dynamic free surface houndary condition (DFSBC.

(.)(." l ) ) ) ] T
— + =um =ty + gy - B =1 at =0 (L
it 2 )
and the kinematic free surface houndary condition ( KFSB(').
h h h
ol u—i—f‘-:'—l—u'z(J at =0 £ £.5)

at " o Ty

where 5 is the elevation of the water surface.

As with the two dimensional formulation. the kinematic free surface boundary
condition requires the eradients of the water surface (2, =2 and ':—/) Nnowledee
of these gradients is likely to be limited. In the case of an arrav of water surface
measurements. estimates for the gradients conld he computed by interpolating among
the measured elevations. but this would resilt in a low order estimate. and componnd
the imevitable error in the measurements. In the case of subsurface measurements.
there are no data as to the location or the gradients of the water surface.

To eliminate these gradients. a modified kinematie free surface boundary condition

ix detined by ditferentiating the DFSBC following the motion (Louguet-Higgins 1962).
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as was done in two dimensions in Section 2.1.

D .
MREFSBC = g (KFSBC) + m(l)l'SB(’l =

i) o + ) du n e he
quo + 2u— r— = u—
gr AT T T
L e e t 1.6}
F U — U — Ui —
i dr
u NZIS he
F U — T — i —
dy Ay dy
R u N dr NI 0
i+ nr— T — = at =1
- - - !

This form does not include the gradients of the water surface. and all the terms are
defined by the potential function. Applying both the moditied kinematic free surface
bonundary condition and the dyvnamic free surface houndary condition completes the

formulation withont the need for knowledge of the gradients of the water surface.

Observational Equations The ticld cquation and the boundary conditions de-
seribe a free surface potential How. In steady two dimensional wave theory. a wave
heteht and periodicity in space and time are specitied to complete the formilation.
[n the two dimensional LET theory (Chapter 2). a form for the potential function is
chosen. with the parameters determined to fit the free surface boundary conditions
aud the measured record in a small window in time. [n three dimensions. the pro-
cess is essentially the same. \ three dimensional form for the potential function will
be presented. with parameters that are found to fit the measnred records and the
boundary conditions.

[n order to define a solution that fits the measured record. observational equations
are established. These equations are defined to make use of the particular quantities
that have been measured. In the case of an array of water surface measurements. they
are the free surface boundary conditions. applied at the measured elevations and hor-
izontal locations at a number of points in time thronghout the window (Chapter 5).
[n the case of an array of pressure measurements. they are the Bernoulli equation.

applied at the elevation and horizontal locations of the measurements. and also at
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a number of points in time within the window (Chapter 61, The method could he
adapted to virtually any combination of measured physical quantities by establishing
appropriate observational equations. In addition to the aforementioned water surface
and pressure measurements. these could include water surface eradient or accelera-
tions measured by wave huovs. subsurface velocity measurements. or any combination

of these.

4.3 Formulation of the Solution in each Window

4.3.1 Background

Two dimensional steady wave theory provided the inspiration for the development
of the two dimensional LET method (Chapter 2). Unfortunatelyv. the literature does
not provide as solid a basis for nonlinear interpretations of directional seas. There
has. however. heen some work that can be used as a basis for a directional LEFI
method. In an carly attempt to explore the nonlinear nature of directional scas.
Longnet-Higgins (1962) computed the interaction of two intersecting steadyv waves
in deep water through the use of a double perturbation expansion in the steepness
of the waves up to third order. The result was a potential function that contained
terms representing the higher order interaction between the phases of the intersecting,

waves:
(,')‘” = /[( . .\'[ ) + /.l‘ c. .\'_')

1_')(:’ = /:( <. .\'| + .g"_)) + l',( . .""[ - ,'\'_.'

(1.7)
o = [5228) + S+ Jolz 250 = So) 4+ fo(2o S+ 2500+ fuls. 8 =280
S,o=tk, x—ut+0,)
where v = [1.2]. o) ix the mth order potential function. S; and S, are the phase

functions of the two waves. k,, is the vector wave mumber of wave 1. x is the horizontal
position vector. «, and o, are the angular frequency and initial phase of the nth
wave. The functions. f.. were determined algebraically by expanding the free surface

boundary conditions in a Tavlor series about the mean water level. and solvine for
. . =
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the potential funetion at each order. Nonlinear frequieney modnlation was not taken
into account. so the freguencies and wave numbers of cach wave independently satisfy

the linear dispersion relation for water of intinite depth:
< =glk. | RN

fiand f.are independent of each other. and are the familiar near wave <olntion:

(&) N , R (loru) [ s
ho= ——F7 i 5 fr= €T NS) ¢ LYYy
A.l /1'_'

The higher order terms are all functions of both waves. and thus include the interac-
tion of the rwo waves.,

A number of investigators subsequently expanded upon this work. Hso and Chen
(1992) presented a detailed examination of Longuet-Higgins (1962). pointing out ditfi-
culties that arise from the assumption of the linear dispersion relation. They presented
a more mature analysis. inclnding higher order modulation of the wave freqiencies.
and higher order sell interactions of the individual waves. This resulted in a comn-
plete theory np to third order for two intersecting waves in deep water. [sn and
Chen also proposed a systematic ordering in the phase relationships generated by the
imteractions of two steady waves to arbitrary order.

Expanding npon this work. Ohvama. Jeng and Hsu (1993a) extended the per-
tnrbation expansion method in a number of wavs. The most recent version of the
method accommodates any number of waves. allows for water of finite depth. and is
accurate to fourth order. This last method can compute the water surface and fmll
Kinematics of a highly irregular sea. ax produced by a large number of intersecting
waves. A more detatled discussion of the method is given in \ppendix \.

Ohyama. Jeng and Hsu's work suggests a form for the potential function that can
be used for a local method for the recreation of three dimensional kinematies from
arrays of wave measurement devices. including water surface arravs. pressure arravs.
directional current meters. or anyv combination of these.

The general form for the potential function representing \ intersecting steady
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where U and ) are the components ol the depth uniform Fulerian curvent. A, and

k... are the vector wave number components of the nth wave i the o and ¢ directions.
There is a separate summation for each wave considered.
As the notation in Eq. L10 1s quite confusing. examples with two and three waves

are eiven below, With two waves (V= 2):

ol RN 7 B / )= {—r-" T [/’/ -

J J=jl .
\ cosh N, th+zy o
Z ‘ = SISy += 12500 (1.1
T cosh /\'w ‘/I
== o=—=Jd4]0| -
S, =Aho =k, y—< it +0) no="11.2]
/
Ry = Uik, sk 0 4 0k 4k )
And with three waves (V= 3):
oty 2. =00+ 0,y +
N .I—!l I Sme i .
\ b cosh N, ,,..(h+2v . o o
Z Z Z .l,l_.,',_l. - l I: / .\lll(ll.\l ":‘/_D.\_‘_:‘/_",.\f',)
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Thi~ form for the potential function exactly satisties mass conservation. in the form
of the Laplace equation. and the bottom bhonndary condition for a locally horizontal
hottom. It allows for high order representation of cach of the steady waves, as well
as the interaction of each wave with every other wave. The balance of the <olution is
specitied by the full three dimensional tree surface houndary conditions. Fos. L1 and

l.6.

4.3.2 Dynamics
The dynamics are available through the Bernoulli equation in three dimensions:

(')lf)
At

, , , /); i
Tt +— =B =10 (LB

/)

!
~ —(u- +r
9

The dynamic pressure is the ditference hetween the total and hyvdrostatic pressure

(pr=p—pil

The Bernoulli Constant

[n Chapter 20 an explicit and exact expression for the Bernonlli constant. B is
eiven for steady two dimensional waves. (Fqs. 2.0 and 2,051\ similar expression
can he established for unsteady three dimensional waves,

The Bernoulli equation is applied at the bed:

Jon L . L
—_—t —(ur + )+ g+ — = (Ll
gr At T T s

where the subseript. b indicates the value at the bed.

The two dimensional approach is based on analysis first presented by Lonenet-
Higeins (1975). In that work. the analyvsis was applied to steady waves. Witl steady
waves. the average over either time or space of the pressure at the hed is the hydro-
statie pressure. With unsteady waves. the pressure at the hed averaged over space

at any given time. or averaged over time at any given location. is not necessarily the
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hydrostatic pressure. [f. however. an average is taken over hoth time aud horizontal

space. the result must he the hydrostatic pressure.
o= pgli; — ) (L1

with the double overline indicating an average over time and horizontal space. When
the Bernoulli equation at the hed is averaged over time and horizontal space. the
average time eradient of the potential function is zero. resulting in a simple expression

for the Bernoulli constant:

- | = = =
B = =tui + i)+ g FL1G)
For the potential function given by Eq. L10. and : = 0 at the mean water level

lﬁ). B becomes

J=0 2l

J T . .
! = .1[][\r1l >' _
_— i1
| Z Z <(‘us|l I\“/I

a==J -\:—./+$—"'-l'lmf

o=t |

-
+
|

— l i
/)’::;({ 1

giving a complete expression for 3 as a function of the parameters of the potential

function.

4.4 A Local Two-Intersecting-Wave Theory

While a large number of intersecting waves could capture a sca state of virtually
any complexity. it would bhe difficult to distinguish hetween the effects of each in-
dividual wave. [t is important to remember that the familiar directional spectrum
description of a sea state is an integral description. While there are many different
frequency and direction modes represented in the spectrum. they do not necessarily
all play a signiticant rule in the kinematics the entive time. In fact. when observing
irregular seas. it is often the case that at any given time. there appears to he a single
dominant wave of a particular frequency and direction. Over time. there is a series of
such dominant waves. each of a different frequency and direction. The intearal etfect

of this process is a broad directional spectrum. bhut if time is separated into individual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ON

small windows, i cach window there mav be only one or two free waves dominatine
the motion.

Takine advantage of the local nature of the approach. only one or two intersect -
ing free waves are considered in each window. While unlikely to capture the full
complexity of a broadly directional sea. this approach should be able to capture the
dominant modes in cach window. The direction. frequeney. and amplitude of the
dominant modes will vary substantiallv from window to window as thev do in the
two dimensional approach. havine an integral etfect that includes a laree variaiion in
directionality,

The two wave method is expected to be particularly effective for the case of
standing waves or short crested waves, as wortld be found near a refleeting surface
when the incident wave tield is almost unidirectional. as it often is in shallow water.

Expanding Fq. L1 to fourth order. the potential function for two intersecting

waves is:

20
oty by =0 =0y + S“ AU LK, 5 sin e EREY
=1
where:
- / ) . )
cosh W, (h + =) [ider, = e -

(CtN oK oy = - N =/ — + —
e cosh K h b \/ N dy

Sy=thogae F by =il + oy

Se=Abepr + b,y — il +an)

At Hest order:

T =(5) Ty =(5))
At second order:
7= (285)) ay = (25,)
o= (S +5,) a, = (S =S
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At third order:

T- =

Ty =

And at fourth order:

T =
Ty =

Ty =

Ty =

1350

(25 + 50

= (."”[ + '_,,\'_"

‘ .\'[ - :;,\.: ’

T = (:;.\'_:)
Ty =125 = N0

M) = (.""[ —‘_),\’.t'

T = (35 — N
”|\:(2.\| — 25,
Ty = (5 — 385,

(L)

T2 T On. Ty and app are <elf-wave interactions. The bhalance of the @ are

Wwave-wave ill“‘l'?l('f i()ll,\'.

Because the phases are areuments of the <ine in the potential function. a sim-

ple expansion of Fq. LI results in redundant terms that have heen removed. For

example. if there are two components:

Because sine is an odd

By <sintSp — S,

function:

Bsin( S, = 5y)

[f_u st Sy — N

—[f_; Sill‘.\'| — .\l_')

the two components can be combined into a single component:

([3) — Ba)ysin(S) — S5) = ., sin(S; — 5

1o

( 1.20)

(.20

I both components were included. the effects of £, and 2. would he indistineuishable
1 2 L

in the optimization: they must he combined into the single coetlicient. .|

This form for the potential function results in 28 unknowns at fourth order (201,

plus b k0w and a for each of the two intersecting waves) that must be found
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for cach window in time. At least 2% independent equations must be defined by
applying a combination of each of the free surface bonndary conditions (Eq. L1 and
L6y and the observational equations at a number of nodes thronghont caclh window.
The specitic combination of these equations will he determined by the lavout of the

st ruments,

4.4.1 Kinematics
ln order to apply the free surface bonndary conditions. the full kinematics mnst
he known. While the Kinematics are completely specified by the potential function.

Eq. LIS some of the algebra may not be obvions. The full expressions are provided

here.
e L e
. - = - = ) ! N TS cos )0
utr. oy, b)) = o= (_,A+Z[.l, o IR N syeosm {122
.)(,'1 N ) B - .
I TR A — f—- = [, + .l,:—(('i[\,//./\,:l('u.\rrv i .23
Jy - Ay
o> !
wir oy s ) = 7— = Y AN LORN DR s eosa, P2 h
( : ="
=1
e ! et
) . -
eyl = Z; A= ORI K o (1.25)
1 | < W
B = -7 +07°)+- (————) (1.26)
2 (v D | Z cosh A1 '

=
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where:

cosh Nooh + =)
('U\ll [\-‘ /I

sinh A, (h + 2)
cosh W 1

e )" (i)n’ )"
\f (. Ay

(KW, o) =

S hN oK ) =

i, =
. . et
a =S+ nSN,) — = (b +nk.
o
i(der e
_— = ln//.',,,l - l//.',,_') —_— = =~y T )
Ay 7

The solntion details for a given et of measurements are problem specitic. These
will be provided for au array of water surface measurements in Chapter 5 and for an

array of pressure measurements in Chapter 6.
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Chapter 5
Array of Water Surface Traces

Water surface measurements are difficult to obtain and not very commonly nsed
for field measurements. bat they are routinely nsed in the laboratory, Surface piercine
wave gauges are the most commonly and easily deploved of the methods for measurine
waves in the lab. Unfortunately. even large arravs of suel wave ganges still only aive
mformation about the tluctuations of the water surface. The underlving kinematies
st still be predicted with a wave theory, The following is a method for determining
the kinematies of waves in the region of an array of water surface measurements. [t
i~ anextension of the LET method presented in the previous chaprers, expanded to
determine the divectional structure of the wave ficld. The method is fullv nonlinear.
and results in a complete prediction for the full kKinematies in the vicinity of an arrav

of water surface measurements. throughout the depth of the water column.

