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Abstract

It’s all in your eyes: Gaze tracking, synthesis, and redirection

by

Harsimran Kaur

The human eye manifests remarkable optical and mechanical characteristics

that can be exploited to determine where a person is looking. While the IR-

based devices can closely model such attributes, the webcam-based geometrical

methods for determining gaze often suffer from low accuracy due to their sensi-

tivity to estimated physical parameters. Over the past several years, a number of

data-driven gaze tracking algorithms have been proposed, which have been shown

to outperform classic model-based methods in terms of gaze direction accuracy.

These algorithms leverage the recent development of sophisticated CNN archi-

tectures, as well as the availability of large gaze datasets captured under various

conditions. One shortcoming of black-box, end-to-end methods, though, is that

any unexpected behaviors are difficult to explain. In addition, there is always the

risk that a system trained with a certain data set may not perform well when

tested on data from a different source (the “domain gap” problem.) In this work,

we propose a novel method to embed eye geometry information in an end-to-end

gaze estimation network by means of an “analytic layer”. Our experimental results

show that our system outperforms other state-of-the-art methods in cross-dataset

evaluation, while producing competitive performance over within dataset tests.

In addition, the proposed system is able to extrapolate gaze angles outside the

range of those considered in the training data.

For many gaze-related tasks, such as eye landmarks detection, obtaining man-

ual annotations for deep learning models is labor-intensive and prone to errors.
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Consequently, such models can be trained on the synthetic datasets, rendered us-

ing computer-graphics techniques. However, a model trained on these datasets

might not perform well on the eye images captured in the real world due to sig-

nificant photometric differences. We propose a domain adaptation algorithm to

translate the images in the synthetic domain to the target domain of real-world

images using an intermediate segmentation mask while preserving the annota-

tions from the synthetic domain. Our method outperformed the previous domain

adaptation techniques in maintaining the annotations, which is critical for training

deep learning models for downstream tasks.

We further augment this approach to control the gaze and attributes of the

generated eye image. We cast this problem as a style-based eye image synthe-

sis and separately train a gaze redirector network to manipulate the gaze of the

segmentation mask. The eye image with the target gaze is thus obtained by alter-

ing the gaze of the corresponding mask and then generating the eye image from

the modified mask, while preserving the style. Since the segmentation masks are

domain-independent, the whole pipeline does not require gaze labeled real-world

data for training, while still showing competitive performance with the previous

state-of-the-art algorithms trained on real-world gaze annotated datasets.
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Chapter 1

Introduction

The eyes can do a thousand things
that the fingers can’t.

Iranian Proverb

The eyes are the fascinating sense organs that empower us to perceive the

outside world. They not just enable us to navigate through our day-to-day lives

but also help us collect non-verbal cues from people around us to recognize their

mood, intention, and state of mind. Such visual cues are useful for computer

vision problems too. Enabling a computer system to detect a person’s gaze can

open up a whole new dimension of human-computer interaction.

The knowledge of the user’s gaze drives a host of applications in AR/VR

systems. For example, foveated rendering in VR that helps to save real-time com-

putations by selectively rendering in high definition only that portion of the scene

where the user is looking, and rendering the rest in lower resolution. In Assisted

Driving Systems, eye-tracking helps to alert the driver when their focus shifts

away from the road. Eye-tracking also finds applications in consumer behavior

analysis, market research as well as assistive technologies.

This research is inspired by the potential use of gaze tracking in a gaze-
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contingent screen magnification system. Screen magnification is a well-established,

popular technology for access to onscreen content. It is particularly helpful to peo-

ple with low vision for reading documents. One of its main shortcomings is that it

requires the user to continuously control the location of the focus of magnification

with the mouse or a track-pad, to ensure that the magnified content of interest is

within the screen view-port. This is a tedious process that may be time-consuming

and ineffective. Rather than using a touchpad or a mouse, it would be a seamless

experience for users to interact with the system using their gaze.

Determining where a person is looking is a challenging problem. IR-based gaze

trackers can model the optics of the eye with high fidelty and can exhibit high accu-

racy with angular error close to 1◦. Such devices use the refractions and reflections

of the light from the eye surface to obtain the center of curvature of the corneal sur-

face, a key point to compute the pupillary axis that is related to the gaze direction.

However, the use of specialized hardware, limit their widespread adoption. To

make eye-tracking accessible to more users, it is imperative to study webcam based

solutions. Several geometrical methods based on eye images have been proposed

for estimating gaze, but they often suffer from low accuracy (> 7◦ angular error).

Part of the problem is that it is challenging to compute some eye parameters which

are not perceivable from the eye images. The rough approximations can be made

for such features, but the accuracy of the model is highly sensitive to these pa-

rameters. On the other hand, machine learning based methods do not require the

explicit computations of eye features and map the appearance of the eye directly to

the gaze direction. They can be trained end-to-end on the gaze-labeled eye image

datasets and have shown to perform much better (4◦− 5◦), owing to the develop-

ment of effective CNN-based architectures and collection of large gaze datasets.
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Figure 1.1: Human gaze

Even so, their performance is limited

to the characteristcs of the datasets on

which they are trained and do not gen-

eralize well to the the samples obtained

outside of the distribution, unlike geo-

metrical models.

Consequently, we tackle the prob-

lem of webcam based gaze estimation

using a hybrid approach. We combine

the data-driven approach with the geometrical model for determining the gaze.

We do so by embedding an analytical layer into the neural network, and train

the network end-to-end on the gaze loss. Our method exploits the advantages

of CNN based models, making it robust to illumination and appearance changes,

while having the geometrical layer at the end enables the system to generalize

better to novel gaze angles.

Another approach for improving the gaze-estimation systems is by automat-

ically synthesizing realistic eye images with predetermined gaze direction. It

enables us to generate annotated data without manual efforts, for training the

data-driven models involving gaze estimation and intermediate tasks of pupil de-

tection, iris segmentation, etc. There are computer graphics methods for ren-

dering the eye images using underlying eye geometry and are automatically la-

beled with gaze and other eye features. However, they often lack realism and

exhibit a domain gap between the generated images and those sampled from the

real world. Conditional GAN-based domain adaptation methods can be applied

to translate the image from one domain to another. Previous domain adap-

tation methods could not faithfully preserve the gaze and eye landmark anno-
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tations between the source and the target domain. Our approach to alleviate

this issue is to generate the eye images from the ternary segmentation mask.

The segmentation mask consists of three re-

gions: the iris, the white sclera and the skin

area around the sclera. There are multiple ad-

vantages to deploying the mask for synthesizing

eye images. Firstly, the shape of the mask rep-

resents the gaze direction and thus can guide

the generation of eye images with specified gaze

direction. Secondly, it can also ensure that the eye region boundaries are preserved

between the mask and the synthesized image, if we train using the paired mask-

image data.

Figure 1.2: Mask-mediated eye image synthesis

The major challenge in the segmentation mask based approach is to procure

the masks corresponding to the real eye images. This would require manual an-

notations of boundaries that can be tedious and time consuming. Instead, we

make use of the segmentation mask automatically obtained from the simulated

eye image. We alternately train a segmenter using the masks corresponding to the

synthetic eye images, to extract noisy masks from real eye images, and a generator

that generates realistic eye images from the noisy segmented masks, progressively

improving the segmentation of the real eye images. Once we have the stable gen-

erator trained to generate realistic eye images from the corresponding masks, any

4



amount of labelled data could be generated corresponding to the ternary masks

that can by automatically obtained from the purely synthetic eye images.

Interestingly, since the segmentation masks control the gaze direction, they can

be manipulated to redirect the gaze in the synthesized images. A very interesting

and desired use-case for redirecting gaze is in video conferencing. We naturally

prefer to make an eye contact while interacting with other people. However in

virtual interactions, it is difficult to look straight to the camera to simulate an eye

contact while simultaneously being able to see the other person’s video stream on

the screen. For such scenarios, it is desirable to have a system to automatically

correct the gaze to the desired direction (normally towards the camera), even if

the user prefers to look at the screen instead. To redirect the gaze in the eye

Figure 1.3: Style-based eye image synthesis

image, from a segmentation mask, we ought to have a control over the attributes

of the generated image. Precisely, the generator should be able to preserve the

identity of the source eye image for which the gaze is manipulated. To achieve

this, the generator network is provided with the reference style image along with

the segmentation mask with the desired gaze angle. While the segmentation mask

5



provides a proxy to the target gaze direction, the additional eye image input guides

the generation of attributes like skin color and texture and the iris color of the

synthesized image. We call this as style-based eye image synthesis. The task of

gaze manipulation is limited to redirecting the mask, which can be achieved by

training a separate network using gaze labels corresponding to the masks extracted

from synthetic eye images. Importantly, since the segmentation masks are domain

independent, we do not need gaze-annotated real eye images.

The thesis is organized as follows: Chapter 2 has two sections. Section 2.1 pro-

vides an overview of the gaze estimation problem, along with some useful concepts

pertinent to understanding the problem itself. Section 2.2 describes the proposed

deep geometrical model for estimating gaze. We explain the motivation of the

approach followed by the details of the method. The proposed model is evaluated

on multiple datasets and compared to both the geometrical and appearance-based

techniques. The next chapters of the thesis are related to eye image synthesis.

Chapter 3 provides the related work on the same. Chapter 4 describes the pro-

posed method of eye image synthesis from segmentation masks. We also provide

the experiments on different downstream tasks that are driven by the generated

eye data. Chapter 5 provides the details on the proposed style-based eye image

synthesis along with its application to gaze redirection.

6



Chapter 2

Gaze Estimation

Of all the senses, sight must be
the most delightful.

Helen Keller

2.1 Background

We are interested in monocular gaze estimation from images taken from a

webcam. A typical setting involves a user sitting in front of a laptop or a desktop,

looking at the screen at distance of approximately 600 mm. We require a camera

with can either be embedded in the laptop or could be placed near the screen,

such that the person’s face is in its field of view. The gaze ray or the line of sight

is estimated by computing the 3d gaze origin and the gaze direction. We use

camera coordinate system as the reference frame and all quantities are measured

with respect to the camera. The screen which is usually not in the camera’s

FOV is calibrated using a mirror-based camera-screen calibration [86] method.

The screen pose information is necessary to compute the gaze target from the

intersection of gaze ray and the screen plane.
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Figure 2.1: Gaze estimation system

2.1.1 Eye Geometry

For understanding the eye gaze, we need to understand the eye geometry. The

human eye can be considered roughly spherical with a diameter of 24mm. The

eye ball is covered by an opaque layer of tissue called sclera except at the anterior

part. The anterior part is covered by a transparent layer called cornea. The cornea

lies in front of the iris and has a radius of about 7.8mm [4]. At the center of the

iris there is a small opening called pupil through which light enters the eye. The

pupil regulates the amount of light entering the eye by continuously expanding

and contracting. Fig 2.2a shows a labelled diagram of the human eye. The pupil,

the iris, and the sclera are the only visible portions of the eye. The border between

the iris and the sclera is called limbus. The center of the anterior corneal surface

is called corneal center. The line passing through the corneal center and the

pupil center is called the pupillary axis. The gaze direction is modelled as the

visual axis, which is the line joining the point of gaze, the corneal center and the

fovea. The fovea is a small region in the center of the retina which has the highest

8



(a) Diagram of the human eye [2] (b) Eye Schematic

Figure 2.2: The eye schematic

concentration of cones. These cones are responsible for perceiving fine details in

the human vision. Since we have full acuity in this small region, while reading a

text we have to move the eyes so that the light from the text falls on the fovea.

Since fovea lies at the offset of the line joining the the corneal center and the

pupil center, this leads to an angular difference between the pupillary axis and

the visual axis. These are called the kappa angles (κ). They are the Euler angles

of the rotation bringing the pupillary axis to the visual axis. The kappa angles

varies from person to person.

2.1.2 Problem Definition

Formally, let go be the gaze origin, and the gaze direction be given by v. Then

gaze ray g is defined as

g = go + λv (2.1)

Suppose the pose of the screen is given by ps and ns, where ps is the point on

the screen and ns is the normal to the screen plane. The 3d gaze target gt can be
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computed by intersecting the screen with the 3d gaze ray as

gt = go + λsv (2.2)

where

λs = (ps − go) · ns)
v · ns

(2.3)

2.1.3 Data Preparation and Normalization

Figure 2.3: Data normalization

The facial region and more impor-

tantly the eyes encapsulate most of the

information needed to compute gaze.

