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ABSTRACT OF THE DISSERTATION 

 

Deciphering the Function of Single Nucleotide Variants  

in Post-transcriptional Gene Regulation 

 

by 

 

Ting Fu 

Doctor of Philosophy in Molecular, Cellular, and Integrative Physiology 

University of California, Los Angeles, 2022 

Professor Xinshu Xiao, Chair 

 

Single-nucleotide variants (SNVs), such as genetic variants and RNA editing sites, constitute 

the most prevalent type of sequence variations in the RNA. Genome-wide association studies 

(GWAS) and global analysis of RNA editing have revealed many genetic variants and RNA 

editing sites associated with human diseases and complex traits. Yet, the underlying 

mechanisms of such associations are still missing for most SNVs. In this dissertation, we 

studied both non-coding and coding SNVs, revealing their functional roles in regulating mRNA 

abundance and splicing.  

 

Understanding the function of non-coding rare genetic variants remains a major 

challenge. To fill in this gap, we developed a massively parallel reporter assay, allowing 

functional testing of 3’ UTR variants regulating mRNA abundance in a high-throughput manner. 

We screened 14,575 rare 3’ UTR genetic variants and identified 5,437 functional ones leading 

to significant changes in mRNA abundance in at least one human cell line. Supported by TCGA 
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expression outlier analysis and experimental studies, we observed that many rare 3’ UTR 

variants regulate mRNA abundance of cancer-relevant genes.  

 

We next examined a specific set of RNA editing sites that are differentially edited 

between epithelial and mesenchymal tumors across 7 cancer types in The Cancer Genome 

Atlas (TCGA). Inspired by the correlations between editing levels and gene expression, we 

uncovered many 3’ UTR RNA editing sites regulating mRNA abundance. Further, we identified 

the RNA-binding protein ILF3 as a potential regulator of the editing-dependent gene expression 

change, especially for immune-relevant genes. We showed that multiple RNA editing sites 

mediate the ILF3 stabilizing effect on the transcripts encoding Protein Kinase R (PKR), a key 

player in immune response. 

 

In addition to non-coding variants, we further characterized two RNA editing sites in the 

alternative exon of the gene podocalyxin-like (PODXL), a significant clinical indicator for tumor 

detection and prognosis. Supported by survival analysis in Kidney Renal Clear Cell Carcinoma 

(KIRC) patients, we discovered dual roles of RNA editing in promoting the loss of function of 

PODXL in cancer. We hypothesized that exonic RNA editing sites contribute to proteomic 

diversity through alternative splicing, a previously overlooked function of RNA editing. 
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CHAPTER 1  
 

Background 
 

1.1 What are single nucleotide variants (SNVs)? 

 

The human genome, composed of four types of DNA nucleotides, encodes fundamental 

biological information. Although the genome integrity is being strictly controlled by the DNA 

repair pathways, mutations may still occur and potentially become inheritable if present in germ 

cells1. Thanks to the wide application of whole-genome and whole-exome sequencing in parent-

offspring trios, a large number of inherited and de novo mutations have been identified, 

providing new insights into the occurrence of de novo mutations and their links to disease 

etiology2. Around 4.1 to 5 million nucleotide positions in an individual’s genome are different 

from the human reference genome3. According to the 1000 Genomes Project, most human 

genetic variants are single-nucleotide polymorphisms (SNPs), many of which have a frequency 

less than 0.5% in the human population3. As of June 2022, over 1 billion SNPs have been 

reported in the dbSNP Human Build 155 release4.  

 

However, not all SNPs cataloged by the dbSNP are true genetic variants, as some RNA 

editing sites have been annotated as SNPs due to a failure in recognizing the RNA-DNA 

differences (RDDs) in these sites5. Unlike genetic mutations, RNA editing is a co-/post-

transcriptional process that introduces nucleotide substitutions, insertions, and deletions in the 

RNA transcripts, which are not present in the DNA sequences. The identification of RNA editing 

sites requires not only variant calling from RNA, but also evidence of RDDs in each sample. 

RDDs can be identified given matched RNA and DNA sequences6. Nonetheless, in the absence 
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of DNA sequencing data, RNA editing sites can be inferred from RNA sequences alone, taking 

advantage of the prior knowledge of distinct features of RNA editing sites, such as high allele 

frequencies in the population7, tendency to cluster together8, and random allelic linkage9. The 

most common type of RNA editing is Adenosine-to-Inosine (A-to-I) editing, catalyzed by the 

adenosine deaminase acting on RNA (ADAR) protein family10. Most A-to-I editing sites are 

found in Alu elements, which are primate-specific retrotransposons accounting for ~10% of the 

human genome11. The highly repetitive Alu elements can form long dsRNAs that serve as the 

targets for ADARs12,13. Around 16 million human A-to-I editing events have been recorded in the 

REDIportal database14. 

 

Both genetic variants and RNA editing sites can be expressed in the RNA as single-

nucleotide variants (SNVs). Although their biogenesis pathways are substantially different, the 

functional impact of these two types of SNVs, once transcribed, share a high level of similarity. 

Our work focuses on the function of SNVs in post-transcriptional processes, which is discussed 

below.   

 

1.2 SNVs in post-transcriptional processes 

 

1.2.1 Deciphering the function of genetic variants, a post-genomic challenge 

 

The discovery of a large number of genetic variants has greatly facilitated gene-disease 

mapping via linkage analysis15. More than 6,000 single-gene disorders with known molecular 

basis have been reported in the Online Mendelian Inheritance in Man (OMIM) database16. For 

complex diseases resulting from multiple genetic variants and environmental influences, 

genome-wide association studies (GWAS) were adopted to identify common and less penetrant 
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variants with disease associations17. The NHGRI-EBI database provides a comprehensive 

catalog of GWAS results, currently encompassing 384,894 associations between genetic loci 

and human traits18. It is important to note that many GWAS SNPs may not necessarily cause 

the associated traits but, rather, in linkage disequilibrium (LD) with a potentially causal SNP19. 

Following GWAS, candidate causal SNPs may be further predicted using fine-mapping 

approaches20. Although a large number of SNP-trait associations have been reported, the 

underlying causal variants and their associated functional mechanisms remain largely 

undetermined. As reported in a previous study21, 88% GWAS SNPs were in the non-coding 

regions of the genome, whose functional roles are challenging to decipher. Thus, decoding the 

genotype to phenotype relationships represents a significant challenge in the post-genomic era.  

 

1.2.2 Approaches to predict functional genetic variants in post-transcriptional 

regulation 

 

To decode the genotype to phenotype relationships, the first fundamental step is to understand 

the molecular function of a genetic variant. Post-transcriptionally, the function of a genetic 

variant can be inferred based on the genomic region. For example, variants within exons can 

cause amino acid changes and stop-codon gain/loss22. In addition, variants located in splice 

sites could lead to the formation of alternative isoforms with abnormal functions23. Compared to 

coding genetic variants, variants in the non-coding regions, such as untranslated regions 

(UTRs) and introns, are much harder to decode directly. Mechanism-wise, variants in the non-

coding regions can alter the sequences or the accessibility of cis-regulatory elements, thus 

changing their binding preferences with trans-factors, which ultimately contribute to phenotypic 

changes24. Fortunately, even with limited knowledge of cis-regulatory elements in non-coding 

regions, taking advantage of the increased availability of genotype-phenotype datasets such as 
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Genotype-Tissue Expression (GTEx)25, the linkage between genetic variants and molecular 

phenotypes (i.e., gene expression and splicing) can be statistically inferred using quantitative 

trait locus (QTL) analysis26, allelic-specific linkage analysis27,28, and machine learning29,30. Such 

association studies have also been used to investigate the regulatory effect of genetic variants 

on RNA modifications31,32. 

 

While computational methods can annotate functional variants, experimental validations 

are needed to establish the causal link between the genotype and phenotype in an appropriate 

context. To this end, reporter gene assays, such as luciferase reporter assays33 and green 

fluorescence protein (GFP) reporter assays34,35, have been used to characterize the functional 

effects of genetic variants in gene expression36 and splicing37. This process can be very slow as 

one locus of interest is being characterized at a time. Facilitated by the development of 

massively parallel DNA synthesis and sequencing, massively parallel reporter assays (MPRAs) 

have been developed to measure the function of genetic variants in a high-throughput manner38. 

Depending on the method of readout, MPRAs can be divided into two types. The first type 

utilizes fluorescence-activated cell sorting (FACS) to detect a normalized florescent expression 

level (i.e. the intensity ratio of the test fluorescent protein against the control fluorescent 

protein), which is designed to reflect gene expression39,40 or splicing activity41 of a variant. Cells 

are sorted into different bins representing different activity levels, followed by DNA sequencing 

to identify the variants that are perturbed in each bin. The second type measures variant 

activities directly from RNA sequencing reads, sometimes normalized against DNA sequencing 

reads. For example, the RNA/DNA ratio of a variant can be used to reflect its expression 

level42,43. Also, the splicing activity of a variant can be calculated using percent spliced in 

(PSI)44. With additional cell fractionation steps, MPRAs can also measure the impact of variants  

on mRNA localization45. 
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Exploiting the expanding genome editing toolkit, CRISPR screens can perturb genes in 

their native genomic context and measure the functional consequences in a more 

physiologically relevant environment46. When combined with high-content readout such as 

single-cell sequencing, CRISPR screens allow the detection of transcriptome changes caused 

by genetic perturbations in vivo46.  In addition to validating known variants, MPRAs and CRISPR 

screens can also nominate novel functional elements related to the phenotype of interest 

through random mutagenesis and perturbations38. The experimental measurements, together 

with other genome annotations obtained computationally or experimentally, can be used to train 

computational models to predict functional genetic variants47–49. 

 

1.2.3 Functional roles of RNA editing sites 

 

Almost at the same time when genetic variants are transcribed into RNA, RNA editing modifies 

the sequences of nascent RNA molecules50. Thus, RNA editing has profound impact on post-

transcriptional regulation, just like genetic variants. In A-to-I editing, the inosine is recognized as 

guanosine by the cellular translational machinery51. The consequential recoding events have 

been characterized for a few RNA editing sites with important physiological functions. For 

example, RNA editing in glutamate ionotropic receptor AMPA type subunit 2 (GRIA2) causes a 

codon change from glutamine (Q) to arginine (R), which substantially increases the calcium 

permeability of AMPA receptors that are responsible for synaptic transmission in the central 

nervous system52. This mechanism is conserved in mice, where a lack of Q/R recoding events 

led to early-onset epilepsy and death53. Another Q/R recoding site in the gene filamin A (FLNA) 

is highly edited in normal hearts, but lowly edited in patients with dilated cardiomyopathy54. 

Transgenic mice with a deficiency in Flna editing showed pathological cardiac remodeling54. In 

addition to altering protein coding, most RNA editing sites are located in non-coding regions 
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such as introns and UTRs55, actively involved in other aspects of post-transcriptional regulation. 

RNA editing in introns can modulate pre-mRNA splicing50. Notably, RNA editing can create 

novel splice sites leading to the exonization of Alu-exons56. When present in non-coding RNAs 

such as microRNAs (miRNAs) or 3’ UTR regions of transcripts, RNA editing can affect miRNA-

mediated gene silencing, thus altering mRNA abundace57,58. 

 

RNA editing also plays a unique role in innate immunity. Upon viral infection, the 

external viral RNA forms dsRNA in the host cell, which is recognized by dsRNA sensors to 

initiate immune responses against viruses59. Importantly, RNA editing prevents the recognition 

of self dsRNAs by dsRNA sensors, such as the melanoma differentiation-associated protein 5 

(MDA5)60 and protein kinase R (PKR)61. As part of the innate immune system, MDA5 senses 

cytoplasm dsRNAs and elicit type I interferon responses62. PKR, on the other hand, triggers 

translational shutdown upon dsRNA sensing63. While activation of MDA5 and PKR are helpful in 

suppressing the replication of viruses, these processes are also detrimental to the host cell if 

elicited in the absence of viruses. Thus, RNA editing is essential in controlling the activation of 

immune response by self dsRNA, whose dysregulation may result in autoimmune disorders64. 

Indeed, loss of ADAR1, a main regulator of RNA editing, induced abnormal interferon response 

in multiple systems, including hematopoietic stem cells65 and liver66,67. The loss of Adar1 in mice 

led to early embryonic lethality due to elevated interferon response68,69. Recent studies in mice 

also showed that Adar1 deletion promotes tumor inflammation and sensitivity to 

immunotherapy, which are likely mediated by MDA5 and PKR70. 

 

1.2.4 Relevance of RNA editing to human diseases 
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Normally, RNA editing is dynamically regulated in tissues, where some editing sites are 

associated with age and gender71,72. Distinct from a genetic variant, which would have a fixed 

allelic ratio (e.g., 0.5 or 1) in a cell, RNA editing usually comes with a more flexible allelic ratio 

represented by the proportion of edited transcripts over the sum of edited and unedited 

transcripts covering a specific site. Several global analyses have revealed widespread 

dysregulation of RNA editing levels (i.e. ratios) in human diseases73–78. It remains unknown if 

the widespread misregulation of RNA editing in human diseases is a cause or a consequence64, 

demanding substantial efforts in the functional characterization of RNA editing sites. 

 

RNA editing is upregulated in most cancer types77,78. Perturbation assays showed that 

both ADAR1 and ADAR2 regulate tumorigenesis, but with varied effects79–81. ADAR1 is found to 

be an oncogene in hepatocellular, esophageal, colorectal, and lung cancers, which facilities 

tumor progression by mediating RNA recoding in AZIN1 and FAK80,82–84. ADAR2 is mostly 

reported as a tumor suppressor, whose editing activities in COPA, IGFBP7, and PODXL have 

anti-tumor effects in hepatocellular, esophageal, and gastric cancers, respectively79,81,85. 

Moreover, ADARs can edit miRNAs, such as miR-200, miR-21, and miR-381, and alter the 

expression levels of tumor suppressor genes or oncogenes86. Apart from its direct roles in 

regulating tumor driver genes, RNA editing in cancer also contributes to proteomic diversity87, 

which potentially give rise to neo-antigens to elicit immune responses88.  

 

RNA editing dysregulation is also associated with neurological disorders, cardiovascular 

diseases, and metabolic diseases89. A few RNA editing sites have been characterized in these 

disorders. For instance, reduced RNA editing in GRIA2 is observed in the motor neurons of 

amyotrophic lateral sclerosis patients90. Similar associations with lowly edited GRIA2 are 

reported in epilepsy, schizophrenia, and bipolar disorder91,92. Another example is serotonin 2C 

receptor (5-HT2cR), whose editing leads to the generation of multiple edited isoforms that are 
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linked to schizophrenia, depression, bipolar disorder, Prader-Willi syndrome, and diabetes64,89. 

Enhanced RNA editing in the 3’ UTR of the cathepsin S (CTSS) transcript mediates its 

stabilization via human antigen R (HuR)93. Increased editing and expression of CTSS are 

associated with atherosclerosis93. Further, transcriptome-wide analysis of RNA editing in human 

patients or mouse models reveals dysregulated RNA editing in many neurological disorders: 

autism spectrum disorder74, Alzheimer’s disease73, spinal cord injuries94, Fragile X 

syndrome74,95, and schizophrenia75, to name a few. Some of the RNA editing changes can be 

attributed to the regulation of ADARs’ editing activities. In particular, the decreased RNA editing 

in Fragile X syndrome may be explained by a lack of Fragile X proteins FMRP, which interacts 

with ADARs and modulate RNA editing74,95.  

 

Future efforts on the identification, characterization, and manipulation of RNA editing in 

human diseases will offer tremendous opportunities in improving diagnostic, therapeutic, and 

prognostic approaches. 

 

1.2.5 Current challenges in functional characterization of SNVs 

 

MPRAs haven been widely adopted given its feasibility in high-throughput testing of molecular 

phenotypes in different cell types96. Many MPRAs focused on uncovering transcriptional 

mechanisms, where the design employs a minimal promoter with low basal activity, tailored to 

capturing genetic variants that enhance, rather than reduce, transcription97. Given their 

transcriptional focus, these MPRAs cannot uncover functional variants that regulate post-

transcriptional processes39,97–99. In Chapter 2, we developed a massively parallel screen for 3’ 

UTR variants that affect mRNA abundance post-transcriptionally. 
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Multiple functional characterization assays99–102 prioritized for the testing of SNPs 

discovered by GWAS, which possessed adequate power to tackle relatively common genetic 

variants103. Common variants, however, usually have small phenotypic effects compared to rare 

variants due to negative selection that has shaped the relationship between effect size and 

minor allele frequency104. Rare variants are enriched in the neighboring regions of gene 

expression outliers across tissues, indicating its role in contributing to large gene expression 

changes49. However, the functional impact of rare variants on post-transcriptional gene 

regulation has not been studied. Chapter 2 fills in this gap by identifying functional rare variants 

in 3’ UTRs that affect post-transcriptional gene regulation.  

 

Although the functional impact of RNA editing sites in various disease systems is 

increasing recognized, systematic studies of the molecular function of RNA editing remain 

scare. In Chapter 3, we explored the function of differential RNA editing during epithelial-

mesenchymal transition, a key process underlying tumor metastasis. We identified an editing-

mediated mRNA stabilization mechanism for immune-related genes. 

 

Most previous studies of RNA editing focused on sites occurring in coding exons, given 

their likely role in altering amino acid sequences. However, exonic RNA editing sites rely on 

intronic complementary sequences to form double-stranded RNA structures, which are 

recognized by the ADAR proteins50,52,105. Thus, exonic RNA editing sites are likely installed 

preceding RNA splicing, which renders them possible RNA variants that affect splicing 

regulation. This aspect of RNA editing function was rarely considered. Chapter 4 characterizes 

two exonic editing sites in PODXL, revealing multi-facet roles of these editing sites in promoting 

loss-of-function of PODXL in cancer. 
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CHAPTER 2  

 
Massively parallel screen uncovers many rare 3’ UTR variants 

regulating mRNA abundance of cancer-relevant genes 

  

2.1 Abstract 

 

Elucidating the functional impact of rare genetic variants, especially those in non-coding 

regions, represents a significant challenge. Here, we developed a massively parallel screen for 

rare 3’ UTR variants (MapUTR) that affect mRNA abundance post-transcriptionally. Using two 

human cell lines, we assayed the function of 14,575 rare variants and found that 5,437 (37%) 

led to significant alterations of mRNA abundance in at least one cell line. These variants are 

enriched in miRNA target sites and binding sites of RNA-binding proteins, attesting to their 

functional relevance. Importantly, 71% of these variants are located in cancer-related genes. 

Further, 37 variants are associated with expression outliers in TCGA. Through prime editing, we 

characterized three variants in cancer-associated genes (MFN2, FOSL2, and IRAK1), 

confirming their impacts on mRNA stability. Importantly, all three variants significantly altered 

cellular proliferation, illustrating the effectiveness of MapUTR in pinpointing functional genetic 

variants. 

 

2.2 Introduction 

 

The mRNA transcript contains untranslated regions (UTRs) in its 5’ and 3’ end that regulate its 

stability, localization, and translation following DNA transcription106,107. The 3’ UTR is usually 
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longer than the 5’ UTR and expanded during evolution, indicating its essential roles in 

posttranscriptional regulation108–110. Indeed, more than 75% UTR variants identified by the 

genome-wide association studies (GWAS) are located in the 3’ UTR region24. Most of the 3' 

UTR regulatory mechanisms are mediated by trans-acting factors, such as microRNAs 

(miRNAs) and RNA-binding proteins (RBPs)109,111.  

 

The development of massively parallel approaches enables the identification of cis-

regulatory elements in 3’ UTRs which are otherwise hard to predict without knowing the trans-

factors39,42,43,112–114. Genetic variants altering the cis-regulatory elements could affect binding of 

trans-acting factors and lead to dramatic changes in gene expression and associated functional 

pathways. However, despite the increasing knowledge of cis-regulatory elements in 3’ UTRs, it 

remains a major challenge to predict the functional impact of genetic variants in 3’ UTRs. This is 

because such variants are surrounded by different genome contexts and may be involved in 

more than one regulatory axis. To this end, STARR-seq and its modified versions have been 

utilized to identify causal 3’ UTR genetic variants in regulating DNA transcription98,99,115,116. In 

addition, several studies examined the functional impact of 3’ UTR variants on mRNA 

abundance through post-transcriptional regulation36,42,102. However, most previous studies 

focused on tackling the function of common genetic variants36,42,102. Little attention has been 

given to rare 3’ UTR variants, which constitute the majority of 3’ UTR variants with unknown 

function. Rare variants are enriched in the neighboring regions of gene expression outliers 

across tissues (i.e., individuals with extreme expression levels different from the rest of the 

population), indicating their role in contributing to substantial gene expression changes49.  

 

Multiple massively parallel reporter assays (MPRAs) have been developed to measure 

the effects of 3’UTR sequences on mRNA abundance36,40,42,45,102,114. Specifically, sequences of 

interest were synthesized in parallel and cloned into reporter plasmids, then introduced to test 
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cells. mRNA abundance was estimated from the RNA-seq reads, which were normalized 

against the DNA-seq reads generated from the plasmids. Barcodes, first introduced by the 

MPRAs studying DNA transcriptional regulation38,117–119, were utilized in some 3’ UTR MPRAs to 

1) label each sequence and 2) serve as additional replicates. However, different MPRA studies 

vary in barcode length and the number of barcodes per sequence40,42,102,114. While including 

barcodes may enhance the statistical power for the identification of functional variants, barcodes 

themselves may also be functional and alter mRNA abundance assigned to the test sequences. 

Thus, having too few barcodes per sequence would increase the false positive rate caused by 

barcode effects, while having too many barcodes would require deeper sequencing depth, 

which does not necessarily improve reproducibility when the number is beyond 200120. Another 

limitation in previous 3’ UTR MPRA designs is that they cannot differentiate PCR duplicates 

from natural duplicates36,40,42,102,114. One way to solve this issue is to add a unique molecule 

identifier (UMI) to each molecule before amplifying sequencing libraries45.  

 

In this study, we developed a massively parallel screen for rare 3’ UTR variants 

(MapUTR) regulating mRNA abundance. We adopted a barcode-free design and showed that 

MapUTR sensitively captures the regulatory effect of well-known 3’ UTR regulatory elements. 

With MapUTR, we tested 14,575 rare variants, 5,437 of which were functional in at least one of 

the two cell lines included in this study. We uncovered an enrichment of functional rare variants 

in cancer-relevant genes, and experimentally characterized the function of 3 variants in altering 

cellular proliferation. Together, our study demonstrates the effectiveness of MapUTR in 

capturing functional rare variants in 3’ UTRs and the potential contribution of such variants in 

cancer pathways. 

 

2.3 Results 
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2.3.1 A method to identify functional 3’ UTR variants regulating mRNA 

abundance 

 

To test functional 3’ UTR variants regulating mRNA abundance, we cloned the synthetic DNA 

oligos containing 3’ UTR variants and their flanking sequences (158nt~164nt in total) into the 3’  

UTR of the eGFP gene (Fig. 1A, Methods). Since we are mostly interested in post-

transcriptional regulation of mRNA transcripts by the 3’UTR variants, we used the CMV early 

enhancer/chicken beta actin (CAG) promoter121, which is a strong promoter that drives high 

gene expression at a similar transcriptional rate for each variant. The plasmid library was 

electroporated into HEK293 or HeLa cells to test for mRNA abundance (Fig. 1A). 

 

Unlike genome-integrated reporter assays, transient episomal reporter assays are 

limited in recapitulating the native physiological environment. If a large amount of plasmids were 

introduced into the cell, transient transfection may cause exhaustion of the cellular machinery. 

To find the minimum DNA/Cell ratio for this experiment, we performed cell electroporation at 

different DNA/Cell ratios in HEK293 cells and manually checked the RNA/DNA ratios of three 

control variants (previously studied in the literature122–124). We observed that transfecting 200ng 

plasmid DNA to 1M HEK293 cells yielded similar RNA/DNA ratios as reported in the 

literature122–124 (Table S1). In contrast, lowering the DNA input affected the allelic ratio in DNA or 

RNA samples, potentially due to a lack of coverage of SNPs in these samples (Table S1). 

Based on these data, we chose to use 200ng DNA per 1M cells in further experiments. The 

same DNA/Cell ratio was used for HeLa cells. Compared to other transient MPRA methods 

which transfected 1ug ~ 5ug DNA per 1M cells36,102,114,125, the amount of DNA we use in 

MapUTR avoids cellular machinery exhaustion.   
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Following electroporation of the plasmid library, total RNA was extracted for RNA-seq 

library generation targeting the tested 3’ UTRs (Fig. 1A, Fig. S1). A DNA-seq library was also 

generated from the plasmid library (pre-transfection) to allow for normalizations of RNA 

expression (Fig. 1A). To remove PCR duplicates, we incorporated 15-mer UMIs during the initial 

stage of DNA/RNA-seq library generation (Fig. S1). In the data analysis steps, UMIs were 

extracted to enable removal of PCR duplicates, followed by read alignment, data normalization 

and detection of functional variants (Fig. 1B, Methods).  

 

2.3.2 MapUTR captures functional effects of random mutations within known cis-

regulatory elements in the 3’ UTR 

 

To test the performance of MapUTR, we picked 5 well-known 3’ UTR motifs (Table S2) reported 

in previous literature42 and mutated each base individually (to each of the 3 possible 

nucleotides) within the motif and its surrounding regions (22-23 nt on each side, Fig. 1C). The 

resulting pool of oligo sequences was tested with MapUTR in both HEK293 and HeLa cells. For 

all 5 motifs, we obtained high-quality sequencing data signified by the low mismatch rate relative 

to the reference sequence (0.057% on average) outside of the mutated regions (Fig. 1D, Fig. 

S2A). Since we designed single-nucleotide mutations to include all 3 alternative alleles, the high 

mismatch rates in the mutated regions are expected. This observation also indicates that the 

oligo synthesis and subsequent experimental processing steps induced generally low error 

rates. Next, we calculated the impact of each mutation in the known motifs and their 

surrounding sequences on mRNA abundance. As shown in Fig. 1E and Fig. S2B, mutations in 

the functional motifs induced considerable changes in relative mRNA expression, whereas the 

flanking regions are associated with relatively small mutation-induced variations. This result 
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supports the effectiveness of MapUTR in capturing biologically relevant post-transcriptional 

regulatory events. 

 

2.3.3 Identification of functional rare 3’ UTR variants with MapUTR 

 

We next applied MapUTR to test the functionality of rare genetic variants in the 3’ UTR. From 

the Exome Aggregation Consortium (ExAC)126, we extracted 54,959 rare 3’ UTR variants 

defined as those with an adjusted minor allele frequency (adjAF) < 0.01. After removing 

sequences incompatible with the cloning strategy (i.e., share similarity with restriction enzyme 

sites or primer sequences, see Methods and Table S3), we selected 14,575 variants to be 

tested with MapUTR. Among them, 1,032 variants were also reported in clinically relevant 

databases (ClinVar127, CIViC128, COSMIC129, iGAP130) and were therefore prioritized for testing 

with MapUTR.  

 

We designed synthetic oligonucleotides (200nt in length) harboring the rare 3’ UTR 

variants, their flanking regions (164nt in length), subpool primers and restriction sites. Each 

variant was located at the center of its flanking sequences, unless adjustment was necessary to 

avoid including sequences beyond the 3’ UTR for variants close to the boundaries (Fig. 2A). We 

obtained high-quality sequencing data with an average mismatch rate of approximately 0.016% 

per position relative to the reference sequences, except at the ends of the reads where 

sequencing errors are known to be more prevalent131 (Fig. 2B). Upon data processing (see 

Methods), we calculated an activity score for each reference or alternative allele as the 

normalized relative read number (RNA/DNA) for that allele.  We then compared the impact of 

the reference and alternative alleles on mRNA abundance, and calculated the relative activity 

(lnFC) between the activity scores of the alternative allele relative to the reference. The relative 
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activity of biological replicates were highly correlated, signifying MapUTR’s ability to consistently 

capture important biological events with regard to the regulation of mRNA abundance (Fig. 2C). 

 

Next, in both HEK293 and HeLa cells, we evaluated the difference in RNA abundance 

between reference and alternative alleles using MPRAnalyze132. We tested 14,490 and 14,494 

variants, out of which 3,066 (21.2%) and 3,944 (27.2%) altered mRNA abundance significantly 

in HEK293 and HeLa, respectively (Fig. 2D), with 5,437 (37%) being significant in at least one 

cell line. These functional rare variants were harbored in 3,487 genes, representing 50.4% of all 

tested genes. Among the functional variants identified in HEK293 and HeLa, 51.2% and 51.7%, 

respectively, had higher expression associated with the variant allele, whereas the variant 

alleles of the remaining 48.8% and 48.3% downregulated mRNA expression.  

 

We next examined the function of 3’ UTR variants between the two cell lines. To this 

end, we correlated the relative activity scores of the 1,573 (28.9% of the 5,437) variants that 

were functional in both cell lines. A significant correlation was observed, and the majority of 

variants shared the same direction of change between the two cell lines (Fig. 2E). Thus, the 

genetic background, rather than trans-acting factors, plays a dominant role in determining the 

function of many 3’ UTR variants. Nonetheless, 92 variants showed opposite directions in their 

relative activity scores, which may indicate potential tissue-specific regulation of RNA 

abundance in HEK293 and HeLa cells. 

 

2.3.4 Function variants in 3’ UTRs alter miRNA target sites 

 

The 3’ UTR is known to harbor cis-regulatory elements that recruit trans-acting factors, usually 

miRNAs and RBPs, for post-transcriptional regulation of gene expression107. To investigate the 
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potential mechanisms via which rare functional 3’ UTR variants affect mRNA abundance, we 

overlapped the functional variants with miRNA target sites predicted by TargetScan (release 

7.2)133. In HEK293 and HeLa cells, 62.4% and 62.7% of all functional 3’ UTR variants 

overlapped predicted miRNA target sites, respectively. For these targets, the alternative alleles 

of the variants are expected to disrupt miRNA targeting and lead to enhanced mRNA 

abundance. Consistent with this expectation, in both HEK293 and HeLa, we observed a 

significant bias toward upregulation of mRNA abundance by the alternative alleles (Fig. 3A). As 

examples, Figure 3B shows two miRNA-target pairs. One miRNA, miR-34b-3p, is predicted to 

target the PLIN4 transcript that harbors a rare variant (rs767768172) in the miRNA seed match 

region. MapUTR revealed significantly higher mRNA abundance associated with the alternative 

allele, consistent with the expected derepression by the miRNA in the presence of the rare 

variant.  Similarly, another rare variant (rs145078776) is predicted to disrupt the binding of miR-

3180-5p to the LDHD transcripts (Fig. 3B. It should be noted that both genes have important 

disease relevance, with PLIN4 implicated in skeletal muscle disease134 and LDHD involved in 

clear cell renal carcinoma135.  

 

2.3.5 Function variants in 3’ UTRs alter RBP binding sites 

 

Next, we investigated the role of RBPs in affecting mRNA abundance of genes harboring rare 

functional 3’ UTR variants. To relate the functional variants to specific RBPs, we first conducted 

motif analyses using HOMER136 to identify overrepresented hexamers among sequences that 

upregulate or downregulate mRNA expression (see Methods). For sequences that 

downregulate mRNA expression, we identified well-defined destabilizing motifs such as the AU-

rich and GU-rich elements (Fig. S3A, S3C). In contrast, CU-rich, CA-rich, and GA-rich elements, 
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which are known stabilizing motifs137, were enriched among sequences that upregulate mRNA 

expression. These results support the validity of the MapUTR experiment.  

 

Next, we associated the above motifs with RBPs using previously published RNA Bind-

n-Seq (RBNS)138 data where binding motifs of RBPs were characterized experimentally (Fig. 

S4A, B).  We then evaluated whether the alternative alleles of each functional variant alter RBP 

binding using the DeepRiPe model139 (Methods). On the global level, we observed that the rare 

functional variants significantly altered RBP binding compared to random controls (Fig. 3C, 

Methods). We further examined whether the allele-specific effects of the functional variants 

detected by MapUTR are concordant with predicted RBP binding alteration by DeepRipe. A 

number of RBPs showed significant concordance. For instance, higher ZFP36 binding to the 

minimal ARE (UAUUUA) motif was associated with lower mRNA abundance (Fig. 3D), 

consistent with the destabilizing function of AREs140. We also observed that elevated  binding of 

RBP TIA1 to the CUCUUU motif was strongly associated with the augmentation of mRNA 

abundance, consistent with the stabilizing function of TIA1141. Altogether, these findings support 

the utility of MapUTR to accurately identify functional effects of variants that are explainable by 

RBP binding. 

 

2.3.6 Disease relevance of functional rare 3’ UTR variants 

 

Genome-wide association studies (GWAS) have primarily identified common variations 

contributing to the etiology of complex traits103. Common variants, however, usually have small 

phenotypic effects compared to rare variants due to negative selection that has shaped the 

relationship between effect size and minor allele frequency104. To understand the disease 

relevance of functional rare 3’ UTR variants identified by MapUTR, we investigated their 
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association with GWAS SNPs. Briefly, we analyzed functional 3’ UTR variants that are in 

linkage disequilibrium (LD) and within 200kb of known GWAS SNPs. We also sampled both 

common and rare random SNPs as controls and repeated the GWAS LD analysis. We noticed 

that ~68% and ~69% of functional 3’ UTR variants in HEK293 and HeLa, respectively, are 

associated with GWAS SNPs and these percentages are significantly higher than the proportion 

observed in either common or rare control SNPs (Fig. 4A). These findings suggest the potential 

relevance of 3’ UTR variants to diseases. 