5.1 Formulation of Solution

As described in more detail in Chapter L the flow is assimied to be irrotational and
incompressible. with a potential function that represents either a single directional
wave. or two separate intersecting waves.,

Wlhen the measurement is taken in a location that is far from reflecting surfaces.
it can be effective and straightforward 1o assume that the wave field can locally

be defined as a segment of a single steady wave, This is quite similar to the LFI
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method for a point water surface record (Sohey 1992). hut with the direction of the
wave determined. The varving directional trend of the sca state is accommodated
by determining the direction in each window separatelv. allowine for a Huctuation of
the wave direction with time. from window 1o window. In this case. the potential
fincetion ix Eq. L10 redieed to a sinele wave:

. . ! cosh Rl + 2y

ol y=10 0+, 4+ ; A

;! / ;

sin Jlhe +ky — ot —a) 5.0

cosh y K

where [ and {7, are the components of the known depth uniform Fulerian current
in the o and 4 divections. h is the mean water depth. ./ is the truncation order of the
Fourier series. 1, are the Fourier coetficients. & is the local fundamental frequency.,
k. and k, are the compouents of the local wave number in the » and g directions.
and A" is the maenitude of the local wave number.

When an array of water surface ganges is placed near a reflecting <urface. such
ax a xea wall. the resulting sea state is likely to contain simntltaneous components in
different directions. such as in a standing wave or short crested sea. This effect can
not be captured with a potential function representing a single progressive wave, It is
possible. however. to capture this type of sea with a potential function representing
two intersecting waves. The potential function for two intersecting waves is Fo. LIS

which is repeated here:

20
ole.y. s hy=U,0+0,y+ Z A CER LR ) sine, (5.2
=1
where:
l 1] 1)
. . cosh K, (h + =) [éidx = e -
(NN ) = i N o= 22
2 cosh I\, 1 ! \/ ar i)y

‘\'l = ‘.lx'fv].l' + /"u.l.l/ - u‘.'[l + ”l)

Sy =hope + ko oy — il +0))
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At first order:

At second order:

At third order:

Tr = l:;.\'l) Ts
Ty = (25 + 5, Ty
T =S T 28 T2

And at fourth order:

ai =115 Ty
as = (35 + 5 T
s =125 + 285, Tis
Ay = (S 4+ 35,) 70

= (Z{’\'_.'

= (2.\'| - ‘\"_»)

= (5 — 28

=ilS))

= ':;'\‘l — .\‘_!'

= (_!,\'l _ ’,\'.,)

= (5 — 35

[t might be possible to include a larger number of intersectineg free waves in order
= b =

to capture a broadly directional sea. hut it would introduce additional complication

in distinguishing the effects of the individual waves. and will not he considered here.

Both of these potential functions satisfv the tield equation ( Laplace. Fq.

1.2 and

the bottom boundary condition (Eq. £.3) exactly. The halance of the solution is

determined by the free surface houndary conditions: the modified kinematic free
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<urface I»t;llll(l&ll'}' condition (‘/'I‘ ).

" Ao Au ar he
/" = — g+ U— + r— + wr—)
ot - : it it 7
L lu e he
-— U — U — = i —
‘r o or T
)t NIIE (he )
— 0 — T — i —
Ay Ay iy
Ju 718 Lo
+ue— +uwr— +ut— =1 at =y
- )z -

and the dynamic free surface houndary condition  f7).

do 1, ) . — -
= — +—(u +=r-+uwh+gyu—-08=10 at T =y (5.0

F
’ 171 2

with the Bernoulli constant ( B) delined as:

| LA :
('-4{- + - 3.5
(. IZ((mIII\ /1) .

=1

=

18| —

The problent of determining the kinematies of irregular waves from a <et of mea-
sured water surface traces is a mathematically better posed problem than interpreting
a subsurface record. The flow is governed by the elliptic Laplace equation (Fq. 120,
so that the solution is determined by the bonndaries. \While the complete boundaries
of the solution domain are not known. the honndary conditions and location of the
bonndary are known at hoth the 1op and bottom of the solution domain. The bottom
bhoundary condition is well detined. and the location of the water surface is measured
at a few locations in space and many points in time. allowing the direet application of
the free surface houndary conditions. This is in contrast to working with subsnrface
records. in which the location of the free surface must be determined in order to apply
the free surface houndary conditions. The need for horizontal boundary conditions is
climinated by the assumed periodicity of the chosen potential function. However the
fundamental wavelength(s) and period(=) must be found as part of the solution.

When working with a point measurcment. the fundamental frequency is fairly well
detined by the time evolution in the window chosen. as long as the window is wide
enough. There is no direct information available about the spatial evolution of the

signal. however. <o the wave number is determined only through the application of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

the free surface houndary conditions. An array of measurements provides information
about the spatial evolution of the signal. helping to hetter detine the fundamental
wave nnmber. This usnally results in faster and more robust convereence of the

optimization.

5.2 Formulation of the Optimization

The formulation of the optimization for the LFT method as applied to the in-
terpretation of an array of water surface measurements has a great deal in common
with the formulation for a subsurface pressure record (chapter 3) and a point water
strface measurement (Sobey 1992). Less detail is presented here than in the previons
chapter. but the framework will he presented. with an emphasis on the additional

information necessary for applving the method to an arrav of measurements.

Observational Equations The governing equations presented in the previous sec-
tion represent a free surface potential How. with one or two components propagatine
i an arbitrary direction. The observational equations are the equations in the svstem
that force the solution to fit the given measured record. As the location of the water
sirface has heen measured. these are the free surface honndary conditions ( Eqs. 5.3
and 5. 0. applied at the horizontal location of cach of the nodes in the arrav. Sutficient
independent equations ave detined by applving the boundary conditions at a nnmber
of times along the measured records. within the window in time considered (Fie. 3.1).
The solution is the set of parameters in the potential funetion that result in the least
error in the FSBCs,

In order to specify the solution. there must be at least as many independent
equations as there are unknown parameters in the svstem of equations. The free
surface houndary conditions (f& and f2 ) are applied at cach of the N meastured
locations and at M time samples in the window. resulting in 23N independent
equations.  In the single wave case. there are 1+ ./ unknown parameters soneht in
Lq. 5.0 (A ko woasand Ay L0 4y) in each window. so that if 21/ .\ > 1L +.J. the

solution is specified. In the two wave case. there are 2 + S unknowns in Eq. 3.2
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2h 0 2h,0 200 2acand L0y 10 ar ficst order. T at <econd order. 20 at third

order. and 25 at fonrth orderr. The solution is specitied when 230/ N > 2V =N

This svstem resulis in the following least squares optimization.

AV
minimize (X)) = Z Z f"- (X, otg ot )+ ‘/',{,’.,,(X:.r,,.,l/, AV 006

Tea 21
- H/:l /4=l
where:
X=tboh, ..o 4o (WA
for the one wave case. and:
X = (A‘J._[. l‘":,l““"l' ”l-l‘.,r._’- /-',1._'..6,'_'. [EBN .ll ...... ll )

for the two wave case. o, and y, are the coordinates of the nth esanee. and Tt
the measured elevation of the water surface at time £, and ganee .

Aswith the analysis of a pressure record. overspecitication can he helpfnl in accom-
modating the measurement ervors in field records. More than the mininmm number
ol time samples in the window may he required to detine the shape of the water
surface in cach window. This is less likely to be necessary with two waves than with
one. as the number of unknown parameters is much larger. It should he kept in
mind. however. as it would he a factor for low order solutions with a large mumber of

measurement locations.
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5.3 Computation Methods

The LET method for an arrav of water surface measurements can be bhroken down

into a similar sequence of steps ax with the analvsis of a pressure record:
L. [)l’(‘-pl‘u('t‘ssillq of record.
(at Determine estimate for level of noise in the record.
(b Determine estimate for magnitude and direction of Eulerian eurrent.

i) Detine a set of continnous records from each gange from the diserete ob-

~ervations by cubie spline interpolation.
cd) Speeify spacing of ontprut locations.
tey Compute mean zero crossing {requency.,

(1 Non-dimensionalize record and all parameters.

2. Primary valnes of nummerical solution parameters are chosen.

ta) Window width i =,)
(hi Order of solntion (./)
tei Nnmber of time samples of the water surface records within cach window

YA

3. Global solution s computed on an entire wave to provide tirst estimates for

local u])lilllizaliull

L. For cach selected outpat location. a window in the record is detined. and the
an LIT solution is computed.
(a) Initial guess for the optimization is determined from the elobal <olution.

(b Fall nonlinear optimization for all unknown components of the potential

function is computed.

(¢) Results are checked for spurions solution.
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i 1f no solution. or a spurions solution. is found rthe solution parameters
are adjusted. and the optimization repeated.

1. Ifa ‘_{uml solution is found. progress to the next window.

5.3.1 Pre-Processing of Record
Accommodating Measurement Error

Measurement ervor can be a major source of ditficultyv with anv high order data
interpretation method. Local methods can be especially sensitive, as cach window
solution relies on the detail contained in a small s<cement of the record. In applvine
the LEL method to a single pressure trace. Sobey (1992) found it necessary 1o apply
a simple moving average filter to field and laboratory data. In his work. the primitive
Kinematic free surface honndary condition was used. requiring an estimate for the
local gradients in the water surface. In the current work. a modilied version of the
honndary condition (Eq. 5.3) is used which does not requive these eradients. This
makes the method less sensitive to noise. <o it was not necessary to apply any tiltering
for the results presented here,

[f there is substantial noise in the measured record. the svstem of equations can be
substantially overspecitied. allowing the least squares optimization to accommodate
the noise in the record. When this is possible. it is preferable to applying a smoothing
filter to the record. as it does not impose anyv assumptions on the nature of the record.
However o if the error bands are very large on the data. it may still he necessary to

apply filtering to the raw measurements.,

The Mean Water Level

The mean water depth. i must be specilied as part of the potential function.
As a time series of the water surface is provided. it is a simple matter to compnte a
mean of the measured records. The mean should be taken over a period much longer
than a typical wave period. but short enough to accommodate changes in the local

water level due to astronomical and storm tides. In keeping with the local nature
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of the approach. this is the local mean water level. rather than a elobal still water
levell which might be different. and would be less appropriate. As with <subsurface
measurements. the precision of this value is not eritical. as L is only nsed 1o locate

the origin of the coordinate system for the potential function.

The Eulerian Current

The Enlevian envrent. {7 and (7,0 completes the deseription of the propagation
medinm of the waves. and an aceurate estimate of its maenitude and direction is
unportant.  The measured water surface traces provide no information about the
current field. so the information needs to he provided from other sonrces. See Section

3.3.1 for a detailed discussion of this important parameter.

Spline of the Records

As with the previons chapters a set of continnons records is compnted by enbie
spline interpolation amone the measured points at cach eauge. allowine complete
Hexibility in the choice of window widths and location of samples in time of the

records,

Output Locations

The spacing of the desired output locations must be chosen to determine the
placement of the windows. Each window is compited independently so there is no
restriction ou the spacing of the ontput windows. In addition to selecting the output
spacing in time. in can be useful when using an arrav of instruments to determine a

single central location within the array at which to define the solution.

Non-dimensionalization

[n order to prevent spurions solutions due to the comparisons of errors of ditferent
dimensional quantities. all parameters and variables are non-dimensionalized before

computation with scales defined by the same physically identitiable parameters used
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in Chapter 3: the mass density of water (pi. acceleration of gravity (¢). and the mean
zero crossing frequency of the measured record (o).

Length scale = gy

Thne scale = l - 5

Mass scale =

5.3.2 Optimization Procedure

The nonlinear optimization in the LET method for the analvsis of arravs of water
surface measurements is very similar to that used for the analvsis of a snbsurface
pressure trace. [n the single wave approach. the solution is somewhat easier. The
potential function nsed by the single wave approach is almost the same as that nsed
with a point measurement (both Chapter 3 and Sobev (1992)). with the addition
of & directional component to the wave number. This results in a sinele additional
inkunown. but the arrav of measurements provides at least three times ax much data.
with ganges at at jeast three spatial locations to specify uniquely the directional
structure of the sea. The optimization tends to converge more rapidly and robustlv
than with a single point measnrement,

When applyving the method with the two wave potential function. there are many
more nnknowns. and the optimization onee again hecomes somewhat tennous. s
with the previous chapter. in ix essential to identifv a good initial estimate to rednee

the chances that the optimization will converge to a spurions mininm.

Global Solution

The strength of local methods is that they seck a single solution for only a <hort
segment of a record at a time. The downside is that a single short segment often
may not contain sufficient information to identify the directional nature of the wave
tield. In the method presented in the previous chapter the initial estimate could he
comptited from the data in the current window. In contrast. when working with

spatial arrays. it is necessary to examine a larger segment of the record. for example
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an entire wave from crest to erest or troneh to trough. 1o 2ot a general <ense of the
directional trend of the wave tield. This elobal solution can then he refined to tit a
small seament very closely. This approach is used 1o establish the nitial estimate for
the optimization procedure in each window.

