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ARTICLE

Changes in the distribution of fitness effects and
adaptive mutational spectra following a single first
step towards adaptation
Dimitra Aggeli1,3,5, Yuping Li 2,4,5 & Gavin Sherlock 1✉

Historical contingency and diminishing returns epistasis have been typically studied for

relatively divergent genotypes and/or over long evolutionary timescales. Here, we use Sac-

charomyces cerevisiae to study the extent of diminishing returns and the changes in the

adaptive mutational spectra following a single first adaptive mutational step. We further

evolve three clones that arose under identical conditions from a common ancestor. We follow

their evolutionary dynamics by lineage tracking and determine adaptive outcomes using

fitness assays and whole genome sequencing. We find that diminishing returns manifests as

smaller fitness gains during the 2nd step of adaptation compared to the 1st step, mainly due to

a compressed distribution of fitness effects. We also find that the beneficial mutational

spectra for the 2nd adaptive step are contingent on the 1st step, as we see both shared and

diverging adaptive strategies. Finally, we find that adaptive loss-of-function mutations, such

as nonsense and frameshift mutations, are less common in the second step of adaptation

than in the first step.
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Stephen Jay Gould argued that historical contingency makes
evolutionary outcomes largely unpredictable, and that were
we to replay the “tape of life”, we would likely end up with a

different world each time1. However, frequently observed
instances of both parallel2–4 and convergent5–7 evolution suggest
that, at least under some circumstances, adapting populations
may simply take different paths to the same peak on a fitness
landscape. Environmental similarities, genotypic relatedness, and
proximity to an optimum in the fitness landscape are some of the
constraints contributing to convergent or parallel adaptive
responses4,8–21.

Closely related genotypes are often employed to study the
effects of evolutionary history on adaptation in various experi-
mental systems22–30. A frequent observation is that fitness gains
decrease over time during adaptive evolution—termed dimin-
ishing returns—most convincingly demonstrated in cases where
founders with differing initial fitness are used24,25,27,28,30–32.
However, support for the role of historical contingency during
adaptation is not uniformly consistent. For example, evolutionary
history has been shown to both contribute23 and not contribute26

to defining subsequent adaptive mutational spectra in closely
related Pseudomonas aeruginosa lineages, while historical con-
tingency in related evolving Escherichia coli populations mani-
fested at a phenotypic but not at a molecular level29. By contrast,
evidence of first-step adaptive mutations in Saccharomyces cere-
visiae being mutually exclusive due to reciprocal sign
epistasis22,33,34 is clearly supportive of historical contingency.
Nevertheless, experiments founded with related S. cerevisiae
clones spanning a range of fitness effects, suggest that con-
vergence at a molecular level can and does occur30. Such
apparently contradictory results may stem from differences in
evolutionary timescales, population sizes, or culture conditions.
For example, longer timescales (up to several hundreds of gen-
erations) that allow for the rise of lineages to frequencies suffi-
cient for easy detection via sequencing, also result in clonal
interference, a consequence of clonal propagation in well-mixed
environments24,35–39. Given sufficient time, clonal interference
will result in a somewhat predictable outcome because competi-
tion among many adaptive lineages will reproducibly favor fixa-
tion of those with the highest fitness30,36,40–42, even when there is
genotypic divergence30. This suggests that long-term evolution
experiments are limited in their ability to capture the full spec-
trum of adaptive mutations and their fitness effects. A prior
example in E. coli has illustrated phenotypic diversity specifically
among first step adaptive mutants, exemplifying the benefits of
short-term experiments43. Additionally, timescales that allow for
accumulation of several mutations are typically unable to resolve
how early during adaptation historical contingency and dimin-
ishing returns manifest.

The application of molecular barcoding to experimental
microbial evolution (EME), for the purpose of tracking lineages,
has enabled high-resolution characterization of evolutionary
processes4,20,21,41,42,44, importantly, on shorter timescales (less
than a few hundred generations). Such studies have revealed a
plethora of available adaptive mutations that increase in fre-
quency early in the evolution, but most of which will go extinct
due to being outcompeted by high fitness lineages4,41,44. Here, we
use DNA barcoding to investigate how closely related genotypes
of S. cerevisiae, each with a single adaptive mutation relative to
their common ancestor, further evolve in the environment under
which they were originally selected4,44. The molecular barcodes
allow us to detect lineages at very low frequencies, necessary to
generate the distribution of fitness effects (DFE) during the 2nd
step of adaptation. Barcoding informs our decision on the evo-
lution timepoint(s) from which to isolate clones, so as to

maximize representation of adapted lineages. In follow-up
experiments, barcoding also allows for pooled fitness assays and
whole-genome sequencing of independently arisen adaptive
lineages. This allows us to deeply characterize the beneficial
mutational spectra and fitness effects, and draw direct compar-
isons among second-step and between first and second-step
adaptations.

The evolutionary environment we use is serial-transfer under
glucose-limitation, where cells undergo lag, fermentation, and
respiration phases within each growth cycle. Common adaptive
strategies in the 1st step of adaptation in this environment include
diploidization and upregulation of the Ras/PKA and TOR/Sch9
pathways4; our haploid founders for the 2nd-step evolutions carry
either a cyr1, a gpb2 (both of which upregulate the Ras/PKA
pathway), or a tor1 (which upregulates the TOR/Sch9 pathway)
mutation. All three of these mutants have an increased cell size
and a higher fitness relative to their ancestor4,20, though their
fitness advantages manifest differently within lag, fermentation,
and respiration growth phases20. Diploidization is frequently
observed during experimental evolution with haploid Sacchar-
omyces cerevisiae4,45–50, with estimated rate of 2 × 10−5 events
per cell division45, while its fitness advantage depends on both the
environment and the strain background4,45–49. Circumstantial
evidence suggests that diploidization is still available as an
adaptive strategy even following other adaptive changes. How-
ever, it is unclear whether diploidization remains prevalent after
the first step of adaptation, and if it does, whether it abides by
diminishing returns.

We evolve barcoded populations of each of these three mutants
and characterize rates of adaptation, and the distributions of
fitness effects (DFE) of second step mutations. We then isolate
hundreds of independent adaptive lineages and perform whole-
genome sequencing and fitness remeasurements. In all three of
these different genotypes, we find that diploidization remains a
prevalent adaptive strategy, occurring at a high rate and with a
comparable fitness benefit in the adapted backgrounds as in their
founder. In addition, we find that 2nd-step mutations confer a
smaller fitness advantage than the 1st-step mutations in the
respective backgrounds where they arise, consistent with dimin-
ishing returns epistasis. We also find that there is a partial overlap
in the molecular basis of the 2nd-step of adaptation between
genetic backgrounds: the TOR/Sch9 pathway mutant frequently
adapts via mutations in the Ras/PKA pathway, while the Ras/PKA
pathway mutants, cyr1 and gpb2, sometimes acquire mutations in
the TOR/Sch9 pathway. On the other hand, we rarely identify
second-step mutations that further modify the same pathway. We
also find that the spectrum of adaptive mutations shifts from
affecting pathways that regulate the cell cycle and nutrient sig-
naling to pathways that affect stress responses. Targets of selec-
tion include genes in the HOG, retrograde flow (RTG), and
glutathione biosynthesis pathways. GSH1, which functions in the
glutathione biosynthetic pathway, is a target of selection in all
backgrounds, while the HOG pathway is targeted only in the
TOR/Sch9 pathway mutant and the RTG pathway is mutated in
the Ras/PKA mutants. The Ras/PKA pathway mutants have
similar relative changes in fitness and adaptive mutational spectra
to one another, that differ from those of the TOR/Sch9 pathway
mutant. Finally, we find that the second step mutations are less
likely to be disruptive (nonsense and frameshift mutations)
compared to first step mutations. Altogether, our data show that a
single adaptive change is sufficient to cause genetic divergence
during the immediate subsequent adaptation, consistent with
evolutionary history influencing future outcomes, and that the
DFE between first and second step mutations differs, consistent
with diminishing returns epistasis.
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Results
Experimental design. Previously, we evolved a population of
barcoded haploid yeast cells in a 2-day serial transfer condition
under glucose limitation and isolated thousands of evolved clones
from cycle 11 (after ~88 generations)4,44. Such a timescale was
long enough for adaptive clones to rise to a sufficient frequency in
the population, while short enough that the majority of adaptive
clones carries only a single causative mutation. We then mea-
sured the fitness of thousands of isolated clones under the evo-
lutionary condition and whole-genome sequenced hundreds of
adaptive clones to identify their causative mutations4. Two major
adaptive strategies were observed: self-diploidization, and upre-
gulation of nutrient-sensing pathways, including the Ras/PKA
pathway and the TOR/Sch9 pathway4. We refer to this prior
evolution experiment as the “1st-step evolution”.