 

We next performed a Gene Ontology enrichment analysis with the top 500 variants 

ranked by their absolute fold changes in MapUTR of either HEK293 or HeLa cells. We observed 

that genes containing large-effect rare 3’ UTR variants are enriched in cell survival-related terms 

such as cell growth and cell death (Fig. 4B, Fig S5A-B), indicating a close relationship between 

these functional rare variants and diseases. Next, we asked if the genes containing functional 

variants are enriched in certain diseases. We extracted gene-disease associations from the 

DisGeNET database142. Interestingly, we found that cancer is the most represented disease 

(Fig. 4C). Overall, 3,841 (70.65%) functional rare variants are in genes associated with cancer. 

Although this observation may reflect the fact that cancer has dominated the gene-disease 

associations reported in DisGeNET, it is still likely that the functional rare 3’ UTR variants play a 

role in tumorigenesis.  

 

To further examine the relevance of functional rare variants to cancer, we examined 

whether cancer drive genes contain functional MapUTR variants. Among the 568 cancer driver 

genes in the Integrative OncoGenomics (IntOGen) database143, 124 had functional MapUTR 

variants (182 variants). Importantly, 18 oncogenes harbored functional variants leading to an 

increase of gene expression levels, whereas 33 tumor suppressor genes had variants leading to 

a decrease of gene expression levels, potentially contributing to tumorigenesis (Fig. 4D). These 
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results suggested that the functional rare 3’ UTR variants identified by MapUTR are closely 

relevant to human diseases, especially cancer. 

 

2.3.7 Individuals with functional rare 3’ UTR variants are gene expression 

outliers in TCGA 

 

Given the close relevance of functional rare 3’ UTR variants to cancer, we wondered if cancer 

patients carrying the MapUTR variants showed any gene expression changes. We obtained 

genotype data including both germline and somatic mutations in The Cancer Genome Atlas 

(TCGA) from Pan-Cancer Analysis of Whole Genomes (PCAWG)144. For each MapUTR variant 

that was found in patients of a certain cancer type, we extracted gene FPKM values in patients 

with either the reference or the alternative allele and calculated gene expression z-scores for 

outlier detection. In total, we found 37 functional variants, mostly germline, showing up in 

patients whose gene expression value is both an outlier and consistent with the directional 

change reported in MapUTR (Fig. 4E, Fig. S5C). Among them, 12 variants are identified as 

functional variants in both HEK293 and HeLa cells. Interestingly, the functional variant in the 

gene SDF4 was found in gene expression outliers in multiple cancer types (Fig. S5C). 

Importantly, 10 genes with functional rare 3’ UTR variants in TCGA gene expression outliers 

have been reported to be associated with cancer (Fig. 4E). Together, these results 

demonstrated the existence of functional rare 3’ UTR variants in cancer patients. Supported by 

the gene expression outlier analysis, we showed that MapUTR identifies causal variants 

regulating mRNA abundance.  

 

2.3.8 Functional rare 3’ UTR variants in MFN2, FOSL2, and IRAK1 regulate 

mRNA stability and cell proliferation 
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To further relate MapUTR variants with in vivo function, we experimentally tested three variants 

in cancer-associated genes. The first gene Mitofusin 2 (MFN2) encodes a mitochondrial 

membrane protein regulating mitochondria fusion145. MFN2 has anti-tumor effects and is 

downregulated in multiple cancers146. Previous studies found that MFN2 inhibits cell proliferation 

by suppressing mTORC2/Akt or Ras-NF-κB signaling pathways147,148. In MapUTR, we identified 

a functional rare 3’ UTR variant (rs777822288) in MFN2, leading to a significant increase in 

mRNA expression (Fig. 5A). We hypothesized that this variant may also play a role in inhibiting 

cell proliferation. The second gene, FOS Like 2 (FOSL2), encodes a protein serving as a 

subunit of the transcription factor complex AP-1149. FOSL2 promotes cell proliferation, migration, 

and invasion in breast cancer and ovarian cancer150,151. We discovered one rare variant 

(rs11884725) in the 3’ UTR of FOSL2, which showed higher activity scores (RNA/DNA) 

compared to the reference allele (Fig. 5A). This variant may facilitate cell proliferation by 

upregulating FOSL2 gene expression. The third gene encodes interleukin-1 receptor-associated 

kinase 1 (IRAK1), involved in toll-like receptor and interleukin-1 signaling pathway152. 

Overexpressed in several cancers, IRAK1 is a therapeutic target, whose inhibition impairs tumor 

growth and metastasis152. We identified a rare 3’UTR variant (rs782486025) in IRAK1 that 

significantly decreased mRNA expression (Fig. 5A). This variant may serve as an allele-specific 

‘inhibitor’ for IRAK1, thus reducing cell proliferation.   

 

To measure the effect of functional variants in their native genomic context, we utilized 

prime editing153–155 to introduce the MapUTR variants into the genome of HEK293T cells, which 

provide optimal editing efficiency with prime editing (Fig. 5B). In addition, HEK293T is a 

daughter cell line derived from HEK293 cell line, in which all three MapUTR variants were 

identified as functional candidates (Fig. 5A). Thus, HEK293T cells likely possess the trans-

factors required for the MapUTR variants to be functional and are therefore chosen as the cell 
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line for prime editing validation. The genome-edited bulk HEK293T cells were diluted and plated 

to isolate single-cell clones for both the reference and variant alleles in each gene (Fig. 5B). To 

avoid potential bias due to off-target effects in a specific single-cell clone, we picked 4 ~ 6 

single-cell homozygous clones for each allele (Fig. 5C-E).  

 

Through quantitative reverse transcription PCR (qRT-PCR), we measured the mRNA 

stability of each gene in the single-cell clones by treating the cells with actinomycin D (ActD) to 

block cell transcription156 for different time periods (2 h, 8 h, and 24 h) (Fig. 5F-H). Starting at 2 

h post-ActD treatment, we observed significantly lower mRNA expression levels of IRAK1 in the 

single-cell clones with IRAK1 variant alleles compared to those with IRAK1 reference alleles 

(Fig. 5H). This observation is consistent with MapUTR, in which the IRAK1 variant allele had a 

lower activity score (RNA/DNA) compared to the reference allele (Fig. 5A). For MFN2 and 

FOSL2, we observed a significant increase in mRNA expression levels in clones with the variant 

alleles at 8 h or 24 h post-ActD treatment (Fig. 5F, G), which are consistent with the higher 

MapUTR activity scores in the variant alleles for these two genes (Fig. 5A). These results 

confirm that the MapUTR variants in MFN2, FOSL2, and IRAK1 regulate mRNA stability in 

HEK293T cells. 

 

We next examined the functional impacts of the 3 MapUTR variants on cellular 

phenotype. To this end, we performed cell proliferation assays using the single-cell clones with 

either reference or variant alleles of MFN2, FOSL2, and IRAK1 (Fig. 5B). We found that single-

cell clones with the variant alleles of all three genes showed significantly altered cell proliferation 

profiles (Fig. 5I-K). Specifically, we observed reduced cell proliferation in clones with variant 

alleles of MFN2 (Fig. 5I) and IRAK1 (Fig. 5K), as well as increased cell proliferation in clones 

with variant alleles of FOSL2 (Fig. 5J). Importantly, the directions of the cell proliferation change 

are consistent with the expected consequence of each variant, based on their effects on mRNA 
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stability and previous studies on the roles of MFN2, FOSL2, and IRAK1 in cell 

proliferation148,151,152. Together, these findings support the in vivo function of MapUTR variants in 

HEK293T cells. 

 

2.4 Discussion 

 

Rare variants constitute the majority of human genetic variants3. Yet, little is known about the 

function of non-coding rare variants due to their scarcity in individuals, which has made rare 

variant association tests challenging103. In this study, we introduced MapUTR, a massively 

parallel reporter assay with optimized designs to identify 3’ UTR variants regulating mRNA 

abundance post-transcriptionally. Complementary to the existing studies on common 3’ UTR 

variants36,42,102, we tested 14,575 rare 3’ UTR variants and identified 5,437 (37.3%) rare variants 

altering mRNA abundance in HEK293 or HeLa (or both). These functional variants are of high 

disease relevance supported by their associations with GWAS SNPs and TCGA expression 

outliers. Interestingly, many functional rare MapUTR variants are located in cancer-related 

genes. Further, we characterized three variants in cancer-associated genes, demonstrating their 

functional impact on mRNA stability and cell proliferation in the native genome context. 

 

In our optimized design, a strong promoter was incorporated to increase the basal 

activity of DNA transcription, allowing the detection of post-transcriptional effects of 3’ UTR 

variants in both directions. We also utilized UMI during library generation to avoid potential PCR 

amplification bias. Compared to a previous study in which over 90% of functional variants 

showed increased expression97, our assay reported an unbiased detection of both upregulating 

(51.5%, mean of two cell lines) and downregulating (48.5%, mean of two cell lines) functional 

variants. Similar to a previous 3’ UTR MPRAs that measured the functional impact of cis-
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regulatory elements on mRNA stability42, MapUTR was able to capture alterations of mRNA 

abundance caused by random mutations within known functional motif (Fig. 1E). To best mimic 

the physiological relevant environment, we employed a minimal DNA/Cell ratio during cell 

electroporation. Consistent with the MapUTR measurements, we showed that three functional 

variants altered mRNA stability in their native genomic context. Importantly, we also observed 

altered cell proliferation when the functional variants are introduced, which may be explained by 

the mRNA stability alteration, given its important role in controlling cell proliferation157,158. 

 

Rare variants are enriched in gene expression outliers across tissues compared to non-

outliers49,159, indicating their pivotal role in regulating gene expression. Among all tested rare 

variants (14,575) in our experiments, 5,437 (37.3%) led to significant mRNA abundance 

alterations in at least one cell line, with an average of 24.2% variants identified as functional in 

each cell line. This prevalence of functional variants is much larger than previously reported for 

common 3’ UTR variants160, where 19.45% (2,368 out of 12,173 total) functional variants were 

reported to be significant in at least one of six human cell lines, with an average of 5.7% 

functional rate in each cell line. While the functional proportion may be arbitrary resulting from 

differences in the methods applied to call functional variants in these two assays, a similar cutoff 

of an adjusted p-value less than 0.1 was applied in both assays, with the MapUTR having an 

additional cutoff at |lnFC|>=0.1, determined using random mutagenesis control variants in 5 

well-known motifs. The higher proportion of functional variants in the rare variant screen may 

reflect the large effects of rare variants on gene expression, which may be explained by the 

purifying selection during evolution104. This observation is in line with a previous study that 

assessed the contribution of alleles from different allele frequencies to gene expression in 

lymphoblastoid cell lines161, revealing a higher contribution of rare variants to gene expression 

heritability.  

 



 25 

It is hypothesized that rare variants contribute to the missing heritability of complex 

diseases162. In our study, we found that around 70% of functional rare 3’ UTR variants are 

associated with GWAS SNPs, suggesting potential contributions of these rare variants to human 

traits. Interestingly, many functional rare 3’ UTR variants (~70%) are in cancer-relevant genes. 

Genes harboring large-effect rare variants are enriched in Gene ontology terms of cell growth 

and cell death (Fig. 4B, Fig. S4A-B), which are often dysregulated in cancer cells. Altered gene 

expression, regulated by either DNA transcription or mRNA stability163, is one of the major 

changes in cancer164. In a previous study on rare predisposition variants across 33 cancer 

types, around half of the variants located in tumor repressor genes or oncogenes are associated 

with low or high gene expression, respectively165. Notably, our study identified many functional 

rare 3’ UTR variants that may contribute to cancer by regulating mRNA abundance. For 

example, 182 functional rare 3’ UTR variants are in cancer driver genes (Fig. 4D). In addition, 

we found 37 functional variants in TCGA gene expression outliers. Particularly, we 

experimentally validated three rare variants in cancer-associated genes (MFN2, FOSL2, and 

IRAK1), confirming their functional roles in regulating mRNA stability and cell proliferation. 

Future studies characterizing these functional rare 3’ UTR variants will help to elucidate their 

causality in cancer.   

 

In conclusion, we present MapUTR, an optimized massively parallel reporter assay that 

can be used to identify functional 3’ UTR variants regulating mRNA abundance post-

transcriptionally. With simple adaptions such as cell fractionation, MapUTR can also be utilized 

to identify functional 3’ UTR variants regulating mRNA localization. In addition, the usage of 

MapUTR is not limited to genetic variants. Other types of RNA variants, such as RNA editing 

sites, can also be tested in MapUTR. We demonstrated that many functional rare MapUTR 

variants are cancer relevant.  In general, the discoveries from MapUTR will facilitate prioritizing 
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candidates for causality characterizations, explaining heritability for complex diseases, and 

training computational models for predicting functional 3’ UTR variants.  

 

 
2.5 Methods 

2.5.1 Design of DNA oligos with random mutations within well-known motifs 

 

Known 3’ UTR cis-regulatory elements (Table S2) were chosen from previous literature42. To 

test if MapUTR could capture the regulatory effects of these motifs, we designed oligos 

containing random mutations at every base within the regulatory motif region as well as its 

flanking regions (22-23nt upstream and 22-23nt downstream). Each oligo is 200nt in length, with 

158nt being the actual 3’ UTR sequences containing the variant of interest. The rest of the oligo 

contain forward primer binding site (21nt), reverse primer binding site (15nt), and restriction 

enzyme site (6nt) for cloning. All oligos were included in chip3 and synthesized by Twist 

Bioscience. 

 

2.5.2 Design of DNA oligos containing rare 3’ UTR variants 

 

We extracted human variants from the ExAC126 database and excluded indels using GATK 

SelectVariants tool166. Further, with a threshold of adjusted minor allele frequency (MAF) less 

than 0.01, we obtained 1,017,886 rare variants. Based on GENCODE167 basic v24 annotation, 

we selected 54,959 SNPs that are annotated in the 3’ UTR. To avoid unwanted enzyme 

digestion and amplification within the oligos, we filtered out sequences that contain restriction 

enzyme sites and subpool primer sequences (Table S3). We overlapped rare 3’ UTR ExAC 

variants with a collection of clinically relevant variants reported in ClinVar127, ClViC128, 

COSMIC129, and iGAP130. The resulting 1032 SNPs, which we referred to as clinically relevant 
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rare 3’ UTR variants, were prioritized for final testing. In total, we designed 14,575 variants 

separated into two chips (chip1 & chip2) for synthesis by Twist Bioscience. Each chip contains 

3-4 subpools with different 5’ and 3’ adaptors that can be amplified using subpool primers 

respectively (See supplemental protocol). Both reference and alternative alleles for each variant 

were included in the same subpool. Each oligo is 200nt in length, with 164nt being the flanking 

sequence centered around the variant of interest. The rest of the oligo contain forward subpool 

primer binding site (15nt), reverse subpool primer binding site (15nt), and restriction enzyme site 

(6nt) for cloning. 

 

2.5.3 Generation of MapUTR master plasmid 

 

We extracted human variants from the ExAC126 database and excluded indels using GATK 

SelectVariants tool166. Further, with a threshold of adjusted minor allele frequency (MAF) less 

than 0.01, we obtained 1,017,886 rare variants. Based on GENCODE167 basic v24 annotation, 

we selected 54,959 SNPs that are annotated in the 3’ UTR. To avoid unwanted enzyme 

digestion and amplification within the oligos, we filtered out sequences that contain restriction 

enzyme sites and subpool primer sequences (Table S3). We overlapped rare 3’ UTR ExAC 

variants with a collection of clinically relevant variants reported in ClinVar127, ClViC128, 

COSMIC129, and iGAP130. The resulting 1032 SNPs, which we referred to as clinically relevant 

rare 3’ UTR variants, were prioritized for final testing. In total, we designed 14,575 variants 

separated into two chips (chip1 & chip2) for synthesis by Twist Bioscience. Each chip contains 

3-4 subpools with different 5’ and 3’ adaptors that can be amplified using subpool primers 

respectively (See supplemental protocol). Both reference and alternative alleles for each variant 

were included in the same subpool. Each oligo is 200nt in length, with 164nt being the flanking 

sequence centered around the variant of interest. The rest of the oligo contain forward subpool 
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primer binding site (15nt), reverse subpool primer binding site (15nt), and restriction enzyme site 

(6nt) for cloning. 

 

2.5.4 Cloning of synthesized oligos into MapUTR master plasmids 

 

We resuspended the chip oligos with ultrapure distilled water (Thermo Fisher Scientific, Cat# 

10977015) at a final concentration of 1ng/μl. Each subpool was amplified using subpool-specific 

primers (See supplemental protocol). The reverse subpool primer contains a BamHI restriction 

enzyme site, which allows subsequent digestion and ligation into the master plasmid. To avoid 

potential bias due to over-amplification, we first assembled qPCR reactions with PowerUp™ 

SYBR® Green Master Mix (Thermo Fisher Scientific, Cat# A25742) with 1ng oligos as 

templates in a 50μl reaction. We determined the cycle number where the slope of the 

amplification curve began to decrease. We repeated the PCR with Q5 polymerase (NEB, Cat# 

M0492L) using the cycle number determined from the qPCR pre-run, which is usually 17-19 

cycles. The PCR products were cleaned up using the DNA Clean & Concentrator kit (Zymo 

Research, Cat# D4004).  

 

Next, DNA digestion reactions were set up for both PCR products (oligo inserts) and 

master plasmids using EcoRI-HF (NEB, Cat# R3101S) and BamHI-HF (NEB, Cat# R3136S), 

followed by incubation at 37 °C overnight. All digestion reactions were terminated with enzyme 

heat inactivation at 65 °C for 20min. For purification, the digested plasmids were resolved in 1% 

agarose gel and the desired band was gel purified using Zymoclean™ Gel DNA Recovery Kit 

(Zymo Research, Cat# D4002). The digested PCR products were directly cleaned up using the 

DNA Clean & Concentrator kit (Zymo Research, Cat# D4004). Cleaned-up PCR products and 

digested plasmids were ligated at a 10:1 molar ratio with T7 DNA ligase (NEB, Cat# M0318). 
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Ligation reactions were incubated at 25 °C on a thermal cycler for one hour, followed by a 

clean-up using the DNA Clean & Concentrator kit (Zymo Research, Cat# D4004), with water 

elution.  

 

Finally, the purified ligation products were electroporated into 10-beta Electrocompetent 

E. coli (NEB, Cat# C3020K) using Gene Pulser Xcell Electroporation Systems (NEB, Cat# 

1652660) at 2.0 kV, 200 Omega, and 25 μF. The transformed E. coli were spread onto 150mm 

selective plates at 37 °C overnight. Colonies with at least 100X coverage of the oligo library 

(e.g., 0.2M colonies for 2000 designed oligos) were harvested for plasmid isolation using 

ZymoPURE II Plasmid Midiprep Kit (Zymo Research, Cat# D4200). For the initial quality check, 

the isolated plasmid library was sent for Sanger sequencing with a sequencing primer (See 

supplemental protocol) complementary to the polyA signal region shared by all plasmids. 

 

2.5.5 Cell culture and electroporation 

 

HEK293 and HeLa cells were maintained in DMEM (Gibco, Cat# 11995065) with 10% FBS 

(Gibco, Cat# 26140079) and antibiotic-antimycotic reagent (Gibco, Cat# 15240062) at 37 °C 

with 5% CO2 supply. Cells were passaged the day before electroporation to make sure they are 

actively dividing by the time of electroporation. Prior to electroporation, HEK293/HeLa cells were 

disassociated with Trypsin-EDTA (Gibco, Cat# 25300120), washed with growth media, and 

resuspended in OptiMEM (Gibco, Cat# 31985062) at a cell density of 10M/ml. For a typical 

subpool library with 0.2M colonies, 3ug plasmid library was electroporated into 15M 

HEK293/HeLa cells (See DNA/Cell ratio optimization below) for each biological replicate, for a 

total number of three biological replicates. Cell electroporation was done using the Gene Pulser 

Xcell Electroporation System (NEB, Cat# 1652660) with the following settings: square wave, 
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25msec, 220V, 0.4cm. After electroporation, the HEK293/HeLa cells were incubated in growth 

media at 37 °C for 24 hours. 

 

2.5.6 mRNA isolation 

 

24 hours after electroporation, HEK293/HeLa cells were lysed using TRIzol (Thermo Fisher 

Scientific, Cat# 15596026). Each 500 μl TRIzol-lysed solution was mixed with 100 μl chloroform 

(Fisher Chemical, Cat# C298-500) to allow phase separation. The upper aqueous phase was 

transferred and mixed with equal volume ethanol (200 proof, Fisher BioReagents). The mixture 

was loaded to the column supplied by the Direct-zol RNA Miniprep Plus kit (Zymo Research, 

Cat# R2072) to isolate total RNA following the manufacturer’s protocol. PolyA selection was 

carried out to isolate mRNA from total RNA using Dynabeads™ Oligo(dT)25 (Thermo Fisher 

Scientific, Cat# 61002). The concentration of mRNA in each sample was quantified using the 

Qubit RNA HS Assay Kit (Thermo Fisher Scientific, Cat# Q32852) with the Qubit Fluorometer 

(Thermo Fisher Scientific). 

 

2.5.7 Generation of UMI-containing libraries 

 

To measure mRNA abundance, we generated UMI-containing libraries from the plasmid library 

(DNA) before electroporation, as well as mRNA isolated after electroporation. The mRNA was 

reverse transcribed into cDNA with the SuperScript™ IV Reverse Transcriptase (Thermo Fisher 

Scientific, Cat# 18090010) using a gene-specific reverse transcription (RT) primer (MPP3) that 

contains a 15-mer unique molecular identifier (UMI), which was synthesized as -

NNNNNNNNNNNNNNN- (See supplemental protocol for primer sequences). After RT, mRNA 

was removed via RNase H treatment.  



 31 

 

Both cDNA and plasmid DNA underwent two rounds of PCR (Fig. S1). The first-round 

PCR (2-3 cycles) utilized primers (MPP2 & MPP3) to add UMIs to cDNA or plasmid DNA 

samples. We assumed that there is little PCR amplification bias in the initial 3-cycle UMI 

addition step. The first-round PCR products were cleaned up using the DNA Clean & 

Concentrator kit (Zymo Research, Cat# D4004). Next, a second-round PCR was performed 

using the purified first-round PCR products and primers (MPP2 & MPP4), which added sample 

indexes and Illumina sequencing adaptors (P5/7). To avoid over-amplification, a pilot reaction 

for the second-step PCR was performed using PowerUp™ SYBR® Green Master Mix (Thermo 

Fisher Scientific, Cat# A25742) and ran on a qPCR thermal cycler. An amplification curve was 

obtained for each sample to determine the cycle number before the plateau. The second-round 

PCR was then conducted using the cycle number (or less) determined from the qPCR pre-run 

(See supplemental protocol). All PCR steps for sequencing library generation were performed 

using the Q5 polymerase (NEB, Cat# M0492L). 

 

PCR reactions for the same sample were pooled and purified using the DNA Clean & 

Concentrator kit (Zymo Research, Cat# D4004). Purified PCR products were resolved on 2% 

agarose gel and the band at the expected library size (377bp) was cut out and purified using the 

Zymoclean™ Gel DNA Recovery Kit (Zymo Research, Cat# D4002). UMI measurement libraries 

made from DNA/RNA were mixed and sequenced using custom sequencing primers (See 

supplemental protocol) on Hiseq3000 PE150 or Novaseq SP PE150 with 15% PhiX spike-in. 

 

2.5.8 DNA/Cell ratio optimization 
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To optimize the DNA/Cell ratio during cell electroporation, different amounts of plasmid libraries 

(i.e., 2ng, 10ng, 62.5ng, 200ng, and 1ug) were electroporated into 5M HEK293 cells, 

respectively. Total RNA was isolated 24 hours post electroporation. UMI-containing libraries 

were generated from plasmid libraries before electroporation and mRNA isolated from 

electroporated cells (see details above). To check the allelic ratios for the three control SNPs 

(APP chr21:27253559 minus strand G>A, ABCB1 chr7:87133366 minus strand A>G, CYP2A7 

chr19:41381398 minus strand G>A), each control gene was amplified by a gene-specific 

reverse primer and the common P5 forward primer (See Table S4). To avoid overamplification 

of the target genes in the libraries, a qPCR reaction was assembled for each condition to 

determine the cycle number before the plateau. Control genes were then amplified from each 

UMI measurement library with the cycle numbers determined by qPCR using the Q5 

polymerase (NEB, Cat# M0492L). PCR amplicons were gel-purified and sent for Sanger 

sequencing. The allelic ratio for each SNP was estimated based on the peak signal for each 

base, which was quantified using 4Peaks. RNA/DNA ratios were calculated by dividing the 

allelic ratios in the RNA samples by the allelic ratios in the DNA samples.  

 

2.5.9 Mismatch rate analysis for DNA and RNA reads 

 

To assess the quality of sequencing data obtained from MapUTR, we examined the mismatch 

rate at any given position along the length of the design sequences. For each nucleotide 

position that was covered by sequencing reads, we calculated the percent mismatch as follows:  

 

!"#$%&'ℎ	*%&+	(") = /0$1+*	23	$"#$%&'ℎ+#	%&	42#"&"25	"
/0$1+*	23	*+%6#	'27+*"58	42#"&"25	" × 100 

 

This calculation excludes the 15nt primer sequences on the ends of the design sequence.  
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2.5.10 Estimation of variant effect sizes 

 

Paired-end reads of 150nt each were obtained for 3 replicates each of DNA and RNA libraries. 

Read 1 contains a UMI (15nt), reverse transcription (RT) primer (14nt), REC2 restriction 

enzyme site (6nt), subpool primer (15nt), and 100nt of the design sequence. Read 2, however, 

consists entirely of the design sequence. UMIs, together with the RT primer, REC2 restriction 

enzyme site, and subpool primer, were extracted from read 1 and added to the read name using 

UMItools168. The reads were then aligned to the reference sequences using Bowtie 2169, 

allowing up to 1 mismatch per alignment. Since both reference and alternative alleles were 

designed in our library, it would be challenging to differentiate between reads with the designed 

SNV and those with sequencing errors at the same position as the designed SNV. To address 

this, we only used perfectly mapped reads and reads with 1 mismatch as long as the mismatch 

does not occur in the same position as the designed SNV. 

 

Further, we removed PCR duplicates by only retaining one of the multiple reads with the 

same UMI that map to the same reference sequence. The UMIs were then counted in the DNA- 

and RNA-seq libraries, and the counts were quantile-normalized across the 3 replicates. For 

each tested allele, we calculated the regulatory activity as follows: 

 

<'&"7"&=	>'2*+ = !!"#
!$"#

 ,	

 

where CRNA is the normalized RNA counts and CDNA is the normalized DNA counts for the allele. 

To quantify the relative effects of rare variants on steady-state mRNA abundance, we modeled 

RNA counts as a function of DNA counts for both reference and alternative alleles using 
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MPRAnalyze132. To call functional variants, we required 10% increase or decrease (|lnFC| >= 

0.1) in RNA abundance in the alternative allele relative to the reference and FDR <=0.1. 

 
2.5.11 Motif discovery 

 

The reference and variant sequences were separated for motif analysis depending on their 

observed effect in the initial MapUTR analysis. Briefly, we compared the mRNA abundance of 

the reference and alternative allele of each rare variant, and categorized the sequence 

containing the alternative allele as an upregulating sequence (and that with the reference allele 

as a downregulating sequence) if the alternative allele yielded higher expression than the 

reference, and vice versa.  Subsequently, we obtained the sequence around the variant position 

by taking the 5 bases upstream and downstream of the variant, making a total of 11 bases, for 

the reference and alternative alleles respectively. In this way, the reference and alternative 

alleles of the rare variants were appropriately included in the search for overrepresented 6mers 

in the upregulating and downregulating sequences. The reference and variant sequences 

deemed upregulating were combined to make one large superset, and the same was done for 

the downregulating sequences. Then, we did a de novo motif search of the RNA sequences 

with HOMER136, limiting the number of motifs to 25. Here, we used the downregulating 

sequences as background when identifying motifs in the upregulating set and vice versa. 

 

2.5.12 Integrative analyses of RBPs and discovered motifs 

 

We then examined whether functional variants from MapUTR are located in RBP binding sites 

as follows. First, we extracted predicted RBP binding sites by PrismNet170, which overlapped 

26.6% and 22.4% of the functional variants in HEK293 and HeLa cells, respectively.  Second, 

we defined a functional variant to be located in an RBP binding site if the variant overlaps a 
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motif of the RBP (defined by RBNS) and resides in PrismNet-predicted binding site of the same 

RBP.  

 

The HOMER-identified motifs (i.e., kmers) were matched with motifs (i.e., kmers) of each 

RBP tested in a previous RBNS experimental138.  For each variant, we used the associated 

motifs identified by HOMER and the associated RBPs from RBNS to assess the effect of the 

variant on RBP binding. Specifically, we used the DeepRipe model139 to calculate the predicted 

difference in RBP binding between the reference and the alternative alleles.  As controls, an 

equal number of random rare dbSNPs were sampled per chromosome. For the controls, RBP 

overlaps were simulated as follows. For each RBP, N (the same number of true RBP-motif 

overlaps for functional variants) random control SNPs were chosen. Then the control SNPs 

were scored with DeepRiPe similarly as for functional variants. The distribution of absolute 

changes in binding (reference vs. alternative alleles) was compared between the functional 

variants and random control SNPs. These steps were repeated separately for upregulating and 

downregulating variants in HEK293 and HeLa respectively. 

 

2.5.13 Analysis of functional 3’ UTR SNPs in LD with GWAS SNPs 

 

The GWAS catalog18 was filtered to retain significant SNP-trait associations (p < 5.0 ⨉ 10-8). In 

addition, GWAS SNPs were assigned LD blocks according to the CEU population LD structure, 

requiring R2 ≥ 0.9 and D’ ≥ 0.9. Then the number of functional 3’ UTR variants in LD with at 

least one GWAS SNP and within 200kb of the GWAS SNP was counted. As controls, we 

randomly sampled a similar number of common or rare SNPs from dbSNP and computed their 

overlaps with GWAS SNPs. Using Fisher’s Exact test, the proportion of overlap was compared 

between the functional set and each of the control sets. 
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2.5.14 Gene ontology (GO) enrichment analysis 

 

A union list of functional variants from HEK293 and HeLa cells was generated to select the top 

500 variants ranked by their absolute values of fold changes. The resulting 339 genes were 

chosen as the query genes for GO enrichment analysis. For each query gene, a control gene 

was randomly chosen among the background genes (excluding the query genes) tested in 

MapUTR. In this way, a control set of genes was constructed that has the same number of 

genes as the query set. This process was repeated 10,000 times. The p-value of enrichment of 

each GO term in the query genes was calculated using a normal distribution fit to the 

occurrence of the GO term in the 10,000 sets of controls. To call significance, FDR < 0.05 and 

occurrence (number of genes associated with a term) >= 5 were used. For GO analysis in each 

cell line, a similar strategy was used that analyzed 447 query genes in HEK293 and 423 query 

genes in HeLa. For HEK293, FDR < 0.05 and occurrence >= 7 were used to call significance. 

For HeLa, FDR < 0.05 and occurrence >= 10 were used to call significance. 

 

2.5.15 Cancer driver genes in MapUTR 

 

A table of 568 annotated cancer driver genes was obtained from the IntOGen143 database 

(https://www.intogen.org/download). Genes containing MapUTR functional variants were 

overlapped with the cancer driver genes. To plot the heatmap of the overlapped cancer driver 

genes, the variant with the largest absolute value of fold change was reported for each gene in 

each cell line.  

 

2.5.16 Expression outlier detection in TCGA 
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Genotype data including both germline and somatic mutations in The Cancer Genome Atlas 

(TCGA) was obtained from the Pan-Cancer Analysis of Whole Genomes (PCAWG)144 through 

the ICGC Data Portal (http://dcc.icgc.org/pcawg/). FPKM data was downloaded from the 

Genomic Data Commons (GDC) Data portal. For MapUTR variants that are present in TCGA, z-

scores of gene FPKM values were calculated for individuals with reference alleles or variant 

alleles (usually heterozygous variant). An expression outlier is defined by a z-score > 2 or z-

score < -2 dependent on the lnFC value reported in MapUTR. To test if expression outliers were 

significantly enriched in individuals with variant alleles, a Fisher’s exact tests was performed for 

each MapUTR variant in an individual cancer type. To call significance, p-value < 0.05 was 

used.  