For the initial estimate to the elobal solution. it is assumed that the water surface

records can be approximated with linecar wave theory:
o= adcos| b, + b, —t,, —al {9.N)

for the single wave method. and

o= aycosthogr, +hay, — b, = ag)
(O
+ll_l COs (/\'l‘__t.l',, - /"Il..'.l/h - \...'_)i,, -+ 0 )
for the two wave method. where o, = L o/g. and A, is the amplitude of the linear

potential function of the nth wave,

Directional Trend The first step is to determine the directional trend of the wave
field. This determination is accomplished by examining the gradients of the water
surface thronghont the segment considered. Estimates for the spatial eradients and
the elevation of the water surface at the center of the arrav are computed by finite
ditference approximations. The water surface iz expanded ina two dimensional Tavlor
~cries about the center of the arrav:

. iy

me.yr=yle sy )+t —ao Vb—Fly—yr— + ... (5.10)
r dy

where o and yoare the coordinates of the center of the arvay. This expansion is

written for cach of the N measured gauges. at each of the M points in time. resulting
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ina svstem of linear equations that can be expressed as the (ollowine matrix equation:

r h r b
I v =y oy =y ma e - - - Ly
I v =y oy =y, AN
o . AN
’ L Yo IRV _ :
_l o=\ Yy - .1/\J AN . R ANV
(O 1

where o, and gy, are the coordinates of the nth eauge in the arrav. 1y . and

[

'

are the water surface and aradients of the water surface at the center of the
array at time. f, o and 1y, ., is the water surface elevation at ¢ange noand time £, I
there are three ganges, the eradients are uniguely specitied. I there are more. the
svstent is solved in the least squared sense.

The water surface is rraveling either toward or awav from the direction of the
water surface slope depending on whether it is moving np or down at the time. The
direction i~ thus determined by the spatial gradient of the water surface. and the sien

of the time gradient. vieldineg a <et complex divection vectors:

— Ay, hy,,. iy, -
)., = sien ,/ > < ./ ~ ,/ ) (5.1
7 i e

A cubie spline of the water surface at the center of the arrav 1y 1 would provide

an explicit piecewise polvnomial expression that conld be directly ditferentiated 1o
obtain the gradients in time of the water surface. These estimates would he very
sensitive to measurement errors in the record. To obtain more robust estimates for
the time gradients. a smoothing cubic smoothing <pline (de Boor 197%) is emploved
instead. This algorithm provides @ smoothing parameter. p. that can he <et at any
value between O and Lo where po= 0 results in the linear regression tit, and p = |
resitlts in the “nataral™ cubic spline. The smoothing parameter mayv he varied to
accommodate varving levels of noise in the vecord. For the examples in this chapter.

p = 0.9 was found to be satisfactory.
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Fraure 5.2 Direction vectors for a short crested wave

For the sinele wave method. it is expected that the individual divections will vary
around a central dominant direction. and the propacation direction estimate is the
orientation of the mean of the complex direction vectors:

\/

! - -
fl = angle ‘—IZ 1, 15.13)

For the two wave method. it is expected that the propagation directions at cach
point i time will vary aronnd two dominant directions. In the case of a standing
wave, these two directions are clearly defined. In a more complex sea. it is not so
straightforward.  To separate the two dominant propagation directions. the set of
direction vectors. Ti, i~ divided into two sets. The two dominant directions are

detined as the angles of the means of the sets of direction vectors within = ereater
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than and less than the mean direction (see Fie. 5.2
| AL
f, = angle | — D where: 0 -< anglel T,y < ==
: m > <
' S h
| V. f.
A, = ancle TE zl: 0D, where: —x<anclet D), ) <0

Frequency Ouce the dominant directions have been identitied. the approximate
frequency must be determined. This is accomplished by examinine the water surface
at the center of the arrayv. as interpolated by the finite ditference approximation
described above (Eq. 5.1 The method used is identical to that nsed in the 1wo

ditnensional method. (Ch. 3y:

o /:’ Ly,
R T

(019

where ix computed from the smoothed spline nsed for to compute == for the
direction estimate. If the wave field is unimodal it is expected that there will be a
single dominant local frequeney. The calenlated frequencies at cach time step will be
similar in magnitude. and the mean over the record is used as the first estimate of the
frequency for the single wave. In the two wave method. it is assnmed that the bhimodal
sea is the result of retlection. so that the frequency of the incident and retlected modes

should be the same. and the mean frequency is used as the first estimate for hotl

waves,

Wave Numbers Ouce the frequency is known. the wave numbers are estimated

from the linear dispersion relation.
(w— N, 0, =gk, tanh K. ., =N, cosh,. k.. =N, sinf, (5.16)

where {7, is the component of the Enlerian current in the direction of the nth wave.

X : {, -
74077 cos (ran_l (,—) —”,,> (3.1
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Amplitudes and Phases The amplitudes and phases of a particular record can
he found by rearrangine the equations as a linear least squares problem by ~eparating

the cosine and sine components as was done in chapter 3:

0 =wucosthr + hy—of +a)

=beosthwr + b,y —of +esinthor +h,y— o)

NN Y
a =\ =
o = arctan { —e/h)
for the single wave method. and
o= daycosth, o+ hay— <t o +ascosih, e+ by — ot = a0
= bycosth, o+ by — o+ epsinth, o+ b,y —of
+hycosth, e+ b,y — ot = easin(h e+ ko — o)
ap = \/‘/)f +f NN
., = \(/'/’/':; + ('::
ap = arctau(—ecy/hy)
ar = arctani{—c:/h,)

for the two wave method. The system is determined if o (/) is detined at at least two
points in time for the single wave method. and at four points in time for the two wave

method. The system is solved in the least squared sense in the case of more points.

Refining the Linear Estimates These procedures result in very rough estimates
for the parameters of two intersecting linear waves, The estimates ave then refined
by optimizing for a best lincar wave theory Lt to the record:

N

M
min;énizv()(X) = Z Z RTEPES LD ST ) £3.20)

n=l m=lI
where:

T (X, oy, b)) =acos (k,r, + by, —<t, +a)
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for the sinele wave method. and:

./.’I ‘X: .l',,.'l/,,.’,,, b = ty ‘.“\‘(/'.:'.l'l.r + /‘.',.l.[/r: - *‘l’n- Ty ]

! -‘-II_-'

T CON { ll'dv._».l',, - /-'J/._:_I/,, i ‘..‘.!/,,,

X = (/"r.l-/"//,l'“[~/‘.:'._"/"I/..'-”.’"Il’(l-f'

= \/'-, + /'.;.n

for the two wave method. The frequencies are determined from the lnear dispersion

relation:
. = gh,taubh b+ k1 i5.21)

where 7, is detined by Eq. 507 This optimization results in a linear estimate for the
water surface that tits the measured records most closely in the seement considered,
This procedure has heen performed on a segment of the records Jaroe cnongl 1o
resolve the directional structure of the wave field. nsually a complete wave from erest
to following crest.or trongh to following troneh. The tinal step in computing the
mitial estimates for the final window-hv-window optimization is to compute a full
order elobal solution to this larger seement of the record. The iuitial parameters
for this fll order global optimization are provided by the computed linear tit to the
water surface records. with the amplitudes adjusted for the potential function:

o,

l, = — (.22

The higher order Fourier amplitudes are all initially set to zero.

Using these linear wave theory estimates as the first guess. the full order optimiza-
tion. (Eq. 3.6). ix computed to determine the hest full order fit 1o a global seegment of
the record. The parameters of the potential function computed by this optimization
are then used as the initial estimate for the tinal optimization in cach defined small

window in time.

—
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Phase Shift The phase parameters. ay and o, arve <et for the phase of the elobal
scament of the record used. The local time in each window is set <o that 1 = 0 at
the center of the window. The initial estimate for the phase in cach window must be

shifted to accommodate the change in the time reference frame.
('rr = _W‘uAl .:_ “:.,glul:.‘ll ")‘.-,:;‘

where A/ is the difference hetween the time in the two reference frames.

Nonlinear Optimization in Windows

Onee the global solution is computed. it is used as the first guess for the parameters
in each window. and these parameters are retined by solving Fq. 3.6 with a standard
noulinear optimization routine. For the results given. the Levenbere-Marquardt aleo-
rithm was used as implemented by the MaTLAB Optimization Tool Box (Grace [992).
If the optimization snceessfully couverges to a miniminm. the solution is checked 1o
sec if it is a clearly spurions solution. Spurions solutions can be identitiod by the same

criteria used in chapter 3:
o \ery laree or systematically variable errors.
o [irst order amplitude smaller than one of the higher order amplitudes.
e [nrealistically laree or small freqnency or wave number.
o Large discontinuity hetween the windows in the predicted kinematics.

Asiin chapter 3.0t is unusual for the rontine to converge to a spurions solution. It is
far more common for the routine not 1o converge at all.

[l no solution or a spurious solution is found. it is necessary to revise the pa-
rameters of the solition as was disenssed in section 3.3.2. These revisions include
increasing the width of the window. and if that is not suceessful. decreasing the order
of the solution. If neither of these adjustments result in an acceptable solution. the
window ix skipped. and future analysis must be interpolated through that point. As

with the analysis of a point pressire measurement. these adjnstments are most likelyv
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to be needed i the long. Hat tronghs of <hallow water waves. or near zero crossinas
in the record. The additional data provided by the array of measurement<cand the
fact that the elevation of the water surface is measured. provides for a much more ro-
bust optimization than with the subsurface pressure measurement. s a result. these

adjustments are necessary less often with an array of water surface measurements,

Locating the Water Surface at the Array Center

Onece the solution is fonud. the potential function. and thus the complete Kine-
matics in the immediate neiehborhood of the arrav. are defined. The solution s likely
to be most accurate at the center of the arrav. and it is often convenient to have a
solution at a single point. <o the water surface at the center of the array mnst be
found.  This is accomplished by setting up another optimization problem with the
elevation of the water surface at a few nodes in time thronghout the window as the
unknowns.

The free surface boundary conditions (Fgs. 5.0 and 5.3) are applied at the hori-
zontal location of the center of the arrav. at M points in time throughont the solution
window. At cacl point in time. the only unknown is the elevation of the water <ir-
face. and the two boundary conditions provide two independent equations. The water
surface is delined as that location that results in the least error in the FSBCsCin the
feast squared sense. Each point in time is independent. hut the svstem can he set np
to solve for a number of points at once. Enouel points should be fonnd 1o specify
the <shape of the water surface throughout the window. For the results eiven here.
six points were nsed in each window (see Figs. 5.6 through 3.23). The mean of the
measiured water surface at the nodes provides a eood first estimate. This svstem

consistenthy and rapidly converges to a solution.
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5.4 Theoretical Records

5.4.1 Single Wave Records

The following results are from “measured”™ data eenerated by Fourier steady wave
theory iSobey 19N9). Fourier theory provides a near-exact solution for steady waves
that provides the complete kinematies. This approach provides a complete set of data
to compare with the results of the LFT method. without the complications introdneed
by the inevitable errors of data collected in the field or the laboratory. Theoretical
records were used also because field or laboratory data that inclnded a full set of
measured Kinematies to compare with the results are not available.

A trianenlar arvay of water surface measurements was used. as indicated in Fie.
.3, The array is an equilateral triangle with the same dimensions as the DWG-1
pressure arvay ( Howell 1992). Three measurements were chosen. as three is the min-
imum nnmber required to provide directional information. Additional measurements
wottld provide overspecification. and can casily he accommodated in the formuiation.
With actual field data. additional measurements are recommended. as inereasing the
mimber of instruments would provide redundaney in the case of instriment failure.

as well as helping to accommodate measurement error.
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Kinematics at the predicted water surface
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Figure 5.1: LEFI predictions (./ = 3y and exact kinematics at the center of the array

at the predicted water surface for a steady deep water wave
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Fig. 5.1 i a <teady deep water wave generated hy 10th order Fourier theory with
the following parameters: wave height = 10 m. period = 10 seconds. water depth =
100 m. zero Eulerian enrrent. and direction of travel 10 dearees from the x-axis. This
is a fairly laree wave in deep water. The window width is 1 seel 1710 the zero erossine
period. and the LFT solution is computed to thivd order ¢; = 310 The LFT method has
captured the location of the water surface and the kinematies at the surface essentially
exactlyv. While linear wave theory might do an adequate job of approximating mnch
of the kinematies of a deep water steady wave like thiso it is important to remember
that each of the points in Fig. 5.1 was computed from a small seament of the record
surrounding that point. In this case. the window width is 110 of the zero crossing
period. or Is. The local nature of this method extends its applicability to irveeular
wave records,

Fia. 5.5 ix a steady shallow wave eenerated by Isth order Fourier theory with the
following parameters: wave heighit = 3 m. period = 10 seconds. water depth =5
m. zero FEnlerian eurrent. and direction of travel 10 degrees from the x-axis. This is
a fairlv extreme wave in shallow water. The window width is T see 1710 the zero
crossing period. and the LET solution is computed to third order. As with the deep
water wave. the LET method has captured the location of the water snrface and the

kinematics at the surface essentially exactly, including the pronounced sharp crest.

Choice of Order

[n order to determine the order necessary to accurately capture the Kinematies
of measured waves. it is particularly nseful to examine a window near the crest of a
wave. The erest is usually the region that requires the highest order solution. This is
particularly true for shallow water waves. but higher order wave theory in all depths
ol water indicates that. as the wave height increases. the erest tends to get sharper.

and the trough Hatter. Capturing this sharp crest requires a high order solution.
Deep Water .\ window near a crest of the deep water steady wave given in Fig 5.1

has heen computed at orders | through 4. The results in that window are given in

Fig. 5.6 through 3.13. Figures 3.6. 5.8, 5.10. 5.12 are the non-dimensional errors in
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Kinematics at the predicted water surface
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Figure 5.5: LET predictions (./ = 3) and exact kinematics at the center of the arrav
at the predicted water surface for a steady shallow water wave
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Crest of a deep water wave
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the free surface honndary conditions (Eqs. 5.3 and 5.1 ar each of the measured nodes.

These are the data that would be analvzed in a practical <ituation. Fienres 5.7, 5.9,
20105003 are a comparison between the predicted and actual values for the water
stirface and the velocities at the <surface at the center of the arrav. The actual valiues
were computed nsing Fonrier wave theory. The actual valnes would not bhe available
for comparison when analyvzing field records.