In this work, we chose three adapted clones from the 1st-step
evolution. Compared to their common ancestor, each clone
carries one of the following mutations: a presumptive gain-of-
function (GOF) mutation in a positive regulator (cyr1) of the Ras/
PKA pathway, a loss-of-function (LOF) mutation in a negative
regulator (gpb2) of the same pathway, and a presumptive gain-of-
function mutation in a positive regulator (tor1) of the Tor
pathway (Table 1). GOF mutations were inferred by the
regulatory role that the affected proteins have in the signaling
pathway: we had previously observed that nonsense and frame-
shift mutations frequently occur in negative regulators of Ras/
PKA pathway (i.e., gpb2), while positive regulators of Ras/PKA
(i.e., cyr1) and TOR/Sch9 (i.e., tor1) pathways solely had rare
missense mutations4. Based on these data, we inferred that the
missense mutations in these positive regulators were GOF. In this
study, we used one mutant representing each of the following
categories: a GOF (cyr1) and a LOF (gpb2) affecting the Ras/PKA
pathway and a GOF (tor1) affecting the TOR/Sch9 pathway. No
LOF mutant affecting the TOR/Sch9 pathway was identified in
our prior work4. We intentionally chose these particular mutants
to ensure that both GOF and LOF mutations were further evolved
and that both signaling pathways were represented.

The founding populations were derived from adapted clones
via backcrossing with a mating-type switched version of the
unbarcoded wild-type ancestor (strain GSY5375, Table 1). Fitness
advantages of the derived strains were validated and shown to be
monogenic and segregate with the mutation (Supplementary
Fig. 1, Supplementary Table 1). These derivatives were then re-
barcoded and further evolved for 160 generations in the same
environment. We refer to this further evolution as the “2nd-step
evolution” (Fig. 1). We performed low coverage barcode
sequencing (average of 27 reads per barcode for timepoint 0
and 12 reads per barcode for the rest; see Supplementary Data 1)
of the populations over the course of the evolutions (Supple-
mentary Fig. 2) and used these data to estimate the fraction of
adapted individuals at each timepoint (Supplementary Fig. 3).
Based on these data, as well as benomyl-based ploidy assays
(Supplementary Fig. 4), we isolated thousands of clones from

cycles 20, 13, and 12, corresponding to generations 160, 104, and
96 (cells roughly divide 8 times during each cycle), from the “2nd-
step evolution” of cyr1, gpb2, and tor1, respectively, where
~25–50% of the individuals in the population are estimated to be
adaptive. Fitness remeasurements and genome-wide sequencing
were conducted for these evolved clones isolated from the 2nd
step evolution. Fitness estimates are expressed per generation
(assuming 8 generations per growth cycle) for consistency with
the bulk of the literature, although we are aware that fitness
advantage is not equally distributed within the growth cycle20. In
this study, we refer to the original ancestor used in the 1st-step
evolution as the “wild-type” ancestor and we refer to the founders
of the 2nd-step evolutions, tor1, gpb2, and cyr1 mutants, as
“adapted” ancestors.

The distribution of fitness effects (DFE) is compressed for the
second adaptive step. We used lineage tracking data to estimate
the distribution of fitness effects for each adapted ancestor from
the 2nd-step evolutions and compared them to that of the wild-
type ancestor from the 1st-step evolutions44 (datasets 1 and 2 in
ref. 41) (Supplementary Fig. 2). Since the barcode sequencing
depth was higher for the 1st-step evolutions (Supplementary
Data 1), we down-sampled the 1st-step evolutions’ data to a depth
comparable to that of the 2nd-step evolutions and calculated
fitness and fitness-dependent mutation rates (Supplementary
Fig. 5). Fitness inference remained similar upon down-sampling
(Supplementary Fig. 5A) and so did the mutation rate spectra for
fitness above 4% (Supplementary Fig. 5B, C). This is likely a
consequence of the faster adaptation of the wild type ancestor,
resulting in very fit lineages dominating the population and
neutral and lower fitness lineages thus being present at low fre-
quency. By down-sampling, we essentially limited our ability to
detect lineages below ~4% fitness per generation, largely repre-
sented by autodiploids. Despite the lower barcode sequencing
coverage, lineages with fitness <0.04 in the 2nd-step evolutions
were readily detectable, in contrast to the 1st-step evolutions at
comparable coverage (Supplementary Fig. 5C). Thus, we used
high coverage lineage tracking data from ref. 41 (datasets 1 and 2
without down-sampling) for the 1st step evolution, and lower
coverage lineage tracking data for the 2nd step evolution to
estimate the DFE.

Diminishing returns models of epistasis predict that the
magnitude of fitness gains decreases as lineages approach a
fitness optimum. Prior work has suggested that diminishing
returns is at least partially due to decreased fitness gains as
adaptive mutations accumulate within a lineage24,25,27,28,30;
however, the DFE beyond the first step has not been
characterized. Our data allowed us to directly compare the DFEs
of two consecutive adaptation steps. We used the wild-type DFE
of the first step and overlaid to the DFE of each of the adapted
ancestors (Fig. 2, see Supplementary Fig. 6 for direct comparison
of all DFEs). The density data were used to estimate the overall
adaptive mutation rates as well as diploidization rates and the rate

Table 1 Strains used in this study.

Strain Genotype Description Reference

GSY5096/ SHA118 MATα ura3Δ ybr209w::GalCre-natMX Wild-type universal ancestor [44]
GSY5375 MATa ura3Δ ybr209w::GalCre-natMX MATa version of the ancestor This study
GSY6701 MATα ura3Δ ybr209w::GalCre-natMX cyr1S917Y Evolution founder This study
GSY6702 MATα ura3Δ ybr209w::GalCre-natMX gpb2Y282* Evolution founder This study
GSY6703 MATα ura3Δ ybr209w::GalCre-natMX tor1F1712L Evolution founder This study
GSY5481 MATα ura3Δ ybr209w::full barcode cyr1S917Y Evolved clone [4, 44]
GSY5128 MATα ura3Δ ybr209w::full barcode gpb2Y282* Evolved clone [4, 44]
GSY5153 MATα ura3Δ ybr209w::full barcode tor1F1712L Evolved clone [4, 44]
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of occurrence of higher fitness mutations across different genetic
backgrounds (Table 2). Note that the DFEs presented are
truncated for lineages with s < 0.02, as this fitness coefficient
approaches our lineage tracking data detection limit. While
lineages with such small effect mutations might contribute to
evolutionary outcomes of populations under weaker selection
pressures (for example smaller bottlenecks or structured envir-
onments), they do not significantly affect outcomes in our
experiments, which have large population sizes and are not
mutation limited (see “Methods”). First, we observed similar
shapes of DFE between the two evolutionary steps, featuring a
long right tail and a peak at s= ~3–4% per generation across all
genotypes. Our previous studies suggest that the peaks at 3–4%
fitness likely correspond to lineages that have undergone
autodiploidization, shown to be adaptive in the wild-type
background4. Follow-up ploidy assays and fitness re-
measurements of individual clones confirmed the prevalence
and fitness advantage of diploidization during the 2nd-step
evolutions (see below for details; importantly, the estimated

diploidization rate in the wild-type population is comparable to
that previously reported45). We observed that 2nd-step evolutions
manifest lower mutation rates over a wide fitness range beyond
0.04 per generation, and as the magnitude of fitness increases, the
mutational fitness spectra decline at a faster rate compared to the
1st-step. Furthermore, adapted ancestors are devoid of very high
fitness mutations compared to the wild-type ancestor, as
demonstrated by the large difference in the mutation rates at
fitness interval 0.07–0.12 and by the scarcity of lineages with
fitness >0.12 for the adapted ancestors (Table 2). Finally, the
beneficial mutation rates for the adapted ancestors were
approximately one to two orders of magnitude lower than that
of the wild-type ancestor (Table 2). In particular, the beneficial
mutation rates for the wild-type ancestor were 1.57 × 10−4 and
7.64 × 10−5 for each of the 2 replicates, whereas for the adapted
ancestors, the respective rates were 1.73 × 10−6 and 2.61 × 10−6

for cyr1, 9.68 × 10−6 and 6.24 × 10−6 for gpb2 and 9.17 × 10−6

and 1.61 × 10−5 for tor1. Overall, compared to the 1st-step
adaptation, the 2nd-step adaptation with cyr1, gpb2, and tor1

Fig. 1 Experimental design. A All evolutions were performed under identical conditions, including transfer and environmental conditions. B The founders
used in this study derived from adaptive clones isolated and characterized previously4,44. The upper graph of (B) has been reproduced from ref. 44. Red,
cyan, and blue lines represent lineages with respectively diminishing probability of carrying an established beneficial mutation. The lower graph of (B) is a
remake of Fig. 4 from ref. 4. Different mutation types are color-coded as annotated. The ancestors of the evolutions of the current study are highlighted
with an outer black circle. C Each founder carries a single adaptive mutation (gpb2Y282*, cyr1S917Y, and tor1F1712C), and was barcoded and propagated for 20
transfers. The mutations gpb2Y282*, cyr1S917Y, and tor1F1712C are color-coded green, red and blue, respectively. Different shades represent barcoded clonal
derivatives. Gray represents the wild-type ancestor (annotated as WT). The same color scheme is used to annotate the ancestors or their evolved
derivatives throughout the paper. Differences in yeast sizes represent barcode frequency changes. Adaptive clones are isolated and characterized via
fitness re-measurements and whole-genome sequencing.
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mutants not only have smaller magnitudes of fitness gains, as
expected based on previous studies25, but also have lower
mutation rates for beneficial mutations within the detection
limit, which has not been previously characterized. This suggests
that diminishing returns in our system is driven by both declining
fitness gains and decreased beneficial mutation rates. Based on
this change in the DFE, we hypothesized that the adaptive genetic
bases during the 2nd- step evolution will differ, opening up the
possibility that they are contingent on the first adaptive step.