 

2.5.17 Generation of single-cell clones containing MapUTR variants via 

prime editing 

 

To introduce a MapUTR variant to the HEK293T genome using prime editing153–155, the spacer 

and extension sequences for epegRNAs and nick gRNAs were designed using pegFinder171. A 

linker pattern was designed for each epegRNA using pegLIT154. For epegRNA constructs, the 

spacer, extension (contains a unique linker), and pegRNA scaffold sequences (See Table S4) 

were cloned into the pU6-tevopreq1-GG-acceptor (Addgene, Plasmid #174038) via Golden 

Gate assembly. Similarly, the spacer and nick sgRNA scaffold sequences (See Table S4) were 

cloned into the pU6-pegRNA-GG-acceptor (Addgene, Plasmid #132777) to generate nick gRNA 

expressing constructs.  
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HEK293T cells were maintained in DMEM (Gibco, Cat# 11995065) with 10% FBS 

(Gibco, Cat# 26140079) and the antibiotic-antimycotic reagent (Gibco, Cat# 15240062) at 37 °C 

with 5% CO2 supply. HEK293T cells were seeded in 48-well plates to reach 50% confluency by 

the time of transfection. The enhanced prime editing system155, consisting of plasmids 

expressing the epegRNA (250ng), nick gRNA (83ng), and prime editor (750ng), i.e., pCMV-

PEmax-P2A-hMLH1dn (Addgene, Plasmid #174828), was used for cell transfection. For MFN2, 

only the epegRNA and prime editor were used for cell transfection due to a higher editing 

efficiency compared to the other strategy that includes an additional nick gRNA. Cell 

transfection was performed with Lipofectamine™ 3000 Transfection Reagent (Thermo Fisher 

Scientific, Cat# L3000015) according to the manufacturer’s protocol. For genotyping, genomic 

DNA (gDNA) was extracted and amplified with primers specific to each candidate variant (See 

Table S4). PCR amplicons were purified and sent for Sanger sequencing with one of the PCR 

primers. Three days after cell transfection, the transfected cells were re-plated into 96-well 

plates by serial dilution to generate single-cell clones. Single-cell clones were then expanded 

and genotyped via Sanger sequencing.      

 

2.5.18 Measurement of mRNA expression levels via qRT-PCR 

 

Single-cell clones with MapUTR variants were maintained in DMEM (Gibco, Cat# 11995065) 

with 10% FBS (Gibco, Cat# 26140079) and antibiotic-antimycotic reagent (Gibco, Cat# 

15240062) at 37 °C with 5% CO2 supply. For RNA isolation, cells were washed with PBS 

(Gibco, Cat# 14190144) and lysed with TRIzol (Thermo Fisher Scientific, Cat# 15596026). Total 

RNA was isolated using the Direct-zol RNA Miniprep Plus kit (Zymo Research, Cat# R2072) 

following the manufacturer’s protocol. 1~2 μg of total RNA was used for cDNA synthesis with 

SuperScript™ IV Reverse Transcriptase (Thermo Fisher Scientific, Cat# 18090010) using 
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random hexamers. To measure mRNA expression levels of genes containing MapUTR variants, 

1 μl cDNA was used for qPCR reactions using PowerUp™ SYBR® Green Master Mix (Thermo 

Fisher Scientific). Primers used for qPCR (same as gDNA PCR primers) were listed in Table 

S4. The reaction was performed in the CFX96 Touch Real-Time PCR detection system (Bio-

Rad) with the following settings: 50 °C for 10 min, 95 °C for 2 min, 95 °C for 15 s, 60 °C for 30 s, 

and with the last two steps repeated for 45-55 cycles. The expression of genes containing 

MapUTR variants (MFN2, FOSL2, and IRAK1) was normalized against the expression of TBP. 

For mRNA stability assays, single-cell clones with MapUTR variants were treated with 10 μg/ml 

actinomycin D (Sigma-Aldrich) in growth media. Cells were harvested at different time points (2 

h, 8 h, and 24 h) post actinomycin D (ActD) treatment for RNA isolation and RT-qPCR. Two 

technical replicates were performed for each single-cell clone during RT-qPCR. For each gene, 

4 to 6 single-cell clones were used for either reference or variant alleles. Samples of reference 

and variant alleles collected at the same time point were analyzed in one PCR plate to allow for 

proper comparisons. P-values were calculated using one-tailed Student’s t-test. To call 

significance, p-value < 0.05 was used. 

 

2.5.19 Cell proliferation assay 

 

Single-cell clones with MapUTR variants were seeded at 3,000 cells per well in the 96-well 

plates. For each single-cell clone, five technical replicates (wells) were performed. After 24 h 

incubation at 37 °C, the plate was transferred to the Incucyte® S3 live-cell analysis system 

(Sartorius) to monitor cell proliferation. Images were taken every 2 h and analyzed for 

confluency. Data were analyzed and plotted using Graphpad Prism 7. P-values were calculated 

using one-tailed Student’s t-test. To call significance, p-value < 0.05 was used. 

 



 40 

2.6 Acknowledgements 

 

We thank members of the Xiao laboratory for helpful discussions and comments on this work. 

The results published here are in part based upon data generated by The Cancer Genome Atlas 

managed by the NCI and NHGRI. This work was supported in part by grants from the National 

Institutes of Health (U01HG009417, R01CA262686, and R01AG075206 to X.X.) and the 

Jonsson Comprehensive Cancer Center at UCLA. T.F. was supported by the UCLA Hyde 

Fellowship and Dissertation Year Fellowship. K.A. was supported by the University of California- 

Historically Black Colleges and Universities (UC-HBCU) Fellowship. T.W.C. was supported by 

the NIH T32LM012424. S.T. was supported by the NIH T32GM145388. The content is solely 

the responsibility of the authors and does not necessarily represent the official views of the 

National Institutes of Health. 

  



 41 

2.7 Figures 

 

 

Figure 2.1 MapUTR captures functional 3’ UTR variants in well-known motifs 

(A) General workflow of MapUTR. See also Figure S1. 

(B) Detailed Computational workflow diagram.  

(C) Diagram of oligos with random mutations in the motif and its flanking regions (22~23nt). The 

Illustration was created with BioRender.com. 
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(D) Mismatch rate (%) per position along the length of DNA sequences harboring known motifs: 

SAMD4A (in gene CHRDL1), ARE (in gene CXCL2), hPUM (in gene MYOD1), CDE (in gene 

RBBP5), and dPUM (in gene SIPA1L2). 

(E) Normalized changes in RNA abundance (i.e., activity score) as a result of alternative alleles 

in HEK293 cells. LnFC are averaged across the 3 tested alternative alleles per position. 
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Figure 2.2 MapUTR identified functional rare 3’ UTR variants regulating mRNA 

abundance 

(A) Design of oligos containing rare variants from ExAC.  

(B) Average percentage of read mismatches in DNA and RNA sequencing libraries. 

(C) MapUTR reproducibility as measured by the activity score correlation between biological 

replicates. Three biological replicates are shown for each cell line. 

(D) Functional activity of rare 3’ UTR variants tested in HEK293 and HeLa. Volcano plots 

illustrate lnFCs of alternative alleles relative to the reference alleles.  

(E) Correlation of lnFC values of significant functional variants shared in HEK293 and HeLa 

cells. 
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Figure 2.3 Mechanisms of RNA abundance regulation via 3’ UTR 

(A) Functional SNPs in miRNA targets exhibited a bias in effect in HEK293 and HeLa. P-values 

were obtained by a chi-squared test. 
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(B) Functional variants in PLIN4 (HEK293) and LDHD (HeLa) disrupted the target sites for miR-

34b-3p (top) and miR-3180-5p (bottom), respectively. MapUTR activity scores are shown in the 

middle. 

(C) Functional MapUTR variants significantly altered RBP binding (See also Figure S3-4). X-

axis shows the binding score difference of the reference and alternative alleles predicted by 

DeepRipe. 

(D) Changes in mRNA abundance detected by MapUTR were corroborated by changes in RBP 

binding. X-axis similar as (C). Top: Functional variants that increased ZFP36 binding to AU-rich 

element (AUUUA) exhibited decreased gene expression. Bottom: Functional variants that 

increased TIA1 binding to CU-rich element (CUCUUU) led to upregulation of gene expression. 
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Figure 2.4 Functional relevance of significant variants in cancer 

(A) Proportion of variants associated with GWAS SNPs among functional MapUTR rare 

variants, rare dbSNP controls, and common dbSNP controls. 

(B) Gene ontology terms enriched in the genes with large-effect functional variants (top 500) in 

HEK293 and HeLa.  
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Figure 4. Functional relevance of significant variants in cancer.
(A) Proportion of variants associated with GWAS SNPs among functional MapUTR rare variants, rare dbSNP controls, 
and common dbSNP controls.
(B) Gene ontology terms enriched in the genes with large-effect functional variants (top 500) in HEK293 and HeLa. 
(C) Disease associations most represented by MapUTR functional variants. Top 20 diseases were plotted. 
(D) Cancer driver genes containing MapUTR functional variants. For genes with multiple functional variants, the variant 
with the largest absolute value of lnFC was plotted in each cell line. 
(E) MapUTR functional variants found in gene expression outliers in TCGA. See also Figure S5.
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(C) Disease associations most represented by MapUTR functional variants. Top 20 diseases 

were plotted. 

(D) Cancer driver genes containing MapUTR functional variants. For genes with multiple 

functional variants, the variant with the largest absolute value of lnFC was plotted in each cell 

line. 

(E) MapUTR functional variants found in gene expression outliers in TCGA. See also Figure S5. 
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Figure 2.5 Functional rare 3’ UTR variants regulate mRNA stability and cell proliferation 

in HEK293T cells 

(A) MapUTR activity scores (RNA/DNA) of functional variants (MFN2: rs777822288, FOSL2: 

rs11884725, and IRAK1: rs782486025) measured in HEK293 cells. Data are plotted as mean 

+/- SEM. P-values were calculated using MPRAnalyze. *p<0.05, **p<0.001, ***p<0.001. 

(B) Diagram of validation workflow. HEK293T cells were transfected with plasmids expressing 

PEmax enzymes and epegRNAs to introduce the functional variant of interest. Single-cell 

clones were isolated and genotyped as either reference (Ref) or variant (Var) clones. The single 
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clones were used for downstream assays to test for mRNA expression/stability or cell 

proliferation. Created with BioRender.com. 

(C-E) Sanger sequencing results confirming the genotype of single clones with reference (Ref) 

and variant (Var) alleles for MFN2 (C), FOSL2 (D), and IRAK1 (E). 

(F-H) Normalized mRNA expression level of reference (Ref) and variant (Var) alleles of MFN2 

(F), FOSL2 (G) and IRAK1 (H). Cells were treated with 10 μg/ml actinomycin D (ActD) and 

harvested at 2 h, 8 h, and 24 h post treatment to test for mRNA stability. For MFN2, six 

biological replicates (six clones) for each allele were included in the experiment. For FOSL2 and 

IRAK1, four biological replicates (four clones) per allele were included in the experiment. Data 

are plotted as Mean +/- SEM. P-values were calculated using one-tailed Student’s t-test. 

*p<0.05. 

(I-K) Cell proliferation assay of single clones with reference (Ref) and variant (Var) alleles for 

MFN2 (I), FOSL2 (J), and IRAK1 (K). For MFN2, six biological replicates (six clones) for each 

allele were included in the experiment. For FOSL2 and IRAK1, four biological replicates (four 

clones) per allele were included in the experiment. The dashed line indicates the cell confluence 

values at 48h, which are plotted on the right. Data are plotted as mean +/- SEM. P-values were 

calculated using one-tailed Student’s t-test. *p<0.05, **p<0.01. 

  



 50 

2.8 Supplementary Figures 

 

 

 

Supplementary Figure 2.1 Generation of UMI measurement libraries 

(A) RNA-seq library generation for mRNA isolated from HEK293/HeLa cells electroporated with 

plasmid libraries. 

(B) DNA-seq library generation for plasmid libraries used for cell electroporation. 
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Supplementary Figure 2.2 MapUTR sequencing quality and accuracy 

(A) Mismatch rate (%) per position along the length of RNA sequences harboring known motifs:  

SAMD4A (in gene CHRDL1), ARE (in gene CXCL2), hPUM (in gene MYOD1), CDE (in gene 

RBBP5), and dPUM (in gene SIPA1L2). 

(B) Normalized changes in RNA abundance (i.e., activity score) as a result of alternative alleles 

in HeLa cells. LnFC were averaged across the 3 tested alternative alleles per position. 
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Supplementary Figure 2.3 Overrepresented motifs in functional sequences 

(A) HEK293 downregulating motifs 

(B) HEK293 upregulating motifs 

(C) HeLa downregulating motifs 

(D) HeLa upregulating motifs 
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Supplementary Figure 2.4 Motifs bound by RBPs according to RBNS data 

(A-B) RBPs motifs overrepresented in downregulating (left) and upregulating sequences (right) 

in HEK293 (A) and HeLa (B). 
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Figure S4: Motifs bound by RBPs according to RBNS data in (A) HEK293 and (B)HeLa. In each cell line, the motifs overrepre-
sented in downregulating (left) and upregulating sequences (right) are labeled. 
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Supplementary Figure 2.5 Functional relevance of MPRA significant variants 

(A) Gene ontology terms enriched in the genes with large-effect (top 500) functional variants 

found in HEK293 cells. 

(B) Gene ontology terms enriched in the genes with large-effect (top 500) functional variants 

found in HeLa cells. 
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Figure S5. Functional relevance of MPRA significant variants.
(A) Gene ontology terms enriched in the genes with large-effect (top 500) functional variants found in HEK293 cells.
(B) Gene ontology terms enriched in the genes with large-effect (top 500) functional variants found in HeLa cells.
(C) MapUTR functional variants found in gene expression outliers in TCGA. Related to Figure 4E.
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(C) MapUTR functional variants found in gene expression outliers in TCGA. Related to Figure 

4E. 
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2.9 Supplementary Tables 

 

 APP ABCB1 CYP2A7 
0.4ng/1M  0.77  

2ng/1M 0.22 0.70  

12.5ng/1M 1.55 0.74  

40ng/1M 0.24 0.33 0.76 
200ng/1M 1.09 0.99 1.21 
Expected Results >1 1 >1 
 

Supplementary Table 2.1 DNA/Cell ratio optimization using cell electroporation 

Values in the table show RNA/DNA ratios tested in each condition. 
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Gene Chrom Start (hg19) End Strand Motif Sequence Function 
CXCL2 chr4 74963304 74963325 - ARE UAUUUAUUUAUUUAUUU

AUUUAU Destabilize 
RBBP5 chr1 205056883 205056898 - CDE UCCUUUCUGUGAAAGG Destabilize 

CHRDL1 chrX 109919400 109919417 - SAMD4A AAGCUGCAGCUGGACUGC Destabilize 
MYOD1 chr11 17743520 17743529 + hPUM UGUAAAUAAG Destabilize 
SIPA1L2 chr1 232534007 232534014 - dPUM UGUACAGA Destabilize 
 

Supplementary Table 2.2 Well-known 3’ UTR motifs tested in Figure 1E 
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Chip Sequence Filters 

Chip1 

Original 
sequence 
(200nt: 
F+rec1+lib+R) 

• Only one occurrence of REC1 (EcorRI) 
• Does not contain REC2 (BamHI) 
• Only one occurrence of each of the corresponding subpool1 

reverse amplification sequences (8 nt in the 3’ end of the 
primer)  

• Only one occurrence of corresponding subpool1 forward 
sequence (the entire 15 nt of the primer) 

• Only one occurrence of corresponding subpool1 reverse 
sequence (the entire 15 nt of the primer) 

Chip2 
Chip3 

Original 
sequence 
(200nt: 
F+rec1+lib+R) 

• Only one occurrence of REC1 (EcorRI) 
• Does not contain REC2 (BamHI) 
• Only one occurrence of each of the corresponding subpool1 

forward and reverse amplification sequences (8 nt in the 3’ end 
of the primer)  

• Does not contain any pair of other subpools' (subpool 2,3,4) 
forward and reverse amplification sequences (8 nt in the 3’ end 
of the primer) 

Reverse 
complement 
of the original 
sequence 

• Only one occurrence of REC1 (EcorRI) 
• Does not contain REC2 (BamHI) 
• Does not contain corresponding subpool1 forward amplification 

sequence (8 nt in the 3’ end of the primer) 
• Does not contain corresponding subpool1 reverse amplification 

sequence (8 nt in the 3’ end of the primer) 
• Does not contain any pair of other subpools' (subpool 2,3,4) 

forward and reverse amplification sequences (8 nt in the 3’ end 
of the primer) 

 
Supplementary Table 2.3 Filtering Criteria for MPRA Library Design 
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Primer Sequence 
CMV_NdeI_F GTGTATCATATGCCAAGTACGCCCCCTATTGACG 
EGFP_EcoRI_R GTAGAATTCTTACTTGTACAGCTCGTCCATGCCGAGAGTGATCCCGG 
EGFP_SacI_R CCCCGGTGAAGAGCTCCTCGC 
EGFP_SacI_F GCGAGGAGCTCTTCACCGGGG 
BamHI_subpool2_HpaI_R TGTTAACGTTCCGCAGCCAGGATCCCGGGCCCGCGGTACC 
RT_Rd1_polyA_BamHI_F GGGATCCAGATCGGAAGAGCGTCGTGTAGGGAAAAACTTGTTTATTGCAGCT

TATAATGG 
polyA_MluI_R TTTACGCGTTAAGATACATTGATGAG 
GFP_ACCTTA_AAA_R GTAGAATTCTTATTTGTACAGCTCGTCCATGCCTAAGGTGATCCCGGCGGCGG

TCAC 
GFP_AAA_F CACTCTCGGCATGGACGAGCTGTACAAATAAGAATTC 
P5_F AATGATACGGCGACCACCGAG 
APP_R TGGTTTGTGACCCAATTAAGTCCTAC 
ABCB1_R TTCCTCAGTCAAGTTCAGAGTCTTCAG 
CYP2A7_R CGTGGTGGCTAGAGGGAAGAG 

 

Primer Sequence 
pegRNA_scaffold_f 5' [Phos] 

agagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggCACCGAGTCG 3' 
pegRNA_scaffold_r 5' [Phos] GCACcgactcggtGccactttttcaagttgataacggactagccttattttaacttgctatttctag 3' 
nichsgRNA_scaffold_f /5Phos/agagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggCACCGAGTCG

GTGC 
nicksgRNA_scaffold_r /5Phos/AAAAGCACcgactcggtGccactttttcaagttgataacggactagccttattttaacttgctatttctag 
spacerF_MFN2_P13_RT18 caccGGCCATACTTCTTTCAGAAAgtttt 
spacerR_MFN2_P13_RT18 ctctaaaacTTTCTGAAAGAAGTATGGCC 
extF_MFN2_PBS13_RT18 gtgcCTGAGGGAGATACCCTTTCTGAAAGAAGTATAAATAATG 
extR_MFN2_PBS13_RT18 cgcgCATTATTTATACTTCTTTCAGAAAGGGTATCTCCCTCAG 
spacerF_FOSL2_p13_rt14 caccgTCCCTCCCCAGCTCCGGAGGgtttt 
spacerR_FOSL2_p13_rt14 ctctaaaacCCTCCGGAGCTGGGGAGGGAc 
extF_FOSL2_pbs13_rt14 gtgcGAGGAGGACTCCCTCCGGAGCTGGGGATTAAATGA 
extR_FOSL2_pbs13_rt14 cgcgTCATTTAATCCCCAGCTCCGGAGGGAGTCCTCCTC 
spacerF_FOSL2_3b_nick caccGGAGCGAGGAGGACTCCCTCgtttt 
spacerR_FOSL2_3b_nick ctctaaaacGAGGGAGTCCTCCTCGCTCC 
spacerF_IRAK1_p13_rt15 caccgCTTCTCTCCCCCGCGGGCATgtttt 
spacerR_IRAK1_p13_rt15 ctctaaaacATGCCCGCGGGGGAGAGAAGc 
extF_IRAK1_pbs13_rt15 gtgcGGGTGGGGGCTCATGCCCGCGGGGGAGAATATATAA 
extR_IRAK1_pbs13_rt15 cgcgTTATATATTCTCCCCCGCGGGCATGAGCCCCCACCC 
spacerF_IRAK1_3b_nick caccGGGTGGGGGCTCATGCCCGCgtttt 
spacerR_IRAK1_3b_nick ctctaaaacGCGGGCATGAGCCCCCACCC 
mfn2_gDNA_F TGAATGGACAGGGGCCACTTC 
mfn2_gDNA_R CAGATTATAGTGGGAACTTCCCCAAAG 

Section 1: Primers used for master plasmid cloning and DNA/Cell ratio optimization. 

Section 2: Primers used for prime editing and RT-qPCR. 
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FOSL2_gDNA_F ATCCTGCTCCAAGGCTC 
FOSL2_gDNA_R ACTGCTAAGTCCCACCTG 
IRAK1_gDNA_F AGCCTCCTCACTGGATG 
IRAK1_gDNA_R TGTGTTCACCTGGGCAG 
MFN2_3UTR_qPCR_R TCATTCATTCCCCAGGGGCTAC 
qTBP-Fw CAGCAACTTCCTCAATTCCTTG 
qTBP-Rv GCTGTTTAACTTCGCTTCCG 
 

Supplementary Table 2.4 Additional list of primers 
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2.10 Supplementary Protocol 

 

Part I. Plasmid library cloning 

 

Materials 

 

Reagents 

• UltraPure DNase/RNase-Free Distilled Water (Invitrogen, Cat# 10977015) 

• PowerUp™ SYBR® Green Master Mix (Thermo Fisher Scientific, Cat# A25743) 

• Q5 Hot Start High-Fidelity 2x Master Mix (NEB, Cat# M0494L) 

• Zymo DNA clean & Concentrator Kit (Zymo Research, Cat# D4004) 

• Zymoclean™ Gel DNA Recovery Kit (Zymo Research, Cat# D4002) 

• EcoRI-HF (NEB, Cat# R3101S) 

• BamHI-HF (NEB, Cat# R3136S) 

• T7 DNA Ligase (NEB, Cat# M0318) 

• 10-beta Electrocompetent E. coli (NEB, Cat# C3020K) 

• Electroporation Cuvettes, 0.1cm gap (Bio-Rad, Cat. # 1652089)  

• Fisherbrand™ Petri Dishes with Clear Lid, 150mm x 15mm (Fisher Scientific, Cat# 

FB0875714) 

• ZymoPURE II Plasmid Midiprep Kit (Zymo Research, Cat# D4200) 

Primers
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Name Sequence 
Subpool1_F GGTCGAGCCGGAACT 
subpool2_F CGATCGCCCTTGGTG 
subpool3_F GGGTCACGCGTAGGA 
Subpool4_F CGCGTCGAGTAGGGT 
Subpool1_BamHI_R TTACGTGGATCCGGATGCGCACCCAGA 
subpool2_BamHI_R TTACGTGGATCCGGTTTAGCCGGCGTG 
subpool3_BamHI_R TTACGTGGATCCGTTCCGCAGCCACAC 
Subpool4_BamHI_R TTACGTGGATCCGCCGTGTGAAGCTGG 
polyA_MluI_R TTTACGCGTTAAGATACATTGATGAG 

 

*All primers listed above were synthesized by IDT with standard desalting purification. 

 

Procedure 

 

1. Resuspend oligo library (Twist Biosciences) in Ultrapure distilled water at a final 

concentration of 1ng/μl. 

2. Assemble qPCR reaction for each subpool (below showing the reaction for 

chip1.subpool1, same for other subpools) 

Reagent Volume(μl) 
PowerUp SYBR 2x master mix 25 
Subpool1_F (10μM) 2.5 
Subpool1_BamHI_R (10μM) 2.5 
Resuspended oligos 1 
dH2O 19 

 

Load 20μl of the mixed reaction to the qPCR 96-well plate (2 wells per subpool)  

 

Run qPCR as follows: 

UDG activation 50 °C 10min 
Initial denaturation 95 °C 2min 

45 cycles 95 °C 15s 
60 °C 30s 
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3. Repeat PCR by replacing the SYBR master mix with the Q5 hot start HF master mix, set 

up three 50μl reactions for each subpool, use the cycle number where the slope begins 

to decrease in the qPCR pre-run (usually 17-19 cycles). 

Reagent Volume(μl) 
Q5 2x master mix 75 
Subpool1_F (10μM) 7.5 
Subpool1_BamHI_R (10μM) 7.5 
Resuspended oligos 3 
dH2O 57 

 

Distribute the mixed reaction to 3 PCR tubes (50μleach). 

 

Run PCR as follows: 

Initial denaturation 98 °C 30s 

17-19 cycles 
98 °C 10s 
60 °C 30s 
72 °C 30s 

Final extension 72 °C 2min 
 

4. Run 20μl of PCR products on a 2% agarose gel to check the band size; save the rest 

PCR products for direct PCR clean up using the Zymo DNA clean & concentrator kit, 

elute with distilled water.  

5. Quantitate DNA concentration of purified PCR products with BioDrop Fluorometer. 

6. Digest 2μg of the master plasmids and 100ng of the purified PCR products with EcoRI-

HF and BamHI-HF overnight at 37 °C.  

7. Heat inactivation of restriction enzymes at 65 °C for 20min. 

8. Load the digested master plasmid reaction on a 1% agarose gel and gel purify the band 

at 5.7kb. 

9. Clean up the digested PCR products directly with the Zymo DNA clean & concentrator 

kit. 

10. Set up ligation with freshly cut vector and inserts at 1:10 molar ratio. 
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Reagent Amount 
2x T7 ligase buffer 20μl 
Digested master plasmid 100ng 
Digested inserts 36.6ng 
T7 DNA ligase 2μl 
dH2O to 40μl 

 

*Set up one ligation reaction per subpool; set up a ligation reaction without inserts 

(inserts replaced with water) for background calculation. 

Incubate the reaction at 25°C for 1hour and then keep on ice. 

 

11. Clean up the ligation reaction using the Zymo DNA clean & concentrator kit, elute with 

8μl distilled water. 

12. Mix 1μl purified ligation products with 25μl 10-beta electrocompetent E. coli. Transfer the 

mixture the a prechilled 0.1cm electroporation cuvette, and perform electroporation 

following the manufactory’s protocol. Immediately add 750μl pre-warmed 10-beta 

outgrowth medium into the cuvette and transfer the mixture to a 1.5ml microcentrifuge 

tube. 

13. Recover transformed E. coli at 37 °C for an hour. 

14. Make a serial dilution of the transformed E. coli (1:1, 1:10, 1:100, 1:1000). Plate 250μl 

transformed E. coli per 150mm Kanamycin-selective plate.  

15. Grow plates at 37 °C overnight 

16. Count colonies on the serial dilution plates. The number of colonies represents the 

plasmid complexity per subpool library. For a subpool with 2000 variants, to ensure 100x 

coverage, harvest 0.2M colonies (harvest 0.4M colonies to account for the loss during 

plasmid isolation). One 25μl transformation typically yields colonies ranging from 

0.4M~4.5M. Set up multiple electroporation reactions to make sure to get enough 

colonies for a given subpool.  
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17. Add 5ml LB media to the selective plate and gently scrape off the colonies. Combine all 

the colonies for a subpool in a 50ml tube. Mix well. 

18. Measure the OD600 of the colony suspension. Make 1-to-10 or 1-to-100 dilutions as 

necessary for accurate measurement.  

19. The plasmid library can be directly extracted from the harvested colonies. Pellet 5ml 

colony suspension (OD>10) for a library with 0.6M colonies; scale the amount of colony 

suspension according to the library coverage. Extract plasmids from the pellet using the 

ZymoPURE II Plasmid Midiprep Kit. 

20. Alternatively, for a subpool with 0.2M colonies, seed 22M E. coli (1 OD= 80M E. coli/ml) 

in 50ml LB media (Kan-selective). Grow the culture overnight at 37 °C and extract 

plasmids using the ZymoPURE II Plasmid Midiprep Kit. 

21.  Send the plasmid library to Sanger sequencing using the “polyA_MluI_R” primer. 

 

Part II. Cell Electroporation and isolation of mRNA  

 

Materials 

 

Reagents 

• Electroporation Cuvettes, 0.4cm gap (Bio-Rad, Cat# 1652086)  

• OptiMEM (Gibco, Cat# 31985062) 

• Growth Media 

o DMEM (Gibco, Cat# 11995065) 

o 10% FBS (Gibco, Cat# 26140079) 

o Antibiotic-Antimycotic reagent (Gibco, Cat# 15240062) 

• Trypsin-EDTA (Gibco, Cat# 25300120) 
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• TRIzol (Thermo Fisher Scientific, Cat# 15596026) 

• Direct-zol RNA Miniprep Plus kit (Zymo Research, Cat# R2072) 

• Dynabeads™ Oligo(dT)25 (Thermo Fisher Scientific, Cat# 61002) 

• NEBNext® Poly(A) mRNA Magnetic Isolation Module (NEB) 

• Qubit RNA HS Assay Kit (Thermo Fisher Scientific, Cat# Q32852) 

Procedure 

 

*The following numbers are designed for the subpool with 2000 variants (ref+alt) and 100x 

coverage (i.e., 0.2M colonies, see table below for scale up recommendations) 

 

1. On day 0, seed >45M HEK293 cells in 150mm dishes and make sure they are less than 

80% confluent (should be actively dividing cells) by the time of electroporation. 

2. One day 1, trypsinize the HEK293 cells, resuspend with growth media, and count cell 

numbers. 

3. Spin down the 293 cells and resuspend with ice-cold OptiMEM at a cell density of 

10M/ml.  

4. For each electroporation, mix 750μl (7.5M) cells with 1.5μg plasmid libraries in a pre-

chilled microcentrifuge tube, transfer the mixture to a pre-chilled 0.4cm electroporation 

cuvette, perform electroporation (square wave, 25msec, 220V, 0.4cm).  

5. Immediately add 1ml warm growth media to the cuvette and transfer the cells to a 

150mm petri dish. 

6. Combine 2 x 7.5M cell transformants in one 150mm petri dish for one replicate. Perform 

three replicates for each subpool.  

7. Incubate cells at 37 °C for 24h. 
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8. After 24h, wash the cells in one 150mm petri dish with 10ml pre-warmed PBS, then add 

5ml TRIzol to each plate. Lyse the cells at RT for 10min, then transfer the mixture to 

1.5ml microcentrifuge tubes. Distribute 500μl lysed mixture per tube. Add 100μl 

chloroform to each tube and then mix well. Incubate at RT for 5min. Centrifuge 

at >13,000 g, 4° C for 15min. Carefully transfer the aqueous upper phase into a new 

1.5ml tube. Add equal volume of 100% ethanol and mix well. Load the mixture to six 

columns supplied by Direct-zol RNA Miniprep Plus kit (Zymo Research, Cat# R2072) to 

isolate total RNA following the manufacturer’s protocol. 

9. Isolate the mRNA using the Dynabeads™ Oligo(dT)25 (Thermo Fisher Scientific, Cat# 

61002). Use  400μg total RNA for one replicate. Quantitate the mRNA yield with Qubit 

Fluorometer. Store the mRNA at -80°C. 

 

Table. DNA and cells used during electroporation for plasmid libraries with different 

complexity 

Variants Coverage Colonies DNA/replicate Cells/replicate 
2000 100x 0.2M 3μg 15M 
6000 100x 0.6M 6μg 30M 

 

 

Part III. Generation of UMI measurement libraries  

 

Materials 

 

Reagents 

• SuperScript™ IV First-Strand Synthesis System (Thermo Fisher Scientific, Cat# 

18091050) 

• Q5 Hot Start High-Fidelity 2x Master Mix (NEB, Cat# M0494L)  
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• UltraPure DNase/RNase-Free Distilled Water (Invitrogen, Cat# 10977015) 

• PowerUp™ SYBR® Green Master Mix (Thermo Fisher Scientific, Cat# A25743) 

• Zymo DNA clean & Concentrator Kit (Zymo Research, Cat# D4004)  

• Zymoclean™ Gel DNA Recovery Kit (Zymo Research, Cat# D4002) 

 

Primers 

Name Sequence 
MPP3 GTGATTGGAGTTCAGACGTGTGTTCTGCTGACGNNNNNNNNNNNNNNNCGCTCTTCCGATCTGGATCC 
MPP2_352 CAAGCAGAAGACGGCATACGAGATTTGGACTTCACCTTAGGCATGGACGAGCTGTACAAATAAGAATTC 
MPP2_361 CAAGCAGAAGACGGCATACGAGATCCTCGGTACACCTTAGGCATGGACGAGCTGTACAAATAAGAATTC 
MPP2_362 CAAGCAGAAGACGGCATACGAGATAGACTTGGCACCTTAGGCATGGACGAGCTGTACAAATAAGAATTC 
MPP2_363 CAAGCAGAAGACGGCATACGAGATATGAGGCTCACCTTAGGCATGGACGAGCTGTACAAATAAGAATTC 
MPP2_364 CAAGCAGAAGACGGCATACGAGATGCAGAATCCACCTTAGGCATGGACGAGCTGTACAAATAAGAATTC 
MPP2_365 CAAGCAGAAGACGGCATACGAGATGTTGTCCGCACCTTAGGCATGGACGAGCTGTACAAATAAGAATTC 
MPP2_366 CAAGCAGAAGACGGCATACGAGATCATGCCATCACCTTAGGCATGGACGAGCTGTACAAATAAGAATTC 
MPP2_367 CAAGCAGAAGACGGCATACGAGATTCTCATTCCACCTTAGGCATGGACGAGCTGTACAAATAAGAATTC 
MPP2_368 CAAGCAGAAGACGGCATACGAGATGCGCCTGTCACCTTAGGCATGGACGAGCTGTACAAATAAGAATTC 
MPP4 AATGATACGGCGACCACCGAGATCTACACTACTCATAGTGATTGGAGTTCAGACGTGTGTTCTGCTGAC*G 
MPP1 AATGATACGGCGACCACCGAGATCTACACTATGAGTATTTCCCTACACGACGCTCTTCCG 
MPP2 CAAGCAGAAGACGGCATACGAGATTTGGACTTCACCTTAGGCATGGACGAGCTGTAC 
UMI.R1.seq GTGATTGGAGTTCAGACGTGTGTTCTGCTGACG 
Read2.seq CACCTTAGGCATGGACGAGCTGTACAAATAAGAATTC 
Index7.seq GAATTCTTATTTGTACAGCTCGTCCATGCCTAAGGTG 

 

*All primers listed above were synthesized by IDT with PAGE purification, red highlighted 

sequences are the indexes for sample pooling purposes. 