The first order computation results in errors in the free surface boundary condi-
tions of only order 107 (Fig. 5.6) as well as very accurately predicting the velocities
at the water surface at the center of the array (Fig. 5.7). It is a surprisingly acen-
rate tirst order solution. This is because of the local nature of the method. When
a sinele tirst order <olution is used to capture the entire wave. the error is lareer. of
order 107" Tt also should be noted that this first ovder soliution is not the same as a
lincar wave theory solution. even locallv. The full nonlinear bonndary couditions are
preserved. and the frequeney and wave number are free to vary. and are not bhound
by a dispersion relationship. Foe steady waves in deep water. linear wave theory is
fairly accurate. Linear theory is not. however. a local solution. and is not directly
applicable to irregular waves.

At second order. the free surface boundary condition errors are smaller. of order
LO7" and the velocities at the surface mateh the Fourier solution visually perfectly.
At third and fourth order. the errors in the free surface bonndary conditions continue
to decline. and the water surface velocities continne to match the Fourter solution
well. In deep water, for waves of this height. secoud order is more than adequate to
capturre the surface kinematics of thiz wave. Higher order solutions are likely 1o he
necessary to capture the irregularity of field records. even in deep water.

Choice of order is dictated by the desived accuracy of the solution. and by the case
of convergence to the solution. As there are more free parameters at higher order.
a higher order solution will always have smaller errors in the free surface boundary
conditions.  In the case of this example. the solution converged at all orders very
quickly. so there is little penalty in using thivd or fourth order. With an irregular
record. in contrast. convergence can be more difficult. and it is occasionally necessary

to resort to lower order.
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A~ the order is inereased. there are more free parameters, and care mnst he taken
to include sutficient points in each window. \s discussed above, for fairlv low orders
and an array of measurements: the limiting factor is the minimm nnmber of points
needed to detine the curvature in the window. rather than to specifv the <vstem of
cquations.  The above examples were computed {rom an arrav of three points. and
so required a minimum of only one sample to specify the system at lirst and second
order. and two points for up to order S0 When attempted. the solution would not
converge with only one sample. With two samples. the optimization algorithm found
a reasonable solution. but this small mumber of samples would not define the shape of
the water surface adequately if it were part of an irregular record. and <o three points
were nsed in cach window for all orders. In general. a mininan of three points shonld
he nsed. and more may be necessary to accommodate a highly irreeular protile. or
the mevitable measurement error in a feld record.

[n the case of theoretically generated records the need for more sampling of points
poses no problem. but with field records. there are limitations as 10 the <spacing of
the sampled points. Tu order to free up the spacing of points for the LFL method.
poinits are sampled from a cubic spline interpolation of the actual record. This allows
the points to he sampled anyvwhere within the window. While computationally it is
possible to sample as many points as necessary in a small window. if that window is.
in fact. detined by only a couple of actual data points. it is not appropriate to try
to fit a high order solution to a segment detined by only a few observational points.
In order 1o include sutficient actnal data points to justifv the increased order. the
window must he increased in size. While increasing the size of the window permits a
higher order solution. it also compromises the local nature of the method. The goal
of the LET method is for the solution to be as local as possible. which is achieved by

selecting as small a window as possible at fairly low order.

Shallow Water .\ window near a crest of the shallow water steady wave given
in 5.5 has been computed at orders | throngh 5. The results are given in Fig. 5.1 1
throngh 3.23. These figures are analogous to those previously discussed. but on a

shallow water wave.
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Figure 5.21: Free surface and velocities at the center of the array

for a shallow water wave at order |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



101

Crest of a shallow water wave

x 10~ oange |

-

-04 -03 -02 -01 0 0.1 0.2 0.3 04

Figure 5.22: Free surface houndary condition errors for a shallow

water wave at ()l'(l(‘l" )

C'rest of a shallow water wave

q
0 N
-04 -03 -02 -0.1 0 0.1 0.2 0.3 0.4
- =
— 02- -
q -
-04 -03 -02 -01 0 0.1 0.2 0.3 0.4
0.06 — T
ro-
e /6\\ ’
1/ <
0.02 .
-04 -03 -02 -01 0 0.1 0.2 |— actual
0.2 . O predicted
e :
—— 0 ‘L -
1
-0.2 —

-04 -03 -02 -01 0 0.1 0.2 0.3 0.4

Figure 5.23: Free surface and velocities at the center of the array

for a shallow water wave at order 3
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[u this case. the tirst order compntation results in substantial errors in the free
surface boundary conditions of order 107 (Fie. 5.0 0 and does not prediet the ve-
locities at the water surface at the center of the array as well as it did in deep water
(Fig. 3.15). noticeably nnder-predictineg the horizontal velocities. The local nature
of the method allows a ftirst order solution to get faiely close. but steady waves in
shallow water are highly nonlinear. and a tirst order solution simply can not capture
the sharp crest.

At second order. the free surface honndary condition errors are slightlv simaller.
but still of order 10770 and still nnder predicting the horizontal velocities at the
surface. A\t thivd and fourth order. the errors in the free surface boundary conditions
continne to decline. hut the water surface velocities do not mateh the Fourier solution
visnally perfectly antil fifth order (Fig. 5.23). In shallow water. it may he necessary
to use up to tifth vrder to capture accurately the surface kinematics of a fairly large
wave. [n the case of this example. the solution converged at all orders very quickly.
and there is little penalty in nsing fourth or tifth order. With an irreenlar record.
convergence will be more diffienlt. and it may sometimes he necessary 1o resort to
lower order.

As previously discussed. the use of higher order solutions requires that more points
he sampled in cach window. This is not likely to be a limitation with the <single wave
form with an array of measuremenis. as it is likely to he necessary to overspeeify the

svstem in order to define the earvature within the window.

5.4.2 Records of Two Intersecting Waves

ln order to develop the method nsing two intersecting waves. theoretical water
surface records were generated by Ohvama’s fourth order intersecting wave theory
(Ohyvama. Jeng. and Hsu [993a). Ohyvama’s method is a Stokes-stvle solution for
irrotational intersecting waves that is accurate to fourth order. and applicable in deep
water (see Appendix ). As the resulting water surface from intersecting waves can
be quite complex. a desired wave height can not he specitied. Rather. the amplitude

of the first order component of each of the intersecting free waves is specitied. The
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tirst order components are the largest components of the resulting wave tield. and thus
aive an approximation of the size of the resulting waves. This wave theory assumes

a zero Fulerian current.

Standing Wave Fienre 5.21 shows the results of the method for a standing wave
cenerated by two identical itersecting waves traveling in opposing directions. The
parameters of the waves are: Period = 10 sec. tirst order amplitades = 3 m. prop-
agation directions. 15 and 195 degrees from the x axis. in deep water. The LFI
method to thivd ovder (.7 = 3) tinds the Kinematies at the water surface almost ex-
actlyv. While these results show the complete wave, it is important to keep in mind
that as with all the previous resulis. each of the indicated points is in the center of
a separate window. and was computed independently of the other windows. In this
case. the standard window width was | sec.. or one tenth the zero-crossing period of
the wave. with a third order potential function ./ = 3). and four water surface nodes
distributed equidistantly in time in each window ( 1/ = 1) at cach ganee. for a <light

overspecification. with 21 equations in 20 unknowns

Short Crested Wave Figure 5.25 is the water surface at a point in timne of the
short crested wave that would result in the retlection of a steady wave from a sea
wall. as indicated by Henre 5.26. The parameters of the wave are: Period = 10 see..
first order amplitudes = 3 m. propagation directions. 30 and [50 dearees from the x
axis. in deep water. Figure 5.27 shows the results of the method for this short crested
wave, The LEL method to third order again tinds the kinematics for this wave almost
exactlv. In this case. the standard window width was also 1 sec.. or one tenth the
zero-crossing period of the wave, with a third order potential function ./ = 3} and
four water surface nodes ( 1/ = 1) in cach window. for a <slight overspecitication. with

24 equations in 20 nnknowns.

Choice of Order

As with the previous examples with steady waves. it is useful to examine a window

near the crest in order to determine the order necessary to accurately capture the
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Kinematics at the predicted water surface

T

: : . : o 4 — Ohyama et al.
O LFI

Figure 521 LFI predictions (./ = 3) and exact kinematies at the center of the arrav

at the predicted water surface for a standing wave
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Figure 5.26: Schematic of retlection that would eenerate the short crested wave given

in Heure 5,25

Kinematies of a short crested wave,

A window near a crest of the short erested wave aiven in Fie. 5.27 has heen com-
puted at ovders T throngh L The results in that window are given in Fie. 5.28 throuel
5350 Figures 52805300 5320 5.3 show the errors in the free surface houndary con-
ditions at cach of the measured nodes. These are the data that would be analvzed in
a practical sitnation. Figs. 5.29. 5.31. 5.33. 5.35 give a comparison between the pre-

dicted and actual values for the water surface and the veloeities at the surface at the
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Kinematics at the predicted water surface
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LET predictions (./ = 3) and analytical kinematices at the predicted water

surface for a short crested wave

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lo

Crest ol a short crested wave

x10 watee |

. X .
-04 03 -02 -0.1 L0 .01 0.2 0.3 0.4

antee '
5210 . —_|— DFSBC
i~ - KFSBC
L e |
of < - 1|
s A |

-04 -03 -02 -0.1 0 0.1 0.2 0.3 0.4
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Figure 5.29: Free surface and velocities at the center of the arrav
for a short crested wave at order |
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Figure 5.31: Free surface and velocities at the center of the array

for a short crested wave at order 2
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center of the arrav. The theoretical values used Ohvama’'s fourth order intersecting
wave theory, The actual values would not he available for comparison when analvzine
field records.,

[t is clear that the first order computation resitlts in substantial errors in the
free <urface bonndary conditions of order 107" (Fie. 52500 as well as sienificant v
nnderestimatine the horizontal velocities (Fig. 5,291, As with the steady deep water
wave previonsly disenssed. the first order <oliution is quuite reasonable. This is hecanse
of the local nature of the method. and the fact that it i< not a linear solution. The full
nonlincar honudary conditions are imposed. and the frequencies and wave numbers
are free 1o varv. and are not bound by a dispersion relationship.

At second order. the free surface boundary condition errors are bhetter. of order
107", and the velocities at the surface matel the analvtical solution visnally perfeetly.,
At third and fourth order. the errors in the free surface honndary conditions continne
1o decline. and the water surface velocities continne to mateh the theoretical solution
well.

As with the single wave method. choice of order is dictated by the desired ac-
curacy of the solution. and by the ease of convereence of the optimization. For the
above examples. four water surface nodes (M = 1y distributed equidistant v in time
in cach window. at cach gauge. at orders | throneh 3. These values providine an over-
spectlication and sutticient points to detine the <hape of the water surface throughont
the window. Five points (M = 3) were used at fourth order. as four points provide
only 21 equations. and there arve 28 parameters to he fonnd. Five points provides 30
equations for a slight over specitication. At tifth order. there are 35 nnkuowns. and
seven points in time €4 = 7) would have 1o he used in each window. Samplinge this
many points in a sinegle window would require very closely spaced data or a wider
window. Another solution wounld he to use an arrav with additional measurement
locations. \n array of four gauges. for example. would provide eight equations per
point in time. and would allow a fifth order solution 1o be computed from five points
(M = 5) per window. [t would be advantageous to use as many gauges as possible in
shallow water. where higher order solutions are necessary.

Unfortunately. the theoretical solution used for this analvsis. while the hest avail-
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able for intersecting waves, is only aceurate to fourth order. and only heine applicable
in deep or transitional water. This precluded an analvsis of the bhehavior of the o-
htion in shallow water. When the method is applied in shallow water. the lessons
learned in the two dimensional case <hould he applied. and a higher order solution.
perhaps to tifth order. should he used.

[t i~ also the case that the Ohvama solution is a single solution that is accurate
to fonrth order globally. The local nature of the LET method allows cach separate
window in time to be represented by a unique solution. representing the entire record

with far more accuracy than a global solution of the same order.

Choice of Window Width

As mentioned in the previonus section. it is important to keep the window width an
a minimnm. For the short crested wave shown in Figure 5.27. the standard window
width was one tenth the zero-crossing period (01720, 1t was necessary to widen the
window to 0,157 at three locations in order to find a solution. This indicates that
the standard window width is set close to the smallest size that would he effective.
In general. it is necessary for the window to contain enoneh of the record to define
the local eurvature, and inclnde sufficient data points to reasonably expeet to define
a high order solntion. Most often. the limiting factor will be the sample rate of ihe
data. For example. the above examples are compnted for a short erested wave with
a period of ten seconds. In those examples. the window width of 110 the period
(1) was adequate to capture most of the wave., Unfortunately. tield records are often
sampled at ouly THz. At this sampling frequencey. and a one second window. there
wortld be a maximum of only two data points in cach window. and it mayv he necessary

to widen the window to incliude more data.

Effects of Array Size

The examples above are all computed from data sampled by a faivly small arrav
(Fig. 5.3). The L.tim size of the array is about 0.01 of the wavelength of 10s wave in

deep water. That particular size was chosen becanse it has the same dimensions as
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the DWG-T pressure array that is nsed for the analvsis of pressure records in Ch. 6.
A small array has the advantage of havine a small distance 1o interpolate to the
center of the array. and is local in the sense that cach of the sensors is in essentially
the same part of the wave. The disadvantage of a small arrav is that the ditferences
hetween the measured values at cacli of the nodes are small. and thus more sensitive
to measurement error. With the theoretical records nsed for the previons analvsis.
the method was not sensitive to array size. giving equally aceurate results with arvavs
up to ten times the size of the DWG-1.0 The spacing hetween the ganges of an array
will determine the wavelengths to which the gange is most sensitive. Window widths
of approximately one tenth a tyvpical period have been fonnd to be effeetive. This
indicates that a gange spacing of about one tenth of the expected dominant wave

leneth might be an optimnm spacing.