As a necessary first step, the eye/face

region is extracted from the images

by the camera that could also contain

lot of unnecessary background informa-

tion. Additionally, the gaze origin as

well as the direction also depend on the

pose of the head which has 6 DOF. The

data normalization is performed to re-

duce the headpose to 2DOF [122]. To

achieve this,six facial landmarks (eye

corners and mouth corners) are computed using face detection with dlib library

[49]. The pose of the head is defined with origin as the mid point of the two

eyes. The x-axis is along the eye corners from right eye to the left eye and the

z-axis point normally outwards from the face plan. The headpose is computed by

fitting a 3d mean face shape model using EPnP algorithm [60]. We extract and
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normalize the left and the right eye images separately. To normalize the images,

the camera is rotated such that the x-axis of head and camera coordinates become

coplanar, to make the eyes horizontal. This removes the yaw in the head rotation.

The camera is further rotated such that the z-axis is along the back-projected

line through the 2d mid point of the corresponding eye. The normalized camera

is further translated along the z-axis such that it is at distance of 600 mm from

the 3d eye mid point. This reduces the translation of the head to [0, 0, 600]T

and the rotation to 2DoFs accounting for pitch and roll. The images are warped

corresponding to the normalized camera and the ground truth gaze target is also

converted to the new camera domain.

Mathematically, suppose head pose rotation matrix is given by Rh = [rx, ry, rz],

and the translation is th. The unit vector t̂h along th is given by th
‖th‖

Then the

rotation Rn from the original camera to the normalized camera is given by Rn =

[nx,ny,nz] , where

nz = th

‖th‖
(2.4)

ny = nz × rx

‖nz × rx‖
(2.5)

nx = ny × nz

‖ny × nz‖
(2.6)

The scaling matrix resulting from the translation of the camera along the z-axis is

given by S = diag(1, 1, 600
‖th‖

). The image corresponding to the normalized camera

is obtained by warping the original image using the perspective transformation

W given by KnSRn
TK−1 where K is the original camera matrix and Kn is the
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normalized camera matrix. The corresponding gaze target gt will be transformed

as Rn
Tgt + tn, where tn = [0, 0, ‖th‖ − 600].

The gaze origin is generally assumed as the mid point of the 3d eye-corners

obtained by computing the headpose. The corresponding gaze direction is given

by

v = gt − go

‖gt − go‖
(2.7)

The unit vector has two degrees of freedom and can be represented in euler angles

as pitch θ and yaw φ and are given by

θ = arcsin(−vy) (2.8)

φ = arctan(−vx,−vz) (2.9)

The gaze direction is reversed such that the camera look direction angles become

(0, 0). In our method, along with the gaze direction, we also compute the gaze

origin which we call "pseudo eye center".

2.1.4 Metrics

The most common metric for evaluating gaze methods is the angular error

between the gaze direction n computed from ground truth gaze target and gaze

direction np predicted by the underlying algorithm. The angular error is calcu-

lated as

θerror = arccos(n · np) (2.10)
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This can be translated to error on the screen at a distance d as d tan θerror. For

a typical distance of 600 mm and an angular error of 4◦, this corresponds to 42

mm.

2.2 Deep Model-Based Gaze Estimation

Measuring gaze direction from an image of the viewer (taken, for example,

by a laptop camera) has proven a challenging task. To date, the most successful

approaches have been based on deep network models [15]. These systems take the

whole image, or a cropped portion thereof containing one or both eyes, together

with some information about the viewer’s head pose, to produce the gaze direction

in a suitable reference frame. While providing generally accurate results, this

mechanism has a few well-known shortcomings, such as its dependence on the

dataset used to train the network (the “domain gap” problem), and its lack of

explainability (vaguely defined as the ability to justify unexpected results).

A different strategy, which predates purely machine learning approaches, is to

leverage the known mechanical and optical characteristics of the human eyeball.

For example, IR gaze trackers [32] use active illumination to measure the center

of curvature of the cornea as well as the pupil center, from which they compute

the pupillary axis [5]. While this mechanism cannot be replicated using regular

webcams, it is reasonable to assume that the ability to measure specific anatomical

properties of the eye could be beneficial for gaze estimation. Consider for example

measurement of the pupillary axis, which can be used as a proxy for the visual

axis (modulo the κ angles, which describes the relative position of the two axes

when looking straight ahead). The pupillary axis1 connects the pupil center with
1Note that in the literature (e.g. [32]), the pupillary axis is often misnamed as the “optic axis",

the latter being the line of best fit through the centers of curvature of the different refracting
surface within the eyeball [5].
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the anterior corneal center of curvature. It is situated close to what could be

considered in first approximation the “eye center”, or center of rotation of the

eyeball, a point that moves only minimally with eye rotation. Hence, pupillary

axis estimation boils down to the measurement of the location of the pupil center

(a relatively simple task), thanks to its location in the center of the iris) and of

the eye center, which can be considered a function only of the (measurable) head

pose.

A common criticism of this class of algorithms is that their results are highly

sensitive to errors in the estimation of the physical parameters considered (in the

example above, pupil and eye center location). This is certainly true, and this

error sensitivity can be quantified (Sec. 2.2.4). However, the fact that this type

of error modeling is not available for “black box” neural networks, does not mean

that these systems are immune to errors (as due to, e.g., image noise). Indeed, the

ability to describe the cause of errors, and thus to predict the quality of the results

and to “explain” possible malfunctioning, can be considered an asset, rather than

a shortcoming.

One well-known problem of model-based approaches to gaze estimation is that

some of the parameters to be measured (such as the eye center) are not directly

observable. This is particularly vexing when trying to use machine learning algo-

rithms for estimating these parameters: lacking labeled data, the network cannot

be trained. An ingenious solution [110, 79] is to generate synthetic realistic eye

images from a physical model, whose parameters are known in advance. Unfortu-

nately, this synthetic data may not be fully representative of real-world images.

Some researchers [44] have attempted to employ domain-transfer techniques to

generate domain-specific images with known gaze direction. An as yet unexplored

direction could be to use an IR gaze tracker to obtain the location of the eye
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center of training images, provided that the geometric calibration between gaze

tracker and webcam is available.

Rather than attempting to create labels for unobservable quantities of interest,

we train a network to find the location of a “pseudo eye center”, PEC (or, more

precisely, of its projection on the image plane) by defining an inductive loss that

utilizes the annotated gaze direction and the location of the pupil, which, as

mentioned earlier, can be obtained fairly reliably from the image. Note that the

line joining PEC and the pupil center (“pseudo pupillary axis”, PPA) is not

guaranteed to coincide with the real pupillary axis (whose exact location is not

available in the training data). Rather, training aims to ensure that the relative

location of PPA and of visual axis (as determined by the “pseudo κ angles") is

constant for a given individual. At deployment, our system computes the image

projection of the PEC and of the pupil center. Then, the PPA is obtained by

backprojecting these two points, and is then rotated according to the pseudo-

κ values, which are regressed using a prior standard procedure with the viewer

fixating at a number of calibration targets on the screen. To properly train the

network, we found it beneficial to add a second branch (Figure 2.4b) that starts

from a common image embedding then directly regresses the PPA, with the loss

function accounting for the gaze estimation error from both branches. This second

branch (which is not used at deployment) effectively conditions the training of of

the convolutional network that generates the image embedding.

2.2.1 Related Work

The gaze estimation methods can primarily be categorized as appearance-

based and model-based. The model-based methods apply some underlying eye

geometry to compute gaze. On the other hand, the appearance-based approach
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involves learning a mapping directly from the eye or face image to a 2D gaze target

or 3D gaze direction. Further, there can be person-independent or personalized

gaze estimation methods. In this section, we will briefly discuss the work related

to these methods.

Appearance-based methods

Earlier appearance-based methods used classical machine learning techniques

- linear regression [68], Support Vector Regression [71], Random Forests [95] to

regress gaze from eye images. With the recent advances in deep learning archi-

tectures, CNN-based gaze estimation gained traction. Zhang et al. [123] trained a

shallow LeNet model on the gaze dataset collected in the wild. This was further

improved by [124, 53, 23, 121] which used the full-face images to train deeper CNN

gaze estimation models. Signals from the head and the two eyes are leveraged in

several ways to improve the gaze estimation models, for example, differences in

the appearance of the two eyes [14, 16, 20], imposing geometric constraint [21],

using attention to fuse the signals [13]. In addition to face/eye image input,

visual saliency information has also been exploited [76, 94, 3, 10, 93]. Wang et

al. [105] used Bayesian neural networks to output the distribution over the gaze

rather than having a point estimate. Unsupervised approaches [117, 98] have also

been proposed to learn better representations for gaze systems. Our method has

a similar vein to appearance-based methods but we embed an additional geomet-

ric layer at the end to improve the gaze direction estimation, by making it more

generalizable.
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Model-based methods

Many of the geometric methods involve computing the 3D eye center and the

pupil center to estimate pupillary axis, which is related to the gaze direction by a

rotation. Chen et al. [9] computed the 3D eye center by calculating the intersection

of the gaze rays pointing in different directions while keeping the head fixed. Sun

et al. [97] instead used a depth camera to compute the offset to the 3D eye center

from an anchor point on the face that allowed for free head movements during

calibration. Wang et al. [103] fit a 3D face-eye deformable model to compute the

3D eye center directly on the RGB images without needing an anchor point. Other

geometric methods have also been proposed - fitting an ellipse to the detected iris

and computing the pose of the iris to get the gaze [113] [102].

Hybrid methods

Some works can be considered as combination of geometric and appearance

based methods. In GazeML [79], the eye landmark detection model is trained

on the synthetic dataset and the gaze is computed by fitting an orthographic

geometric model. Park et al. [78] used intermediate gaze maps to estimate gaze.

Yu et al. [118] combined landmarks and gaze in a constrained model. Qiang et

al. [40] used the Bayesian framework along with the geometric model to compute

the gaze.

Person-specific Gaze Estimation

Several personalized gaze models have also been proposed recently to account

for the inter-personal bias. These methods require gaze-labeled calibration sam-

ples for each user to obtain personalized gaze estimator. Krafka et al. [53] ex-

tracted features from the last layer of the AlexNet [54] model trained on the gaze
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dataset and fit a Support Vector Regression model on the calibration samples. Liu

et al. [63] trained a siamese network using two different eye images from the same

person to compute the bias, which is then added to any subsequent predictions,

while mixed-effects neural networks were used in [115] to develop person-specific

models. Meta learning [22] approach was applied in [77] to train the weights in

the MLP layers, which could be adapted to a new subject using as few as nine

samples. Linden et al. [62] learned the person-specific parameters while training

the gaze estimation network. In [11], the gaze angles are decomposed as pupil-

lary axis and the offset, which are added to obtain the visual axis prediction.

The offset is learned for each subject during the training itself. This kind of de-

composition forces the network to learn a person-independent gaze, which is the

function of the eye appearance. During inference, the subjective bias is computed

using few calibration samples by calculating the mean of the difference between

the predicted gaze and the true gaze. Chen et al. [11] outperforms the previous

calibration-based methods, and it serves as the baseline in our work, and we call

it as end-to-end method because it does not involve the geometric layer.

2.2.2 Method

Geometric Preliminares

We will denote 3-D points and vectors by uppercase boldface, and 2-D image

points by lower case boldface. Matrices are represented using uppercase non-

boldface characters.

The task of a (monocular) gaze tracker is to compute the visual axis of each

of the viewer’s eyes. In practice, this is performed by first computing a different

axis, such as the pupillary axis in the case of a IR tracker. This is because the

visual axis cannot be obtained directly from anatomical measurements. The visual
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(a) Geometric Model

(b) End-to-End geometry embedded CNN model

Figure 2.4: Proposed Model. On the top, we show the eye geometric model
that we embed in our end-to-end CNN based model. On the bottom is shown the
overview of the architecture
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axis goes through the lens’ nodal points (whose location cannot be computed in

practice [19]) and the preferred retinal location, which, while relatively stable

with time, changes from person to person [47]. It can only be observed through

(subjective) fixation tests, whereas other types of axes [74] can, in principle, be

determined from objective measurements. Both the visual axis and the considered

axis to be tracked (measurement axis) are “attached” to the eyeball, and thus

rotate in a similar way when gaze changes (through motion of the eyeball or

of the viewer’s head). This property can be formalized through the concept of

equivariance. Specifically, given a sequence U of unit-norm 3-D vectors (axes)

(U0, . . .Un), we will say that the sequence of axes V = (V0, . . .Vn) is equivariant

with U if for any pair of indices (i, j), there exists a rotation matrix Ri,j such

that Uj = Ri,jUi and Vj = Ri,jVi. Thus, any sequence of measurement axes is

equivariant with the associated sequence of visual axes, provided that they come

from the same individual.

An axis Ui can be defined by two angles, e.g. the angular components of its

spherical coordinates [θUi
, φUi

] with respect to a given reference frame (such as

the camera frame.) This can be thought of as first defining a canonical axis (e.g.

