
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Geometry and Dynamics of Active Topological Defects

Permalink
https://escholarship.org/uc/item/9v38m6jm

Author
Vafa, Farzan

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9v38m6jm
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

Geometry and Dynamics of Active Topological

Defects

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Physics

by

Farzan Vafa

Committee in charge:

Professor Boris Shraiman, Chair
Professor M. Cristina Marchetti
Professor Zvonimir Dogic

June 2021





Geometry and Dynamics of Active Topological Defects

Copyright © 2021

by

Farzan Vafa

iii



To my parents Afarin and Cumrun

iv



Acknowledgements

There are too many people to properly thank and acknowledge here to do it justice

in the little space I have, but nonetheless I will try.

First, I would like to thank my advisor Boris I. Shraiman for introducing me to the

world of biophysics. I am deeply grateful for your wisdom, patience, and guidance. Your

door was always open.

Thank you M. Cristina Marchetti and Mark Bowick for welcoming me to the world

of active matter. Thank you M. Cristina Marchetti also for creating and fostering a

congenial active matter community.

I’m also grateful for Zvonimir Dogic for agreeing to serve on both my advancement

to candidacy as well as my thesis defense committees.

Thank you Cenke Xu for letting me try hard condensed matter physics. You genuinely

cared about my well-being and helped me build a solid foundation.

Thank you Sebastian Streichan for introducing me to and teaching me about devel-

opmental biology and the world of experiments, as well as the many patient explanations

of intricacies of Matlab.

Thank you David Nelson and L Mahadevan for welcoming me into your groups. I

have learned a lot and on a variety of different subjects. Thank you L Mahadevan also

for the wonderful collaboration on our morphogenesis project.

For the many science discussions, thank you members of Boris’ group: Dillon Cislo,

Nicholas Noll, Nikolas Claussen, and Shahriar Shadkhoo; Sebastian’s group: Aimal

Khankel, Hannah Gustafson, and Vishank Jain-Sharma; and Cristina’s and Mark’s groups:

Arthur Hernandez, Austin Hopkins, Paarth Gulati, Zhihong You, Zhitao Chen, and

Sattvic Ray from Zvonimir Dogic’s group, as well as Michael Landry. I would also like

to thank my collaborators whose projects I am not covering in this thesis: Biao Lian,

v



Chunxiao Liu, and Shoucheng Zhang. It has been a pleasure interacting with all of you.

There is life outside of physics. . Thank you Sicheng Wang for the tennis. Thank you

Neelay Fruitwalla for the squash. Thank you Mark Arildsen for the trips. Thank you

Gabriel Treviño Verastegui and Peter Dotti for being wonderful housemates. Thank you

Dan Kutner for the trivia. Thank you Wayne Weng and Jared Goldberg for the walks.

Thank you Amber Cai for the board games and classical music. Thank you Seth Koren

for the various excursions. Thank you Alex for the hikes.

Thank you to UCSB student organizations Iranian Graduate Student Association and

Persian Student Group for keeping me connected to my culture.

Thank you my grandparents Baba Javad, Maman Simeen, Maman Foroogh, and Baba

Nasser for encouraging me to pursue excellence in all forms. Last but not least, thank you

my parents Afarin and Cumrun for being there and supporting me from the beginning

and my brothers Keyon and Neekon for being the best little brothers.

vi



Curriculum Vitæ
Farzan Vafa

Education

2021 Ph.D. in Physics (Expected), University of California, Santa Bar-
bara.

2019 M.A. in Physics, University of California, Santa Barbara.

2015 B.A. with Honors in Physics and Mathematics, Harvard College.

Publications

1. F. Vafa and L. Mahadevan, “Active nematic defects and epithelial morphogenesis,”
arXiv:2105.01067 [cond-mat.soft].

2. F. Vafa, M. J. Bowick, B. I. Shraiman, and M. C. Marchetti, “Fluctuations can
induce local nematic order and extensile stress in monolayers of motile cells,” Soft
Matter 17 (2021) 3068–3073.

3. F. Vafa, “Defect dynamics in active polar fluids vs. active nematics,” arXiv:2009.10723
[cond-mat.soft].

4. F. Vafa, M. J. Bowick, M. C. Marchetti, and B. I. Shraiman, “Multi-defect dynamics
in active nematics,” arXiv:2007.02947 [cond-mat.soft].

5. C. Liu, F. Vafa, and C. Xu, “Symmetry-protected topological hopf insulator and its
generalizations”, Phys. Rev. B, vol. 95, p. 161 116, 16 Apr. 2017.

6. B. Lian, C. Vafa, F. Vafa, and S.-C. Zhang, “Chern-simons theory and wilson loops
in the brillouin zone”, Phys. Rev. B, vol. 95, p. 094 512, 9 Mar. 2017.

vii



Abstract

Geometry and Dynamics of Active Topological Defects

by

Farzan Vafa

In this thesis, we study aspects of active matter with the aim of application to biolog-

ical systems and processes such as morphogenesis, using tools and ideas from condensed

matter physics, non-equilibrium physics, topology, and geometry.

We begin by examining the origin of local nematic order and extensile stress. We

develop a mesoscopic model where tissue flow is generated by fluctuating traction forces

coupled to the nematic order parameter, and show that the resulting tissue dynamics

can spontaneously produce local nematic order and an extensile internal stress. A key

assumption of the model is that in the presence of local nematic alignment, cells prefer-

entially crawl along the nematic axis, resulting in anisotropy of fluctuations.

Assuming the existence of active stresses and local nematic order, for example gen-

erated via the noise mechanism discussed here, we study the dynamics of 2D active

nematics, for which topological defects play a key role. We employ the power of com-

plex analysis to study defects in the deep nematic limit where the nematic texture is

determined by the defect positions. In particular, the polarization of a defect is not an

independent degree of freedom, but rather is directly determined by the position of all

of the other defects. Relaxational dynamics leads to a set of coupled ordinary differen-

tial equations for the defect positions. We discover novel dynamical aspects of defects,

including a position-dependent “collective mobility” matrix, and non-central and non-

reciprocal pair-wise interactions. We consider extensions and applications of this model,

including excited states, continuum model, and different geometries and topologies, as
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well as for active polar fluids and its orientation dynamics. In particular, we highlight

that for contractile (extensile) active nematic systems, +1 vortices (asters) should emerge

as bound states of a pair of +1/2 defects, which has been recently observed.

Combining what we have learned about defect dynamics and inspired by recent ex-

periments that highlight the role of nematic defects on the morphogenesis of epithelial

tissues, we develop a minimal framework to study the dynamics of an active nematic

on a curved surface which itself deforms in response to the nematic field. Allowing also

the geometry of the surface to evolve via relaxational dynamics leads to a theory linking

nematic defect dynamics, cellular division rates, and Gaussian curvature. Regions of

large positive (negative) curvature and positive (negative) growth are colocalized with

the presence of positive (negative) defects. Applying this framework to the dynamics

of cultured murine neural progenitor cells (NPCs) in an ex-vivo setting, we find that

cells accumulate at positive defects and form mounds, and that cells are depleted at

negative defects. In contrast, applying this to the dynamics of a basal marine inverte-

brate Hydra in an in-vivo setting, we show that a bound +1 defect state surrounded by

two −1/2 defects can create a stationary ring configuration of tentacles, consistent with

observations.

ix
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Chapter 1

Introduction

1.1 Order parameter, topological defects, and non-

equilibirum physics

1.1.1 Order parameter

[?]

A fundamental challenge of condensed matter physics is to classify and understand

the various possible phases of matter. Phases of matter are generally classified by broken

symmetries. For example, a crystal breaks translational order, a liquid crystal breaks ro-

tational invariance, a ferromagnet breaks spin rotational invariance, and a superconductor

breaks gauge symmetry. Formally, this paradigm is known as “spontaneous symmetry

breaking,” and can be used to describe both classical and quantum phases transitions [1].

Introduced by Landau [2], a non-zero object called the “order parameter,” which quanti-

ties the amount of symmetry breaking, can distinguish the broken-symmetry phase from

the symmetry preserving phase. Landau subsequently developed an effective field the-

ory in terms of the order parameter and its variations in space, an early example being

1



Introduction Chapter 1

superconductivity [3].

1.1.2 Topological defects

We now turn our discussion to topological defects, which are discontinuities of the

order parameter [4, 5]. They come up in many different areas of physics, ranging

from continuum solids [6], crystalline solids [7, 8, 9], liquid crystals [10, 11, 12, 13],

Skyrmions [14], cosmology [15, 16, 17], superconductors, superfluids, kink, vortex, mag-

netic monopole [18, 19], instantons in Yang-Mills [20]. Mathematically speaking, topo-

logical defects are non-trivial configurations which arise from non-trivial topology of field

space, and are classified by homotopy theory [21]. They are the lowest-energy excitations

of the homogeneous ordered state or ground state for a given topological charge. Equiv-

alently, they can be treated as particles or extended objects, and sometimes provide a

dual description of the order parameter [22], such as solitons in the Sine-Gordon model

which are dual to fermions [23].

1.1.3 Non-equilibrium physics

The discussion up to now has been in the context of systems in equilibrium, where much

progress has been made. However, much of the real world is out of equilibrium. There

are numerous ways for a system to be out of equilibrium. For example, the system can be

prepared in a non-equilibrium state and simply be allowed to relax to its equilibrium state

without any energy input [24]. Another example is that the system can be externally

driven, such as in the bulk, as seen in sedimentation [25] or periodically driven (Floquet)

systems [26, 27], or along the boundary, as seen in sheared turbulent fluids [28] or in

Rayleigh–Bénard convection [29, 30, 31]. Here, though, motivated by living matter, we

shall focus on yet another way.

2
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1.2 Active Matter

Living matter differ from nonliving matter in that they can adapt, reproduce, evolve,

process information, autonomously move, dynamically organize, and do work. To simplify

the enormous complexity of living systems, we shall restrict ourselves to a rather common

class of living systems called active matter [32, 33, 34, 35]. In active matter, the agents are

active, that is they can self-propel, the self-propulsion sustained by continuously taking in

and consuming energy from the surrounding environment [36]. Moreover, the driving is

local, for example, at the level of each particle or agent, and breaks detailed balance [37,

38]. We shall adopt the viewpoint that active matter as a novel class of internally drive

nonequilibrium system can be used to study living systems using techniques and tools

from condensed matter physics [39, 32, 40].

In the past couple of decades, there has been an increasing number of experimental

realizations of active matter in both living and synthetic systems [41]. Among living

systems, examples cover a vast array of length scales, ranging from the macroscopic scale,

such as bird flocks [42, 43], fish schools [44, 45], sheep herds [46], insect swarms [47, 48,

49, 50] and human crowds [51, 52, 53, 54], to the intermediate mesocopic scale, such as

bacteria collectives [55, 56, 57, 58, 59, 60, 61], sperm cells [62], and cellular monolayers [63,

64, 65, 66, 67, 68, 69, 70, 71, 72], and even all the way down to the microscopic scale, such

as sub-cellular structures [73, 74]. Synthetic model active systems are similarly diverse,

examples including vibrated grains [75, 76, 77], self-propelled colloids [78, 79], artificial

robots [80, 81, 82] and liqiud crystals consisting of biofilaments [83, 84, 85, 86, 87, 88].

Since active units such as cells or bacteria are often elongated in shape, we can model

them as rods. In this case, the active units can align, locally developing two types of

orientional order: apolar (nematic), where there is head-tail symmetry of the rods, or

polar (vectorial), where there is no head-tail symmetry of the rods. We shall discuss

3
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both types of order separately in the following two sections, restricted to two dimenions.

However, we before do that, we would like to make a final comment. Although this

thesis is by no means a historical review, we would like to point out that the active

matter idea is not completely new. In [89], the authors posited that active stresses can

arise from metabolic activity in the fluid, and liquid crystal textures were observed in [90].

However, the active matter framework to explain the nonequilibrium behavior had not

been developed yet and thus was lacking until recently [33].

1.2.1 Nematics

Examples of active nematics include cell sheets [66, 67, 68, 70], suspensions of cytoskele-

tal filaments and associated motor proteins [84, 85, 88], bacteria collectives [91, 60, 61],

vibrated granular rods [75], and developing organisms [72]. For sufficiently large activity,

topological defects proliferate in the nematic texture [92, 93, 94, 95, 96], and understand-

ing of the dynamics of topological defects has been advanced by treating the defects as

quasiparticles [85, 75, 92, 97, 98, 99, 100, 101]. We will follow this perspective.

With this qualitative overview, we now become a bit more quantitative and technical.

We will first review the topological and geometric properties of defects in the passive case.

We will then demonstrate, following the argument presented in [102], that the nematic

order can induce stress, which through the activity will modify the dynamics of defects.

The nematic order can be described by the unit nematic director field n̂, with n̂ = −n̂

reflecting the head-tail symmetry. However, n̂ does not describe the magnitude of the

order, which would be useful in the presence of defects. Since we are interested in defects,

we consider the nematic order parameter Q, defined to be

Qµν = A[n̂µn̂ν − 1

2
δµν ], (1.1)

where A is the magnitude of the nematic order. Another advantage of using Q instead

4
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of n̂ is that Q automatically enforces the nematic symmetry. A two-dimensional passive

nematic, also known as a liquid crystal, is described by the Landau-de Gennes free

energy [10, 5], F({Q}),

F({Q}) =
1

2

∫
dxdy

[
K Tr(∇Q)2 + g[1− 2Tr(Q2)]2

]
, (1.2)

with 2D traceless tensor order parameter of the form

Qab = A[n̂an̂b −
1

2
δab] (1.3)

expressed in terms of the position dependent director field n̂. The rigidity parameter, K,

defines the energetic cost of spatial variation of Q (for simplicity we consider the single

Frank constant approximation) and g, with units of energy density, controls the strength

of nematic order, via the coherence length ξ =
√
K/2g controls spatial variations in the

magnitude of the order parameter A.

Since are in 2D, it is useful to work in complex coordinates. In terms of the complex

positional coordinates z = x+iy and z̄ = x−iy, and the complex order parameter [103, 10]

Q = (Qxx −Qyy) + i2Qxy = Aeiθ , (1.4)

the (dimensionless) LdG free energy has the form

F({Q}) =

∫
dzdz̄

[
4|∂Q|2 + ε−2(1− |Q|2)2

]
, (1.5)

where ∂ = ∂z = 1
2
[∂x − i∂y] (and ∂̄ = ∂z̄ = 1

2
[∂x + i∂y]).

Stationary textures in the passive case minimize the LdG free energy and hence

solve [10, 104]

δF
δQ̄

= −4∂̄∂Q− 2ε−2(1− |Q|2)Q = 0 . (1.6)

We look for a solution for a single defect of charge σ of the form

Q = A(r)e2iσϕ . (1.7)

5
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A(r) would thus satisfy

A′′(r) +
A′

r
+

(
2ε−2 − 4σ2

r2
− 2ε−2A2

)
A = 0 . (1.8)

For example, for σ = ±1/2, A(r) can be approximated as [104]

A(r) = r̃

√
.68 + .28r̃2

1 + .82r̃2 + .28r̃4
, (1.9)

where r̃ = r/ε. As r → 0, A(r) ∝ r, and for r � ε, A(r) ' 1− ε2

4r2
. The defect core size

a, which is the length scale over which A goes from 0 to 1, is of the order a ∼ ε.

Nematic defects are characterized by their charge, which is half-integral. Formally,

this is due to the fact that π1RP1 = Z/2. For example, the director of a ±1/2 defect

rotates by ±π as it goes around a circle, so its charge is ±π/(2π) = ±1/2. See Fig. 1.1

for a sketch.

We now discuss the geometrical properties of ±1/2 defects. A +1/2 defect has a single

axis of symmetry, and a −1/2 defect has three axis of symmetry. Thus if detects were to

self-propel, we would expect the +1/2 defect to propel along its symmetry axis (either

in the direction of the comet or opposite it), and for the −1/2 defect to be stationary

because of the three-fold symmetry. We will formalize this idea of phase dependence of

motility once we introduce activity.

Before we introduce the activity, we will compute the free energy in the passive case

for a pair of defects. The free energy takes the form [10, 5]

F ∼ −σiσj ln
r

L
(1.10)

where σi and σj are the charges of defects i and j, separated by distance r, and L is the

system size. We thus get the 2D Coulomb potential, which tells us that in the passive

case, the defects interact with each other like point charges in electricity and magnetism.

We now introduce the activity. Suppose we have a collection of self-propelled particles

(SPP), which we model as rods. At time t, rod α has axis n̂α(t), with center rα(t) and

6
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(a) +1/2 defect (b) −1/2 defect

Figure 1.1: Sketches of single defect textures for (a) a +1/2 and (b) a −1/2 defect, where

green lines indicate the axes of symmetry.

endpoints rα ± a. It also experiences point forces equal magnitude f on its ends, along

its axis ±n̂. See Fig. 1.2 for a sketch. In the context of cells, f can arise for example

from myosin motors or intercellular forces. Summing over all of the rods yields a force

density

f(r, t) = ±f
∑
α

n̂α(t)[δ(r− rα(t)− an̂α(t))− δ(r− rα(t) + an̂α(t))] (1.11)

Expanding the delta functions about rα gives

f i(r, t) = ∓af∂j
∑
α

n̂iαn̂
j
αδ(r− rα) +O(∇2) (1.12)

Coarse-graining leads to

f i(r, t) = α∂jQ
ij (1.13)

where

Qij = n̂in̂j − 1

d
δij (1.14)
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Figure 1.2: Cartoon of stress induced by nematic order (the example of actomyosin

filaments).

known as the nematic tensor, or alignment tensor, takes the form of a stress (and d is

dimension of space). The paramater α is known as the activity, with α > 0 (α < 0)

denoting contractile (extensile) activity. Now if we evaluate ∇ · Q for a single ±1/2

defect configuration at the location of the ±12 defect, we see that for a +1/2 defect, it

points towards (away from) the comet for extensile (contractile) activity, but vanishes for

a −1/2 defect. This is consistent with our expectations about the difference in motility

between ±1/2 defects due to symmetry. We will later see in Chapter 3 that this phase

dependence will play a crucial role in our analysis of defect dynamics.

1.2.2 Polar fluids

Examples of polar fluids include groups of animals [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,

53, 54], bacterial suspensions [55, 56, 57, 58], sperm cells [62], and cellular monolayers [65].

In contrast to active nematics, since active polar fluids have long range order [105, 106],

defects are not spontaneously generated, and if generated due to boundary effect for

8
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example, the defects are expected to be transient [107, 108, 109]. That being said,

aspects of dynamics of defects in active polar fluids have been studied in [110, 111, 112,

113, 114, 115, 107].

With this qualitative overview, we now become a bit more quantitative and technical.

Here we review the topological and geometric properties of defects in the passive case,

which will be useful to us in this dissertation.

We consider a two-dimensional polar fluid with density ρ and vector order parameter

p described by the free energy [10, 116] F({p}):

F({p}) = Fn({p}) + Fp({p}) , (1.15)

where

Fn({p}) =
1

2

∫
dxdy

[
C

(
δρ

ρ0

)2

+K Tr(∇p)2 + g(1− p2)2

]
, (1.16)

Fp({p}) =

∫
dxdyB

ρ

ρ0

∇ · p (1.17)

and ρ0 is the equilibrium value of ρ.

The first term, Fn({p}), is the usual free energy of a liquid crystal which contains only

terms even in p [10], and the second term, Fp({p}), contains additional terms that break

this p→ −p symmetry. K is the Frank constant in the one-constant approximation, and

g controls the strength of polar order. The coherence length ξ =
√
K/2g is the smallest

relevant lengthscale and |~p| ≈ 1 except within polar defect cores of size a ∼ ξ.

Again, similar to the case of nematics, it is convenient to adopt the language of

complex analysis. In terms of complex coordinates z = x + iy and z̄ = x − iy, the

complex partial derivatives ∂ = ∂z = 1
2
(∂x − i∂y) and ∂̄ = ∂z̄ = 1

2
(∂x + i∂y), and the

complex order parameter p = px + ipy, the (dimensionless) free energy takes the form

F({p}) =

∫
dzdz̄

[
4|∂p|2 + ε−2(1− |p|2)2

]
. (1.18)

9
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Since this is the same as the nematic case, then the analysis for the stationary defect

solutions follow, except here we are limited to integral charge, instead of half-integral

charge. Mathematically, this is because π1S
1 = Z. For example, the director of a ±1

defect rotates by ±2π as it goes around a circle, so its charge is ±2π/(2π) = ±1. See

Fig. 1.3 for a sketch.

It is also useful to talk about the geometric property. Defects have also a phase

associated with them. For example, for a +1 defect, φ is the angle of p relative to

the radial line. It is 0 for asters, π/2 for vortices, and for generic φ it s a spiral. (See

also Fig. 1.3 for a sketch.) This orientation of the defect, a geometry property, will be

important to us when we analyze defects in Chapter 5.

10
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(a) +1 defect (b) −1 defect

(c) aster (d) vortex

Figure 1.3: Sketches of single defect textures showing the angle φi (the phase of p) for

(a) a +1 defect where φi is the angle between Pi and r̂, (b) a −1 defect where φi/2 is the

angle of the separatrix. Special values of φi are shown in (c) and (d) for a +1 defect: (c)

is an aster (φi = 0), and (d) is a vortex (φi = π/2).

11
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1.3 Morphogenesis

An important goal in developmental biology is understanding morphogenesis, which nat-

urally benefits from an approach that incorporates mathematics and physics in addition

to biology and chemistry. In 1917, D’Arcy Thompson advocated this approach in his

monumental treatise, On Growth and Form [117]. Specifically, he argued that physical

processes and mechanical forces are responsible for biological form.

In a different but related thread of thought, much research has focused on the way

chemical patterns emerge during development [118], that is, via reaction-diffusion and

positional information models. A few decades after D’Arcy, in 1952 Alan Turing in-

troduced in The Chemical Basis of Morphogenesis the simple idea that biological-like

patterns can spontaneously emerge from chemical reactions of diffusing molecules [119].

The set of equations describing pattern formation are now known as “reaction-diffusion

equations,” and he coined the term “morphogen” to describe such molecules responsible

for pattern formation. A couple decades after Turing, in 1969 Lewis Wolpert introduced

a complementary idea, positional information. In these models, cells determine their

position because of the value of a morphogen specified by its gradient, and interpret this

information to act accordingly.

However, both reaction–diffusion and positional information models lack mechanical

processes (in particular feedback), which needs to be resolved since the three-dimensional

shape is determined by mechanical processes. A complete theory requires at the minimum

the integration of mechanical with biochemical processes. We are not the first to do this;

for example, see [120, 121, 122, 123, 124, 125, 126, 127, 128] for reviews. In this thesis,

we shall study morphogenesis using the lens of active matter, and in conjunction with

geometrical ideas, a la D’Arcy.

However, given the myriad diversity of biology, is it possible to come up with a ”grand
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unification theory” of morphogenesis? In fact, remarkably, the molecules involved in

embryonic developmental, the molecular toolbox, are conserved among species [129, 130,

131]. This universality of the molecular toolbox encourages the study of theories whose

universality classes would incorporate the important differences between species.

Philosophical considerations aside, on a more practical level, is this actually possible

in connection to the real world? In plant tissues, where cells do not change their relative

positions, there has been much progress in linking molecular and cellular processes to

tissue formation [132, 133]. And in animal tissues, the ability to tag and track thousands

of cells in space and time [134, 135, 136, 137, 138, 139] allow us to begin answering similar

questions linking cellular processes to tissue shape [140, 141, 120, 121, 122, 123, 124,

125, 126, 127].
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1.4 Thesis Overview

In the remainder of this dissertation, we will study the dynamics of active systems, both

with nematic and polar orientational order. In particular, we will focus on the dynamics

of topological defects as they play a key role in understanding the dynamics of the texture.

We apply our results for defect dynamics to present a model of morphogenesis where the

active topological defects drive the dynamics of the curved surface.

In Chapter 2, we show how fluctuations can induce both local nematic order and

extensile stress. A key element of the model is the assumption that in the presence of

local nematic alignment, cells preferentially crawl along the nematic axis, resulting in

anisotropy of fluctuations. We demonstrate that activity can drive either extensile or

contractile stresses in tissue, depending on the relative strength of the contractility of

the cortical cytoskeleton and tractions by cells on the extracellular matrix.