5.5 Laboratory Measurements

The results from the analysis of analyvtically derived records given in the previons
sections demonstrate the method s capabilities in a variety of conditions. Thev have
also been very useful in helping to determine the range of solution parameters that
must be adopted. including order of solution. window width. and the nnmber of time
samples taken in cach window. The question still remains. however. as to how well

the method works with actnal irregular waves.

5.5.1 Laboratory Experiment

The following resnlts are taken from a laboratory experiment performed together
with Dr. Steven AL Hoghes at the Coastal Eugineering Research Center. Army Corps
of Engineers Waterways Experiment Station in Vieksbure. MS. in June of 1995, The
waves were generated ina 0. 16m wide flame by a programmable. hvdraulically driven.
piston type wave board (see Fig. 5.36G). At the other end of the tlume was a heach
with 1:30 slope. and a single laver of wave-absorbing horsehair matting. This heach

has heen shown to have bulk reflection coetlicients that vary from about 3% for
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Figure 5.36G: Schematie of wave Hume

.o/ = 0.1 up to about 15 for H,o/lh = 0.1 (where £, is the incident spectral
significant wave height and 7 is the water depth) (Saltan 1992 Sultan and Hoehes
[993).

The water surface was measured by capacitance wave rods. calibrated with a enbic
calibration function. The velocity data were colleeted nsing a Dantek laser Doppler
velocimeter (LDVY) system operated in the backscatter mode. The LDV svstem fea-
tured a 2-watt argon-ion laser equipped with a fiber-optic probe that measnres two
orthogonal water velocity components (horizontal and vertical). \Veloeity data were
converted in real time to engineering units (m/s) and written to a computer tile
stmultaneously with the wave rod data.

The wave rods and LDV were placed near the middle of the Hume. with the wave
rods arranged in an equilateral triangle with leg length of 0.17m (see Fie. 5.37). The
LDV was situated to measure the horizontal and vertical velocities at the center of the
array. at a variety of vertical elevations. The flume was allowed to reach gniescence

in between runs. and the waves were measured for only a short time after starting the
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wave maker. At a depth of 0.35m. the approximate wave celerityv iy g ) is LNm/<. Ax
the measuring location is located 9m from the heach. it takes about 10s for the waves
to travel from the measureinent location to the heacli. and for the reflected waves
to travel hack to the study location. Thus. the first [0s of the record are assired of
being nncontaminated by reflection from the beach. Using only the beeinning of the
record also prevents a Stokes drift indnced return current 1o be established. and <o

the Eulerian enrrent is taken 1o he zero.

5.5.2 Laboratory Results

Figure 5.35 shows a sample wave taken from an irregular wave record measured
in the Hume. The waves were generated with a target TN speetrum (Bonws et al.
FINS) with a peak period of 2.9 and mean wave height of approximately 12em. The
water depth was 0.35m. with the velocities measured by the LDV at an elevation of
0.05m below the mean water level. The solid lines on fignre 5.38 are the horizontal and
vertical velocities as measured by the LDV, The eircles are the velocities predicted by
the LFI method at the center of cach computed window. The solid line in the water
surface plot is the measured elevation at wave rod 2. at the same s coordinate as the

center of the array. The cireles are the water surface elevations at the center of the
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array as computed hy the LFT mothod.

Thix solution was computed to thivd order. with a window width of T+ 10 the mean
sero crossing period of the record (approximately 0.25). Fonr time samples were taken
in cach window. providine substantial overspecitication of the sv<teni. and allowine
the shape of the water surface to be well detined in each window. The first troneli is
fairly Hlat. and the optimization did not converge to a solution quicklv with the small
window. After the window was widened. the optimization converged quickly to the
eiven resilts,

The LED method has captured the detail of the kinematies of this irreaular wave
very well. The comparisons to the measured data are given just below the tronehs of
the wave, Note that the LET method acenrately captured the secondary hump in the
vertical velocity (weh near the 255 point. The data used 160 compute the kinematics
were the measiured water surface. The compited water surface was found from the
predicted Kinemarties, and it matches the measured water surface almost exactlv, The
accurate compitation of the water surface indicates that the predieted kinematies
near the surface may. in fact. he more accurate than the predictions at the elevation
where the kinematies were measured. This is 1o be expected. as the data nsed 1o
compute the solution was measured at the <urface. and thns the results <should he
most accurate there, Achieving the greatest acenracy near the surface can be useful.
as the sirface is the location where the water velocities and aceclerations are sreatest.

Fignres 5.39 and 5,40 show the results of the computation in a window near the
crest of the wave given in Fig. 5,350 The errors in the DESBC are of order 1077, and
substantially smaller in the MIKFSBC. The computed and measured velocities do not
match exactly, hut the magnitude and trend are very close. The results are similar

in the other windows,

5.6 Discussion

The LEET method is an effective and efficient wav to re-create the kinematies of
irregnlar waves from the measurements of an array of wave rods. It is able to capture

the kinematies from primarily uni-directional seas as well as the seas near a rellect-
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e surface. The local nature of the approach allows a nonlinear solution without
prohibitive computational costs. nsing a fairly <imple form tor the potential funetion.
and allowing the parameters of the potential function to change with time.

The examples in this Chapter were all computed using MATLAB running under
the Linux operating system on an Intel 90N EHz Peutinm processor hased PC. The
shallow water steady wave (Fie 5.5) took the longest to compute. abont 30min. and
S5 - 10" Hoating point operations (Hlops). The steady deep water wave (Fie. 5.0 took
the least time. [0min. and 15 - 10% flops. the standing wave (Fie. 5.2 0 took 20min.
and 20+ 10" Hops. the short crested wave (Fig. 5.27) took min. and 93 - 10" tlops.
and the laboratory record (Fig. 5.38) 1ook 2Imin. and N3 - 10" tlops.

The examples given in this chapter provide guidance as 1o the parameters of a
solntion to be applied 10 tield records. Far from reflecting surfaces. usine a potential
function representing a single wave is effective. Near a reflectine surface. a potential
function representing two noulinear intersecting waves is capable of capturing the
standing or short crested waves that are likely to develop.

Window widths of 1,10 of the zero crossing period are <mall enough to maintain
the local nature of the <olution. and capture the detail of the record. while heing
laree enongh to inclnde the local trend of the wave tield. On certain seements of the
record. the window width st he inercased in order to include sutlicient curvature
in the record 1o tind a solntion. The widening of the window is most often needed
in long. flat tronghs in <hallow water. or near zero crossings of the record. In either
case. the window ravely needs 1o be larger than 1/5 of the zero crossing period.

Low order solutions are quite adequate for deep water waves. For most waves.
second order is adequate. For the very steepest waves. slightly higher order may he
appropriate. and there is little computational penalty in including the higher order
terms. In shallow water. higher order solutions are necessary. Third ovder is adeguate
i many cases. but including up to fifth order is recommended for extreme waves,
When attempting a high order solution such as this with the 1wo wave method. it
may he necessary to use arravs with more than three gauges in order to provide

suflicient equations to specify the solution.
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Chapter 6

Array of Subsurface Pressure

Measurements

Arrays of subsurface pressure ganges are installed in the sea in order 1o capture
directional wave field data. These instruments have an advantage over arravs of
water surface wave rods. as theyv are mounted helow the surface. where they are less
susceptible to damage. by either the strong wave forces experienced durine storms.
as well as vandalism or accidents with vessels,

Unfortunately. the reason they are less suseeptible to damage from wave forees is
hecanse they are placed under the surface. often at the sea hed. where the action of
waves is the smallest. This leads to the mathematically ill-posed problem discnssed
in chapter 3. This ditficulty is somewhat mitigated by the added information made
available by the multiple gauges in the arrav. but still limits the ability to determine
the detail of the kinematics. particularly when there is a lot of high frequency energy

m the sea state.

6.1 Formulation of Solution

The lessons learned in the previous chapters provide for a fairly straight forward
determination of the formulation for adapting the LFI method 1o the analvsis of

arrays of pressure ganges. The fornutlation for a single subsurface pressure gauge was
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presented in chapter 3. and for arrays of water surface measurements in chapter 3.
The formulation for arrayvs of subsurface pressure eanges is very similar to that for
arrays of water surface measurements. with the addition of the need 1o determine the
location of the water surface. as was done with the analvsis of a subsitface pressure
trace. The following deseription includes the required information: greater detail has
heen given in previons chapters.

The How is assiumed 1o be irrotational and incompressible. with a potential fune-
tion that represents either a single directional wave, or two separate intersecting
waves. The potential funetion locally representing a sinele wave is Fe. 10 redieed
1o a single wave:

J .
) . cosh N+ 2y .
oleeshy =00+ 1,y + E A== )JI. N Singther + ko — b+ o) 160
TOS !

=1

K = v"/.-;t e

4
where (7 and U7, are the components of the known depth uniform Enlerian current
in the o and g directions. [ is the mean water depth. ./ is the truncation order of the
Fonrier series. (1, are the Fourier coefficients. & is the local fundamental frequency.
b, and A, are the components of the local fundamental wave number in the + and Yy
directions. and A" is the magnitide of the local wave nnmber.
The potential function for two interseeting waves to fourth order is Fq. LIS

l'(‘[)('zltml here:

oty by =00 + U,y + AR LR s sine (6.2)

1]

where:

osh N (h + 1) i et e
Ol b Ry = Al E Y LA
cosh K1 \/ i Ay

)

Sy =(hoar by — it + o0y

N, = 1/{,‘_..1' + /.',,._'_l/ — il + a))
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At ~econd order:
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At third order:
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Both of these potential funetions <olve the field equation ¢ Laplace. Eq. L2} and the
bottom bhonndary condition (Eq. L3) exactlyv. The rest of the solution is determined

by the free surface houndary conditions: the moditied free surface boundary condition
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the dynamie free surface bhonndary condition « f7).

1) e l ' ) ' - .
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the Bernonlli equation ( f85.
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oar 2 P
with the Bernoulli constant i ) detined as:
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[ order 1o apply the free surface honndary conditions. the location of the free
sirface st he found. together with the potential fanetion. in cach window. In
order 1o locate the free surface. the water surface is defined at M nodes. located at
the horizontal location of the center of the arrav. and equidistantlv spaced in time
throneliont the window. The elevation of these nodes is unknown. and will be songht

as part of the <olution.

6.2 Formulation of the Optimization

The formulation of the optimization for the LFT method as applied 1o the inter-
pretation of an array of pressure measurements has a ereat deal in common with the
formulation for an array of water surface measnrvements and the formulation for a sub-
surface pressure record i chapters 3 and 51, Only the framework is presented. together

with any additional information nnigue to the application to a pressure array,

Observational Equations The observational equations are the equations that con-
fine the solution to fit the measured records. The predicted subsurface pressure is
available from the Bernoulli equation. Eq. 6.5, which is applied at the location of the
gauges in the array to define the observational equations. The error in the Bernoulli

equation is the difference hetween the measured dynamic pressure at the given lo-

cation and time and the dynamic pressure predicted from the kinematies defined by
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the potential fnnetion. Sufficient independent equations are defined by applyving the
Bernoulli equation at a munber of points in time thronghout the considered window.

[n order 1o specify the solution to a system of equations. there must he at least
as many independent equations as nnknown parameters in the svstem.  In order
to specify the <olntion to the LET formulation for a pressure array. the houndary
conditions « f7 and [Ny are applied at cach of the water surface nodes. vielding 2.1/
cquations. and the Bernonlli equation « f# 1 is applied at I times on cach of the N
measired pressure records within the local window. vielding N/ equations. In the
stngle wave case. there are |+ ./ + W unknown parameters soueht in Fe. 6.1 (b k.
oo s and g ooy ineach window, <o that if (20 = N[y >0t =0 = M)
the solution is specitied. In the two wave case. there are 2% 7 + 5+ 1 nuknowns i
B G2 (200260, 20 200 4y Lo Y and -y W+ Mar fiest ovder. TEH+ M an
second order. 20 + M oat third order. and 25 + 1/ at fourth order). The solution is
specified when (20 + N1y > (28 5 + x5+ M), This svstem results in the following

nonlinear least squares optimization.

v
minimize ()X = Z Y‘/H (X, gz, b))+
x et - :

o=t "=II (6.7
I\ . USRS A 2
Z_/,,, (Xew vy oyt v+ X sy, )
=1
where:
X=th b, oo VoL Lo oo

for the one wave case. and:
X =(h,. /-',,.l NS A NN l"'f..'- /",.,,_».w‘_-. TRV PRI i. TR T AVA

for the two wave case. ..y, and z,, are the coordinates of the nth gauge. o and y
are the coordinates of the center of the array. and 5, is the elevation of water surface
node 1.

As with the previous analysis. overspecification is helpful in accommodating the
measurenent errors in field records. as well as being required to detine the shape of

measured records and water surface in each windosw.
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6.3 Computation Methods

The LFI method for an array of pressure measurements can he broken down into

the same sequence of steps as with the analysis of a water surface arrav:
I. Pre-processine of record.

ta) Determine estimate for level of noise in the record.
(hi Determine MWL and subtract hydrostatic pressure from the records,
(i Determine estimate for magnitude and direction of Fiulerian earrent.

(i Define a set of continnons records from cach gange from the diserete ob-

servations by cubie spline interpolation.
(e} Specify spacing of output locations.

(f) Compute mean zero crossing frequency.

te) Non-dimensionalize record and all parameters.

2. Primary values of numerical solution parameters are chosen.

iat Window width (7))

th) Order of solution .J)

(¢} Number of time samples of the pressure records within cach window (/)
() Number of water surface nodes within cach window (/)

3. Global solution is computed on an entire wave to provide first estimates for

local optimization

[. For cach selected outpnt location. a window in the record is detined. and an

LT solution is computed.

(a) Initial guess for the optimization determined from the global solution.

th) Full nonlinear optimization for all unknown components of the potential

function is computed.
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{1 Resnlts are chiecked for \'[)lll’i()ll,\‘ solition.