U0 = [0, 0, 1]T ) then rotating the reference frame by an ordered sequence of

elementary rotations with associated Euler angles. Using the Z−X−Y ordering:

Ui = RY (β)RX(α)RZ(γ)U0, where, for example:

RX(α) =


1 0 0

0 cosα sinα

0 − sinα cosα

 (2.11)

Without loss of generality, γ (initial rotation angle around the Z axis) can be set

to 0 (since we chose the canonical axis to be oriented along the original Z axis). It
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is easy to see that, in the final reference frame, the spherical coordinates (θUi
, φUi

)

of Ui are related to the Euler angles of rotation as by: θUi
= α, φUi

= −β. Hence,

Ui = R0,i[0, 0, 1]T with:

R0,i = RY (−φUi
)RX(θUi

) (2.12)

resulting in the familiar representation: Ui = [sinφUi
· cos θUi

, sin θUi
, cosφUi

·

cos θUi
]T

The vector V0 could similarly be defined in terms of its spherical coordinates

(θV0 , φV0). Note that if U0 represent the pupillary axis of an individual looking

straight ahead, and V0 is its associated visual axis, (θV0 , φV0) represent the κ

angles for this individuals.

Given the spherical coordinates (θUi
, φUi

) of an axis Ui, the associated axis

Vi can be expressed as:

Vi = R0,iV0 = RY (−φUi
)RX(θUi

)RY (−φV0)RX(θV0)


0

0

1

 (2.13)

= RY (−φUi
)RX(θUi

)RY (−φV0)RX(θV0)RX(−θUi
)RY (φUi

)Ui

We will denote the relationship between the spherical coordinates of Vi and those

of Ui as follows:

[θVi
, φVi

] = FV0 [θUi
, φUi

] (2.14)

This relationship is, in general, complex. If, however, both θUi
and θV0 are small

in magnitude, the product of the rotation matrices in (2.13) approximately com-

mutes, in which case one may write: θVi
≈ θUi

+ θV0 , φVi
≈ φUi

+φV0 . Note that

this oft-used approximation may generate non-negligible errors when gaze devi-
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ates substantially from the canonical axis [0, 0, 1]T . For example, for κ angles of

θV0 = 2◦, φV0 = 6◦ and a pupillary axis of θUi
= 10◦, φUi

= 30◦, computing the

visual axis by simply adding the κ angles to the angular spherical coordinates of

the pupillary axis, rather than using (2.13), produces an angular error of 0.37◦.

GeoGaze: Algorithm

During training, our system is provided with a sequence of images of different

viewers, along with the ground-truth visual axis for each eye in each image. It

is tasked with determining, for each image and each eye, a pseudo pupillary axis

PPA, such that the sequence of PPAs computed for all images of the same viewer

is equivariant with the sequence of visual axes associated with the same images.

The pseudo κ angles relating the PPAs with the visual axes are computed for

each user during training. At deployment, the system computes the PPA for

each image, then rotates it using the pseudo κ angles (Eq. (2.13)), obtained for

each viewer through a standard calibration procedure.

The main novelty of our approach is in the way PPAs are represented and

computed. Rather than directly regressing PPAs (e.g. in terms of their spherical

coordinates), we identify a PPA by two 3-D points: the pupil center PC and the

pseudo eye center PEC. Both points are first computed as 2-D points (pc and

pec respectively) in the image. The pseudo eye center is then backprojected in

space, using a value of distance D obtained from the head pose (itself computed

from the image):

PEC = D ·K−1pec (2.15)

where K is the intrinsic camera matrix and pec is the augmented vector (with a

1 appended as third entry). PEC is assumed to be close to the center of rotation

of the eyeball, therefore it is reasonable to think that, in first approximation, its
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depth should only be a function of the head pose, and not of the direction of gaze.

The image point pc (projection of the pupil center) is also backprojected to

a point in space PC that is at distance of r=12 mm from PEC. Similarly to

[103, 9], we compute the points where the camera ray through pc (expressed as

d ·K1pc for a generic scalar d) intersects the sphere of radius r centered at PEC,

and choose the intersection point at shorter distance from the camera. If the

camera ray defined by pc does not intersect this sphere, then PC is assigned to

the point in this camera ray that is closest to PEC (resulting in an axis PPA

that is orthogonal to this camera ray.) The pseudo pupillary axis is then given by

PC−PEC.

It is instructive to compare the GeoGaze algorithm with other model-based

algorithms. For example, GazeML [79] also estimates the location of the eye center

pec from the image. The GazeML network is trained on ground-truth eye center

data. Since the eye center is not directly observable, GazeML uses synthetic data

from the UnityEyes dataset [110] for training. Reliance on synthetic data (which

may not be fully representative of real-world conditions) is a main limitation of this

approach. Differently from GazeML, we do not assume ground-truth knowledge of

the eye center PEC during training. In fact, PEC does not necessarily correspond

to a specific anatomical feature (such as the corneal center of curvature), which

would be difficult or impossible to annotate manually. Instead, PEC is implicitly

defined by the constraint that it should be located at a distance of r from PC,

and that the resulting sequence of PPAs (i.e. axes through PEC and PC) should

be equivariant with the ground-truth visual axes VAs. This allows us to train

the system with any images for which the visual axis is available. The underlying

assumption is that the pupil location pc in the image, as well as the distance D

to the user, can be reliably estimated from each image. In Sec. 2.2.4, we provide
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an analytical derivation of the the sensitivity of the measured PPA to errors in

the estimation of pc and of D.

A different approach was taken in other model-based algorithms [9, 103], which

also estimate the location of the eye center despite missing ground-truth anno-

tations. In both such algorithms, the eye center is computed in relation to a

set of facial features, detected in the image and backprojected at an appropriate

distance. In the case of [9], the eye center is determined by means of an offset

vector that is computed during an initial per-person calibration phase. The model

of [103] matches a deformable face model to the backprojected features. The lo-

cation of the eye center is included in the face model, which is adapted to the

viewer through an initial calibration phase with a 3-D camera. In both cases,

the per-person calibration procedure requires a stable head pose. Unlike these

methods, GeoGaze does not rely on facial features, but estimates the pseudo eye

center directly from the image. Because of this, GeoGaze can be trained end-

to-end, and requires no personalization procedure besides what is needed for the

determination of κ angles.

We should also emphasize that the choice of the distance r between the pseudo

eye center PEC and the pupil enter PC is not critical. Indeed, the only constraint

on PEC is that it should be “attached" to the eyeball, such that any generated

sequence of axes PC−PEC is equivariant with the associated visual axes. Our

choice for r=12 mm (the average eyeball radius) was based on two observations:

(1) if r is too small, the computed pseudo pupillary axis PPA becomes very

sensitive to localization errors for the projected pec (see Sec. 2.2.4); (2) a too

large r results in the location of PEC (and thus of pec) that may vary widely

with gaze, even when the head pose is fixed. Intuitively, it would be desirable

that the location of PPE be only dependent on head pose and not on gaze, as
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this would remove one cause of variability. Indeed, this is the main assumption

of classic model-based algorithms such as [9, 103], that compute the eye center

location based on facial features that supposedly do not move with gaze. In

practice, though, the eye center does move with gaze, by as much as 0.7 mm [73].

Neglecting this eye center displacement would result in a gaze estimation error

as high as 3◦. We experimented with leaving the distance r as a variable to be

estimated by the network, but did not find any significant difference with respect

to using a fixed value.

GeoGaze: Architecture

The architecture of the proposed system is rather straightforward (see Fig. 2.4).

An input image, after pose normalization as per [122], is cropped to only contain

one eye, and fed to a convolutional neural network (CNN) that produces a 256-

dimensional embedding. Then, a fully connected layer computes the estimated

pec location in the image. In parallel, the distance D to the user and the pupil

center pc are also computed from the image, using off-the-shelf algorithms (see

Sec. 2.4b). This data is passed on to a “geometric layer". Specifically, from pec,

pc, and D, the geometric layer: (1) backprojects pec into PEC (Eq. (2.15)); (2)

backprojects pc into PC as explained in the previous section; (3) computes the

pupillary axis PPA = PC−PEC; (4) applies an appropriate rotation (Eq. (2.13))

to PPAs using person-specific pseudo κ angles (i.e., the spherical coordinates of

V0).

The goal of training is to optimize the parameters of the CNN and of the fully

connected layer, as well as to determine the optimal pseudo κ angles for each

person in the training set. The loss to be minimized is a linear combination of

two components: the average discrepancy between the reconstructed and the real
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visual axes (as measured by the Euclidean distance of the spherical coordinates

of the two axes); and the average norm of the person-specific pseudo κ angles.

This second regularization term is necessary, as the same loss could otherwise

be achieved by infinite equivalent solutions with different pseudo κ angles. Note

that, as mentioned above, if the estimated PEC is at a distance larger than r from

the camera ray defined by pc, no anatomically consistent solution can be found,

and thus a fail-safe mechanism is invoked (by setting PPA to be orthogonal to

this camera ray). While this situation occurs only sporadically once the network

is properly trained, we noticed that this may happen relatively often during the

initial phase of training, potentially driving convergence towards local plateaus

of the loss function. This is because the angular error is relatively unaffected by

changes in the pec location in these situations (the error effectively “saturates").

To reduce this risk, we consider one additional loss component at the beginning

of training. Specifically, we add a vector of length r, oriented along the ground-

truth visual axis VA, to the estimated PEC. We use this as a proxy for the

actual pupil location PC, under the assumption that the visual axis is relatively

close to the pseudo eye center. This point is then projected onto the image in

location p̂c = EN [K(PEC + rVA)], where EN is the operator that computes

the Euclidean normalization [24] of a homogeneous vector (divides its entries by

the last one) and then removes the homogeneous part (last entry). Then, we add

to the overall loss the Euclidean distance (in the image plane) between pc and

p̂c. Note that this loss component never saturates, even when the pec is grossly

wrong. We found that this loss component is no longer necessary after the initial

training phase.

We have also experimented with implementing a second “end to end" (E2E)

branch during training (see Fig. 2.4). This branch feeds off the output of the CNN,
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and directly generates predictions of the spherical coordinates [θPPAE2E
, φPPAE2E

]

of the pseudo pupillary axis PPA axis through a fully connected layer. This

branch is only considered during training, with the purpose to improve opti-

mization of the initial CNN. This can be seen as a form of multi-task optimiza-

tion [118, 89].

The overall loss to be minimize is thus:

L = E (‖[θVA, φVA]− FV0 [θPC−PEC, φPC−PEC]‖+ λ1‖[θV0 , φV0 ]‖+ λ2‖pc− p̂c‖

(2.16)

+ λ3‖[θVA, φVA]− FV0 [θPPAE2E
, φPPAE2E

]‖)

Note that, during training, the system generates one value of PEC per image and

one pair [θV0 , φV0 ] per person. In practice, this is obtained by feeding in input a

one-hot vector representing the identity of the person for each image. The weight

λ2 is set to 1 during the initial phase of training, 0 afterwards. λ1 and λ3 are both

set to 1.

2.2.3 Experiments

Implementation details

We used the dilated-net architecture [12, 11] for the the CNN backbone fol-

lowed by two MLP branches. Each MLP branch consists of two fully connected

layers with 256 neurons each followed by the output layer of dimension 2. Training

uses the Adam [50] optimizer, with the learning rate set to 0.001 and batch size

of 32. λ2 is set to 0 after 4 epochs. The pupil center is computed by the GazeML

network [79], which uses a hourglass architecture for iris landmarks detection2.

GazeML produces a heatmap for each landmark, representing the probability of
2https://github.com/swook/GazeML
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each pixel being the landmark location. We computed the pupil center as the

mean of the iris landmarks. Errors are produced in terms of the angle between

estimated and ground truth visual axis. In our experiments, we always compare

the results of GeoGaze against those of a system (End-to-End) that is identical

to GeoGaze, but does not have the final geometric layer. End-to-End [11] di-

rectly computes the spherical coordinates of the PPA, along with the pseudo κ

angles for each person in the training data. It does not require the external pupil

detection module.

We consider four different datasets for our experiments. The first data set

(UnityEyes [110]) is made by synthetic images, and is used in a toy scenario to

highlight some of the features of GeoGaze. We also consider the following real-

world datasets: MPIIGaze [123], Columbia [92], and UTMultiview [95]. MPIIGaze

was collected “in the wild" from 15 participants, with no constraints on head and

eye movements. The Columbia dataset (56 participants) and UTMultiview (50

participants) were collected in a laboratory environment, with multiple cameras

(5 and 8, respectively) used to reliably compute ground-truth head poses.

Synthetic Data: UnitiEyes

We generated 20,000 images for training, with yaw and pitch angles uniformly

distributed between −15◦ and 15◦. We used these images to train the GazeML

model used for pupil detection (using the available ground-truth annotated land-

mark), as well as the GeoGaze and the End-to-End networks. We then generated

two test sets, with 20,000 images each: one with the same gaze distribution as the

training set (in-distribution), and the other with yaw and pitch sampled uniformly

between −30◦ and −15◦ and between 15◦ and 30◦ (out-of-distribution). For unity

images, the visual axes were set to be identical to the pupillary axes, and the κ
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angles were forced to 0 for both algorithms, and used the geometric function spe-

cific to the unity eyes model (which uses orthographic projection model without

camera calibration parameters).