Fitness gains of isolated adaptive clones from the 2nd-step
evolutions tend to be smaller than in clones from 1st-step
evolutions. Having analyzed the DFE from the lineage tracking
data during the evolutions themselves, we characterized the dis-
tributions of fitness effects of individual clones isolated from each
of the 2nd-step evolutions. Clones were isolated from a single
timepoint from each evolution and their fitness effects were

quantified against the wild-type ancestor under conditions iden-
tical to their evolutionary condition, by a bulk fitness assay. We
directly compared the DFE between the 1st and the 2nd-step
evolutions by including in our assays a set of isolated clones from
the 1st-step evolutions4. Based on fitness and ploidy measure-
ments, we classified isolated clones into four categories, consistent
with the classification we used previously4. “Neutral haploids” are
haploids with a similar fitness to their immediate ancestor,
“adaptive haploids” are haploids with a higher fitness compared
to their immediate ancestor, presumably carrying adaptive
mutation(s), “pure diploids” are diploids without additional
beneficial mutations, and “high-fitness diploids” are diploids with
a fitness significantly higher than the mean diploid fitness, and
likely harbor beneficial mutation(s) besides diploidy.

Fig. 3 shows the distributions of fitness effects per genotype, as
calculated relative to the wild-type ancestor (Fig. 3A–D) and to
their adapted ancestor (Fig. 3E–G). Isolated clones from the 1st-
step evolution include the 2nd-step parental strains (correspond-
ing points are annotated with larger dots in Fig. 3D), whose
fitness value is included in Supplementary Table 1 (under “Fitness
evolved remeasurements”). Deviations from earlier estimates4 can
be attributed to different population mean fitness resulting from
inclusion of fitter strains in the pool. Compared to the wild-type
ancestor, neutral haploids from the 2nd-step evolutions should
have fitness comparable to their respective parental strains
isolated from the 1st-step evolution. This is the case for the
cyr1 and gpb2 genotypes (Fig. 3A, B), though neutral clones from
the tor1 genotype evolution, whose fitness relative to wild-type is
~0.09 (Fig. 3C), have higher fitness than their unbarcoded
ancestor, which had a fitness ~0.06 (represented with a blue dot
in Fig. 3D), suggesting the possibility of the presence of
mutation(s) that arose during the barcoding process. Overall,
adapted clones from each of the three 2nd-step evolutions have
further increased fitness compared to those from the 1st-step
evolution (Fig. 3A–C). However, the fitness increase of this 2nd
step is smaller than the fitness increase of the 1st step (Fig. 3D–G),
suggesting a slower adaptation rate, consistent with the data from
the lineage tracking during the evolutions. In particular, during
the 1st-step evolution, adaptive clones gain benefits up to ~0.18
per generation compared to their WT ancestor. During the 2nd
step evolutions, adaptive clones gain smaller fitness benefits
compared to their immediate ancestors. The most fit clones gain
benefits of ~0.09, ~0.10, and ~0.12 per generation compared to
their cyr1, gpb2, and tor1 ancestors, respectively. Despite the small
sample size, we observed an anti-correlation between ancestor
fitness and highest fitness evolved (Supplementary Fig. 7, Pearson
r=−0.95, Spearman r=−0.8 with p-values 0.049 and 0.333,
respectively), consistent with diminishing returns. We cross-
validated our fitness estimates from the lineage tracking data
from the evolutions and from the bulk competition assays, by
plotting the estimates against each other (Supplementary Fig. 8).
Fitness values of lineages for which fitness was inferred from
the evolution data approximately match the fitness values from
the competition data. Discrepancies between the two datasets are
expected to reflect cases where a single barcode represents
more than a single genotype in the fitness inference from the
lineage tracking data.

Molecular targets of adaptation are contingent upon the
founding genotype. To study the genetic basis of adaptation on
the different genetic backgrounds, we performed whole-genome
sequencing on hundreds of adaptive clones isolated from the 2nd
step evolution. The genetic basis of the 1st step evolution has been
previously characterized4. Table 3 summarizes the molecular
targets per founder and Fig. 4 shows their overlap with respect to

Fig. 2 Mutation rates and fitness effects are smaller during the 2nd-step
evolutions, as compared to the 1st-step. Mutation rates per fitness bin
were calculated for all 2nd-step evolutions and compared to the 1st-step
(wild type). The integration of the area below the probability density curve
represents mutation rate at the respective fitness interval. For instance, the
shaded area in the top panel represents the mutation rate to generate
mutants with a fitness value between 0.03 and 0.05. The complete wild-
type evolution datasets were taken into account for the calculation (see
Supplementary Fig. 5). The Y-axis error is defined in Eq. (2) and the error
bars define the mutation rate ± the error (most error bars are sufficiently
small so that the upper and lower handle appear to overlap). For a more
direct comparison of all genotypes in a single plot see Supplementary Fig. 6.
Mutation rates per fitness interval are provided in the Source data folder.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25440-7 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5193 | https://doi.org/10.1038/s41467-021-25440-7 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


genes and pathways that were mutated. We observed similarities
and differences in the mutational targets between the 1st- and
2nd-step evolutions and among the 2nd-step evolutions.

Genes in the Ras/PKA and TOR/Sch9 pathways are the major
adaptive targets during the 1st-step evolution and are also targets
during the 2nd-step evolution. However, the tor1 mutant is more
likely to acquire adaptive mutations in the Ras/PKA pathway (6
out of 21 multi-hits in tor1, 1 out of 19 in cyr1, 0 out of 5 in gpb2),
while cyr1 and gpb2 mutants are more likely to acquire mutations
in the TOR/Sch9 pathway (1 out of 19 in cyr1, 2 out of 5 in gpb2,
0 out of 21 in tor1). The observation that double mutants on the
Ras/PKA and TOR/Sch9 pathways are more fit than their
corresponding single mutants and were selected for, whereas
double mutants on the same pathway were not, suggests that the
TOR and Ras/PKA pathways are not redundant in how they
increase fitness, as has been previously shown20,51.

In contrast to the 1st-step targets of selection, stress response
pathways were major targets of selection during the 2nd
evolutionary step. GSH1 mutations were observed 8 times in
total across all three genotypes of the 2nd-step evolution, yet no
GSH1 mutations were observed during the 1st-step evolution.
Similarly, mutations affecting the retrograde (RTG) pathway were
exclusively observed in the Ras/PKA mutant backgrounds (7 out

of 19 in cyr1, 1 out of 5 in gpb2, 0 out of 21 in tor1), while HOG
pathway mutants were observed predominantly in the tor1
mutant background (13 out of 21 in tor1 including pre-existing
mutations, 2 out of 19 in cyr1, 1 out of 5 in gpb2) and aro80 was
also only observed in the tor1 mutant background (Table 3,
Fig. 4).

Finally, the predominant adaptive mutation type differs
between 1st- and 2nd-step evolution, in terms of the con-
sequences the mutations have on the encoded protein. Adapta-
tion via LOF mutations is common during the 1st-step evolution,
whereas the 2nd-step of adaptation often selects presumptive
GOF mutations. Adaptive changes that increase signaling in Ras/
PKA and TOR/Sch9 pathways can be achieved either by LOF
mutations in negative regulators, or, rarely, by presumptive GOF
in positive regulators. Specifically, 53 out of 95 causative
mutations (56%) from the 1st step evolution result in either a
frameshift or stop-codon gain (nonsense), likely leading to the
loss of function of the mutated gene. By contrast, only 14 out of
55 causative mutations (25%) from the 2nd step evolution are
frameshift or stop-codon gain mutations. These calcula-
tions include both the common targets of selection in Table 3
and additional mutations that occurred on the background of a
stronger causal mutation candidate (not included in Table 3, see

Table 2 Mutation rates per genotype and diploidization fitness calculated from the DFE shown in Fig. 2.