1. M no solution. or a spurions sohttion. ix fonnd. the <olution parameters
arc adjusted. and the optimization repeated.

i I a good solution is fonnd. progress to the next window.,

6.3.1 Pre-Processing of Record

The pre-processing of the measured records is essentially the same as presented in
the previons chapters. Estimates for the mean water level (/) and Enlerian current
Hand £ must be computed to detine the propagation medinm. Cabie <plines of
the measured records are computed to provide contimons records for compntation.
and the desired ontput locations are chosen. The records and all parameters and
variables are non-dimensionalized by the following parameters: the mass density of
water ipi. acceleration of gravity (g1, and the mean zero crossine frequeney of the

measured records (oo,

6.3.2 Optimization Procedure

The nonlinear optimization in the LET method for the analysis of arravs of pressure
measurements 1= very similar to that used for the analyvsis of a sinele subsurface
pressure trace. [n the single wave approach. the solution is somewhat casier. The
potential function used by the single wave approach is almost the same as that nsed
with a point measurement (hoth chapter 3 and Sobev (1992)). with the addition
of a directional component to the wave number. This results in a single additional
nuknown. but the array of measurements provides at least three times as much data.
with gauges at at least three spatial locations to specify unignely the divectional
structure of the sea. The result is that the optimization tends to converge more
rapidly and robustly than with a single point measurement.

When applyving the method with the two wave potential function. there are far
more unknowns. and the optimization once again becomes somewhat tennons. s

with the previous chapters. it is essential to identify a good initial estimate to reduce
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the chances that the optimization will converge to a spurions mininmnn.

Global Solution

As with arravs of water surface measurements. a sinele <hort scement of the mea-
stred pressure records often may not contain <utlicient information to identify the
directional trend of the wave field. \x a result. it is necessary to examine a lareer
seament of the record. for example an entire wave from crest to crest or trongh 1o
trongh. to get a general sense of the directional trend of the wave tield. This global
solution can then be refined to fir a small segment very closely. This approach is used
to establish the initial estimate for the optimization procedure in each window.

The procedure for computing the initial estimate to the elobal solution for an
array of pressure measurements is virtnally identical 1o that used in the previons
chapter for arravs of water surface measurements. [t will be outlined here. For more
detail. see section 5.3.2.

For the initial estimate, it is assumed that the pressure records can be approxi-

mated with linear wave theory:
I = acosihr, + l.',,!/,, — =, + 0 16G.N)

for the single wave method. and

P = ajcosth,. -, + lx',,‘l.l/,-; — b, +ay)
(6.4
-,‘-ll_» Ccos | /.'J.__'.l',, - Vil — ..,'_)I,,, -+ aL)
for the two wave method. where:
cosh N, (h + 2,
ua, = .l,,/)..',, .
cosh I\ 1 (6G.101

K.=\[ki+h
A s the amplitnde of the linear potential function of the nth wave. and =, is the

clevation of the pressure array.
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Directional Trend .\ tirst estimate for the divectional trend of the wave field is
computed from the eradients of the dynamic pressure. \ set of complex direction

vectors are computed:

_ Iy, Ap;., i
[, =~'iul|((l"["”) < I,) ~ —,—/U"' ) (6.1
.t A r

The spatial eradients are estimated from finite difference approximation from the

measured pressnres, and the time eradient is computed fron a titted <moothing spline
(e Boor 19781 of the estimated dynamic pressure at the center of the array.

For the sinele wave method. the estimated propagation direction is the orientation
of the mean of the complex direction vectors:
DAL

)

= angle | —
el 72

(612

ey
For the two wave method. the two dominaut propagation directions ave detined

as the angles of the means of the sets of direction vectors within = ereater than and

less than the mean direction:

v
), = anele A T, where: 0 <anelei ),y <0+
A
! TR
I AV ’
#, = anele T Y ), where: 0 — = <anelec [V, ) < b
v 4

Frequeucy The (l‘(‘('ll("ll('}' 1< ('Ulll[)lll('(l from the second derivative of the pressure

at the center of the arrav.

S Dpa,
- =y e L (G T
\/ P O

- et . .
where ——= is computed from the same smoothed spline used above. For the 1wo

wave method. it is assnmed that the bimodal sea is the result of retlection. so that

the same frequency is nsed as the first estimate for hoth waves.

Wave Numbers The wave numbers are estimated from the linear dispersion rela-

tion.

(w— KN, 07) =gl tanh N, I. ko, = N, cos#,. by, =N, sinf),  (6.15)
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where {7 is the component of the Fulerian enrrent in the divection of the nth wave.

o=\ 01077 o (r;m" ({—) —lL,) (G.16)

Amplitudes and Phases The amplitndes and phases the record are found by
separating the cosine and sine components so that the equations can be solved as a
lincar least <quares problem.

Pi. = acos(hr =y —of =a)

=beos(h,r -+ /.'“_// — i+ esinth o = by —of)

th.lv
= vh =
0 = arctan(—ec/h)
for the <ingle wave method. and
Pi. = ayeostho o =k y =t o) +ascosthar +=h oy —of = a0
= bycosth, o+ by —wty+=cpsinth .o +k,y—of)
+hycos /.',..».r = by =i~ ecasinth, .+ /~',,.‘_-!/ -t
] = vl,f + 16N
0, = \/'I):: + ('::
ap = arctant—ey /by

ar= arctani—ec,i by

Refining the Linear Estimates These rough estimates are refined by optimizing
for a best linear wave theory tit 1o the record:
NIV
mini\!nizv()( X)= E (i — " X, 0 (G.19)
) 1

o=1 n=

where:

S Xew, oy, ) =acosthr, + b,y —of, +a)

X = (k.. /-'_,,. a.a)

KN = \/m
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for the single wave method. and:

X o AoV =apcosih g, + bt — i, +ay)

-t Cus | [-'..-‘_-.l',, + /.‘,,,__:.I/, — it =y

X = ‘/"r.l - /‘"/.l SO l":'.." l' .

N, = V b, + 0k,

for the two wave method. The frequencies are determined from the linear dispersion

relation:

~, = vy, tanh N, i + K[, (6.20)

where (7, is detined by Eq. G.16 This optimization results in a linear estimate for
the dynamic pressure that fits the measured records most closely in the segment
considered,

The final step in computing the initial estimates for the tinal window-hy-window
optimization ix to compute a full order global solution to this large seement of the
record. The initial parameters for this full order global optimization are provided by
the computed linear it to the water surface records. with the amplitudes adjusted for
the potential function:

o, ('u.\'ll [\-,, /I .
1. = - (6.21)
o cosh Wl + )

The higher order Fourier amplitndes are all initially set to zero.

Water Surface The location of the water surface at M nodes in the center of the
array thronghout the segment is estimated from the linear pressure response function
with stretehing (Nielsen [989):

pa. () cosh (b th =+ patt, )V pa))
P cush E( I+ o)

Yo = (6G.22)

where A is the mean of the two wave numbers. =, is the elevation of the pressure
array. and y,, ix the elevation of the water surface node at the center of the array at

Lo patt ) is computed from Eq. 6.8 or Eq. 6.9,
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Using these inear wave theory estimates as the first aness: the tull order optimiza-
tion. Fe. 6.7.0s computed to determine the best full order fit 1o a elobal seement of
the record. The parameters of the potential function compnted by this optimization
are then used as the initial estimate for the final optimization in cach detined small

window in time.
Phase Shift The phase parameters. oy and o, are adjusted to accommodate the
chanee in the time reference frame from the ¢lobal to the local solution:

a, = — A+ A, aabal 16.2:3)

where Afis the ditference between the time in the two reference frames,

Nonlinear Optimization in Windows

The established elobal solution is used as the first eness for the parameters in
cach window. and these parameters are refined in the same manner as the previous
chapters by solving FEq. 6.7 with any standard nonlinear optimization rontine.

The resnlting solution is then checked to see if is clearly spurions. Spurious solu-

tions can be identitied by the same criteria used in the previous chapters:
o \eory laree or systematically variable errors,
o First order amplitude smaller than one of the higher order amplitudes.
o [nrealistically large or small frequency or wave number.
o Large discontinnity hetween the windows in the predicted kinematics.

[ no solution or a spurious solution is found. the parameters of the solution are
revised for another attempt.  These revisions include inereasing the width of the
window. and decreasing the order of the solution. If neither of these adjustments
result in an acceptable solution. the window is skipped. and future analysis must be
interpolated through that point.

As with the analvsis of a point pressure measurement. these adjustments are most

likelv to be needed in the long. flat troughs of shallow water waves. or near zero
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crossings in the record. The additional data provided by the arrav ol measurements
provides for a more robust optimization than with a single subsurface pressure mea-
surement. s well as providing additional data. the spatial array provides information
about the evolution of the wave Held in space. hielping to define the local wave number
more clearlve This is in contrast to the analvsis ol a point measurement. where the
spatial evolution of the wave tield must be determined entirely from the measired
tetiporal evolntion. conpled with the governing equations. As a result. adjusting the

solution parameters is necessary less often than with a single measurement.

6.4 Theoretical Records

6.4.1 Single Wave Records

The following results are from “measured™ data generated by Fourier steady wave
theory tSobey TON9)L providing a near-exact solution for steady waves that provides
the complete kinematies. The data used are a <simulation of data that might be col-
lected by a DAWG-T pressure array (Howell 1992). The DWG-T is a reliable. easy to
deploy pressure array. The unit is capable of including np 1o six independent pressure
transducers. hut is frequently used with three transdncers. arranged inan 1.6 m equi-
lateral trianele (fig. 6.1). Three measurements were chosen for the theoretical data. as
three is the minimum number required to provide directional information. \dditional
measirements woutld provide overspecitication. amd can easily he accommodated in

the formulation.

Shallow Water Figure (.2 is a steady shallow wave generated by INth order Fourier
theory with the following parameters: wave height = 3. period = 10s. water depth
= Sm. direction of travel 10 degrees from the x-axis. and an opposing Fulerian enrrent
of 2m/s. This is a near limit wave in this depth water. with this opposing current.
The pressure array is located at the bottom. The parameters of the LEFI solution are:
window width = Is (75 = 0.17.). fifth order (.J = 3). with 6 samples ou the water

surface. and G samples on each of the pressure records (M = [ = G). resulting in 30
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Fieure 6.1: Lavout of DWG-1 pressure array

equations in 15 unknowns.

The <olid lines are the dynamic pressure. water surface. and kinematics as coni-
puted from the Fourier solution. The circles are the predictions of the LET method.
with cach circle being located at the center of a separate window. The kinematies
are measured at a depth of Lom below the surface. just under the troneh. The LFI
method has captured the location of the water surface and the kinematios essentially
exactly. including the pronounced sharp crest. s with the single pressure canee
(Sec. 3o a fairly hiel order solntion ./ = 5) was necessary to capture the <harp
crest of this shallow water wave. The additional data provided by the three ganeces
allowed for a narrower window than with the single measurement. even at this hieh

QI l(‘i‘.

Deep Water Figure 6.3 ix a steady deep water wave generated by H0th order Fourier
theory with the following parameters: wave height = 10m. period = 10s. water deptls
= [00m. direction of travel 10 degrees from the x-axis. and zero Fualerian current. The

pressure array is located LOm below the surface. The parameters of the LET solution

are: window width = Is (7, = 0.17,). second orvder(./ = 2). with 3 samples on the
water surface. and 3 samples on each of the pressure records (M = [ = 3). resulting
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Kinematics at the center of a pressure array
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Figure 6.2: LFI predictions (/ = 3) and exact kinematics at the center of the array

at = = —1.5 m for a steady shallow water wave.
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Kinematics at the center of a pressure array
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Fignre 6.3: LET predictions (. = 2) and exact kinematics at the center of the array

at = = =35 m for a steady deep water wave,
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m 12 equations in 9 unknowns,

The LEL method has captured the location of the water surface and the Kinematics
essentially exactlyve at ouly second order. Higher order may be necessary to detine the
Kinematics of a more irvegnlar record. and can be included with little computational

penalty,

6.4.2 Records of Two Intersecting Waves

Theoretical pressure records were generated by the same fourth order stokes-tvpe
mtersecting wave theory used in the previons chapter (OQhvama. Jene, and Hsu 19950,
This method provides the complete kinematices. is applicable in deep water, and as-

sumes a zero FEulerian enrrent (see appendix A ).

Standing Wave Figure 6.1 shows the results of the method for a standing wave.

The parameters of the Ohyama solution ave: period = [0s. tirst ovder amplitudes =
Jm fresulting in a total wave heieht of slightly over Gim). propacation directions = 13
aud 195 degrees from the x axis. in deep water. The pressure array is located 10m
below the mean water level. The LFI method applied to thivd order o/ = 3) linds
the the water surface and the kinematics at the elevation of 3 below the surface.
Just helow the trongh of the wave. While these results show the complete wave, it is
important to keep in mind that as with all the previous resulis. cacli of the indicated
puints is in the center of a separate window. and was compnted independently of the
other windows. In this case. the standard window width was Is (7 = 0.17%). with
a thivd order potential function (. = 3). four water surface nodes (M = 1) and six
sanmples on the pressitve records (1 = 6) distributed equally in time in each window,

resulting in 26 equations in 21 nnknowns.

Short Crested Wave Figure 6.6 shows the results of the method for the short
crested wave shown in Figure 6.5 The parameters of the wave are: period = 10s,
first order amplitudes = 3m (resulting in a wave height of just over Gim). propagation

directions: 30 and 130 degrees from the s axis. in deep water. The pressure arrav
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Kinematics at the center of a pressure array
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Figure 6.f: LF1 predictions (./ = 3) and exact kinematices at the center of the arrav
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Figure 6.5: Water surface of <hort crested wave at 1=0

i~ located at [0m below the MWL The LET method applied to third order ./ = 3)
again linds the kinematies for this wave almost exactly. In this case. the standard
window width was also Is (7, = 0.172). with four water surface nodes (M = 1) and
six samples on the pressure records (1 = 6) distributed uniformly in time in cach
window. resulting in 26 equations in 24 nnknowns.