Table. 2.1 shows the results for both GeoGaze and End-to-End when tested

on the in-distribution and on the out-of-distribution sets. Note that while the

results are comparable for the in-distribution data, the average error of End-to-

End for out-of-distribution data (9.2◦) is substantially larger than for GeoGaze

((3.3◦). Clearly, the End-to-End system was unable to “extrapolate" gaze angles

that were not seen in the training data. This was less of a problem for GeoGaze,

as pupil and pseudo eye center could still be detected for these out-of-distribution

images.

Table 2.1: GeoGaze vs End-to-End on UnityEyes – Mean Angular Errors (de-
grees)

Algorithm In-distribution Out-of distribution
End-to-End [11] 1.0◦ 9.2◦
GeoGaze 1.3◦ 3.3◦

In the next section, we will show that a similar behavior is observed for out-

of-distribution images in real-world data.

Real-world Dataset

For these datasets, we normalize the eye images using a technique similar to

[122], which applies a homography to the image equivalent to rotating the camera

such that its optical axis points at the mid-point of the eye. Note that in our case

we used the 2-D corners detected in the image, rather than the 3-D eye corners, to

determine this mid point. The image was resized to correspond to a normalized

distance of 600 mm. We cropped a patch of 128x64 pixels around each eye. Right

eye images were flipped, along with the corresponding yaw and the horizontal
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coordinate of the iris landmarks. The κ angles were computed separately for the

left and the right eye through a standard initial calibration procedure. For the

UTMultiview dataset, we only used those images for which a full face is visible.

Within Dataset Evaluation Our first experiment shows results on the MPI-

IGaze dataset, with the system trained and tested on the same data set, We

performed leave-one-person-out evaluation with a variable number of images used

for per-person calibration. It has approx 75,000 images for left and right eyes of

15 subjects. We compared the results of GeoGaze against published results from

other competing algorithms: FAZE[77], GRS[119], and End-to-End[11] and also

the model-based GazeML [79].

Results are shown in Table. 2.2. Note that for this within-dataset experiment,

GeoGaze produces results that are comparable with those of other algorithms.

Only the End-to-End system consistently produced a lower error.

Table 2.2: Within Dataset Evaluation (MPII) - Mean Angular Error (degrees)

Number of Calibration Images
Algorithm 1 5 9 16 32 64
GRS [119] 5.0◦ 4.2◦ 4.0◦ - - -
FAZE [77] 4.7◦ 4.0◦ 3.9◦ 3.8◦ 3.8◦ 3.7◦
GazeML [79] 8.5◦ 7.8◦ 7.2◦ 7.0◦ 6.9◦ 6.7◦
End-to-End [11] 4.6◦ 3.6◦ 3.4◦ 3.4◦ 3.3◦ 3.3◦
GeoGaze 5.0◦ 4.0◦ 3.8◦ 3.7◦ 3.5◦ 3.5◦

Cross-Dataset Evaluation Next, we trained our algorithms on the MPII dataset,

leaving one person out for validation. The models thus trained were tested on a

different dataset (Columbia). Calibration was computed from 20 randomly sam-

pled images for each participant. It is important to note that the Columbia dataset

contains image with gaze direction with positive value of pitch (i.e., looking up-

wards), while pitch values are always negative (or very small positive value) in the
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MPII images. This represents an out-of-distribution challenge for our algorithms.

Since there are no published results with other algorithms for this cross-data set

evaluation, we only present results from GeoGaze and End-to-End.

In Table. 2.3, we show the resulting average angular errors for all images in the

Columbia dataset. In addition, we show the pitch angle error when pitch angles

are higher or lower than 0◦. While the two algorithms perform similarly when

the pitch angle < 0◦, GeoGaze has noticeably lower error (5.6◦) than End-to-End

(6.4◦) for images with large pitch. This behavior is similar to what observed in

the out-of-distribution experiments of Sec. 2.2.3.

Table 2.3: Cross-dataset Evaluation (MPIIGaze → Columbia) - Mean Angular
Error (degrees)

Algorithm All Pitch Error (Pitch > 0◦) Pitch Error (Pitch < 0◦)
End-to-End [11] 6.8◦ 6.4◦ 3.6◦
GeoGaze 6.7◦ 5.6◦ 3.4◦

We also considered a second cross-dataset experiment, with the GeoGaze and

End-to-End algorithms trained on the UTMultiview dataset [95] and tested on

both the Columbia [92] and the MPIIGaze [123] datasets. For comparison, we

also report results from two other model-based algorithms: GazeML [79] and the

algorithm of Wang et al. [103]. It is important to note that these two model-based

algorithms are not trainable on specific datasets.

Table 2.4: Cross-dataset Evaluations (UTMultiview → Columbia, MPIIGaze) -
Mean Angular Error (degrees)

Algorithm Columbia MPIIGaze
Wang et al. [103] 7.1◦ -
GazeML [79] 7.1◦ 6.9◦
End-to-End [11] 6.7◦ 8.0◦
GeoGaze 5.6◦ 6.5◦
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Table 2.5: Cross-dataset Evaluations (UTMultiview → Columbia, MPIIGaze) -
No calibration - Mean Angular Error (degrees)

Algorithm Columbia MPIIGaze
GazeML [79] 8.7◦ 8.4◦
End-to-End [11] 9.7◦ 11.2◦
GeoGaze 7.3◦ 9.2◦

Note from Table. 2.4 that GeoGaze produces consistently smaller errors than

the other algorithms considered.

Table. 2.5 shows results obtained without per-person calibration. Note that

this type of calibration is not always feasible [125, 96]. In this case, results are

biased due to the fact that the κ angles are not considered (they were forced to

0 in our experiments). Note that results from the algorithm of Wang et al. [103]

were not available for this experiment. Even in this highly biased case, GeoGaze

performed comparatively better than GazeML and End-to-End for the Columbia

dataset. For MPIIGaze, the performance was better than End-to-End but worse

than GazeML.

Ablation Study Table. 2.6 compares previously shown results for the GeoGaze

algorithm, against those obtained when the second branch (without the geometric

layer) is removed during training. It is seen that the second branch (which is not

used during deployment) facilitates training, and that its use leads to improved

results.

Table 2.6: Ablation Study - Mean Angular Error (degrees)

Algorithm MPIIGaze →
MPIIGaze

MPIIGaze →
Columbia

UTMultiview →
Columbia

UTMultiview →
MPIIGaze

GeoGaze (2nd branch removed) 4.0◦ 7.2◦ 6.2◦ 7.0◦
GeoGaze 3.8◦ 6.7◦ 5.6◦ 6.6◦
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Figure 2.5: Examples of gaze estimation using GeoGaze. White dot: pec; Or-
ange dot: pc; Green arrow: estimated visual axis; Red arrow: ground-truth visual
axis.
Row1: Examples of gaze prediction with error < 2◦.
Row2: Examples of gaze prediction with error > 6◦. The pupil center pc appears
to be correctly localized, suggesting that the problem could be with the localiza-
tion of the pseudo eye center pec.
Row3: Examples of gaze prediction with error > 6◦. In these cases, the pupil cen-
ter pc is clearly mislocated, which certainly contributed to the large gaze error.

Qualitative Analysis Fig. 2.5 contains examples of gaze detection using Ge-

oGaze (green arrow), shown along with the ground-truth visual axis (red arrow).

The second and third row in the figure contain images with substantial gaze error

(> 6◦). In the third row, the pupil center pc is poorly located, which may justify

the large error. For the images in the second row, the pupil center appears to be

correctly located. In this case, the error is likely to be due to a poorly located

pseudo eye center pec.

2.2.4 Geometric Model: Error Sensitivity

One of the advantages of using a geometric model for gaze estimation is that it

makes it possible, to some extent, to measure the sensitivity of the system to errors
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in specific components, such as those that measure relevant features. This can be

useful for multiple reasons. It may help explain unexpected errors, by tracking

the problem down to faults in individual components. It may allow identification

of the weakest links in the chain, which may require particular attention in terms

of design or training. In some cases, it may also be possible to predict when a

specific component may fail based on observable data (e.g., image blur), which

may provide a means to determine the reliability of the produced result.

GeoGaze computes the location of two feature points in the image (pec and

pc) as well as the distance D of the eye center to the camera. It then generates

the pseudo pupil axis PPA by backprojecting pec to distance D, and by back-

projecting pc to a point PC at distance r to PEC. The pseudo pupillary axis

PPC = PC−PEC is then rotated according to the κ angles. Barring errors in

estimation of the κ angles, any errors in the direction of PPC are due to errors in

pec, pc, or D. In the following, we will derive the angular error as a function of

errors in the computation of pc and D. Note that errors in pec have an identical

effect on the estimated direction of PPC as errors in pc.

To simplify our analysis, we will assume that both κ angles are 0, and will

use a simplified eye model with a fixed eye center, located along the camera’s

optical axis at a distance D from the camera’s optical center. We will consider

an eye rotation by θ around a fixed vertical axis. Thus, the eye center projects

onto the principal point, and the pupil center projects onto a horizontal line with

eye rotation. Note that the segment joining the eye center and the pupil center

(Fig. 2.4a) subtends an angle α at the optical center with:

tanα = r sin θ
D − r cos θ (2.17)
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and that the segment pc− pec has horizontal component equal to:

pcx − pecx = f
r sin θ

D − r cos θ (2.18)

where f is the camera’s focal length (remember that pc− pec has vertical com-

ponent equal to 0.)

In the following, we will assume the following representative values for the

considered quantities: f=1300 pixels; D=500 mm. As mentioned earlier, we set

r=12 mm.

Sensitivity to Errors in pc

The error ∆θ in gaze direction can be related to the error ∆(pcx − pecx) as

by:

∆θ ≈ ∆(pcx − pecx)
dθ

d(pcx − pecx)
(2.19)

where:
dθ

d(pcx − pecx)
= − (D − r cos θ)2

f · r · (r −D cos θ) (2.20)

As expected, increasing r reduces the sensitivity of the estimated θ to errors in

pc. Fig. 2.6 (a) shows the error ∆θ as a function of θ for errors in pcx − pecx

ranging from 1 to 3 pixels. While ∆θ is relatively constant with θ, it is seen

that just 1 pixel of error in the location of pupil center or if eye center can lead

to a 2◦ gaze direction error. This shows the importance of accurate pupil and

eye center localization with this type of algorithms. For context, we note that

the pupil localization errors reported using the GazeML algorithm [79] on the

GI4E dataset [90] have a median value of approximately 3% of the palpebral

fissure width. Given an average palpebral fissure width value of 30 mm, this
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corresponds to an error of about 1 mm. With the focal length and distance

parameters considered here, this maps to a 2.6 pixel error in the localization of

pc. Following this reasoning, and using (2.20), we should expect a median error

of about 4.7◦ due to incorrect localization of the pupil center. This number is

consistent with the errors we measured in our experiments; in fact, we typically

obtain lower errors for within-dataset evaluations (see Table. 2.2). We conjecture

that, during training, the network, which is tasked with localizing pec, may learn

to compensate for errors in pupil localization pc. Note that the quality of pupil

localization is highly dependent on factors such as illumination and gaze direction

(see e.g. Fig. 2.5.)

Sensitivity to Errors in D

The sensitivity of estimated gaze direction to errors in the distance D to the

user can be computed as:

∆θ ≈ δθ

δD
∆D (2.21)

where
δθ

δD
= − sin θ

r −D cos θ (2.22)

As seen in Fig. 2.6 (b), this type of error becomes significant for large gaze angles.

Note that, while large errors of D (e.g., 100 mm, which is the extreme case shown

in Fig. 2.6 (b)) are unlikely, it is reasonable to assume that a generic face model

that simply detects visible features such as palpebral fissure corners may be unable

to measure the actual distance to the eye center, and errors of 10 or 20 mm may

be expected. Our analysis shows that these errors may result in a gaze direction

error of about 0.6◦ for θ = 15◦, and of 1.4◦ for θ = 30◦.
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Figure 2.6: Gaze direction error ∆θ as a function of gaze direction θ for: (a)
different values of error in pcx−pecx (1, 2, 3 pixels); (b) different values of errors
in D (20, 50, 100 mm.)

2.2.5 Conclusion

We have presented a new algorithm for gaze estimation that uses a model of the

eye, embedded in a deep neural network. From the architectural standpoint, we

simply constrain the flow of computation by means of a final “geometric layer".