 

Procedure 

 

a. UMI addition for mRNA 
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1. Anneal RT primers to the template mRNA  

Reagent Amount 
MPP3 (2μM) 1μl 
dNTP mix (10mM) 1μl 
mRNA 500ng 
Nuclease-free water To 13μl 

 

Heat on a thermal cycler at 65°C for 5min 

Promptly remove the samples and put them on ice for 2min 

*Set-up one no-RT control    

**Use all mRNA(~7μg) isolated from 400μg total RNA for a subpool with 0.2M colonies. 

Determine the mRNA input by a trial run (e.g., 1 RT reaction) of this protocol with input 

standards to estimate the complexity of the libraries. The complexity of the libraries 

should match the downstream sequencing read coverage. (e.g., 20M complexity for 20M 

reads) Do multiple RT reactions when making the real libraries. 

 

2. Prepare RT reaction mix 

Reagent Volume(μl) 
5x SSIV Buffer 4 
DTT (100mM) 1 
RNase Inhibitor 1 
SuperScriptIV RT 1 

 

Mix and centrifuge 

 

3. Combine RT reaction mix with annealed RNA by pipetting up and down 

4. Incubation reactions 

RT incubation 50 °C 30min 
Inactivation 80 °C 10min 
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5. Add 1μl RNase H to the 20μl RT reaction and incubate at 37 °C for 20min. 

6. Add the UMI with 3-cycle of PCR (first-round) 

Reagent Volume(μl) 
Q5 2x master mix 20 
MPP2_352 (10μM) 2 
MPP3 (10μM) 2 
cDNA 10 
dH2O 6 

 

*Use MPP2 primers with different indexes for different samples 

**Assemble more PCR reactions as needed to use all the cDNA samples when making 

the libraries.  

Run PCR as follows: 

Initial denaturation 98 °C 1min 

3 cycles 
98 °C 15s 
50 °C 30s 
72 °C 1min 

Final extension 72 °C 10min 
 

7. Pool the PCR reactions with the same index in step 6. Directly purify the PCR reactions 

with the Zymo DNA Clean & Concentrator Kit. Use multiple columns as needed. Elute 

the samples with distilled water (5μl for one RT reaction).  

 

b. UMI addition for plasmid DNA 

 

 

8. Add the UMI to the plasmid DNA using Q5 polymerase (first-round) 



 71 

Reagent Amount 
2x Q5 master mix 20μl 
MPP2_366 (10μM) 2μl 
MPP3 (10μM) 2μl 
DNA 200ng 
dH2O to 40μl 

 

*Use 400ng DNA for a subpool with 0.2M colonies. Set up two 40μl reactions. For 

subpools with 0.6M colonies, use 800ng DNA. 

**Determine the DNA input by a trial run of this protocol with standards to estimate the 

complexity of the libraries. The complexity of the libraries should match the downstream 

sequencing read coverage. (e.g., 20M complexity for 20M reads) 

 

Run PCR as follows: 

Initial denaturation 98 °C 1min 

3 cycles 
98 °C 15s 
50 °C 30s 
72 °C 1min 

Final extension 72 °C 10min 
 

9. Pool the PCR reactions with the same index in step 8. Directly purify the PCR reactions 

with the Zymo DNA Clean & Concentrator Kit. Elute the samples with distilled water. 

 

c. Second round library amplification and complexity estimation for mRNA or plasmid 

DNA 

 

10. Assemble qPCR reactions using part of the eluents from step 7 or step 9 to find the 

maximum PCR cycles numbers: 

Reagent Volume(μl) 
PowerUp SYBR master mix 10 
MPP2_X# (10μM) 1 
MPP4 (10μM) 1 
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Eluent from step7 5 
dH2O 3 

 

Load 20μl of the mixed reaction to the qPCR 96-well plate.  

 

#MPP2_X represents the same MPP2 indexed primer used in step 6 or step 8. 

 

Run qPCR as follows: 

UDG activation 50 °C 10min 
Initial denaturation 95 °C 2min 

25 cycles 95 °C 15s 
60 °C 30s 

  

For each sample, check the amplification curve to determine the cycle number before 

the plateau. Use this cycle number as a cap for the second-round PCR cycles.  

 

11. Set up PCR reaction with DNA standards for library complexity calculation. Make 

dilutions of the plasmid library to generate DNA standards with the following 

concentrations: 0.2ng/μl, 0.1ng/μl, 0.05ng/μl, 0.02ng/μl, 0.01ng/μl, 0.005ng/μl, 

0.002ng/μl. 

Reagent Volume(μl) 
Q5 2x master mix 10 
MPP1 (10μM) 1 
MPP2 (10μM) 1 
DNA standards  5 
dH2O 3 

 

12. Assemble the second-round PCR run to generate the UMI measurement libraries. 

Reagent Volume(μl) 
Q5 2x master mix 10 
MPP2_X (10μM) 1 
MPP4 (10μM) 1 
Eluent from step 6 or 8 5 
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dH2O 3 
 

Set up multiple reactions for the same sample until all the eluents from step 7 or 9 are 

used. 

 

For both library amplification reactions and the standard reactions from step 11, 

run PCR as follows: 

Initial denaturation 98 °C 30s 

7-11 cycles 
98 °C 10s 
60 °C 30s 
72 °C 30s 

Final extension 72 °C 2min 
 

*PCR cycles should be determined by running different PCR cycles with the real library 

material and find the lowest cycles with visible library band on the agarose gel. PCR 

cycle numbers should be less than the cycle number determined in step 10. For a 

subpool of 0.2M colonies, the optimized second-round PCR cycle numbers are 11 cycles 

for mRNA (step 7) and 8 cycles for plasmid DNA (step 9). For a subpool of 0.6M 

colonies, the PCR cycles for DNA can be lowered to 7 cycles. 

13. Mix 20μl PCR reactions of libraries or standards with 4μl 6x loading dye. Run 20μl of 

each mixture on a 2% agarose gel. Estimate the library complexity by comparing the 

band intensity of the libraries (377bp) with the band intensity of the amplicon (342bp) 

generated from the DNA standards. Use ImageJ for band intensity quantification. 

14. Pool the remaining second-round PCR reactions of UMI measurement libraries for the 

same sample (same index). Purify the reactions with the Zymo DNA Clean & 

Concentrator Kit. Elute with 20ul distilled water. Resolve the eluents on a 2% agarose 

gel. Gel purify the band of libraries (377bp) with the Zymoclean™ Gel DNA Recovery 

Kit. Elute the UMI measurement libraries with 20μl distilled water. 
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15. Quantitate the libraries with Qubit Fluorometer 

16. Mix UMI measurement libraries (generated from both mRNA and plasmid DNA) equally 

and sequence on Hiseq3000 PE150 or Novaseq SP PE150 with 15% PhiX spike-in and 

custom sequencing primers (UMI.R1.seq, Read2.seq, and Index7.seq). 
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CHAPTER 3  
  

RNA editing in cancer impacts mRNA abundance in immune response 

pathways 

 

3.1 Abstract 

 

RNA editing generates modifications to the RNA sequences, thereby increasing protein diversity 

and shaping various layers of gene regulation. Recent studies have revealed global shifts in 

editing levels across many cancer types, as well as a few specific mechanisms implicating 

individual sites in tumorigenesis or metastasis. However, most tumor-associated sites, 

predominantly in noncoding regions, have unknown functional relevance. Here, we carry out 

integrative analysis of RNA editing profiles between epithelial (E) and mesenchymal (M) tumors, 

since epithelial-mesenchymal transition (EMT) is a key paradigm for metastasis. We identify 

distinct editing patterns between E and M tumors in seven cancer types using TCGA data, an 

observation further supported by single-cell RNA-seq data and ADAR perturbation experiments 

in cell culture. Through computational analyses and experimental validations, we show that 

differential editing sites between E and M phenotypes function by regulating mRNA abundance 

of their respective genes. Our analysis of >120 RNA-binding proteins revealed ILF3 as a 

potential regulator of this process, supported by experimental validations. Consistent with the 

known roles of ILF3 in immune response, E-M differential editing sites are enriched in genes 

involved in immune and viral processes. The strongest target of editing-dependent ILF3 

regulation is the transcript encoding PKR, a crucial player in immune and viral response. 

Our study reports widespread differences in RNA editing between epithelial and mesenchymal 

tumors and a novel mechanism of editing-dependent regulation of mRNA abundance. It reveals 
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the broad impact of RNA editing in cancer and its relevance to cancer-related immune 

pathways. 

 

3.2 Introduction 

 

RNA editing, the modification of specific nucleotides in RNA sequences, expands diversity in 

proteins and gene regulatory mechanisms172,173. The most frequent type of RNA editing in 

human cells is A-to-I editing, which refers to the deamination of adenosine (A) to inosine (I) and 

is catalyzed by the Adenosine Deaminases Acting on RNA (ADAR) family of enzymes174. Three 

ADAR genes are encoded in the human genome, namely ADAR1, ADAR2 and ADAR3. 

Catalytically active ADAR1 and ADAR2 are widely expressed across tissues. In contrast, 

ADAR3 is exclusively expressed in certain brain regions and is catalytically inactive175. As 

inosine is recognized as guanosine (G) in translation and sequencing, A-to-I editing is also 

referred to as A-to-G editing. Though millions of editing events have been revealed across the 

human transcriptome, only a small proportion of editing events have been functionally 

characterized. The effects of most editing sites, primarily within non-coding regions, have yet to 

be discovered58,176. 

 

 Increasing evidence has established the importance of RNA editing dysregulation in 

cancer. A number of studies have delineated mechanisms through which individual RNA editing 

sites, mostly causing recoding events (i.e., amino acid changes), promote or suppress tumor 

development82,89,177,178. Besides functioning in tumorigenesis, edited RNA transcripts can be 

translated into edited peptides, which may be recognized as cancer antigens and activate an 

anti-tumor immune response87,88. Furthermore, across various cancer types, genome-wide 

aberrations in RNA editing were observed and associated with clinical features77,78,179. Within 
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each cancer type, editing levels generally increased or decreased in tumors, compared to 

matched normal samples. Editing levels of specific sites were correlated with tumor stage, 

subtype, and patient survival, and for a smaller subset of nonsynonymous sites, editing altered 

cell proliferation and drug sensitivity in cell line experiments77. As RNA editing has the potential 

to inform development of improved cancer diagnostics and patient-specific treatments, thorough 

investigation of the precise functions and regulatory mechanisms of the many cancer-type-

specific RNA editing changes is needed178. 

 

In cancer progression, activation of epithelial-mesenchymal transition (EMT) facilitates 

metastasis by enabling tumor cells to gain an invasive phenotype, infiltrate the circulatory and 

lymphatic systems, and reach distant sites for colonization180–182. A few RNA editing sites have 

been associated with this process so far. Specifically, editing events in SLC22A3, FAK, COPA, 

RHOQ, and miR-200b were demonstrated to accelerate metastasis80,87,183–186. While miR-200b 

normally targets ZEB1 and ZEB2, which are key EMT-inducing transcription factors, editing 

alters its targets and enhances cell invasiveness and motility186. The SLC22A3 recoding event 

also promoted EMT, causing expression changes in EMT marker genes183. In contrast, a 

recoding event in GABRA3 inhibited metastasis and was present only in non-invasive cell lines 

and non-metastatic tumors185. These studies highlight the functional relevance of RNA editing in 

metastasis and the merit of a more comprehensive investigation. 

 

Here, we present a global analysis and comparison of RNA editing profiles between 

epithelial (E) and mesenchymal (M) phenotypes of primary tumors across multiple cancer types. 

Using RNA-seq data derived from bulk tumors and single cells, we observed distinct editing 

patterns between phenotypes, with editing differences often enriched among immune response 

pathway genes. Supported by experimental evidence, we show that differential editing sites 

affect host gene mRNA abundance and identify a novel mechanism of editing-dependent 
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stabilization of mRNAs by ILF3. One of the target genes of ILF3 is EIF2AK2, coding for Protein 

Kinase R (PKR), a key player in immune and viral response.  

 

3.3 Results 

 

3.3.1 Altered RNA editing profiles between epithelial and mesenchymal tumors 

 

EMT is known to be accompanied by substantial transcriptome remodeling181,187–191. Given the 

previously reported functional relevance of RNA editing in EMT183,186,192, we hypothesized that 

epithelial and mesenchymal tumors possess different transcriptome-wide RNA editing profiles. 

Thus, we analyzed RNA-seq datasets of primary tumors from The Cancer Genome Atlas 

(TCGA). We focused on seven cancer types that have been previously studied in the context of 

EMT and have relatively large sample sizes available from TCGA (Fig. 1A). To classify tumors 

into epithelial (E) and mesenchymal (M) phenotypes, we utilized a well-established EMT scoring 

system, where scoring and categorization of tumors into these E and M phenotypes enabled 

systematic identification of cancer-specific differences in treatment response between 

phenotypes, as well as associations with survival193. Of all categorized tumors for each cancer 

type, we further refined the subset of tumors such that metadata were matched between the two 

groups (Supplementary Table 1).  

 

Applying our previously published methods 74,172,194, we quantified editing levels at over 4 

million editing sites recorded in the REDIportal database14. We then identified sites that were 

differentially edited between E and M tumors in each cancer type. To control for false 

discoveries, we filtered out predicted differential editing sites that repeatedly exhibited 

differences in editing when phenotype labels were shuffled randomly. Principal components 
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analysis on differential editing levels showed that E and M tumors could be well separated by 

the first two principal components of editing (Fig. 1A). These first two principal components did 

not appear to be confounded by sample metadata and suggest that most of the variation in 

editing is explained by the distinction of E and M phenotypes (Supplementary Fig. 1).  

 

Based on the differential editing sites, most cancer types, including LUAD, LUSC, 

PRAD, KIRC and HNSC, demonstrated a hyperediting trend in the M phenotype (Fig. 1B). In 

contrast, two cancer types, BRCA and OV, had a trend of hypoediting in the M samples. The 

majority of differential editing sites in all cancer types were located in the 3’ untranslated regions 

(UTRs) or introns (Fig. 1C). The above results suggest that distinct RNA editing profiles exist 

between E and M phenotypes. 

 

3.3.2 Editing patterns are shared among cancer types and distinct from 

differential expression 

 

Given dominant trends of hyperediting or hypoediting that distinguished E and M phenotypes in 

an individual cancer type, we asked whether genes with differential editing patterns were shared 

or distinct across cancer types. We examined the statistical significance of overlap in 

differentially edited genes between pairs of cancer types by Rank-rank Hypergeometric Overlap 

(RRHO). Extending Gene Set Enrichment Analysis (GSEA) to two dimensions, RRHO tests the 

significance of the intersection of gene lists, ranked by a metric of differential expression, across 

two genome-wide datasets195. We applied RRHO to RNA editing here by ranking genes 

according to the significance of tested editing differences between E and M and the direction of 

editing differences (Methods). In addition to shared directionality of global editing trends, we 

found significant overlap in genes with editing changes among multiple cancer types (Fig. 2A). 
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Within pairs of cancer types, most significant overlaps were enriched at the bottom left or top 

right corners, where genes were hyperedited or hypoedited in both cancer types, respectively. 

These significant overlaps in genes based on differential editing suggest that editing changes in 

EMT may affect common pathways across cancer types.   

 

It should be noted that differentially edited genes do not overlap with differentially 

expressed genes (Fig. 2B). This observation indicates that gene expression changes in EMT did 

not confound the RNA editing differences observed. Thus, altered editing potentially represents 

a distinct layer of molecular changes in EMT.  

 

3.3.3 Differential editing occurs in genes of immune relevance 

 

Next, we examined the gene ontologies enriched among genes with differential editing in EMT. 

In this analysis, background control genes were chosen randomly from those that did not have 

differential editing sites but had similar gene length and GC content as the differentially edited 

genes (Methods). Across multiple cancer types, differentially edited genes were enriched with 

viral-host interaction features, interferon (IFN) and other immune response pathways, metabolic 

processes, and translational regulation (Fig. 2C, Supplementary Fig. 2).  

 

The observation of immune-relevant categories is of particular interest. RNA editing has 

been described as a mechanism to label endogenous double-stranded RNAs and consequently 

prevent IFN induction61,196–199. However, the roles of editing events in genes directly associated 

with immune response, such as those in the IFN response pathways, have not been well 

characterized. Our observation indicates that RNA editing may directly affect immune response 

genes in EMT.  
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3.3.4 Contribution of cell types to differential editing 

 

Given the observed enrichment of differential editing in immune-relevant genes, we asked 

whether our identified differential editing events primarily occur in cancer cells or in other cell 

types in the tumor microenvironment. To address this question, we analyzed single cell (sc) 

RNA-seq data from three non-small cell lung cancer (NSCLC) patients, each with three tumor 

samples from the tumor edge, core, and in-between200. Following quality control measures, we 

clustered the cells in two rounds and labeled cell types based on marker genes to obtain T cells, 

B cells, myeloid cells, endothelial cells (EC), fibroblasts (Fibro), epithelial cells (Epi), mast cells, 

alveolar cells, and cancer cells (Supplementary Fig. 3A-C, Methods). Supporting the accuracy 

of this clustering, expression of marker genes was generally highest in their expected cell types 

when RPKM was calculated from pooled cells and when a signature gene expression matrix 

was predicted by CIBERSORTx201 (Supplementary Fig. 3D).  

 

To gauge the contribution of individual cell types to bulk tumor differential editing, we 

examined gene expression and editing profiles of each cell type. Specifically, we pooled cells of 

each type and calculated the percent of differentially edited genes from the bulk tumor analysis 

that were expressed in each cell type. Cancer cells expressed the highest proportion of genes 

that were differentially edited (Fig. 3A). We then measured the extent of editing in each cell type 

by calculating the percent of bulk tumor differential editing sites that were edited. Consistent 

with the expression analysis, the highest proportion of differential sites were edited in cancer 

cells (Fig. 3B). Therefore, the editing differences observed among bulk tumors may be mainly 

attributable to the cancer cells.  
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We next separated cancer cells to epithelial and mesenchymal cell clusters (Fig. 3C, 

Methods). Sampling epithelial cells to match mesenchymal cells in terms of cell number (200 

cells) and metadata, we pooled cells within each phenotype together and detected RNA editing 

events (Supplementary Fig. 4). Although the scRNA-seq primarily sequences the 3’ ends of 

mRNAs, a relatively small number of RNA editing events were still captured. We identified nine 

editing sites with significant differences between E and M (Fig. 3D). All nine differential sites 

exhibited higher editing levels in the M phenotype, which is consistent with the hyperediting 

trend in M observed in bulk LUAD and LUSC tumors (Fig. 1B). Two sites overlapped with 

differentially edited sites in LUAD or LUSC and both had hyperediting in M cells, consistent with 

the direction in bulk tumors (Supplementary Fig. 5). This small overlap likely reflects the low 

coverage on editing sites in the single cell data, and/or the possibility that more differential 

editing sites, which were not identified in our study due to limits in power, exist in the bulk 

tumors. 

 

Notable differentially edited genes include RHOA, which is active in cell migration and is 

associated with metastasis in multiple cancer types202–204, and ARL16, a reported negative 

regulator of RIG-I activity205, consistent with the observed enrichment of immune-relevant genes 

that were differentially edited in bulk tumors. Overall, the findings from single cell data support 

the hypothesis that editing differences between bulk E and M tumors mainly reflect changes 

occurring in cancer cells. 

 

3.3.5 ADAR1 or ADAR2 knockdown induced EMT 

 

Given the differential editing profiles between E and M tumors, an important question is whether 

the editing changes are functionally relevant to EMT. To address this question, we first 
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examined if changes in ADAR expression affect EMT. Using cell culture systems commonly 

employed in EMT studies, we carried out knockdown (KD) experiments of ADAR1 or ADAR2 in 

two cell lines, A549 and MCF10A, via siRNAs. Upon ADAR1 KD, A549 cells showed elongated 

spindle-like mesenchymal morphology (Fig. 4A). We also confirmed the loss of epithelial 

markers (E-cadherin and @-Catenin) and gain of mesenchymal marker (Vimentin) in ADAR1 KD 

A549 cells (Fig. 4B). Similar results were observed upon ADAR2 KD in A549 cells (Fig. 4C-D) 

and reproducible in MCF10A cells (Fig. 4E-F). These findings suggest that loss of either 

catalytically active ADAR enabled EMT in the two cell lines. The phenotypic changes following 

ADAR2 KD are consistent with a previous report that ADAR2-deficiency can induce EMT in 

SW480 cells192. Together, these results indicate that knockdown of ADARs promotes EMT. 

 

As expected, ADAR KD induced significant editing changes measured by RNA-seq in 

A549 cells (Supplementary Fig. 6A-B), with ADAR1 KD affecting a large number of editing sites 

but ADAR2 having fewer targets. A minority of ADAR2-responding sites had increased editing 

upon ADAR2 KD, reflecting the likely compensation by ADAR1. The reverse, compensation of 

ADAR1 loss by ADAR2, was not observed. Among the lung cancer E-M differential editing sites 

that were testable in the above A549 RNA-seq data, the vast majority responded to KD of either 

ADAR or double KD (Supplementary Fig. 6C). These results confirm the impairment of RNA 

editing at genome scale upon the loss of ADARs. 

 

We next examined mRNA expression of ADARs in the bulk E and M tumors across 

cancer types. In several cancer types with a hyperediting trend in M, higher mRNA expression 

of ADAR1 or ADAR2 likely contributed to increased editing levels in M tumors (Supplementary 

Fig. 7). However, ADAR expression was not consistent with RNA editing differences for some 

cancer types. Thus, although ADAR KD caused EMT in cell culture models, ADAR expression 

alone may not sufficiently explain the global editing trends observed in bulk tumors.  
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3.3.6 Impact of RNA editing on mRNA abundance 

 

Given ADAR’s primary role in RNA editing, we next asked how RNA editing may affect genes 

relevant to EMT, especially those related to immune response (Fig. 2C).  Since a relatively large 

fraction of differential editing sites is located in 3’ UTRs, we examined the hypothesis that these 

sites may affect mRNA abundance of their respective genes. Thus, we first calculated the 

correlation between editing levels and mRNA abundance for differentially edited sites observed 

in the E-M comparison. Using a regression model accounting for confounding factors including 

age, gender and race, we observed a total of 127 genes whose editing sites are significantly 

correlated with mRNA abundance (FDR<10%) in at least one type of cancer (Fig. 5A). In 

addition, among these genes, 77% (94 of 122 testable genes) demonstrated a significant 

correlation in at least one human tissue type based on a similar analysis of GTEx data, 78% 

(73/94 genes) of which showed the same direction of correlation between cancer and at least 

one GTEx tissue.   

 

To further evaluate the regulatory role of RNA editing on mRNA abundance, we next 

examined the change in mRNA expression levels upon ADAR1 KD.  We used ADAR1 KD RNA-

Seq data from 5 cell lines: U87, HepG2, K562, HeLa and B cells172,206,207, respectively. Out of 

the 127 edited genes identified above, 126 of them were detectable at an expression level of at 

least 1 FPKM (and edited) in at least one cell line (control or ADAR1 KD condition). Among 

them, 71% (89 genes, red dots, Fig. 5B) showed inverse correlation between ADAR1 KD and 

editing level coefficient in at least one cell line (Fig. 5B). These genes showed an enrichment of 

negative expression changes upon ADAR1 KD, indicating a likely stabilizing effect imposed by 

RNA editing (p = 2.7e-4, binomial test). Among expression-correlated editing sites in the 89 
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genes, 64% are located in 3’ UTRs, a percentage that’s significantly higher than that of E-M 

differential editing sites in general (p = 2.4e-4, Fig. 5C).  We thus refer to the 89 genes as 

putative target genes whose expression is modulated by RNA editing (Supplementary Table 2).  

 

Next, we experimentally validated the regulation of mRNA abundance by six editing sites 

within three genes: RNF24, RHOA, and MRPS16. We used a minigene reporter with bi-

directional promoters for mCherry and eYFP37 and cloned edited and unedited versions of each 

editing site and its surrounding 3’ UTR region into the 3’ UTR of mCherry. Using expression of 

eYFP as an internal control, we compared mCherry expression between cells carrying the 

edited and unedited versions for each editing site. All six editing sites induced significant 

expression differences in the direction consistent with the editing-expression correlations 

observed in primary tumors (Fig. 5D, Supplementary Table 3). While positive editing 

associations were dominant among predicted target genes, there also exist negative 

associations between editing and expression levels. We tested one example of the latter 

category (RHOA).  

 

3.3.7 ILF3 as an editing-dependent regulator of mRNA abundance 

 

Since mRNA stability is closely regulated by RNA-binding proteins (RBPs)208–211, we next asked 

whether RBPs are involved in the modulation of mRNA abundance by RNA editing sites. To this 

end, we analyzed enhanced ultraviolet crosslinking and immunoprecipitation (eCLIP) datasets 

of 126 RBPs in two cell lines (HepG2 and K562) from ENCODE206,212. We asked whether RBP 

binding signals are enriched significantly closer to editing sites in the 89 potential target genes 

than expected by chance. This analysis identified ILF3 as a top protein with significantly short 

distances to the editing sites in both cell lines (Supplementary Fig. 8A). To validate this finding 
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and test this relationship in a different cell type, we performed eCLIP-seq of ILF3 in A549 cells. 

The same observation was made via this data set (Fig. 6A). As observed in HepG2 and K562 

cells, differential editing sites within predicted target genes were significantly closer to ILF3 

binding regions in A549 cells than random gene-matched control sites. Furthermore, 75 (84%) 

of the 89 genes showed a significant correlation between their gene expression and the 

expression of ILF3 (FDR<10%), 37 of which had an absolute correlation coefficient of at least 

0.2 (Fig. 6B). Importantly, the majority of the significant correlations were positive, consistent 

with the known roles of ILF3 in stabilizing its target mRNAs213–215.  

 

3.3.8 Impact of ILF3 on immune-relevant genes 

 

ILF3 promotes an antiviral response through its binding to RNAs216–218. Given the fact that 

immune-relevant genes are differentially edited in E-M (Fig. 2C), we next asked whether ILF3 

regulates the mRNA abundance of these EMT-associated differentially edited, immune-relevant 

genes. Among the 89 genes whose expression was affected by RNA editing, 20 genes fall into 

the immune or viral GO categories. Interestingly, the ILF3 binding sites were significantly closer 

to the differential editing sites of these 20 genes than differential sites in immune-related genes 

without editing-expression associations (Fig. 6C). Together, these results suggest that ILF3 

binds close to the editing sites of immune-related genes. 

 

 Since we observed that differential editing between bulk E and M tumors mainly 

reflected changes occurring in cancer cells (Fig. 3A-B), we next asked whether the above 

regulatory relationship between ILF3 and immune-related genes also occurs in cancer cells. To 

this end, we analyzed gene expression of individual cell types identified in the NSCLC scRNA-

seq dataset. Within each cell type, we correlated ILF3 expression with expression of the 20 
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immune-related target genes. In cancer cells, all 20 genes had expression levels positively 

correlated with ILF3 expression at 10% FDR (Fig. 6D). Though significant correlations were also 

observed in other cell types, only cancer cells showed correlation coefficients of at least 0.2 in 

magnitude. This result suggests that the mRNA stabilizing function of ILF3 is prominent in 

cancer cells, in line with our observation that E-M differential editing primarily occurs in cancer 

cells.  

 

3.3.9 PKR expression is affected by 3’ UTR editing through ILF3 regulation 

 

Among the 20 immune-related genes putatively regulated by ILF3, the gene EIF2AK2, coding 

for Protein Kinase R (PKR), had most significant expression-editing correlation (Supplemental 

Table 2) and expression correlation with ILF3 (Fig. 6D). Activated by dsRNA, PKR suppresses 

translation and promotes apoptosis through its phosphorylation activity219,220. PKR also 

regulates various signaling pathways, such as NF-kB and p38 MAPK, in response to cellular 

stress219. Using the editing minigene reporter, we examined the individual effects of seven 3’ 

UTR editing sites on PKR mRNA abundance in A549 cells. Five of the seven editing sites 

showed significantly higher normalized mCherry expression compared to their unedited 

counterparts (Fig. 6E, Supplementary Fig. 8B). To assess the collective impact of multiple RNA 

editing sites on PKR mRNA abundance, we measured endogenous PKR expression in A549 

cells upon ADAR1 or ADAR2 KD. We first confirmed that the 3’ UTR editing sites in PKR were 

edited endogenously in A549 cells. Importantly, these editing sites are mainly regulated by 

ADAR1 instead of ADAR2 (Supplementary Fig. 8C). Upon ADAR1 KD, PKR expression level 

was significantly reduced by about 40% (Fig. 6F). In contrast, PKR expression did not change 

upon ADAR2 KD, as expected. These results suggest that the editing sites enhanced PKR 

mRNA abundance, consistent with the positive editing-expression correlation in primary tumors. 
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 Based on the eCLIP data, the five editing sites that individually promoted PKR mRNA 

abundance are located within ILF3 binding sites (Fig. 6G, Supplementary Fig. 8D-E). To test the 

hypothesis that ILF3 regulates PKR mRNA abundance in an editing-dependent manner, we 

generated ILF3 KD A549 cells (Fig. 7A). The edited and unedited reporters, demonstrating 

differential expression in control cells, no longer produced different expression levels upon ILF3 

KD (Fig. 7B). Together, our data suggest that ILF3 promotes PKR mRNA expression in an 

editing-dependent manner by binding to the PKR mRNA. 

 

3.3.10 ILF3 knockdown induced EMT in A549 cells 

 

Since ILF3 was found to stabilize transcripts that were differentially edited between E and M 

tumors, we next asked if ILF3 regulates the EMT process. We carried out ILF3 KD experiments 

via two different siRNAs in A549 cells. Upon ILF3 KD, cell morphology changed from tightly 

connected, round cells towards more dispersed, spindle-shaped cells (Fig. 7C), consistent with 

expected EMT phenotypes. Additionally, we observed reduced expression of the epithelial 

marker E-cadherin along with increased expression of the mesenchymal marker N-cadherin in 

the ILF3 KD cells (Fig. 7D, E for protein and RNA levels, respectively). Thus, these data show 

that ILF3 deficiency induces EMT in A549 cells, supporting a significant role of ILF3 in 

regulating EMT. 

 

3.4 Discussion 

 

As most cancer patient deaths are due to metastasis, thorough understanding of the molecular 

mechanisms underlying metastasis is crucial to developing effective preventative measures221. 
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EMT plasticity is thought to underlie cell dissemination and metastatic formation in many cancer 

types182. Supported by studies on primary tumors and various model systems, features of EMT 

have been associated with metastasis180,182,222,223. For instance, higher expression of 

mesenchymal markers, with preserved epithelial markers in the absence of nearly all canonical 

EMT transcription factors, was detected in cells located at the leading edge of primary human 

HNSC tumors223. Furthermore, this partial EMT program was correlated with multiple metastatic 

characteristics, including abundance of lymph node metastases, lymphovascular invasion, and 

tumor grade223. While mutations are understood to drive primary tumorigenesis and are often 

found in reported oncogenes and tumor suppressor genes, the existence of recurrently mutated 

genes specific to metastasis is not clear182. Accordingly, mechanisms regulating cell 

invasiveness beyond genetic variation need to be more thoroughly investigated. Our study is the 

first to report a systematic characterization of RNA editing in EMT phenotypes across several 

cancer types. Through a combination of experimental and computational analyses, we observed 

many editing differences in EMT-relevant genes, especially those related to immune and viral 

response, with the potential of affecting mRNA abundance of these genes. We also show that 

higher expression levels of these edited transcripts may be due to stabilization by ILF3.  

 

Located in noncoding regions, most editing sites have unknown function. To assess the 

contribution of differential editing to altered cell phenotypes in cancer, we focused on the 

capacity of editing to regulate host gene mRNA abundance. To our knowledge, very few studies 

have examined this question on the transcriptome-wide scale224,225. Previously, several studies 

demonstrated this regulatory role for a handful of editing sites through alteration of miRNA 

binding sequences or mRNA secondary structure or otherwise unknown mechanisms58,80,93,226–

230. Expanding on these previous studies, we incorporated tissue-rich data from GTEx and 

ADAR KD expression changes from five cell lines to computationally support associations of 

editing with mRNA abundance. We also validated the effects of specific editing sites and 
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explored the involvement of RBPs in this regulatory mechanism. It should be noted that we were 

able to detect associations between editing and mRNA abundance levels, even though 

differentially expressed genes did not significantly overlap differentially edited genes. These 

findings do not contradict each other because editing levels are relatively low. Consequently, 

inosine may affect mRNA abundance, but when present at low levels, may not necessarily lead 

to significant expression differences. 

 

Considering tumor heterogeneity and the roles of stromal and immune cells in EMT, it is 

important to examine the contributions of different cell types to differential editing observed in 

the E-M comparisons. Our results using single-cell data supported that cancer cells are a main 

cell type underlying differential editing between E and M phenotypes in lung cancer, although 

contributions by other cell types cannot be excluded. Furthermore, cancer cells demonstrated 

the strongest expression correlation between ILF3 and immune-relevant differentially edited 

genes among all cell types considered in lung cancer. These findings suggest that RNA editing 

is likely an important aspect of transcriptome remodeling of cancer cells in EMT, at least in lung 

cancer. Single-cell analysis of RNA editing in other cancer types should be conducted in the 

future.   