Genotype,
evolution

Diploidization
fitness (1st peak at
mutation spectrum,
Fig. 2)

Diploidization rate
at peak (for ds =
0.02, Fig. 2)

High fitness
(> 0.05)
mutation
rate (Fig. 2)

High fitness
(0.07–0.12)
mutation rate
(Fig. 2)

High fitness
(> 0.12)
mutation
rate (Fig. 2)

Detectable
fitness
mutation rate
(Fig. 2)

Lower bound for
diploidization rate

WT, evo1 0.032 1.52E−04 1.42E−06 5.18E−07 8.07E−10 1.57E−04 7.18E−06
WT, evo2 0.041 6.76E−05 9.22E−06 7.57E−07 2.27E−08 7.64E−05 1.79E−06
cyr1, evo1 0.036 1.61E−06 7.74E−08 6.92E−09 0.00E+00 1.73E−06 1.22E−07
cyr1, evo2 0.029 2.06E−06 9.25E−08 6.38E−09 8.59E−13 2.61E−06 2.01E−07
gpb2, evo1 0.029 9.10E−06 1.27E−07 1.14E−08 5.59E−12 9.68E−06 1.04E−07
gpb2, evo2 0.034 6.11E−06 6.41E−08 9.48E−09 7.69E−14 6.24E−06 4.22E−07
tor1, evo1 0.036 8.71E−06 3.39E−07 8.69E−09 0.00E+00 9.17E−06 1.06E−06
tor1, evo2 0.030 1.58E−05 6.23E−08 8.56E−10 0.00E+00 1.61E−05 1.88E−06

Diploidization rate from DFE was estimated from the sum of all the fitness intervals between (diploidization fitness −0.01) and (diploidization fitness +0.01). We chose the 0.02 fitness interval to match
our detection limit. Mutation rates are expressed as the number of mutations per cell and generation. Fitness is expressed as fitness coefficient, estimated from the slope of the natural logarithm of
adapted individuals over the neutral (ln(adapted/neutral)) over time.

Fig. 3 Distribution of fitness effects of 1st-step adapted clones following further adaptation. Fitness values of isolated clones are shown with respect to
the wild-type ancestor (A–D), and with respect to their immediate adapted ancestor (D–G). Fitness was measured in a pooled fashion from isolated clones
of all immediate ancestor evolutions (including the wild-type), and arranged by ancestor (as annotated at the bottom). Haploids and diploids are shown in
separate columns for each genotype. Clones with increased fitness within each group (high fitness diploids and adapted haploids) carry different
annotation from pure diploids and neutral haploids. Larger dots in the ancestor cloud represent the adapted ancestors prior to barcoding and are color-
coded to match the respective genotypes. Fitness values are provided in the Source data folder.
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Source data for Fig. 3 for a more complete list). The beneficial
mutation types between the 1st- and 2nd-step evolutions are
significantly different (chi-square p-value= 6E−4), which also
indicates a shift of beneficial mutation spectra during adaptation.
The fact that the 2nd-step adaptation is more likely to result from
GOF mutations may be partly responsible for the decreased
mutational target size during the 2nd-step evolution, given that
LOF mutations occur more easily than GOF mutations52.

Effects in pairwise targets of selection may be additive or
negative. Diminished fitness gains could result from beneficial
alleles that show negative epistasis, and/or may reflect the order
in which adaptive mutations are selected (higher fitness

mutations should be favored first). We estimated the extent of
negative epistasis at the gene level. Availability of mutations
affecting the same genes in both 1st- and 2nd-step evolutions, and
of fitness effects of the implicated genotypes (single or double
mutants), allows for a crude estimation of epistatic interactions
among targets of selection. We considered the average fitness
effects of alleles in two genes when they occur either singly (fit-
ness averaged from all alleles of a gene, data from 1st-step evo-
lutions) or together (fitness averaged from all genotypes that had
the 2 genes mutated, data from 2nd-step evolutions) in the wild-
type background, for genes where such data were available
(Fig. 5). In all cases, 2nd-step adapted mutants are more fit than
either of the 1st-step adapted mutants. The range of expected
fitness for a genotype with both genes mutated, without epistasis
between them (gray bar in Fig. 5), is represented by the 95%
confidence interval (CI) of the sum of the mean fitness of mutants
in each gene. Only ksp1 in combination with either cyr1 or gpb2
was consistent with negative epistasis. The remaining combina-
tions have fitness effects that do not deviate from the expectation
of an additive model of epistasis (of log(fitness)). Thus, these data
only provide weak evidence for the hypothesis that negatively
interacting alleles contribute to diminishing returns in our
experiments. However, we note that this analysis relies on alleles
that were selected: not only did they emerge as adaptive, but they
had a sufficiently positive fitness effect to gain in frequency and
ultimately be picked. The allelic combinations may thus represent
those with the least negative interactions. Overall, although the
particular calculations do not provide support for negative
interactions as a source of diminishing returns, negative inter-
actions between alleles not included here may have contributed to
a narrower DFE.

Diploidization is adaptive across genotypes. Diploidization is a
major adaptation strategy during evolution experiments founded
with haploid yeast4,45–50. During evolution of the wild-type
ancestor, between ~32 and ~54% of the population was diploid by
generation 88; the majority of these diploids does not carry
additional adaptive mutations and have a similar fitness advan-
tage to one another over their wild-type ancestor (~0.045 per
generation)4. Diploidization remained an adaptive strategy after
acquisition of a first adaptive mutation, as demonstrated by all
three genetic backgrounds. We performed benomyl sensitivity
assays to estimate the fraction of diploids during the evolution
experiments (Supplementary Fig. 4A) and observed an increase in
the fraction of diploid individuals over time (Supplementary
Fig. 4B, Supplementary Table 2). At generation 88, the diploid
fractions for these adapted mutants were on average 16%, 10 and
45% for the cyr1, gpb2, and tor1 evolutions respectively, based on
assaying ~60–190 individuals. Interestingly, diploidization in the
tor1 background approached fixation in both replicates (96 and
88%) at generation 160, unlike in the evolutions in the other
mutant backgrounds. That may be due to chance or may instead
reflect either an otherwise comparatively weak adaptation
potential for the tor1 mutant, or an increased fitness for diploidy
and/or diploidization rate in a tor1 background compared to the
other backgrounds. In the Supplementary Note, we outline how
different factors (i.e., diploidization rate, fitness of diploids, and
the population mean fitness) quantitatively determine the fre-
quency of diploids in an evolving population.

We used the fitness remeasurement data to calculate the fitness
advantage of diploids in the context of different genetic
backgrounds, including the wild-type ancestor. We observed
two dominant groups of clones with distinct fitness (Fig. 3),
which correspond to neutral haploids and pure diploids4. Pure

Table 3 Genetic basis of adaptation per founder.

Pathway Mutated gene WT cyr1 gpb2 tor1

RAS/PKA CYR1 3
RAS/PKA GPB1 5
RAS/PKA GPB2 13 2
RAS/PKA GPR1 1
RAS/PKA IRA1 39 1
RAS/PKA IRA2 10 1
RAS/PKA PDE2 11 1
RAS/PKA RAS2 2 1
RAS/PKA TFS1 1
RAS/PKA YAK1 1
TOR/Sch9 KOG1 1
TOR/Sch9 KSP1 1 1 1
TOR/Sch9 MDS3 1
TOR/Sch9 SCH9 2 1
TOR/Sch9 TOR1 1
HOG HOG1 1
HOG PBS2 6
HOG SSK2 2 1 1 7
RTG BMH1 1 1
RTG MKS1 2
RTG RTG2 4
RTG GSH1 5 1 2
RTG ARO80 3

Fig. 4 Overlap in the mutational recurrent targets among adaptive and
wild-type ancestors. The pathway and the gene names are annotated in
each area. For number of hits, see Table 3. T/S stands for TOR/Sch9. WT
stands for wild-type.
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diploids from wild-type, cyr1, gpb2 and tor1 genetic backgrounds
have fitness advantages of ~0.045 (95% CI [0.044, 0.045]), 0.028
(95% CI [0.027, 0.029]), 0.031 (95% CI [0.030, 0.032]) and 0.043
(95% CI [0.041, 0.044]) per generation, respectively, relative to
their immediate ancestors (Fig. 3). Although, these values are
similar, there is an anti-correlation between ancestor fitness and
diploidization fitness advantage (Supplementary Fig. 7, Pearson
r=−0.91, Spearman r=−0.8, with p-values 0.091 and 0.333,
respectively), consistent with the observation that the highest fitness
gains occur in the lowest fitness background. We also used the
fitness spectra, shown in Fig. 2, from the lineage tracking data to
estimate diploidization fitness advantage (Table 2). Diploidization
fitness values were assumed to correspond to the peak within the
fitness intervals ~3–4% per generation (Fig. 2; Table 2). Diploidiza-
tion fitness across genotypes is comparable with the fitness
estimates from the remeasurements data (Supplementary Fig. 7).
We consider the values from the fitness remeasurements more
accurate and comparable to each other, since clones were
competing in the same pool against a mostly wild-type population.