Compared to prior model-based algorithm, our GeoGaze system (1) does not

require ground-truth eye center annotations, (2) is trained end-to-end, and (3)

does not require a personalization phase with fixed head pose. As with any other

gaze tracking systems, a personalization phase is needed to estimate the κ angles,

which vary from individual to individual.

Our experimental results highlighted some interesting properties of the Ge-

oGaze algorithm. In the toy example with synthetic UnityEyes data (Sec. 2.2.3),

as well as in cross-dataset evaluation (Sec. 2.2.3), we showed that, when com-

pared to a black box end-to-end system, GeoGaze was able to “extrapolate" gaze

directions that were unseen during training. This is not surprising: under the

assumption that the pseudo eye center PEC is relatively independent of gaze,

previously unseen gaze angles are easily measured if the pupil position can be

correctly measured. In contrast, extrapolation is known to be a difficult problem

for neural networks [108]. More in general, it appears that GeoGaze, while pro-

ducing results that are comparable with other algorithms when trained and tested

on data from the same domain, it is particularly robust against the “domain gap"
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effect when tested on a different domain. Of course, there are situations in which

GeoGaze may fail, such as when, due to poor illumination, the iris is not well vis-

ible, thus inhibiting reliable pupil center localization. In these cases, a properly

trained end-to-end algorithm that does not depend on pupil localization may still

be able to recover gaze.

GeoGaze uses off-the-shelf algorithms for pupil detection and distance mea-

surement, and the parameters for these algorithms are not optimized during train-

ing. In future work, we will evaluate whether optimization of these subsystems

could result in improved results. Another interesting research direction would

pair GeoGaze’s geometric layer branch with an end-to-end system in a mixture-

of-expert scheme [72]. We have already shown (Sec. 2.2.3) that adding such a

branch facilitates training. The ability to soft-switch between these two branches

at deployment could help in those situations where GeoGaze fails due, for example,

to poor iris visibility.
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Chapter 3

Background: Eye Image Synthesis

We are interested in generating realistic images of human eyes with a pre-

scribed gaze direction. A direct practical applications of this technology is gaze

redirection for teleconferencing [18] (making people appear as if they were looking

at the camera [55]), photo correction [111], and video editing. A more indirect ap-

plication is the creation of data sets for the training of image-based gaze tracking

algorithms. These systems require large amounts of images with specific annota-

tions. While some annotation types (e.g., the location of the pupil center) can be

easily obtained via manual labeling, others are more challenging. For example, in

order to determine the gaze direction of people visible in the images, data sets are

often built by asking human subjects to look at a certain point on a screen [123] or

at a calibrated location (such as an object [27]). Then, gaze direction annotations

are extrapolated from geometric reasoning, such as by drawing a line from the

location on the screen been fixated to the viewer’s pupil, whose location in 3-D is

assumed known. This is a relatively complex and error-prone procedure. Other

features that cannot be obtained by manual labeling (because not observable)

include the center of rotation of the subject’s eyeball, which is needed to train

model-based gaze tracking algorithms [9, 103].
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3.1 Related Work

3.1.1 Eye Image Rendering

Due to its relevance in multiple application scenarios, the synthesis of realistic

eye images has received considerable attention in the literature. Le et al. [69, 67]

captured images under different head poses; eye images for new head poses were

then synthesized via warping. Multiple cameras were used in [95] to build a 3D re-

construction of the eye region and to synthesize eye images for novel poses. Wood

et al. [112, 110] rendered eye images (via computer graphics) using a 3D geo-

metric eye model and head scans. This tool can be used to build very large data

sets of perfectly annotated, high quality eye images. However, these synthetic

images may not be representative of specific target domains, for which represen-

tative images may be available, but annotations may be difficult or impossible to

obtain.

3.1.2 Domain Transfer

An approach to improving the quality of training data, while inheriting existing

annotations, is to use a domain transfer algorithm. For example, SimGAN [91]

transforms an eye image generated synthetically, with the desired head orientation

and gaze direction, into a new image with the style of the target domain. This is

accomplished by a GAN[31], trained to minimize an expected loss that includes

two terms: the standard minimax adversarial loss (to ensure that the generated

images look like samples from the target domain); and a L1 loss that penalizes

discrepancies from the input synthetic eye image. This second term is meant

to maintain consistency in gaze direction between the input synthetic image and

the generated image. SimGAN produces impressive results, yet suffers from the
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problem that direct comparison of the generated and of the input image is difficult,

as the images are from different domains. Pixel-wise differences between the two

images may thus be caused not only by a gaze direction discrepancy, but also

by other irrelevant photometric factors (see e.g. Fig. 4.1). In order to mitigate

the problem of cross-domain comparison, Lee et al. [59] relied on the CycleGAN

training procedure [126]. CycleGAN trains two generators, mapping images from

source to the target domain, and vice-versa. A “cyclic loss" is defined (in additional

to the standard adversarial loss) that penalizes the L1 norm of the difference

between an image I in one domain, and the image obtained by mapping I to the

other domain, then mapping the result back to the original domain. Hence, the L1

loss term is computed only between images in the same domain. Yet, this strategy

alone cannot ensure that gaze direction is preserved. For example, the generator

mapping images from the source to the target domain may still introduce a gaze

direction discrepancy, provided that the generator from the target to the source

domain learns to remove this discrepancy (that is, to “re-direct" gaze back to

the original direction.) While CycleGAN maps source and target domains into

separate latent spaces, other algorithms [58, 64] use a shared latent space for

domain transfer from unpaired data. The method by Wang et al. [104] combine

image synthesis and gaze estimation in a unified model. Our EyeGAN system

is directly inspired by the pix2pix algorithm for domain transfer [39]. Pix2pix

requires pairs of images for training, where one image is from the source domain,

and the other is the associated image in the target domain. A key insight of

EyeGAN is that the generator does not need a highly detailed eye image input to

produce a target domain image. What is needed is an input image with enough

information to guide generation of a target domain image with the prescribed gaze

direction. We use ternary mask images for this purpose.
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3.1.3 Style-Based Image Generation.

The methods cited above generate new images in the style of the images used

in the training data. While this may be acceptable for purposes such as producing

a realistic data set, tasks such as gaze redirection call for precise control of the

style at run time. Stated differently, a gaze redirection algorithm must ensure

that the generated image is consistent with the style of the input image – it must

preserve the features that characterize the appearance of the person in the image.

Image style can be modeled as a learned distribution using variational auto-

encoders [51]. At inference time, one can sample the style from the learned dis-

tribution to generate the image [127] [80]. A method for deterministic generation

of images with a specific style using a gram-matrix based style loss was proposed

in [29]. The work in [38] showed that style could be transferred from input image

to synthesized image using adaptive instance normalization. StyleGAN [43] used

GAN based generator with adaptive instance normalization to synthesize novel

human face images. The work in [8] also used adaptive normalization with a

SPADE [80] generator for synthesizing eye images from segmentation masks con-

sistent with the input style. Wang et al. [106] used style consistent as well style

inconsistent pairs as an input to a discriminator, in order to impose the input

style in the output image. In our work, we use a cyclic loss to enforce style.

3.1.4 Gaze Manipulation.

Earlier work on gaze manipulation focused correcting gaze direction such that

the person appears to be looking at the camera, which is very desirable for ap-

plications such as videoconferencing. Some of the proposed approaches required

specialized 3D data capture hardware to synthesize novel views of face and eyes

[55], [30], [17]. Gaze redirection is a more generic task of manipulating the gaze to
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any arbitrary direction. Monocular image-based gaze redirection can be achieved

by learning a warping flow field between images with a known correction angle.

This flow field can be computed using Random forests [52] or deep networks [28].

In [119], a flow field network is trained on synthetic eye images for gaze redi-

rection, and domain adaptation is applied from synthetic to realistic eye images.

This work was primarily focused on improving user-specific gaze estimation by

using few-shot learning. Wood et al. [111] used a 3D morphable eye model for

gaze manipulation. The work in [34] used GANs to synthesize eye images with

redirected gaze using a specific reconstruction loss. Our work is similar to [34],

however, rather than guiding synthesis by a gaze angle vector, we use segmentation

masks. This mitigates the need for obtaining annotated gaze data for real-world

eye images.
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Chapter 4

EyeGAN: Gaze-Preserving,

Mask-Mediated Eye Image

Synthesis

Several methods have been proposed and demonstrated for the generation of

realistic eye images, with generative adversarial networks (GAN [31]) arguably

producing the best results. Controlling the gaze direction of the generated im-

ages, though, has proven more elusive. Part of the problem is that assessing gaze

direction from an image, or at least determining whether it is congruent with that

of another image, is difficult. Consider, for example, SimGAN [91], a popular al-

gorithm that casts the synthesis problem as one of domain transfer. Starting from

purely synthetic images, created using computer graphics from a model of the hu-

man eye, with prescribed gaze direction and head orientation, SimGAN generates

realistic images sampled from a specific target domain. Gaze direction is con-

trolled by adding to the adversarial loss a term that measures the L1 norm of the

pixel-wise difference between the generated and the input image. Unfortunately,
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SimGAN EyeGAN
Is

Ms

Figure 4.1: Center: Image–mask (Is,Ms) pair synthesized by UnityEyes [110].
Left: The image generated by SimGAN [91] using Is as input. Right: The image
generated by our EyeGAN system using Ms as input. Both generated images
are shown with the associated mask, computed by the segmenter trained with
EyeGAN.

substantial photometric differences between the images in the two domains tend

to bias this simple measure of gaze discrepancy, especially for larger image sizes.

This is shown in the example of Fig. 4.1, wherein an image generated by SimGAN

appears to look in a different direction than in the synthetic image provided in

input.

Our approach to controlling the gaze direction of the generated images is in-

spired by the intuition that important information about gaze direction is revealed

by a segmentation mask of the eye image. A well-formed segmentation mask de-

scribes three main components of an eye image: the iris, the white sclera, and the

skin area surrounding the sclera (see Fig. 4.1, lower row.) It is well known that,

for a fixed head pose, the iris eccentricity (relative location of the iris within the

white sclera) determines the perceived gaze direction [99], and that the amount

of visible sclera depends on the head orientation [84]. It thus stands to reason

that such a ternary mask could be used to represent gaze direction and head ori-
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entation. It is also conceivable that a well-designed segmenter should be able to

extract acceptable segmentation masks from real eye images. Based on these ob-

servations, we decided to experiment with masks as domain-independent proxies

for gaze direction. Closely related to our work is the Cycada algorithm [36], which

used CycleGAN[126] for domain transfer, then segmented the resulting images us-

ing a fully convolutional network (FCN) [66] (symultaneously trained), where the

FCN loss is fed back into the GAN to ensure correctness of the inherited anno-

tations. Differently from Cycada, our EyeGAN algorithm directly starts from a

segmentation mask.

Our proposed system takes in input a ternary mask produced by the UnityEyes

graphic engine [110] with the desired head orientation and gaze direction, and

generates an eye image with the same gaze direction in the “style" of the desired

domain (Fig. 4.1, right column). The network is trained using a conditional GAN

under the pix-to-pix paradigm [39]. Specifically, each training sample is formed by

a pair (image, ternary mask) from the target domain. Whereas only the ternary

mask is fed into the generator, the associated image is used for two purposes: to

facilitate the job of the discriminator, and to enforce faithfulness of appearance by

means of a L1 loss term that penalizes the difference between the input and the

output images. Herein lies a critical difference with SimGAN: we never directly

compare images from different domains, thus sidestepping the risk of bias from

effects that are independent of gaze orientation.

A subtle but important characteristic of our algorithm is that the actual angles

of gaze direction or head orientation are not needed at training time. We only

use images from the target domain during training, and don’t assume that these

images have been annotated (as mentioned earlier, obtaining the required type

of annotation can be challenging). Head pose and gaze direction information is
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embedded in the ternary masks, which are computed from the images themselves.

When the generator is used to synthesize new images for a desired gaze direction,

it takes in input a proper ternary mask, produced, for example, by UnityEyes.

For this system to work, it is critical that good quality ternary masks be

available for images in the target domain. Standard segmentation algorithms can

be used for this purpose, provided that enough labeled data is available for their

training. Manual labeling (by drawing the iris and visible sclera regions in each

image) is a conceivable option, albeit a time-consuming and error-prone one We

decided instead to experiment with a training procedure that only uses the ternary

masks automatically generated by UnityEyes along with the synthetic eye images.

The segmenter is trained in parallel with the generator in an iterative fashion. This

scheme is shown to produce excellent results after just a few iterations.

Our proposed EyeGAN system was evaluated comparatively in two different

ways. First, we looked at the consistency of gaze direction by comparing the

ternary masks computed on the generated images with the masks that were given

as input. If the two masks agree, it can be expected that the perceived gaze di-

rection of the generated images is congruent with the prescribed gaze direction,

which was used to create the synthetic input. Second, we used EyeGAN to gener-

ate image data sets in target domains, while inheriting original annotations, and

used this data to train networks for specific tasks: image region segmentation,

pupil localization, and gaze direction estimation. These are applications of great

interest for biometrics [75], medical diagnostic [100], and eye gaze tracking [79].