 

Our cell line experiments showed EMT induction upon KD of either ADAR1 or ADAR2 in 

lung and breast cell lines. In contrast, we observed hyperediting in M tumors of most cancer 

types. The seemingly opposite trends may reflect the complexity of tumor biology that is not 

effectively recapitulated by cell culture models. Although the cell culture models can support the 

likely importance of RNA editing in EMT, the exact mechanisms and related regulation can only 

be investigated using in vivo models in the future. In addition, we did not observe large 

differences in ADAR expression levels that are consistent with observed editing differences 

between E and M tumors for all cancer types. Other proteins that directly or indirectly affect 
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ADAR function likely contribute to the regulation of E-M RNA editing differences, which remains 

to be investigated. 

 

RNA editing is known to be important to innate immunity by preventing viral dsRNA 

sensors, such as MDA5 and RIG-I, from sensing host dsRNA196,199,231. In this study, we provided 

multiple lines of evidence to support that RNA editing differences in EMT may affect immune 

response genes directly, adding a new dimension to the relationships between RNA editing and 

innate immunity. Interestingly, a major RBP that mediates this relationship is ILF3. ILF3 was 

identified as a PKR substrate and serves as a negative regulator of viral replication upon 

phosphorylation216,232. Upon viral infection and sensing of viral dsRNA, PKR activates, 

suppresses translation, and promotes apoptosis of affected cells220. Importantly, this mechanism 

has been targeted in oncolytic virotherapy for cancer. Cancer cells that have low PKR 

expression are sensitive to oncolytic viruses233–235. Our study showed that ILF3 mediates the 

RNA editing-dependent regulation of PKR expression. We also observed that ILF3 KD induced 

EMT in A549 cells. These data reveal novel insights into the reciprocal regulation between PKR 

and ILF3 and their potential contributions to EMT. Additional studies on their interaction during 

viral infection or cancer treatment will also be informative for therapeutic development. 

Previously, ADAR1 loss has been shown to render tumor cells sensitive to immunotherapy 

through enhanced inflammatory response70,236. Our findings on the regulation of immune 

response genes by RNA editing may add additional mechanisms in this process that will need 

further investigation. 

 

The functional roles of RNA editing in cancer have been increasingly recognized in 

recent years. Highlighting the extensive editing differences between EMT phenotypes and their 

impact on mRNA abundance, especially for genes involved in the immune response, our work 
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extends the basis for future studies on the contribution of editing to metastasis and patient 

outcomes. 

 

3.5 Methods 

 

3.5.1 Plasmid construction 

 

For bi-directional reporters, full length or partial 3’ UTR regions (1~2kb) of candidate genes 

were cloned from the genomic DNA extracted from HMLE or A549 cells. Edited versions of 3’ 

UTR inserts were generated using overlap-extension PCR (Supplementary table 3). Edited and 

unedited versions of 3’ UTR regions were then cloned into the pTRE-BI-red/yellow vector via 

ClaI and SalI-HF enzyme sites37. To obtain a lentiviral vector expressing ILF3 shRNA, oligos 

containing the target sequence (GGTCTTCCTAGAGCGTATAAA, TRCN0000329788) were 

ordered from Integrated DNA Technologies (IDT) and cloned into pLKO.1 via EcoRI and AgeI 

enzyme sites. 

 

3.5.2 Cell culture and transfection 

 

 

A549, Hela and HEK293T cells were maintained in DMEM with 10% FBS and Antibiotic-

Antimycotic reagent (Gibco). MCF10A cells were maintained in DMEM/F12, supplemented with 

5% Horse serum, 20ng/ml human EGF (PeproTech), 0.5mg/ml Hydrocortisone (Sigma), 

100ng/ml Cholera Toxin (Sigma), 10ug/ml Insulin (Sigma), and Antibiotic-Antimycotic reagent 

(Gibco). For siRNA treatment, A549 or MCF10A cells were seeded at 1´105 cells per well in 6-

well plates. After 24 hours, siRNAs (Supplementary table 3) were introduced at the final 
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concentration of 10nM~100nM using lipofectamine RNAiMAX (Invitrogen) according to the 

manufacturer’s protocol. Media were changed 24 hours post-transfection, and cells were 

harvested 72 hours post-transfection. For transfection of bi-directional reporters, Hela and 

HEK293T cells were seeded in 12-well plates to reach 90% confluency by the time of 

transfection. A549 cells were seeded at 0.15x105 cells per well in 12-well plates 24 hours before 

transfection. Reporter plasmids were transfected at 200ng per 12-well with lipofectamine 3000 

(Invitrogen), following the manufacturer’s protocol. Cells were harvested 16 hours post-

transfection. 

 

3.5.3 Western blot 

 

Cells were lysed with RIPA buffer containing protease inhibitor (EDTA-free, Thermo Fisher 

Scientific) at 4°C for 30 minutes. The whole cell lysates were then centrifuged at 12,000g, 4°C 

for 15 minutes. The supernatants were collected for protein concentration measurement using 

Bradford assay (Pierce™ Detergent Compatible Bradford Assay Kit, Thermo Fisher Scientific). 

Protein samples were prepared by mixing protein lysates with 4x SDS protein loading dye at 3:1 

ratio. The mixture was boiled for 5 minutes. 10 ug of each protein samples were loaded on 

SDS-PAGE gels and transferred to nitrocellulose membranes for antibody incubations. 

Antibodies used were as follows: ADAR1 antibody (Santa Cruz Biotechnology, sc-73408, 

1:200), ADAR2 antibody (Santa Cruz Biotechnology, sc-73409, 1:200), E-cadherin antibody 

(Cell Signaling Technology, #3195, 1:1000), γ-Catenin antibody (BD Transduction Laboratories, 

610253, 1:8000), N-cadherin antibody (BD Transduction Laboratories, 610920, 1:500), Vimentin 

antibody (Cell Signaling Technology, 5741, 1:1000), NF90(ILF3) antibody (BETHYL 

Laboratories, A303-651A, 1:1000), β-actin-HRP antibody(Santa Cruz Biotechnology, sc-47778, 

1:2000), goat anti-rabbit IgG-HRP(Santa Cruz Biotechnology, sc-2004, 1:2000), goat anti-
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mouse IgG-HRP(Santa Cruz Biotechnology, sc-2005, 1:2000). Membrane blots were incubated 

with SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo Fisher Scientific) and 

visualized under the imager (Syngene PXi). 

 

3.5.4 RNA isolation and real-time qPCR 

 

Cells were lysed using TRIzol (Thermo Fisher Scientific). Total RNA was isolated using Direct-

zol RNA Miniprep Plus kit (Zymo Research) following the manufacturer’s protocol. 2 ug of total 

RNA was used for cDNA synthesis with SuperScript IV (Thermo Fisher Scientific). The real-time 

qPCR reaction was assembled using the PowerUp™ SYBR® Green Master Mix (Thermo Fisher 

Scientific). Primers used for qPCR are listed in Supplementary Table 3. The reaction was 

performed in the CFX96 Touch Real-Time PCR detection system (Bio-Rad) with the following 

settings: 50°C for 10 minutes, 95°C for 2 minutes, 95°C for 15 seconds, 60°C for 30 seconds, 

and with the last two steps repeated for 45 cycles. For bi-directional reporter assays, mCherry 

expression was normalized against eYFP expression within the same sample. ILF3 expression 

was normalized against the expression of internal control gene TBP. For qPCR validating the 

eCLIP peaks, the final libraries were diluted to the same concentration at 0.01ng/ul. 5ul of 

diluted libraries were used in each qPCR reaction. Around 80 bp upstream each EIF2AK2 

editing site was amplified. The expression of each EIF2AK2 region was normalized against the 

expression of 18s. 

 

3.5.5 Quantification of RNA editing levels by Sanger sequencing 

 

Regions of interest were amplified from cDNA using Thermo Scientific™ DreamTaq™ Green 

PCR Master Mix (2X). Primers used for PCR are listed in Supplementary Table 3. The 
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amplicons were gel extracted and premixed with the reverse primer for Sanger sequencing. The 

peak signals of A and G nucleotides were measured by 4Peaks for editing level calculation 

(G/(A+G)).  

 

3.5.6 Categorization of tumors as epithelial and mesenchymal 

 

We downloaded fragments per kilobase million (FPKM) data of primary tumors from patients 

across seven cancer types in TCGA: BRCA, LUAD, LUSC, PRAD, OV, KIRC, and HNSC, from 

the Genomic Data Commons (GDC) Data Portal237. To assess E and M phenotypes of the 

tumors of each cancer type, we quantified the enrichment of E and M gene sets by applying 

gene set variation analysis (GSVA)238. We obtained pan-cancer E and M gene sets from a 2014 

publication by Tan and colleagues (Table S1A from their publication)193. Tumors with high E 

scores and low M scores were considered to have an E phenotype, while tumors with low E and 

high M scores were classified as M. Subsets of E and M tumors were selected for each cancer 

type to minimize confounding of E and M distinction by patient and sample metadata. 

 

3.5.7 Quantification and comparison of RNA editing levels in TCGA tumors 

 

We downloaded RNA-seq fastq files of categorized tumors from the GDC Legacy Archive. We 

mapped reads to hg19 with HISAT2, using default parameters. Dense clusters of editing sites, 

or hyperedited regions, can lead to many mismatches in reads. Consequently, these reads may 

be left unmapped and hinder accurate detection of editing in these regions. To rescue reads 

that were originally unmapped due to high density of editing activity, we applied a hyperediting 

pipeline and combined the recovered reads with uniquely mapped reads for downstream 

analyses74,239. To analyze editing sites of high confidence, we downloaded the REDIportal 
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database, comprising over 4 million editing sites identified across 55 tissues of 150 healthy 

humans from GTEx 14,240. We applied methods used in our previous studies to detect editing at 

REDIportal sites in the tumor samples. We filtered out editing sites found in dbSNP (version 

147) and COSMIC (version 81), except for reported cancer-related editing sites77,81,177,183,241–243, 

since editing sites have been shown to be mistakenly recorded as SNPs5,244. Within each 

sample, we also filtered out editing events that overlapped with sample-specific somatic 

mutations and copy number variants. Somatic variants were obtained from the publicly released 

MC3 MAF245, and copy number variants were obtained from copy number segment data 

downloaded from the GDC data portal.  

 

Differential editing sites were defined as editing sites with significantly different editing 

levels between E and M phenotypes. To identify such sites, we used an adaptive coverage 

approach74. For an individual editing site, we determined the highest read coverage threshold 

that was satisfied in at least five samples of both phenotypes, among twenty, fifteen, and ten 

reads. If none of these thresholds was satisfied and fewer than ten samples in each phenotype 

had at least five reads covering the site, we did not test the site for differential editing. Using the 

highest coverage determined, we calculated the mean editing levels among samples of each 

phenotype separately. We then consecutively lowered the read coverage threshold by 5 reads 

and compared the new mean editing levels of each phenotype, when including additional 

samples, to the original high-coverage-only editing means. If the differences in mean editing 

levels were less than 0.03, we used the lower read coverage threshold to delineate which 

samples to include for the differential test. Editing levels between E and M samples were 

compared by a Wilcoxon rank-sum test. Editing differences were considered significant if the 

Wilcoxon p-value < 0.05 and the magnitude of the difference ³ 0.05. To account for false 

positives, we shuffled phenotype labels and retested for significant differences for each 
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differential editing site, 100 times. If a site showed significant differences for shuffled labels over 

ten times, it was filtered out and no longer considered a differential editing site.  

 

3.5.8 Identification of differentially expressed genes 

 

HTSeq-Count data were downloaded from the GDC data portal. We identified genes with 

significantly different mRNA expression levels between E and M tumors of each cancer type, 

using limma-voom246. Metadata significantly correlated with the top two principal components of 

expression were included as covariates in the linear models. Expression differences were 

considered significant if log2-fold change was at least 1 and adjusted p-value was less than 

0.05.  

 

3.5.9 Rank-rank hypergeometric overlap 

 

To measure the similarity in patterns of editing changes across cancer types, we ranked genes 

based on differential editing between E and M phenotypes for each cancer type. More 

specifically, the ranking metric was the statistical significance of the differential editing test (-

log10(Wilcoxon p-value)), multiplied by the sign of the editing difference (mean of M editing 

levels – mean of E editing levels). Accordingly, genes at the top of the ranked list had the 

highest increases in editing in M, while genes at the bottom had the largest decreases in editing 

in M. For each gene with multiple editing sites tested, the site with the most significant change in 

editing levels was used to represent the gene. We used the RRHO package within Bioconductor 

in R to test for significance of overlap between ranked gene lists, with a step size of 30 genes 

between each rank247.  
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We also ran RRHO between gene rankings by differential editing and differential gene 

expression for each cancer type. To order genes based on differential gene expression, genes 

were ranked according to the signed statistical significance of differential expression tests 

(signed by the direction of expression change in M). As a result, genes at the top of the list were 

more highly expressed in M and genes at the bottom, more lowly expressed in M.   

 

To make RRHO maps comparable across cancer types and across overlaps based on 

differential editing and differential expression, we scaled the log-transformed p-values to 

account for different lengths of gene lists and then applied the Benjamini-Yekutieli correction for 

multiple testing195. 

 

3.5.10 Gene ontology enrichment analysis 

 

To evaluate whether an individual GO term was enriched in differential editing in one cancer 

type, we compared the occurrence of the term among query genes – genes containing 

differential editing sites – to its occurrences within 10,000 sets of control genes. In each set, one 

control gene for each query gene was randomly selected among non-differentially edited genes 

that matched the query gene based on gene length and GC content (within 10%). Query genes 

that did not have at least ten matched control genes were excluded. We calculated the p-value 

of the term’s enrichment among query genes from the normal distribution fit to occurrences of 

the term among control gene sets. We repeated this assessment of GO term enrichment 

separately for lists of differential hyperedited and hypoedited genes in each cancer type.  

 

Likewise, we tested the occurrence of each GO term represented among differentially 

expressed genes to its occurrences among 10,000 sets of non-differentially expressed control 
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genes, randomly selected to match the differentially expressed query genes for gene length and 

GC content.  

 

3.5.11 scRNA-seq dataset analysis 

 

We downloaded fastq files from 15 tumor samples of five NSCLC patients248  and ran 

CellRanger (version 3.0.2) to map reads and obtain count matrices. We excluded the tumor 

samples from three LUSC patients exhibiting low percentages of valid barcodes and mapped 

reads. For the remaining samples, we loaded the filtered feature-barcode matrices from 

CellRanger and merged the datasets into a single Seurat object with the R package Seurat249 

(version 3.0.2). Next, we filtered out cells that did not meet the following criteria: 101-6000 

expressed genes, over 200 UMIs, and less than 10% UMIs corresponding to the mitochondrial 

genome. Following normalization by sctransform250 (version 0.2.0), we performed dimensional 

reduction with PCA. Based on an elbow plot, we decided to consider the first ten PCs for 

downstream clustering and TSNE embedding. To assign cell identity labels to clusters, we 

matched differentially expressed genes of clusters to reported marker genes. One cluster had 

differentially expressed markers of multiple cell types, so we subclustered its cells. To assess 

the accuracy of our final labeling of nine cell types, we examined expression of marker genes 

across the cell types in two approaches. In one approach, we used CIBERSORTx251 to generate 

a gene expression signature matrix, which is a matrix of expression signatures characterizing 

cell types. To create this matrix from expression profiles of single cells labeled by cell type, 

CIBERSORTx identified differentially expressed genes. In the second approach, we pooled 

reads of each cell type together and calculated RPKM. These RPKM values calculated from 

pooled cells were also used to correlate ILF3 expression with expression of editing-correlated 

genes.  
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To identify cancer cells with E and M phenotypes, we subclustered the cancer cells. To 

this end, we first ran sctransform and PCA on only the cancer cells. Using the first twelve PCs, 

we clustered the cells and performed non-linear dimension reduction by UMAP. As a cluster of 

200 M cells was identified, we sampled 200 E cells with similar numbers of features, numbers of 

UMIs, and percentages of reads mapped to the mitochondrial genome. For each phenotype, we 

compiled reads of cells together and detected editing levels at REDIportal sites. For each 

testable editing site, E and M editing levels were compared by a Fisher’s Exact test. An editing 

site was considered differential if the difference in editing levels was at least 0.05 and the 

Fisher’s Exact p-value < 0.05.   

 

3.5.12 RNA-seq generation for ADAR KD A549 cells 

 

A549 cells were seeded at 1´105 cells per well in 6-well plates 24 hours before siRNA 

transfection. siRNAs (Supplementary Table 3) were introduced at the final concentration of 

22nM using lipofectamine RNAiMAX (Invitrogen), according to the manufacturer’s protocol. For 

individual KD of ADAR1 or ADAR2, 11nM siRNA of ADAR1 or ADAR2 were mixed with 11nM 

control siRNAs. For double KD of ADAR1 and ADAR2, 11nM siRNA of ADAR1 and 11nM 

siRNA of ADAR2 were mixed. Media were changed 24 hours post-transfection. The transfected 

cells were harvested 48 hours post-transfection. Total RNA was extracted for RNA-seq library 

generation for three biological replicates of each condition. RNA sequencing libraries were 

generated using NEBNext Ultra II Directional RNA library Prep kit and NEBNext multiplex oligos 

for Illumina according to the manufacturer’s instructions (New England Biolabs, E7760S). 

Library concentrations were measured by Qubit fluorometric assay (Life Technologies), and 

libraries were sequenced on an Illumina HiSeq-4000 with 150-bp paired-end reads. 
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3.5.13 A549 ADAR KD RNA-seq analysis 

 

Following mapping of RNA-seq reads with HISAT2 and a hyperediting pipeline74, we detected 

editing events at REDIportal sites as we did for the TCGA tumor samples. We then removed 

dbSNP variants while retaining previously reported cancer editing sites. To identify differential 

editing sites between each ADAR KD condition and control or between each individual ADAR 

KD and double KD, we used REDIT-LLR on sites that were edited in the control condition 

(editing level ³ 0.05)72. A site was considered differentially edited if the difference in mean 

editing levels between conditions was at least 0.05 and REDIT-LLR p-value < 0.05.  

 

3.5.14 Regression analysis 

 

For each differential editing site, association between editing level and host gene mRNA 

abundance was tested by fitting a linear model of log-transformed gene FPKM against editing 

level and potentially confounding covariates (using the lm function in R). For associations in 

GTEx data, we included age, gender, and race as covariates. For associations in TCGA data, 

we included metadata that were significantly correlated with the top two principal components of 

expression, as in the differential expression analysis.  

 

3.5.15 eCLIP-seq generation 

 

Following a published protocol212, we performed an eCLIP experiment comprising three 

libraries from two ILF3-immunoprecipitated biological replicates and one control. The 

antibody used for this experiment is: ILF3/NF90 antibody (Bethyl Laboratories, A303-651A). 
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For each sample, 10M A549 cells were ultraviolet (UV) crosslinked at 254 nm (800 mJ cm-2). 

We then performed cell lysis, RNA fragmentation, immunoprecipitation, adapter ligation, and 

other library preparation steps on UV crosslinked samples, as described212. For the size-

matched input control (SMInput), we prepared a library from sampling 2% of one pre-

immunoprecipitation UV crosslinked sample. This control is used to normalize binding signal, 

given biases that may be introduced through various experimental steps. 

 

3.5.16 eCLIP-seq peak calling and distance analysis 

 

We obtained eCLIP peak data for 96 RBPs in K562, 83 RBPs in HepG2, and ILF3 in A549 cells, 

as described previously206. Briefly, after demultiplexing and trimming adapters, we aligned reads 

in multiple rounds with STAR. First, reads aligning to rRNA sequences were discarded, and 

then the unmapped reads were aligned to Alu sequences, permitting a maximum of 100 

alignments for an individual read. In the final alignment step, the remaining unmapped reads 

were uniquely aligned to the hg19 genome. Then read enrichment within a sliding window, 

considering both genome and Alu-aligned reads, was tested for significance by a Poisson model 

in order to call eCLIP peaks206,252.  

 

To assess the proximity of a single RBP’s binding to differential editing sites compared 

to random controls, we calculated the distance from each differential editing site or control to the 

closest eCLIP peak in the same gene. Control sites consisted of adenosines within genes 

containing differential editing sites74. We then calculated the area under the curve (AUC) of the 

cumulative distribution of distances from differential editing sites to the closest eCLIP peaks. 

Given our interest in close binding, we considered distances up to 10,000 bases only for AUC 

calculation. Similarly, we calculated the AUC of the distribution of closest distances between 
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eCLIP peaks and controls, for each of 10,000 sets of random controls. We computed the p-

value of the AUC for differential editing sites from the normal distribution fit to the AUC values of 

control sets74.  
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3.8 Figures 

 

 

 

Figure 3.1 Overview of differential editing in cancer EMT  
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(PRAD), ovarian serous cystadenocarcinoma (OV), kidney renal clear cell carcinoma (KIRC), 

head and neck squamous cell carcinoma (HNSC). A First two principal components of 

differential editing profiles separate tumor samples into epithelial (E) and mesenchymal (M) 

phenotypes across cancer types. B Distributions of differences in mean editing levels between 

E and M tumors in each cancer type. The number of differential editing sites is listed on top of 

each distribution. C Differential editing sites are mostly found in 3′ UTR and intronic regions in 

all cancer types, with higher proportions of 3′ UTR sites compared to that of all editing sites from 

the REDIportal database.  
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Figure 3.2 Differential editing patterns are shared among cancer types yet distinct from 

differential gene expression  

 

A Rank-rank hypergeometric overlap (RRHO) map of RNA editing across pairs of cancer types. 

Each heatmap (for two cancer types) represents the matrix of log10- transformed adjusted p 

values that indicate the extent of overlap in two gene lists at each possible pair of ranks. For an 

individual cancer type, genes were ranked by the signed significance of RNA editing differences 

(M-E). Genes with higher editing in the M phenotype are at lower ranks, while those with higher 

editing levels in E tumors are at higher ranks. Higher pixel darkness indicates stronger 

enrichment of overlapping genes within the rank thresholds given by the x and y coordinates. 

The step size between ranks was 30 genes. B RRHO map of editing and gene expression 

within each cancer type. Each heatmap contains log10-transformed adjusted p values of 

hypergeometric overlap between genes ranked by editing differences (x-axis) and genes ranked 

by expression differences (y-axis) in a single cancer type. Similar to ranking genes by 
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differential editing, genes were ranked by the signed significance of expression differences, 

such that genes at lower ranks have higher expression in M tumors, while genes at higher ranks 

have higher expression in the E phenotype. The step size between ranks was 30 genes. C 

Significance of enrichment of gene ontology (GO) terms in differentially edited genes of each 

cancer type represented by point size (log10-transformed adjusted p value). Terms significantly 

enriched in at least two cancer types are shown. Check mark on the right indicates terms that 

were also significantly enriched in differentially expressed genes in at least two cancer types. 

Text color indicates category of biological relevance.  
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Figure 3.3 Contribution of cell types to differential editing  

 

A Proportions of differentially edited (DE) genes from bulk tumor analysis that were expressed 

in cell types identified in lung cancer single-cell RNA-seq data. Each point represents the 

proportion of genes from one cancer type. A gene was considered as expressed in a cell type if 

its expression ≥ 1 RPKM. RPKM values were calculated within each cell type by pooling reads 
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of the same cell type together. Proportions were compared for top cell types by Mann Whitney U 

test, with significance of p values shown. **p ≤ 0.01. EC stands for endothelial cells. B 

Proportion of differential editing sites from bulk tumor analysis that were edited in individual cell 

types. A site was considered as edited in a cell type if the site was covered by at least 5 reads 

and editing was supported by at least 2 reads. Each point represents the proportion of sites 

from one cancer type. Proportions for top cell types were compared by Mann Whitney U test, 

with p value significance shown. **p ≤ 0.01. C UMAP projection of 6526 tumor cells based on 

expression profiles, colored by cluster assignment (scatterplot, left). By differential expression of 

epithelial or mesenchymal markers (table, right), green and purple clusters were labeled as 

epithelial and mesenchymal, respectively. D Scatterplot of editing levels of pooled E and M 

cells, with y = x line. Editing sites exhibiting significant differences between E and M were 

labeled in red. Differences were considered significant if the difference between editing levels ≥ 

0.05 and Fisher’s exact p value < 0.05.  
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Figure 3.4 ADAR1 or ADAR2 knockdown induced EMT  
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A Images of A549 cells transfected with siRNAs for ADAR1 knockdown (KD) (siADAR1) or 

control siRNAs (siControl). Scale bars, 100 μm. B Loss of epithelial markers (E- cadherin and γ-

Catenin) and induction of mesenchymal marker (Vimentin) in A549 cells upon ADAR1 KD. Cells 

were treated with 100 nM siRNA for 72 h. Three biological replicates were used in each 

condition. C Images of A549 cells transfected with siRNAs for ADAR2 KD (siADAR2) or control 

siRNAs (siControl). Scale bars, 100 μm. D Loss of epithelial markers (E-cadherin and γ-

Catenin) and induction of mesenchymal marker (Vimentin) in A549 cells upon ADAR2 KD. Cells 

were treated with 11 nM siRNA for 72 h. Three biological replicates were used in each 

condition. E Images of MCF10A cells with ADAR1 or ADAR2 KD or control siRNAs. Scale bars, 

100 μm. F Loss of epithelial markers (E-cadherin and γ-Catenin) and induction of mesenchymal 

markers (Vimentin) in MCF10A cells upon ADAR1 KD or ADAR2 KD. Cells were treated with 11 

nM siRNA for 72 h. Three biological replicates were used in each condition.  
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Figure 3.5 Effects of editing on mRNA abundance  

 

A Scatterplot of coefficient estimate and statistical significance (log10-transformed adjusted p 

value) of editing level as a predictor of host mRNA expression in linear regression, accounting 

for potential confounding variables. For genes with multiple editing sites associated with 

expression, the most significantly associated site was used. Dashed line indicates significance 

threshold based on 10% false discovery rate (FDR). B Scatterplot of editing level coefficient 

estimate from multiple linear regression models used in A and log2-transformed fold change of 

the corresponding gene observed in ADAR1 KD cells. Red points indicate expression changes 

in the direction consistent with the sign of the editing association, in contrast to the gray points. 
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C Editing sites associated with host expression (Expression-Correlated) are more often found in 

3′ UTR regions, compared to all differential editing sites (Diff Edited, not including intergenic 

sites). D Validation of six editing sites affecting host mRNA abundance. For each site, a 

scatterplot of editing level and log2-transformed mRNA expression in the TCGA data is shown. 

On the right of each scatterplot is mCherry expression, normalized by eYFP expression, of 

minigenes with A or G, corresponding to nonedited or edited versions of the sites in the 3′UTR 

of each gene. All minigenes were tested in Hela cells with five biological replicates. Normalized 

expression values (mean ± SD) were compared between edited and nonedited versions by two-

sided t-test. *p < 0.05, **p < 0.01, ***p < 0.001. Note that RHOA and MRPS16 editing sites were 

identified as differential sites in the single-cell RNA-seq analysis (Fig. 3c).  
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Figure 3.6 ILF3 binds closely to the differential editing sites in editing-expression- 

correlated genes  

 

A Histogram of distances between differential editing sites in editing-correlated genes and the 

closest ILF3 eCLIP peaks in A549 cells (turquoise), up to 10 kb. Gray curves represent 

distances for 10 sets of randomly picked A’s in the same genes as differential editing sites. 

Number of differential editing sites is given by n. p value was calculated by comparing the area 

under the curve (AUC) of the distance distribution for differential editing sites to a normal 

distribution fit to the AUC values of 10,000 sets of random gene-matched A’s. B Scatterplot of 

Pearson correlation coefficient and significance (log10-transformed adjusted p value) of 

correlation between ILF3 mRNA expression and mRNA expression of editing-correlated genes. 
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Genes passing 10% FDR are labeled as significant (sig, turquoise), others as nonsig. C 

Cumulative distributions of distances between ILF3 eCLIP peaks and differential editing sites 

within editing- expression-associated genes (sig) or differential editing sites in genes without 

editing- expression associations (nonsig), up to 1 kb. Only genes associated with immune and 

viral related GO terms were included. p value calculated by the Kolmogorov-Smirnov test. D For 

each cell type in the lung cancer scRNA-seq dataset, ILF3 mRNA expression was correlated 

with mRNA expression of editing-expression-correlated genes (identified in the TCGA data) by 

Pearson correlation. Genes associated with any immune or viral-related GO term are shown. 

The size of each point indicates significance of correlation and color corresponds to values of 

the correlation coefficient. E Normalized mCherry expression (mean ± SD) for nonedited or 

edited versions of sites in the 3′UTR of PKR in A549 cells. Five biological replicates were 

performed. p value calculated by two-sided t-test (same below), *p < 0.05. F Normalized mRNA 

expression (mean ± SD) of endogenous PKR in siControl, siADAR1, and siADAR2 A549 cells. 

Three biological replicates were performed. *p < 0.05. n.s., not significant. G Read coverage of 

ILF3 eCLIP-seq in A549 cells for two biological replicates (ILF3 IP1 and ILF3 IP2, turquoise) 

and size-matched input (SMInput, gray). The five validated 3′ UTR editing sites affecting PKR 

mRNA abundance in A549 cells are labeled in magenta (left). Right: Validation of PKR eCLIP 

signal overlapping two editing sites. PKR expression (mean ± SD) was measured by qRT-PCR 

in the IP or SMInput samples and normalized against the expression of 18s rRNA, *p < 0.05. (n 

= 3).  
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Figure 3.7 ILF3 regulates PKR mRNA abundance and EMT in A549 cells  

A Western blot confirming shRNAmediated ILF3 KD in A549 cells (left). ILF3 mRNA levels 

(mean ± SD) were quantified in A549 shCtrl and ILF3 KD cells by qRT-PCR (right). ILF3 mRNA 

expression was normalized against gene TBP mRNA expression. Three biological replicates 

were performed. p value calculated via t-test, ****p < 0.0001. B Normalized mCherry expression 

(mean ± SD) for nonedited or edited versions of sites in the 3′ UTR of PKR in shCtrl or ILF3 KD 

A549 cells. Five biological replicates were performed. Normalized expression values were 
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compared between edited and nonedited versions by two-sided t-test. *p < 0.05, **p < 0.01, n.s., 

not significant. C Images of A549 cells transfected with siRNAs targeting ILF3 (two different 

siRNAs were used to KD ILF3, siILF3_1, and siILF3_2) or control siRNAs (siControl). Scale 

bars: 100 μm. D Western blot detecting protein levels of ILF3, E-Cadherin, N-Cadherin, and 

internal control β-Actin in the siControl, siILF3_1, and siILF3_2 A549 cells. Three biological 

replicates were carried out for each experiment. E Normalized mRNA expression levels (mean ± 

SD) for ILF3, E-Cadherin, and N-Cadherin in the siControl, siILF3_1, and siILF3_2 A549 cells. 

Three biological replicates were carried out for each experiment. The expression values were 

compared between siILF3 and siControl via t- test. **p < 0.01, ***p < 0.001, ****p < 0.0001, n.s., 

not significant.  
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3.9 Supplementary Figures 

 

 

Supplementary Figure 3.1 Differential editing not confounded by metadata  
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Fig. S1. Differential editing not confounded by metadata. Heatmaps of significance 
(log10-transformed adjusted p-values) of correlations between the top two principal components and
E/M phenotype among metadata fields in each cancer type. Darker color indicates smaller p-value and 
stronger association.
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Heatmaps of significance (log10-transformed adjusted p-values) of correlations between the top 

two principal components and E/M phenotype among metadata fields in each cancer type. 

Darker color indicates smaller p-value and stronger association.  
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Supplementary Figure 3.2 Gene ontology enrichment among differentially edited genes  

 

Significance of enrichment of gene ontology (GO) terms among all differentially edited genes 

(blue), only hyperedited genes (green) or only hypoedited genes (pink) of each cancer type. 

