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1.  Introduction
The Arctic is known to be a critical driver of the global response to climate change (Cohen et al., 2014). Thaw-
ing of permafrost causes emission of greenhouse gases, but also changes the Arctic ecosystem, leading to 
shrub expansion and increasing forest sizes (Danby & Hik, 2007; Myers-Smith et al., 2011). On global scales, 
permafrost distribution can be approximated using remote sensing and modeling approaches (Gruber, 2012; Li 
et al., 2022). However locally, permafrost distribution can be highly heterogeneous, driven by variations in vege-
tation, snow distribution, and soil properties (Jorgenson et al., 2010; Smith et al., 2022). Such variability, and 
its impact on hydrology, is a critical driver in Arctic landscape and ecosystem transitions (Grosse et al., 2011; 
Rowland et al., 2010). Hence, understanding permafrost distribution and evolution is critical to understanding the 
Arctic's response to increasing mean annual temperatures, and the subsequent effect on the Arctic carbon stocks 
(Schuur et al., 2015).

Measurements of subsurface temperatures are the most direct way of estimating permafrost distribution and 
thickness. Borehole temperature measurements in Alaska have shown permafrost thicknesses ranging between 
as little as 5 m in, for example, coastal areas of the Seward Peninsula to more than 600 m close to Prudhoe Bay 
(Jorgenson et  al., 2008). While borehole temperatures and other geophysical logs can be measured relatively 
easily, interpreting them can be difficult, and permafrost thickness obtained from borehole measurements are 
estimated to be accurate within ±10 m (Osterkamp & Payne, 1981). Additionally, drilling the boreholes to make 
these measurements is difficult due to remote locations and challenging subsurface materials; hence only a limited 
number of direct observations of permafrost thickness exist and estimating the spatial distribution of permafrost 
from these sparse measurements is difficult. In contrast, improved accuracy of low-cost thermal sensors have led 
to dense spatial measurements of the shallow thermal dynamics of permafrost systems (Dafflon et al., 2022) that 
enable high-resolution mapping of permafrost distribution and estimation of soil thermal properties (Brunetti 
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et al., 2022). While these shallow measurements are easy to obtain, they may fail in accurately mapping perma-
frost with a thick active layer and do not provide information on the permafrost thickness.

Geophysical imaging techniques have been shown to overcome these limitations by providing spatially resolved 
subsurface property distributions that are proxies to the thermal state of permafrost. Electrical properties are often 
used to map permafrost landscapes, because the electrical resistivity of the subsurface below the freezing point is 
impacted by the remaining amount of unfrozen water, and thus a proxy to subsurface temperature (Hauck, 2002; 
Uhlemann et al., 2021; Wu et al., 2017). Electrical resistivity tomography (ERT) has been used to map permafrost 
spatial distribution and depth (Arboleda-Zapata et al., 2022; Minsley et al., 2012; Tran et al., 2018; You et al., 2013), 
as well as ice-content if petrophysical relationships and site conditions allow for it (Dafflon et al., 2017). Geophys-
ical imaging has also been used to investigate permafrost dynamics, and has shown that lateral flow may have a 
significant contribution to the formation of taliks (Uhlemann et al., 2021) and that disturbances, such as wildfires, 
have a spatially variable and long-term impact on permafrost systems (Minsley et al., 2022).

While geophysical techniques have been used successfully to map the spatial distribution of permafrost bodies and 
even their temporal dynamics, mapping of the extent of permafrost remains challenging. There are three main obsta-
cles to assessing permafrost extent: (a) geophysical imaging relies on inversion techniques to recover the subsurface 
property distribution, which are non-unique processes that require smoothing and usually have decreasing resolu-
tion with increasing depth, (b) geophysical properties are often proxies to the thermal state of the subsurface and are 
also influenced by other parameters (such as lithology), and (c) deep boreholes that can be used to relate geophysical 
parameters to the base of permafrost are rare. Hence, there is a need for co-located measurements of temperature 
and electrical resistivity to reduce the ambiguity of both methods. Here, we present an approach that makes use of 
such co-located measurements to obtain both the spatial distribution and thickness of permafrost bodies in a highly 
heterogeneous discontinuous permafrost environment. Using unsupervised learning, we estimate the spatial distri-
bution of permafrost, and use this distribution as input for supervised learning to estimate the permafrost thickness.