Fignre 6.7 is the same short erested wave, but computed with the sinele wave
method of the LFT solntion. In this case. the LET solution still matches the measured
pressure record very well. as is victnally alwayvs the case. as those measurements are
part of the optimization. The predicted water surface is also fairly acenrate. hut
with the predicted crest slightly nnderestimated. The vertical velocity is also fairly
accurate. The LET predictions for horizontal velocities. on the other hand. are very
different from the Ohyama solution. The resulting discontinuities in the predictions
for the horizontal velocities make it clear that something important is missine from
the solution. The single wave method is simply not able to capture a short crested

sea made up of two distinet directional components.
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Figure 6.6: LFT predictions (./ = 3) and exact kinematies at the center of the arrav

at - = =3 m for a short crested wave.
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Kinematics at the center of a pressure array
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Figure 6.7: LFI predictions (. = 3) and exact kinematies at the center of the array
at = = =3 m for a short crested wave computed with the single wave method.
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Choice of Order

The choice of order for the analyvsis of arravs of pressure measnrements is essen-
tiallv the same as for a sinele pressure measurement. See chapter 3 for a detailed
diseussion. In generall lower orders are necessary for deep water than shallow water.
with hieher than third order mnlikely 1o be necessary in deep water. Shallow water

may require up to fifth or sixth order in order to capture near limit waves.

Choice of Window Width

The choice of window width is also very <similar for the analvsis of pressure arravs
as it is for the analysis of a single pressiure measurement. or arravs of water surface
measurements. Window widths of a minimum of about 110 the zero crossine period
are required. with the vecasional need to widen the windows near zevo crossings. The
additional data provided hy the array of pressure measnrements allowed a solution to
a very steep shallow water wave at high order with a window width of 0.17.. where
a similar solution regnired the window width to be doubled 1o 0.27. when there was

only a sinele point pressure measurement available (Section 3. 1.

Number of Nodes on the Water Surface and Pressure Records

The eriteria developed in the previous chapters for the nnmber of water surface
nodes are applicable here. .S+ 1 points are required to specify nniquely a Fourier series
of order /. In order to keep the order of the water surface consistent with the order
of the potential function. at least M = ./ + 1 water surface nodes should be used. The
same number of points on the measured pressure records is nsually adequate. For the
standing and short-crested waves. additional equations were needed 1o specifv the
solution. so [ =.J + 3 points on the pressure records were nsed. The results are not
highly sensitive to this parameter. provided sufficient samples arve used 1o define the
local curvature and specify the svstem of equations. More points on the measured

pressure records will assist in accommodating noise in the record.
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6.5 Field Measurements

The following results are from data provided by Gary L. Howell of the US Army
Corps of Engineers Waterwavs FExperiment Station. Coastal Encineerine Researcly
Center tCERCY. The data were collected as part of CERCs Coastal [nlets Research
Program. They were collected near the Ponee de Leon inlet. Florida. by a DW(-1
with three absolnte pressure ganges. data sampled at 5 Hz. The DWG-1 was resting
ot the hottom. so that the pressure sensor diaphragms were positioned 0.21m from

the hed.

6.5.1 Field Results

Fienure 6.8 is a seament of a record collected on Auegnst 200 1996, The statistios of

the record. hased on about one hour of record are: mean wave height = 1.05m. peak
period = S.6s. peak divection = N3° from trae north. in a depth of approximately
PR

The top plot is the dynamic pressure at the center of the arrav. The solid line
i the approximate measured pressure. computed by linear interpolation from the
three measuved points in the arrav.  The circles are the values predicted by the
LET method. The other four plots are the predicted water surface. and the three
orthogonal velocities. as predicted by the LET computation. The sinele wave method
was used. with the following parameters: third order ./ = 3). four water surface
nodes and four samples on the pressure records (1 = M = 1. and a window width of
22 0372 ). resulting in 20 equations in LD unknowns. There were no data available

about the Eulerian current. so it is taken as zero.

Window Width In the previons section. results on theoretically generated records
indicated the successful solutions were possible with quite narrow windows, gener-
ally one tenth of the zero crossing period. When working with this field record. the
optimization converged with a window width that narrow. hut it resulted in wild fie-
tuations in the predicted propagation direction from window to window. Figure 6.9 is

the same segment of the record as in figure 6.8, computed with the same parameters.
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Predicted kinematics at the center of the array
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Fignre 6.8: LFT predictions (./ = 3) of kinematics at the center of the arrav at the

water surface for a field record.
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except that the window width used was much narrower. 5, = 017 1. There are large
discontinuities in the horizontal velocity in the o direction (third plot). near hoth
crests. Figure 6.10 shows the parameters of the potential function from rhis solution.
0. where 0 = tan=k, / k). is the local direction of propagation of the wave. There is
a <udden shift in direction of SO% at the first crest.and over 1007 at the second crest.,
This would result in nnrealistic predictions of hnge aceelerations. Fienre 6011 shows
the parameters of the solntion computed with 7y = 0370 With the wider window.
the propagation direction varies smoothly around the peak direction of the record.

f) = N3°

Array Size The need for a fairly wide window for the field solution is likely due
to the small size of the pressure ganee arrayv.  Compact size is one of the major
advantages of the DWG-1 arrayv. as it is a single unit that is ecasily deploved. Lt
it makes it <usceptible to difficulties with local analysis. The propagation direction
within cach window is determined by the spatial eradients of the dyvuamic pressure.
as estimated by the measurements. In segments of the record where the gradients
are small. the predicted direction of propagation can tluctuate a ercat deal with only
small chanee in anyv of the measnred values. These changes could he the result of
measurement error. or be small Huctuations in the actnal dynamic pressure. In either
case. the large resulting change in predicted propagation direction can be a sonree of
crror.

The linear dispersion relation predicts that the wavelength corresponding to the
peak period of this record in this depth of water would he over 12 m. The DWG-]
array is onlyv 1.6 m on a side. which is about 0.0-1 of the approximate waveleneth of the
peak period waves, As a result. near the crest of the wave. where the water surface
is close to horizontal. all three gauges are near this point. and the local estimate
of the eradient of the pressure is very sensitive to small fluctuations. This effect
is mitigated by using a larger window in time. so that a part of the wave with a
higher gradient is part of the window. allowing the propagation direction to bhe better
defined. and smoothing out any measurement errors. s minimum window size has

heen determined to be about 1/10 of the zero crossing frequency. an array size of
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Predicted kinematics at the center of the array
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Figure 6.9: LFT predictions (./ = 3) of kinematics at the center of the arrav at the

water surface for a field record. using a narrow window.
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about 110 of a zero crossine wavelength would probably result in more stable results

with the sialler windows.,

6.6 Discussion

The LETmethod can be applied to interpretation of records from arravs of pressire
measurements. It s etfective for records from primarily unimodal scas. as well as the
bimodal seas that are generated near reflecting surfaces. The result of the analvsis is
a complete deseription of the kinematies of the waves thronghout the water depth. in
the vicinity of the array. The method is local in that a separate potential function is
nsed to deseribe cach small segment of the record. nsing information from only that
seament. This approach is rational in that it seeks to satisfy the covernine equations
of gravity waves. including the full nonlinear free surface houndary conditions.

Using a potential function representing a single progressive wave. the method
has been shown 1o be effective on theoretically generated records of steady waves in
both deep and shallow water. This formulation is appropriate in locations far from
reflecting surfaces. where the sea state is expected to be unimodal. \When the met hod
is applied with a potential function representing two intersecting waves., it is effective
in acenrately capturing the kinematics of standing and <short erested waves, as pesult
from the reflection of steady waves from a reflecting surface. such as a sea wall. This
two wave formulation is appropriate near such retlecting surfaces. where the sea state
i~ likelv to be bimodal.

A nnmber of parameters mnst be specified to establish a solution. including the
order. window width. number of water surface nodes detined. and number of samples
on the measured records. The examples in this chapter indicate that the criteria
nsed to detine these parameters are similar to those developed in the analvsis of point
pressure records and arravs of water surface measurements. Fairly low order solutions
(-] = 2 or 3) are effective in deep water. while shallow water requires higher order
solutions ./ = 3 or 6).

Window widths of 1/10 the zero crossing period of the record are effective on

theoretical records. With field records. however. when the arrav used is small (less
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than 710 a tyvpical wavelengthi. the predictions of the propagation direction can
be very sensitive to subtle luctuations in the measure record. In order to find a
stable solution. the window width must he increased to abont 173 of the zero crossing
frequency. This includes more of the record in the window. allowing the propagation
direction to he more clearly detined.

The examples in this Chapter were all computed using MATLAB runnine nnder
the Linux operating svstem on an Intel 90MIHz Pentium processor based PC. The
shallow water steady wave (Fig 6.2) took the lougest to compute. abont Ghmin.. and
71 - 10" Hoating point operations (Hops). The steady deep water wave (Fia. 6.3) took
the least time. 12min. and 22 - 10" Hlops. the standing wave (Fie. 6. 1) took lGmin.
and [31- 10" flops. the short erested wave (Fig. 6.6) took 13min. and 133 - 10" tops.

and the tield record (Fie. 6.5 took 1Tmin. and 46 - 10" tlops.
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Chapter 7

Conclusions

This dissertation examines the problem of determining the kinematics of three di-
mensional irreenlar seas from a variety of wave measurements. The presented met hods

and results lead 1o the following conclusions:

o Crrently nsed global methods are inadequate for determining accurately the

Kinematics of irregular waves.

= Linear superposition does not satisfv the nonlinear free surface houndary
conditions. resulting in large errors in the predicted kinematies near the
water surface.

= Divectional spectral methods generally disregard the phase information.
making 1t impossible to determine the detailed kinematies of directional
seas.

- Global methods of high enough order 10 accurately solve the free surface
bouudary conditions in three dimensions are prohibitively computationally

mtensive.

e The Local Fourier Method for Irregular waves (LFI) can aceurately deseribe the
kinematices of two aud three dimensional irregular seas by satisfving the full free

surface houndary conditions.
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The local nature of the LED method allows it to satisfv the nonlinear free

surface honndary conditions at low order by finding separate solutions in
cach of a sequence of small windows in time.

— The LEFT method provides an acenrate two dimensional deseription of 1he
Kinematics of irregular scas measured by a sinele water surface vanee or
subsurface pressure gange.

= The LEI method provides an acenrate three dimensional description of the
Kinematics of irregilar seas measured by arravs of water surface eanges or
arravs of subsurface pressure ganees. including the himodal seas resultine
from reflection from a vertical surface. such as a sea-wall or hreakwater.

— When working with subsurface pressure records. the LET method is limited
in its capability to capture the hieh frequency components of the sea state
that decay rapidly with depth.,

= I order to acenrately capture the detail of the measured records, the LET
method requires very acenrate data. with high sampling rates.

— The LET method can be adapted to virtually any arrangement of wave
Measuring st ruments,

— The LET method required substantial. but not prohibitive. computational

Fresoirces,

7.1 Future Work

The results presented indicate the promise of the LET method. and local met hods
in general. There is still mnch work to be done before the method conld he considered
nsable as a ~“bhlack hox™ code.

Much of this work revolves around determining the numerical details of the nonliu-
ear optimization. While the presented results provide some guidelines to determining
appropriate parameters. considerable judgment and experimentation with any given
record is required. In the future. it may be possible to establish eriteria for definine

the following numerical solution parameters:
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o Window width
o Order of the potential function
o Number of water surface nodes
o Number of samples of the measured record
e Number of iterations allowed in the optimization
Some of the eriteria that might he nsed to help deline these values are:
e Non-dimensional depth
o ['r<ell number
e [ocal curvature of record

[n principle. the LET method may he extended to additional arranecments of in-
struments. While it is straightforward. in theory. to adapt the method to virtnally
any arrangement of instruments. cach ditferent arrangement is likely to present a new
et of mumerical ~soliutiou ditfienlties. One of the sources of this is the nse of non-
lincar optimization. Dilferent optimization problems tend to be unigue. and require
sithstantial experience in order to determine the appropriate approach.

The experience gained i applving the LEFL method to a variety of arrangements
of instruments helps demonstrate the need for appropriate data. Whether this par-
ticular method of analysis is employved. or any other noulinear technigue. the need for
accurate data is paramount. The design of a field data collection program inherent Iy
inchudes assumptions as to how the resulting data will he analyvzed. Currently used
data collection programs are often designed with the assumption that the data will he
analyzed with the common methods of linear spectral analyvsis. As a resalt the data
may not be appropriate for the nonlinear analyvsis needed to determine the detailed
Kinematics of a measured wave Held,

Soine of the considerations that should he ineluded in the design of a field niea-

surement prograi arce;
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Array size appropriate for the analvsis method chosen and wave tield expected.

o Measurement or prediction of the local current tield.

Sampling rate that captures the detail of the record.

Reduetion of sensor noise and increased instrument aceuracy.

As the methods for measuring waves and interpreting those measurements hecome
more acenrate, the understanding of the complex processes in the ocean and coasts
that ave molded by waves will increase as well. This understanding shonld lead 1o sater
coastal and offshore strnetures. and well as reducing the impact that these structures

have on the sensitive coastal environment.
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Appendix A

Intersecting wave theory

A.1 Introduction

The theory of multiple wave interactions presented by Ohvama. Jene. and Hen
(1995a) hax been wsed for two purposes in this work. The most important function
was to suggest a form for a general three dimensional potential function representing
imteracting waves. The form chosen is presented in Chapter L It also provided a
theoretical method for generating a complete. consistent set of records to use for the
development and testing of the LET method. This appendix presents a review and

detailed critigne of the intersecting wave theory.