To estimate a lower bound for diploidization rates, we used a
second, orthogonal, and conservative approach (see Methods),
independent from our estimates inferred from the DFE (Table 2).
Taking into consideration only lineages whose fitness fall into the
95% CI of the experimentally verified diploids, the estimated
lower bounds for diploidization rates per genotype and replicate
evolution are 1.22e−07 and 2.01e−07 for cyr1, 1.04e−07, and
4.22e−07 for gpb2, 1.06e−06 and 1.88e−06 for tor1 and 7.18e
−06, and 1.79e−06 for wild-type, replicates 1 and 2, respectively
(see “Methods”). Importantly, the lower bound and the
diploidization rate estimates are correlated (Pearson Coefficient
0.99; p-value < 0.0001) and suggest that diploidization rates in the
Ras/PKA mutant backgrounds are lower than those of wild-type

and the tor1 mutant. These data collectively show that
diploidization remains a prevalent adaptation strategy after
acquisition of a first adaptive mutation.

Discussion
We characterized the DFE and adaptive mutational spectra of
three 2nd-step evolutions and compared them to a previously
described 1st-step evolution4. We found that even a single step
towards adaptation suffices to alter subsequent adaptation rates
and adaptive mutational spectra. Use of molecular barcodes
allowed us to characterize a large number of independent adap-
tive events and detect lineages at frequencies as low as 0.0001%,
resulting in the most comprehensive characterization of DFE
during the 2nd step of adaptation. The inferred DFE provides
important data for the prediction of evolutionary outcomes.

Diminishing returns epistasis is apparent at multiple levels in
our study, including the magnitude of fitness gains and the rate of
adaptation. Both maximum and diploidization fitness antic-
orrelate with founder fitness (Supplementary Fig. 7), in agreement
with diminishing returns acting globally25,30. We also observed a
lower mutation rate to modestly adaptive genotypes, as well as a
depletion of high fitness events compared to the wild-type
ancestor. These diminished adaptation rates are also supported by
fitness remeasurements of individual clones from the 2nd-step
evolution. Overall, our observations imply that both a smaller
number of adaptive mutations and smaller fitness effects cause
diminishing returns. Whole-genome sequencing of adapted
clones suggested that compared to the 1st step of adaptation, the
2nd-step was more often the result of presumptive GOF muta-
tions. Such mutations are rarer52, and that may provide a
potential explanation for why we observe a smaller adaptive target
in our experiments.

Fig. 5 Pairwise interactions among targets of selection have additive or negative effects when combined. The additive fitness effects were estimated at
gene-level for pairs of genes with adaptive alleles on the wild-type background (data from 1st-step evolution), and are annotated with gray bars,
representing the 95% CI of the sum of the mean fitness of mutants in each gene. The lower and upper hinges of each box correspond to the first and third
quartiles (the 25th and 75th percentiles). The bold line inside the rectangular defines the median. The whiskers extend from the hinge to a value no further
than 1.5 * IQR from the hinge (where IQR is the inter-quartile range). Additive fitness effects are compared to the fitness effects of genotypes with adaptive
alleles at both genes (data from 2nd-step evolutions), as a proxy for epistasis. The dot color of the double mutants refers to the second mutation shown in
each graph. The first mutation matches the mutation type of the adapted ancestors (cyr1 and tor1 are missense and gpb2 is a nonsense). Calculated fitness
values are provided in the Source data folder.
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Comparison of adaptive strategies among the adaptive ances-
tors and between adaptive and wild-type ancestors reveals both
common and distinct evolutionary paths. First, diploidization was
a common adaptive strategy among all genotypes. Second,
modification of both Ras/PKA and TOR pathways is another
prevalent adaptation strategy, with the wild-type ancestor
acquiring beneficial mutations in both Ras/PKA and TOR path-
ways during the 1st-step evolution and Ras/PKA and TOR
adaptive ancestors further adapting during the 2nd step through
modifications of the TOR and Ras/PKA pathways, respectively.
We also observed (with a single exception) that the same pathway
was not mutated a second time. These above observations suggest
firstly, that the TOR/Sch9 and Ras/PKA pathways are not func-
tionally redundant, consistent with earlier work51, and secondly,
that the highest fitness lineages are selected at each step due to the
large and well-mixed populations used in this study. As a result, it
is possible that in our isolated lineages the activity of the affected
pathway is close to optimal under the evolutionary condition, and
thus, second step variants further affecting the same pathway may
move away from, or even overshoot such an optimum level,
making them unlikely to be selected53. This is also consistent with
prior observations where combining adaptive variants affecting
the same pathway resulted in reciprocal sign epistasis in the
environment in which they were selected22,33. Finally, common
adaptive responses during the 2nd-step evolution included
mutations that potentially result in the upregulation of stress
response pathways, which we did not observe in the 1st-step.
Both TOR/Sch9 and Ras/PKA pathways, which were major tar-
gets during the 1st step adaptation, regulate growth and stress
responses responding to extracellular stimuli51,54–57. 1st-step
adapted mutants had either the Ras/PKA or the TOR/Sch9
pathway upregulated4,20, which may decrease stress responses
compared to their ancestor56–66. The adaptive basis of 2nd-step
mutations may lie in the restoration of stress responses attenuated
by overactive Ras/PKA or TOR/Sch9 pathways, as suggested by
prior work51,57–66. In particular, all adapted ancestors evolved in
this study acquired mutations in the GSH1 gene, and the fact that
all recovered GSH1 mutations were missense suggests that these
mutations are GOF, possibly resulting in an enhanced stress
response. Gsh1p catalyzes the first and rate-limiting step of glu-
tathione biosynthesis67, while no mutations affecting the pathway
downstream were detected. We note that in another study glu-
tathione export (both in oxidized and reduced forms) emerged as
an adaptive response in cells experiencing nutrient–growth dys-
regulation, as a detoxifying mechanism68; it is unclear whether
there is a specific connection between the adaptation observed in
those experiments and that observed in ours.

We also observed specific adaptive routes available to either the
tor1 mutant ancestor or the Ras/PKA mutant ancestors. Modifica-
tions of the retrograde pathway, including mutations in one positive
(RTG2) and two negative (BMH1 and MKS1) regulators69, were
specific to the Ras/PKA mutants. Similar to our observations on the
glutathione biosynthesis pathway, all 4 mutations on RTG2 were
missense, while the 2 mutations on BMH1 included a missense and
a nonsense and the 2 mutations on MKS1 included a missense and
an upstream modification, suggesting that selection favors an
enhanced retrograde flow pathway. Retrograde flow is negatively
regulated by the TOR pathway59,65,66, providing a potential expla-
nation as to why modifications of this particular pathway were not
observed in tor1 lineages. Modifications of retrograde flow, given an
overactive TOR pathway, would need to be of larger effect to
overcome the additional TOR-induced inhibition. Such large effect
modifications may be rare, while tor1 lineages are able to improve
via different, more easily accessible routes, such as via modifications
of the HOG pathway. Despite the common overarching adaptation
via modification of stress response pathways, specific mutational

targets differ between tor1 and Ras/PKA adapted ancestors. Con-
sidering the overall adaptation patterns for all genotypes, it appears
that a detectable fraction of the mutational spectra is at least partially
contingent on the starting genotype, while phenotypic relatedness
dictates the degree of divergence, as also shown by earlier studies9.
We did not observe adaptive events specifically contingent on either
the cyr1 or the gpb2 mutations, reflecting the phenotypic similarity
of the cyr1 and gpb2 genotypes4,9,20. Nevertheless, that does not
preclude that with a larger sample size we may have observed
genotype-specific adaptive responses for cyr1 and gpb2. Finally,
future studies measuring the fitness effects of genotypes with
adaptive mutations in combinations that were not observed would
be informative on the potency of historical contingency in our
system.

We note that isolation of clones, here and in our earlier study4,
undoubtedly enriched for the highest fitness lineages. As a result,
several open questions remain: Are the mutations that emerged as
adaptive during the 2nd step not at all adaptive during the 1st
step? Are they adaptive but not adaptive enough to be seen by
selection at the bottleneck we are applying? Or are they adaptive
enough to be seen by selection but not sufficiently so to be
detected given our sampling method? Thus, a potential effect of
clonal interference, whereby the most fit mutations are selected
first, is a possible source of the observed diminishing returns.
More work is needed to tease apart the effects of clonal inter-
ference and antagonistic interactions between the 1st and 2nd
adaptation step mutations by measuring the effects of specific
adaptive mutations on backgrounds of different fitness.