With the establishment of the existence of both active stresses and local nematic order

via the noise mechanism, in Chapter 3 we study the multi-defect dynamics of a nematic

texture in the deep nematic limit. We show that the polarization of a defect, a geometric

property, is not an independent degree of freedom, but it is directly determined by the

position of all other defects. We find that interestingly, because of the non-orthogonality

of textures associated with individual defects, their motion is coupled through a position

dependent “collective mobility” matrix. In addition to the familiar active self-propulsion

of the +1/2 defect, we identify new collective effects of activity that can be interpreted

in terms of non-central and non-reciprocal interactions between defects. In Chapter 4,

we consider various extensions such as allowing for the polarization to be dynamical,

formulating the continuum model, and analyzing geometries such as finite disc and torus.

In Chapter 5, we apply the same analysis to a system with polar order and compare

and contrast our results with the nematic case. Similar to the nematics case, we get
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non-central and non-reciprocal interactions, but in contrast, we find that the orientation

dynamics of +1 defects are not locked to defect positions and relaxes to asters. Moreover,

using a scaling argument, we explain the transient feature of active polar defects and show

that in the steady state, active polar fluids are either devoid of defects or consist of a

single aster. We argue that for contractile (extensile) active nematic systems, +1 vortices

(asters) should emerge as bound states of a pair of +1/2 defects, which has been recently

observed. Moreover, unlike the polar case, we show that for active nematics, a linear

chain of equally spaced bound states of pairs of +1/2 defects can screen the activity

term. A common feature in both models is the appearance of +1 defects (elementary in

polar and composite in nematic) in the steady state.

Finally, in Chapter 6 we address the question of morphogenesis in the context of ne-

matic systems using what we have learned in the previous chapters. We develop a minimal

framework to study the dynamics of a curved surface drive by the nematic texture. Al-

lowing the surface itself to evolve via relaxational dynamics leads to a correlation between

the nematic defects and the cell density growth rate as well as the Gaussian curvature.

Regions of large plus (negative) curvature and larger growth (reduction) in density is

colocalized with plus (negative) defects. As an example, we apply this framework to two

different systems: cultured murine neural progenitor cells (NPCs), and Hydra. For the

example of NPCs, we find that cells accumulate at plus defects and form mounds, and

that cells are depleted at minus defects. For Hydra, by modeling a tentacle as a bound +1

defect state surrounded by two −1/2 defects, we numerically show that activity stabilizes

a bound +1 defect state by creating an incipient tentacle, while a bound +1 defect state

surrounded by two −1/2 defects can create a stationary ring configuration of tentacles,

consistent with observations.
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1.5 Permissions and Attributions

1. The content of Chapter 2 is based upon a collaboration with Mark Bowick, Boris

Shraiman, and M. Cristina Marchetti, which has previously appeared in Soft Mat-

ter [142].

2. The content of Chapter 3 is based upon a collaboration with Mark Bowick, M. Cristina

Marchetti, and Boris Shraiman [100].

3. The content of Chapter 4 is independent work, with the exception of the content in

Chapter 4.5.2, which is adapted from a collaboration with Mark Bowick, M. Cristina

Marchetti, and Boris Shraiman [100].

4. The content of Chapter 5 is based on [143].

5. The content of Chapter 6 is based upon a collaboration with Lakshminarayanan

Mahadevan [144].
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Chapter 2

Fluctuations can induce local

nematic order and extensile stress

2.1 Introduction

We saw in Chapter 1 that importantly, the direction of motion of the comet-like +1/2

defect is controlled by the sign of active stresses: extensile active stresses, as generated in

cytoskeletal suspensions by cross-linking motor proteins or in living cells through division,

drive the defect to move towards the head of the comet, while contractile stresses, as

occurring for instance in the acto-myosin cytoskeleton, drive the defect to move towards

the tail [92]. This behavior has been verified extensively in simulations [96]. A surprising

experimental finding is that in almost all realizations of two-dimensional active nematics,

the motion of the +1/2 defect suggests that extensile activity dominates. While in

bacteria this has been clearly associated with cell division [145, 146], the origin of the

extensile activity observed in layers of human bronchial epithelial cells [70], in Madin-

Darby canine kidney (MDCK) cells [68], in stem cells [67], and in simulations [147] on

times scales shorter than those associated with appreciable cell division has only recently
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been explored [148].

The dynamics of cells crawling on a substrate is generally driven by two types of active

mechanisms: (i) internal active forces generated within a cell by myosin-driven cellular

contractility and transmitted throughout the tissue via supracellular actin coordination,

and (ii) traction forces between the tissue and the substrate that drive cell motility.

Internal forces due to cellular contractility yield active stresses, but no net force, while

tractions provide an external forcing of the tissue. A naive expectation is that contractile

active stresses dominate the behavior of epithelial tissue, while active tractions provide

the main contribution to cell dynamics in mesenchymal tissue. The relative role, though,

of these two types of active processes remains to be quantified. Here we use a continuum

model of an incompressible tissue on a substrate to examine the interplay between these

two types of activity. We show that fluctuating traction forces advected by flow can gen-

erate both local nematic order and effective extensile stresses in an otherwise isotropic

tissue. Essentially, polar active migration drives local cell alignment captured by a ne-

matic order parameter. A key assumption of our model is that cells will preferentially

move along the direction of local cell alignment, rather than transverse to it. This is

incorporated in the model by coupling the noise that drives the fluctuating cell tractions

to local nematic order. By working perturbatively in the noise strength, we show that

the nonlinear advection of active tractions by cellular flow can be recast in the form of a

mean active force that has the structure of an extensile stress and drives cell dynamics.

Flow alignment generated by this active forcing in turn destabilizes the isotropic state,

suggesting the onset of a state with spatially modulated texture and rotating director

field. While the fact that extensile activity can build local nematic order in what would

be an isotropic state in the passive limit has been highlighted before [149, 150, 151, 152],

a new result of our model is that the extensile stress observed in crawling tissue may

arise from fluctuating cellular tractions.
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2.2 Model of Crawling Tissue

We describe the tissue at the continuum level as a contractile active gel [153] in terms of

the cell density ρ, the flow velocity v and a nematic order parameter Q = (2n̂n̂−1)S that

captures cell shape anisotropy and alignment of elongated cells, with S the magnitude of

nematic order and n̂ the unit nematic director field that identifies the direction of local

order. The tissue is in contact with a substrate and force balance requires that the force

on a tissue element due to the surrounding cells be balanced by the traction force density

t that the tissue exerts of the substrate, according to

∂jσij − ti = 0 , (2.1)

where σij = −pδij +2ηSij +σaij is the tissue stress tensor, with p the pressure, η the tissue

shear viscosity, Sij = 1
2
(∂ivj + ∂jvi) the rate of strain tensor, and σaij = αcQij an active

stress. The traction force is written as t = Γv − f , where Γ is the effective friction with

the substrate and f a fluctuating propulsive force density caused by transiently polarized

cryptic lamellipodia activity which underlies cell motility. This form for the traction t

allows for local misalignment of cell propulsion and tissue velocity due to intracellular

interactions, consistent with experimental findings [154, 155]. Assuming the tissue to

be incompressible (∇ · v = 0, hence ρ = constant), the dynamics is described by the

following equations

η∇2v −∇p+ αc∇ ·Q = Γv − f , (2.2)

DtQ = λS− 1

γ

[
δF (Q)

δQ

]ST
, (2.3)

(∂t + v ·∇) f = − f

τ
+ ξ , (2.4)

where Dt = ∂t + v ·∇ − [Ω, ·] is the comoving and corotational derivative, with Ωij =

1
2
(∂ivj − ∂jvi) the vorticity tensor, and the superscript ST in Eq. (2.3) denotes the
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symmetric traceless part of any tensor [33, 96]. Other couplings to flow gradient are

generally allowed in Eq. (2.4) for fi, such as Ωijfj and λSijfj. These terms, however, do

not contribute to the noise-renormalized mean propulsion force evaluated below and are

therefore not included in the equation.

The Stokes equation, Eq. (2.2), includes two types of active processes. First, force

dipoles due to the pulling action of myosins and transmitted across the epithelial tissue by

cell-cell interactions mediated by E-cadherins result in an apolar contractile active stresses

αcQ [102, 33, 153], with αc > 0 an activity parameter that incorporates the biochemical

processes responsible for cellular contraction and controlled by myosin density and ATP

concentration. Second, the presence of the substrate allows for polar terms described by

the fluctuating propulsive force density f . This may arise, for instance, from intermittent

protrusions and retractions of cryptic lamellipodia at a rate controlled by cell-substrate

interaction mediated by focal adhesion complexes. We assume that the traction force

density f tends to align with the long axis of the cell that controls the direction of local

nematic order, but switches direction on a time scale τ much shorter than the time scale

τQ controlling the reorientation of the local nematic texture. As a result, there is no

polar order of propulsive forces at the tissue scale. This separation of time scales allows

us to treat this source of activity independently and examine how microscopic cell scale

fluctuations feed back on the tissue-scale active stress. Finally, we have neglected in the

Stokes equation elastic liquid crystalline stresses. These terms are of higher order in the

gradients than the active stress and do not change the results described below.

The dynamics of the nematic order parameter is controlled by flow alignment driven

by coupling to vorticity and rate of strain, with λ the flow alignment parameter, and

relaxation controlled by the de Gennes-Ginzburg-Landau free energy [156, 157], F =

1
2

∫
x
{a Tr[Q2] +K(∇ ·Q)2}, with K the nematic stiffness (in the one-elastic constant

approximation) and γ the rotational friction of the nematic. We assume that the tissue is
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isotropic (a > 0), and hence neglect stabilizing terms of order O(Q4) in the free energy,

so that

−1

γ

δF (Q)

δQ
= −Q

τQ
+D∇2Q , (2.5)

with τQ = γ/a the relaxation time of the nematic texture and D = K/γ a diffusivity.

The fluctuating local propulsive force f (Eq. (2.4)) persists over a time τ , and is then

randomized by interactions with other cells and short scale active processes embodied by

a zero mean random force ξ, with correlations

〈ξi(x, t)ξj(x′, t′)〉 = ε2δ(t− t′)δ(x− x′)[δij + κ〈Qij(x, t)〉] , (2.6)

with κ > 0 and ε2 the strength of the noise. The noise correlations are chosen to depend

on Q so as to capture the fact that local alignment will result in different cell motility

along and transverse to the director. The positive sign of κ favors motion along the

director and penalizes displacements transverse to the direction of local order. We also

assume that κS < 1 to ensure that the variance of the noise is positive. Given τ � τQ, we

then examine the behavior of the tissue on times long compared to τ , but in the presence

of finite local nematic order. The separation of these two time scales in epithelial tissue

is evidenced by the observation of negligible cell motility (corresponding to 〈f〉 = 0) and

appreciable regions of local nematic order (corresponding to 〈Q〉 6= 0).

To impose incompressibility we take the divergence of Eq. (2.2) to obtain ∇2p =

∇ · (f + αc∇ ·Q). Eliminating the pressure, the Stokes equation can then be formally

written as

Γvi − η∇2vi = Pij (fj + αc∂lQjl) , (2.7)

with Pij = (δij −∇−2∂i∂j) being the incompressibility projection operator.
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2.3 Noise induced extensile stress

To linear order, the only steady state solution of our noise-averaged equation is 〈v〉 =

〈f〉 = 〈Q〉 = 0. In this section we show, however, that noisy traction forces renormalize

the flow velocity, inducing both nematic alignment and extensile active stresses.

Taking the Fourier transform in space and time, Eqs. (2.7) and (2.4) can be written

as

vi(k, ω) =
1

Γ + ηk2

(
δij − k̂ik̂j

)
[fj(k, ω) + αciklQjl(k, ω)] , (2.8)

fi(k, ω) =
ξi(k, ω)

τ−1 + iω
− i

τ−1 + iω

∫
ω′

∫
q

(kj − qj)vj(q, ω′)fi(k− q, ω − ω′) , (2.9)

where
∫
ω

=
∫

dω
2π

and
∫
q

=
∫

dq
(2π)2

. Substituting Eq. (2.8) into Eq. (2.9) and averaging

over noise gives

〈fi(k, ω)〉 = − i

τ−1 + iω

∫
ω′

∫
q

δj` − q̂j q̂`
Γ + ηq2

(kj − qj)〈f`(q, ω′)fi(k− q, ω − ω′)〉 (2.10)

Here we have explicitly used the fact that due to the separation of time scales, we can

treat f as uncorrelated with Q. We now have to compute the two point force correlation

〈f`(q, ω′)fi(k− q, ω−ω′)〉. To first order in the noise amplitude, using Eq. (2.9) we have

〈f`(q, ω′)fi(k− q, ω − ω′)〉 =
1

(τ−1 + iω′)(τ−1 + i[ω − ω′])
〈ξ`(q, ω′)ξi(k− q, ω − ω′)〉

=
ε2

(τ−1 + iω′)(τ−1 + i[ω − ω′])
[δ(k)δ(ω)δ`i + κ〈Q`i(k, ω)〉]

(2.11)

where in the 2nd line we computed the Fourier transform of Eq. (2.6). Substituting into

Eq. (2.10) leads to

〈fi(k, ω)〉 = −iε
2κkj〈Q`i(k, ω)〉
τ−1 + iω

∫
ω′

1

(τ−1 + iω′)(τ−1 + i[ω − ω′])

∫
q

δj` − q̂j q̂`
Γ + ηq2

(2.12)
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Exploiting the fact that the two integrals decouple, we calculate the renormalization

of the traction force to first order in the noise amplitude, with the result

〈fi(k, ω)〉 =−ε
2κ ln(`v/a)

4πη

ikj〈Qij(k, ω)〉
(τ−1 + iω)(2τ−1 + iω)

, (2.13)

where we have used∫
ω′

1

(τ−1 + iω′)(τ−1 + i[ω − ω′])
=

1

2τ−1 + iω
(2.14)∫

q

δj` − q̂j q̂`
Γ + ηq2

=
δj`
8πη

ln

(
1 +

`2
v

a2

)
≈ δj`

4πη
ln

(
`v
a

)
, (2.15)

with `v =
√
η/Γ the viscous screening length and a a short scale cutoff of the order of

the cell size.

Since we are interested in time t� τ , with τ � τQ, we can neglect ω in the denomi-

nator of Eq. (2.13). Taking the inverse Fourier transform yields a mean force

〈f〉 = αf∇ · 〈Q〉 , (2.16)

where

αf = −ε
2κτ 2

8πη
ln

(
`v
a

)
< 0 (2.17)

is an extensile activity. Extensile stresses arise because persistent cell tractions f along

the direction of local nematic order tends to elongate local regions of the tissue in that

direction. This effect is transient (only lasts a short time τ), but due to the nonlinearity of

the advection term in the f equation it leads to a nonzero value of 〈f〉 that corresponds

to extensile stresses. This is seen by writing ∂tfi ∼ −(v ·∇)fi ∼ −(fj∇j)fi, and so

〈fi〉 ∼ −〈τ(fj∇j)fi〉 ∼ −(...)∇j〈Qij〉.

We now return to Eqs. (2.7) and (2.3), average over noise, and use Eq. (2.16) to

eliminate the mean traction force. The linear dynamics of fluctuations from the quiescent
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disordered state with 〈v〉 = 〈Q〉 = 0 is then governed by the equations

Γ〈vi〉 − η∇2〈vi〉 = αPij∂l〈Qjl〉 , (2.18)

∂t〈Qij〉 =
λ

2
(∂i〈vj〉+ ∂j〈vi〉)−

〈Qij〉
τQ

+D∇2〈Qij〉 , (2.19)

where

α = αc + αf (2.20)

is the total activity, with sign controlled by the interplay of contractile activity (αc > 0)

from actomyosin contractility and extensile activity (αf < 0) from fluctuating propulsive

forces.
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2.4 An equivalent model with white noise

Something that may be unsatisfactory about the model above is that we assumed that

the noise is not white noise, but rather is correlated with the nematic tensor. It is natural

to ask whether we can construct a model where the noise is white. We now show that

indeed there is such a model.

The same noise-renormalization of the mean force (Eq. (2.16)) can be obtained by

considering a related model. In this model, we explicitly include an alignment term Qijfj

in the dynamics of f , that is,

(∂t + v ·∇)fi = −τ−1fi + ζQijfj + ξ̃i, (2.21)

with ζ > 0 and where ξ̃ is Gaussian white noise, with zero mean and correlations

〈ξ̃i(x, t)ξ̃j(x′, t′)〉 = ε2δ(t− t′)δ(x− x′)δij. (2.22)

For stability, we will need to assume that ζτ < 1, and here the noise is isotropic and has

no preferred direction, unlike the model we studied in Chapter 2.3.

We now will show that we can derive 〈ff〉 (Eq. (2.11)), essentially justifying the choice

of noise correlation in Eq. (2.6). To leading order in noise amplitude,

∂tfi = −τ−1fi + ζQijfj + ξ̃i (2.23)

We have dropped the advection term here since it is 2nd order. Taking the Fourier

transform in space and time leads to

fi(k, ω) = [iω + τ−1 − ζQ]−1
ij ξ̃j(k, ω) (2.24)

Here we have explicitly used the fact that due to separation of length and time scales,

we can effectively treat Q as constant.
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Similar to before, computing the correlation gives

〈f`(q, ω′)fi(k− q, ω−ω′)〉 = ε2[τ−1 + iω′− ζ〈Q〉]−1
`m[τ−1 + i(ω−ω′)− ζ〈Q〉]−1

ij δ(k)δ(ω)δmj

(2.25)

To leading order in τζ, we finally arrive at

〈f`(q, ω′)fi(k− q, ω − ω′)〉 =
ε2

(τ−1 + iω′)(τ−1 + i[ω − ω′])
[δ(k)δ(ω)δ`i + 2τζ〈Q`i(k, ω)〉]

(2.26)

We have thus recovered Eq. (2.11) for κ = 2ζτ � 1.
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2.5 Noise induced nematic order

We next demonstrate that extensile stresses from fluctuating tractions also build up local

nematic order, justifying our choice of an anisotropic noise correlator. Taking the spatial

Fourier transform of Eqs. (2.18) and (2.19) and eliminating the velocity in favor of the

alignment tensor, we obtain a closed equation for 〈Qij(k, t)〉, similar to [149, 150]:

∂t〈Qij〉 = −
(
τ−1
Q +Dk2

)
〈Qij〉 ,

+
αλ

2(Γ + ηk2)

[
−kikl〈Qjl〉 − kjkl〈Qil〉+ 2kikjΨ

‖] , (2.27)

where Ψ‖ = k̂ik̂j〈Qij〉. Upon contraction of Eq. (2.27) with k̂ik̂j and εisk̂sk̂j, the longitu-

dinal mode Ψ‖ and the transverse mode Ψ⊥ = εisk̂sk̂j〈Qij〉 decouple, giving

∂tΨ
‖(k, t) = −

(
τ−1
Q +Dk2

)
Ψ‖(k, t) , (2.28)

∂tΨ
⊥(k, t) = −

[
τ−1
Q +Dk2 +

αλk2/Γ

1 + `2
vk

2

]
Ψ⊥(k, t) . (2.29)

The decoupling of longitudinal and transverse modes follows from isotropy. Clearly Ψ‖

is always stable as Ψ‖ > 0. On the other hand, the mode controlling the decay of Ψ⊥

can change sign if α < 0, corresponding to the case where extensile activity exceeds

contractile activity. The homogeneous isotropic state becomes unstable for α < −α∗,

with

α∗ =
ΓD

λ

(
1 +

√
η

ΓDτQ

)2

. (2.30)

The fact that Ψ‖ is stable while Ψ⊥ can be unstable is not surprising. In Eq. (2.18),

the incompressibility projection operator eliminates the component of v in the direction

of ∇ ·Q in Fourier space. Thus the active stress does not affect the longitudinal mode,

but it can modify the behavior of the transverse mode, as we saw above.

This linear instability discussed here for the case of rod-like (λ > 0) extensile (α < 0)

active entities also occurs for disc-like (λ < 0) contractile (α > 0) systems, similar to
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Figure 2.1: Left: the dispersion relation of the growth rate Ω⊥ (Eq. (2.31)) as a function

of the wavenumber k for three values of activity: α = −0.5α∗, α = −α∗, and α = −1.5α∗.

At the onset of instability for |α| = α∗, only the mode k = k0 is unstable. Above the

transition, the unstable modes lie in a k− < k < k+. Right: sketch of the nematic

texture corresponding to the unstable mode with k = k0x̂ for φ = 0. The length of the

segments, as well as the color, is proportional to the strength of nematic order S. The

angle between the director and the wavevector k is ±π/4.

the effect noted in a different context in Ref. [158]. It is best discussed in terms of

three length scales that control the dynamics of our model of cellular active nematics:

(i) the viscous length `v, (ii) the nematic correlation length ξ =
√
DτQ, and (iii) an

active length `a =
√
|α|λτQ/Γ that balances flows induced by active stresses against

frictional dissipation 1. In terms of these length scales, the dispersion relation of the

mode controlling the dynamics of Ψ⊥ is given by

Ω⊥ = −τ−1
Q

[
1 + ξ2k2 + sgn(α)

`2
ak2

1 + `2
vk2

]
. (2.31)

This mode becomes unstable (Ω⊥ > 0) for extensile systems (α < 0) of elongated

1The active length defined here is distinct from the one commonly used in the literature, `active =√
K/|α|, which controls the dynamics of active nematics in the absence of substrate friction [96, 159].
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particles (λ > 0) provided

`a > ξ + `v . (2.32)

The dispersion relation for a few values of parameters is shown in Fig. 2.1. The wavevector

of the fastest growing mode is k0 = 1
`v

(
`a
ξ
− 1
)1/2

, and the instability occurs in a band

of wavevectors given by

k2
±(α) =

`2
a − ξ2 − `2

v ±
√

(`2
a − ξ2 − `2

v)
2 − 4ξ2`2

v

2ξ2`2
v

, (2.33)

with k±(|α| = α∗) = k0. We can understand heuristically why there is a band: at small

wavenumber, the active stress is small, and at large wavevnumber, the finite viscosity

dampens or suppresses the instability.

The instability of the disordered state indicates that in extensile systems of elon-

gated units, active flows build up local nematic order, as previously demonstrated for

compressible nematics [149, 150]. Note that a finite viscosity is required to stabilize the

system at short scales. The instability corresponds to growth of Ψ⊥, and the associated

nematic texture is obtained as solution of k̂ik̂j〈Q̃ij〉 = 0. The component of the texture

corresponding to wavevector k is then given by

Qij(x) = A cos(k · x + φ)(εi`k̂`k̂j + εj`k̂`k̂i) , (2.34)

where we have explicitly included the Fourier factor cos(k · x + φ). This can be written

in terms of a unit nematic director field n̂ as Q = (2n̂n̂−1)S, where n̂ is the eigenvector

of the largest eigenvalue of the matrix texture given in Eq. (2.34),

n̂i =
1√
2

[δij − sgn[cos(k · x + φ)]εij]k̂j . (2.35)

This satisfies cos(k̂ · n̂) = 1/
√

2 and so n̂ is at an angle ±π/4 to k. A sketch of n̂ for

the mode k = k0x̂ with amplitude modulated by A| cos(k0x + φ)| is shown in Fig. 2.1.

It corresponds to a modulated chevron texture of periodicity 2π/k0, with alternating
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nematic domains tilted at 90◦ to each other, separated by thin isotropic bands. The

structure is analogous to that obtained in certain passive nematic liquid crystals under

shear [160, 161] and in lamellar phases of diblock copolymers [162].
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2.6 Discussion

Using a mesoscopic model for a tissue layer, we have shown that fluctuations in the

traction forces exerted by cells on the substrate can build up local nematic order in the

tissue and lead to extensile active stresses that compete with those arising from acto-

myosin contractility. The sign of the net activity, α = αc +αf , with αc > 0 controlled by

contractile actomyosin forces and αf < 0 (given in Eq. (2.17)) determined by the inter-

play of single-cell motility and global tissue flow, is determined by the larger of these two

contributions. The tissue dynamics may exhibit overall contractile or extensile behavior

depending on the relative magnitude of these two contributions to the active stress. In

confluent tissues with strong extracellular actin fibers capable of transmitting stresses

across cells, we expect a dominance of actomyosin contractility. In mesenchymal tissue,

in contrast, local tractions may dominate and mediate the build-up of local nematic or-

der, with associated extensile dynamics of topological defects. Other mechanisms not

directly considered here may also enable force transmission across the tissue. In partic-

ular, passive cell-cell adhesion provides intercellular couplings which enable one cell to

pull another. Some of these effects are encoded in the tissue shear viscosity η. Finally,

although here we have assumed incompressibility, which results in cells pushing on each

other, finite compressibility may arise in epithelial cells due, for instance, to deformation

of the nucleus or from apical surface tension. The role of the resulting density fluctuations

remains to be explored.
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Chapter 3

Multi-defect Dynamics in Active

Nematics

3.1 Introduction

In Chapter 2, we saw explicitly how we can generate both local nematic order and

effective extensile stresses, the mechanism being fluctuating traction forces advected by

flow. With the establishment of nematic order and active stresses, we now study active

nematic systems.