Point size represents the statistical significance of enrichment (log10-transformed adjusted p-

value). Terms significantly enriched in at least two cancer types are shown. For cancer types 

with a global hyperediting trend in M tumors, GO enrichment among hyperedited genes is 

similar to that among all differentially edited genes. Likewise, for cancer types with a hypoediting 

trend (BRCA and OV), enrichment among hypoedited genes is similar to that among all 

differentially edited genes. 
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Fig. S2. Gene ontology enrichment among differentially edited genes. Significance 
of enrichment of gene ontology (GO) terms among all differentially edited genes (blue), only hyperedited 
genes (green) or only hypoedited genes (pink) of each cancer type. Point size represents the statistical 
significance of enrichment (log10-transformed adjusted p-value). Terms significantly enriched in at least 
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Supplementary Figure 3.3 Clustering of single cells from three lung cancer tumors  

 

A TSNE projection of cells based on expression profiles, with color indicating cluster identity 
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Fig. S3. Clustering of single cells from three lung cancer tumors. A. TSNE projection of cells 
based on expression profiles, with color indicating cluster identity (left). Cell types were assigned to clusters by 
matching differentially expressed genes of clusters to known cell type markers (right). B. TSNE projection of only 
cells from cluster 10 to further refine cell type assignment (left). Similar to A, cell types were labeled using 
differentially expressed genes that matched cell type markers (right). C. Counts of cells for each cell type after 
2 rounds of clustering and cell type assignment (A and B). D. Log2-transformed expression values of marker genes 
across cell types. Signature matrix on the left indicates expression values assigned for each cell type by 
CIBERSORTx. On the right, Pooled Cells indicate that expression values were calculated from pooling reads 
from cells of the same type together.  
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(left). Cell types were assigned to clusters by matching differentially expressed genes of clusters 

to known cell type markers (right). B TSNE projection of only cells from cluster 10 to further 

refine cell type assignment (left). Similar to A, cell types were labeled using differentially 

expressed genes that matched cell type markers (right). C Counts of cells for each cell type 

after 2 rounds of clustering and cell type assignment (A and B). D Log2-transformed expression 

values of marker genes across cell types. Signature matrix on the left indicates expression 

values assigned for each cell type by CIBERSORTx. On the right, Pooled Cells indicate that 

expression values were calculated from pooling reads from cells of the same type together. 
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Supplementary Figure 3.4 E and M assignment of single cells not confounded by 

metadata  

Comparison between E and M cells altogether (top) and within each tumor sample (bottom) of 

metadata fields: UMI count (A-B), gene count (C-D), and percent of reads mapping to the 

mitochondrial genome (E-F). Metadata values were compared by Mann Whitney U tests, and 

significance of p-values are shown. ns: p > 0.05, * p ≤ 0.05, ** p ≤ 0.01.  
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Fig. S4. E and M assignment of single cells not confounded by metadata. 
Comparison between E and M cells altogether (top) and within each tumor sample (bottom) of 

metadata fields: UMI count (A-B), gene count (C-D), and percent of reads mapping to the 

mitochondrial genome (E-F). Metadata values were compared by Mann Whitney U tests, and 

significance of p-values are shown. ns: p > 0.05, * p ≤ 0.05, ** p ≤ 0.01. 
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Supplementary Figure 3.5 LUAD and LUSC tumor editing differences of differential  

For each editing site, the difference in mean editing levels between M and E tumors (M - E) in 

each cancer type is listed. Green highlight indicates Wilcoxon p-value < 0.05.  
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Fig. S5. LUAD and LUSC tumor editing differences of differential 
sites identified from single cell RNA-seq analysis. For each editing site, 
the difference in mean editing levels between M and E tumors (M - E) in each 
cancer type is listed. Green highlight indicates Wilcoxon p-value < 0.05.
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Supplementary Figure 3.6 Altered editing upon knockdown of ADAR1, ADAR2, or both  
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A Distributions of mRNA expression of ADAR1 and ADAR2 under ADAR KD and control 

conditions. Expression levels were quantified as transcripts per million (TPM). B Mean editing 

levels of testable sites in five comparisons between ADAR KD conditions or control experiment. 

Sites with significant editing differences between conditions are colored red, while gray 

represents nondifferential sites. Y=x line shown in blue. C Proportions of lung cancer E-M 

differential sites that were also differential in ADAR KD conditions (compared to controls). 

sigADAR1: sites that were differential only in ADAR1 KD. sigADAR2: sites that were differential 

only in ADAR2 KD. sigBoth: sites that were differential in both ADAR1 KD and ADAR2 KD, or in 

double KD. The prefix ‘red’ indicates reduced editing level by at least 0.05 upon KD from 

control, but did not pass the statistical significance requirement. ‘Remain’: editing sites that were 

not significantly different or reduced across any comparison. 
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Supplementary Figure 3.7 Expression of ADARs in E and M tumors  

Distributions of mRNA expression of ADAR1 (left) and ADAR2 (right) in E and M tumors across 

cancer types. Expression values, measured as Fragments Per Kilobase per Million mapped 

reads (FPKM), were compared by Mann Whitney U tests, and significance of p-values are 

shown. ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001.  
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Fig. S7. Expression of ADARs in E and M tumors. Distributions of mRNA expression of ADAR1 (left) 
and ADAR2 (right) in E and M tumors across cancer types. Expression values, measured as Fragments Per Kilobase 
per Million mapped reads (FPKM), were compared by Mann Whitney U tests, and significance of p-values are shown. 
** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001.
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Supplementary Figure 3.8 ILF3 binds closely to the differential editing sites in editing- 

expression correlated genes  

 

A Histogram of distances between differential editing sites in editing-correlated genes and the 

closest ILF3 eCLIP peaks in HepG2 and K562 cells (turquoise), up to 10 kb. Gray curves 

represent distances for 10 sets of randomly picked A’s in the same genes as differential editing 

sites. Number of differential editing sites is given by n for each cell line. P-value was calculated 
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by comparing the area under the curve (AUC) of the distance distribution for differential editing 

sites to a normal distribution fit to the AUC values of 10,000 sets of random gene-matched A’s. 

B Normalized mCherry expression for nonedited or edited versions of sites in the 3’UTR of PKR 

in A549 cells. Five biological replicates were performed. Normalized expression values were 

compared between edited and nonedited versions by two-sided t-test. **p<0.01. C Editing levels 

of PKR 3’UTR editing sites in siControl, siADAR1 and siADAR2 A549 cells measured by Sanger 

sequencing. The peak signals of A and G nucleotides were measured by 4Peaks for editing 

level calculation (G/(A+G)). The editing level of each editing site (underlined) is shown in the 

graph. D Read coverage of ILF3 eCLIP-seq in HepG2 and K562 cells for two biological 

replicates (ILF3 IP1 and ILF3 IP2, turquoise) and size-matched input (SMInput, gray) in each 

cell line. The five validated 3’ UTR editing sites affecting PKR mRNA abundance in A549 cells 

are labeled in magenta. E Validation of PKR eCLIP signal overlapping three editing sites. PKR 

expression was measured by qRT-PCR in the IP or SMInput samples and normalized against 

the expression of 18s rRNA. Three technical replicates were performed (other than two 

replicates for 8034). P-value calculated by t-test. *p<0.05, **p<0.01, ****p<0.0001.  
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3.10 Supplementary Tables 

 

Primary_Site Cancer_Type Abbreviation E M 

Breast Breast Invasive Carcinoma BRCA 110 110 

Lung Lung Adenocarcinoma LUAD 100 100 

Lung Lung Squamous Cell Carcinoma LUSC 93 93 

Prostate Prostate Adenocarcinoma PRAD 97 97 

Ovary 
Ovarian Serous 

Cystadenocarcinoma 
OV 37 37 

Kidney 
Kidney Renal Clear Cell 

Carcinoma 
KIRC 78 78 

Head and Neck 
Head and Neck Squamous Cell 

Carcinoma 
HNSC 94 94 

 

Supplementary Table 3.1 Primary tumor samples used in this study  

Cancer types and the corresponding numbers of categorized E and M tumor samples analyzed 

in this study.  
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gene rna_regi
on 

editing_si
te 

editlev
el_est 

adj_edit_
pvalue consis_cell consis_logfo

ldchange 
ACOX1 3UTR chr17:739

40077 
0.67559

0107 
0.057558

713 K562 -0.3 

ALDH6A1 3UTR chr14:745
26975 

2.64281
7316 

0.000566
336 HepG2,K562 -0.18,-0.59 

APOL1 3UTR chr22:366
62697 

5.04319
7874 

0.023870
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APOL6 3UTR chr22:360
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EMC1 3UTR chr1:1954
2609 

1.37365
7011 

0.022662
878 

U87,Hela_w,Hela_cyt
o 

-0.534,-
0.148,-1.27 

ERAP1 3UTR chr5:9611
0544 

1.35639
3229 

0.033976
694 U87 -0.286 

F11R 3UTR chr1:1609
67890 

1.02385
868 

0.094957
352 

HepG2,K562,Hela_cy
to 

-0.21,-0.32,-
0.741 



 132 

FAM129A 3UTR chr1:1847
61312 

-
1.57770

6747 

0.028593
802 Hela_w 0.506 

FAM20B 3UTR chr1:1790
42544 

1.05979
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GFOD2 3UTR chr16:677
16119 

-
1.38119

4392 

0.072767
736 Hela_w,Hela_cyto 0.25,0.21 

GGCX 3UTR chr2:8577
3390 

1.08067
8262 

0.057558
713 

HepG2,K562,Hela_cy
to 

-0.35,-0.27,-
0.232 

H2AFV intron chr7:4487
2505 

0.47460
002 

0.038976
98 U87 -0.285 

H6PD 3UTR chr1:9328
120 

1.34887
8853 

0.018654
036 HepG2 -0.57 

HPN intron chr19:355
38724 

-
1.79222

1114 

0.017992
47 HepG2 0.59 

HSPB11 intron chr1:5438
7885 

0.73767
3592 

0.025715
263 U87,K562 -0.22,-0.42 

IGFBP7 exon chr4:5797
6234 

3.02768
1172 2.48E-07 Hela_w,Hela_cyto -0.17,-1.08 

INSR intron chr19:714
6479 

-
1.47209

6252 

0.038996
066 U87,HepG2 0.395,0.19 

IRAK4 3UTR chr12:441
81739 

-
1.08418

2315 

0.085721
376 Hela_w,Hela_cyto 0.436,0.494 

KNOP1 3UTR chr16:197
14150 

1.38215
9872 

0.077693
483 U87,HepG2,K562 -0.267,-0.32,-

0.23 

LPP 3UTR chr3:1885
98857 

2.42293
7272 

0.005835
479 U87,HepG2 -0.314,-0.21 

MDM4 3UTR chr1:2045
26595 

1.11395
3173 

0.022276
919 K562 -0.54 

METTL7A 3UTR chr12:513
24639 

-
1.11149

3276 

0.057558
713 HepG2,Hela_w 0.76,0.509 

MFSD12 intron chr19:354
0230 

1.90702
215 

0.022276
919 

HepG2,Hela_w,Hela_
cyto 

-0.27,-1.06,-
1.41 

MREG 3UTR chr2:2168
08321 

-
2.89131

6786 
0.024460

223 
U87,HepG2,Hela_w,

Hela_cyto 
0.286,0.28,0.

56,0.509 

MRTO4 3UTR chr1:1958
6458 

0.58569
2697 

0.025465
398 U87,K562,Hela_w -0.452,-0.27,-

0.168 

MYO19 intron chr17:348
53684 

1.51837
5774 

0.000735
249 U87,HepG2 -0.541,-0.26 
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NACA intron chr12:571
25246 

1.12199
0286 

0.085084
237 U87,K562 -0.15,-0.15 

NBPF10 3UTR chr1:1453
69556 

0.12787
5665 

0.051780
731 U87 -0.145 

NOP14 3UTR chr4:2940
462 

1.23926
4708 4.72E-05 U87 -0.33 

NPLOC4 3UTR chr17:795
30071 

2.02572
2247 

0.049162
216 

U87,HepG2,Hela_cyt
o 

-0.336,-0.22,-
0.141 

NUP155 3UTR chr5:3729
1446 

1.18390
2296 

0.081405
156 U87,HepG2,K562 -0.298,-0.18,-

0.46 

PAICS 3UTR chr4:5732
6875 

-
2.17147

1286 

0.005405
145 Hela_w,Hela_cyto 0.614,0.629 

PCCB intron chr3:1360
50150 

4.04640
4225 

0.055133
335 U87,HepG2,K562 -0.385,-0.36,-

0.35 

PDLIM5 intron chr4:9554
2079 

-
4.14431

9345 

0.024752
325 Hela_w,Hela_cyto 0.374,0.241 

PINK1-AS noncodin
gExon 

chr1:2097
6109 

1.18222
0784 

0.088652
742 Hela_w,Hela_cyto -0.307,-0.616 

PLBD2 3UTR chr12:113
827916 

1.66621
7711 3.98E-05 U87,Hela_cyto -1.43,-0.735 

PPIA 3UTR chr7:4484
1857 

-
1.28138

0018 

0.000220
889 HepG2,Hela_cyto 0.21,0.181 

PRKAR2A 3UTR chr3:4878
7856 

-
0.73660

0952 

0.018612
605 Hela_w,Hela_cyto 0.362,0.452 

PRKCSH intron chr19:115
61241 

-
0.71592

712 
0.019855

95 U87,HepG2,K562 0.314,0.56,0.
24 

PSMB2 3UTR chr1:3606
7752 

1.04414
5565 

0.000659
271 

U87,HepG2,K562,Hel
a_w,Hela_cyto 

-0.325,-0.19,-
0.24,-0.403,-

0.263 

PXMP4 3UTR chr20:322
93069 

-
0.70072

022 

0.058943
984 Hela_w,Hela_cyto 0.498,0.446 

RBBP9 3UTR chr20:184
68339 

0.91538
1444 

0.006388
843 U87,Bcell -0.358,-0.188 

RBM8A 3UTR chr1:1455
13094 

0.63637
1761 

0.041058
97 U87 -0.217 

RDH13 intron chr19:555
50840 

-
0.90270

3462 

0.054168
949 HepG2 0.14 

RNF24 3UTR chr20:391
0035 

1.84321
2681 1.26E-09 U87,HepG2 -0.469,-0.4 

RPL27A 3UTR chr11:870
8835 

2.24612
8853 

0.010482
013 U87,Hela_w -0.177,-0.206 

RPL37A 3UTR chr2:2173
66903 

0.87647
0214 

0.046870
966 Hela_w -0.295 

RPL7L1 3UTR chr6:4285
6051 

-
0.82626

7054 

0.010067
513 Hela_w,Hela_cyto 0.184,0.205 
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RPS29 3UTR chr14:500
39685 

-
2.26099

3657 

0.091869
511 HepG2,Bcell 0.44,0.166 

SERBP1 3UTR chr1:6787
4859 

-
0.50658

0781 

0.085175
369 Hela_w,Hela_cyto 0.594,0.545 

SERINC2 intron chr1:3189
5247 

4.46520
8772 

0.045831
535 

HepG2,Hela_w,Hela_
cyto 

-1.05,-0.685,-
0.803 

SLC25A16 intron chr10:702
79509 

-
3.60902

466 
0.057558

713 Hela_cyto 0.266 

SLC35F5 noncodin
gIntron 

chr2:1144
65433 

0.75116
0766 

0.057338
066 

HepG2,K562,Hela_cy
to 

-0.46,-0.49,-
0.503 

SMPD4 intron chr2:1309
15581 

-
1.29214

5797 

0.013733
024 HepG2 0.14 

TIAL1 3UTR chr10:121
331855 

-
3.06890

6487 

0.001484
171 Hela_w,Hela_cyto 0.294,0.236 

TIMM50 intron chr19:399
82388 

-
1.05799

1191 

0.029513
78 HepG2 0.15 

TMEM120B 3UTR chr12:122
216342 

0.64131
591 

0.049727
225 HepG2,K562,Hela_w -0.34,-0.27,-

0.229 

TMEM59 3UTR chr1:5449
6708 

1.80214
6018 

0.048523
878 

HepG2,K562,Hela_cy
to 

-0.19,-0.29,-
0.794 

TTC9C intron chr11:625
07302 

0.55339
5068 

0.000767
773 Hela_w,Hela_cyto -0.542,-0.369 

TXNDC15 3UTR chr5:1342
36752 

0.87247
3286 

0.001864
405 

HepG2,Hela_w,Hela_
cyto 

-0.44,-0.681,-
1.33 

UBA1 intron chrX:4706
7783 

1.95543
0639 

0.001864
405 U87,Hela_cyto -0.19,-0.252 

VPS41 3UTR chr7:3876
4332 

0.75454
1392 

0.081323
723 HepG2,Hela_cyto -0.15,-0.154 

ZDHHC20 3UTR chr13:219
49165 

1.49307
5791 

0.006085
932 Hela_cyto -0.288 

ZNF432 3UTR chr19:525
35007 

8.09682
5832 

0.000121
773 HepG2,K562 -0.17,-0.14 

ZNF552 intron chr19:583
21472 

2.30557
2887 

0.052306
474 U87 -0.363 

ZNF580 intron chr19:561
49705 

-
0.96540

403 

0.081405
156 U87,K562,Hela_cyto 0.226,0.3,0.2

9 

ZNF587B 3UTR chr19:583
57228 

-
0.95765

6315 

0.024752
325 Hela_w,Hela_cyto 0.872,1.17 

ZSWIM1 3UTR chr20:445
13183 

1.68637
2763 

0.056285
66 U87,Hela_w -0.485,-0.249 

 

Supplementary Table 3.2 List of editing sites predicted to regulate host gene mRNA 

abundance  
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Editing-expression associations (editlevel_est represents editing level regression coefficient and 

adj_edit_pvalue is the adjusted p-value of the coefficient) were supported by consistent 

expression changes upon ADAR KD in at least one cell line.  
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Cloning for minigenes 
Name Sequences 
RNF24 Fw GTACCATCGATAGTCTCATGTGGATATGCCTG 

RNF24 Rv ACGCGTCGACGTTGGGGTAATTTCTGTTGTC 

RNF24 G R GTAACAAGACCCCGTCTCAACAACAAC 

RNF24 G F GTTGTTGTTGAGACGGGGTCTTGTTAC 

RhoA_ClaI_F GTACCATCGATAACCTTGCTGCAAGCACAG 

RhoA_SalI_R ACGCGTCGACGGATACAGGAAGTTTAGAAAACTGCCTTTATTC 

RhoA_G_F GTTGGTAACTTTTGTGAATTGGGCTGTAACTAC 

RhoA_G_R GTAGTTACAGCCCAATTCACAAAAGTTACCAAC 

MRPS16_ClaI_F GTACCATCGATATGAGCTGACTTTAGTGAGCATAG 

MRPS16_SalI_R ACGCGTCGACGGAAAATTGAAATCGCACACTGAAATATC 

MRPS16_841_R CAACACCACAGCCAGCCAATTTTTTAAG 

MRPS16_841_F CTTAAAAAATTGGCTGGCTGTGGTGTTG 

MRPS16_817_R CGAGTAGCTGGAACtACGGGTGAG 

MRPS16_817_F CTCACCCGTaGTTCCAGCTACTCG 

MRPS16_815_R CGAGTAGCTGGAACCATGGGTGAG 

MRPS16_815_F CTCACCCATGGTTCCAGCTACTCG 

MRPS16_797_R ACTgCCTCAGCCTCCCGAGTAGCTGGA 

MRPS16_797_F TCCAGCTACTCGGGAGGCTGAGGcAGT 

PKR_ClaI_F GTACCATCGATTGTTACATCATTGCACTTGTAAGTAC 

PKR_SalI_R ACGCGTCGACAATGTCTAGCATGGGCAAATC 

PKR_8097_F CAAGTAAATACAGGTCTCAGTCAGATG 

PKR_8097_R CATCTGACTGAGACCTGTATTTACTTG 

PKR_8082_F CAGTCAGATGGACCCCAAGAGCCAC 

PKR_8082_R TGGCTCTTGGGGTCCATCTGACTGAG 

PKR_8075_F GATGAACCCCAGGAGCCACATG 

PKR_8075_R CATGTGGCTCCTGGGGTTCATC 

PKR_8034_F TCTCACACTTTTGCCTGTTACATGG 

PKR_8034_R CCATGTAACAGGCAAAAGTGTGAGA 

PKR_7702_F GAATCACAGTTGATGGTTATATGGTGAC 

PKR_7702_R GTCACCATATAACCATCAACTGTGATTC 

PKR_7670_F GTGGCTTAAATTCTGAATAACTAGAAACTG 

PKR_7670_R CAGTTTCTAGTTATTCAGAATTTAAGCCAC 

PKR_7666_F GGCTTAAATTCTAAATGACTAGAAACTGTATAATAG 

PKR_7666_R GCCTATTATACAGTTTCTAGTCATTTAGAATTTAAG 
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PKR_p2_seq AGGAGTTGGCAACTAATTG 

Tre-F-seq ACTACACCATCGTGGAACAG 

Tre-R-seq GATTATGATCCTCTGGAG 
  

Generating ILF3 KD constructs 
Name Sequences 

ILF3_sh_F 
CCGGGGTCTTCCTAGAGCGTCTAAACTCGAGTTTAGACGCTCTAGGAA
GACCTTTTTG 

ILF3_sh_R 
AATTCAAAAAGGTCTTCCTAGAGCGTCTAAACTCGAGTTTAGACGCTCT

AGGAAGACC 
  

qPCR primers 
Name Sequences 

mCherry qPCR F ACTACGACGCTGAGGTCAA 

mCherry randomR CGTTCGTACTGTTCCACGATG 

eYFP qPCR F AAGATCCGCCACAACATCGA 

eYFP randomR ACTCCAGCAGGACCATGTG 

qTBP-Fw CAGCAACTTCCTCAATTCCTTG 

qTBP-Rv GCTGTTTAACTTCGCTTCCG 

NF90(ILF3) qPCR F AACCATGGAGGCTACATGAAT 

NF90(ILF3) qPCR R CGCTCTAGGAAGACCCAAAATC 

18S_F CTCTTAGCTGAGTGTCCCGC 

18S_R CTGATCGTCTTCGAACCTCC 

7670 qPCR F CAGGTCCAAATCAAATTAACCCCATAAG 

7670 qPCR R CTGTATAATAGGCAAAACTGTGAGGC 

7702 qPCR F TTGCCTCACAGTTTTGCCTATTATAC 

7702 qPCR R GTTGATAGTTATATGGTGACATTAGTGGC 

8034 qPCR F AGATGTACAGTCGCCCCAC 

8034 qPCR R TTGTCTCACACTTTTACCTGTTACATG 

8075 qPCR F GCCCCACTACTGGCTTAAATTC 

8075 qPCR R GAGCCACATGTATTTGAGGGGTAC 

8082 qPCR F CTGAAAACCATGTAACAGGTAAAAGTG 

8082 qPCR R CAGTCAGATGAACCCCAAGAG 

PKR qPCR F CCTGTCCTCTGGTTCTTTTGCT 

PKR qPCR R GATGATTCAGAAGCGAGTGTGC 

Ecadherin qPCR F GCCCTTGGAGCCGCAG 
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Ecadherin qPCR R TCAAAATTCACTCTGCCCAGGA 

ZO-1 qPCR F CAACATACAGTGACGCTTCACA 

ZO-1 qPCR R CACTATTGACGTTTCCCCACTC 

Ncadherin qPCR F TCAGGCGTCTGTAGAGGCTT 

Ncadherin qPCR R ATGCACATCCTTCGATAAGACTG 

Vimentin qPCR F CGAGGAGAGCAGGATTTCTC 

Vimentin qPCR R GGTATCAACCAGAGGGAGTGA 

MMP9 qPCR F TTCTACGGCCACTACTGTGCCT 

MMP9 qPCR R AATCGCCAGTACTTCCCATCCT 
  

siRNAs 
Name Sequences 

ADAR1 CGCAGAGUUCCUCACCUGUAUU (Thermo Scienctific Dharmacon) 

ADAR2 GCCUGGUUUGCAGUACACTT (Ambion cat# AM51331) 

Non-targeting siRNA #2 N/A (Thermo Scienctific Dharmacon) 
  

DsiRNAs 
Name Sequences 

hs.Ri.ILF3.13.1_F rGrGrArArCrUrCrUrArUrCrArCrArArUrUrUrGrArArArAGA 

hs.Ri.ILF3.13.1_R rUrCrUrUrUrUrCrArArArUrUrGrUrGrArUrArGrArGrUrUrCrCrUrU 

hs.Ri.ILF3.13.3_F rGrCrArArArGrCrArUrUrCrUrUrCrCrGrUrUrUrArUrCrCAA 

hs.Ri.ILF3.13.3_R rUrUrGrGrArUrArArArCrGrGrArArGrArArUrGrCrUrUrUrGrCrCrA 

Negative Control 
DsiRNA 

N/A (IDT) 

  

Checking endogenous PKR editing levels 
Name Sequences 

PKR_editing_F GGGATTAAGGAAAGGTAAGCATCAAAG 

PKR_editing_R CAGGTCCAAATCAAATTAACCCCATAAG 

 

Supplementary Table 3.3 List of primers and siRNAs used in Chapter 3 
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CHAPTER 4   
  

Multifaceted role of RNA editing in promoting loss-of-function of 

PODXL in cancer 

 

4.1 Abstract 

 

PODXL, a protein that is dysregulated in multiple cancers, plays an important role in promoting 

cancer metastasis. Previous studies showed that RNA editing in PODXL may alter its cellular 

function to promote cell invasion and tumorigenesis. However, the underlying mechanisms of 

this editing-mediated functional change of PODXL remain unknown. In this study, we report that 

RNA editing in PODXL affects the gene function by both mediating alternative splicing and 

creating an amino acid change (i.e., recoding). Specifically, RNA editing promotes the inclusion 

of a PODXL alternative exon, resulting in the formation of the PODXL long isoform that contains 

a recoding editing site. Using cells stably overexpressing the three PODXL isoforms (short 

isoform, unedited long isoform, and edited long isoform), we show that the edited PODXL long 

isoform is more prone to protease digestion and has the strongest effects on reducing cell 

migration and cisplatin chemoresistance. We discovered that the editing level of the PODXL 

recoding site and the inclusion level of the PODXL alternative exon are strongly associated with 

overall patient survival and progression-free interval in Kidney Renal Clear Cell Carcinoma 

(KIRC). In general, we observed a significant enrichment of exonic RNA editing sites in 

alternatively spliced exons. These findings suggest that exonic RNA editing sites may enhance 

proteomic diversity through alternative splicing, in addition to amino acid changes, a previously 

under-appreciated aspect of RNA editing function. 
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4.2 Introduction 

 

RNA editing is a fundamental process in gene expression that introduces deletions, insertions, 

and base substitutions in the RNA transcripts. This process can happen as soon as the nascent 

RNA arises, thus potentially impacting transcriptome diversity by altering splicing50,105,253, 

modification254,255, localization256,257, abundance57,58,258, and translation259,260 of RNA molecules. 

The most common type of RNA editing is adenosine-to-inosine (A-to-I) editing, which is also 

called A-to-G editing because inosine is interpreted as guanosine by the cellular machineries. A-

to-I editing is carried out by the adenosine deaminase acting on RNA (ADAR) enzymes10,261. In 

human, all ADAR proteins (ADAR1, ADAR2, and ADAR3) share the dsRNA-binding domains as 

well as the deaminase domain that exert the catalytic function174. 

 

A-to-I RNA editing is dysregulated in cancer64,262. Analysis of RNA-seq data of human 

tumor samples revealed substantial changes in RNA editing in multiple cancer types77,78. Much 

attention has been given to editing sites located in the protein-coding regions, considering their 

potential in altering amino acid sequences (i.e., recoding). Indeed, a few functional recoding 

editing sites have been reported in regulating tumorigenesis79,81–83,87,183–185. One such example 

is the recoding editing event (H241R) in the gene PODXL (podocalyxin-like), first studied in 

gastric cancer79. This editing site confers a loss of function of PODXL, which results in 

decreased cell invasion and tumor growth compared to the wild-type protein when 

overexpressed in the MKN28 cells79. Yet it remains unclear how RNA editing alters the function 

of PODXL.  

 

PODXL is a type I transmembrane protein expressed in various tissues including kidney 

podocytes, hematopoietic progenitor cells, vascular endothelia, and a subset of neurons263. The 
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extracellular domain of PODXL is highly glycosylated and sialylated, contributing to the 

negatively charged cell surface coat of the glomerular epithelium that maintains proper structure 

of the glomeruli in the kidney264–266. PODXL is also found to be abnormally upregulated in more 

than 10 types of cancer266–272. Association studies suggested that PODXL is a potential 

biomarker for cancer diagnosis and prognosis in multiple cancers272–277. In addition, PODXL 

plays important roles in cancer metastasis through promoting cell migration269,272,277,278, cell 

invasion79,269,270,277, cell extravasation279, immune evasion280, and chemoresistance267,272,281,282. 

Therefore, PODXL is also a valuable therapeutic target for cancer metastasis268,283.  

 

Most previous studies on PODXL editing pursued the assumption that the RNA recoding 

site functions mainly through amino acid changes in the protein products. Nonetheless, it is 

known that some exonic editing sites rely on intronic editing complementary sequences to form 

double-stranded RNA substrates for ADARs50,52,105. These structures (and their interactions with 

ADAR) may impact downstream RNA processing steps. Since the recoding site of PODXL is in 

the alternatively spliced exon, we hypothesized that it may also be involved in RNA splicing 

regulation. We observed that the two exonic RNA editing sites of PODXL synergistically 

enhance alternative exon inclusion. Through alternative splicing and editing-mediated amino 

acid changes, the PODXL gene can give rise to three isoforms that are functionally distinct in 

protease digestion patterns, cell migration, and cisplatin chemoresistance.  

 

4.3 Results 

 

4.3.1 RNA editing can potentially affect PODXL alternative splicing 
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PODXL encodes for two transcript isoforms. The third exon of PODXL can be alternatively 

skipped, leading to an in-frame short isoform (Fig. 1A). Both isoforms are endogenously 

expressed in A549 and Hela cell lines with the shorter isoform being dominant (Fig. 1B). 

Interestingly, the alternative exon of PODXL forms dsRNA structures with its upstream intronic 

sequences (Fig. 1C). A previous study reported two A-to-I RNA editing sites (A722G and 

A714G) in the alternative exon of PODXL79, one of which induces an amino acid change 

(namely, recoding site, H241R resulting from A722G).  

 

Since the two RNA editing sites are relatively close to the 3’ splice site of the alternative 

exon (+8, +16, Fig. 1C), we hypothesized that RNA editing may affect splicing of PODXL. To 

test this hypothesis, we sub-cloned the alternative exon and its flanking intronic regions (~500bp 

on each side, encompassing the predicted dsRNA structure) into a splicing reporter that was 

developed previously35,50,284, with modifications (Fig. S1A, see Methods). This reporter contains 

two exons (together encoding the GFP) that are upstream and downstream of the tested 

alternative exon, respectively. We generated four constructs representing the four possible 

combinations of the editing status of the two RNA editing sites (AA, AG, GA, and GG, A and G 

representing the unedited and edited versions, respectively). These splicing reporters were then 

transfected into Hela cells individually to test for exon inclusion rate. Hela cells were used here 

because they are easy to transfect and show alternative splicing pattern for the endogenous 

PODXL (indicating presence of trans-factors for its alternative splicing). Note that the minigenes 

were not edited in the presence of endogenous ADAR proteins (Fig. S1B, C). We observed a 

general increase in exon inclusion rate when the G allele was introduced (Fig. 1D). The GA 

version had a larger effect on splicing compared to the AG version, and the combination of two 

editing sites (GG) gave the largest increase in PODXL exon inclusion (Fig. 1D). These results 

support the hypothesis that RNA editing events on the PODXL alternative exon affect its 

splicing.  
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4.3.2 ADAR2-dependent PODXL alternative splicing 

 

Next, we asked whether splicing of the PODXL minigene depends on ADAR expression. 

According to previous literature, both A722G and A714G are regulated by ADAR2, whereas 

ADAR1 only affects A714G79. Upon co-transfection of an ADAR1 overexpression vector and the 

PODXL minigene (AA version), we did not observe changes in editing levels at either editing 

site (Fig. S1B, C). However, the A722G editing responded to ADAR2 overexpression. Thus, we 

focused on the impact of ADAR2 on PODXL splicing.  

 

We generated three ADAR2 mutants including the binding mutant EAA285, the editing-

enhanced mutant E488Q286,287, and the editing-deficient mutant E396A285. We co-transfected 

each ADAR2 mutant or the wild-type (WT) ADAR2 and the PODXL splicing reporter (AA 

version) into Hela cells (Fig. 1E). First, we confirmed that the PODXL reporter is not edited 

when co-transfected with an empty backbone vector or the editing-deficient mutant E396A. In 

contrast, co-expression of the WT ADAR2 enhanced the editing of the A722G site, and co-

expression of the editing-enhanced mutant E488Q greatly increased the editing levels of both 

A714G and A722G sites in the reporter (Fig. 1F). Interestingly, co-expression of the RNA 

binding mutant EAA also enhanced the editing level of the A722G site, indicating that this 

ADAR2 mutant can induce editing of the PODXL transcripts without the RNA binding domains. 

This editing activity may be enabled by RNA binding through endogenous ADAR2 in complex 

with the ADAR2 mutant. Alternatively, the deaminase domain of the ADAR2 mutant may 

facilitate RNA binding, as previously reported288,289. 
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Next, we quantified the splicing level of the PODXL minigene in the co-transfection 

assays. The editing-enhanced mutant E488Q of ADAR2 showed an increase in exon inclusion 

compared to empty control or the editing-deficient mutant E396A (Fig. 1G). This result is 

consistent with the above finding where the GG version of the minigene had the highest exon 

inclusion level (Fig. 1D). Curiously, overexpression of ADAR2 WT led to a slightly reduced exon 

inclusion rate compared to the empty control or its binding mutant EAA. We hypothesize that 

RNA binding by ADAR2 may inhibit the exon inclusion of PODXL, which counteracts the effect 

of increased RNA editing levels. 

 

4.3.3 Edited PODXL long isoform is more prone to protease digestion 

 

In addition to the regulation of PODXL splicing, one of the RNA editing sites (A722G) also 

introduces a recoding event (H241R) to the PODXL protein (Fig. 1A). PODXL is a 

transmembrane protein that plays important roles in maintaining the filtration slit in the 

glomerulus263,264. Previous studies showed PODXL enrichment in the leading edges of A549 

cells during cell migration 290 and PODXL overexpression increased cell migration in A549 cells 

277. Interestingly, the PODXL alternative exon containing the recoding site is located in the 

extracellular domain. Thus, we first examined whether the alternative PODXL isoforms are 

located on the cell membrane. We generated stable A549 cell lines overexpressing different 

PODXL isoforms (short isoform where the alternative exon is skipped, wild-type long isoform, 

long isoform with the H241R recoding event) as well as the control vectors (empty). We 

performed cell fractionation on the PODXL-overexpressing (PODXL-OE) A549 cells and 

examined the protein expression levels of different PODXL isoforms in the cytoplasmic and 

membrane fractions. As expected, PODXL showed robust expression in the membrane fraction 
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and no substantial difference was observed in the cellular localization of different PODXL 

isoforms (Fig. S2).  