2.  Materials and Methods
2.1.  The Seward Peninsula—A Discontinuous Permafrost Environment

We focus on three watersheds on the southern Seward Peninsula, Alaska, USA, a region that is characterized 
by discontinuous permafrost and presents a rapidly changing landscape and ecosystem (Debolskiy et al., 2020; 
Sulman et al., 2021). While currently about 70% of the southern Seward peninsula is underlain by permafrost, by 
the end of the century it is projected that the extent will reduce to less than 10% (Debolskiy et al., 2020), likely 
causing major hydrologic and ecologic changes. Two of the watersheds are located along the Nome-Teller High-
way (along mile markers 27 and 47, referred to as T27 and T47, respectively), and one is located north–east of the 
Kigluaik mountains, at Kougarok road (mile marker 64, referred to as KG, Figure 1a). Temperature measurements 
obtained at 0.8 m depth across each watershed indicate late summer mean temperatures of 3.1, 2.3, and 0.7°C for 
T27, T47, and KG, respectively, which relate to a decreasing trend in mean annual air temperature with increasing 
latitude and distance to the ocean. Thaw layer thickness varies considerably in this environment, ranging from 0.5 
to more than 2 m depth (i.e., deeper than common tile probe). T27 consists mostly of a south–east facing slope, 
covered by graminoid and dwarf/tall shrubs in the lower (south) and mid elevation, and a wetland complex with 
significant micro-topography in the upper elevation (north). T47 consists of south, east, and north–east facing 
slopes, separated by two streams that merge toward the bottom of the watershed (Figure 1b). The site is mostly 
covered by tussock tundra, dwarf shrubs and grasses with patches of tall shrubs, particularly near the streams 
(Del Vecchio et al., 2022), and outcropping bedrock at the highest elevations. KG is the site that is farthest inland. 
The slopes are covered with tussock tundra in the lower elevation, tall shrubs at mid-elevation and bare-ground 
where a granitic intrusion is outcropping at the highest elevations (Salmon et al., 2019). Geologically, the sites 
are comparable with a thin layer of organic material (0.3–0.5 m thick) overlying silty material of varying thick-
ness laying above schist (T27 and T47) or granitic (KG) bedrock. At each site, we acquired co-located ERT and 
distributed temperature measurements in late summers of 2018 (T27), 2019 (KG), 2021 (T47), and 2022 (T27).

2.2.  Distributed Temperature Measurements

Depth-resolved soil temperature data were acquired using a custom-made distributed temperature probe (DTP), 
which is described in detail in Dafflon et al. (2022). The DTP consists of an array of high-resolution digital tempera-
ture sensors at 0.05 m spacing inside an epoxy filled 0.8 m long, 10 mm outer diameter stainless steel tube (Dafflon 
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et al., 2022). In-house evaluation of the temperature sensors showed that recorded temperature values are accurate 
within ±0.07°C. The DTPs were pushed into the ground where possible, or inserted into a pre-drilled hole of equal 
diameter to the probes OD. Before taking the reading, probes were allowed to equilibrate for at least 30 min. Each 
measurement location was surveyed using GNSS RTK positioning. Spacing between measurement locations was 
either 5 or 10 m. At T27, in addition to measurements taken at the same time as the ERT data acquisition, we made use 
of a network of soil temperature monitoring locations. The sample locations are shown in Figure 1. At all locations, 
we extracted the temperature at 0.8 m depth, and calculated the temperature gradient between 0.6 and 0.8 m depth.

2.3.  Electrical Resistivity Tomography

The electrical resistance of the ground is measured using two pairs of electrodes, where one pair is used to inject 
a current into the ground and a second pair is used to measure a voltage (Binley & Kemna, 2005). By varying 
the locations of the electrode pairs, the subsurface is sampled at various locations and depths. Here, we used 
either 96 or 112 electrodes spaced at 2 m, and acquired dipole-dipole data with dipole lengths a of 2, 4, 6, 8, 10, 
and 12 m, and dipole spacing n of 1–6 a. To obtain the resistivity distribution of the subsurface, the resistance 
measurements need to be inverted. We used ResIPy (Blanchy et al., 2020) to pre-process and invert the data. 
Pre-processing included data filtering based on the reciprocal errors, and deriving of a data error model (Tso 
et al., 2017). Data were inverted using an L2 norm in both the data and model space. Inversions converged to a χ 2 
misfit of 1, meaning that the model fits the data within their errors. The survey locations are indicated in Figure 1.