In many situations, annotating this type of data can be difficult or impossible,

hence the interest in domain transfer methods for network training. The results

of our experiments show that EyeGAN compares favorably with other state of the

art domain transfer algorithms under the metrics considered.
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Figure 4.2: The overall training scheme of EyeGAN. At each step, the modules
being trained are shown on a grey background.

4.1 Method

Our system generates eye images with a desired style, as represented by a set

of (un-annotated) images taken in a particular target domain. Head pose and

gaze direction for the generated images are controlled by means of ternary masks

which, as discussed in the Introduction, function as proxies for the desired pose

and gaze direction. Specifically, we assume that a data set of synthetic images

Is (where the subscript s stands for “source") is available, along with associated

masks Ms, also synthetically produced. (Alternatively, real images with manual

mask annotations could be used.) At run time, the generator, implemented as

a convolutional network, takes one such mask in input, and produces an image

in the desired style. Note that, unlike similar algorithms such as SimGAN or

CycleGAN, we do not use synthetically generated eye images as input, but only

the associated masks.

The generator is trained according to two criteria: (1) Realism: the generated
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images must look realistic (as if they were actual samples from the target domain);

(2) Consistency: the perceived gaze direction and head orientation of a generated

image must conform to the prescribed values, in the sense that the associated

mask should look similar to the mask fed into the generator. To generate realistic

images, we follow the same conditional GAN strategy as pix2pix [39]. Specifically,

the training data is formed by pairs mask–image in the target domain, of which

only the mask is fed into the generator. The network is trained using a minimax

adversarial loss, to which a L1 loss term is added to ensure that the generated

image looks similar to the image associated with the input mask. This loss term

enforces consistency: if the output image is similar (in L1 norm) to the image

associated with the input mask, then the mask associated with the output image

can be expected to be similar to the input mask. Critically, the L1 loss component

is computed from two images that can be assumed to be from the same domain

(unlike SimGAN). We used quadratic loss for the adversarial component, as it

was shown to be superior to log loss in terms of training stability [70]. The overall

loss function is thus:

L(G,D) = EIt [D(It)−1]2 +EM(It)[D(G(M(It)))]]2 +λEIt‖It−G(M(It))‖1 (4.1)

This training scheme requires availability of images It in the target domain along

with associated masks Mt. Unfortunately, such masks are normally not available,

and their production via manual labeling can be exceedingly time consuming.

Instead, we create the required masks from target domain images using a properly

trained semantic segmentation algorithm (such as FCN [66]) that takes in an image

It to produce a mask M(It) (note the overloaded use of the symbol M). Still, the

problem remains: in order to train the segmenter, we need image–mask pairs. We

tackle this problem by leveraging the pairs (Is,Ms) available in the synthetic eye

49



image data set. Intuitively, a segmenter trained on this data should be able to

produce a recognizable, albeit probably not accurate, masks when applied to a

target domain image. An example is shown in Fig. 4.3.

It M(It) M(It) M(It)

Iteration 1 Iteration. 2 Iteration 3

Figure 4.3: Two examples of segmentation of target domain images It. At
Iteration 1, the segmenter was only trained using synthetic images and masks
(Is,Ms). In further iterations, pairs (G(Ms),Ms) were added to the data set.

In order to improve the quality of segmentation, we augment the training data

set for the segmenter (Fig. 4.2, top left) with image–mask pairs from the target

domain. Of course, no improvement should be expected by simply adding to

the training set pairs (It,M(It)), where the masks M(It) were obtained using a

suboptimal segmenter. Rather, we add pairs image-mask of the form (G(Ms),Ms),

where the masks Ms come from the synthetic data set (and thus are of perfect

quality), and the associated images G(Ms) are created by the generator, which,

as explained earlier, was trained using pairs (It,M(It)). While not “real", these

images can be considered to be samples from the distribution of the target domain

(thanks to adversarial training.) We have observed that, after retraining the

segmenter with this augmented data set, its performance on the target domain

images improve noticeably (see Fig. 4.3). The process is then repeated. After 2–

3 iterations, the segmenter produces satisfactory results, leading to good quality

target domain image-mask pairs, which are used to re-train the generator. Fig. 4.2
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shows the overall training scheme. Note that, at run time, the generator is only

fed with synthetic mask Ms.

Figure 4.4: Sample images from the UBIRIS data set [83] (selected from those
taken at a distance of 4 meters.) The images were histogram equalized.

4.1.1 Implementation Details

In all of our experiments, source eye images and masks were created using the

UnityEyes tool [110]. The images were cropped to only include the eye region, and

resized to 120 × 88 pixels. The ternary masks were obtained from the landmark

points provided to indicate the boundary the sclera and of the iris regions. A set

of 25,000 synthetic images and masks was thus generated.

The segmenter was implemented using the FCN-8s architecture [66]. The

learning rate was set to 0.001, with batch size of 8. The network was optimized

using Adam [50]. A pytorch implementation1 of the pix2pix scheme [39] was used

to train the generator mapping masks to target domain images. The architec-

ture of the generator was similar to that of [42, 126] with six Resnet [33] blocks.

The discriminator used the same PatchGAN architecture of [126]. The balancing

coefficient λ was set to 40.
1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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4.2 Experiments

4.2.1 Gaze Direction Validation

A simple way to evaluate whether a generated eye image in the target domain

(target image for short) is consistent with a desired gaze direction, is to compare

its associated ternary mask (obtained via segmentation) with the mask fed into

the generator, which was synthetically created according to the prescribed gaze

direction. If the two masks are identical, we may assume that gaze direction is

maintained (more precisely, the gaze direction as perceived when observing the

image coincides with the gaze direction represented by the input mask). A target

image It = G(Ms) whose maskM(It) (as computed by the segmenter) is dissimilar

from the input mask Ms, is unlikely to be judged to have the same gaze direction.

We measure the similarity S of two equally-sized ternary masks M1, M2 by the

number of pixels in which the masks agree, divided by the total number of pixels

in each masks. The number S(M1,M2) takes values between 0 and 1, and is

equal to 1 only when the masks are identical. When considering the similarity

of two masks, one synthetically produced2 for gaze direction θ (denoted by M θ
s ),

the other obtained by segmentation of the target image generated with input

mask Mφ
s (M(Iφt ), where Iφt ≡ G(Mφ

s )), we will use the shorthand Ss,t(θ, φ) ≡

S(M θ
s ,M(Iφt )).

We frame gaze orientation validation in probabilistic terms by defining a prob-

ability density function on the gaze direction θ perceived upon observation of a

target image generated under prescribed gaze direction φ: p(θ|Iφt ). This means

that, upon observing the target image Iφt , with probability p(θ|Iφt )dθ the perceived

gaze direction angle is within an interval dθ around θ.
2For simplicity of exposition, we only consider here one angle, instead of two, of gaze direction,

and conflate head orientation with gaze direction.
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Figure 4.5: The five generated eye images with the lowest similarity score
Ss,t(φ, φ) for each method. Each image is shown with the synthetic image Is
or mask Ms that was fed into the corresponding generator. For reference, we also
show the synthetic images Is corresponding to the masksMs for the EyeGAN case
in the last row, even though only the masksMs were fed into the generator in this
case.
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We will make the assumption that p(θ|Iφt ) is a function of the similarity be-

tween the mask M(Iφt ), and the “ideal" mask for gaze direction θ, which is M θ
s .

Formally:

p(θ|Iφt ) = K(φ)f(Ss,t(θ, φ)) (4.2)

where f(S) = exp(−α · (1− S)). α is a parameter that controls the dispersion of

the density p(θ|Iφt ) (we set α=10 in our experiments.) K(φ) is a normalization

constant that can be estimated as follows. We sample N gaze directions {θi}

uniformly within the angular interval Θ in which θ can take values, and compute

the mean f̄φ = ∑N
i=1 f(Ss,t(θi, φ))/N :

f̄φ ≈
1

K(φ)Eθ∼U(Θ)[p(θ|Iφt )] = 1
K(φ)‖Θ‖ (4.3)

from which we obtain:

K(φ) = 1/(f̄φ · ‖Θ‖) (4.4)

Given a target image generated for gaze angle φ, the probability that the

perceived gaze direction coincides with φ with tolerance dφ is p(φ|Iφt )dφ. Hence,

the probability that the perceived gaze direction for a generic target image is

“correct" (coinciding with the prescribed gaze direction, which is assumed to be

uniformly distributed) within tolerance dφ, is p(Cs,t)dφ, with:

p(Cs,t) = Eφ∼U(Θ)[p(φ|Iφt )] (4.5)

≈ 1
N

N∑
j=1

p(φj|It(φj)) = 1
N

N∑
j=1

K(φj)f(Ss,t(φj, φj))

≈ 1
‖Θ‖

N∑
j=1

f(Ss,t(φj, φj))∑N
i=1 f(Ss,t(θi, φj))
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= 1
‖Θ‖

N∑
j=1

e−α(1−Ss,t(φj ,φj))∑N
i=1 e

−α(1−Ss,t(θi,φj))

where the prescribed gaze directions {φj} are sampled uniformly within Θ.

The relative effectiveness of different eye image synthesis methods at preserving

gaze direction can be quantified by comparing p(Cs,t), computed for each method,

with the same quantity computed in the “ideal" case, where M(It) is substi-

tuted by Ms (the resulting value is denoted by p(Cs,s)). The ratio p(Cs,t)/p(Cs,s)

(termed gaze consistency index) is shown for the SimGAN, CycleGAN, and Eye-

GAN methods in Tab. 1 (note that term ‖Θ‖ disappears in the ratio.) We used

the segmenter designed as part of the EyeGAN training process to extract masks

from the target images in all three methods. These results were obtained using

Eq. (4.5) on N = 81 input masks Ms (or associated synthetic images Is in the

case of SimGAN and CycleGAN), sampled uniformly in terms of gaze direction

and head orientation. Target domain images were culled from the UBIRIS data

set [83], selecting those taken at a distance of 4 meters. The images were resized to

120×80 pixels and histogram equalized. The results show that EyeGAN produces

a substantially higher gaze consistency index than the other methods.

p(Cs,t)/p(Cs,s)
EyeGAN CycleGAN SimGAN
0.89 0.36 0.48

Table 4.1: Gaze consistency indices for the methods considered.

Examples of generated images for the three methods considered are shown in

Fig. 4.5. For each method we selected the five images It with the lowest similarity

score Ss,t(φ, φ). Each image is shown next to the source image Is or mask Ms

(for EyeGAN) that was fed into the generator. We noted that EyeGAN generally

produces images with better overall quality than the other two methods. Some
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examples of poor quality images generated by EyeGAN are shown in Fig. 4.6.

Figure 4.6: Examples of poor quality images generated by EyeGAN.

4.2.2 Eye Region Segmentation

Segmentation of various ocular regions as well as of the periocular region is

instrumental for ocular biometric applications [75, 7]. Eye segmentation is also

useful for animation of eyes and eyebrows of avatars for virtual reality [114].

Generation of training images via manual eye region segmentation and labeling,

however, can be time consuming and thus expensive, and possibly error-prone.

Domain transfer techniques can be used to generate large data sets with inher-

ited annotations from labeled source domains. We comparatively evaluated our

EyeGAN network as a tool to generate annotated training data for a segmenter

tasked with extracting specific regions in eye images.

We considered two available labeled data sets for these experiment. The first

data set (UBIRIS, already considered in Sec. 4.2.1) has manual annotations of the

iris region. The second data set (SBVPI [88, 87]) contains 1822 eye images of 55

subjects looking towards four different directions (images were resized to 120× 88
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pixels.) SBVPI contains iris and pupil annotation for only a small number of

subjects, but sclera and periocular masks are available for all subjects. Since both

sclera and iris lie within the periocular region, the iris mask can be easily obtained

as the area inside the periocular region that is not part of the sclera. Thus, for

images in the SBVPI, we are able to access ground-truth ternary masks. Note that

binary (for UBIRIS) and ternary (for SBVPI) masks were only used for validation

(not during training).

Two subsets were culled from each data set, by partitioning the set of subjects

associated with the images (i.e., any two eye pictures of the same subject were

assigned to the same subset.) The first subset (1,750 images for UBIRIS, 1092 im-

ages for SBVPI) was used to train the domain–transfer network G(Ms), while the

remaining images in the considered data set were used to validate the segmenter,

which was trained on images synthesized by EyeGAN using the synthetic masks.