 

Next, we asked if the presence of the alternative exon with or without the recoding event 

could change the protein conformation on the cell membrane. To test this, we treated the live 

PODXL-overexpressing A549 cells with the protease Trypsin and proteinase K. We reasoned 

that if different PODXL isoforms differ in their extracellular regions, they may possess different 

digestion patterns after the treatment. Strikingly, we observed a distinct trypsin digestion pattern 

for the PODXL long isoform with the H241R recoding event. Almost all the upper band of the 

PODXL long isoform with H241R was digested while the upper band of the other two isoforms 

remained relatively intact (Fig. 2A).  

 

Upon examination of the amino acid sequences of each isoform, we observed that the 

recoding event H241R on the PODXL long isoform indeed creates a novel trypsin digestion site 

(Fig. 2B). However, it should be noted that there are 38 trypsin digestion sites already present in 

the PODXL short and long isoforms without the H241R event. Thus, it is unlikely that the 

additional trypsin site led to a dramatic digestion change of the H241R isoform. Rather, we 

hypothesize that the PODXL long isoform with H241R editing has a different protein 

conformation that renders it more accessible to protease digestion. To test this hypothesis, we 

treated the live PODXL-overexpressing A549 cells with proteinase K, which does not have 

differential digestion sites between different PODXL isoforms. Interestingly, cells expressing the 

PODXL long isoform with the H241R recoding event showed higher sensitivity to protease K 

digestion (Fig. 2C). These findings suggest that the H241R recoding event on the PODXL long 

isoform may alter protein conformation and thereby render them more prone to protease 

digestions.  
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4.3.4 PODXL isoforms regulate cell migration 

 

PODXL was reported to regulate cell migration and invasion in various cell line models, 

including A549 cells267,277. Thus, we next asked whether PODXL isoforms impact cell migration 

and cell invasion abilities differently. We performed scratch wound cell migration assays using 

A549 cells with either stable PODXL overexpression or KD (Fig. S3). Wounds were introduced 

to each well of confluent cells in 96-well plates, which were then imaged using the Incucyte® S3 

live-cell analysis system at 2-hour intervals (Fig. 3A, showing a subset of time points to save 

space). We used the relative wound density as a measurement for the cell migration ability. 

Starting from 10h post-wound generation, we observed increased cell migration in cells 

overexpressing PODXL and a decrease in cell migration in cells with PODXL KD (Fig. 3B), 

which is consistent with previous literature277. Interestingly, the PODXL short isoform was 

associated with the highest cell migration ability, whereas cells overexpressing the long isoform 

with H241R had the lowest migration ability among the three isoforms (Fig. 3C). To exclude the 

possible confounding effect of cell proliferation differences associated with the three isoforms, 

we seeded these cells at equal cell density and monitored their proliferation (Fig. S3D). We 

observed no significant differences in cell proliferation associated with the three isoforms as 

measured by confluence at 10h post the wound generation (Fig. 3D). Overall, these findings 

suggest that the PODXL isoforms have functional differences in regulating cell migration. 

 

To test the effects of PODXL isoforms on cell invasion, we performed the 3D 96-well 

scratch wound invasion assay. Similar to the cell migration assay, we introduced wounds to 

confluent cells in 96-wells and then added Matrigel on top of the cells to create a 3D matrix 

mimicking the extracellular matrix. However, we did not find significant differences in cell 
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invasion associated with different PODXL isoforms (Fig. S3E). While we observed a decrease in 

cell invasion for cells with PODXL KD (Fig. S3E), this may reflect the reduced cell proliferation 

upon PODXL KD (Fig. S3D).  

 

4.3.5 PODXL isoforms regulate cisplatin chemoresistance 

 

Cisplatin is a wide-spectrum anti-tumor drug that has been applied to treat various human solid 

tumors. Previous studies reported that PODXL promotes cell resistance to cisplatin in oral 

tongue squamous cell carcinoma and osteosarcoma (OS)281,282. To further understand the 

functional differences of PODXL isoforms, we examined cisplatin chemoresistance of human 

OS cell line U2OS overexpressing different PODXL isoforms as well as U2OS cells with PODXL 

KD (Fig. S4). We conducted the cell cytotoxicity assay with cisplatin at a concentration of 

30 μM, which confers around 50% death rate for the U2OS cells overexpressing PODXL 

isoforms after 48h treatment (Fig. 4A). To remove bias in cell proliferation, we calculated 

cytotoxic indexes by normalizing the dead cell object counts against the total number of DNA-

containing object counts. We observed significantly higher cytotoxic index values (~1) in U2OS 

cells with PODXL KD compared to those treated with scrambled controls (shctrl) (Fig. 4A), 

confirming a lower level of cisplatin chemoresistance in KD cells. We also found that cells 

overexpressing all three PODXL isoforms showed significantly lower cytotoxic index values 

compared to cells expressing the empty backbone (Fig. 4A). These results are consistent with 

previously reported function of PODXL in promoting cisplatin chemoresistance282. Interestingly, 

cells overexpressing the PODXL long isoform with the H241R recoding event showed a slightly 

higher cytotoxic index compared to cells overexpressing the unedited version (Fig. 4A). Thus, 

the H241R recoding event dampended the function of PODXL in promoting cisplatin 

chemoresistance. 
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To further compare the cisplatin chemoresistance associated with different PODXL 

isoforms, we performed the cytotoxicity assay under various concentrations of cisplatin. Figure 

4B-C show the dose-response curves and the half maximal effective concentration (EC50) of 

cisplatin. A higher EC50 value reflects higher cisplatin chemoresistance. The wild type U2OS 

cells and U2OS cells overexpressing empty controls had mean EC50 values of 20.6 μM and 

19.6 μM, respectively (Fig. 4C). In contrast, U2OS cells overexpressing PODXL wild type 

isoforms showed increased mean EC50 values (24.9 μM for the short isoform and 24.4 μM for 

the long isoform) (Fig. 4C). Cells overexpressing the PODXL long isoform with the H241R 

recoding event had a mean EC50 value of 23.5 μM, which was slightly lower than its wild-type 

counterpart (Fig. 4C). In addition, the mean EC50 values for U2OS cells with PODXL KDs were 

7.5 μM (shPODXL1) and 9.9 μM (shPODXL2), both of which were lower than the U2OS shctrl 

cells (14.1 μM) (Fig. 4C). The above results again confirm the role of PODXL in promoting 

cisplatin chemoresistance. In addition, the edited PODXL long isoform showed reduced capacity 

in this role compared to the short or unedited isoform. 

 

Upon the addition of cisplatin to the U2OS cells, we observed the loss of cell-to-cell 

contact and cell shrinkage, indicating the induction of cell apoptosis. To directly measure the 

effect of PODXL isoforms on cisplatin-induced cell apoptosis, we performed the cell apoptosis 

assay in U2OS cells at a fixed cisplatin concentration of 30 μM. Following cisplatin treatment, 

we calculated the normalized apoptotic index, defined as the number of caspase-3/7 positive 

objects divided by the total number of DNA-containing objects. Consistent with the cytotoxic 

index results, KD of PODXL increased the cell sensitivity to cisplatin as reflected by the 

increased apoptotic indexes in U2OS shPODXL1/2 cells (Fig. 4D). We also observed decreased 

apoptotic index in U2OS cells overexpressing PODXL isoforms than the U2OS empty control 

cells (Fig. 4E). Among the three PODXL isoforms, the PODXL long isoform with H241R showed 

the highest apoptotic index, whereas the short PODXL isoform had the lowest apoptotic index 



 149 

values (Fig. 4E). These results suggest that the PODXL short isoform has the strongest 

resistance against cisplatin, followed by the PODXL long isoform, then the PODXL long isoform 

with the H241R recoding site, respectively. 

 

4.3.6 PODXL editing and splicing are clinically informative 

 

Given the distinct effects of PODXL isoforms on cancer cell migration and sensitivity to cisplatin, 

we investigated the clinical relevance of the PODXL alternative exon and its editing levels. For 

this analysis, we quantified editing (A722G and A714G) and inclusion of the alternative exon in 

Kidney Renal Clear Cell Carcinoma (KIRC) tumors from The Cancer Genome Atlas (TCGA), as 

PODXL is closely involved in kidney function263–266. Comparisons across clinical stages revealed 

significantly reduced editing levels of A722G in patients with advanced disease (Fig. 5A). 

Parallel with editing levels of this recoding site, the inclusion of the alternative exon significantly 

decreased over the progression of tumor stages (Fig. 5B). These coordinated changes across 

tumor stages are consistent with the effect of editing on alternative splicing (Fig. 1D) and 

regulation of cell migration by PODXL isoforms (Fig. 3). Considering next the prognostic value 

of these PODXL alternative exon features, we observed that low editing (A722G) and low 

alternative exon inclusion were each significantly associated with worse overall survival (Fig. 

5C-D). Low inclusion of the alternative exon, regulated by diminished editing levels, 

corresponds to a relatively higher abundance of the short isoform. Consequently, the presence 

of this short isoform may contribute to enhanced migratory capacity, which may lead to poorer 

patient prognosis.  

 

4.3.7 Known exonic editing sites are enriched in alternative exons 
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Our data suggest a coupling between RNA editing and splicing in PODXL, both of which are 

functionally relevant. Similar to PODXL, the RNA recoding sites in the glutamate receptor 

subunit B (GluR-B) pre-mRNA modulate its splicing105. RNA editing also plays important roles in 

the exonization of Alu-exons56. Thus, we hypothesize that the coupling between RNA editing 

and alternative splicing is a widespread phenomenon. To support this hypothesis, we examined 

all known exonic editing sites cataloged by the REDIportal database291. Strikingly, alternative 

exons encompassed a significantly higher number of known exonic editing sites compared to 

random control exons (p = 8.6e-10, Fig. 6A). Similar enrichment was also found if only recoding 

editing sites were included (from REDIportal) (p = 2.1e-9, Fig. 6B).  

 

This enrichment of editing sites in alternatively spliced exons may reflect an apparent 

relationship resulting from the prevalence of RNA editing in Alus and enrichment of alternative 

splicing among Alu-exons. To assess this possibility, we checked the overlap between the 

editing-harboring alternative exons and Alu annotations. Only ~30% of these alternative exons 

showed overlap with the Alu elements (Fig. 6C), indicating that the observation of enriched 

exonic editing sites in alternative exons is not completely associated with Alu exonizations. 

Rather, it may also reflect the functional roles of RNA editing in regulating alternative splicing 

(Fig. 6D). These findings support the coupling between RNA editing and alternative splicing.  

Although the exact mechanisms remain unknown, it is possible that a large number of exonic 

editing sites, in addition to inducing potential codon changes, may also enhance proteomic 

diversity by regulating RNA splicing. The alternative exons overlapping with exonic editing sites 

are enriched in gene ontology terms such as platelet activation, metal ion binding, and response 

to DNA damage (Fig. S5). Dysregulated editing and alternative splicing may thus further 

contribute to molecular phenotypes characteristic of human diseases. 

 

4.4 Discussion 
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Among the vast number of RNA editing sites in human transcriptomes, recoding sites, i.e., those 

that alter amino acid sequences, have been the focus of many studies due to their readily 

appreciated impact on protein sequences79,81–83,87,183–185. Here we report a novel mechanism in 

which the recoding site in PODXL, a gene abnormally expressed in cancer, promotes PODXL 

loss-of-function via both alternative splicing and protein-recoding. PODXL is a transmembrane 

protein expressed in various tissues including the kidney podocytes263. Abnormally expressed in 

multiple types of cancer266–272, PODXL is a potential biomarker for cancer diagnosis and 

prognosis272–277, and a therapeutic target for cancer metastasis in multiple cancers268,283.  

 

We showed that the recoding editing site, residing in an alternatively skipped exon of 

PODXL, promotes the inclusion of this exon. The long isoform of PODXL resulting from exon 

inclusion, and further, the edited version of the long isoform, reduce the protein’s function in 

promoting cell migration and cisplatin chemoresistance. Consistently, higher editing and higher 

exon inclusion were associated with better patient survival in KIRC. Although the function of 

PODXL and its recoding site has been reported previously79, our study affords an in-depth 

functional comparison of the alternative isoforms and edited versions of PODXL, an aspect that 

had not been fully appreciated and may have clinical relevance. 

 

RNA editing may affect alternative splicing through multiple mechanisms such as by 

creating splice site sequences, altering exonic splicing enhancers or silencers, or via a kinetic 

competition between the splicing machineries and ADARs50,56,105,292,293. For the two RNA editing 

sites of PODXL, using the Mutation Analysis tool provided by Human Spicing Finder294, we did 

not detect any significant alterations in splicing signals that would explain our observations. 

Alternatively, the impact of RNA editing on PODXL splicing may be explained by a two-facet 

model. First, ADARs and the spliceosome compete for the dsRNA substrate formed between 
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the alternative exon and the flanking intron, which explains the inhibitory effect of ADAR2 

binding on the PODXL alternative exon inclusion (Fig 1G, Fig. 6D). Second, once edited by the 

ADARs, the dsRNA structure is more accessible to the spliceosome, which enhances exon 

inclusion (Fig 6D). In this model, the two aspects of ADAR function, RNA binding and RNA 

editing, have opposing impacts on alternative splicing. Future work is needed to examine the 

kinetic and binding properties of ADAR and its relationship to the spliceosome.  

 

Our study highlighted a previously under-appreciated aspect that RNA editing sites 

promote proteomic diversity not only through amino acid changes but also through alternative 

splicing. Interestingly, we found a strong enrichment of known exonic editing sites in 

alternatively spliced exons (Fig 6A). This observation could be the consequence of Alu 

exonization, which gives rise to alternative exons that are prone to RNA editing due to the 

dsRNA structure of Alu. However, only ~30% of the editing-containing alternative exons overlap 

with Alu elements (Fig. 6C), indicating that the enrichment cannot be fully explained by Alu 

exonization. Rather, it may reflect the general roles of exonic editing sites and ADARs in 

regulating alternative splicing.  

 

Interestingly, we found that the PODXL long isoform with the H241R recoding event is 

more prone to protease digestion (Fig 2). The H241R recoding site directly creates a new 

trypsin digestion site (Fig 2B). It is possible that the long isoform with the H241R recoding site 

undergoes conformational changes that further expose the digestion sites to the proteases, 

explaining its higher protease sensitivity compared to the other isoforms (Fig 2A, 2C). This 

observation may have close relevance to cancer metastasis. The tumor microenvironment 

exhibits abnormal protease activities that modulate tumor invasion and metastasis295. While 

digestion of the extracellular matrix facilitates cell invasion, cleavage of the extracellular domain 

of transmembrane receptors also modulates the associated intracellular signaling pathways that 
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are important in tumor cell survival and drug resistance295,296. It is possible that the PODXL long 

isoform with the H241R recoding event is subject to higher proteolytic pressure, thus altering the 

intracellular binding complex (NHERF1/2-Ezrin-Actin)297,298 or downstream signaling pathways 

(PI3K/Akt282,298 and Bmi1/FAK281, etc.) that regulate its function in cell migration and drug 

resistance.  

 

We showed that higher editing and higher exon inclusion in PODXL were associated 

with better patient survival in KIRC. The cell-based assays in this study yielded converging 

results using multiple cell lines. In addition, previous literature supports the ubiquitous 

involvement of PODXL in multiple cancer types267. Thus, we hypothesize that PODXL editing 

and splicing levels may have clinical relevance in multiple cancer types. However, significant 

association of PODXL editing and splicing with patient survival was not observed in other 

cancer types (e.g., lung adenocarcinoma, Fig. S6). This may be due to lack of accurate 

measures of editing and splicing levels that demand high coverage of PODXL transcripts in the 

RNA-seq data (Fig. S6E), since the other tissues (e.g., lung) had much lower PODXL 

expression than kidney299. In the future, the relevance of PODXL editing and splicing to a wide 

range of cancer types needs to be further examined.  

 

In summary, our study highlights the functional importance of PODXL editing in multiple 

cancer-related processes. We showed that RNA editing in PODXL affects the protein function 

by inducing changes in both alternative splicing and protein sequences. Such multifaceted roles 

of RNA editing were previously under-appreciated and may exist for many editing sites in the 

coding regions. 

 

4.5 Methods 
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4.5.1 Cell culture 

 

A549 (male), HeLa (female), U2OS (female), and HEK293T (female) cells were maintained in 

DMEM (Gibco) with 10% FBS (Gibco) and antibiotic-antimycotic reagent (Gibco) at 37 °C with 

5% CO2 supply. Cell lines have not been authenticated. 

 

4.5.2 PODXL overexpression and knockdown 

 

To generate the PODXL overexpression stable cell lines, the coding region of each PODXL 

isoforms was cloned into the pLJM1-EGFP vector (Addgene) using the restriction enzymes 

AgeI-HF (NEB) and EcoRI-HF (NEB). The primers used for cloning are listed in Table S1. For 

empty control (pLJM1-Empty), the EGFP coding sequences in the pLJM1-EGFP construct were 

replaced with a short fragment of multi-cloning sites that do not express any proteins. The 

resulting pLJM1 vectors (pLJM1-Empty, pLJM1-PODXL-short-isoform, pLJM1-PODXL-long-

isoform-A, pLJM1-PODXL-long-isoform-G) were separately co-transfected with the dR8.91 and 

VSVG plasmids into the HEK293T cells using lipofectamine3000 (Invitrogen) according to the 

manufacturer's protocol. The lentivirus-containing media were collected every 24h for a total of 

72 hours. The lentivirus-containing media were then filtered through 0.2 µm PES filters (VWR). 

Prior to lentiviral transduction, the A549 cells or the U2OS cells were seeded at 0.1M per well in 

6-well plates. 500 μl of virus-containing media were added to each well with the addition of 

polybrene (Santa Cruz Biotechnology) at a final concentration of 8 μg/ml. 24h post cell 

transduction, fresh media were added to the cells with puromycin (Fisher BioReagents) at a final 

concentration of 1 μg/ml. The transduced cells were maintained in the puromycin-containing 

media for at least 7 days prior to any experiments. To generate PODXL knockdown stable cells, 



 155 

two PODXL-targeting shRNA constructs (TRCN0000296029, targets 3’UTR; 

TRCN0000310117, targets CDS; primers provided in Table S1) were cloned into the pLKO.1-

TRC cloning vector. The two PODXL shRNA constructs (pLKO.1-shPODXL1 and pLKO.1-

shPODXL2), together with the pLKO.1-scramble shRNA control, were co-transfected with the 

dR8.91 and VSVG plasmids into HKE293T cells for lentiviral packaging, individually. The 

viruses were then used to transduce A549 or U20S cells to create PODXL knockdown stable 

cells using similar procedures as described above. For all plasmid constructions described 

above, NEB Stable Competent E.coli were used. 

 

4.5.3 RNA isolation and cDNA generation 

 

Cells were washed with PBS (Gibco) and lysed with TRIzol (Thermo Fisher Scientific). Each 

500 μl TRIzol-lysed solution was mixed with 100 μl chloroform (Fisher Chemical) to allow phase 

separation. The upper aqueous phase was transferred and mixed with equal volume ethanol 

(200 proof, Fisher BioReagents). The mixture was loaded to the column supplied by the Direct-

zol RNA Miniprep Plus kit (Zymo Research) to isolate total RNA following the manufacturer’s 

protocol. 1~2 μg of total RNA was used for cDNA synthesis with SuperScript IV (Thermo Fisher 

Scientific) using random hexamers. 

 

4.5.4 Detection of PODXL isoforms via PCR 

 

Primers used for PODXL isoform detection are listed in Table S1. For endogenous PODXL 

isoform detection, 1 μl of the cDNA was used for PCR using DreamTaq™ Green PCR Master 

Mix (2X) (Thermo Fisher Scientific). The PCR reaction was carried out with an annealing 

temperature of 55 °C for 28 cycles. The PCR products were resolved in a 1% agarose gel with 
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Ethidium bromide (Sigma) staining and visualized under the imager (Syngene PXi). For PODXL 

isoform detection in splicing reporters, 1 μl of the cDNA was used for PCR using DreamTaq™ 

Green PCR Master Mix (2X) (Thermo Fisher Scientific), which underwent 28 cycles with an 

annealing temperature of 60 °C. The PCR products were resolved in a 6% PAGE gel, stained 

with SYBR Safe DNA Gel Stain (Thermo Fisher Scientific), and visualized under the imager 

(Syngene PXi). Images were analyzed using ImageJ to quantify band intensity for both short 

and long isoforms. The exon inclusion rate was calculated by (short/(short+long)). To measure 

the expression of PODXL (all isoforms) or just the long isoforms via qPCR, 1 μl of cDNA was 

used, together with the PowerUp™ SYBR® Green Master Mix (Thermo Fisher Scientific). The 

reaction was performed in the CFX96 Touch Real-Time PCR detection system (Bio-Rad) with 

the following settings: 50 °C for 10 min, 95 °C for 2 min, 95 °C for 15 s, 60 °C for 30 s, and with 

the last two steps repeated for 45 cycles. For the PODXL overexpression samples, the 

expression of PODXL was normalized against the expression of 18S or TBP. For the PODXL 

knockdown samples, the expression of PODXL was normalized against the expression of TBP.  

 

4.5.5 RNA structure predictions 

 

The sequences of the PODXL alternative exon and its flanking introns (~500bp each) were 

folded using mFold300 with default settings. 

 

4.5.6 Construction of splicing minigene reporters 

 

The PODXL alternative exon and its flanking intronic sequences (~500bp upstream and 

downstream of the exon) were cloned into the pZW1-GFP splicing reporter that was described 

previously35,50,284. To generate an in-frame transcript when PODXL alternative exon is included, 
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we introduced two insertions (+1c, +ag) at the splice sites of the two GFP sub-exons. A T-to-G 

mutation (named as 3ssTg) was also introduced to the PODXL 3’splice site to increase the 

basal exon inclusion rate so that it approximately matches the endogenous exon inclusion level. 

Primers used for making modifications to the splicing reporter and introducing the PODXL 

editing sites are listed in Table S1. NEB 5-alpha Competent E.coli were used for plasmid 

construction. 

 

4.5.7 ADAR overexpressing constructs 

 

The coding sequences for the ADAR1 p110 isoform and ADAR1 p150 isoform were amplified 

from the constructs previously generated in our lab252 and cloned into the pcDNA4-TO-FLAG-

myc-His vector (Invitrogen) using restriction enzymes NotI-HF (NEB) and BstBI (NEB). ADAR2 

mutant constructs (EAA, E396A, and E488Q) were generated by introducing the recoding 

mutations to the pcDNA4-ADAR2-WT construct previously generated in our lab74. In general, 

the ADAR2 coding sequences were reamplified to introduce mutations using overlap extension 

PCR, followed by digestion and ligation into the pcDNA4-TO-FLAG-myc-His vector via the 

restriction enzymes NotI-HF (NEB) and XbaI (NEB). All PCR reactions were performed using 

the Q5® Hot Start High-Fidelity 2X Master Mix (NEB). The primers used for PCR reactions are 

listed in Table S1. NEB 10-beta Competent E.coli were used for plasmid construction. 

 

4.5.8 Western blot 

 

The cells were washed with cold 1x PBS and then lysed with cold RIPA buffer with Pierce™ 

Protease Inhibitor Tablets (EDTA-free, Thermo Fisher Scientific) freshly added. After incubation 

at 4 °C for 30 min, the whole cell lysate was collected and centrifuged for 30 min at 12,000 g, 
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4 °C. The supernatants were transferred to a new tube for protein concentration measurement 

using the Pierce™ Detergent Compatible Bradford Assay Kit (Thermo Fisher Scientific). After 

mixing with the 4× SDS protein loading dye, the protein samples were boiled at 95 °C for 5 min 

and loaded onto SDS-PAGE gels with the PageRuler™ Prestained Protein Ladder, 10 to 180 

kDa (Thermo Fisher Scientific), followed by protein transfer to nitrocellulose membranes (GE 

Healthcare) and antibody incubations. Antibodies used were as follows: ADAR1 antibody (Santa 

Cruz Biotechnology, sc-73408, 1:200), ADAR2 antibody (Santa Cruz Biotechnology, sc-73409, 

1:200), FLAG antibody (Sigma, F1804, 1:1000), PODXL antibody (Santa Cruz Biotechnology, 

sc-23904, 1:500), HSP 90α/β antibody(Santa Cruz Biotechnology, sc-13119, 1: 500), EGFR 

antibody (Cell Signaling, #4267, 1:1000), β-actin-HRP antibody (Santa Cruz Biotechnology, sc-

47778, 1: 2000), goat anti-rabbit IgG-HRP (Santa Cruz Biotechnology, sc-2004, 1:2000), and 

goat anti-mouse IgG-HRP (Santa Cruz Biotechnology, sc-2005, 1:2000). To visualize, the 

membrane blots were incubated with SuperSignal West Pico PLUS Chemiluminescent 

Substrate (Thermo Fisher Scientific) and then imaged using the Syngene Pxi imager. 

 

4.5.9 Splicing reporter assay 

 

Hela cells were seeded in 12-well plates to reach 90% confluency by the time of cell 

transfection. 375ng of reporter plasmids were transfected into each well with lipofectamine 3000 

(Invitrogen). For ADAR co-transfection experiments, 1,250ng of ADAR-overexpressing plasmids 

and 375ng of reporter plasmids were transfected into each well with lipofectamine 3000. The 

total RNA was harvested 24h post cell transfection and processed to detect PODXL isoforms 

generated from the splicing reporters, as described above.  

 

4.5.10 Quantification of RNA editing levels 
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The PODXL alternative exon was amplified from the cDNA of Hela cells transfected with the 

splicing reporters. The primers used are listed in Table S1. PCR reactions were performed with 

DreamTaq™ Green PCR Master Mix (2X) (Thermo Fisher Scientific) for 28 cycles. PCR 

products were resolved in 1% agarose gel and then purified using Zymoclean™ Gel DNA 

Recovery Kit (Zymo Research). The reverse primer was mixed with the amplicons and sent for 

Sanger sequencing. To quantify the RNA editing levels, the peak signals of both A alleles and G 

alleles were measured using 4Peaks, followed by editing level calculation (G/(A+G)). 

 

4.5.11 Cell fractionation and protease digestion 

 

Cell fractionation was performed using the Subcellular Protein Fractionation Kit for Cultured 

Cells (Thermo Fisher Scientific). The PODXL-OE A549 cells were washed with cold 1x PBS and 

directly lysed with the Cytoplasmic Extraction Buffer provided by the kit. For protease digestion 

assay, the PODXL-OE A549 cells were washed with warm 1x PBS, and then treated with either 

TrypLE™ Express (Gibco) or protease K (100 μg/ml, Zymo Research) at 37 °C for 5 min. The 

digested cells were then collected with growth media and centrifuged at 500 g for 5 min. The 

cell pellet was further processed using the Subcellular Protein Fractionation Kit for Cultured 

Cells (Thermo Fisher Scientific) following the manufacturer's protocol. 

 

4.5.12 Prediction of protease cleavage sites 

 

The protease cleavage sites of the PODXL long isoforms (WT and H241R) were predicted using 

PeptideCutter301. 
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4.5.13 Cell proliferation assay 

 

The PODXL-OE A549 cells were seeded at 3,000 cells per well in the 96-well plates. After 24 h 

incubation at 37 °C, the plate was transferred to the Incucyte® S3 live-cell analysis system 

(Sartorius) to monitor cell proliferation. Images were taken every 2 h and analyzed for 

confluency. 

 

4.5.14 Cell migration assay 

 

The PODXL-OE A549 cells were seeded at 30,000 cells per well in the Incucyte® Imagelock 96-

well plate (Sartorius) to reach 100% confluency after 24 h incubation. A scratch wound was 

created on each well using the WoundMaker™ (Sartorius) followed by fresh media change. The 

96-well plate was monitored for wound closure by imaging every 2 h. The images were 

analyzed to calculate the relative wound density, a measure of the density of the wound region 

relative to the density of the cell region, as recommended by the Incucyte® manual for 96-well 

scratch wound cell migration assay. 

 

4.5.15 Cell invasion assay 

 

Prior to cell seeding, the Incucyte® Imagelock 96-well plate (Sartorius) was pre-coated with 

50 μl of 100 μg/ml Matrigel (Corning) in each well at 37 °C for at least 2 h. The PODXL-OE 

A549 cells were seeded at 30,000 cells per well in the coated plate and incubated at 37 °C for 

24h to reach 100% confluency. After scratch wound introduction using WoundMaker™ 

(Sartorius), 50 μl of 8mg/ml Matrigel were added to each well and incubated at 37 °C for 20 min 

until the Matrigel is solidified. Additional 250 μl of cell growth media were added to each well 
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before the plate was transferred to the Incucyte® S3 live-cell analysis system. Images were 

taken every 2 h to monitor cell invasion activities. The images were analyzed to calculate the 

relative wound density as described above.  

 

4.5.16 Cell cytotoxicity assay 

 

The U2OS cells with PODXL-OE or PODXL-KD were seeded at 3,000 cells per well in the 96-

well plate and incubated at 37 °C for 24 h. The cells were then treated with 100 μl cell growth 

media containing 30 μM cisplatin (Selleck Chemical LLC) and the Incucyte® Cytotox Red Dye 

for counting dead cells. Both phase-contrast and red-fluorescence images were taken for each 

well every 2 h under the Incucyte® S3 live-cell analysis system. At 48 h after treatment, the 

assay was terminated by adding 20 μl of 12 μM (diluted in 1x PBS) Vybrant™ DyeCycle™ 

Green Stain (Invitrogen™) directly to each well (final dye conc. at 2 μM) and imaged using the 

Incucyte® S3 live-cell analysis system for phase-contrast and green-fluorescence images. The 

cytotoxic index was calculated by dividing the dead cell numbers (red-fluorescence object 

counts) by the total number of DNA-containing cells (green-fluorescence object counts). 

 

4.5.17 Determination of the EC50 value of cisplatin 

 

The cell cytotoxicity assay was performed under a range of concentrations (0.1 μM, 1 μM, 3 μM, 

7 μM, 10 μM, 15 μM, 30 μM, and 200 μM) of cisplatin (Selleck Chemical LLC). The cytotoxic 

index at 48h of cisplatin treatment was calculated and plotted against the cisplatin 

concentrations in GraphPad Prism. The EC50 value was calculated for each cell line based on 

the dose-response curve (nonlinear regression) using the “find ECanything” function in 

GraphPad Prism. 
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4.5.18 Cell apoptosis assay 

 

The U2OS cells with PODXL-OE or PODXL-KD were seeded at 3,000 cells per well in the 96-

well plate. After 24 h incubation in the cell incubator, each well was replaced with 100ul cell 

growth media containing 30 μM cisplatin (Selleck Chemical LLC) and the Incucyte® Caspase 

3/7 Green Dye for apoptosis (Sartorius). Images in phase-contrast and green-fluorescence were 

taken every 2 h using the Incucyte® S3 live-cell analysis system. At either 26 h or 40 h post 

cisplatin addition, the assay was ended by adding 20 μl of 12 μM (diluted in 1x PBS) Vybrant™ 

DyeCycle™ Green Stain (Invitrogen™) directly to each well and imaged again. The apoptotic 

index was calculated by dividing the number of apoptotic objects (green-fluorescence object 

counts before the addition of Vybrant™ DyeCycle™ Green Stain) by the total number of DNA-

containing objects (green-fluorescence object counts after the addition of Vybrant™ DyeCycle™ 

Green Stain).  

 

4.5.19 Statistics for cell-based assays 

 

Data were analyzed and plotted using Graphpad Prism 7. Statistical details for each experiment 

can be found in the figure legends. P-value < 0.05 was used to call significance. 

 

4.5.20 Quantification of editing and PSI in TCGA 

 

Using the BAM slicing functionality of the Genomic Data Commons (GDC) Application 

Programming Interface (API), we downloaded PODXL-overlapping bam files for tumors of 

Kidney Renal Clear Cell Carcinoma (KIRC) and Lung Adenocarcinoma (LUAD) patients in The 
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Cancer Genome Atlas (TCGA). After retaining only uniquely mapped reads, we applied our 

previously published methods74,172,194,258 to calculate editing ratios at two A-to-I RNA editing sites 

in the alternative exon of PODXL (A722G and A714G). To quantify inclusion levels of the 

PODXL alternative exon, we calculated its percent spliced in (PSI) using previously described 

methods302. Comparison between tumor stages were done using Wilcoxon rank sum test and p-

value <= 0.05 was used to determine significance. 

 

4.5.21 Survival associations 

 

We downloaded the TCGA Pan-Cancer Clinical Data Resource 303 to obtain survival times for 

KIRC and LUAD patients. High and low editing groups of patients were defined based on tertiles 

of PODXL A722G editing levels in each cancer type. Similarly, patients were categorized into 

high and low alternative exon inclusion groups in each cancer type, based on PSI tertiles. With 

the R package survival, we used the log-rank test to compare overall survival between high and 

low PODXL A722G editing groups, as well as between high and low alternative exon inclusion 

groups in KIRC and LUAD. P-value < 0.05 was used to call significance. We visualized the 

Kaplan Meier survival curves using the R package survminer. 