2.4.  Unsupervised and Supervised Clustering

We used an unsupervised classification method to determine the location of near-surface permafrost. Input data 
for the classification are the standardized temperature at 0.8 m depth and the standardized mean of the log10 

Figure 1.  Overview map showing the distribution of late summer temperature measurements at 0.8 m depth (blue to white 
dots), and the location of electrical resistivity tomography profiles (red lines) on top of aerial photographs (coordinate system 
UTM Zone 3N) for the watersheds T27 (a), T47 (b), and KG (c). The inset in (a) shows the location of the sites in Alaska and 
on the Seward Peninsula. Aerial photographs from BING (T27 and T47), and ESRI Imagery (KG).
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resistivity between 1 and 3 m depth. Although data are spatially co-located, the deeper resistivities were chosen 
to avoid potential near surface effects, and shallow temperatures are assumed to be indicative of conditions at 
1–3 m depth. Data were classified using a weighted kMeans approach implemented in scikit-learn (Pedregosa 
et al., 2011), where |Ts − 1| was used as weights, with Ts being the min-max scaled temperature measurements, 
resulting in higher weights on the colder temperatures.

To estimate the size of the permafrost bodies, we used the near-surface permafrost locations classified from the 
co-located temperature and resistivity measurements, and extracted the mean of the log10 resistivity at 5–10 m 
depth at these locations, to classify the presence or absence of permafrost throughout the ERT imaging plane. 
These deeper training resistivities were chosen because they reflect the conditions of the permafrost bodies better 
than the shallower values, and hence provided improved performance. These data sets were standardized and used 
as training data. Both unsupervised (training on the resistivity distribution only) and supervised classification 
(training on resistivity and near surface permafrost location) were tested. For the unsupervised classification 
kMeans was used, and for the supervised classification the AdaBoost-SAMME algorithm (Hastie et al., 2009; 
Pedregosa et al., 2011).

Although ERT has been used to map the extent of permafrost bodies (Buddo et al., 2022; McClymont et al., 2013), 
it is also known that these estimates have a high uncertainty (Arboleda-Zapata et al., 2022). We assess the uncer-
tainty of the unsupervised and supervised classification methods through forward modeling of a range of model 
scenarios. We created a representative model, with a permafrost wedge having an active layer thickness of 1.5 m, 
and a thickness varying from 5 to 15 m (see Figure 2). The modeled permafrost body sits within a background 
material that is overlain by 0.5 m of low resistivity organic or soil material, which reflects our field conditions 
where saturated, low resistivity organic material and soil overlie more resistive silt and bedrock. We calculated 
the response of 1,000 different models, for which we randomly drew resistivity values for each model domain. 
Each domain followed a normal distribution with a mean of 50 Ωm and standard deviation of 15 Ωm for the 
soil layer, a mean of 500 Ωm and standard deviation of 100 Ωm for the background, and a mean of 10,000 Ωm 
and standard deviation of 5,000 Ωm for the permafrost layer. Forward modeling was performed on a very finely 

Figure 2.  Accuracy of predicting the size of permafrost bodies from electrical resistivity tomography (ERT) data. (a) Resistivity model and inversion result (left), and 
classified images for unsupervised kMeans and supervised AdaBoost classifiers (right). Note that the sensitivity of the ERT inversion is used to blend out unreliable 
data. (b) Analysis of 1,000 model realization with varying soil, background, and permafrost resistivities with regards to permafrost thickness (left) and depth to the 
permafrost table (right). Misfit distributions are shown for kMeans and AdaBoost; bottom row shows a scatter plot of misfit and log10 resistivity ratio between the 
permafrost body and the soil layer. Black diamonds show binned mean values, used for estimating the linear relationship.
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discretized mesh using ResIPy. The modeled data were inverted using the same parameters as used for the field 
data.

2.5.  Linking Subsurface and Surface Features

We extracted the permafrost bodies from the classified ERT models, corrected their size using the results of 
the synthetic study, and calculated their center and length-to-thickness ratio, their mean thaw layer depth and 
permafrost resistivity, and extracted the mean slope aspect and gradient, and the mean vegetation height for each 
permafrost body from LiDAR data that were acquired by the National Center for Airborne Laser Mapping in 
August 2021 (Singhania, 2021). The LiDAR point clouds were processed to generate a digital elevation model, 
with the vegetation removed using the lidR package (Roussel et al., 2020). DEMs were produced at 3 m spatial 
resolution. We classified the aspect to be north, east, south, and west facing. Only two permafrost bodies were 
on west facing slopes and zero on north facing slopes, and hence, we removed them from the following analysis. 
The slope gradient was simplified to reflect whether a slope was steep (>15°) or not. Similarly, vegetation was 
classified as being tall if their height was >0.5 m.