A main limitation of our system stems from the fact that the
evolutionary condition includes constant mixing of a large
population. Consequently, clonal interference has a pervasive
influence on the outcome since multiple beneficial mutations
enter the population each generation and each adapted lineage is
in direct competition with all other adapted lineages. Even when
we restrict analysis to short timescales, prior to clonal interference
taking a toll on the population’s genetic diversity41, as in the
present study, we are only able to detect and characterize the
most prevalent lineages, those that arose the earliest, and/or
harbor the highest fitness mutations. While lineage tracking via
molecular barcoding has improved our detection threshold to
identifying lineages with frequencies as low as 1 in a million
(Supplementary Fig. 2) we are still limited to lineages with fitness
coefficients bigger than 0.02 per generation. Nonetheless, very low
fitness lineages do not contribute substantially to the evolutionary
dynamics in this kind of experiment4. That is further supported
by experiments in E. coli showing that weakly adaptive mutations
can behave as if they are neutral in well-mixed environments,
resulting in evolutionary stalling when higher fitness events are
not available70. However, it is expected that evolutionary out-
comes in less competitive environments (for example in struc-
tured environments where lineages mainly compete with their
neighbors71,72) strongly depend on neutral to low fitness varia-
tion as well. Additionally, clonal interference could skew the DFE
inferred from the evolving population. As population mean fit-
ness increases, the effect of clonal interference becomes more
significant; newly emerged adaptive mutations are effectively less
beneficial and less likely to establish in the population, making it
difficult to accurately estimate lineages’ fitness at this point. By
isolating thousands of lineages from the evolving population and
competing them with the wild-type ancestor, we are able to assess
to what extent clonal interference affects the fitness estimates. We
find that the fitness remeasurements are largely consistent with
the fitness estimates from the evolution data (see Supplementary
Fig. 8), which is also consistent with our prior experience (see
Fig. 2D–F in ref. 4). Thus, we conclude that our DFE is not (or at
least not obviously) skewed by clonal interference.
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Nevertheless, within the limits of detection, our results provide
clear evidence for the role of evolutionary history in shaping
selection during subsequent adaptation steps. This suggests that
after acquisition of even a single adaptive mutation the selective
pressure a population experiences can change, even in the
absence of environmental perturbation (though we acknowledge
that a different clone growing in the same media may in fact
perturb the environment). Here, the first adaptive change might
be considered to be in direct response to the environmental
condition, where adapted lineages modified their nutrient sig-
naling pathways to respond to an environment that predictably
undergoes glucose feast and famine4,20. Adaptive changes in
pleiotropic genes (such as those that regulate nutrient signaling)
may include non-adaptive or even maladaptive side effects. Thus,
the set of second adaptive mutations may be constrained to adjust
for pleiotropic consequences of the first, compensating for sub-
optimal changes to the cellular network. This suggests that fine-
tuning of the same pathway may be minimally beneficial in a
majority of cases, compared to responses that adjust different
pathways. Specific to our experiments, extensive work (cited
above) suggests that growth optimization comes with a cost in
stress responses, and as a result, 2nd-step adaptation strategies
targeting modification of stress responses may be contingent on
the nature of the adaptive strategy caused by the 1st step. This
shift in adaptive strategy may underlie the observation that the
2nd adaptive step was more often due to presumptive GOF
mutations.

Methods
Strains and strain handling. All strains used are S288C derivatives, which were
evolved and characterized previously4,20,44 (Table 1). Yeast strains and pools were
saved as glycerol stocks at −80 °C. Yeast transformations were performed by a
lithium acetate/PEG method73. Strains are available upon request.

Yeast growth media and growth cycle. Evolutionary and fitness remeasurement
conditions matched those used earlier4,44. Briefly, M3 medium, consisting of 5×
Delft medium74 with 4% ammonium sulfate and 1.5% dextrose, was used. Serial
batch cultures were conducted by growing cells in 100 mL M3 medium in 500 mL
Delong flasks (Bellco) at 30 °C and 223 RPM. Yeast was grown for 48 h between
transfers and for each new cycle 400 μL of the grown culture (~8 × 107 cells) were
used as inoculum for the new culture, resulting in a 1:250 bottleneck.

Construction and characterization of the founder strains of the evolutions.
The prelanding pad strain (SHA118, Table 1) that is receptive to barcoding44 was
transformed with a galactose-inducible HO-containing plasmid. The strain
diploidized upon exposure to galactose and a diploid clone was sporulated and
dissected; a MATa derivative was isolated (GSY5375, Table 1) and saved for
subsequent crosses with the evolved clones. Loss of the HO-containing plasmid was
verified by absence of growth on appropriate selective medium. Strains GSY5481,
GSY5128, and GSY5153, derived from evolution under glucose limitation and
previously characterized4,20,44 (Table 1), were backcrossed twice to GSY5375.
Competitive fitness of segregants and evolved parents was assayed in triplicate
compared to a fluorescent derivative of the ancestor, as in ref. 4, with the following
modifications: to increase throughput the assays were performed in 5 mL cultures
in tubes incubated in a roller drum, instead of 100 mL cultures in flasks. As a result,
the fitness estimates deviate from those previously reported4 (Supplementary Fig. 1,
Supplementary Table 1). Additionally, since the derived strains do not contain a
barcode (which reconstitutes a URA3 gene), they require uracil, so the fitness assays
were performed in M3 medium supplemented with uracil. All segregants were
genotyped for the variant of interest by amplification of the respective locus and
Sanger sequencing. The oligos used for genotyping are shown in Supplementary
Table 3.

Barcoding. Strains GSY6701, GSY6702, and GSY6703 (Table 1) were transformed
with a low and high complexity barcode, consecutively. These strains have the
YBR209w locus replaced with the prelanding pad (corresponding to strain
SHA11844). The low complexity barcode was derived by PCR amplification of part
of the L001 plasmid library, containing the lox66 site, the DNA barcode, the
artificial intron, the 3′ half of URA3, and HygMX75. The fragment was amplified
with primers BC_F-DY and BC_R1-DY (Supplementary Table 3), from 12 ng of
L001 library in a 50 µL reaction with PrimeSTAR (TAKARA, Mountain View, CA)

using the following conditions: hot start, initial denaturation at 98 °C for 2′, 30
cycles of 98 °C for 30′′, 55 °C for 15′′ and 72 °C for 3′, and final extension at 72 °C
for 10′. The product was purified with the QIAquick PCR purification kit (QIA-
GEN, Germantown MD), transformed into each of GSY6701, GSY6702, and
GSY6703 and successful transformants were selected on YPD+Hygromycin.
Single transformants were further transformed with the high complexity library
(pBAR3)44 with the following modification: after transformation the cells were
grown on liquid YP+ 2% galactose for ~16 h for Cre recombinase induction prior
to selection on SC-ura plates with 2% glucose. Cell growth was estimated by cell
counting immediately after transformation and before plating. The number of
unique transformants was estimated by plating a dilution on selective medium and
correcting for growth. After 1 day of growth on selective medium the transfor-
mants were pooled and saved as glycerol stocks at −80 °C (high complexity sub-
pools with a common low complexity barcode). The final founding pools for the
evolutions were constructed by pooling high complexity subpools to an estimated
total of ~700,000 unique transformants per initial clone.

Evolution experiments. Evolution experiments were conducted under identical
conditions to those that gave rise to our adapted ancestors44. Briefly, 108 cells of
each of the founding populations were used to inoculate 100 mL of SC-ura, 2%
dextrose, supplemented with hygromycin in 500 mL Delong flasks (Bellco). The
cells were grown for 24 h at 30 °C and 223 RPM, the end of which was considered
generation 0 of the evolution experiment. 400 μL of the initial culture were used to
inoculate M3 medium in duplicate, as described in the ‘Yeast Growth Media and
Growth Cycle’ section. The evolution experiments were conducted for a total of 20
transfers, corresponding to approximately 160 generations. Prior to each transfer
the medium was prewarmed at 30 °C for 1 h. For each timepoint, 2 × 1 mL aliquots
were saved as glycerol stocks at −80 °C and the rest of the culture was spun down,
resuspended in 5 mL sorbitol buffer (0.9 M sorbitol, 100 mM Tris pH 7.5, 100 mM
EDTA), aliquoted in Eppendorf tubes (~1 mL each), and saved at −20 °C to be
used for genomic DNA and barcode library preparations.

Clone isolation. Individual clones were sorted at the Stanford Shared FACS facility
either from all timepoints (one or two 96-well plates each) for ploidy determina-
tion, or from selected timepoints (10 plates each of the following timepoints: cyr1
evolution, replicate 1, timepoint 20 (generation 160), gpb2 evolution, replicates 1
and 2, timepoint 13 (generation 104) and tor1 evolution, replicate 1, timepoint 12
(generation 96)) for fitness remeasurements, ploidy determination and whole-
genome sequencing.