When active forces are sufficiently high, active nematics exhibit spatio-temporally

chaotic self-sustained flows that have been dubbed “active turbulence”, where vortical

flows are accompanied by the proliferation of topological defects in the nematic tex-

ture [92, 93, 94, 95]. The relevant nematic defects are ±1/2 disclinations, that are

created and annihilated in opposite sign pairs, with the resulting average defect den-

sity increasing with activity [96]. Defects have also been identified in biological systems,

where they have been associated with cell extrusion [68, 67], changes in cell density [61]

and morphogenetic processes [72].
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Previous theoretical work has made progress in formulating a description of “turbu-

lent” active nematics by focusing on the dynamics of the topological defects as quasi-

particles, with effective active interactions mediated by elastic distortions of the nematic

texture and by active flows [92, 85, 98, 99]. This chapter highlights the importance of

the anisotropy of nematic disclinations [163, 164], and in particular the role of the po-

larity of the +1/2 defect by describing it as an effective active particle, with propulsive

forces [75, 84, 92, 97] and aligning torques [98, 99] determined by the active flows. Ex-

periments and simulations of continuum active nematic hydrodynamics have suggested

that active defects themselves exhibit emergent behavior and order in states with ori-

entational order of defect polarity [165, 150, 149, 166, 167, 168, 169]. In spite of recent

progress, the nature of this emergent behavior and its relevance to specific experimental

situations remains largely not understood.

Much of the earlier work had focused on the limit where the distortions of the texture

due to different defects can be treated as independent, an assumption that is at odds

with the long-range nature of nematic elasticity. An important open question is the role

of multi-defect interactions in governing the defect dynamics. To that end, Ref. [170]

obtained explicit solutions of the linearized equations determining quasi-static textures

for neutral defect pairs and used them to describe defect pair-creation and annihilation.

Generalization of the methods to multi-defect states is, however, cumbersome.

In this chapter, we begin with the familiar hydrodynamic equations of a compressible

active nematic film on a substrate and proceed by writing down the explicit quasistatic

solution for a multi-defect nematic texture fully parameterized by arbitrary position of N

defect cores. This forms a 2N dimensional “inertial manifold” on which slow dynamics

associated with defect motion unfolds. To derive general equations for the defect dynam-

ics driven by activity, we consider a system deep in the nematic state and take advantage

of the variational principle. Our analysis transforms the partial differential equations of
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active nematic hydrodynamics into a set of ordinary differential equations for the defect

positions that fully incorporates multi-defect interactions and yields a number of new re-

sults. First we show that, even in the passive limit, the overdamped dynamics of defects

as quasiparticles is governed by a non-diagonal mobility matrix that captures the fact

that because of the overlap of the textures associated with different defects, motion of one

defect effectively “drags” the other defects, the source of the apparent non-locality being

the long-range nature of elastic interactions in the nematic state. While the off-diagonal

terms of the mobility matrix are small compared to the diagonal ones (that reduce to the

well known defect friction [171]), the off-diagonal terms fall off only logarithmically with

interdefect distance. Activity renders the +1/2 defect self propelled along its axis, as

shown earlier [75, 84, 92, 97]. It additionally generates new active forces among defects

that are qualitatively different from the well-known Coulomb interactions among defect

charges. We also show that the forces on defects due to the active flow generated by all

others are in general non-central and non-reciprocal, and are controlled by multi-defect

dynamics. Previous work [98] had obtained the effective dynamics of individual defects

in the mean-field of other defects, and in this approach, the orientation or polarization of

the +1/2 defect was treated as an independent degree of freedom. Here, in contrast, we

describe directly the dynamics of multi-defect textures without the need for the mean-

field approximation. We show that in the deep nematic limit the polarization of a defect

is not an independent degree of freedom, but rather it is directly determined by the po-

sition of all other defects, which we support by simulations. This provides a complete

description of multi-defect dynamics, but yields defect-defect interactions that are in-

trinsically determined by the dynamics of all of the defects. Finally, this chapter makes

explicit the non-reciprocal and non-central nature of the interaction between defects.
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3.2 The Model

We consider a two-dimensional nematic liquid crystal described by the the Landau-de

Gennes (LdG) free energy [5], F({Q}),

F({Q}) =
1

2

∫
dxdy

[
K Tr(∇Q)2 + g[1− 2Tr(Q2)]2

]
, (3.1)

with 2D traceless tensor order parameter of the form

Qab = A[n̂an̂b −
1

2
δab] (3.2)

expressed in terms of the position dependent director field n̂. The rigidity parameter,

K, defines the energetic cost of spatial variation of Q (for simplicity we shall consider

the single Frank constant approximation) and g, with units of energy density, controls

the strength of nematic order, via the coherence length ξ =
√
K/2g controls spatial

variations in the magnitude of the order parameter A. Below we assume to be deep in

the nematic state (g →∞), where ξ is smaller than all other relevant lengthscales. In this

limit A ≈ 1 and the magnitude of the order parameter Tr(Q)2 ≈ 1/2 almost everywhere,

exceptions being the cores of nematic defects of size ∼ ξ.

The dynamics of a nematic is controlled by the balance of relaxation towards the

minimum of the LdG free energy and advection of the tensorial order parameter by flow

v, according to

∂tQab + v ·∇Qab =
1

2
[Q,ω]ab −

D

4K

δF
δQab

, (3.3)

where the diffusivity D governs relaxation towards equilibrium and ωab = ∂avb − ∂bva is

the vorticity. In an active nematic, flow is generated spontaneously by local extensile

(or contractile) activity described by the active stress tensor proportional to the order

parameter σab = α̃Qab [33, 102]. Here α̃, with units of energy density, measures the

strength of the activity, with α̃ > 0 (α̃ < 0) corresponding to contractile (extensile)
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activity. Assuming that flow is generated solely by the texture-dependent active force

balanced by substrate friction µ, the flow velocity v is determined by the force balance

equation, given by

µva = α̃∂bQab . (3.4)

In Eq. (3.3) we have dropped the rate of strain alignment source term [33], because in

2D and in the friction dominated, overdamped limit described by Eq. (3.4), its effect on

dynamics can be represented by renormalizing the rigidity constant [149, 150].

We rescale time with τ = `2/D, where ` stands for the characteristic separation be-

tween topological defects that are generated by activity [84, 92, 93]. We restrict ourselves

here to the case where this length is much larger than the coherence length ξ, hence the

density of defects is low. We also rescale all length with `. Deep in the nematic regime

where ξ is very small compared to all other relevant length-scales, we define ε = ξ/`� 1.

Finally, we also define the dimensionless activity parameter α = α̃/4µD.

Because our approach will be entirely based on complex analysis, we introduce it from

the outset by defining the complex positional coordinates z = x+ iy and z̄ = x− iy and

the complex order parameter [103, 10]

Q = (Qxx −Qyy) + i2Qxy = Aeiθ (3.5)

in terms of which the (dimensionless) LdG free energy has the form

F({Q}) =

∫
dzdz̄

[
4|∂Q|2 + ε−2(1− |Q|2)2

]
, (3.6)

where ∂ = ∂z = 1
2
[∂x − i∂y] (and ∂̄ = ∂z̄ = 1

2
[∂x + i∂y]).

In the complexified and rescaled form, v = α∂Q and the dynamical equation is recast

as

∂tQ = I(Q) = −δF({Q})
δQ̄

+ αIα(Q) , (3.7)
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where

Ia(Q) = −(∂Q∂Q+ ∂̄Q̄∂̄Q) + (∂2Q− ∂̄2Q̄)Q (3.8)

represents the active drive obtained by eliminating the flow velocity in favor of Q. The

1st and the 2nd terms describe, respectively, the advection of the order parameter and

its rotation by the vorticity.
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3.3 Stationary and quasi-stationary textures deep in

the nematic state

Stationary textures in the limit of zero activity (α = 0) minimize the LdG free energy

and hence solve [10, 104]

δF
δQ̄

= −4∂̄∂Q− 2ε−2(1− |Q|2)Q = 0 , (3.9)

the imaginary and the real part of which read, respectively,

∂̄∂θ + ∂̄ logA ∂θ + ∂ logA ∂̄θ = 0 (3.10)

and

A2 = 1− 2ε2
[
(∂θ)2 − A−1∂̄∂A

]
. (3.11)

Deep in the nematic state (ε→ 0) and away from possible singularities, Eqs. (3.10) and

(3.11) are approximately

∂̄∂θ = 0 +O(ε2) (3.12)

and

A2 = 1− 2ε2(∂θ)2 +O(ε4) . (3.13)

Thus, to leading order in ε, interesting nematic textures correspond to non-trivial solu-

tions of the Laplace equation ∂̄∂θ = 0. While there are no non-constant harmonic func-

tions on the plane (that are bounded at infinity), such functions exists on a punctured

plane and define the “topological defect” solutions. The simplest solution, as reviewed

in Chapter 1, has the form θ = iσ log( z̄
z
), with σ = ±1

2
corresponding to the well known

2D nematic charge of ±1/2 disclinations, corresponding to

Q = ψ(z, z̄) = Ac(|z|)
(z
z̄

)σ
, (3.14)
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with the amplitude Ac(|z|) describing the defect core [104]: Ac(0) = 0 and Ac(|z|) ≈ 1

for |z| > a, where a ∼ O(ε). More generally, one can construct a multi-defect texture Q0,

starting with a harmonic function on a plane punctured at points zi labeling the defect

positions, as

Q0 = ei2ψ
∏
i

ψi (3.15)

where

ψi = Ai

(
z − zi
z̄ − z̄i

)σi
(3.16)

is a single-defect texture satisfying Eq. (3.9) with αi the charge of defect i. The amplitude

Ai is defined to be

Ai = A(|z − zi|) , (3.17)

where A is a solution to Eq. 1.8. We assume that defects are separated by distances `

much larger than the core size |zi − zj| � ε, in which case |Q0| ≈ 1 almost everywhere.

With the proviso of “charge neutrality”
∑

i σi = 0, this texture satisfies a fixed

boundary condition Q0 → ei2ψ as |z| → ∞. More generally, if
∑

i σi 6= 0, then this

texture satisfies a boundary condition Q0 → eiϕ
∑
i σiei2ψ as |z| → ∞, where ϕ is the

polar azimuthal angle.

Before proceeding with the analysis, we note that in the vicinity of a defect, e.g.

z ≈ zi, we can write

Q0(z, z̄) ≈ eiφiψi . (3.18)

In other words, the texture reduces to the isolated defect form, with a phase factor that

depends on the positions of all defects (and the boundary condition at infinity)

eiφi = ei2ψ
∏
j 6=i

(
zi − zj
z̄i − z̄j

)σj
. (3.19)

This phase factor will play an important role in controlling the active dynamics of defects.

It also readily interpreted in terms of the geometry of the director field close to the
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disclination, which exhibits one (+1/2) or three (−1/2) separatrix lines emerging radially

from the core, as shown in Fig. 3.1. The separatrix is defined by the condition that

the director points radially away from the core, which means that the polar angle of

the director 1
2

argQ0|z→zi = ϕ + πk. Since the director angle in the vicinity of zi is

1
2

argQ0 = σiϕ + 1
2
φi where ϕ = arg(z − zi), we can express the angle of the separatrix,

Φi, in terms of φi via Φi = (φi + 2πk)/(2 − 2σi) which takes a unique value Φi = φi for

a plus disclination and three values Φ
(k)
i = φi/3 + 2πk/3 (with k = 0,±1) for a minus

disclination.

We note that for a global rotation, under which ϕ → ϕ + η and ψ → ψ + η, the

complex order parameter transforms as Q0 → Q0e
i2η , with the phase factor arising

from the transformation of ψ. It follows that “defect phases” φi transform in a way

that depends on the associated charge φi → φi + 2(1 − σi)η. In contrast, the phases

Φi = φi/(2− 2σi) transform naturally (i.e., shift by the rotation angle η) under rotation.

We can now compute the free energy using Q0. The free energy F0 = F(Q0) can be

written in terms of the defect positions in the well-known form

F0 ≈ 4

∫
dzdz̄ |∂θ|2 = −8π

∑
i 6=j

σiσj log
|zj − zi|

a
+ C (3.20)

describing an effective Coulomb interaction between defect charges [5], where the constant

C stands for the sum of the core energies of all defects. This of course means that,

even in the absence of any “activity”, the defect cores will move to minimize the free

energy F0. Hence, Q0 textures, while being extremal on a punctured plane, are only

quasi-static. The manifold of textures Q0(z, z̄|{zi}) parameterized explicitly by {zi}

as independent “collective” coordinates, defines the “inertial manifold” on which the

relatively slow dynamics due to defect interactions unfolds [172].
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(a) +1/2 (b) −1/2 defect

Figure 3.1: Sketches of single defect textures showing the angles Φi for (a) a +1/2 defect

where Φi = φi = 3π/4, and (b) a −1/2 defect where Φ
(k)
i = φi/3 + 2πk/3 for k = 0± 1.

3.3.1 Matched asymptotics of moving defects

There is an exact solution for a single defect solution in the limit of linear potential,

meaning that the defects are far away and conspire to create an exactly linear potential.

In this case, we can find a steady-state solution of a slowly moving defect. Otherwise,

we cannot do so, because there is no stationary solution because different defects move

in different directions with different speeds and the assumption of the linearity of the

potential breaks down. Therefore, we cannot generalize this method when there are mul-

tiple defects. Nonetheless, we will review it, because in principle it can be the beginning

of a dynamic perturbative scheme.

A first step in determining the dynamics of a defect is to assume that it moves slowly

and is far away from the other defects. In the limit of low density, since the defect is far

from the others, we can linearize the potential, which leads to a constant force (gradient
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of the potential).

We will see that in order to determine the velocity, we will need to use the method of

asymptotic expansions to match solutions in the defect core and the far field [173], which

has been done in the passive [174, 175] and active [97, 98] cases. Here for simplicity

we consider the passive case to illustrate the technique, following the presentation in

Ref. [104].

Let v be the constant velocity of the defect. Then in the comoving defect frame, and

assuming that in this frame the dynamics is quasistatic,

−v ·∇Q = ∇2Q+ 2ε−2(1− |Q|2)Q (3.21)

By small v, we mean v = O(η), where η � 1 is our small parameter. Similarly, we can

expand the texture Q in terms of η as

Q = Q0 + ηQ1 + . . . (3.22)

where Q0 is a single-defect solution to Eq. (3.9). Then the O(η) equation reads

−v · ∇Q0 = L(Q1, Q̄1) (3.23)

where

L(Q1, Q̄1) = ∇2Q1 + 2ε−2(1− 2|Q0|2)Q1 − 2ε−2Q2
0Q̄1 (3.24)

The linear operator L is self-adjoint and has three eigenfunctions with zero eigenvalues,

which we denote by Ψ: one corresponding to rotation (Ψ = iQ0), and two corresponding

to translations in the plane (Ψ = ∇Q0) of the defect. The former can be seen immediately

by substitution and the latter by taking the gradient of Eq. (3.9). According to the

“Fredholm alternative” condition [176], a linear system of equations can only be solved

if the inhomogeneous term (in our case v · ∇Q0) is orthogonal to the null space of the

linear operator (in our case L).
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Multiplying Eq. (3.23) by Ψ̄ and integrating by parts twice the differential terms in

L leads to

−Re

∫
d2xΨ̄v ·∇Q0 = Re

∮
ds(Ψ̄n̂ ·∇Q1 −Q1n̂ ·∇Ψ̄) (3.25)

Here we choose Ψ = ∇Q0. We also have to still specify the region of integration. For

simplicity, we choose a disk of radius r0, where r0 is large compared to the defect core

size a, but small compared to the far field scale set by v−1, that is a � r0 � v−1. We

do this so we can appropriately (asymptotically) match the near-field solution with the

far-field solution. We now give a heuristic argument for the far field scale set by v−1. Spin

waves propagate from defects. We define the far field region at time t as the boundary

of the wavefront of the spin waves at time t emanating from the defects at t = 0. In

terms of time elapsed t, the wavefront emanating from a defect is at distance
√
Dt from

the defect, where D is the diffusivity. In the case of a single defect, we don’t expect our

ansatz to hold over a timescale where the defect has overtaken the spin waves. In time

period t, a defect moves at most a distance L = vt. Equating this length scale with the

length scale set by diffusion results in

L = vt =
√
Dt =⇒ L =

D

v
(3.26)

Our task at hand is to evaluate Eq. (3.25) for a single ±1/2 defect. We do so by

evaluating the LHS of Eq. (3.25) using the near-field solution and the RHS of Eq. (3.25)

with the far-field solution.

In the near field, using the approximate form of Q0 (Eq. (1.9)) to numerically compute

the LHS of Eq. (3.25) leads to

−Re

∫
d2x∇Q̄0v ·∇Q0 = −πv ln

( r0

1.126

)
(3.27)

In the far-field, A ≈ 1, and so the phase of Q1 to leading order satisfies

v ·∇θ +∇2θ = 0 (3.28)
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This equation, subject to the topological charge condition
∮
dθ = ±π where the contour

is taken around the ±1/2 defect, can be solved by introducing a dual function Φ which

satisfies [104]:

v ·∇Φ +∇2Φ = ±πδ(x) (3.29)

v̂ ·∇Φ + Φ = ±1

2
v̂ ×∇θ, v̂ ×∇Φ = ∓1

2
v̂ ·∇θ (3.30)

leading to

∇θ = ±1

2
e−v·r/2ε ·

[
vK0

(vr
2

)
− vr̂K1

(vr
2

)]
+ ε · vK (3.31)

where Ki(x) are modified Bessel functions of the 2nd kind, and K is a constant related

to the weak external phase gradient due to the other defects, mentioned previously.

Now evaluating the RHS of Eq. (3.25) using Eq. (3.31), and equating with the LHS of

Eq. (3.25) leads to the following relation for the velocity,

v ln
3.29

v
= ±2ε ·∇θext, (3.32)

where explicitly

∇θext(zi) = ∂i
∑
j 6=i

σj ln
rij
a

(3.33)

is the force felt at zi due to all of the other defects.
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3.4 Derivation of the multi-defect dynamics equa-

tions

To describe nematic dynamics in the limit of weak activity and low defect density, we shall

assume that the order parameter texture Q(z, z̄, t) stays close to the inertial manifold

Q0(z, z̄|{zi(t)}) parameterized by time-dependent defect positions:

Q(z, z̄, t) = Q0(z, z̄|{zi(t)}) + δQ(z, z̄, t) , (3.34)

where δQ is locally perpendicular to the inertial manifold as defined by∫
dzdz̄ ∂iQ̄0δQ =

∫
dzdz̄ ∂̄iQ̄0δQ = 0 . (3.35)

We thus rewrite the complex texture dynamics equation Eq. (3.7) as

żi∂iQ0 + ˙̄zi∂̄iQ0 + ∂tδQ = I

= −δF({Q})
δQ̄

+ αIα(Q) . (3.36)

Multiplying by ∂iQ̄0 and integrating over space, we find that

żj

∫
dzdz̄∂iQ̄0∂jQ0 + ˙̄zj

∫
dzdz̄∂iQ̄0∂̄jQ0 =

∫
dzdz̄∂iQ̄0I . (3.37)

Similarly, if we multiply by ∂̄iQ̄0 and integrate over space, we find that

żj

∫
dzdz̄∂̄iQ̄0∂jQ0 + ˙̄zj

∫
dzdz̄∂̄iQ̄0∂̄jQ0 =

∫
dzdz̄∂̄iQ̄0I . (3.38)

If we use the physical fact that in our ansatz, ˙̄zi is the complex conjugate of żi (which

means that in our time evolution |Q0| remains 1, which is the case in the deep nematic

limit), we can combine these equations as follows by taking the complex conjugate of the

first equation and adding it to the second, to get

Mij żj +Nij ˙̄zj =

∫
d2z[∂̄iQ̄0I + ∂̄iQ0Ī] , (3.39)
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where

Mij =

∫
d2z[∂̄iQ̄0∂jQ0 + ∂̄iQ0∂jQ̄0] (3.40)

Nij =

∫
d2z[∂̄iQ̄0∂̄jQ0 + ∂̄iQ0∂̄jQ̄0] . (3.41)

Up to now, the discussion has been general. We will now work in the limit of small

activity α� 1 and large defect separation ε−1 � 1. In this limit, δQ� Q0 because the

multi-defect texture Q0(z, z̄|{zi}) minimizes the LdG free energy to order O(ε2) on the

punctured plane with fixed zi. Thus to leading order

I(Q) ≈ I(Q0) . (3.42)

Now using the fact that

∂F
∂z̄i

=

∫
d2z∂̄iQ̄0

δF
δQ̄0

+

∫
d2z∂̄iQ0

δF
δQ0

, (3.43)

we find that∫
d2z[∂̄iQ̄0I + ∂̄iQ0Ī] =

∫
d2z∂̄iQ̄0[− δF

δQ̄0

+ αIα(Q0)] +

∫
d2z∂̄iQ0[− δF

δQ0

+ αĪα(Q0)]

= −∂F
∂z̄i

+ α

∫
d2z[∂̄iQ̄0Iα + ∂̄iQ0Īα] . (3.44)

To summarize, our defect dynamics equations are

Mij żj +Nij ˙̄zj = −∂F0

∂z̄i
+ Ui , (3.45)

with

−∂F0

∂z̄i
= 8π

∑
j 6=i

σiσj
1

z̄i − z̄j
(3.46)

being the Coulomb force computed by differentiating the Coulomb potential (Eq. (3.20))

and

Ui = α

∫
d2z[∂̄iQ̄0Iα + ∂̄iQ0Īα] (3.47)
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the active forcing.

It is perhaps not surprising that the equations of motion for zi(t) that we have ob-

tained minimize the deviation of the dynamics on the inertial manifold Q0 from the exact

equation of motion Eq. (3.7). That is, we minimize

E =

∫
d2z

∣∣∣∣∂tQ(z, z̄, t)− d

dt
Q0(z, z̄|{zi(t)})

∣∣∣∣2
≈
∫
d2z
∣∣I(Q0)− żi∂iQ0 − ˙̄zi∂̄iQ0

∣∣2 (3.48)

with respect to żi.
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3.5 Dynamics of defects in active nematics

In the previous section, we derived multi-defect dynamics using the variational principle.

In this section, we present the explicit form of the resulting equations of motion, using

the results for Mij from Appendix A.1 and for Ui from Appendix A.2, and discuss the

nature of the various terms.

3.5.1 Mobility matrix

The matrix Mij on the left hand side of Eq. (3.45) is the inverse mobility matrix [177]

representing the correlation in the motion of defects due to the non-orthogonality of

the associated textures of order parameter. A nonlocal mobility is known to occur for

colloidal particles in flow due to hydrodynamic interactions [177]. Evaluating Eq. (3.40)

in Appendix A.1, we find that

Mij ≈ 4πσiσj ln
L

rij
, (3.49)

where

rij =


|zi − zj| i 6= j

a ≈ 0.8ε i = j

(3.50)

and L is system size. Only the diagonal part of Mij receives contributions from the

defect cores.

3.5.2 Interactions due to active flows

We next present the result of evaluating the active forcing term Ui defined in Eq. (3.47).