Four different FCN segmenters were trained, where in all cases the labels

were represented by synthetic masks Ms. Note that when experimenting with

the UBIRIS data set, the ternary synthetic masks generated using UnityEyes

were transformed into binary by conflating the sclera and background into one

region. We first considered a baseline scenario, with the segmenter trained using

the synthetic images Is associated with the synthetic masks Ms, then tested on

the real images. We then re-trained the segmenter using the same masks Ms as

labels, but with domain–transferred images in input. These training images were

generated starting from synthetic images (G(Is)) using SimGAN and CycleGAN,

and from synthetic masks (G(Ms)) for EyeGAN. All four segmenters were trained

on 25,000 synthetic or domain–transferred images.

We used the metrics considered in [66] (Tab. 2 and Tab. 3) to evaluate the

quality of segmentation. We also show the results when the segmenter is trained
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directly on the real labels available in the training data (“train on target", or TT.)

For both data sets, training the segmenter using target domain data produced by

EyeGAN with inherited annotation from UnityEyes gave the best results. In fact,

for the UBIRIS data set, the results using EyEGAN images for training are better

than when the segmenter is trained on the real labels (TT). This can be justified

by the fact that many more EyeGAN images (with inherited annotations) were

available for training than real target images.

Baseline EyeGAN CycleGAN SimGAN TT
IoU:Skin 0.95 0.98 0.93 0.96 0.97
IoU:Iris 0.77 0.90 0.68 0.80 0.87
mean IoU 0.86 0.94 0.81 0.88 0.92
f.w. IoU 0.92 0.96 0.89 0.93 0.96
pix. acc. 0.96 0.98 0.94 0.96 0.98

mean pix. acc. 0.90 0.97 0.88 0.93 0.94

Table 4.2: Comparison of segmentation into sclera and iris produced by the
different algorithms considered for the UBIRIS data set, using standard metrics
for multi-class segmentation [66], and specifically: IoU for each class; mean IoU;
frequency weighted (f.w.) IoU; pixel accuracy; and mean pixel accuracy. The last
column shows the “trained on target" (TT) results.

Baseline EyeGAN CycleGAN SimGAN TT
IoU:Skin 0.86 0.94 0.84 0.83 0.96
IoU:Sclera 0.44 0.78 0.34 0.35 0.86
IoU:Iris 0.68 0.84 0.45 0.49 0.89
mean IoU 0.66 0.85 0.54 0.56 0.91
f.w. IoU 0.78 0.91 0.72 0.72 0.94
pix. acc. 0.87 0.95 0.82 0.82 0.97

mean pix. acc. 0.73 0.92 0.71 0.72 0.94

Table 4.3: Comparison of segmentation into skin, sclera, and iris produced by the
different algorithms considered for the SBVPI data set. (See caption of Tab. 2.)
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4.2.3 Pupil Localization

Another feature of interest in eye images is the location of the pupil center.

High accuracy is needed for applications such as model–based gaze tracking [9].

We conducted an experiment similar to the one described in the previous section,

where in this case the output of the network is a pair of numbers, representing the

normalized coordinates of the estimated pupil center location. For this purpose, we

used a DenseNet [37] architecture, with the last softmax layer replaced by a linear

layer producing the coordinates vector. L2 loss was used for training. Specifically,

we used the compact variant DenseNet-BC with the following configuration: L

(number of layers) =100; k (growth rate of feature maps in each layer) =12; four

dense blocks. The learning rate was set to 0.001 and the network parameters were

optimized using Adam [50].

Figure 4.7: Examples of eye images generated by EyeGAN in the style of the
BioID data set (top row), shown together with the UnityEye masks that were fed
to the generator (middle row). For reference, we also show the synthetic images
Is corresponding to the masks Ms for the EyeGAN case in the last row.

As in the previous section, we trained a baseline regressor, using solely syn-

thetic images generated by UnityEyes, as well as three regressors trained on

domain–transferred images, inheriting annotations from UnityEyes. The target

domain distribution was represented by the BioID data set [1], which contains
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1521 grayscale images of 23 subjects taken at different head orientations. The im-

ages were resized to 72× 120 pixels and histogram equalized. The location of the

pupil center was available for each image; this information was only used in the

final evaluation. Samples of the images produced by EyeGAN in the style of the

BioID data set, generated starting from UnityEyes masks, are shown in Fig. 4.7.

Fig. 4.8 shows the cumulative distribution function (CDF) of the Euclidean norm

Figure 4.8: The cumulative distribution functions (CDFs) of the Euclidean norm
of pupil localization error for the different algorithms considered (Sec. 4.2.3.)

of the localization error for the different methods considered (where the CDF for

a certain error value e represents the portion of images with error smaller than e.)

For comparison, we also showed results using two well–known existing algorithms

for pupil localization: ExCuSe [25] and ElSe [26], both based on fast elliptical

fitting of the pupil region. Note that training with EyeGAN gave the best results.

4.2.4 Gaze Estimation

Appearance-based gaze estimation algorithms compute the direction of gaze

directly from images of the user taken by a camera, without resorting to geomet-

rical models of gaze formation. Training a network for appearance-based gaze

estimation requires availability of data with precise annotation of gaze direction

for each image. This can only be obtained indirectly, i.e. by asking the user to
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look at a certain point on the screen, and then inferring gaze direction from the

known location of the user’s head location. The ability to generate realistic images

with inherited annotation is highly desirable, as it would enable construction of

larger and more diverse training data sets.

We used NVGaze [48], a data set that contains both real eye images captured

under IR illumination from a wearable headset device, as well as synthetic eye

images from a similar viewpoint. The real eye images are annotated with gaze

direction; the synthetic images have both gaze and segmentation mask annotation.

The goal of this experiment was to learn a mapping from real images to gaze

direction, but without making use of any available ground-truth labels for these

images during training. We decided to use an intermediate representation, formed

by a set of 25 feature points extracted from the segmentation masks (12 points

uniformly distributed around the edge of the periocular region, 12 points around

the iris, and one point in the center of the iris.) We trained a fully connected neural

network (with two hidden layers of size 500 each) to learn a mapping from feature

points extracted from the synthetic masks to gaze direction. We then trained

another network to predict the location of feature points from images generated

with EyeGAN. During training, each EyeGAN image was associated with the

feature points extracted from the synthetic mask used to generate the same image.

This network used the same DenseNet [37] architecture described in Sec. 4.2.3,

this time with a 50-dimensional (25 × 2) output (using L2 loss.) We then tested

our system on real eye images using a cascade of the two networks just described:

for each image, we first predicted the associated feature points, and then, from

these feature points, the gaze direction. The synthetic image portion of NVGaze

contains two million images, while real eye images are collected for 35 subjects

take at a high frame rate. For synthetic data, we sampled 50000 images. For real
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world data, we randomly selected one subject with 76000 images containing 50

gaze directions. We sampled 128 images, ensuring that all gaze directions were

covered. When testing the gaze detector on the real eye images, we reserved 22

such images for subject calibration [48]. This procedure, akin in spirit to subject

calibration for standard IR gaze tracker, is designed to remove individual bias (as

due, for example, to the kappa angle between the visual and the pupillary axes [57].

Specifically, we computed a quadratic regression from the predicted gaze directions

to the ground-truth gaze directions over these 22 images; we then applied the

same quadratic function on the predicted gaze for the remaining images, before

computing the angular error with respect to the ground-truth gaze direction.

The results are shown in Tab. 4, where “Baseline" represents the case in which

the predictor for the feature points was trained entirely on synthetic data. This

experiment once more shows that training the network (in this case, the feature

points predictor) on EyeGAN-generated images with inherited annotations results

in the best performance.

Baseline EyeGAN CycleGAN SimGAN
23◦ 5.3◦ 20◦ 16◦

Table 4.4: Mean gaze angular errors for the experiment described in Sec. 4.2.4.

4.3 Conclusion

We have introduced a new algorithm, EyeGAN, for the generation of eye im-

ages with a prescribed gaze direction in the style of a desired target domain.

Like similar techniques, EyeGAN operates within the framework of domain trans-

fer: starting from synthetically generated data, it produces an image that can

be considered as a sample from the target domain distribution. The key differ-
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ence between EyeGAN and other competing algorithms is in the way it enforces

consistency of gaze direction. Our experiments have shown that ternary masks,

which are easy to generate, contain enough information to “guide" the generation

process into producing realistic images with the desired gaze direction. Compar-

ative tests with different tasks and different target domains have shown that the

images produced by EyeGAN lead to better results when used as training data

with inherited annotations.
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Chapter 5

Subject Guided Eye Image

Synthesis for Gaze Redirection

The Eyes are the window to your
soul

William Shakespeare

In this chapter we address the specific problem of gaze redirection: given an

image of a person’s face, we want to generate a new image that is identical to the

first one, except for this person’s gaze, which should be consistent with a certain

direction. We cast the task of gaze redirection as one of image synthesis with a

pre-determined style. By style we mean, for example, the appearance of a cer-

tain person’s face under a certain illumination. In this context, the content to be

manipulated is gaze direction. Following EyeGAN, we use ternary segmentation

masks to characterize gaze direction. Masks act as style-independent proxies for

gaze. In previous chapter, the EyeGAN algorithm was introduced that takes a

synthetic mask for a prescribed gaze direction as input, and generates an image

under content (gaze direction) consistent with the input mask and some random

style. In this chapter, we push this idea forth, and introduce a new cyclic mecha-
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Figure 5.1: Overview of our Style-Based Eye Image Generation. The generator
receives in input a segmentation mask and a style image. It synthesizes an image
which is consistent in gaze with the segmentation mask, with generated features
similar to the style image.

nism to ensure consistency of both style and content of the generated image. In

addition, we introduce an algorithm that redirects one’s gaze without relying on

model-based synthetic mask generation. A ternary mask is extracted from the

input image, and redirected (using a trained network) to the desired gaze direc-

tion. This new mask is then used to control style-preserving gaze redirection.

Remarkably, our algorithms do not require gaze annotated real-world images for

training.

5.1 Method

5.1.1 Style–Based Eye Image Synthesis

The goal of this module is to generate a realistic image with a certain style

and a prescribed gaze direction. Style is guided by means of an eye image from a

domain E . This image is given in input to the network, along with a ternary seg-

mentation mask (from the mask domainM), which characterizes the prescribed

gaze direction. Thus, our system is a mapping G fromM×E to E . Fig 5.1 shows
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Figure 5.2: Top Left: SPADE [80] based Generator architecture. The ResNet
Encoder encodes the style image. The style encoding is input to the SPADE
generator which also receives segmentation mask input at different scales. Top
Right: Our Style-Based Eye Image Synthesis flow. The generator synthesizes
the eye image from the mask and style image. During training, the generated
image is fed back to the generator along with mask corresponding to the style
image. Bottom Left: Gaze Redirection model trained on the segmentation masks.
Bottom Right: End to End Gaze redirection system involving segmentation mask
generator, gaze redirector and style generator.

an overview of our style–based eye image synthesis.

Let Eg1
s ∈ E be the input eye image, where the subscript s indicates the style,

and the superscript g1 indicates the gaze direction in the image. Note that “style" is

not a directly measurable quantity – it expresses the appearance of the eye image,

in terms, for example, of iris color, skin color, skin texture, illumination. Gaze is

quantifiable, but we don’t need to know, nor make use of, the gaze direction g1.

The goal of the generator G is to synthesize an eye image Eg2∗
s ∈ E with same

style s as the input, but with gaze direction g2 (the superscript ∗ indicates that

this is a synthesized image.) The algorithm uses a synthetically generated ternary
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mask, M g2 as a proxy for the prescribed direction g2.

The network is trained using samples consisting of four images each: {Eg1
s ,

M(Eg1
s ), Eg2

s , M(Eg2
s )}. Here, Eg1

s and Eg2
s are images of the same individual

with different gaze directions. M(·) is a function that extracts a ternary mask

from an eye image [44].

Synthesis Loss. The synthesis loss term ensures that the generated image, Eg2∗
s ,

is similar to the desired one. For this purpose, we use a perceptual loss function

[41], [34]:

Lsyn(G) =
∑
j

wj ∗
1
Nj

||fj(Eg2∗
s )− fj(Eg2

s )||22 (5.1)

=
∑
j

wj ∗
1
Nj

||fj(G(M g2 , Eg1
s ))− fj(Eg2

s )||22 (5.2)

Here, fj(·) is the feature map of size Nj = Cj × Hj × Wj, extracted from jth

convolutional layer in the VGG-16 network, pre-trained on the ImageNet data

set.

Re-synthesis Loss. As an additional device to ensure style consistency between

the input Eg1
s and the synthesized image Eg2∗

s , the latter is taken as input to the

generator during training along with the segmentation mask M g1 from the input

image, to generate a new image Eg1∗
s = G(M g1 , Eg2∗

s ). A second loss component

is added as follows:

Lresyn(G) = ||Eg1∗
s − Eg1

s ||1 (5.3)

= ||G(M g1 , G(M g2 , Eg1
s ))− Eg1

s ||1 (5.4)
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This idea borrows from the CycleGAN scheme [59], with the difference that Cy-

cleGAN maps an image from a domain to a different domain and back, while we

map an image to the same domain (and back), but with an additional “content

guidance" image (the ternary segmentation representing gaze direction.)