Ploidy assay. Ploidy was determined with a high-throughput benomyl-based
assay4. Clones archived in 96-well format were grown in deep-well plates to
saturation at 30 °C without shaking. The saturated cultures were mixed with
pipetting and subsequently pinned onto YPD agar rectangular plates containing
20 mg/ml benomyl (prepared as a DMSO solution) or DMSO (control). The plates
were grown at 25 °C for 2 days and then imaged. Clones with inhibited growth on
the benomyl medium were identified as diploids. Clones with inhibited growth on
the control medium were excluded from analysis. Clones that grew on both media
were identified as haploids.

Genomic DNA and library preparation for barcode lineage tracking. Genomic
DNA was prepared as follows. An aliquot of cells stored at −20 °C was thawed at
room temperature. The cells were spun down, washed once in water, resuspended
in 400 µL lysis buffer (0.9 M sorbitol, 50 mM Na phosphate pH 7.5, 240 µg/mL
zymolase, 14 mM β-mercaptoethanol) and incubated at 37 °C for 30 min. After the
incubation, 40 µL 0.5 M EDTA, 40 µL 10% SDS and 56 µL 20 mg/mL proteinase K
(Life Technologies 25530-015) were added consecutively, with brief vortexing after
each addition, and the samples were incubated at 65 °C for 30 min. Samples were
then cooled on ice for 5′, 200 µL of 5 M potassium acetate were added, and the
samples were mixed by shaking, then incubated on ice for an additional 30 min.
Following incubation, the samples were spun down at full speed in a micro-
centrifuge for 10 min, and the supernatant was transferred to a new tube with
750 µL isopropanol and was let to rest on ice for 5 min. The precipitated nucleic
acid was spun down full speed in a microcentrifuge for 10 min and washed twice
with 70% ethanol. After the second wash the nucleic acid was let to dry completely
and then it was resuspended in 50 µL 10 mM Tris pH 7.5. Overnight incubation at
room temperature or short incubation at 65 °C sometimes was necessary for
complete resuspension. RNA was digested with the addition of 0.5 µL 20 mg/mL
RNase A (Fisher Scientific, Waltham MA) and incubation at 65 °C for 30 min.

A two-step PCR protocol was used to amplify the barcoded locus (see
Supplementary Table 3 for primers, same as used previously4). The first
amplification was conducted using OneTaq 2X Master Mix (NEB, Ipswich MA), a
total of 6 µg genomic DNA and a limited amount of primers in 6 × 50 µL reactions
with the following composition: 1X OneTaq Mix, 50 nM each forward and reverse
primer, 2 mM MgCl2, 20 ng/µL gDNA, in the following conditions: hot start, initial
denaturation at 94 °C for 10′, 3 cycles of 94 °C for 3′, 55 °C for 1′ and 68 °C for 1′,
and final extension at 68 °C for 1′. The 6 reactions were combined, purified using
the QIAquick PCR purification kit (QIAGEN, Germantown MD) and eluted into
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30 µL EB buffer. All the eluate was used as template in a single 50 µL 2nd reaction,
with the following composition: 0.5 µL Herculase II fusion DNA polymerase
(Agilent, Santa Clara CA) per 50 µL reaction, 1×Herculase buffer, 1 mM dNTPs,
and 500 nM each of PE1 and PE24, and was amplified in the following conditions:
hot start, initial denaturation at 98 °C for 2′, 20 cycles of 98 °C for 10′′, 69 °C for 20′′
and 72 °C for 30′′, and final extension at 72 °C for 1′. Barcode libraries were pooled
isostoichiometrically and sequenced on an Illumina NextSeq 550.

DFE/mutational fitness spectrum μ(s) inference. Lineage tracking from barcode
sequencing was performed as described44, using code at https://github.com/
Sherlock-Lab/Barcode_seq/blob/master/bartender_BC1_BC2.py with minor mod-
ifications. Briefly, after extraction of the unique molecular identifiers (UMIs, ran-
domers used for identifying duplicates introduced during PCR amplification), and
both low and high complexity barcodes from the sequencing read, low complexity
barcodes were clustered against their expected sequences, whereas the high com-
plexity barcodes were pooled across all libraries and clustered with bartender
(v1.1)76. The updated reads and the UMIs were used to derive raw barcode counts,
which were assembled into the raw count lineage trajectories. Low coverage
timepoints and barcodes that appeared in only a single timepoint (considering
replicate evolutions) or had no reads at timepoint 0 were excluded from subsequent
analysis. The included timepoints and the number of reads and barcodes per
timepoint are shown in Supplementary Data 1. Filtered raw count lineage trajec-
tories are provided for each replicate evolution (Source data for Supplementary
Fig. 2, “Lineage trajectory counts”).

Using the lineage frequency changes over time, lineages’ fitness per generation
(s) and establishment time (tau) were estimated as in ref. 44 . Lineages with reads
between 20–30 at each timepoint were treated as neutral and were used to estimate
population mean fitness. Lineage tracking data from generation 0 to generation 136
were used for fitness inference in all evolutions, except for gpb2 evolution replicate
1, for which we only had adequate data up to generation 120. Lineage tracking data
for the ancestor up to generation 112 and 96, for replicates 1 and 2, respectively,
were used for fitness inference as in ref. 44. The generations chosen are the times at
which adapted lineages have reached a sufficient frequency in the population, while
the majority of such lineages theoretically carry a single beneficial mutation.

Mutations can occur during the barcoding process and prior to the onset of the
experiment, some of which can be beneficial in the evolutionary condition44. To
characterize the mutational rate during the evolution, lineages with such pre-
existing mutations were removed from fitness inference. The following two criteria
were used to define lineages with pre-existing mutations: (1) being adaptive in both
evolutionary replicates and (2) having an establishment time <−2/s in at least one
replicate.

Mutation rates (μ(s)*ds, defined as the mutation rate per generation per cell for
mutations with fitness within a range [s, s+ ds]) in different fitness intervals were
calculated using equation 101 in ref. 44:

μ sð Þds 1þ sln Nf μ sð Þds
� �h i

¼ f ðd sð Þ; tÞ s
es�t

ð1Þ

where ds ¼ 0:002 is the fitness interval considered, μ sð Þ the mutation rate within a
specific fitness interval ½s; sþ ds�, defined as the fitness-dependent probability
density function of the mutation rate, Nf ¼ 1012, the approximated largest size the
population has reached during the barcoding process, and f ðd sð Þ; tÞ the summed
frequency of lineages whose fitness are within the interval ½s; sþ ds� at generation t.
The error of the estimated μ sð Þ is:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðsÞ�ds

N

r
ð2Þ

where N ¼ 6�108 is the approximated effective population size during evolution.
Note that the barcode sequencing coverage of the ancestor evolutions was

~10–20× higher than those of cyr1, gpb2, and tor1 evolutions (Supplementary
Data 1, also Table 2 in Supplementary information in ref. 44). To avoid biases
introduced by sequencing coverage differences, we down-sampled the ancestor
sequencing data to a depth comparable to those of the cyr1, gpb2, and tor1
evolutions: 2 × 107 at time 0 and 3 × 106 at the rest of the timepoints. Fitness was
inferred before and after down-sampling. Lineages with 5–10 reads were treated as
neutrals to infer the population mean fitness (vs 20–30 used in the full datasets).

The theoretical expectations on our detection threshold were set as in ref. 44.
The fitness detection threshold was determined by our definition of neutrality. We
treated low abundance lineages as neutrals and used the decay of those lineages
over time to infer population mean fitness. The resolution of our study cannot
detect adaptive lineages with a fitness < 2% due to clonal inference and the lineage
size limit (see Supplementary Fig. 36 in ref. 44). Certain mutations with fitness < 2%
can establish in the population without being detected. However, such mutations
never reach large sizes and will not dominate or have much of an impact on
population dynamics. In particular, during the 1st step evolutions, population
mean fitness reached 0.02 at generation 90. Due to clonal interference, mutations
with s= 0.02 have to arise before generation 40 (90–1/s) in order to establish. To
be detected, such mutations have to arise 60 generations before the start of the
evolution experiment (from equation 77 in ref. 44; 90� 1=s�ln ne�s

� �
, where ne ¼

1000 cells/lineage represents the lineage size). Thus, mutations of such effect that

occur immediately at generation 0, are nearly impossible to be detected unless this
group of mutations has a very large mutational target size or a very high mutation
rate. This is illustrated in detail in the Supplementary material in ref. 44, section
11.1, page 54.