3.  Results and Discussion
3.1.  Assessing the Prediction Accuracy

The results of the synthetic study show that both kMeans and AdaBoost overestimate the depth to the thaw layer 
and the depth to the base of the permafrost (Figure 2b). For the thaw layer depth, kMeans has a smaller mean 
misfit than AdaBoost (2.2 and 3.0 m, respectively), but for the permafrost thickness, the kMeans misfit is 4.8 m 
larger than for AdaBoost (means of 13.9 and 9.1 m, respectively), and the misfit distribution of kMeans is also 
considerably wider (standard deviation of 7.2 and 3.9 m, respectively). An ≈60% greater accuracy of the super-
vised classification method indicates the substantial improvement in mapping permafrost bodies by utilizing 
co-located temperature and resistivity data.

The overestimation depends on the resistivity contrast between the permafrost layer, and the soil and background 
resistivities, and is most pronounced for the contrast between permafrost and soil layers (Figure 2b). The larger 
the contrast, the higher the misfit, which we associate to a loss in sensitivity and an overfitting of the inversion 
process. Our analysis also showed that the resistivity contrast has a stronger impact on the misfit than the actual 
thickness of the permafrost layer, that is, the misfit was almost constant along the permafrost wedge for each 
resistivity contrast. The estimate of the thaw layer depth and permafrost thickness can be corrected by fitting a 
linear relationship to the misfit values and the resistivity contrast. This correction has been applied to the field 
data.

We also analyzed the impact of blocky inversion constraints (L1 model norm, Figure S1 in Supporting Infor-
mation S1), and tested the known-interface method (Chambers et al., 2013), which uses a resistivity threshold 
based on prior information for extracting the base of the permafrost (Figure S2 in Supporting Information S1). 
However, the blocky inversion did not provide better performance for estimating permafrost thickness, and the 
resistivity threshold considerably underestimated the size of the permafrost body (more detail in Supporting 
Information S1).

3.2.  Estimating Lateral Extent of Permafrost

Soil temperatures usually show a bimodal distribution, where T47 has a more pronounced low temperature peak 
(0.2°C) compared to T27, for which the higher temperature peak (4.7°C) is more prominent (Figure 3a). KG, 
although showing a second high temperature peak, is characterized mostly by low temperatures centered around 
0.05°C. Since the resistivity is related to the temperature, KG and T47 are also characterized by higher interme-
diate depth resistivities (1–3 m) than T27 (1,375, 671, and 608 Ωm, respectively). Shallower resistivities (0–1 m) 
showed a similar trend, while the deeper resistivities (5–10 m) show distributions that are more closely aligned 
(2,512, 2,004, and 1,202 Ωm for KG, T47, and T27, respectively).

Using the co-located resistivity and temperature values (Uhlemann et al., 2023), a weighted kMeans classifier 
was trained with a silhouette score of 0.53 (Figure 3b). We assume that the temperature at 0.8 m depth is related to 
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Figure 3.

 19448007, 2023, 17, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
103987, W

iley O
nline L

ibrary on [11/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

UHLEMANN ET AL.

10.1029/2023GL103987

7 of 11

deeper soil temperatures, and acknowledge that the temperature at this depth is not only controlled by the thermal 
conditions, but also hydrological processes. Hence, also temperatures above 0°C may be representative for deeper 
permafrost conditions, which is shown by the results of the classification. Samples are classified as permafrost 
if their temperature is less than 1.8°C, but this temperature threshold can be as high as 2.4°C if resistivities are 
>3,000 Ωm. We also tested including the temperature gradient into the classification, but no improved classifica-
tion score was achieved. Plotting the clustering results along the transects of ERT and temperature data, we find 
that identified permafrost locations correlate well with locations of shallow high resistivity anomalies and low 
soil temperatures (Figure 3c). However, this method is not able to identify the presence of deeper resistive bodies 
that we assume to be permafrost (e.g., ≈300 m at T47-D).