In Appendix A.2, we show that

αUi = παa−1eiφiδ2σi,1 +
∑
j 6=i

fij , (3.51)
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where

fij = −2πα
σiσj

1− σj
q̄ij − (−1)δσi+σj,1qij

z̄i − z̄j
(3.52)

and

qij = eiφi
(
zi − zj
z̄i − z̄j

)σi−1

= e2i(1−σi)Φi
(
zi − zj
z̄i − z̄j

)σi−1

, (3.53)

with Φi = φi
2(1−σi) the defect phase defined in Fig. 3.3.

The first term in Eq. (3.51) is the well-known “self-propulsion” of the σi = +1/2

defect that arises from the flows that the defect itself generates [92, 97], with the phase

factor eiφi controlling the direction. The latter is therefore recognized as the polarization

(unit) vector of the +1/2 defect (see for e.g. [163, 164, 98]).

The second term describes forces induced by interaction with other defects, repre-

sented by the sum of pairwise terms, that like 2D Coulomb forces are inversely propor-

tional to the pair separation |zi − zj|. Unlike Coulomb forces, pairwise forces here are in

general non-reciprocal and depend on the relative positions of all other defects through

the phase factor eiφi , thus incorporating many-body effects. Note that q̄ij−(−1)δσi+σj,1qij

is real, corresponding to a central force, only in the case of σi = σj = 1/2. In all other

cases, this factor is purely imaginary, corresponding to active forces that act normal to

the line joining defect positions, thus resulting in a torque acting on the pair, that de-

pends on the orientation of the pair relative to other defects and the order parameter in

the far field.

Finally, for completeness we provide an explicit form of the multi-defect dynamics

equations including both passive and active forces. After eliminating common factor of

4π from both sides, these are given by

∑
k

(
σiσk log

L

rik

)
żk = 2

∑
j 6=i

σiσj
z̄i − z̄j

+
αeiφi

4a
δ2σi,1 −

α

2

∑
j 6=i

σiσj
(1− σj)

q̄ij − (−1)δσi+σj,1qij
z̄i − z̄j

.

(3.54)

The three terms on the right hand side are, in order, the Coulomb interaction, the
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active self-propulsion of the +1/2 defects, and the active interactions. This description

of defect dynamics has a number of new features discussed below.

3.5.3 Non-centrality and non-reciprocity in active interactions

In contrast to Coulombic interaction between defects, interactions mediated by active

flow cannot be described by additive pair potentials. Nevertheless, active force acting

on a given defect is represented as a sum of of pairwise terms which one interprets as a

force exerted by one defect on another, even though this force depends in a specific way

(through tensor qij appearing in Eq. (3.54)) on the global texture and hence on position

of all other defects.

The active pairwise force term in Eq. (3.54) has a non-trivial form and we now examine

it in greater detail. For a plus/minus disclination pair, we find that the force exerted on

defect i by defect j is:

fij = − iπα

1− σj
sin[2(1− σi)(Φi − θij)]

z̄i − z̄j
for σi 6= σj , (3.55)

where θij is the angle of the line joining zj to zi relative to the x-axis and we have used

φi = 2(1− σi)Φi ( mod 2π). Notice that here, and in the following expressions, Φi − θij

is the relative angle between the polarization and line connecting the defects. This force

acts perpendicular to the line connecting the defects and is clearly non-reciprocal since

σi 6= σj, hence |fij| 6= |fji|. As a result, the disclination pair will experience a net force

acting on its center of mass, as well as a torque which tends to rotate the pair until the

line joining the defect centers aligns with the far-field phase. This is particularly clear in a

system with just a single neutral disclination pair. In this case, 2(1−σi)Φi = 2σjθij +2ψ.

Hence sin[2(1 − σi)(Φi − θij)] = sin(2ψ − 2θij). Assigning σi = 1/2, σj = −1/2 (and
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(a) +1/2 and +1/2 defects (b) −1/2 and +1/2 defects (c) −1/2 and −1/2 defects

Figure 3.2: Sketches of the active forces between defect pairs in an extensile system

(α < 0). The blue arrows denote the forces, the red line joins the center of the two defects,

and φ = Φi − θij denotes the angle of the polarization relative to the line connecting the

two defects. For (+1/2,+1/2) pairs, the forces are radial, but for the (−1/2,+1/2) and

(−1/2,−1/2) pairs, they are perpendicular to the line connecting the defects, generating

rotations of the pair.

defining zi − zj = rije
iθij) we have

fij = −1

3

2iπαeiθij

rij
sin 2(ψ − θij)

fji =
2iπαeiθij

rij
sin 2(ψ − θij) . (3.56)

Due to the 1/(1−σj) prefactor in Eq. (3.55), the force acting on the plus-disclination

(i) is 3 times smaller than the force acting on the minus-disclination (j), resulting in a net

force acting on the center of mass, perpendicular to the axis of the pair. There is also a

torque Tij = 2
3
|fji|rij that rotates the pair so as to align θij with ψ - the order parameter

orientation in the far field. Physically, this dynamics is due to the entrainment of the

defects to the active flows generated by the global texture, with rotational invariance

broken by the nematic orientation in the far field.
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The force on a plus disclination at zi arising from a second plus disclination at zj is

fij =
2πα cos(Φi − θij)

z̄i − z̄j
forσi = σj = 1/2 . (3.57)

This force acts along the line connecting the two defects. For a pair of plus-disclinations

far away from all other defects, φi = φj +π, and so fij + fji = 0. Otherwise, φi 6= φj +π,

and so fij + fji 6= 0. This lack of reciprocity is due to the gradient of the “phase

field” of the nematic texture. The presence of other defects cannot be forgotten in this

case because a pair of same sign defects alone does not satisfy the boundary conditions at

infinity: at least two negative charge disclinations must be present to satisfy (topological)

charge neutrality. We also note explicit dependence of fij on the phase of Q at infinity, 2ψ,

(which additively contributes to φi). Rotating this phase would modulate the magnitude

of fij - an effect that is made plausible by noting that the same phase uniformly rotates

the active stress tensor everywhere and hence rotates the direction of active flow relative

to zi − zj.

Finally, for a pair of minus-disclinations the force acting on zi is given by

fij =
i2απ

3

sin(3(Φi − θij))
z̄i − z̄j

for σi = σj = −1

2
. (3.58)

Like the force in a neutral pair, this force also acts perpendicular to the line zi− zj, thus

generating a “2-body torque”. It is also non-reciprocal, thus yielding a net force acting

on the pair.

The nonreciprocity and non-central character of the forces between defect pairs arise

because the texture, as described by the Q tensor, is nonlinear in the director, hence in

the defect phases. So, even if we write the texture as a linear superposition of individual

defect phases, the flow generated by the texture is a nonlinear superposition of the flow

generated by individual defects. As a result, the flow near one defect depends on the

flow due to the other defects.
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(a) Two neighboring +1/2 defects (b) Two +1/2 defects separated by a

−1/2 defect

Figure 3.3: In (a), two neighboring +1/2 defects anti-align, and in (b), since the +1/2

defects are separated by a −1/2 defect, they align.

3.5.4 Dynamics of +1/2 defect polarization

To illustrate our results and make contact with earlier work [85, 98, 99], we also construct

an explicit equation for the dynamics of the polarization of a “tagged” +1/2 defect defined

by the phase φi in the field of other defects. Differentiating Eq. (3.19) with respect to

time, we obtain

dφi
dt

= −i
∑
j 6=i

σj

(
żi − żj
zi − zj

− c.c
)
. (3.59)

For simplicity, we evaluate this equation in the dilute limit, when interaction between

defects (and the off-diagonal elements of the mobility matrix) can be neglected and defect
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motion is dominated by the active drift of plus-defects, with the result

dφi
dt
≈ −icα

∑
j 6=i

σje
iφi

zi − zj
+ icα

∑
j+ 6=i

σj+e
iφj

zi − zj+
+ c.c

= −2cα Ei sin(Θi − φi)− 2cα
∑
j+ 6=i

σj+
rij+

sin(θij+ − φj+) , (3.60)

where c = [a lnL/a]−1. In the 1st term, we have defined

EieiΘi =
∑
j 6=i

σj
z̄i − z̄j

. (3.61)

and in the 2nd term, the sum over j+ runs only over plus-defects. Up to a numerical

factor, Ei is the “electrostatic field” at point zi due to other defects. The 1st term in

Eq. (3.60) describes the tendency of the plus-defect polarization in extensile (contractile)

systems to align (anti-align) with the direction of net Coulomb force acting on it. This

term already appeared in the equation for polarization dynamics derived in [98] by ex-

amining the dynamics of a single defect in the mean field of other defects. It is purely

kinematic in origin as it arises from defect self-advection. The second term in Eq. (3.60)

is new. The general structure of the polarization dynamics equation persists when de-

fect dynamics żi includes interaction terms of Eq. (3.54), which will cause the motion

of minus-defects contributing to the second term in Eq. (3.60). Finally, we note in our

formulation of the problem the equation for defect polarization dynamics is superfluous,

as this polarization is defined kinematically by defect positions via Eq. (3.19).

Explicit dependence of polarization on defect positions given by Eq. (3.19) provides

some useful insights. For example, it is easy to see that two neighboring plus disclinations

far removed from all other defects have their polarizations anti-align with each other

(independent of the orientation of the pair axis). However, the presence of a minus-

disclination (or plus-disclination) in between leads to the alignment of the polarizations of

the two flanking plus-disclinations (see Fig. 3.3). These effects have been noted in earlier

54



Multi-defect Dynamics in Active Nematics Chapter 3

work on defect orientation [163, 164], as well as in recent numerical and experimental

studies [168, 169].
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3.6 Discussion

We have presented a general formalism, based on the variational principle, to derive a

set of coupled ordinary differential equations governing multi-defect dynamics for a 2D

active nematic deep in the nematic phase. Our analysis goes beyond earlier work that

obtained the dynamics of a single “tagged” defect in the mean-field of other defects [98],

to capture the coupled dynamics of a many-defect texture. This yields a number of new

results and explicitly demonstrates the non-central and non-reciprocal nature of active

stress-induced defect-defect interactions [178].

Central to our approach is the realization that deep in the nematic state, order pa-

rameter textures stay close to a 2N-dimensional “inertial manifold” defined by the quasi-

static multi-defect solution Q0 parameterized by defect positions. By explicitly describing

multi-defect configurations, we obtain a closed formulation that describes defect dynam-

ics entirely in terms of the defect positions. This avoids the need to treat polarization as

an independent degree of freedom, as was done in earlier work [98]. Here the polarization

of the +1/2 defect and the orientation of the −1/2 as defined by the “defect phase” Φi

are expressed explicitly in terms of defect positions through Eq. (3.19).

Dynamics of the latter defines the relatively slow flow on the inertial manifold of

textures by comparison to the rapid (∼ O(ε−2)) rate of relaxation of deviations away from

the manifold. The separation of time scales that enables us to describe the dynamics of Q

by projecting it onto the inertial manifold holds as long as the mean separation between

defects is large compared to the coherence length ξ (ε2 � 1). In our analysis here, the

defect density was treated as given by the initial condition. More realistically, nematic

disclinations are subject to pairwise creation and annihilation. Extensive simulations of

the continuum equations of active nematics have demonstrated that the state of spatio-

temporal chaotic defect dynamics is characterized by a steady mean defect density `−2 =
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`−2
active ∼ α [94, 159, 96].

One of the new results of our analysis is the recognition that defect velocities are

directly coupled to each other through the inverse mobility matrix (on the left hand side of

Eq. (3.54)). This effect, while resembling a “collective drag”, is purely kinematic in origin

as it arises from the non-orthogonality of order parameter deformations, ∂iQ0, associated

with translational motion of individual defects. Off-diagonal elements of the mobility

matrix are only logarithmically smaller than the diagonal ones ∼ log(L/rij)/ log(L/a).
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Chapter 4

Extensions of Multi-defect Dynamics

in Active Nematics

In this chapter, we extend and build upon the material presented in Chapter 3 in several

different directions. First, as a check of our model, we compute the residual error and

present the results of various simulations. Then in considering the first excited states,

we allow the polarization to be dynamical. We also formulate the continuum model,

including the case where the polarization is dynamical. Finally, we initiate analysis on

the torus, an example of a non-trivial geometry, as well as on a finite disk.
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4.1 Residual

As a first check of our model, we can compute the residual error R2, which we define as

R2 =
E∫

d2z|I|2
(4.1)

We first compute R2 in the passive case (α = 0), and then in the active case (α 6= 0).

4.1.1 α = 0

When α = 0, we have

∫
d2z|Ipassive|2 ≈

∫
d2zA2

∣∣∣∣∣∑
<ij>

1

(z − zi)(z̄ − z̄j)

∣∣∣∣∣
2

(4.2)

which has leading part

∫
d2z|I|2 ≈ 4π

∑
<ij>

α2
iα

2
j log rij/a

r2
ij

(4.3)

The leading part of M−1
ij is

M−1
ij ≈

1

4πα2
i logL/a

δij (4.4)

and using

Vi = 8παi
∑
j 6=i

αj
ẑij
rij

(4.5)

we arrive at

R2 ≈ 1− 1

logL/a

∑
i

∣∣∣∑j 6=i
(2αj)ẑij
rij

∣∣∣2∑
<ij>

log rij/a

r2ij

(4.6)

If r is a typical separation between defects,

R2
α=0 ≈ 1− 1

(logL/a)(log r/a)
(4.7)
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Note that in this formula, we can take L to be the smallest L that contains all of the

defects. If we assume we have N defects, and if we assume r ∼ Nγa for some γ > 0, then

we find that

R2
α=0 ≈ 1− 1

γ(γ + 1)(logN)2
(4.8)

4.1.2 α 6= 0

When α 6= 0, the leading contribution of I comes from Iactive, so

Iactive ≈ −Q2
∑
i

αi
(z − zi)2

+
∑
i

αi
(z̄ − z̄i)2

(4.9)

Integrating

∫
d2z|I|2 = 2α2

∫
d2z

∣∣∣∣∣∑
i

αi
(z − zi)2

∣∣∣∣∣
2

=
Nπα2

2a2
(4.10)

where we have dropped the cross term which only appears if we have +1 defects.

Comparing to Eq. (4.3), we find that if

α2 � 8
∑
<ij>

(
a

rij

)2

log
rij
a

(4.11)

which is reasonable assumption since a/rij � 1, we find that Eq.4.10 dominates over the

other term.

Now using

Vi =
πα

a
Qiδ2αi,1 (4.12)

we find that

R2 ≈ 1− 2f+

logL/a
(4.13)

where f+ = N+/N is the fraction of +1/2 defects. Now if we assume charge neutrality,

f+ = 1/2, and so

R2
α 6=0 ≈ 1− 1

logL/a
(4.14)
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If r, the typical separation between defects, scales as r ∼ Nγa for some γ > 0, then

we find that

R2
α 6=0 ≈ 1− 1

(γ + 1
2
)(logN)

(4.15)

Thus comparing Eq. (4.15) to Eq. (4.8), we find that our ansatz for Q is better when

α 6= 0 because of the extra factor of logN , making R2 closer to 1 when α = 0.
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4.2 Numerical simulations

4.2.1 Method of Simulation

Our physical parameters are size of the square box L, the location of defects, g, and α.

We run three different sets of simulations:2 for the polarization, for eight defects, where

half each are +1/2 and −1/2 defects, and for a pair of −1/2 defects.

4.2.2 Polarization

One of the striking features of our model is that the polarization for defects are fixed by

the defect positions. We would like to check this prediction. In Fig. (4.1), we simulated

the dynamics of 40 randomly positioned defects (twenty +1/2 defects, and twenty −1/2

defects). We used the defect positions from the simulation to compute the value of po-

larization for each +1/2 defect based on our model, and compared it to the polarization

from the simulation. We found that the two are strongly correlated with Pearson cor-

relation coefficient of 93%! This is despite the fact that some of the defects annihilated

each other during the simulation.

4.2.3 Multi-defect interactions

For the case of 8 defects (half +1/2 defects and half−1/2 defects), we check our prediction

for the defect velocity with the actual defect velocity from simulation. We choose α = 0.2,

g = 10, and system is a square box of length 200. Initially the defects are randomly

positioned far from the boundary. We fix L by πL2 = L2
x, where Lx = 200 the size of

the box. We also study the effect of toggling the various terms in our prediction for the

defect velocities. We turn off one at a time the off-diagonal component of the mobility

2I would like to thank Zhihong You and Supavit Pokawanwit for sharing their code, which I adapted.
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Figure 4.1: Scatter plot of polarization (theory vs simulation). α = 1.0, g = 10, defects

are in a square box of size 20, and system is square box of length 100.

matrix, the motility term, the Coulomb term, and the active pair-wise force interactions.

We find that as expected the off-diagonal component of the mobility matrix is important

for the drag of the −1/2 defects, and in particular, its absence is responsible for the tilt

in Fig. 4.2(b). Similarly, we can see the importance of the other terms. We see in Fig.

4.2(c) that the motility is the most important term, followed by the Coulomb force. Since

α = 0.2 is small, the active pair-wise force interaction is much smaller than Coulomb and

turning it off does not have much of an impact.
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(a) Full prediction (b) Diagonal mobility (c) Motility term off

Figure 4.2: Scatter plot of velocity components (theory vs simulation) for four ±1/2

defect pairs randomly positioned far from the boundary. α = 0.2, g = 10, and system is

square box of length 200.

4.2.4 −1/2 defect pair

In order to isolate the effect of active pair-wise forces, it is best to consider the simplified

case of only two −1/2 defects, where there are no motile forces that dominate the dynam-

ics. In this case, we only have the collective defect drag force, the Coulomb force, and

the torque-like active pair-wise force. For a pair of −1/2 defects, we check our prediction

for the defect velocity with the actual defect velocity from simulation.

All length are in units of the coherence length ξ = 1/
√
g = 1/

√
10. System is square

box of length 150ξ, where ξ = 1/
√
g. Velocity components are in units of D/ξ, where

D is the diffusivity. Activity α = 1. In Fig. We plot the theoretical predictions for the

components of the defect velocities vs the simulation results (see Fig. (4.4)).
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Figure 4.3: −1/2 defect positions as a function of time t.

Figure 4.4: Parallel (left panel) and perpendicular (right panel) components of velocity

as a function of time t. For later time, agreement is within discretization error.
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4.3 Polarization deformation dynamics

Up to now, we have focused on ground state dynamics, where polarizations are frozen by

defect positions. Here, we extend our analysis by considering higher energy excitations

involving deformations of polarizations. The lowest energy configurations with deforma-

tion polarizations have been studied in [164] and they correspond to taking defect charge

σi to have an imaginary part. That is, we take σi → σ̃i = σi +
1
2
iγi, where γi ∈ R. Then

Q0(z)→ Q0(z)
∏
i

e
i
2
γi ln |z−zi|2 (4.16)

Qi → Qi

∏
j

e
i
2
γj ln |zi−zj |2 (4.17)

Therefore, writing Qi = eiθi , we have

θi → θi −Mijγj (4.18)

where Mij = ln L
rij

as defined previously. Due to boundary condition at infinity,

∑
i

γi = 0 (4.19)

For simplicity, we consider the passive case where α = 0 (but the analysis can easily be

extended to α 6= 0).

Differentiating E (Eq. (3.48)) with respect to z̄i, and γi, the equations of motion are,

respectively,

Mij żj +Nij ˙̄zj + Lij γ̇j =

∫
d2z[∂̄iQ̄0I + ∂̄iQ0Ī] (4.20)

Kij γ̇j + L†ij żj + LTij ˙̄zj =

∫
d2z[

∂Q̄0

∂γi
I + c.c] (4.21)
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where

Mij =

∫
d2z[∂̄iQ̄0∂jQ0 + ∂̄iQ0∂jQ̄0] (4.22)

Nij =

∫
d2z[∂̄iQ̄0∂̄jQ0 + ∂̄iQ0∂̄jQ̄0] (4.23)

Lij =

∫
d2z[∂̄iQ̄0

∂Q0

∂γj
+ ∂̄iQ0

∂Q̄0

∂γj
] (4.24)

Kij =

∫
d2z

[
∂Q̄0

∂γi

∂Q0

∂γj
+ c.c

]
(4.25)

First Mij becomes

Mij = δij4π|σ̃i|2 ln
L

a
+ (1− δij)4π ¯̃σiσ̃j ln

L

rij
(4.26)

Nij is unmodified

Nij = 0 (4.27)

Lij is

Lij = −2i¯̃σi

∫
d2zA2 1

z̄ − z̄i
ln

∣∣∣∣z − zj`

∣∣∣∣ = 4πi¯̃σizij

(
1

2
+ ln

L

rij

)
(4.28)

because

2

∫
d2z

1

z̄ − z̄i
ln
|z − zj|

`
= 4∂̄i

∫
d2z ln

|z − zi|
`

ln |z − zj|
`

(4.29)

= 2∂̄iKij (4.30)

= −4πzij

(
1

2
+ ln

L

rij

)
(4.31)

The passive part becomes to modified to

∫
d2z[∂̄iQ̄0Ipassive + ∂̄iQ0Īpassive] = 4π

∑
j 6=i

1

z̄ij
(¯̃σiσ̃j + c.c) (4.32)
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Putting it all together, we arrive at

∑
j

4π ¯̃σiσ̃j ln
L

rij
żj +

∑
j

4πi¯̃σizij

(
1

2
+ ln

L

rij

)
γ̇j = 4π

∑
j 6=i

1

z̄ij
(¯̃σiσ̃j + c.c) (4.33)

The mobility matrix for γ̇i is

Kij =

∫
d2z

[
∂Q̄0

∂γi

∂Q0

∂γj
+ c.c

]
= 2

∫
d2zA2

(
ln
|z − zi|

`

)(
ln
|z − zj|

`

)
(4.34)

By symmetry, we can write Kij = I(|zij|2). Now using the fact that

∂2Kij
∂z̄i∂zj

= π ln
L2

zij z̄ij
(4.35)

we find that I(u = zij z̄ij) obeys

−I ′ − uI ′′ = π ln
L2

u
(4.36)

and so

Kij = I = −2πr2
ij

(
1 + ln

L

rij

)
(4.37)

We now compute the Coulomb contribution. We first note that

Ipassive = ∇2Q0 + 2g(1− A2)Q0 = 4Q0

∑
<jk>

∂̄ logψj∂ logψk (4.38)

+Q0

∑
jk

[
− γj
z̄ − z̄j

γk
z − zk

+ 2i∂̄ lnψj
γk

z − zk
+ 2i

γj
z̄ − z̄j

∂ lnψk

]
(4.39)
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and so

∂Q̄0

∂γi
Ipassive + c.c

= 2A2 ln
|z − zi|

`

∑
jk

[
∂̄ lnψj

γk
z − zk

+
γj

z̄ − z̄j
∂ lnψk

]
+ c.c (4.40)

= 2A2 ln
|z − zi|

`

∑
jk

[(
∂̄ lnAj −

αj
z̄ − z̄j

)
γk

z − zk
+

γj
z̄ − z̄j

(
∂ lnAk +

αk
z − zk

)]
+ c.c

(4.41)

= 2A2 ln
|z − zi|

`

∑
jk

[
∂̄ lnAj

γk
z − zk

+
γj

z̄ − z̄j
∂ lnAk

]
+ c.c (4.42)

= 4A2 ln
|z − zi|

`

∑
jk

∂̄ lnAj
γk

z − zk
+ c.c (4.43)

= 2 ln
|z − zi|

`

∑
jk

∂r(A
2
j)
z − zj
|z − zj|

γk
z − zk

+ c.c (4.44)

Integrating, we have∫
d2zdiQ̄0Ipassive + c.c = 2

∫
d2z ln

|z − zi|
`

∑
jk

∂r(A
2
j)
z − zj
|z − zj|

γk
z − zk

+ c.c (4.45)

We now compute each term. We first note that because of phase integral,

∫
d2z ln

|z − zi|
`

∑
<jk>

∂r(A
2
j)
z − zj
|z − zj|

γk
z − zk

+ c.c = 0 (4.46)

Therefore, in the double sum, j = k. Using this observation, we compute:

2

∫
d2z ln

|z − zi|
`

∂r(A
2
i )

γi
|z − zi|

+ c.c = 8π

∫
dr ln

r

`
∂r(A

2
i )γi = 8πγi ln

a′′

`
(4.47)

where a′′ ≈ 1.04√
g

.
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2

∫
d2z ln

|z − zi|
`

∑
j 6=i

∂r(A
2
j)

γj
|z − zj|

+ c.c = 4
∑
j 6=i

ln
rij
`

∫
d2z∂r(A

2
j)

γj
|z − zj|

(4.48)

= 8π
∑
j 6=i

ln
rij
`

∫
dr∂r(A

2
j)γj (4.49)

= 8π
∑
j 6=i

γj ln
rij
`

(4.50)

Putting it all together,

∑
j

[(
4iπσ̃j z̄ij

(
1

2
+ ln

L

rij

)
żj + c.c

)
− 2πr2

ij

(
1 + ln

L

rij

)
γ̇j

]
= 8π

∑
j

γj ln
rij
`

(4.51)

Comparing the two expressions, we have

∑
j

4π ¯̃σiσ̃j ln
L

rij
żj +

∑
j

4πi¯̃σizij

(
1

2
+ ln

L

rij

)
γ̇j = 4π

∑
j 6=i

1

z̄ij
(¯̃σiσ̃j + c.c) (4.52)

∑
j

[(
4iπσ̃j z̄ij

(
1

2
+ ln

L

rij

)
żj + c.c

)
− 2πr2

ij

(
1 + ln

L

rij

)
γ̇j

]
= 8π

∑
j

γj ln
rij
`

+ C

(4.53)

where C is constant chosen to enforce
∑

j γ̇j = 0.
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4.4 Continuum limit

In this section we derive the continuum limit of our model. We define

ρ(r) =
∑
i

αiδ
2(r − ri) (4.54)

v(r) =
∑
i

żiδ
2(r − ri) (4.55)

We also define ϑ to be the deviation of the polarization θ from that determined by defect

positions. In other words,

θtot = θ + ϑ (4.56)

and it satisfies

∇2ϑ = 2πγ (4.57)

As a reminder, we consider the case where there is no activity, i.e. α = 0. We first

consider the simpler case of no polarization deformation dynamics allowed, and then we

allow polarization deformations to be dynamical.