Adversarial Loss. In order to improve the quality of image generation, we also

consider an adversarial loss [31]. A discriminator network D(·) is shown an image,

either synthesized (Eg2∗
s ) or real (Eg2

s ), and is tasked with determining whether

the input image is real or synthesized. This loss term penalizes the discriminator

when the determination is incorrect, and the generator when it is correct:

Ladv(G,D) = log(D(Eg2
s )) + log(1−D(Eg2∗

s )) (5.5)

= log(D(Eg2
s )) + log(1−D(G(M g2 , Eg1

s ))) (5.6)

Along with the adversarial loss, we consider a discriminator-based feature

matching loss [107]. Features are extracted from intermediate layers of the dis-

criminator network for both a real (Eg2
s ) and synthesized (Eg2∗

s ) image. This loss

penalizes discrepancy between the features for the two images.

Lfeat(G) =
∑
j

1
Nj

||Dj(Eg2∗
s )−Dj(Eg2

s )||22 (5.7)

=
∑
j

1
Nj

||Dj(G(M g2 , Eg1
s )−Dj(Eg2

s )||22 (5.8)

Here Dj represents the feature map extracted from the jth layer of the discrimi-

nator network. The size of the feature map is given by Nj = Cj ×Hj ×Wj.
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Overall Objective The overall objective is given by:

G∗, D∗ = G
min

D
max

(Ladv(G,D) + λ1Lfeat(G)

+ λ2Lsyn(G) + λ3Lresyn(G)) (5.9)

5.1.2 Gaze Redirection via Mask Synthesis

In the algorithm described above, gaze redirection is guided by a ternary mask

M g2 , which describes the desired gaze direction. This mask would normally be

obtained using a computer graphics tool, such as UnityEyes [110]. However, this

mask may not be perfectly suited to the considered “style". Due to the variability

of facial features, a synthetic mask can be only an approximation of the actual

segmentation obtained from a real image. For this reason, a synthetic mask may

only be a sub-optimal solution for guiding gaze redirection.

We address this problem with an algorithm that builds on our Style–Based

Eye Image Synthesis approach, but that synthesizes the content-guiding ternary

mask from the segmentation of the input image. The hope is that this mask may

represent a better proxy for our gaze redirection algorithm. Mask synthesis is the

job of a mask redirection network, which takes in input a ternary segmentation

of the input image M(Eg1
s ), along with the the prescribed variation of gaze angle

(∆φ,∆θ) = (gφ2 , gθ2)− (gφ1 , gθ1) [34] [119], to produce a redirected mask M g2∗.

The mask redirection network R is trained with pairs of segmentation masks

(M(Eg1
s ),M(Eg2

s )) from images with known gaze directions (g1, g2). A loss func-

tion is defined as the sum of two terms: a mask-synthesis loss and a mask-

resynthesis loss.

Mask-Synthesis Loss. This is a forward content loss between the gaze redirected
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Figure 5.3: Eye Image Synthesis from Unity Masks. First and second column:
masks from UnityEyes and corresponding synthetic eye images. Columns 3-5: the
generated images from our Style-Based generator for the mask in Column 1. The
input style images are shown in last three columns.

mask and the target mask.

Lm−syn(R) = CE[R(M(Eg1
s ), (∆φ,∆θ))−M(Eg2

s )]

Mask-Resynthesis Loss. The redirected mask is fed back to the network with

negative gaze direction variation, with the goal to reconstruct the input mask:

Lm−resyn(R) = CE[R(R(M(Eg1
s ), (∆φ,∆θ)), (−∆φ,−∆θ))−M(Eg1

s )]

In these equations, CE[·] represents the cross-entropy function.
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5.2 Experiments

5.2.1 Style-Based Eye Image Synthesis

Data Set. We trained our Style–Based Eye Image Synthesis network on the

Columbia Gaze data set [92]. This data set contains facial images taken of 56

subjects under constrained settings. For each subject, gaze data was collected at

5 horizontal head poses [0◦,±15◦,±30◦]. For each head pose, 21 gaze directions (7

horizontal: φ ∈ [0◦,±5◦,±10◦,±15◦] and 3 vertical θ ∈ [0◦,±10◦]) were recorded.

We cropped the left and right eye patches from the facial images and resized them

to 64× 64 as described in [34]. The right eye images were flipped to look like left

eye images. Each style category consists of images for one subject with different

gaze directions with one head pose and one side (left/ right). In practice, a total

of 56 · 5 · 2 = 560 styles were considered (56 subjects with 5 different head poses

and 2 sides). Each style has 21 images (one per gaze direction). We used the first

50 subjects for training and the remaining 6 subjects for testing.

We used EyeGAN [44] to extract segmentation masks for all of the eye images.

This method trains a fully convolutional neural net [66] to extract segmentation

masks without manual annotations. It uses a set of real eye images along with

synthetic eye masks (from the UnityEyes [110] tool.) It alternates training of

a segmenter network to extract masks from real eye images, with training of a

generator network that synthesizes natural looking eye images from the synthetic

masks. Since the mask generated by EyeGAN have a smaller size 48 × 32, we

zero-padded them to fill a 64× 64 area.

Implementation Details Our eye image synthesis generator is implemented as

an encoder-decoder network. In particular, we use a ResNet [33] encoder with
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three residual blocks, and a SPADE [80] decoder for generating images guided by

segmentation masks (see Fig. 5.2). In SPADE, the segmentation mask is fed at

each block at different scales. Our SPADE decoder consists of four SPADERes-

Net blocks. Training is performed using the same multi-scale discriminator as in

pix2pixHD [107] and SPADE [80] with hinge loss [61], [80]. We used Adam [50]

optimizer with β1 = 0 and β2 = 0.9. Learning rate was set to 0.005 with λ1, λ2

and λ3 as 10, 20 and 20 respectively.

Results We first compare our Style-Based Eye Image Synthesis with three other

eye image synthesis algorithms: SimGAN [91], CycleGAN [126], [59] and EyeGAN

[44]. These algorithms synthesize an image with the style of the data set on which

they are trained (in this case, the Columbia Gaze data set.) In the case of of

SimGAN and CycleGAN, the input to the algorithm is a synthetic eye image from

UnityEye. EyeGAN takes in input a segmentation mask, also from UnityEye.

Two metrics were considered for comparison: (1) Fréchet Inception Distance

(FID) [35]; and (2) mean IoU (mIoU). FID is a metric used to measure similarity

between two data sets (in our case, the output of the algorithms and the Columbia

Gaze data set.) It captures both the perceptual similarity between generated and

real images, and the diversity of generated images (similar data sets have low FID

values). The mean IOU is computed between the segmentation of the output,

and the mask corresponding to the input image or the mask itself in our case.

This segmentation is obtained by a FCN [65] trained on masks corresponding to

UnityEyes images and the corresponding eye images generated using EyeGAN

since it has been shown to preserve semantic consistency of the generated images.

A larger value of mIoU indicates good semantic consistency between the source

and the generated image.

Table 5.1 presents quantitative results in terms of the FID and mIoU metrics.
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Table 5.1: Comparison of eye image synthesis algorithms using FID score (lower
the better) and mIOU (higher the better).

Algorithm FID mIoU
EyeGAN [44] 83.9 0.93
CycleGAN [126], [59] 39.5 0.61
SimGAN [91] 53.7 0.66
Ours 8.5 0.72

Table 5.2: Comparison of Style-Based eye image synthesis using LPIPS metric
(lower the better).

(a) LPIPS score on the test data
with supervised training.

Algorithm LPIPS
Pix2PixSC [106] 0.104
Seg2Eye [8] 0.077
Ours w/o reconst 0.035
Ours 0.033

(b) LPIPS score on the test data
with unsupervised training.

Algorithm LPIPS
Pix2PixSC [106] 0.125
Seg2Eye [8] 0.124
Ours w/o reconst 0.078
Ours 0.044

Our technique achieves the smallest value of FID, and the second highest value

of mIOU among the algorithms considered. Samples of eye images generated by

our method, along with the “style images" and synthetic masks used in input, are

shown in Figure 5.3.

We also compared our algorithm with two other techniques for style-based syn-

thesis: Seg2Eye [8] and Pix2PixSC [106] on Columbia eye data set [92]. Seg2Eye

uses the SPADE [80] architecture with adaptive-instance normalization layers for

style transfer. We trained Seg2Eye with a single style image per data point.

Pix2PixSC uses style consistency adversarial loss with Pix2PixHD [107] as a base

architecture.

We used the segmentation mask corresponding to test subject images and

generated the style image corresponding to the masks. The generated images are

compared with the ground truth images using LPIPS [120] metric. We trained our

network with baseline under two kinds of settings, supervised and unsupervised.
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(a) Full Dataset. (b) Reduced Dataset.

Figure 5.4: LPIPS vs Correction Angle: Quantitative comparison of gaze redi-
rection results for frontal head pose.

Figure 5.5: Qualitative comparison under supervised setting. We show the
results corresponding to different segmentation masks for a test style image. The
ground truth images are shown along with the synthesized images for baseline
methods.

In supervised setting, the ground truth image corresponding to the input mask

has the same style as the input style image. In unsupervised setting the ground

truth image has the different style as the input style image. We observed that,

with supervised training, SPADE generator architecture with ResNet encoder in

itself is good enough to generate Style-Based images, without the need for our
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Figure 5.6: Qualitative comparison under unsupervised setting. We show the
results corresponding to different segmentation masks for a test style image. The
ground truth images are shown along with the synthesized images for baseline
methods.

re-synthesis loss. However, our re-synthesis loss proved very useful in case of un-

supervised training. We show the LPIPS metric results for the two baselines and

our method with and without reconstruction in Table 5.2, for both supervised

and unsupervised training. We also show the qualitative results in Figure 5.5 for

supervised training and Figure 5.6 for unsupervised training.

5.2.2 Gaze Redirection via Mask Synthesis

Data Set The mask redirection network was trained with synthetic masks corre-

sponding to the eye images from 10 different subjects (different eye parameters)

generated for 21 gaze directions in frontal head pose using UnityEyes [110] tool.

For each gaze direction, we trained the network to redirect the mask to 20 other

gaze directions.
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Implementation Details The mask redirection network receives in input a seg-

mentation mask and a gaze direction variation vector. The input segmentation

mask is passed through a network with three convolutional layers, followed by five

residual blocks and then by three upsampling + convolutional layers. The gaze di-

rection variation vector is input to a Multi-Layer Perceptron, then concatenated

with output of the convolutional layers for the input mask, before the residual

blocks. The network is trained to minimize per-pixel cross-entropy loss between

the generated mask and the ground truth mask from UnitiEyes. We used Adam

[50] optimizer with β1 = 0.9 and β2 = 0.999. The learning rate was set to 0.01.

The output of the mask redirection network is used as input mask in the

Style-Based Eye Image Synthesis (Sec. 5.1.1).

Results We compared our algorithm for gaze redirection based on mask synthesis

against the method described in [34] (which we dubbed “GazeRedirGAN",) which

is shown to give state of the art results. The LPIPS [120] metric was used for

comparing generated and ground truth images. The mean LPIPS score is cal-

culated with respect to the correction angle [34], which is the angular difference

between target gaze direction and source gaze direction. As shown in Figure 5.4a,

our method performs slightly better than GazeRedirGAN, even though we only

used the gaze labels corresponding to synthetic masks for redirection.

In another experiment, we removed eye images corresponding to horizontal

angles [±10◦,±15◦]. We trained both our Style-Based Eye Image Synthesis algo-

rithm and GazeRedirGAN on this reduced (Columbia) data set, and tested on the

gaze directions unseen in the training set. The synthetics masks corresponding to

the removed gaze directions were used to train the gaze redirection network. As

shown in Figure 5.4b our gaze redirection produces lower LPIPS values. We also

show qualitative comparison in Figure 5.7.
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Figure 5.7: Qualitative Comparison of gaze redirection results with models
trained on reduced data set.

5.3 Conclusion

We proposed a new method for generating realistic eye images with a pre-

scribed gaze direction. This algorithm takes in input a “style image" as well as

a ternary segmentation mask, representing the desired gaze direction. A cyclic

training algorithm ensures that the generated image has the desired gaze direction,

and that it is in the style of the input image.

We also show how we can use this style synthesis for gaze redirection. Impor-

tantly, this algorithm does not require annotation of gaze angle in the training

data. Instead, it uses ternary segmentation of the training images, which is much

easier to obtain. The gaze labels are required corresponding to the ternary mask

which can be generated synthetically.
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