The spatial distribution shows that T27 is characterized by isolated permafrost occurrences, which mostly relate to 
areas dominated by graminoid, and a wetland complex in the upper elevations. For T47, permafrost mostly occurs 
at the western part of the site, on south–east and north–east facing slopes (transects C—F), while south-facing 
slopes show only isolated near-surface permafrost (transects A and B). Note that the north-eastern part of the site 
is characterized by outcropping bedrock, which may have a deep active layer or no permafrost. KG shows the 
largest fraction of mapped permafrost, which covers almost the entire site, except for some small areas that are 
linked to outcropping bedrock and a south–west facing slope. Although soil temperatures were comparably high 
in the western part of transect KG-A, it was predominantly classified as permafrost, mostly due to the very high 
resistivities recorded at that site. Hence, this area is either misclassified, or the site is characterized by a thick 
active layer on top of frozen bedrock.

3.3.  Mapping Permafrost Thickness

The synthetic example has shown that a higher accuracy can be achieved when using supervised rather than 
unsupervised classification. An AdaBoost model was trained to classify permafrost occurrences on the ERT 
data, using the resistivity at 5–10 m depth and the estimated permafrost occurrence as input data. We trained a 
model for each site to account for variations in the geological settings. Validating against test data (input data 
were randomly split into a training (70%) and test data (30%)), the AdaBoost model has an accuracy of 69.7%, 
compared to 62.4% for a standard kMeans model. The AdaBoost classification outlines high resistivity bodies 
(Figure 3), which relate well with mapped locations of low soil temperatures when close to the surface. The 
kMeans classification predicts permafrost to occupy larger areas, and often identifies near-surface permafrost 
in areas where no low soil temperatures were measured. This shows that co-located temperature and resistivity 
measurements can be used to obtain reliable estimates of subsurface permafrost distribution.

South-facing slopes generally have a larger thaw layer than east-facing slopes (mean of 1.2 and 0.3 m, respectively, 
Figure 4a), and a smaller mean resistivity (2,100 and 2,900 Ωm, respectively), indicating warmer permafrost 
temperatures. Both observations are expected for the northern hemisphere, where south-facing slopes receive 
larger solar radiation than east-facing slopes. We analyzed the log10 of the length-to-thickness ratio, which indi-
cates horizontally elongated bodies if >0 and vertically elongated bodies if <0. Predominantly vertically elon-
gated bodies can be associated with more frequent through taliks and discontinuous permafrost features, while 
horizontally elongated bodies show more spatial continuity. More horizontally elongated permafrost bodies can 
be found for east-facing slopes, while south-facing slopes show a considerably larger fraction of vertically elon-
gated features. Permafrost was absent at 57.8% on south-facing slopes, while for east-facing slopes only 39.5% 
had no permafrost. Assuming that the absence of permafrost can be related to the occurrence of through taliks, 
this shows a significantly larger presence of through taliks on south-facing than on east-facing slopes.

Parameter distributions vary across the three sites, but the variations in aspect outweigh inter-site variability. 
Decreasing late summer soil temperatures (T27 warmest and KG coldest site) lead to more horizontally elongated 
and hence more spatially continuous permafrost bodies. This is also obvious from the permafrost fraction of each 
site, where permafrost accounts for 37.8%, 40.1%, and 70.3% at T27, T47, and KG, respectively. T27, generally, 
shows the largest variability, highlighting the heterogeneous conditions at this site. Results suggest a spatially 

Figure 3.  Estimating permafrost distribution. (a) Distribution of characteristic variables for each watershed, including the soil temperature at 0.8 m depth, the 
temperature gradient between 0.6 and 0.8 m depth, and the mean resistivity between 0 and 1 m, 1 and 3 m, and 5 and 10 m depth. (b) Cross-plot of resistivity at 1–3 m 
depth, and soil temperature, showing the clustering results. (c) Electrical resistivity tomography models for T47-D and T27-1, showing the temperature sampling 
locations, including the measured temperature (blue to white colored fill of dots) and their permafrost classification (red outline meaning no permafrost). Shown are 
also the estimated permafrost bodies, where solid black line outlines the AdaBoost classification, and the gray outline the KMeans classification. (d) Spatial distribution 
of permafrost classification for the three studied watersheds. Aerial photographs from BING (T27 and T47), and ESRI Imagery (KG).
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varying connection between shallow and deep subsurface temperatures across and within the studied watersheds, 
which likely results from the complex coupling of atmospheric, surface, and subsurface processes to the deep 
subsurface temperatures (Jorgenson et al., 2010; Vasiliev et al., 2020). Overall, the higher mean annual temper-
ature of T27 results in a more discontinuous permafrost environment, as highlighted by the broad distribution of 
length-to-thickness ratio of the identified permafrost bodies.