4.4.1 Static polarization deformations case

Let n± be the number density of ± defects, φ the Coulomb potential, and ~J± the number

current density of ± defects. Explicitly,

n±(r) =
∑
i=±

δ2(r − ri) (4.58)

~J± =
∑
i=±

żiδ
2(r − ri) (4.59)

The continuity equation for n± reads

∂n±

∂t
+ ∇ · ~J± = 0 (4.60)
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For notational convenience, we also define the charge density and charge current

density as

ρ(r) =
1

2
(n+(r)− n−(r)) (4.61)

~J(r) =
1

2
(J+(r)− J−(r)) (4.62)

where the factors of 1/2 are due to the 1/2 charge.

Then the charge conservation equation is

∂ρ

∂t
+ ∇ · ~J = 0 (4.63)

and the Coulomb potential φ satisfies

∇2φ = −2πρ (4.64)

which has solution

φ(r) =

∫
d2r′ log

L

|r − r′|
ρ(r′) (4.65)

In terms of ~J and φ, the continuum limit of the defect dynamics equation for α = 0,

Eq. (3.54), is ∫
d2r′ log

L

|r − r′|
~J(r′) = −2∇φ (4.66)

Interestingly enough, the mobility matrix, in the continuum limit, can be viewed as

the 2D Green’s function, i.e., inverse of the Laplacian, and that will be crucial for us, as

we will now see.

To summarize, we are interested in solving the following set of coupled equations:

∇2φ = −2πρ (4.67)

∂ρ

∂t
+ ∇ · ~J = 0 (4.68)∫

d2r′ log
L

|r − r′|
~J(r′) = −2∇φ (4.69)
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Taking the divergence of Eq. (4.69), we have

−2∇2φ = ∇ ·
∫
d2r′ log

L

|r − r′|
~J(r′)

= −
∫
d2r′

(
∇′ log

L

|r − r′|

)
· ~J(r′)

=

∫
d2r′ log

L

|r − r′|
∇ · ~J(r′)

= −
∫
d2r′ log

L

|r − r′|
∂ρ(r′)

∂t

= − ∂
∂t

∫
d2r′ log

L

|r − r′|
ρ(r′)

= −∂φ
∂t

(4.70)

and so we arrive at a diffusion equation for φ

∂φ

∂t
= 2∇2φ (4.71)

We can view the diffusion equation as relaxational dynamics for the Coulomb energy

E =
∫
d2r(∇φ)2. Note that if assume that ∇ × ~J = 0, we could have instead started

here, i.e., assumed relaxational dynamics for φ and derived the mobility matrix, including

the off-diagonal terms, in the defect dynamics equation. Therefore the off-diagonal nature

of the mobility matrix is a necessary ingredient for the particle-vortex duality between θ

and φ, which we will now review. The phase θ describes the vortex, i.e., defects, and the

potential φ describes the density of the particles, i.e. defects. Explicitly,

θ(z) = −i1
2

∫
d2z′ log

z − z′

z̄ − z̄′
n+(z′) + i

1

2

∫
d2z′ log

z − z′

z̄ − z̄′
n−(z′) (4.72)

= −i
∫
d2z′ log

z − z′

z̄ − z̄′
ρ(z′) (4.73)

φ(z) = −1

2

∫
d2z′ log

|z − z′|2

L2
n+(z′) +

1

2

∫
d2z′ log

|z − z′|2

L2
n−(z′) (4.74)

= −
∫
d2z′ log

|z − z′|2

L2
ρ(z′) (4.75)
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Differentiating, we find that

∂φ = −i1
2
∂θ (4.76)

or in other words

dθ = 2 ∗ dφ, (4.77)

where ∗ is the Hodge star operator. This means that θ (which describes Q) is dual to φ

and this is a manifestation of particle-vortex duality.

Note that φ is always well-defined. However, Eq. (4.77) only defines ∇θ, not θ. In

order for θ to be well-defined, it follows from Eq. (4.76) that

∇2φ = ∇2θ = 0 (4.78)

from which follows that

ρ = 0 =⇒ n+ = n− (4.79)

∇ · ~J = 0 =⇒ ∇ · ~J+ = ∇ · ~Ji (4.80)

∂φ

∂t
= 0 =⇒ φ = φ(r) (4.81)

Now if we assume at infinity that θ and φ are constants, then they are both constant

everywhere since they are solutions of Laplace’s equation.

4.4.2 Dynamical polarization deformations case

We now allow the polarization deformations to be dynamical. We define

σ(r) =
∑
i

σ̃iδ
2(r − ri) (4.82)
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The set of equations can be expressed as

∫
d2z′


σ̄(z)∂∂̄G̃ 0 σ̄(z)∂̄G̃

0 α(z)∂∂̄G̃ −α(z)∂G̃

−∂G̃ ∂̄G̃ −1
2
G̃




α(z′)v(z′)

σ̄(z′)v̄(z′)

α̇(z′)− ˙̄σ(z′)

 (4.83)

= −
∫
d2z′


1

z̄−z̄′ (σ̄(z)α(z′) + α(z)σ̄(z′))

1
z−z′ (σ̄(z)α(z′) + α(z)σ̄(z′))

2 ln L
|z−z′|(α(z′)− σ̄(z′))

 (4.84)

where

G̃(z, z′) = |z − z′|2
(

1 + ln
L

|z − z′|

)
, (4.85)

which satisfies

∂∂̄G̃ = G(z, z′) = − ln
|z − z′|
L

. (4.86)

The third equation gives dynamics of γ and we find that it leads to conserved current,

that is,

∂tγ + ∇ · ~Jγ = 0 (4.87)

where

~Jγ = γ~v −∇γ + 2ε · ~Jρ (4.88)

~Jρ = ρ~v (4.89)

and ε is the 2D Levi-Civita symbol.

There are three contributions to ~Jγ: one along ~v, another perpendicular to ~v, and

the third along the gradient of γ. Note that interestingly enough, in addition to the

terms that we may expect, we have the extra term ε · ~Jρ, which may have interesting

consequences.
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In terms of ϑ, which satisfies

∇2ϑ = 2πγ (4.90)

and applying inverse of Laplacian, we find that

∂tϑ = ∇2ϑ+

∫
d2r′G(r, r′)∇ · (γ~v + 2ε · ~Jρ) (4.91)

which after integrating by parts becomes

∂tϑ = ∇2ϑ+

∫
d2r′

γ(~r − ~r′) · ~v + 2ρ(~r − ~r′)× ~v
|~r − ~r′|2

(4.92)

For the polarization êi of +1/2 defect (ignoring ϑ), we had obtained

d

dτ
êi = − α

2a
(~FCoul

i × êi)ε · êi +
α

a

∑
j+ 6=i

r̂ij × êj
rij

ε · êi (4.93)

Including the contribution of ϑ to θtot, and using Eq. (4.92), we obtain

d

dτ
êi = − α

2a
(~FCoul

i ×êi)ε·êi+A∇2ϑ+
α

a

∑
j+ 6=i

r̂ij × êj
rij

ε·êi+A
∫
d2r′

γ(~r − ~r′) · ~v + 2ρ(~r − ~r′)× ~v
|~r − ~r′|2

(4.94)

where A = logL/a. Comparing to Eq. A10 of [99], we see that their terms correspond

to the first two above and we get three additional terms.

The defect dynamics equation is now modified. What we had obtained when γ = 0

is for the dynamics of the potential φ, or equivalently ρ (related by ∇2φ = −2πρ), is

∂tφ = 2∇2φ (4.95)

∂tρ = 2∇2ρ (4.96)

Note that in particular, the 2nd equation can be written as

∂tρ+ ∇ · J̃ρ = 0 (4.97)
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where

J̃ρ = −2∇ρ (4.98)

Now we will work out the leading correction3 to this equation for small γ � ρ, and we

find that

∂tρ+ ∇ · J̃ρ = 0 (4.99)

where

J̃ρ = −2∇ρ+
γ

2
ε · ~v − 1

2π
∇
(
∇
(
γ

ρ

)
×∇φ

)
(4.100)

It thus follows that

∇ · ~Jρ = ∇ · J̃ρ (4.101)

and so (up to transverse piece)

ρ~v = −2∇ρ+
γ

2
ε · ~v − 1

2π
∇
(
∇
(
γ

ρ

)
×∇φ

)
(4.102)

3It is not hard to write the full equation, but we choose to not do so for simplicity of presentation.
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4.5 Geometry

Up to now, we have only considered the geometry of an infinite plane. Consequently, the

mobility matrix has a logL divergence, where L is the system size. We formally dealt with

this infrared divergence by assuming that the defects are confined to a subregion much

smaller than L. The analysis can be done on a finite disc using the method of images, or

alternatively, on the surface of a sphere or a torus, where the radius naturally suppresses

the divergence. We comment that studying these geometries is practically relevant as

well since experiments have realized active nematics on such curved surfaces [85, 87, 72].

Here we initiate the analysis on a finite disc and a torus, and consider the spherical

geometry in Chapter 6.

4.5.1 Torus

We now consider the case of the torus, a non-trivial geometry. Consider a periodic box

where we identify z ∼ z + 1 ∼ z + τ, where τ = τ1 + iτ2 (one can rescale by a factor of L

if one wants). The Jacobi-Theta function ϑ(z) = ϑ11(z, q) is defined to be

ϑ(z) = −2q1/4 sin(πz)
∞∏
m=1

(1− q2m)(1− q2me2πiz)(1− q2me−2πiz) (4.103)

where q = eiπτ . It is easy to check that

ϑ(z + 1) = −ϑ(z), ϑ(z + τ) = e−2πiz−iπτϑ(z) (4.104)

It is also important to note that ϑ(z) has no poles and vanishes only at z = 0, where

ϑ(z) = az +O(z2) (4.105)

Any elliptic function f can be written as a product of ϑ-functions as follows:

f(z) =
∏
i

ϑ(z − z+
i )

ϑ(z − z−i )
(4.106)
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where z±i are the positions of the ±1/2 defects. Note that for f to be well-defined on

the torus, i.e., f(z) = f(z + 1) = f(z + τ), we must have (due to shift symmetries of

ϑ-function) ∑
i

(z+
i − z−i ) = 0 (4.107)

which is consistent with Abel-Jacobi theorem. Therefore, our ansatz for the texture is

Q =
f(z)

|f(z)|
(4.108)

However, there is a way to relax this constraint at the expense of making f not just

a function of z. Since there is an equal number of poles and zeros, i.e. an equal number

of +1/2 and −1/2 defects at arbitrary positions, by taking instead

f(z, z̄) = e
− π
τ2

∑
i(z

+
i −z

−
i )(z−z̄)∏

i

ϑ(z − z+
i )

ϑ(z − z−i )
(4.109)

one can see that f(z, z̄) is single-valued, even if
∑

i(z
+
i − z−i ) 6= 0. Now our ansatz for

the texture becomes

Q = eiθ =
f(z, z̄)

|f(z, z̄)|
(4.110)

Note that this is still a good ansatz for us because it satisfies ∂∂̄θ = 0 as required in the

deep nematic limit.

4.5.2 Finite disk

In the case of a finite disk, there are corrections to Mij. We compute the finite size

contributions in a disc of radius R with a constant boundary condition on Q at |z| = R.

We use the method of images by replacing

log

[
z − zi
z̄ − z̄i

]
→ log

[
z − zi
z̄ − z̄i

]
+ log

[
z−1R2 − z̄i
z̄−1R2 − zi

]
, (4.111)
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since the added term is analytic for |z| < R. Since Nij ∼ O(R0), it suffices to compute

corrections to Mij. In other words, we are interested in computing

Mij = 2σiσjI , (4.112)

I =

∫
d2z

(
1− r2

R2

)2

(z − zi)(z̄ − z̄j)
1(

1− ziz̄
R2

) (
1− z̄jz

R2

) . (4.113)

Using z = rw, where w = eiφ, and doing the contour integral over w, we get

I = 2π
1

1− ziz̄j
R2

∫ R

a

dr

r

Θ(r − |zi|)−Θ(|zj| − r)
1− r−2ziz̄j

(
1− r2

R2

)
− 1

R2

∫
rdr

(
1− r2

R2

)2

1− r2ziz̄j
R4


(4.114)

Now doing the integral over r yields

Mij = 2σiσjI

= 2πσiσj

ln

(
R2 − ziz̄j

r2
ij

)
−

1− r2i+r2j
R2

1− ziz̄j
R2


+ σiσj

πR4
(
z̄jzi (3z̄jzi − 2R2)− 2 (R2 − z̄jzi)2

log
(
1− z̄jzi

R2

))
z̄3
j z

3
i (z̄jzi −R2)

= 4πσiσj

[
ln
R

rij
− 5

12
+

1

4R2
(z̄jzi ln

r2
ij

R2
+ r2

i + r2
j −

11

6
z̄jzi)

]
+O(1/R4) (4.115)
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Chapter 5

Defect Dynamics in Active Polar

Fluids

5.1 Introduction

Up to now, we have mainly focused on active nematics. Another class of active mat-

ter is active polar fluids, which consists of active polar units that tend to align, locally

generating polar order [32, 33, 109]. The phase diagram of active polar fluids has been

extensively studied (for example, [116, 158, 179, 113, 115, 180, 109]), and defects have

been observed in for example [55, 62, 56, 57, 114]. In contrast to active nematics, since

active polar fluids have long range order [105, 106], defects are not spontaneously gener-

ated, and if generated due to boundary effect for example, the defects are expected to be

transient [107, 108, 109]. That being said, aspects of dynamics of defects in active polar

fluids have been studied in [110, 111, 112, 113, 114, 115, 107]. Here we study transient

dynamics of defects, and give another perspective why they are transient.

In this chapter, we study both the transient and long-time behavior of defects in two-

dimensional active polar fluids in the limit of strong order and overdamped, compressible
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flow. As in [101, 100], we consider an approximation for the global texture motivated

from the passive case where the defects are widely separated and quasi-static, and use

the variational principle to find defect dynamics within this ansatz. Here we shall follow

the general approach of [100]. In contrast to previous work on the active nematics

model [75, 84, 92, 97, 100], in this model we find that there are no active self-propulsion

terms for the lowest charge (±1) energy excitations. Also in contrast to [100], we obtain

interactions between two defects that are neither central nor perpendicular to a central

force; they are generically non-central. By extending this ansatz to allow orientation

dynamics of defects, we find that the orientation of +1 defects, unlike that of ±1/2

defects in active nematics [100], is not locked to defect positions and relaxes to asters,

which we confirm with simulations. Moreover, using a scaling argument, we explain the

transient feature of active polar defects and show that in the steady state, active polar

fluids are either devoid of defects or consist of a single aster.

82



Defect Dynamics in Active Polar Fluids Chapter 5

5.2 The Model

We consider a two-dimensional polar fluid with density ρ and vector order parameter p

described by the free energy [10, 116] F({p}):

F({p}) = Fn({p}) + Fp({p}) , (5.1)

where

Fn({p}) =
1

2

∫
dxdy

[
C

(
δρ

ρ0

)2

+K Tr(∇p)2 + g(1− p2)2

]
, (5.2)

Fp({p}) =

∫
dxdyB

ρ

ρ0

∇ · p (5.3)

and ρ0 is the equilibrium value of ρ.

The first term, Fn({p}), is the usual free energy of a liquid crystal which contains only

terms even in p [10], and the second term, Fp({p}), contains additional terms that break

this p → −p symmetry. K is the Frank constant in the one-constant approximation,

and g controls the strength of polar order. We assume to be deep in the ordered state

(g → ∞), where the coherence length ξ =
√
K/2g is the smallest relevant lengthscale

and |~p| ≈ 1 except within polar defect cores of size a ∼ ξ. Although symmetry allows

us to write terms that are odd in p as in Fp, and that density fluctuations are generally

important for polar fluids, for simplicity of analysis and in order to connect with a nematic

we will assume that this contribution due to Fp({p}) can be ignored, for example by

imposing p → −p symmetry, or assuming that b is small, or we are in a region where

gradients in density are small.

Relaxation towards the minimum of the free energy while advection by flow v leads

to

∂tpi + v ·∇pi + ωijpj = − D

4K

δF
δpi

, (5.4)
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where D is the diffusivity and ωij = (∂ivj − ∂jvi)/2 is the vorticity. In the overdamped

limit, v = v0p, where v0 has the dimensions of a speed and represents the speed of an

isolated active particle. With this assumption, our equations now take the form of the

Toner-Tu equations [105, 106, 181] (see [182] for a clear exposition):

∂tpi +
v0

2
p ·∇pi = − D

4K

δF
δpi

, (5.5)

In Eq. (5.4) we have dropped the rate of strain alignment term [116, 32] because in 2D

and in the overdamped limit, its effect on dynamics can be represented by renormalizing

the advection term. We rescale length with `, where ` is the characteristic separation

between topological defects, and time with τ = `2/D. We assume that defects are widely

separated, that is `� ξ, and thus define the dimensionless small parameter ε = ξ/`� 1.

We also define the dimensionless activity parameter λ = v0/8D.

As in [100], it is convenient to adopt the language of complex analysis. In terms

of complex coordinates z = x + iy and z̄ = x − iy, the complex partial derivatives

∂ = ∂z = 1
2
(∂x − i∂y) and ∂̄ = ∂z̄ = 1

2
(∂x + i∂y), and the complex order parameter

p = px + ipy, the (dimensionless) free energy takes the form

F({p}) =

∫
dzdz̄

[
4|∂p|2 + ε−2(1− |p|2)2

]
. (5.6)

Finally, the equation of motion can be written as

∂tp = I(p) = −δF({p})
δp̄

+ λIλ(p) , (5.7)

where

Iλ(p) = −(p∂ + p̄∂̄)p . (5.8)
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5.3 Stationary and quasi-stationary textures deep in

the ordered state

For simplicity, we first consider the passive case where λ = 0. Then we are interested in

solving

∂tp = −δF({p})
δp̄

= 4∂∂̄p+ 2ε−2(1− |p|2) . (5.9)

Since this model was studied in [100], we will simply review it here. The single defect

solution is

p = ψ(z, z̄) = A(|z|)
(
z

|z|

)σ
, (5.10)

with the amplitude A(|z|) describing the defect core [104]: as r → 0, A(r) ∝ r, and for

r � ε, A(r) ' 1− ε2

4r2
.

The multi-defect solution takes the form

p0(z, z̄|{zi}) = eiψ
∏
i

Ψi = eiψ
∏
i

A(|z − zi|)
(
z − zi
|z̄ − z̄i|

)σi
, (5.11)

where ψ is the phase of p at infinity. This texture satisfies the boundary condition

p → eiψeiϕ
∑
i σi as |z| → ∞, where ϕ is the polar angle. In the special case of a charge

neutral system,
∑

i σi = 0, and so p is constant on the boundary.

In the limit ε → 0, the multi-defect texture p0(z, z̄|{zi}) is the minimizer of F(p)

when defects are pinned (see e.g. [183] and references within). In terms of the defect

positions zi, the free energy F0 = F(p0) takes the well-known form

F0 ≈ 2π
∑
i 6=j

σiσj log
|zj − zi|

L
, (5.12)

which describes a Coulomb interaction between defect charges [5], where L is the system

size. Due to the Coulomb interaction, even in the absence of any “activity”, the defect

85



Defect Dynamics in Active Polar Fluids Chapter 5

cores will move to minimize the free energy F0. Thus even though p0 textures minimize

the free energy when defects are pinned, they are only quasi-static when the defects are

no longer pinned.

As noted in [100], near a defect zi, we can write

p0(z, z̄) ≈ PiΨi(z − zi, z̄ − z̄i) . (5.13)

where

Pi = eiφi = eiψ
∏
j 6=i

(
zi − zj
|z − zj|

)σj
. (5.14)

is a phase factor that will play an important role in the active induced dynamics of the

defects. See Fig. 5.1 for a geometrical interpretation.

Finally, we note that for a global rotation, under which z → eiηz, the complex order

parameter transforms as p0 → p0e
iη(1−

∑
i σi). This implies that if

∑
i σi 6= 1, we can choose

η such that it eliminates the global phase factor ψ. In particular, we cannot eliminate

the phase for a single +1 defect. This obstruction is not surprising since +1 defects are

unique among defects in that they are rotationally invariant as p ∝ z. We will see in our

analysis that ψ plays a crucial role for +1 defects.
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(a) +1 defect (b) −1 defect

(c) aster (d) vortex

Figure 5.1: Sketches of single defect textures showing the angle φi (the phase of Pi) for

(a) a +1 defect where φi is the angle between Pi and r̂, (b) a −1 defect where φi/2 is the

angle of the separatrix. Special values of φi are shown in (c) and (d) for a +1 defect: (c)

is an aster (φi = 0), and (d) is a vortex (φi = π/2).
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5.4 Dynamics of active polar defects (interactions)

5.4.1 Method

We are interested in solving the following PDE:

∂p

∂t
= I(p) (5.15)

We do so by following the variational method used in [101, 100], which we now review.

We start by making the ansatz

p(z, z̄, t) = p0(z, z̄, {wa(t)}) (5.16)

where wa(t) (perhaps infinitely many) are parameters that need to be specified. (For

example, wa(t) can include the defect positions, but is not strictly limited to them.)

Once specified, wa(t) are computed by minimizing the deviation of dp0/dt from that

described by the equation of motion, Eq. (5.7). In other words, we minimize the error

E =

∫
d2dzdz̄

∣∣∣∣∂tp(z, z̄, t)− d

dt
p0(z, z̄|{wa(t)})

∣∣∣∣2
≈
∫
dzdz̄

∣∣∣∣I(p0)− ẇa
∂p0

∂wa

∣∣∣∣2 (5.17)

with respect to ẇa, where I is defined in Eq. (5.7). Of course, the goodness of our

minimization depends on the ansatz and the chosen parameters wa. We choose our

ansatz to be p0, because we know that when the defects are fixed and when λ = 0, p0

is a good solution [183]. Specifically, we assume that the defects are far away from each

other and that λ� 1, in which case p0 is a quasi-static solution to Eq. (5.7). Taking into

account that λ 6= 0 and the defects are not infinitely far away from each other leads to

motion of the defects, and we will assume that the time-dependence of p is only through

the defect positions zi(t), and that the motion is slow. In other words, we will make the
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ansatz

p(z, z̄, t) = p0(z, z̄, {zi(t)}) (5.18)

where we have chosen wa(t) to be zi(t), the defect positions.