A.2 Theoretical Background

Ohyama et al.’s method is an extension of well accepted and verified methods.
[t ix essentially a Stokes 1vpe expansion in the wave steepness. s snch. it is ex-
pected have greatest applicability in deep water. The tlow is taken to be irrotational
and incompressible. and thns the governing equations are the same as those used in

chapter 4 and for most tinite depth irrotatioual wave theory:
o Mass conservation (Laplace equation) (Lq. 1.2)

e Bottom houndary coudition (Eq. 4.3)
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o Dvuamic free surface houndary condition kg, L1
o Moditied kinematic free surface honndary condition (Fq. L6

There is no accommuodation for an Enlerian enrrent. althonglr it mieht easily he
incliuded in futnre work., The non-dimensional potential funetion. water surface. and
frequencies are expanded ina power series in the small parameter. 1e = Loy, where /o
is a typical wave number and o is a typical amplitnde of the first order component of

the water surface.

U:(U‘“+(_;‘A)i_;)1_‘»..0,~,‘.T'1’_"|,+()'(-,l LDy
o= eyt Ay U T O N2

) 2 4 4 i B .
o =(..'_‘”—§—f'..,’( b ...',( '-Z-(‘..‘ Y O } N

Where the ot 't are the potential function and water surface at order 1. and < is
the frequencey of the ith wave at order n. The steepness of all the intersecting waves
is taken to bhe of the same order. Modern Stokes theories have found it Hecessary
to nse an expansion parameter based on the physical wave height. rather than the
amplitude of the tirst order component (Fenton 19903, This is not feasible with
intersecting waves, as there is no clearly detined wave height. While not ideal. Stokes
methods based on this first order expansion parameter can he effective (Skjelbreia
and Hendrickson 1962). as long as they are aleebraically correct aud not pushed to
near limit waves or <hallow water.

Care must bhe taken when computine a given order <olution when multiple parts
of the solution are all expanded in a perturbation series. In this case. the potential
function. water surface. and frequencies are expanded separately. hut the potential
function and water surface are dependent on the full order frequency.  Ideally. a
eiven order component will depend only upon parameters of the same order. In this
case. however. the full order frequency must st be compnted. and then used as
the frequiency at all ovders. If the order of the frequency used was matched to the

order of 1 or o being computed. the resulting solutions would he out of phase. with.
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for example. G havine a different frequency to o=V Tt could he arened that this
approach wonld be acenrate to second order. it the compouents would be <hifred
ot of phase as time progressed. It is more aceurate to compute the resulis usine the
full order [.l'('([ll(‘ll('i('\' at all orders of o aud .

The first order solution for N interseeting waves is the familiar superposition of

ltnear waves:

\
a, coshbth =<
SN = ',/'Y‘ — s hr by — =0 AW
— cosh b
\
,/“’ = ,V‘ a,cosih,. = /-',/!/ — <t +a) t\5)
Pl
=1
= v bk tanh b, t\LGY

The higher order solutions are computed by applying the Laplace equation. the
bottom boundary condition. and the free surface houndary conditions. expanded in
Tavlor <eries abont the mean water level. The aleebra and the resnltine solntions
are long and extremely tedions. are presented in Ohvama ot al. (199540, and they
will not be repeated here, It should he noted that the frequency was only solved 1o
third order. as the fourth order frequency would require a solution to the fifth ovder

potential function. whicli was not presented.

A.3 Analytical Verification

Ohyama et al. provided a number of comparisons with other wave theories. When
the method is applied for a single wave compounent. it represents a steady wave. and as
such shonld be expected to provide the same solution as conventional Stokes theory.
The authors presented a comparison with the Fenton (1983a) solution. The Fenton
solution is based on an expansion parameter based on the wave heieht. rather than
the first order amplitude: ¢ = L1172, By solving for ¢ in terms of the . The two

solutions were found to coincide exactly.
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When applied for two wave components of the <ame wavelength. same amplitude.
atdd opposing directions. the solution is a standing wave.  The resulting solution
cotneides almost exactly with a standing wave <olution given by Chen (198N except
for one coetticient. The anthors suggest that the slieht discrepancy is the resalt of a
tvpographical error in Chen's paper.

Olvama et al. also indicated that they compared their solution with those for
short-crested seas (Hsu 1990: Hsu and Chen 1992: Fenton 1985¢) and once again

found essentially perfect agreement.

A.4 Numerical Verification

The above theoretical verifications indicate that the method is correct when re-
duced to two particular simplitications. [t remains to verify that the method s
aceurate when applicd to a more complex situation. with a munber of intersecting
waves of different hetghts. direetions and wavelengt hs.

The actual computation of the general solution is quite complicated and contains
a very large nnmber of coetlicients that must be computed. Despite this complexity.
once the code is written and debugeed. it ix a trivial matter for modern computers
to calenlate the full solution. It is not. however. a trivial matter to write the code
without errors or. indeed. to tind the likelyv typographical errors in the published
paper. A number of these typographical ervors have heen presented in the published
erratum (Ohvama et al. 1995,

An additional error has been found and contirmed by personal communication

with the authors. pp. 33 Eq. 17 in Ohyvama. Jeng. and Hsu (1995a) should read:

¢ = {;“' ;.’;:n + :f },J(,} cos b+ 2! ;,_m cos thar + {'_’;‘ S ;-.,l | } cos b cos et
+ {;"' ’)7_-_»_» + 2! ’1;,1_»:} cos 2hr cos2et + 2 ’)7;4“;:, cos b cos 3t

427 Fy cos Bk cos ot + 27 ;u,_-{_-,, cos 3hr cos 3l + ;‘l’;'_,“('us Qhr cos bt

+

e }H_. cos dha cos 2t + 2! }“,, cos dhr cosdet + 0"}

As a result of the complexity of the computational code. it is advisable to use numer-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



170

ical methods 1o verify the validity of the <olution and resulting compntational code.
The following results were produced by a Fortran code derived from the code written
and generonsly provided by Takumi Ohyvama that was used to compute the water
surface plots eiven in (Ohyama et al. 199501, The code was expanded 1o compnte

the full kinematies,

A.4.1 Richardson Extrapolation

Fenton i 1955a) presented a variation of Richardson extrapolation that can he nsed
for numerical veritication of wave theory code. Richardson extrapolation (also known
as extrapolation to the limit) is a method traditionally used to increase the aceuracy
of tinite ditfference computations (Salvadori and Baron 1961: Roacli 1976). In Fenton's
adaptation. the method is uzed to simultancously check all the terms in the solution.
and to provide an estimate of the order of the acenracy of the result.

The form of Ohvama et al.s solntion solves the tield equation (Laplace) and the
hottom boundary condition exactly. [t is expected to satisfv the free surface boundary
conditions 1o the order it is applied. The following method calenlates the order of
accuracy of the free surface boundary conditions. Classical Richardson extrapolation
i~ nsed to evalnate the error of a <olution at a given point in time and space. By
taking advantage of the periodicity of wave motion. Fenton's variation can be used

to evalnate the sobition throughont a complete wave.

Single Wave

The soltion for a single wave is periodic and svinmetric about the erest. and thus
the ervor in each of the boundary conditions can be expanded in a single sided Fourier

serjes:

h= .
[e) = Z il )('A"—/I‘ (N7

A=t
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Il Fourier Component. (k) | 0 L2 3 b hs e
Order of NFSBC ervor | 2.0 ] 2.0 [ 2.0 [ 2.0 1 2.0 [ 2.0 2.0 |
i Order of DESBC error | 3.0 221020 | 2.0 : 2.0 2.0 2.0 !

Table A.1: Order of errors for a single wave compnted 16 order

Fourier Component. tky | 0 7 1 2003 0 5006
Order of KFSBC error | 3.0 | 3.0 13.0 1 3.0 1 3.0 § 3.0 | 3.0
| Order of DESBC ervor [ 2.9 73.0 3.0 13.0 1 3.0 ] 3.0 | 3.0

Table A.2: Ovder of errors for a sinele wave computed to order 2

The magnitude of this error. and thus each of the coefficients can be expanded in a

tirst order Tavior series.
Cil&) = h& +0(5) LN

These coetlicients are a function of the small parameter. ¢ and thius are a function of

¢ at nth order. & = "~
Cite) = Jie™ + 0 (e77) AW

When the discreet transforms of the errors are computed for two different valines of ¢
an approximation for the ng can be computed. giving an approximation to the order

of the errors of cach harmonic in cach boundary coudition.

log (€ (c21/Culer)
"y, = bt A((-)’, - : '+()({l'(." '\.1“.
log (es/ep)

Table AL presents the results for a single wave, computed to order | in deep water
(Al = 100. ¢; = 0.01. ¢, = 0.02). These results show that the error is of at least
second order in both of the bonndary conditions. indicating that the computation is
accurate to first order.

Tables A2 through AL present the results for the same wave, computed to sec-

ond throngh fonrth order. These results indicate that the error in both boundary
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Fourier Component. (ki | 0 l 2 3 { a6
Order of KFSBC error | LO L LO L LO ] LO T RO T LO T LY
Oreder of DFSBC ervor | LO 139 1 LOJ L1 TLOT LO | LO

Table A.3: Order of errors for a single wave computed 1o order 3

| Fourier Component. (k) iu L2 3 4 S006
Order of KESBC error | 5.0 [ 5.0 [ 5.0 [ 5.0 [ 5.0 | 5.0 [5.0
Order of DESBC error | .51 5.0 [ 5.0 1 5.0 15.0 [ 5.0 ] 5.0

L

Table A t: Order of ervors for a single wave computed to order |

conditions is of at least one order higher than the order used to compnte the resnlrs.
These results serve to contirm the efficacy of the Richardson extrapolation method.

as well as the acenracy of the wave theory up to fourth order.

Standing Wave

Ohyama et al.’s method can also he used to compute a standing wave by detining
two waves of the same wavelength and amplitade. and opposing directions. I this
case. the wave is not steady. and the errors in the free surface houndary conditions
must be considered for a full period in time and full wavelength in space. The ex-
trapolation to the limit method can he extended to this case by expanding the free

surface errors in a two dimensional Fourier series (Newland 1993).

Eio) = Z Z (gl ) 2Rl L) T) (AL

k=0 i=0
A estimate of the order of the errors can then be computed in a similar manner as Fq.
A0, The results of this compuration for a standing wave in deep water (Al = 100.
op = 001, 2 = 0.02) are given in Tables A5 and A.6. There are no values given
for the zevoth order in time of the kinematic boundary condition because (e, for
both values of ¢ are zero to the precision of the caleulation. so the values computed

are spurions. These results indicate that Ohyvama et al.’s method is also accurate 1o
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Fourter Component. ikry 0 | r'_’. b3 l | # Jo0 6
IR =0 - ! - | -1 - - - -
=1 (5.0 5005050 (50 5050

1=2 1550555805 [ 6.2 567 6.2

=3 135.00 50 5005050050015

=1 L6 LY L6150 15815253

=51 RO ] 50 ] BN TS0 {50 {50150

| I=6 1 5.0 [ 5.0 [ 5115050150 5.3

Table A5: Order of KESBC errors for a standing wave computed to order |
Fourier Component. (k) | 0 1 SRR 516
I=0 [ 3.6 150 [55150] - 5.0 (5.1 |
=1 [ 3.4 5.0 ] LL{50] L9 50150
=2 195.6 050 [ 57 P50 167 P50 538
=3 [ 5.0 5.0 [ 51 |50 50 50501
I=t 6.1 132163150055 75.505.3
=5 Lo 15052750 520500 19
I=6 | 3.3 150591500 L7 15053
Table A.6: Order of DFSBC errors for a standing wave compnted to order |

approximately tifth order for a standine wave.

A.4.2 More Complex Seas

Fenton’s method relies on the periodicity of the solution to be tested. If the

solution is not periodic in space and time. then the errors in the houndary conditions

will not be periodic. and the Fourier expansion cannot be strictly applied. Fourier

cocflicients conld still he computed by assuming periodicity. hut the discontinuity

generated by the assumption of periodicity would generate spurious results. These

conld he minimized by taking a large number of points over a laree range in time and

space. but this would hecome very computationally intensive.

The accuracy of any approximate solution can he measured by examining the
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Lorder (i TRFSBC error | DFSBC error |
3 ! L 107t 12 - o= 0 Lo3 -
2 N e N U
; 3 U R T R BRI [T
| [ -0~ ] 302w T oo

Table A.7: RMS errors in free surface houndary conditions for a <hort-crested <ea

errors in the governing eqnations resulting {rom the <olution. Fenton's method is a
partictlarly powerful method for examining these errors. in that it considers an entire
wavelength and period at once and gives an estimation of the order of accuracy of the
solutivn. \ simipler approach can also be useful and he universally applied. [u the
case of Ohvama et al.’s method. the tield equation and bottom boundary condition
are exactly satistied at all orders of approximation. [f the solution is acenrate, the
errors in the free surface honndary couditions will decrease with cach inerease in the
order of approximation. While this method does not guarantee that the solution is
correct. most errors in the aleehra or the computational code will resalt in a decrease
i the acenracy of the result at the order in which the error oceurs.

Table AT contains the ervors in the free surface houndary conditions at orders
one through fonr for a short crested sea. This sca is created by two waves of the same
hetght and wavelength ¢ = 0.1, b = 100) intersecting at an anele of 30 decrees.
The valnes given are the root mean square of the errors computed by averaging over
a grid of points one wavelength in both horizontal directions. and over one period. In
this case the errors in the free surface boundary conditions decrease with inereasing
order of solution. It should he noted. however. that the errors do not decrease as
mch as . This might be partially due to the fact that the frequencey is expressed to
ouly second order. Iucluding the fourth ovder frequency would probably reduce the
error at fourth order. This belavior warrants eloser examination. particulavly if the

method were to he expanded to higher order.
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A.5 Depths of Validity

A< the method is very similar to Stokes theory. it is expected to be valid ina similar
range of depths. Stokes theory is valid if both ¢ aud the parameter. ¢ (dh) . <imilar
to the Ursell number. are small (Fenton 1953a). This indicates that the method has

optimal applicability in deep water. and should not be applied in shallow water.
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