Barcode determination of isolated clones. To identify the barcodes of the iso-
lated clones in 96-well plates, we employed a 2- (column, row) or 3- (column, row,
plate) dimensional pooling strategy, inspired by ref. 77. Briefly, we arranged 20
plates per batch into a 4 columns × 5 rows plate matrix and constructed 48 column
pools from clones out of 40 wells each and 40 row pools from clones out of 48 wells
each. For the second batch we included semi-redundant half-plate pools (40 pools
from clones out of 48 wells each) to increase the successful barcode recovery rate.
We pooled our samples after cell growth and prepared barcode libraries for Illu-
mina sequencing. Barcodes were recovered for each well at a rate of ~90%, which
was somewhat dependent on the barcode diversity of the sampled timepoint
(identical barcodes in multiple wells makes it more challenging algorithmically to
match barcodes to wells).

High-throughput fitness measurements and analysis
Pooling of clones. Clones isolated from the evolutions were pooled together for
high-throughput fitness assays. We used a multi-pronged pinner to take clones
from frozen stock and pin them into a set of 96 deep-well plates with 700 µL YPD
medium in each well. Cells were grown at 30 °C for 2 days to reach saturation
without shaking. 500 µL of 50% glycerol were added into each well using a mul-
tichannel pipette. 1 mL of the mixture from each well was pooled, and the final
pool was mixed and aliquoted into 2 mL Eppendorf tubes, which were stored at
−80 °C for future fitness measurements.

Preculture. Each replicate fitness experiment was initiated with a 1 mL frozen
aliquot of the pooled cell culture, thawed at room temperature, and inoculated into
15 mL M3 in a 500 mL Delong flask. The culture was grown at 30 °C and 223 RPM
overnight for cell propagation. 400 µL of the overnight culture were inoculated into
100 mL of fresh M3 medium and precultured at the standard condition for 2 days.

A derivative of the ancestor carrying a restriction site in the barcode region was
used to compete with the pool of evolved clones for fitness measurements4. The
ancestor clone was resurrected from frozen stock onto M3 agar plates and grown
for 2 days until colonies were visible. A single colony was inoculated into 3 mL of
M3 medium and grown for 48 h (30 °C in a roller drum). 400 µL of that culture
were used to inoculate precultures (100 mL M3 medium in 500 mL Delong flasks,
223 RPM 30 °C).

Competition. Fitness assays were conducted by mixing the pooled preculture with
the ancestor preculture in a 1:9 ratio (time 0) and growing the resulting population
for four successive growth cycles (timepoints 1, 2, 3, and 4), under the evolutionary
condition. At the end of each cycle, 400 µL cell culture were inoculated into 100 mL
fresh media to start the next cycle. Cells were collected at time 0, and at the end of
each of the four growth cycles. The cell pellet from each sample was resuspended in
5 mL sorbitol solution (0.9 M sorbitol, 0.1 M Tris-HCL pH 7.5, 0.1 M EDTA pH
8.0), aliquoted into 2 mL Eppendorf tubes and stored at −20 °C. Three technical
replicates were performed per fitness assay. Genome extraction, barcode amplifi-
cation, and Illumina sequencing were conducted for each sample (timepoint and
replicate).

Genomic DNA sample preparation. Genomic DNA was isolated and treated as
described in the “Genomic DNA and library preparation for barcode lineage
tracking” section.

Fitness estimation. DNA barcodes were sequenced on an Illumina NextSeq 500/550
platform and their abundances were used to estimate lineages’ frequencies in the
population, as previously described4. Fitness estimates were conducted for all
clones against the neutrals from the wild type evolution and for clones derived
from each ancestral genotype separately against the neutrals of the specific geno-
type. The source code for computing these fitness estimates can be found at https://
github.com/barcoding-bfa/fitness-assay-python. We ran two iterations of the
script. First, we used all barcode counts as input and recovered fitness estimates
and barcodes that were likely to be neutral. Barcodes identified by the first iteration
were associated with their physical position on the 96-well plates in frozen stock,
and the ploidy of the clones they represent. For the second iteration, apart from the
barcode counts, a list of specifically haploid neutral clones was also provided (this is
an optional argument of the fitness estimation algorithm). Fitness estimates from
the 2nd run were used for further analysis. Final fitness estimates were calculated
by inverse variance weighting of estimates from all three replicates.

Calculation of diploidization rates. Diploidization rates were estimated for each
genotype and replicate evolution using information from both the fitness remea-
surements and lineage tracking data. First, we identified pure diploids based on
fitness remeasurements and ploidy assays (see “Fitness gains of isolated adaptive
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clones from the 2nd-step evolutions tend to be smaller than in clones from 1st-step
evolutions” section in Results for details). Second, we identified which of these
diploids were “pre-existing diploidy lineages” (see “DFE/Mutational fitness spec-
trum μ(s) inference” section for details), which are beneficial in both evolution
replicates, suggesting that their diploidization events likely happened before evo-
lution. Thus, the “pre-existing diploidy lineages” is a group of diploids whose
ploidy has been experimentally verified but does not contribute to the estimate of
diploidization rate during evolution. In addition, “pre-existing diploidy lineages”
whose fitness was estimated to be larger than or equal to 0.1 per generation from
the lineage tracking data, were also excluded, in order to avoid diploids that had
acquired additional mutation(s).

Diploids arising during evolution were identified via their fitness values because
not all evolving lineages were assayed for their ploidy. Lineages that do not carry
pre-existing mutations and have a similar fitness to those of the “pre-existing
diploidy lineages” were characterized as diploids that emerged during evolution.
Specifically, using the lineage tracking data, we estimated the mean fitness of “pre-
existing diploidy lineages” and its corresponding 95% CI for each evolution
replicate. Lineages whose fitness fell into this 95% CI were classified as diploids and
were used to estimate the diploidization rate for each replicate evolution. Note that
the mean fitness of diploids and its 95% fitness CI were estimated using a small
group of curated “pre-existing diploidy lineages”. Thus, lineages whose fitness fall
into the CI are likely only a subgroup of diploids that arose during evolution and
our calculation results in a conservative and therefore likely underestimate for the
diploidization rate per genotype and replicate evolution.

Genome-wide sequencing library preparation. Clones selected for sequencing
were grown in 500 µL YPD in 96 deep-well plates for two days at 30 °C without
shaking. 400 µL of saturated cell culture were used for DNA extraction with the
Invitrogen PureLink Pro 96 Genomic DNA Kit (Catalog no. K1821-04A) in a 96-
well format. Libraries were prepared and multiplexed with Nextera technology, and
a high throughput protocol78. Samples were sequenced on an Illumina HiSeq 4000
with 2 × 150 bp paired end reads.

Variant calling. SNP, small indel, and structural variants were called for 105 clones
using Sentieon Genomic Tools Version 201711.0279, as follows. FASTQ files were
trimmed using cutadapt version 1.1680 and trimmed reads were mapped to the S.
cerevisiae S288C reference genome R64-1-1 (https://downloads.yeastgenome.org/
sequence/S288C_reference/genome_releases/) using bwa81. Mapped and sorted
reads were then used for the variant calling. Variants were further annotated using
snpEff and SNPSift82. The source code for variant calling and annotation can be
found at https://github.com/liyuping927/DNAscope-variants-calling.

Variant filtering. To eliminate false positive variants, we applied the following
filters. First, variants from lineages with an average genome-wide coverage <10, and
all mitochondrial variants were filtered out. Second, variants in FLO1 and FLO9
genes were filtered out due to poor alignment in both genomic regions. Third,
variants present in more than five clones and at least two genetic backgrounds out
of cyr1, gpb2 and tor1 mutants, they were likely present in the common ancestor
and were filtered out. Fourth, variants with a quality score <150 and only occurring
in one clone were filtered out. Locus alignment against the reference genome was
visually inspected to assess variants present in more than one clone, but with a
quality score <150 in at least one of them. Provided that the implicated loci were
well-covered and not in highly repetitive regions, the variants were considered
bona fide regardless of their quality score. Otherwise, they were discarded in all
clones where they occurred. Lastly, we manually verified variants that passed the
above filtering by inspecting the corresponding loci alignments against the refer-
ence genome and further filtering out false positives, typically occurring in highly
repetitive or poorly sequenced regions.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data that support the finding of the study are deposited in Short Read
Archive under Bioproject ID PRJNA641174. The rest of the data are available in the main
text and Supplementary Tables. All strains are readily available from authors upon
request. Source data are provided with this paper.

Code availability
The code for fitness calculations from lineage tracking is described in ref. 44; the code for
fitness calculation from remeasurement experiments is available at https://github.com/
barcoding-bfa/fitness-assay-python. The code for the barcode sequencing data processing
can be found at https://github.com/Sherlock-Lab/Barcode_seq/blob/master/
bartender_BC1_BC2.py. The code for variant calling from whole-genome sequencing
data can be found at https://github.com/liyuping927/DNAscope-variants-calling.
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