Doing so, one finds that [100]

Mij żj +Nij ˙̄zj = −∂F0

∂z̄i
+ λUi , (5.19)

where

Mij =

∫
d2z[∂̄ip̄0∂jp0 + ∂̄ip0∂j p̄0] (5.20)

Nij =

∫
d2z[∂̄ip̄0∂̄jp0 + ∂̄ip0∂̄j p̄0] . (5.21)

are the mobility matrices,

F0 = −2π
∑
i 6=j

σiσj ln
|zi − zj|

L
, (5.22)

is the Coulomb free energy, and

Ui =

∫
d2z[∂̄ip̄0Iλ + ∂̄ip0Īλ] . (5.23)

The mobility matrices Mij and Nij have been calculated in [100] to be

Mij ≈ πσiσj ln
L

rij
(5.24)

Nij ≈ 0 . (5.25)

Before proceeding, we would like to emphasize that in order to determine zi, we are

doing a global fit within our ansatz that finds the zi that minimizes the error. That is to

say, although we interpret zi as the positions of defects, zi are simply parameters in our

ansatz for the global texture that act as a proxy for the defect positions, and similarly

żi are not the true velocities of the defects. If we were interested in calculating the exact

89



Defect Dynamics in Active Polar Fluids Chapter 5

(a) −1 and +1 defects (b) −1 and −1 defects

Figure 5.2: Sketches of the active forces fij for λ > 0. The blue arrows denote the two

components of the active force fij, and the red line joins the center of the two defects.

For each pair, fij = fji, and the net forces are generically non-central.

defect velocities, then we could do so with a local calculation which tracks the zeros of

p. However, we are interested in how p evolves everywhere, not just at specific points,

which is why we minimize the error E in Eq. (5.17). Note that the fact that our equations

depend on the system size L is not surprising given we are doing a global fit in a region

of size L. And, we have the freedom, if we are interested, to focus on the physics in a

subregion of size ` < L by minimizing Eq. (5.17) in this subregion.

5.4.2 Interactions

In Appendix B.1, we show that Ui (defined in Eq. (5.23)) can be explicitly written in

terms of the defect positions as

λUi = −8π ln
L

a
λP̄iδσi,2 +

∑
j 6=i

fij, (5.26)
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where in terms of the unit vector ẑij = (zi − zj)/|zi − zj| and its complex conjugate ˆ̄zij,

fij =
1

2
λσiσj ẑij

(
Piẑ

σi−1
ij I

(1)
ij − P̄i ˆ̄z

σi−1
ij I

(2)
ij

)
(5.27)

with

I
(1)
++ = I

(1)
−− = 2π

I
(1)
+− = I

(1)
−+ = 2π ln

L

rij
+O(L0)

I
(2)
++ = 2π ln

L

rij
+O(L0); I

(2)
−− = 0

I
(2)
+− = I

(2)
−+ = 2π . (5.28)

The first term in Eq. (5.26) is the “self-propulsion” of a +2 defect along the P̄i direction,

where Pi was defined in Eq. (5.14). Of course, we should not take this term too seriously,

because a +2 defect can be interpreted as a bound state of two +1 defects, which is

unstable because of the Coulomb repulsion. The second term in Eq (5.26) is the active

induced pair-wise interaction, and its leading dependence on distance rij between two

defects i and j is lnL/rij.

We now examine the net force. Since I
(1)
ij 6= I

(2)
ij , then fij is a generic non-central

force; in particular, it is also not orthogonal to the line connecting the two defects. We

also comment that since fij = fji, then the defect pair moves together, as if it is a bound

object. Another feature is that for a pair of −1 defects, there is no dependence on the

distance between the defects, unlike in cases of the neutral pair or pair of +1 defects.

See Fig. 5.2 and Fig. 5.3 for sketches.

We have learned that two +1 defects exert the same force on each other (same mag-

nitude and direction), as if they’re bound. In the limit that these defects are really close

to each other, then there is no reason a priori to expect that they are actually bound, as

our assumptions no longer hold. However, interestingly enough, the two defects behave
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(a) Two +1 defects (b) A single +2 defect

Figure 5.3: Sketches of active forces with λ > 0 for (a) two +1 defects, and (b), for a

single +2 defect (the “self-propulsion” force). The forces for both cases are essentially in

the same direction.

as if they’re a +2 defect, a bound state of two +1 defects, which is “self-propelled” in

the same direction, along its separatrix, consistent with the behavior of a +2 defect (see

Fig. 5.3). This did not have to be the case, and does not hold for the other defect pairs.
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5.5 Orientation dynamics

In the previous section, we ignored orientation dynamics. We now incorporate orienta-

tion dynamics and sketch out the argument here (the details of the computation are in

Appendix B.2). For simplicity, we consider a single defect of charge σ at the origin, in

which case our ansatz is

p0 = eiψ(t)

(
z

|z|

)σ
, (5.29)

where now the phase ψ(t) is dynamical. Choosing wa(t) = ψ(t) in Eq. 5.17 leads to∫
d2z| ∂p

∂ψ
|2ψ̇ =

λ

2

∫
d2z

∂p̄

∂ψ
Iλ + c.c (5.30)

and upon evaluation in a region of size ` near the defect, where a� `� L and a is the

core size,

π`2ψ̇ = −2πλ` sinψδσ,1 =⇒ ψ̇ = −2
λ

`
sinψδσ,1 . (5.31)

Only the solution for +1 defects is nontrivial, which for completeness is given by

ψ(t) = 2 arccot

(
e

2λ
`

t cot

(
ψ(0)

2

))
. (5.32)

Note that we can interpret Eq. 5.31 as relaxational dynamics

ψ̇ = −2

`

dV

dψ
(5.33)

for the potential V = −λ cosψ (see Fig. 5.4 for a plot). Thus for λ > 0, the defect will

relax to an aster (ψ = 0), and for λ < 0, the defect will relax to an inward-pointing

aster (ψ = π).4. In other words, there is a preferred phase. Stable asters have been

observed in related simulations [184, 185, 112, 113, 115, 107], as well as analyzed in

related models [186, 187, 110, 111, 112].

4Note that there is a symmetry of our system when λ→ −λ and p→ −p symmetry.
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Figure 5.4: Plot of V (ψ) for λ > 0 and λ < 0. Extrema are at ψ = 0, π. Minimum for

λ > 0 is at ψ = 0, whereas minimum for λ < 0 is at ψ = π.

We also check our theory with simulations. We evolve an isolated +1 defect for

nonzero λ = 1, where initially the phase ψ(0) = π/2. We computed the phase in two

different ways: a local computation, which locates the +1 defect and measures the phase,

and a global computation, which calculates the defect position and phase by minimizing in

a region of size ` = 30a� L = 300a the deviation of our ansatz p0 from the measured p0,

which is basically equivalent minimizing Eq. (5.17), as we did in deriving Eq. (5.31). We

find that initially and at long times, the two different measurements of the phase agree,

and even though they are not identical in the middle, they both are similar. Moreover,

we checked our measured global definition of ψ(t) vs that predicted from theory obtained

by integrating Eq. (5.33), and find remarkable agreement (see Fig. 5.5).

Given that our method suggests that there appear to be two different stationary solu-

tions for +1 defects (aster or inward-pointing aster, depending on the sign of λ), it raises

the question whether these solutions are stationary solutions of Eq. (5.7). By inspection,
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(a) +1 defect (b) −1 defect

Figure 5.5: Dynamics of the phase ψ(t) of a single +1 defect for λ > 0 with ψ(0) = π/2.

In (a), plot of local computation vs global computation of the phase ψ for a single +1.

Their ending points are the same, but they are not identical in the middle. In (b),

theoretical prediction vs simulation of ψ(t).

+1 defects, in particular asters or inward-pointing asters, are indeed stationary solutions

of Eq. (5.7).

Since the phase appears to be important, it is natural to ask if we can modify

our ansatz in Eq. (5.18) to take into account the phase, for example by taking Ψi →

eiφif(|z−zi|)Ψi, where for example as in [164] f(|z − zi|) = eiγi ln |z−zi| 5. We leave this

analysis to future work.

5We do not assume this form of f as this modified ansatz leads to an infinite free energy addition.
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5.6 Stationary solution through scaling argument

In this paper, we have focused on defects. Here we make contact with the discussion

contained in [109], and provide another perspective about why defects are transient in

active polar fluids.

We make use of a scaling argument. By inspection, there is a scaling symmetry; that

is, solutions obey6

p(z, t;λ) = p(z/β, t/β2; βλ) . (5.34)

We are interested in the stationary, longtime behavior, which means that we are looking

for p such that for any t

lim
γ→∞

∂

∂t
p(z, γ2t;λ) = 0 . (5.35)

From our scaling relation in Eq. 5.34, choosing β = γ is equivalent to finding p such that

lim
γ→∞

∂

∂t
p(z/γ, t; γλ) = 0 . (5.36)

We thus look for steady states for large λ. For large λ, the advection term in Eq. (5.7)

dominates, and thus long-time stationary states satisfy

∂tp = −λ(p∂ + p̄∂̄)p = 0 . (5.37)

We will now show that the only solutions to the above equation other than constant p is

a single aster or inward-pointing aster, which as we commented in Sec. 5.5 satisfies the

above equation. Because we are deep in the ordered phase, our ansatz is p = f(z)

f̄(z̄)
. Then

∂tp = −λ(p∂ + p̄∂̄)p = − λ

f̄ 2
(f∂f − f̄ ∂̄f̄) (5.38)

6For notational convience, we drop the explicit dependence on g. Explicitly, g scales as p(z, t; g, λ) =
p(z/β, t/β2;β2g, βλ). Since we are in the deep nematic limit, g → ∞, so it is unaffected by rescaling.
But for finite g, this is how it would scale.
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which vanishes only if ∂(f 2) = c1, where c1 ∈ R. Therefore, f 2 = c1z + c2, and so p is

constant if c1 = 0, and otherwise

p = eiψ
(z − zi)1/2

(z̄ − z̄i)1/2
(5.39)

where either ψ = 0 (aster) or ψ = π (inward pointing aster), depending on the sign of

λ; no other ψ is allowed. Note that this single aster stationary state is consistent with

the single vortex to aster transition, as in Eq. (5.33). We have thus provided another

perspective for transient behavior of defects.
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5.7 Comparison with active nematics model

5.7.1 Overview

In this section, we compare our model to the active nematics model studied in [100].

We first present a general overview, and then study the consequences. The similarities

are that both models advect an order parameter deep in the ordered phase and in the

overdamped limit. In the case of nematic, the order parameter is a rank 2 symmetric

traceless tensor Q, and in the case of polar, the order parameter is a vector. This

difference implies that there are extra terms in the advection of Q. In the case of

nematic, overdamped limit implies v = α∇ ·Q, where α is a measure of activity, and in

the case of polar, v = λp. This difference in dependence of length scaling implies that

in the nematic model, α cannot be scaled out of the problem, but in the polar model, λ

can be scaled out. Although these models are different, they are similar, and by studying

these models in depth it is interesting to learn which features are common and which are

model-dependent.

5.7.2 Forces

We now compare the forces. In the absence of activity, the models are equivalent. The

forces that arise because of activity are different. In the active nematics case, a +1/2

defect, the smallest allowed energy excitation, is “self-propelled”, whereas in the active

polar case, a ±1 defect, the smallest allowed energy excitation, is not “self-propelled”;

a +2 defect is “self-propelled”. Another difference between these two models arise in

the pair-wise interactions induced by activity. In the active nematics case, the active

forces are central for a (+1/2,+1/2) pair, and for the other pairs are orthogonal to line

connecting the defects. Also, the forces for (+1/2,−1/2) pair are non-reciprocal. All of
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(a) Aster bound state (b) Vortex bound state (c) Spiral bound state

Figure 5.6: In active nematics model, sketches of bound state of two +1/2 defects.

In (a), bound aster state in extensile system when ψ = 0, (b), bound vortex state in

contractile system when ψ = π, and in (c), bound spiral state in contractile system when

0 < ψ < π/2.

these forces fall off as 1/r, where r is the distance between the defects, and the magnitude

depends on the geometry, that is, overall phase of Q. In contrast, in the case of active

polar, the active forces are neither central forces nor orthogonal to the line connecting

the two defects. They are also always equal, and except for the −1 defect pair, goes as

lnL/r. Similar to active nematic, the magnitude of the force depends on the geometry,

that is, the phase of p.

5.7.3 Orientation dynamics / solutions

In this paper, we learned that +1 asters (inward-pointing asters) are stationary solutions

and that they are stable for λ > 0 (λ < 0). It is natural to ask whether in the nematic

model there can be stationary +1 defect configurations, and does the existence of solu-

tions, or stability, depend on the phase of the defects. We show that indeed solutions

exist, and the type of solution depends on the phase of the defects.

99



Defect Dynamics in Active Polar Fluids Chapter 5

We first check to see what happens if we incorporate orientation dynamics into the

active nematics model. The active nematics model has the following equation of motion,

∂tQ = I(Q) = −δF({Q})
δQ̄

+ αIα(Q) , (5.40)

where

δF({Q})
δQ̄

= −4∂̄∂Q− 2ε−2(1− |Q|2)Q (5.41)

Iα(Q) = −(∂Q∂Q+ ∂̄Q̄∂̄Q) + (∂2Q− ∂̄2Q̄)Q (5.42)

We work in the deep nematic limit (ε→ 0). For simplicity, we consider a single defect of

charge σ = ±1/2 at the origin, in which case our ansatz is

Q0 = eiψ(t)
(z
z̄

)σ
, (5.43)

where now the phase ψ(t) is dynamical. Minimizing the error

E =

∫
d2dzdz̄

∣∣∣∣∂tQ(z, z̄, t)− d

dt
Q0(z, z̄|ψ(t))

∣∣∣∣2
≈
∫
dzdz̄

∣∣∣∣I(Q0)− ψ̇ ∂Q0

∂ψ

∣∣∣∣2 (5.44)

with respect to ψ̇ (the analogue of Eq. (5.17)) leads to∫
d2z|∂Q0

∂ψ
|2ψ̇ =

α

2

∫
d2z

∂Q̄0

∂ψ
Iα + c.c (5.45)

(the analogue of Eq. (5.19)). We now evaluate both sides of this equation in a region

near the defect of size `. As before,∫
d2z|∂Q0

∂ψ
|2 = π`2 (5.46)
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We now evaluate the RHS. We have∫
d2z

∂Q̄0

∂ψ
Iα + c.c = (5.47)

− i
∫
d2z[−σ2(

Q0

z2
− Q̄0

z̄2
) + σ(σ − 1)(

Q0

z2
− Q̄0

z̄2
)] + c.c

= 0 (5.48)

which implies that

ψ̇ = 0 (5.49)

and we thus learn that the phase is frozen, in accordance with the expectation in [100].

Here there is no preferred orientation, unlike in the active polar case, where asters or

anti-asters are preferred, depending on the sign of λ.

In related models, +1 defect states consisting of two +1/2 defects have been observed

in active nematics [88, 168, 169], and in [98, 188], it was argued that the type of +1 defect

was determined by the activity: asters in extensile systems, and vortices in contractile

systems. This observation is related to our result of finding a stationary +1 defect in the

active polar model, as we will now see. We now review and present another argument

for the existence and stability of a stationary defect pair of two +1 defects in the active

nematics case.

Let’s consider two +1/2 defects situated on the real axis. The orientations of the +1/2

defects anti-align [163, 168, 169, 100]. For simplicity, let’s assume that the orientations are

along the real axis, so they either point away from each other (phase is 0), or toward each

other (phase is π). There are four forces: the defect drag force, the repulsive Coulomb

force, the self-propulsion, and the active induced pair-wise force. We will ignore the defect

drag force and active induced pair-wise force because they renormalize the velocity and

Coulomb force, respectively. In this case, for α > 0 (contractile), the +1/2 defects move

with constant velocity in the direction of their phase, and for α < 0 (extensile), the +1/2
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defects move with constant velocity in the opposite direction of their phase. Therefore,

at a unique separation r∗ the repulsive Coulomb force can balance the attractive self-

propulsion force depending on the sign of α and the phase. The configuration is stationary

for either extensile system and phase is 0 or contractile system and phase is π. In the

former, the two +1/2 defects form a bound aster state, and in the latter, they form a

bound vortex state (see Fig. 5.6). This argument was pointed out in [98, 189, 188].

Moreover, this bound state is stable to transverse fluctuations of the polarization [98].

Here we present an alternative argument. If the defects are not exactly aligned, one would

naively think that the self-propulsion will cause the +1/2 defects to go away from each

other. However, we will now show that as the defects move, the orientation readjusts in

such a way that it leads to inward spiral motion of the pair of defects. From arguments

presented in [100], in terms of this phase φ (the angle of the orientation, that is, the

deviation from radial line connecting the two defects), the solution takes the form

Q(z, t) = eiφ
z − zi(t)
|z − zi(t)|

z − zj(t)
|z − zj(t)|

(5.50)

where zi and zj are the positions of defects i and j, respectively. The orientation Qi(t)

of defect i is simply

Qi(t) = eiφ
zi(t)− zj(t)
|zi(t)− zj(t)|

(5.51)

Since +1/2 defects are self-propelled along their orientation, in the direction of Qi, then

they will always move at a constant angle φ relative to the radial line connecting the two

defects. Thus for example in contractile system, if φ is sufficiently close to 0, and the

activity is not too large, then the two defects will simply spiral towards each other (see

Fig. 5.6). The solution is thus stable, but not stationary.

Given that it seems that a composite made of a pair of +1/2 defects is a stationary

solution for the active nematic model and far away it looks like an aster or vortex, it is

natural to ask if an aster or vortex is actually a solution to Eq. (5.40). By inspection,
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(a) Asters (b) Vortices

Figure 5.7: Configuration of 1D chain of equally spaced +1 defects for active nematics

model that screens the activity term.

indeed a nontrivial solution is Q = ± z
z̄

(as one can easily check that the active term

Iα = 0), where the + sign corresponds to an aster and the − sign corresponds to a vortex.

Note that this solution of aster or vortex is consistent with the picture in Fig. 5.6, as any

other phase results in a non-stationary state. Thus a single aster or a vortex is indeed a

stationary solution to Eq. (5.40).

Screening of activity term by +1 defects in active nematics is similar to what we

found in active polar fluids. In active polar fluids, this is the only configuration which

screens the active term and that is the reason for transient behavior of defects. Is this

the case in active nematics or are there more general configurations that screen the active

term? Or can we extend this solution to allow multiple defects? A natural place to look

for this (ignoring the passive forces) is to look for configurations that screen the active

term (Iα = 0), as in the case of single aster/vortex. In the polar case, a single aster was

the only defect configuration that screened the active term. Here we will see that the
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situation (and solution) is more interesting for a nematic system.

We are thus interested in solving

Iα = 0 , (5.52)

where

Iα = −∂Q∂Q− ∂̄Q̄∂̄Q+ (∂2Q− ∂̄2Q̄)Q (5.53)

Deep in the ordered phase, Q = ±ei(f(z)+f̄(z̄)), and so

iQ
(
∂2fe2if + ∂̄2f̄ e−2if̄

)
= 0 (5.54)

Other than the constant solution, the unique solution is

f(z) = −i ln sin k(z − z0) (5.55)

where without loss of generality we can assume k ∈ R by rotation of z coordinate if

necessary and place the origin at z0. Therefore,

Q = ±ei(f(z)+f̄(z̄)) = ±sin kz

sin kz̄
. (5.56)

Notice that this vanishes at z = nπ/k, for n ∈ Z, and near each zero, Q ∼ ± z
z̄
. We

thus have an infinite chain of +1 nematic defects on the real axis, separated by π/k.

Because of the sign of Q, either the defects are all asters (when the sign is positive), or

the defects are all vortices (when the sign is negative). These configurations are depicted

in Fig. 5.7.

Ignoring the Coulomb term, we have analytically found a stationary 1D lattice solu-

tion. For example, in the geometry of a thin annulus (or equivalently, long channel with

periodic boundary conditions), we can imagine that the boundary condition balances the

Coulomb forces. In any case, this shows that Iα = 0 has a much more interesting set of

solutions than Iλ = 0, and deserves further study, pointing to the importance of defects

in active nematic systems as opposed to active polar systems.
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Chapter 6

Defect-driven morphodynamics of

active surfaces

6.1 Introduction

Morphogenesis, the origin of self-organized form in biology, results from the complex

interplay of mechanical and biochemical processes. To understand the dynamics of de-

velopment, we need to complement our knowledge of the molecular constituents that

unify many developmental programs across species with effective, coarse-grained theories

that couple flows, forces and self-regulation to generate shape and link them to testable

experimental predictions. At the cellular level, there are four geometric fields– cell num-

ber, size, shape, and position–that vary in space and time that are together responsible

for generating shape. In connection to the rest of this thesis, we focus on the epithelial

morphogenesis of nematically ordered cells. A particularly intriguing question in this

context is the role of topological defects in guiding or controlling morphogenesis, as has

been uncovered in a few different systems, such as cell extrusion [68, 67], layer forma-

tion [61], and the body shape of basal marine invertebrates such as Hydra [72]. Here,
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we attempt to address the question of a minimal theory that focuses on the relaxational

dynamics of the intrinsic geometry of active epithelial surfaces, complementing work

on evolving passive surfaces that has focused on/included allowing the induced geome-

try to relax e.g. [190, 191, 192], see [128] for a recent review. In particular, we focus

on the role of topological defects in determining how the intrinsic geometry of surfaces

changes (Fig. 6.1), inspired by the observations in two different epithelial systems: cul-

tured murine neural progenitor cells (NPCs) [67] which show the onset of bulges/pits

or sites of cellular apoptosis as a function of defect type, and Hydra [72] which shows a

correlation between the sign of the local Gaussian curvature and the sign of the defect, as

well as correlations between the formation of tentacles and the presence of bound arrays

of defects.

We model epithelial layers using the theory of active nematics. Although previously

discussed in Chapter 5, the following will be important for the discussion in this chapter.

Activity can induce a bound +1 defect state of two +1/2 defects, when the Coulomb

repulsion balances the self-propulsion of the +1/2 defects; depending on the sign of the

activity or equivalently, the orientation of the +1/2 defects [98, 188, 143], one then gets

either asters or vortices (see Fig. 5.6).7

7As discussed in Chapter 3, there are other forces, such as collective defect drag and activity-induced
pair-wise interactions, but we neglect these forces since they are subleading [100].
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1mm

Figure 6.1: Schematic of our model. The activity through the flow field feeds into the

model by stabilizing the nematic texture, and in particular the defects. The defects then

induce growth and curvature for the intrinsic metric, which gets realized as the induced

metric by the embedding. Image of Hydra in the center, adapted from [193] (approximate

scale bar).
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6.2 Minimal model

A minimal model that couples the relevant degrees of freedom in an active system must

allow for spatio-temporal variations in the two-dimensional nematic tensor Qµν , a velocity

field va determined by an activity parameter which we will denote by α and which is

controlled by the local nematic field, and the intrinsic 2D metric gµν (which can be

deduced from tissue geometry), in addition to the extrinsic geometry of the sheet. For

simplicity, here we will assume that the extrinsic geometry is harnessed to the intrinsic

geometry, and further assume that the dynamics of the other fields are controlled by

the gradient descent associated with variations in the free energy along with active flow

dynamics. There are two main contributions to the free energy that we consider: (i) a

contribution due to the nematic tensor Qµν = A[n̂µn̂ν − 1
2
δµν ], where A is the magnitude

of the nematic order, and n̂µ is the local director field (ii) a contribution purely due to the

metric gµν , so that the total free energy F is the sum of contributions from the nematic

field as well as from the intrinsic metric, with F = FQ + Fg.

For the nematic order parameter, the two-dimensional Landau-de Gennes free en-

ergy [10], FQ, in its covariant form can be written as

FQ =

∫
d2x
√
g[Kgβδ∇αQ

αβ∇γQ
γδ

+
1

4
ε−2(1− 4gβγgαδQ

αβQγδ)2]

=

∫
d2x
√
g[KTr[(∇ ·Q)2] +

1

4
ε−2(1− 4Tr[Q2])2] (6.1)

where gµν is the metric and ∇α is the covariant derivative associated with it. Here

K(> 0) is the elasticity in the single-elastic Frank constant approximation, and the last

term governs the isotropic-nematic transition, with ε controlling the microscopic nematic

correlation length.8

8One can also add βRTr[Q2] to FQ, where R is the scalar curvature. This term will be generated
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Inspired by the gradient dynamics of Ricci flow [194], we can write the free energy

due to variations in the metric Fg as

Fg =

∫
d2x
√
g[KϕRϕ− λ], (6.2)

where
√
g = exp(ϕ), with ϕ being a scalar field, Kϕ(> 0) is an elastic constant penalizing

changes in the Gauss curvature R, and λ = λ(t) is the term accounting for growth which

we can use to enforce the condition that the surface area does not change.