Vegetation is a major control on snow distribution in Arctic environments, where tall vegetation usually relates 
to thick snowpack (Bennett et al., 2022; Sturm et al., 2001). The insulating snowpack is known to be a driver 
for talik formation and increasing permafrost thaw rate (Farquharson et al., 2022; Jafarov et al., 2018; Shirley 
et al., 2022). At our sites, permafrost bodies below tall vegetation (>0.5 m) had a deeper thaw layer, were of lower 
resistivity (i.e., warmer), and generally less spatially continuous (smaller length-to-thickness ratio) compared to 
permafrost bodies covered by low vegetation, highlighting that the snow insulation effect is leading to smaller 
and warmer permafrost. The link between tall shrub and warm soil conditions is also clear when calculating the 
fraction of the surveyed area with no permafrost, where absence of permafrost below tall vegetation accounted 
for 60.2%, and below low vegetation for 44.6%.

Analyzing the characteristics of permafrost bodies with regards to the slope gradient shows that steep slopes 
tend to be underlain by more resistive, that is, colder, and larger, spatially continuous permafrost. The warmer 

Figure 4.  Characteristics of identified permafrost bodies. (a) Thaw layer depth, permafrost mean resistivity, and log10 of the length-to-thickness ratio of the permafrost 
bodies. Colored boxplots indicate the mean and standard deviation for each studied watershed. Note that for T47 and KG, the sample size for south facing permafrost 
bodies is small (5 and 4, respectively). (b) Distributions of thaw layer depth, mean resistivity and length-to-thickness ratio divided by whether tall vegetation (>0.5 m) 
occurs above the body, and whether it is located on a steep slope (>15°). The fraction of no permafrost occurrence for south and east facing slopes, and below low and 
tall vegetation is also given.
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and spatially more heterogeneous conditions below gentle slopes could be caused by increased surface water 
accumulation on gentle or flat slopes that is leading to an increased energy input and hence increased thaw rate 
(McKenzie & Voss, 2013; Rowland et al., 2011). The potential effect of accumulating water is also expressed 
by a decreasing resistivity of the permafrost bodies with decreasing distance to the closest water body for each 
watershed (see Figure S3 in Supporting Information S1). Finally, we note here that spatial variability in geol-
ogy remains a source of uncertainty in delineating permafrost. For example, shallow bedrock implying large 
thermal conductivity that may lead to a deep thaw layer, could be misinterpreted as permafrost bodies due to its 
high resistivity, or deeper frozen bedrock could be interpreted as unfrozen, even when incorporating co-located 
measurements.

4.  Summary
Knowing the distribution, extent, and state of permafrost bodies is crucial for predicting the evolution of Arctic 
ecosystems and associated environmental changes (Kreplin et al., 2021; Loranty et al., 2018). Here, we developed 
a novel method that couples temperature and ERT data to estimate permafrost thickness and spatial distribution. 
We show that co-located temperature and resistivity measurements and their combined data analysis reduce 
the ambiguity of interpreting each method independently, particularly in cases of deep thaw layer depths or 
outcropping bedrock. Analyzing the identified permafrost bodies with regards to surface features, we show that 
permafrost below south-facing slopes tends to be warmer (i.e., less resistive) and smaller than below east-facing 
slopes, and that there is a larger fraction of through taliks on south-facing slopes. Permafrost bodies are also 
warmer and smaller below tall vegetation, and on gentle or flat slopes (<15°), highlighting the impact of snow 
accumulation at tall vegetation, and increased surface water—groundwater interaction that is expected on the 
more gentle slopes.

Data Availability Statement
The temperature and electrical resistivity data analyzed in this study are published on the NGEE Arctic 
Data Collection (Uhlemann et al., 2023). Topographic indices were calculated from LiDAR data published 
as Singhania  (2021). Forward and inverse modeling of the electrical resistivity tomography data were 
performed using ResIPy (Blanchy et al., 2020). Figures were prepared using Matplotlib version 3.6.2 (Caswell 
et al., 2022).
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