Then the dynamics of the nematic and metric fields associated with gradient descent

and advection by a non-equilibrium flow vc yields

∂tQ
αβ = −vc∇cQ

αβ + [Q,Ω]αβ − γ−1
Q gαµgβν

1
√
g

δF
δQµν

(6.3)

∂tgαβ = −(∇αv
c)gcβ − (∇βv

c)gcα − γ−1
ϕ

1
√
g

δF
δgαβ

, (6.4)

with Ωab = (∇avb −∇bva)/2 the vorticity, and γQ and γϕ are the viscous coefficients for

the dynamics of Qαβ and gαβ, respectively, with units of radians2/time.

Closure of the system (6.3)-(6.4) requires an equation for the active velocity field

generated by the active stress σαβ, which we assume is proportional to Qαβ, that is, σαβ =

α̃Qαβ [102, 33]. Here α̃ has units of energy density, with α̃ > 0 (α̃ < 0) corresponding to

contractile (extensile) activity. In the overdamped, biologically relevant limit, assuming

that flow arises due to the balance of active forces with the substrate friction µ, we write

vc = α∇νQ
νc (6.5)

with α = α̃/µ being what we refer to as the activity. Equations (6.3)-(6.5) are a closed set

of nonlinear partial differential equations that dictate the evolution of the nematic field

Qαβ and the intrinsic geometry gαβ as a function of the activity α, when complemented

depending on the choice of the two Frank constants in the non-flat geometry, and for simplicity, we will
ignore it for now.

109



Defect-driven morphodynamics of active surfaces Chapter 6

by appropriate initial and boundary conditions. We note that our theory is related to

but simpler than recent phase field models for active deformable shells [195, 196] that

account for both the induced and the intrinsic geometry of the manifolds.
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6.3 A limit of our model

To make progress in a minimal setting for epithelial morphogenesis, we choose 2D isother-

mal (conformal) complex coordinates z and z̄ such that [21]

ds2 = gzz̄dzdz̄ + gz̄zdz̄dz = 2gzz̄|dz|2 = eϕ|dz|2 (6.6)

and assume that the metric remains diagonal in these coordinates for all time. Fur-

thermore, since the nematic tensor Qµν is a traceless real bivector, we can write its

components Q = Qzz, Q̄ = Qz̄z̄, and Qzz̄, with Qzz̄ = 0, and Q = (Q̄)∗. In these

coordinates, FQ and Fg take the form

FQ =

∫
d2z
√
g[2Kgzz̄∇zQ

zz∇z̄Q
z̄z̄ + 2K ′gzz̄∇z̄Q

zz∇zQ
z̄z̄

+
1

4
ε−2(1− 4gzz̄gzz̄Q

zzQz̄z̄)2]

=

∫
d2z
√
g[2K|∇zQ|2 + 2K ′|∇z̄Q|2 +

1

4
ε−2(1− 4|Q|2)2] (6.7)

Fg =

∫
d2z
√
g[KϕRϕ− λ] (6.8)

where Q = Qzz and Q̄ = Qz̄z̄, | · | is defined in terms of the metric, the covariant

derivatives used are ∇zQ
zz = ∂Q + 2(∂ϕ)Q and ∇z̄Q

zz = ∂̄Q, and the scalar curvature

R = −4e−ϕ∂∂̄ϕ. We note that the asymmetry in the appearance of ∂ϕ between ∇zQ

and ∇z̄ is the underlying reason behind asymmetry in cell growth near defects: cells

accumulate at positive defects and deplete at negative defects. Note that K,K ′ > 0 in

order for the elastic energy to be positive.9

In terms of the eight independent parameters: K, K ′, ε, α, Kϕ, γQ, γϕ, and the

system size L, we can define a number of natural length and time scales: the nematic

coherence length ξ =
√
K +K ′ε, which is proportional to the defect core radius, the

9Here we have added a term ∝ |∇z̄Q|2 to FQ, which is equivalent to adding a term ∝ R|Q|2 to FQ.
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geometric coherence length `ϕ =
√
Kϕε, and the nematic response to curvature length

`R,Q =
√
|K −K ′|ε; and the relaxation times of Q and ϕ, τQ = γQε

2 and τϕ = γϕL
2/Kϕ.

This leads to the following dimensionless quantities: ξ/`ϕ, the ratio of coherence lengths

for the nematic field and intrinsic geometry (< 1 because extrinsic geometry variations

occur on scales large compared to the nematic defect core size); τϕ/τQ = (γϕ/γQ)(L/`ϕ)2

(� 1 because we assume that the long wavelength extrinsic geometry relaxes slowly

compared to the local nematic order); K/K ′, the ratio of the two different types of

nematic elastic deformations (∼ 1); and K/(γQα), the ratio of passive to active stresses,

which can be large or small.

6.3.1 Passive

Before moving towards understanding the role of active defects in driving the intrinsic

geometry of the surface, we first consider a passive nematic, when α = 0, so that the

dynamics for Q and ϕ in isothermal conformal coordinates can be written as

γQ∂tQ = 2Kgzz̄∇z̄∇zQ+ 2K ′gzz̄∇z∇z̄Q+ 2ε−2(1− 4|Q|2)Q (6.9)

γϕ∂tϕ = −KϕR + 4K|∇zQ|2 + 4Kgzz̄(Q∇z∇z̄Q̄+ Q̄∇z̄∇zQ)− 4K ′|∇z̄Q|2

− 1

2
ε−2(1− 4|Q|2)(1− 20|Q|2) + λ, (6.10)

where the new covariant derivative terms are ∇z̄∇zQ = ∂̄∂Q + 2(∂̄∂ϕ)Q + 2∂ϕ∂̄Q and

∇z∇z̄Q = ∂∂̄Q.

In the neighborhood of ±1/2 defects, we denote ϕ± and Q± as the local geometry and

nematic field, respectively. If we start with a flat configuration, with ϕ = 0, Eq. (6.10)
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describing the evolution of ϕ in the neighborhood of a defect simplifies to

γϕ∂tϕ
+ = 4K|∂Q+|2 + 2K(Q+∂∂̄Q̄+ + Q̄+∂̄∂Q+)− 4K ′|∂̄Q+|2

− 1

2
ε−2(1− 4|Q+|2)(1− 20|Q+|2) + λ (6.11)

γϕ∂tϕ
− = 4K|∂Q−|2 + 2K(Q−∂∂̄Q̄− + Q̄−∂̄∂Q−)− 4K ′|∂̄Q−|2

− 1

2
ε−2(1− 4|Q−|2)(1− 20|Q−|2) + λ (6.12)

Now noting that Q+ = (Q−)∗ and that in the vicinity of the positive (negative) defect

core ∂̄Q+ (∂Q−) = 0 leads to

γϕ∂tϕ
+ − γϕ∂tϕ− = 4K|∂Q+|2 + 4K ′|∂̄Q−|2 > 0. (6.13)

In the absence of net surface growth, this implies that ϕ will increase at a +1/2 defect

and decrease near a −1/2 defect. Interpreting ϕ as the log of the cell density (since the

Gauss curvature R = −4e−ϕ∂∂̄ϕ), we expect the cell density to increase (decrease) at

plus (minus) defects, which means we can interpret as cells accumulating (depleting) at

the defects.

In Fig. 6.2, we compare this result with observations from two different experiments.

In Fig. 6.2(a) is the initial profile of ϕ at t = 0 from our analysis, showing the dynamic

asymmetry between a plus and minus defect, which is consistent with the experimental

observations of cell density in the vicinity of defects in murine neural progenitor epithe-

lia [67]. In Fig. 6.2(b), we show that this asymmetry in the shape in the neighborhood

of ±1/2 defects is reflected in the Gauss curvature of the surface which is positive (nega-

tive) near a plus (minus) defect, consistent with independent observations in a different

experiment [72]. This correlation between the charge of the defects and the sign of the

curvature is a consequence of the relaxational dynamics of the metric even in an active

nematic, and as we will see later remains valid even at later (late) times.
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(a) (b)

Figure 6.2: Plots of (a) dϕ
dt

and (b) dR
dt

for a single +1/2 (in red) and a single −1/2 defect

(in blue) following from Eqs. (6.11)-(6.12), where R = −4e−ϕ∂∂̄ϕ. ϕ and R grow (shrink)

for a +1/2 (−1/2) defect. Inset: for comparison of dϕ
dt

, corresponding figure (growth rate

of normalized cell density) adapted from [67]. In both plots, parameters used are K = 1,

K ′ = 0, and ε = 1.

6.3.2 Active

We now turn to consider the effect of activity, i.e. α 6= 0. In complex coordinates,

∂tQ→ DtQ = ∂tQ+ vz∇zQ+ vz̄∇z̄Q− (∇zv
z−∇z̄v

z̄)Q and ∂tϕ→ Dtϕ = ∂tϕ+∇zv
zϕ.

We are thus led to the coupled equations (6.9)- (6.10) (with this substitution ∂t → Dt),

where in the over-damped, friction dominated limit,

vz = α∇zQ = α[∂Q+ 2(∂ϕ)Q] (6.14)

and ∇zv
z = ∂zv

z + (∂ϕ)vz.
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6.4 Stationary defect configuration

To solve equations (6.9)-(6.10) (with the substitution ∂t → Dt), motivated by the

experimental system in [72], we use a finite-difference scheme with periodic boundary

conditions to simulate a ring-like structure seen in Hydra. We find that an initial state,

defined by a flat geometry and defect configuration of a single +1 defect in the center

and two −1/2 defects on the edges, using the ansatz from [100], settles into a stationary

defect configuration of a ring of equally spaced +1 defects (bound state of two +1/2

defects) separated by pairs of −1/2 defects in a cylindrical geometry (see Fig. 6.3(a)),

similar to that observed in [72]. Activity plays a key role in stabilizing this configuration,

and in particular, the +1 bound state is a result of balance of Coulombic repulsion

force between the defects and motility (see Fig. 5.6). Indeed, the larger the activity

parameter for the extensile case α < 0, the tighter is the +1 bound defect. Moreover, the

curvature is positive near a plus defect, and negative near a minus defect, as can be seen

in Fig. 6.3(b). Plotting the profiles of |Q| and ϕ along the vertical y-axis, we find that

the peak in ϕ near the origin indicates outward bulging of the geometry. Moreover, the

profile of |Q| which is dictated by the nematic coherence length is much narrower than

the width of ϕ along the y-axis, which is expected given that the geometric coherence

length is larger than the nematic coherence length, i.e. `ϕ > ξ and similar to what was

observed experimentally in [67] and in numerical simulations of phase field models e.g.

[196].

In Fig. 6.3(d), a qualitative rendering of the shape associated with the presence of

these bound states provides a simple projective view of the body plan in the neighborhood

of the ring of tentacles, which we will now connect to tentacle formation in Hydra.
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(a) (b)

(c) (d)

Figure 6.3: We numerically integrate equations (6.9)-(6.10) (with the substitution ∂t →

Dt) to obtain steady state plots of (a) the magnitude of the nematic order parameter |Q|

and (b) the curvature density (given by −4∂∂̄ϕ). We note that the sign of the curvature

correlates with the sign of the defect, and that the defect configuration is a lattice of +1

bound states separated by pairs of −1/2 defects. In (c), we show the profile of the nematic

order |Q| (blue) and ϕ (red) along the y-axis. The profile of |Q|, which is dictated by

the nematic coherence length, is smaller than the width of the profile of ϕ since `ϕ > ξ.

In (d), we sketch the geometry for the tentacle configuration from our simulation. The

black dots represent +1 defects, the stars represent −1/2 defects, and black lines depict

the nematic order. Three of the −1/2 defects are on the opposite side. Parameters for

simulations: α = −0.8, K = 1, K ′ = 0, γQ = γϕ = 1, Kϕ = 4, and ε = 2, in terms of

which ξ = 1, `R,Q = 1, and `ϕ = 2. 116
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To ground these results, we turn to observations of epithelial morphogenesis in Hy-

dra, a small, fresh-water basal marine invertebrate that has been a model organism for

studying the dynamics of body shaping [197, 198, 72]. The tubular body of the organism

consists of a bilayer of epithelial cells which contains parallel, condensed supracellular

actin fibers, which align parallel to the body axis in the outer (ectoderm) layer and per-

pendicular to the body axis in the inner (endoderm) layer [199]. A variable number of

tentacles form a ring around the body, near the head, and form when a single +1 defect

is surrounded by a pair of −1/2 defects [72], with the sign of the curvature is correlated

with the sign of the defect, consistent with our results summarized in Fig. 6.3.

But what is the actual shape of the epithelium in three dimensions? We note that

knowing the intrinsic geometry does not always allow us to deduce the extrinsic geometry,

but it is possible to get an approximation by numerically solving the two-dimensional

Monge-Ampère equation as follows.

In terms of X i = (x, y, u(x, y)), the Monge representation of the surface in 3D, the

Gauss curvature R is given by

R(x, y) =
uxx · uyy − u2

xy

(1 + u2
x + u2

y)
2
. (6.15)

In terms of R, noting that (∆u)2 = u2
xx + u2

yy + 2u2
xy + 2R(1 + |∇u|2)2 allows us to

determine u for positive R by an iterative procedure,10

u(n+1) = P [u(n)] , (6.16)

where

P [u] = ∆−1
√
u2
xx + u2

yy + 2u2
xy + 2R(1 + |∇u|2)2 . (6.17)

(See [200, 201, 202] and references therein for more details, and [203] and [204] are

accompanying open source codes for the latter two references.) Expressing u as u =

10I would like to thank Xianfeng David Gu for explaining this method.
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(a) t = 0.004τϕ (b) t = 0.13τϕ (c)

Figure 6.4: In (a) and (b): snapshots from simulations of height u of tentacle in real

space near a +1 defect for early and late times, where insets (adapted from [72] are

snapshots of tentacle formation near a +1 defect for early and late times. In (c), plot

of the height h(t) at the center of the +1 defect as a function of time t. Red points are

data from simulation and blue curve is the fit h(t) = h0[1− exp(−t/τ)]1/2, where we find

that h0 = 4.46L and τ = 0.04τϕ. Initially, h(t) ∝ L
ξ
L
`ϕ
L
√

t
τϕ

and τ ∝ τϕ. All plots use

rescaled coordinates x′ = x/L, y′ = y/L, and t′ = t/τϕ.

u0 + δu, where u0 = β
2
(x2 + y2) is our initial seed for the iterative procedure, and δu is

a small correction, with β chosen so that β2 ∼ R at the peak, we can determine u for

representative times, as shown in Fig. 6.4. For our data, we did three such iterations.

Motivated by our simulations in Fig. 6.4, we now present a heuristic argument for

the dynamics of budding. From Eq. (6.11), at the center of a +1 defect,

∂tϕ
+ ∼ γ−1

ϕ K|∂Q+|2 ∼ γ−1
ϕ ε−2 = (L/`ϕ)2τ−1

ϕ , (6.18)

and so by taking the Laplacian,

∂tR ∼ γ−1
ϕ K∇2|∂Q+|2 ∼ (L/`ϕ)2τ−1

ϕ ξ−2 =⇒ R ∼ (L/`ϕ)2(t/τϕ)ξ−2 . (6.19)
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Combining this with the fact that at the center of a +1 defect core, h ∝ βL2, where L is

the separation between neighboring positive and negative defects, leads to

h2 ∝ RL4 ∝
(
L

ξ

)2(
L

`ϕ

)2

L2 t

τϕ
. (6.20)

Since the nematic order is a fast variable, we can assume it settles before the (slower)

geometric relaxation, the leftover dynamics is diffusive nature of the Ricci flow (essentially

the heat equation), leading to (ϕ−ϕeq)→ exp[−t/τ ], where τ ∼ τϕ. Similarly, this leads

to (h− h0)→ exp[−t/τ ].

These asymptotics are consistent with the fit we found that we found from our sim-

ulations in Fig. 6.4,

h(t)2 = h2
0

(
1− e−t/τ

)
, (6.21)

if we take h0 ∼
(
L
ξ

)(
L
`ϕ

)
L and τ ∼ τϕ.

We thus see that the relative size of the tentacle h0 to the average tentacle separation

L is

h0

L
∼
(
L

ξ

)(
L

`ϕ

)
. (6.22)

so that a tentacle can grow in two different ways for fixed tentacle separation (L): by

decreasing either the nematic (ξ) or geometric (`ϕ) coherence length.
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6.5 Discussion

To summarize, in this chapter we developed a minimal framework that couples the dy-

namics of an active nematic on a curved surface to the intrinsic geometry of the surface

via relaxational dynamics. This led to three simple conclusions: (i) the sign of the cur-

vature is correlated with the sign of the defect, (ii) cells accumulate and form mounds at

positive defects and are depleted at negative defects, and (iii) a stationary ring configu-

ration of equally spaced +1 defects separated by pairs of −1/2 defects can form. These

results are consistent with experimental observations in different systems such as neural

progenitor cells in-vitro and Hydra morphogenesis in-vivo.

A more complete description must include a complete characterization of the dynam-

ics of embedding and the possible time-dependence of isothermal coordinates, as well as

feedback on activity of the form α = α(Qµν , gµν , . . .), potential directions for future work.

We expect our formalism for active nematic liquids to apply well to other examples in

the context of animals where cell flow is relevant. However, we expect that in order to

study the morphogenesis of plants, where cell motion is minimal [132, 205], would require

a different formalism, for example, that of active nematic solids [206]. We outline some

of these directions in the next (and final) chapter.
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Future directions

In the remainder of this thesis, we breifly review what we have found and then discuss

extensions.
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7.1 Summary

In this thesis, we have expanded upon the dynamics of active matter and the interactions

between topological defects, and presented a simple model of morphogenesis, driven by

active nematics.

In Chapter 2, we developed a coarse-grained model that demonstrated how noise can

simultaneously generate both local nematic order and extensile stresses in a self-consistent

manner. We thus posed a solution to the question of why generally epithelial monolayers

have been observed to be extensile even though naively we would have expected them to

be contractile due to the acto-myosin contractile machinery.

Having presented a model for the generation of local nematic order, we explored

aspects of the dynamics of local orientational order in the remaining chapters. Starting

in Chapter 3, we explored the dynamics of defects in nematic systems. Motivated by

minimal energy configuration for pinned defects, we considered a multi-defect ansatz.

We then used the variational principle to optimize the parameters in our ansatz (in

this case, the defect velocities). We uncovered a number of novel features including:

a position dependent “collective mobility matrix”, the polarization being fixed by the

defect positions (no longer an independent degree of freedom), and non-reciprocal and

non-central active-induced interactions between defects.

In Chapter 4, we built upon this framework and considered natural extensions, in-

cluding: checking the validity of our ansatz through computation of the residual error

and various simulations, extending the ansatz by introducing a dynamical polarization

deformation variable (so now the polarization is no longer fixed and has its own dynam-

ics) in order so study excited states of our model (not just the ground state), formulating

the continuum model, and considering other topologies and geometries, such as the torus

and finite disk, which is applicable to actual experimental systems.
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In Chapter 5, we applied the techniques develped in the past two chapters to polar

active fluids, its cousin. Our results for polar active fluids include: non-central and

non-reciprocal interactions between defects, the importance of orientational dynamics,

in particular in relaxation to the single aster stationary state , and an explanation for

the transient feature of active polar defects via a scaling argument. Motivated by these

findings, we revisit active nematics and apply similar ideas, offering another explanation

as to why vortices or asters should emerge as bound states of a pair of +1/2 defects, and

relatedly the intriguing appearance of a stationary linear chain of equally spaced bound

states of pairs of +1/2 defects that screen the activity.

Finally, in Chapter 6, we applied these ideas and what we have learned in active

matter to the context of morphogenesis. We developed a minimal framework to study

the dynamics of a curved surface, driven by active nematics. In addition to allowing

the nematic order parameter to relax, we also allowed the intrinsic geometry to relax.

Doing so led to several consequences regarding defects: (i) the sign of the curvature is

correlated with the sign of the defect, (ii) cells accumulate and form mounds at positive

defects and are depleted at negative defects, and (iii) a stationary ring configuration of

equally spaced +1 defects separated by pairs of −1/2 defects can form. We applied this

framework to study the dynamics of cells in NPCs and Hydra.

In the last three sections of this thesis, we discuss exciting new directions of research,

corresponding to the three main research themes.
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7.2 Noise-induced active nematics

Chapter 2 highlighted the key role of noise arising from subcellular active processes in

mesoscopic models of tissue, something that has been little explored, opening up several

future directions.

A natural question that we did not answer in Chapter 2 is what is the microscopic

model? For example, we introduced a coarse-grained model, but did not specify exactly

where the noise comes from or how exactly it couples to biological systems or traction

forces. Continuing this theme of relation to experiments, it would be interesting to

estimate the active stresses with numbers relevant to real tissues and compare to real

tissues.

Cells can also coordinate their motion, leading to emergent or persistent migration.

Well-known examples include the collective directed migration of follicular cells in the

Drosophila egg-chamber [207, 208] and of epithelial cells in wound healing [209, 210].

The emergence of cell migration has been modeled in the literature by simply assuming

local alignment of traction forces of adjacent cells or alignment of cell tractions with the

local tissue flow, which at the continuum level, yield an instability associated with a

change in the sign of the traction damping rate τ−1 plus a saturating cubic term, as can

be derived from mesoscopic Vicsek-type models [211, 212, 181]. It would be interesting

to study whether effective alignment and collective migration can be generated from

noisy tractions, similar to how in our model local nematic order and extensile stress were

generated.

We can also generalize this idea of noise-induced spontaneous symmetry breaking:

in the classical regime (absence of noise), there was no order parameter breaking the

symmetry of the system, but in the non-classical regime (presence of noise), there was an

order parameter that broke the symmetry of the system by picking a preferred direction

124



Future directions Chapter 7

due to the noise. This can perhaps be a general mechanism in biology for generating

non-trivial value of order parameter which would be interesting to study.
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7.3 Multi-defect states

There are many possible and relevant extensions of the content presented in Chapters 3,4,

and 5. Pertinent to these chapters is the refinement of the quasi-stationary multi-defect

ansatz, first for simplicity restricted to the passive case and then generalized to the active

case. For example, we know that corrections to the ansatz will include the velocity.

There are two possible paths: one to attempt to formulate a perturbative scheme, and

the second to improve the ansatz using intuition. Relatedly, we studied these systems in

the limit of low defect density and low activity, and it would be interesting to extend our

analysis to the limit of larger defect density and larger activity, where chaotic, turbulent-

like behavior is observed, and in particular study the statistical mechanics of the defects.

Of course, we need to develop a continuum theory in order to do this, which we have

initiated and even by itself is a useful endeavor.

Both polar and apolar (antiferromagnetic) ordering of the polar +1/2 defects have

been reported in experiments and simulations by different authors [165, 150, 213, 149,

87, 98, 168, 169]. It has been suggested that the type and range of defect order may be

influenced by density fluctuations and viscous dissipation. While our model does not take

these effects into account, perhaps by extending the model we can use it to determine

the type and range of order. It would also be interesting to investigate more generally

the possibility of ordered lattices of defects that have been reported in simulations [167]

and in Chapter 6. To that end, we would need to study many-body interactions. Here,

we only explicitly considered pair-wise interactions, but by turning the crank we can

compute three-body interactions or even higher.

Although we have only considered active matter systems, in particular active nematics

and active polar fluids and their passive counterparts, we expect our framework to be

generically applicable to other systems containing defects. Lastly, here we have considered
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only classical systems, that is, absent of noise. Realistic biological systems are noisy, and

so we should incorporate the effects of noise. We can do so for example by formulating

a non-equilibrium effective action.
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7.4 Morphogenesis

We now direct our attention to morphogenesis, which in some sense is an amalgation of

the previous two research themes, and discuss various extensions.

7.4.1 Non-diagonal metric

Throughout Chapter 6, for simplicity, we have assumed that the metric is diagonal,

meaning that the off-diagonal components remain zero. However, we know that this

is not the case as δF/δgzz and δF/δgz̄z̄ do not vanish. There are two possible paths

towards remedying this problem. One option is to not assume that g is diagonal and

to evolve each of its components. Similarly, the diagonal components of Qµν will also

evolve. The equations now will get complicated as we cannot use any of the conformal

math simplifications. Another option is to make (z, z̄) dynamical, that is, have them

evolve so that at time t the metric is diagonal in the (z(t), z̄(t)) coordinates, which itself

raises its own complications. In any case, we leave this extension to future work.

7.4.2 Embedding and the induced metric

We also need to account for the fact that our surface is embedded in three-dimensional

space, and we want to have a dynamical model that explains the relation between the

intrinsic g in the above model and the embedding of the two-dimensional surface. A

simple way to incorporate X i is to set the intrinsic metric equal to the induced metric,

that is, assume

gαβ = ∂αX
i∂βX

i, (7.1)

and then vary the action with respect to X i since now X i is the fundamental field.

Morally speaking, minimizing the action with respect to gµν is equivalent to minimizing
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the action with respect to X i. Moreover, as long as the metric is sufficiently smooth,

there is a locally isometric embedding, so using the metric should be equivalent to using

the embedding as the embedding can locally be recovered from the metric [214, 215, 216].

We indirectly adopted the approach when we numerically obtained the embedding.

Another way around this problem is to introduce the following additional term to the

free energy

FX =
T

2

∫
d2x
√
ggµν∂µX

i∂νX
i, (7.2)

known as the Polyakov action [217] (see also [218, 219]), with T the surface tension. In

the absence of Qµν , the variation of FX with respect to g is

TXµν =
1
√
g

δFX
δgµν

=
T

2

(
Gµν −

1

2
gµνg

αβGαβ

)
= 0 (7.3)

where

Gαβ = ∂αX
i∂βX

i, (7.4)

leading to

Gµν =
1

2
gµνg

αβGαβ (7.5)

This means that g and G are related by

gµν = eϕGµν (7.6)

where ϕ is the conformal factor. Moreover, FX is conformal invariant, that it is, it

is invariant under gµν → eϕgµν where ϕ is conformal factor, and thus why our model

introduced in Chapter 6 is unchanged as a result. This term leads to

FX = T

∫
d2x
√
G = TA, (7.7)

where A is the surface area. Adding FQ and Fg to the free energy would modify Eq. (7.6)

and gµν would no longer be directly related to the induced metric. Nonetheless, this model

would still be interesting to study.
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Here we have considered the simplest model and not considered explicit couplings

between Qµν and X i. A reasonable extension would be to consider the following term to

the free energy that couples Qµν to X i:

FQ,X = C

∫
d2x
√
gQµν∂µX

i∂νX
i (7.8)

Then the free energy F = F [g,Q,X], and we would extremize F with respect to each of

these fields. In any case, we leave the extension of how to incorporate the embedding to

future work.

7.4.3 Regulation and feedback of v and other fields into activity

Here we assumed, as is standard, that the activity is constant. However, it could itself

depend on the various fields in our model which regulate and feed back into the activ-

ity [128]. More precisely, we can consider α = α(va, Qµν , gµν , . . .). Given the complexity

of biology, in particular the many degrees of freedom (perhaps even unknown), it might

seem an insurmountable task to elucidate the form of α. However, that being said, re-

cent progress has been made in fitting active polar theories by using the dynamics of

constrained topological defects [220, 221].

7.4.4 Other topologies and boundary conditions

We can also consider other topologies or boundary conditions. As in the case of Hydra,

we are interested in the topology of a sphere. If the shape is sufficiently elongated, like

an ellipsoid, we can view the bulk as a cylinder, which we can model by an elongated

torus, as in our simulations. Therefore, our results also apply to ellipsoidal geometries, as

in the case of Hydra. Nevertheless, it would be interesting to consider other topologies,

such as the sphere, or other boundary conditions, such as free boundary conditions, etc.
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Computational details for Chapter 3

In this appendix, we present the details of the computations for Chapter 3.
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A.1 Computation of Mab

We compute the metric tensor of the multi-defect manifoldMij by computing the “over-

laps”.

In the deep nematic limit, we can take A = 1:

Mij =
∫
d2z

σj
z̄−z̄j

σi
z−zi

= 2
∫
dzdz̄

σiσj
z̄[z−(zj−zi)]

= 2σiσj
∫ L
a

dR
R

∮
R

dz
i[z−(zj−zi)]

= 4πσiσj
∫ L
|zj−zi|

dR
R

(A.1)

so that

Mij = 4πσiσj log L
max(|zj−zi|,a)

. (A.2)

Here a = 0.8ε, as we will see below in a more careful treatment, by accounting for the

fact that near the defect core A 6= 1.

We can also calculate Nij, which is given by

Nij = −2

∫
d2z

σiσj
(z̄ − z̄i)(z̄ − z̄j)

. (A.3)

We first note that for i = j, Nii vanishes due to the phase integral. Thus below we

assume i 6= j.

Shifting z → z + zj and then rescaling z → zijz, we have

Nij = −2

∫
d2z

σi
z̄ − z̄ij

σj
z̄

= 2σiσj
zij
z̄ij

∫
dzdz̄

z̄(1− z̄)
. (A.4)

Splitting the region of integration to |z| < 1, and |z| > 1, and analytically expanding the

integrand near z = 0 (for |z| < 1) and z =∞ (for |z| > 1) yields

Nij = 2πσiσj
zij
z̄ij

. (A.5)
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Since we’re interested in the large L limit, |Mij| � |Nij|, and thus in this paper we will

ignore Nij and set Nij = 0.

We now consider a more careful treatment of the core for Mii. In order to compute

Mii, we need to take into account the fact that near defect cores, A 6= 1 [104, 5]. We

have

Mii =

∫
d2zA2

(
−∂̄ lnAi −

σi
z̄ − z̄i

)(
−∂ lnAi −

σi
z − zi

)
+

∫
d2zA2

(
−∂̄ lnAi +

σi
z̄ − z̄i

)(
−∂ lnAi +

σi
z − zi

)
= 2

∫
d2zA2

[
|∂ lnAi|2 +

σ2
i

|z − zi|2

]
=

∫
d2z

1

2
(A′)2 + 2σ2

i

∫
d2z

A2

|z − zi|2

= 4πσ2
i ln

L

a
, (A.6)

where a ≈ 0.8ε (using the approximate solution for A in Eq. (1.9)).
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A.2 Computation of Ui

In this appendix, we compute Ui (Eq. 3.47), from Chapter 3. We are interested in

computing

Ui =

∫
d2z∂̄iQ̄Iα +

∫
d2z∂̄iQĪα = I1 + I2 , (A.7)

where

I1 =

∫
d2z∂̄iQ̄[Q∂2Q− (∂Q)2]−

∫
d2z∂̄iQ[Q̄∂2Q+ ∂Q∂Q̄] (A.8)

I2 =

∫
d2z∂̄iQ[Q̄∂̄2Q̄− (∂̄Q̄)2]−

∫
d2z∂̄iQ̄[Q∂̄2Q̄+ ∂̄Q̄∂̄Q] . (A.9)

We compute I1 and I2 in order.

A.2.1 Computation of I1

Here we assume that A = 1, as is the case in the deep nematic limit. A more careful

treatment can be found later in this appendix.

We first note that

Q0∂
2Q0 − (∂Q0)2 = −Q2

0

∑
j

σj
(z − zj)2

(A.10)

Q̄0∂
2Q0 + ∂Q0∂Q̄0 = −

∑
j

σj
(z − zj)2

. (A.11)

Then

∂̄iQ̄0(Q0∂
2Q0 − (∂Q0)2)− ∂̄iQ0(Q̄0∂

2Q0 + ∂Q0∂Q̄0) =

2Q0
σi

z̄ − z̄i

∑
j

σj
(z − zj)2

. (A.12)

Therefore,

I1 ≈ 2

∫
d2zQ0

σi
z̄ − z̄i

∑
j

σj
(z − zj)2

. (A.13)
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We can write

I1 = Ileading + Isub , (A.14)

where

Ileading = 2

∫
d2zQ0

σ2
i

|z − zi|2
1

z − zi
(A.15)

Isub = 2

∫
d2zQ0

σi
z̄ − z̄i

∑
j 6=i

σj
(z − zj)2

. (A.16)

We explicitly compute and find that

Ileading = 4πσ2
i αQiδ2σi,1

∫
dr

1

r2
= 4πσ2

i

α

a
Qiδ2σi,1 , (A.17)

where

Qi =
∏
j 6=i

(zi − zj)σj
(z̄i − z̄j)σj

. (A.18)

We will see later in the subsection of this appendix that a more careful treatment again

yields a ≈ 0.8ε.

We now compute the subleading term Isub:

Isub ≈ σiσjQij

∫
d2z

(z − zi)σi
(z̄ − z̄i)σi

(z − zj)σj
(z̄ − z̄j)σj

1

z̄ − z̄i
1

(z − zj)2
, (A.19)

where

Qij =
∏
r 6=i,j

(zi − zr)σr
(z̄i − z̄r)σr

. (A.20)

Shifting z → z + zj, we have

Isub ≈ σiσjQij

∫
d2z

(z − zij)σi
(z̄ − z̄ij)σi

zσj

z̄σj
1

z̄ − z̄ij
1

z2
. (A.21)

Rescaling z → zijz, we have

Isub = σiσjqij
I

(1)
ij

z̄ij
, (A.22)
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where

qij = Qiẑ
2(σi−1)
ij (A.23)

I
(1)
ij =

∫
d2z

(z − 1)σi

(z̄ − 1)σi
zσj

z̄σj
1

z̄ − 1

1

z2
. (A.24)

We’ll now outline how to compute I
(1)
ij . We first make the change of variables

w2 =
z

z − 1
. (A.25)

Then we split the region of integration to |w| < 1, and |w| > 1, and finally, we analytically

expand the integrand near w = 0 and w =∞. Noting that I
(1)
ij vanishes unless the powers

of w and w̄ are equal yields

I
(1)
ij = (−1)δσi+σj,1

π

1− σj
. (A.26)

We want to remark that this expression is valid for (σi, σj) = (±1/2,±1/2).

A.2.2 Computation of I2

We first note that

Q0∂̄
2Q̄0 + ∂̄Q̄0∂̄Q0 = −

∑
j

σj
(z̄ − z̄j)2

(A.27)

Q̄0∂̄
2Q̄0 − (∂̄Q̄0)2 = −Q̄2

0

∑
j

σj
(z̄ − z̄j)2

. (A.28)

Then

− ∂̄iQ̄0[Q0∂̄
2Q̄0 + ∂̄Q̄0∂̄Q0] + ∂̄iQ0[Q̄0∂̄

2Q̄0 − (∂̄Q̄0)2] =

− 2Q̄0
σi

z̄ − z̄i

∑
j

σj
(z̄ − z̄j)2

. (A.29)

Therefore

I2 = −2

∫
d2zQ̄0

σi
z̄ − z̄i

∑
j

σj
(z̄ − z̄j)2

. (A.30)
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We now compute I2:

I2 ≈ −σiσjQ̄ij

∫
d2z

(z̄ − z̄i)σi
(z − zi)σi

(z̄ − z̄j)σj
(z − zj)σj

1

z̄ − z̄i
1

(z̄ − z̄j)2
. (A.31)

Shifting z → z + zj, we have

I2 = −σiσjQ̄ij

∫
d2z

(z̄ − z̄ij)σi
(z − zij)σi

z̄σj

zσj
1

z̄ − z̄ij
1

z̄2
. (A.32)

Rescaling z → zijz, we have

I2 = −σiσj q̄ij
I

(2)
ij

z̄ij
, (A.33)

where

I
(2)
ij =

∫
d2z

(z̄ − 1)σi

(z − 1)σi
z̄σj

zσj
1

z̄ − 1

1

z̄2
. (A.34)

To compute I
(2)
ij , we use the same method that we used to compute I

(1)
ij . Doing so

yields

I
(2)
ij =

π

1− σj
. (A.35)

Note that |I(1)
ij | = |I

(2)
ij |, and the sign differs only when σi + σj = 1.

A.2.3 A more careful treatment of the cores for Ileading

In order to quantify a in the leading contribution, we need to take into account the

deviation of A away from 1 near the defect cores. Doing so yields

Ileading = 2

∫
d2zQ0A

2

[
σ2
i

|z − zi|2
1

z − zi
− σi
z̄ − z̄i

∂2 lnAi

+|∂ lnAi|2∂ lnAi −
σi

z̄ − z̄i
(∂ lnAi)

2

− σ2
i

|z − zi|2
∂ lnAi + |∂ lnAi|2

σi
z − zi

]
. (A.36)
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We first compute Ileading by computing each term separately:

− 2

∫
d2zQ0A

2 σi
z̄ − z̄i

∂2 lnAi

= −πσiδ2σi,1Qi

∫
drA

[
AA′′ − (A′)2 − AA′

r

]
(A.37)

2

∫
d2zQ0A

2 σ2
i

|z − zi|2
1

z − zi
= 4πσ2

i δ2σi,1Qi

∫
dr
A3

r2
(A.38)

2

∫
d2zQ0A

2|∂ lnAi|2∂ lnAi =
1

2
πδ2σi,1Qi

∫
drr(A′)3 (A.39)

−2

∫
d2zQ0A

2 σi
z̄ − z̄i

(∂ lnAi)
2 = −πσiδ2σi,1Qi

∫
drA(A′)2 (A.40)

−2

∫
d2zQ0A

2 σ2
i

|z − zi|2
∂ lnAi = −2πσ2

i δ2σi,1Qi

∫
dr
A2A′

r
(A.41)

2

∫
d2zQ0A

2|∂ lnAi|2
σi

z − zi
= πσiδ2σi,1Qi

∫
drA(A′)2 . (A.42)

Combining all of these terms and computing, we find that

Ileading ≈

2πσ2
i αQiδ2σi,1

∫
dr

[
−A2A′′ + A(A′)2 +

2A3

r2
+ r(A′)3

]
≈ 4πσ2

i

α

a
Qiδ2σi,1 , (A.43)

where a ≈ 0.8ε (using the approximate solution for A in Eq. (??)).
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Appendix B

Computational details for Chapter 5

B.1 Computation of Ui

In this chapter, we compute Ui (Eq. (5.23)), from Chapter 5. We are interested in

computing

Ui =

∫
d2z∂̄ip̄0Iλ +

∫
d2z∂̄ip0Īλ = I1 + I2 , (B.1)

where

I1 = −
∫
d2z∂̄ip̄0p0∂p0 −

∫
d2z∂̄ip0p0∂p̄0 (B.2)

I2 = −
∫
d2z∂̄ip0p̄0∂̄p̄0 −

∫
d2z∂̄ip̄0p̄0∂̄p0 . (B.3)

Substituting for p0, we find that

I1 =
1

2

∑
j

∫
d2zp0

σiσj
(z̄ − z̄i)(z − zj)

(B.4)

I2 = −1

2

∑
j

∫
d2zp̄0

σiσj
(z̄ − z̄i)(z̄ − z̄j)

(B.5)
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It is convenient to rewrite the above as

I1 =
1

2

∫
d2zp0

σ2
i

|z − zi|2
+

1

2

∑
j 6=i

∫
d2zp0

σiσj
(z̄ − z̄i)(z − zj)

(B.6)

I2 = −1

2

∫
d2zp̄0

σ2
i

(z̄ − z̄i)2
− 1

2

∑
j 6=i

∫
d2zp̄0

σiσj
(z̄ − z̄i)(z̄ − z̄j)

(B.7)

The first term for I1 vanishes by phase integral. The first term for I2 is only non-zero

for σi = 2, in which case (since we are assuming that defects are well-separated), we can

approximate

−1

2

∫
d2zp̄0

σ2
i

(z̄ − z̄i)2
≈ −δσi,2

1

2
P̄i

∫
d2z

(z̄ − z̄i)2

|z − zi|2
4

(z̄ − z̄i)2

= −8πP̄iδσi,2 ln
L

a
(B.8)

which we can identify as the self-propulsion of a +2 defect. In the following, we will

explicitly be assuming that σi = ±1, so this term does not appear. Thus we can write

I1 ≈
1

2

∑
j

Pij

∫
d2z

(z − zi)σi
|z − zi|σi

(z − zj)σj
|z − zj|σj

σiσj
(z̄ − z̄i)(z − zj)

(B.9)

I2 ≈ −
1

2

∑
j

P̄ij

∫
d2z

(z̄ − z̄i)σi
|z − zi|σi

(z̄ − z̄j)σj
|z − zj|σj

σiσj
(z̄ − z̄i)(z̄ − z̄j)

, (B.10)

where

Pij =
∏
r 6=i,j

(zi − zr)σr
|zi − zr|σr

. (B.11)

First shifting z → z + zj and then rescaling z → zijz, we have

I1 =
1

2

∑
j

σiσjPij

(
zij
|zij|

)σi+σj
I

(1)
ij (B.12)

I2 = −1

2

∑
j

σiσjP̄ij

(
z̄ij
|zij|

)σi+σj−2

I
(2)
ij (B.13)

where

I
(1)
ij =

∫
d2z

(z − 1)σi

|z − 1|σi
zσj

|z|σj
1

z̄ − 1

1

z
(B.14)

I
(2)
ij =

∫
d2z

(z̄ − 1)σi

|z − 1|σi
z̄σj

|z|σj
1

z̄ − 1

1

z̄
(B.15)
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are integrals that need to be computed. For notation, let +(−) index denote plus (minus)

defect. Using techniques utilized in [100], we find that

I
(1)
++ = I

(1)
−− = 2π

I
(1)
+− = I

(1)
−+ = 2π ln

L

rij
+O(L0)

I
(2)
++ = 2π ln

L

rij
+O(L0); I

(2)
−− = 0

I
(2)
+− = I

(2)
−+ = 2π (B.16)

To summarize, Ui can be written explicitly in terms of the defect positions as

λUi = −8π ln
L

a
λP̄iδσi,2 +

∑
j 6=i

fij, (B.17)

where

fij =
1

2
σiσj

(
Pij ẑ

σi+σj
ij I

(1)
ij − P̄ij ˆ̄z

σi+σj−2
ij I

(2)
ij

)
(B.18)

can be interpreted as the active induced pair-wise force on defect i due to defect j. fij

can be rewritten as

fij =
1

2
σiσj ẑij

(
Pij ẑ

σi+σj−1
ij I

(1)
ij − P̄ij ˆ̄z

σi+σj−1
ij I

(2)
ij

)
(B.19)

or equivalently as

fij =
1

2
σiσj ẑij

(
Piẑ

σi−1
ij I

(1)
ij − P̄i ˆ̄z

σi−1
ij I

(2)
ij

)
(B.20)
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B.2 Orientation dynamics computations

In this Appendix, we derive the orientation dynamics (Eq. (5.31)), for Chapter 5

For simplicity, we consider a single defect of charge σ at the origin, in which case our

ansatz is

p0 = eiψ(t)

(
z

|z|

)σ
, (B.21)

where now the phase ψ(t) is dynamical. Choosing wa(t) = ψ(t) in Eq. (5.17) leads to∫
d2z|∂p0

∂ψ
|2ψ̇ =

λ

2

∫
d2z

∂p̄0

∂ψ
Iλ(p0) + c.c, (B.22)

where the Coulomb term vanishes because there is only one defect. We now evaluation

both sides of the above equation in a region of size ` near the defect, where a� `� L

and a is the core size. We first evaluate the LHS. Since |∂p0
∂ψ
| = 1, then∫

d2z|∂p0

∂ψ
|2 = π`2 . (B.23)

We now evaluate the RHS. We have

λ

2

∫
d2z

∂p̄0

∂ψ
Iλ(p0) + c.c = −λ

2

∫
d2z

∂p̄0

∂ψ
(p0∂ + p̄0∂̄)p0 + c.c

= i
λ

2

σ

2

∫
d2z(

p0

z
− p̄0

z̄
) + c.c . (B.24)

By phase integral, the above vanishes unless p0 = eiψ z
|z| , that is, σ = 1. Thus

λ

2

∫
d2z

∂p̄0

∂ψ
Iλ(p0) + c.c = −λ

2
sinψδσ,1

∫
d2z

1

|z|
+ c.c

= −2πλ` sinψδσ,1 . (B.25)

Putting it all together,

π`2ψ̇ = −2πλ` sinψδσ,1 =⇒ ψ̇ = −2
λ

`
sinψδσ,1 . (B.26)
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Intermittent collective dynamics emerge from conflicting imperatives in sheep
herds, PNAS 112 (2015) 12729–12734.

[47] J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller
et al., From disorder to order in marching locusts, Science 312 (2006) 1402–1406.

[48] D. H. Kelley and N. T. Ouellette, Emergent dynamics of laboratory insect
swarms, Scientific Reports 3 (Jan., 2013) 1073.

[49] M. Tennenbaum, Z. Liu, D. Hu and A. Fernandez-Nieves, Mechanics of fire ant
aggregations, Nature Materials 15 (2015) 54–59.

[50] M. Sinhuber and N. T. Ouellette, Phase coexistence in insect swarms, Phys. Rev.
Lett. 119 (Oct, 2017) 178003.
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[111] K. Kruse, J. Joanny, F. Jülicher, J. Prost and K. Sekimoto, Generic theory of
active polar gels: a paradigm for cytoskeletal dynamics, The European physical
journal. E, Soft matter 16 (January, 2005) 5—16.

[112] J. Elgeti, M. E. Cates and D. Marenduzzo, Defect hydrodynamics in 2d polar
active fluids, Soft Matter 7 (2011) 3177–3185.

150

http://dx.doi.org/10.1103/PhysRevX.9.041047
https://arxiv.org/abs/2007.02947
http://dx.doi.org/10.1103/PhysRevE.102.012607
http://dx.doi.org/10.1103/PhysRevLett.89.058101
http://dx.doi.org/10.1103/PhysRevLett.89.058101
http://dx.doi.org/https://doi.org/10.1016/0038-1098(72)90186-X
http://dx.doi.org/https://doi.org/10.1016/0038-1098(72)90186-X
http://dx.doi.org/10.1103/PhysRevLett.75.4326
http://dx.doi.org/10.1103/PhysRevE.58.4828
http://dx.doi.org/10.1103/PhysRevLett.118.078104
http://dx.doi.org/10.1103/PhysRevLett.120.258002
http://dx.doi.org/10.1103/PhysRevLett.120.258002
http://dx.doi.org/10.1146/annurev-conmatphys-031119-050752
http://dx.doi.org/10.1146/annurev-conmatphys-031119-050752
http://dx.doi.org/10.1103/PhysRevLett.92.078101
http://dx.doi.org/10.1103/PhysRevLett.92.078101
http://dx.doi.org/10.1140/epje/e2005-00002-5
http://dx.doi.org/10.1140/epje/e2005-00002-5
http://dx.doi.org/10.1039/C0SM01097A


[113] A. Gopinath, M. F. Hagan, M. C. Marchetti and A. Baskaran, Dynamical
self-regulation in self-propelled particle flows, Phys. Rev. E 85 (Jun, 2012) 061903.

[114] V. Schaller and A. R. Bausch, Topological defects and density fluctuations in
collectively moving systems, PNAS 110 (2013) 4488–4493.

[115] K. Gowrishankar and M. Rao, Nonequilibrium phase transitions, fluctuations and
correlations in an active contractile polar fluid, Soft Matter 12 (2016) 2040–2046.

[116] W. Kung, M. Cristina Marchetti and K. Saunders, Hydrodynamics of polar liquid
crystals, Phys. Rev. E 73 (Mar, 2006) 031708.

[117] D. W. Thompson, On Growth and Form. Cambridge Univ. Press, 1917.

[118] J. B. A. Green and J. Sharpe, Positional information and reaction-diffusion: two
big ideas in developmental biology combine, Development 142 (04, 2015)
1203–1211.

[119] A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of
the Royal Society of London. Series B, Biological Sciences 237 (1952) 37–72.

[120] T. Lecuit and P.-F. Lenne, Cell surface mechanics and the control of cell shape,
tissue patterns and morphogenesis, Nature Reviews Molecular Cell Biology 8
(Aug, 2007) 633–644.
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