 

4.5.22 Enrichment of editing in alternative exons 

 

To test whether recoding sites were enriched in alternatively spliced exons, we first annotated 

recoding sites within the REDIportal V2 database291 by running ANNOVAR304. After defining 

alternative and constitutive exons based on gene annotations from the Consensus Coding 

Sequence (CCDS) project, we counted the number of recoding sites within alternative exons. 

We also counted overlapping recoding sites within 1000 sets of control exons, which were 



 164 

randomly selected from the same genes containing alternative exons. An enrichment p-value for 

recoding events within alternative exons was calculated from a normal distribution fit to the 

recoding site counts within control exons. We similarly tested the enrichment of editing sites (not 

limited to recoding sites) within alternative exons by using counts of editing sites overlapping 

alternative exons and 1000 sets of control exons. P-value < 0.05 was used to call significance. 

The alternative exons were overlapped with the Alu annotations downloaded from the UCSC 

Genome Browser. 

 

4.5.23 Gene ontology (GO) enrichment analysis 

 

For each query gene that contains AS exons overlapping with RNA editing sites, a control gene 

was randomly chosen among the background genes (excluding the query genes) in the CCDS 

database, 10,000 times. The p value of the enrichment of each GO term in the query genes was 

calculated using the normal distribution fit to the occurrence of the GO term in the 10,000 sets of 

control genes. To call significance, FDR < 0.05 and occurrence >= 10 were used. 
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4.7 Figures 

 

 

Figure 4.1 RNA editing and ADAR2 regulate PODXL alternative splicing 

(A) The long and short isoforms of PODXL. Partial gene structures (exon 2 ~ 4) are shown. The 

H241R recoding event is labeled in the alternative exon (exon 3) of the long isoform. 

(B) Agarose gel image of the endogenous PODXL PCR products amplified from the cDNA of 

A549 and HeLa cells, respectively.  
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(C) Predicted RNA structure of the PODXL alternative exon (green) with its flanking introns 

(black). Locations of the two RNA editing sites are labeled.  

(D) Left: PAGE gel resolving the amplicons of transcripts derived from the PODXL splicing 

reporters in HeLa cells with four combinations of the A714G and A722G editing events (AA, AG, 

GA, GG, G represents edited and A, unedited). In the AG reporter, G was introduced at the 

A722G site. In the GA reporter, G was introduced at the A714G site. Right: Quantification of the 

PODXL alternative exon inclusion rate for each reporter based on the PAGE gel result 

(measured by ImageJ). Three biological replicates were included. Data are plotted as mean ± 

SEM. The p-values were calculated using Student’s t-test (*p < 0.05, **p < 0.01, ***p < 0.001). 

See also Figure S1A. 

(E) Western blot showing overexpression of ADAR2 and its mutants in HeLa cells. The upper 

bands represent the FLAG-ADAR2 fusion proteins (see also Figure S1B). The lower bands 

represent ADAR2 or mutant proteins without FLAG tagging, which may result from alternative 

translation start sites in the overexpression constructs. 

(F) Top: Sanger sequencing to detect RNA editing of the A714G and A722G editing sites 

(underlined As) in the minigene reporters after co-transfection with ADAR2 overexpression 

vectors or the empty control in HeLa cells. Bottom: Quantification of the RNA editing levels 

based on the Sanger sequencing peaks (measured using 4Peaks). Three biological replicates 

were included. Data are plotted as mean ± SEM. See also Figure S1C. 

(G) Top: PAGE gel image of the amplicons of PODXL transcripts derived from the splicing 

reporters co-transfected with the ADAR2 overexpression vectors or the empty control in HeLa 

cells. Bottom: Normalized exon inclusion levels based on the PAGE gel band intensity 

(measured by ImageJ). Three biological replicates were included. For each replicate, the exon 

inclusion levels were normalized against the empty control. Data are represented as mean ± 

SEM. The p-values were calculated using Student’s t-test (*p < 0.05, ***p < 0.001).  
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Figure 4.2 PODXL long isoform with the H241R recoding event is more prone to protease 

digestion than other isoforms 

(A) Western blot of trypsinized A549 cells overexpressing PODXL isoforms. Left: whole cell 

lysates. Right: cell lysates from the cell membrane fraction. The upper bands (~180KD) 

represent intact PODXL proteins with posttranslational modifications. The middle and lower 

bands represent truncated PODXL proteins due to trypsin digestion. See also Figure S2. 

(B) Recoding RNA editing event H241R creates a novel trypsin digestion site on the PODXL 

long isoform. Top: Predicted trypsin cleavage sites on the edited PODXL long isoform. Bottom: 

Amino acid sequences of around the H241R site with trypsin digestion sites labeled.  

(C) Western blot of protease K treated A549 cells overexpressing PODXL isoforms. Whole cell 

lysates were used for Western blot. The upper bands (~180KD) represent intact PODXL 

proteins with posttranslational modifications. The bands at 72KD ~ 95KD are likely truncated 

PODXL proteins due to protein degradation. The bands at ~34KD are likely PODXL proteins 

lacking posttranslational modifications. The10KD to 26KD bands are digested PODXL proteins 

due to protease K treatment.  
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Figure 2. PODXL long isoform with the H241R recoding event is more prone to protease digestion than other isoforms. 
(A) Western blot of trypsinized A549 cells overexpressing PODXL isoforms. Left: whole cell lysates. Right: cell lysates from the cell 
membrane fraction. The upper bands (~180KD) represent intact PODXL proteins with posttranslational modifications. The middle 
and lower bands represent truncated PODXL proteins due to trypsin digestion.
(B) Recoding RNA editing event H241R creates a novel trypsin digestion site on the PODXL long isoform. Top: Predicted trypsin 
cleavage sites on the edited PODXL long isoform. Bottom: Amino acid sequences of around the H241R site with trypsin digestion 
sites labeled. 
(C) Western blot of protease K treated A549 cells overexpressing PODXL isoforms. Whole cell lysates were used for Western blot. 
The upper bands (~180KD) represent intact PODXL proteins with posttranslational modifications. The bands at 72KD ~ 95KD are 
likely truncated PODXL proteins due to protein degradataion. The bands at ~34KD are likely PODXL proteins lacking posttransla-
tional modifications. The10KD to 26KD bands are digested PODXL proteins due to protease K treatment.
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Figure 4.3 PODXL isoforms regulate cell migration to different degrees 

(A) Cell migration assay of A549 cells overexpressing PODXL isoforms or with PODXL 

knockdown (PODXL-OE/KD A549 cells). WT: wild-type A549 cells. Empty: A549 cells 

overexpressing the empty backbone. shctrl: A549 cells with scrambled control shRNA. Two 

alternative shRNAs for PODXL were used (shPODXL1, shPODXL2). Phase-contrast images at 

different time points were shown (purple: initial scratch wound mask, yellow: wound region). 

Scale bar: white line at the bottom right, 300 μm. See also Figure S3. 
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(B) Cell migration curve of the PODXL-OE/KD A549 cells described in (A). The plot shows one 

set of experiments performed with three biological replicates. Red line highlights data at 10 h 

post wound creation. 

(C) Quantification of cell migration with relative wound density for the PODXL-OE/KD A549 

cells. Data at 10 h post wound creation are shown, which was the earliest time point when we 

observed significant differences in cell migration between PODXL isoforms. Two independent 

sets of experiments were performed with three biological replicates included in each 

experiment. Data are plotted as mean ± SEM. The p-values were calculated using Student’s t-

test (*p < 0.05, ***p < 0.001, ****p < 0.0001). 

(D) Quantification of cell proliferation using cell confluence levels for the PODXL OE/KD A549 

cells. Data at 10 h post wound creation are shown, to exclude the possible effect of cell 

proliferation on cell migration differences shown in C. Two independent sets of experiments 

were performed with three biological replicates included in each experiment. Data are plotted as 

mean ± SEM. The p-values were calculated using Student’s t-test (****p < 0.0001). See also 

Figure S3. 
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Figure 4.4 PODXL isoforms regulate cell sensitivity to cisplatin to different degrees 

(A) Cytotoxic index values of U2OS WT cells, U2OS cells overexpressing empty (control) 

backbone, the PODXL isoforms, scrambled control shRNA (shctrl), or PODXL shRNAs 

(shPODXL1, shPODXL2) were generated (See also Figure S4). Cells were treated with 30 μM 

cisplatin for 48h. Cytotoxic index was calculated by normalizing the dead cell object counts 

against the total number of DNA-containing object counts. Three independent sets of 

experiments were performed with three biological replicates included in each experiment. Data 

are plotted as mean ± SEM. The p-values were calculated using Student’s t-test (*p < 0.05, **p 

< 0.01, ***p < 0.001, ****p < 0.0001). 
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Figure 4. PODXL isoforms regulate cell sensitivity to cisplatin to different degrees. 
(A) Cytotoxic index values of U2OS WT cells, U2OS cells overexpressing empty (control) backbone, the PODXL isoforms, 
scambled control shRNA (shctrl), or PODXL shRNAs (shPODXL1, shPODXL2) were generated. Cells were treated with 30 μM 
cisplatin for 48h. Cytotoxic index was calculated by normalizing the dead cell object counts against the total number of DNA-con-
taining object counts. Three independent sets of experiments were performed with three biological replicates included in each 
experiment. Data are plotted as mean ± SEM. The p-values were calculated using Student’s t-test (*p < 0.05, **p < 0.01, ***p < 
0.001, ****p < 0.0001).
(B) Dose-response curves for the U2OS cells with PODXL overexpression or KD, and controls (WT, Empty, shctrl). The plot shows 
one set of experiment performed with two biological replicates. 
(C) EC50 of U2OS cells with PODXL overexpression or KD, and control cell lines. Three independent sets of experiments were 
performed with two biological replicates included in each experiment. Data are plotted as mean ± SEM. The p-values were 
calculated using Student’s t-test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
(D) Apoptotic Index values of U2OS cells with PODXL KD. The assay was ended at 26 h after cisplatin treatment (30 μM). Two 
independent sets of experiments were performed with three biological replicates included in each experiment. Data are plotted as 
mean ± SEM. The p-values were calculated using Student’s t-test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
(E) Similar as (D), for PODXL OE cells. The assay was ended at 40 h after cisplatin treatment (30 μM).
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(B) Dose-response curves for the U2OS cells with PODXL overexpression or KD, and controls 

(WT, Empty, shctrl). The plot shows one set of experiment performed with two biological 

replicates. 

(C) EC50 of U2OS cells with PODXL overexpression or KD, and control cell lines. Three 

independent sets of experiments were performed with two biological replicates included in each 

experiment. Data are plotted as mean ± SEM. The p-values were calculated using Student’s t-

test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). 

(D) Apoptotic Index values of U2OS cells with PODXL KD. The assay was ended at 26 h after 

cisplatin treatment (30 μM). Two independent sets of experiments were performed with three 

biological replicates included in each experiment. Data are plotted as mean ± SEM. The p-

values were calculated using Student’s t-test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 

0.0001). 

(E) Similar as (D), for PODXL OE cells. The assay was ended at 40 h after cisplatin treatment 

(30 μM).  
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Figure 4.5 Clinical relevance of PODXL editing and splicing in KIRC 

(A) Significant decrease in editing level of the A722G site over stage progression of KIRC. The 

p-values were calculated using Wilcoxon rank sum test (**p <= 0.01, ***p <= 0.001, ****p <= 

0.0001).  

(B) Significant decrease in PODXL alternative exon inclusion (measured by PSI) over stage 

progression of KIRC. The p-values were calculated using Wilcoxon rank sum test (*p <= 0.05, 

**p <= 0.01, ns p > 0.05).  
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Figure 5. Clinical relevance of PODXL editing 
and splicing in KIRC.
(A) Significant decrease in editing level of the 
A722G site over stage progression of KIRC. The 
p-values were calculated using Wilcoxon rank sum 
test (**p <= 0.01, ***p <= 0.001, ****p <= 0.0001).
(B) Significant decrease in PODXL alternative exon 
inclusion (measured by PSI) over stage progression 
of KIRC. The p-values were calculated using 
Wilcoxon rank sum test (*p <= 0.05, **p <= 0.01, ns 
p > 0.05).
(C) Lower editing levels of the A722G site associat-
ed with worse overall survival in KIRC. Patients 
were grouped into high (red) and low (blue) groups 
by editing level tertiles. The p-value was calculated 
by the log-rank test.
(D) Lower PODXL alternative exon inclusion 
associated with overall survival in KIRC. Patients 
were grouped into high (red) and low (blue) groups 
by PSI tertiles. The p-value was calculated by the 
log-rank test.
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(C) Lower editing levels of the A722G site associated with worse overall survival in KIRC. 

Patients were grouped into high (red) and low (blue) groups by editing level tertiles. The p-value 

was calculated by the log-rank test.  

(D) Lower PODXL alternative exon inclusion associated with overall survival in KIRC. Patients 

were grouped into high (red) and low (blue) groups by PSI tertiles. The p-value was calculated 

by the log-rank test. See also Figure S6. 
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Figure 4.6 Exonic editing sites are enriched in alternative spliced exons 

(A) Number of exonic editing sites from REDIportal overlapping alternative exons (blue dashed 

line), compared to the numbers of exonic editing sites in 1000 sets of random control exons 

(gray histogram). Black curve represents the normal distribution fit to the histogram. P value 

was calculated using the normal fit.  

(B) Similar to A, but for recoding exonic editing sites only. 

(C) Number of editing-containing alternative exons overlapping with Alu elements. See also 

Figure S5. 

(D) The multi-facet model of the impact of ADAR/RNA editing on alternative splicing. In the pre-

mRNA transcript, the alternative exon forms dsRNA structures with the flanking introns. ADARs 

bind to the dsRNA structure, which may compete with the spliceosome and prevent splicing. On 

the other hand, ADARs introduce RNA editing sites to the transcript that destabilize the dsRNA 

structure. The edited pre-mRNA thus allows access of the spliceosome to the splice sites of the 

alternative exon, promoting exon inclusion. The illustration was created using BioRender.com.  
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4.8 Supplementary Figures 

 

 

 
Supplementary Figure 4.1 Co-transfection of ADARs with PODXL splicing reporters in 

HeLa cells 

(A) Illustration of different modifications (+1c, +ag, 3ssTg) made to the PODXL splicing 

reporters. This reporter contains two GFP split-exons that are upstream and downstream of the 

tested alternative exon. Two insertion modifications (+1c, +ag) were made to the splicing 

reporter to generate an in-frame transcript when PODXL alternative exon is included. The amino 

acid changes were indicated for each insertion modification. A T-to-G mutation was introduced 

to the 3’ splice site of the PODXL alternative exon to increase the basal inclusion rate so that it 

approximately matches the endogenous exon inclusion level.  
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(B) Western blot showing the overexpression of ADARs in Hela cells. All ADARs are FLAG 

tagged. For ADAR1 p150 overexpression, the minor bands between p110 and p150 likely 

represent truncated proteins due to alternative translation initiation. For ADAR2 overexpression, 

the upper bands represent the FLAG-ADAR2 fusion proteins (see FLAG Western). The lower 

bands represent ADAR2 proteins without FLAG tagging, which may result from alternative 

translation start sites in the overexpression constructs.  

(C) Sanger sequencing traces to detect the A714G and A722G editing sites (underlined As) on 

the reporters after co-transfection with the ADARs and the empty control in Hela cells.  
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Supplementary Figure 4.2 Cellular localizations of PODXL isoforms 

(A) Western blot detecting marker genes for cytoplasmic (HSP90) and membrane (EGFR) 

fractions of wild type A549 cells. Cell fractionations were performed with or without trypsin 

digestion (see Methods). Trypsin treated: cells treated with trypsin before cell fractionation. 

Directly scraped: cells directly lysed and scraped from cell culture plates for cell fractionation. 

(B-C) Western blot detecting PODXL expression in the cytoplasmic (B) and membrane (C) 

fractions of A549 cells overexpressing different PODXL isoforms. Cells are directly scraped for 

cell fractionation.  
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Supplementary Figure 4.3 Cell proliferation and invasion assay of A549 cells with PODXL 

overexpression and knockdown 
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(A-B) Western blot detecting PODXL overexpression (A) and knockdown (B) in A549 cells. 

Three biological replicates are shown.  

(C) Normalized mRNA expression levels of all PODXL isoforms (PODXL_all_iso.) and the 

PODXL long isoform (PODXL_long_iso.) in A549 cells with PODXL overexpression or KD, and 

controls (WT, Empty, shctrl). Three biological replicates are included. Data are plotted as mean 

± SEM. The p-values were calculated for each cell line compared to the corresponding controls 

(Empty or shctrl) using Student’s t-test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).  

(D) Left: Cell proliferation curve of the A549 cells with PODXL overexpression or KD, and 

controls (WT, Empty, shctrl). The plot shows one set of experiment performed with three 

biological replicates. Right: Quantification of cell proliferation using cell confluence. Data at 50 h 

post wound creation are shown to examine the possible effect of cell proliferation on cell 

invasion shown in B. Two independent sets of experiments were performed with three biological 

replicates included in each experiment. Data are plotted as mean ± SEM. The p-values were 

calculated using Student’s t-test (*p < 0.05, ***p < 0.001, ****p < 0.0001).  

(E) Left: Cell invasion curve of the A549 cells with PODXL overexpression or KD, and controls 

(WT, Empty, shctrl). The plot shows one set of experiment performed with three biological 

replicates. Right: Quantification of cell invasion with relative wound density. Data at 50 h post 

wound creation are shown, when most cell lines reached around 50% relative wound density. 

Two independent sets of experiments were performed with three biological replicates included 

in each experiment. Data are plotted as mean ± SEM. The p-values were calculated using 

Student’s t-test (*p < 0.05, ***p < 0.001, ****p < 0.0001).  
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Supplementary Figure 4.4 PODXL overexpression and knockdown in U2OS cells 

(A) Western blot detecting PODXL overexpression (A) and knockdown (B) in U2OS cells. 

(B) Normalized mRNA expression levels of all PODXL isoforms (PODXL_all_iso.) and the 

PODXL long isoforms (PODXL_long_iso.) in U2OS cells with PODXL overexpression or KD, 

and controls (WT, Empty, shctrl). Three biological replicates are included. Data are plotted as 

mean ± SEM. The p-values were calculated using Student’s t-test (*p < 0.05, **p < 0.01, ***p < 

0.001, ****p < 0.0001, n.s., not significant).  
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Supplementary Figure 4.5 Gene ontology terms enriched in the genes with alternative 

exons containing RNA editing sites 

(A) Exon harboring recoding sites from REDIportal. 

(B) Exons harboring any editing sites from REDIportal.  
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Supplementary Figure 4.6 Clinical relevance of PODXL editing and splicing in LUAD 

(A) Editing level of the A722G site over stage progression of LUAD. The p-values were 

calculated using Wilcoxon rank sum test and annotated on the plot between each comparison. 

(B) PODXL alternative exon inclusion (measured by PSI) over stage progression of LUAD. The 

p-values were calculated using Wilcoxon rank sum test and annotated on the plot between each 

comparison.  

Figure S6. Clinical relevance of PODXL editing and splicing in LUAD, related to Figure 5.
(A) Editing level of the A722G site over stage progression of LUAD. The p-values were calculated using 
Wilcoxon rank sum test and annotated on the plot between each comparasion.
(B) PODXL alternative exon inclusion (measured by PSI) over stage progression of LUAD. The p-values 
were calculated using Wilcoxon rank sum testand annotated on the plot between each comparasion.
(C) Overall survival of LUAD patients seperated by editing levels of the A722G site. Patients were 
grouped into high (red) and low (blue) groups by editing level tertiles. The p-value was calculated by the 
log-rank test.
(D) Overall survival of LUAD patients seperated by PODXL alternative exon inclusion. Patients were 
grouped into high (red) and low (blue) groups by PSI tertiles. The p-value was calculated by the log-rank 
test.
(E) PODXL expression level in primary tumors of KIRC and LUAD in TCGA. The p-values were calculat-
ed using Wilcoxon rank sum test (****p <= 0.0001).
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(C) Overall survival of LUAD patients separated by editing levels of the A722G site. Patients 

were grouped into high (red) and low (blue) groups by editing level tertiles. The p-value was 

calculated by the log-rank test.  

(D) Overall survival of LUAD patients separated by PODXL alternative exon inclusion. Patients 

were grouped into high (red) and low (blue) groups by PSI tertiles. The p-value was calculated 

by the log-rank test. 

(E) PODXL expression level in primary tumors of KIRC and LUAD in TCGA. The p-values were 

calculated using Wilcoxon rank sum test (****p <= 0.0001).  
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4.9 Supplementary Tables 

 

Primers used for PODXL overexpression constructs 
name sequences 
PODXL_kozac_AgeI_F ctaccggtcgccaccATGCGCTGCGCGCTGGCGC 
PODXL-EcoRI-R tggcgaattcTTACTAGAGGTGTGTGTCTTC 
PODXL-A722G-F ACAGTGTTTCGCCATGTCAGCC             
PODXL-A722G-R GCTGACATGGCGAAACACTGTCTCTAGT       
pLJM1-seq-R gtggatctctgctgtccctg   

Primers used for PODXL shRNA constructs 
name sequences 
PODXL_sh1_F 
(TRCN0000296029) 

CCGGAGCCACGTAAGGGACTTTATACTCGAGTATAAAGTCC
CTTACGTGGCTTTTTTG 

PODXL_sh1_R 
(TRCN0000296029) 

AATTCAAAAAAGCCACGTAAGGGACTTTATACTCGAGTATAA
AGTCCCTTACGTGGCT 

PODXL_sh2_F 
(TRCN0000310117) 

CCGGACGAGCGGCTGAAGGACAAATCTCGAGATTTGTCCTT
CAGCCGCTCGTTTTTTG 

PODXL_sh2_R 
(TRCN0000310117) 

AATTCAAAAAACGAGCGGCTGAAGGACAAATCTCGAGATTT
GTCCTTCAGCCGCTCGT   

Primers for endogenous PODXL isoform detection 
name sequences 
PODXL exonb F CACTTCGACGCATCCTGTG 
PODXL exond R GTAGAGCTGGCTGGCATC   

Primers for PODXL splicing minigene constructs 
name sequences 
pzw_AgeI_F tccgctagcgctaccggtc 
pzw_HindIII_R CGCCTGGCaagctttTAAGAC 
pzw_5ss1_+1c_F cgaaggctacgtcccaggtaagtctcgaCGAAACaag 
pzw_5ss1_+1c_R cttGTTTCGtcgagacttacctgggacgtagccttcg 
PODXL_HindIII_F gagaagcttGCCAGGCGTGATGGCTCTG 
PODXL_SacII_R tatccgcggCCAGTGGAATAACCCGGCAAAG 
PODXL_doubleA_F AGAGACAGTGTTTCACCATGTCAGCC 
pzw_podxl_3ss1_g9_65_
DoubleA_R 

CTGACATGGTGAAACACTGTCTCTcCTTGA 

pzw_podxl_3ss1_g9_65_
A714G_F 

TTTCAAGgAGAGACGGTGTTTC 
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pzw_podxl_3ss1_g9_65_
A714G_R 

CTGACATGGTGAAACACCGTCTCTcCTTGA 

PODXL-A722G-F ACAGTGTTTCGCCATGTCAGCC             
pzw_podxl_3ss1_g9_65_
A722G_R 

CTGACATGGCGAAACACTGTCTCTcCTTGA 

PODXL_doubleG_F AGAGACGGTGTTTCGCCATGTCAGCC 
pzw_podxl_3ss1_g9_65_
DoubleG_R 

CTGACATGGCGAAACACCGTCTCTcCTTGA 

PODXL Alu seqF TAGCTGGGACTACAGGTGTG 
PODXL Alu seqR ACTTTGGGAGGCCAAGGTG 
pzw_3ss2_+ag_SacII_F TGGccgcggtctctttcttccaggagagcgcaccatcttcttc 
pzw_BamHI_R tccggtggatccttacttgtacagctcgtccatgc   

Primers for PODXL isoform detection in splicing minigene 
name sequences 
Gexon F1 (gfp) AGTGCTTCAGCCGCTACCC 
Gexon Rv (gfp) GTTGTACTCCAGCTTGTGCC   

Primers for detecting PODXL isoforms via qPCR 
name sequences 
PODXL_longiso_qPCR_F CACTTCGACGCATCCTGTG 
PODXL_longiso_qPCR_R ACTTTGGGAGGCCAAGGTG 
PODXL_qPCR_both_F TGCAGACACCACTACAGTTGC 
PODXL_qPCR_both_R ATGGTCATGTCCCGAGCTTG 
18S_qPCR_F CTCTTAGCTGAGTGTCCCGC 
18S_qPCR_R CTGATCGTCTTCGAACCTCC 
TBP_qPCR_F CAGCAACTTCCTCAATTCCTTG 
TBP_qPCR_R GCTGTTTAACTTCGCTTCCG   

Primers for ADAR overexpression constructs 
name sequences 
Flag_Fw CATCGACTACAAGGATGACG 
p110 NotI F AAGGAAAAAAGCGGCCGCAAGCCGAGATCAAGGAGAAAAT

CTG 
ADAR1_BstBI_stop_R atactgttcgaaCTATACTGGGCAGAGATAAAAGTTCTTTTCCTC 
ADAR2_XbaI_R CCCTCTAGACCGGGCG 
ADAR2_EAA1_F GGCTCTGGTCCCACAGAGGCAAAGGCAGCACTCCATGCTG

CTGAGAAGG 
ADAR2_EAA1_R CCTTCTCAGCAGCATGGAGTGCTGCCTTTGCCTCTGTGGGA

CCAGAGCC 
ADAR2_EAA2_F GGCTCGGGGAGAAACGAGGCGCTTGCCGCGGCCCGGGCT

GCGC 
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ADAR2_EAA2_R GCGCAGCCCGGGCCGCGGCAAGCGCCTCGTTTCTCCCCG
AGCC 

ADAR2_E396A_F CATTAAATGACTGCCATGCAGCAATAATATCTCGGAGATCCT
T 

ADAR2_E396A_R AAGGATCTCCGAGATATTATTGCTGCATGGCAGTCATTTAAT
G 

ADAR2_E488Q_F GACCAAAATAGAGTCTGGTCAGGGGACGATTCCAGTGCG 
ADAR2_E488Q_R CGCACTGGAATCGTCCCCTGACCAGACTCTATTTTGGTC   

Primers for PODXL minigene editing detection 
name sequences 
EGFP_SacI_F GCGAGGAGCTCTTCACCGGGG 
PODXL_EGFP_R tggtgcgctcCTGTAATCCCAG 

 
 

Supplementary Table 4.1 Oligonucleotides used in Chapter 4  
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CHAPTER 5   
  

Concluding Remarks 

 

A growing number of RNA single-nucleotide variants (SNVs), either derived from genetic 

variants or RNA editing, has been associated with complex human traits. Despite a significant 

progress in identifying SNVs of interest, functional studies connecting SNVs to phenotypes are 

lagging. In this work, we developed a massively parallel reporter assay (MPRA), enabling the 

high-throughput screen of rare 3’ UTR variants regulating mRNA abundance. We also examined 

the function of differentially edited sites in cancer, revealing an editing-dependent stabilization 

mechanism. Further, we characterized two exonic RNA editing sites in PODXL, and 

demonstrated a previously underestimated role of exonic RNA editing in regulating alternative 

splicing.  

 

In Chapter 2, we tested 14,575 rare variants using the MPRA platform and identified 

5,437 functional 3’ UTR variants regulating mRNA abundance. We showed that many functional 

variants had a close relevance to human diseases, especially cancer. Further, we uncovered 

181 functional variants in cancer driver genes and 37 functional variants present in TCGA gene 

expression outliers, which we nominated as causal variants in cancer. Specifically, we 

characterized three variants in cancer-associated genes, revealing their functional roles in 

regulation mRNA stability and cell proliferation in their native genomic context.  

 

Our massively parallel screen uncovered many functional 3’ UTR variants that regulate 

mRNA abundance post-transcriptionally, i.e., mRNA stability. As shown in the control 

experiment on five well-known destabilizing motifs, our assay was able to capture the stabilizing 
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effects of random mutations, which disrupted the motifs. Yet, the assay does have some 

limitations. For example, other regulatory mechanisms, such as transcription, alternative 

polyadenylation, and RNA localization, may still play a role and affect the final readout of this 

assay. This ambiguity in the readout may impact studies of downstream mechanisms, for 

example, motif enrichment analysis. To elucidate the mechanism, it will be beneficial to link 

each functional variant to its potential trans-factors. However, our knowledge of trans-factor 

binding has limited specificity, often with multiple trans-factors predicted for a single variant, 

making it hard to pinpoint the exact trans-factor and the underlying mechanisms. Future efforts 

in mapping the cis-regulatory elements to trans-acting factors will be helpful to solve this 

problem.  

 

Like many MPRAs, our method suffers from the intrinsic limitations of episomal MPRAs: 

1) a limited length of test sequences (200nt in our assay) unable to capture functional variants 

with structural or distal effects; 2) a lack of genomic context; 3) transient transfection artifacts 

(e.g., elevated immune responses305). Improvement in DNA oligo synthesis, combined with 

genome-integrated reporter assays may help to overcome some of these limitations. Yet, 

genome-integrated methods are still limited in their flexibility to test different cell lines41. 

Alternatively, CRISPR perturbation screens combined with the scRNA-seq readout would be 

ideal to measure the functional effects of SNVs. Currently, it remains costly to do such screens, 

partly due to the high cost of single-cell sequencing46. Besides, although great advances have 

been made in the genome editing field, base editing still has limited efficacy. In addition, some 

genomic regions, such as highly repetitive regions, or sequences far away from the protospacer 

adjacent motif (PAM) sequences, are hard to modify. Future development of genome editing 

technology will likely increase the usability of CRISPR screens. 
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In Chapter 3, we reported the global dysregulation of RNA editing between epithelial and 

mesenchymal tumors across seven cancer types in TCGA. A similar alteration of RNA editing 

was also observed in scRNA-seq of lung cancer, with the majority of differential editing sites 

detected in cancer cells. Importantly, knockdown of ADAR1 or ADAR2 induced EMT in human 

cell lines. Supported by correlation analysis and experimental validations, we showed that 3’ 

UTR editing sites differential between epithelial and mesenchymal tumors regulate mRNA 

abundance. Further, we uncovered an RBP, ILF3, which binds in proximity to many differential 

editing sites correlated with gene expression, accounting for editing-mediated stabilization of 

PKR, a key player in innate immune responses. 

 

Our analysis of RNA editing in epithelial and mesenchymal tumors and ADAR KD 

experiments showed a strong relevance of RNA editing to EMT. However, it remains unknown if 

the observed RNA editing alteration is a cause or a consequence of EMT. While both ADAR1 

and ADAR2 knockdown induced EMT, we only observed widespread downregulation of RNA 

editing in ADAR1 KD cells, but not ADAR2 KD, indicating that a large fraction of altered RNA 

editing is not necessary for EMT induction. Indeed, RNA editing alteration in a specific target 

was reported to induce EMT192. Previous studies observed that ADAR2 editing is important in 

regulating the steady-state levels of miR-200, the loss of which induced EMT in colorectal 

cancer192. Another interesting target of ADAR2 editing is SLC22A3, a suppressor for EMT 

processes, whose editing led to reduced gene expression, thus promoting tumor invasion and 

metastasis in esophageal cancer183. Nonetheless, the association between altered RNA editing 

profiles and EMT makes these editing sites valuable as potential biomarkers for EMT. 

Moreover, even if they do not directly contribute to EMT, they may have other functional roles in 

cancer. Further characterization of these differential RNA editing sites, such as via MPRAs on 

mRNA abundance and splicing, will be helpful to elucidate their roles in cancer.  

 



 190 

Our study of RNA editing in EMT also raised many other interesting questions. First, we 

showed that ADAR1 and ADAR2 KD induced EMT in A549 and MCF10A cells. Yet, the 

underlying mechanisms remain undetermined. Both ADAR1 and ADAR2 have RNA binding 

domains and RNA deaminase domains responsible for RNA binding and catalysis of RNA 

editing, respectively12. Further experiments using mutant ADARs will be helpful to examine 

whether these proteins regulate EMT through RNA binding or RNA editing (or both). Another 

interesting question is how ILF3 KD induced EMT in A549 cells. We observed that ILF3 

potentially regulates editing-dependent stabilization of immune-relevant genes. Yet, this 

mechanism alone is unlikely to explain EMT changes upon ILF3 KD. Instead of detecting a 

downregulation of immune-relevant genes after ILF3 KD, we observed an induction of many 

ISGs (data not shown), including PKR (which we validated for the editing-dependent 

stabilization model). The above observations may have resulted from the diverse, multifaceted 

function of ILF3. In addition to regulating mRNA stability, ILF3 also plays important roles in 

modulating transcription, mRNA localization, translation, and miRNA biogenesis217. Interestingly, 

an antisense long non-coding RNA of ILF3, ILF3 divergent transcript (ILF3-AS1), is reported to 

promote EMT in hepatocellular carcinoma306 but inhibit EMT in cervical cancer307. Both studies 

reported the functional roles of ILF3-AS1 in regulating miRNAs306,307. Further studies on ILF3, 

especially its relationship with ILF3-AS1 and miRNAs, will be helpful to understand the 

mechanism of ILF3-mediated EMT in A549 cells.  

 

In Chapter 4, we discovered an unexpected role of exonic RNA editing in promoting 

alternative splicing of PODXL, resulting in three PODXL isoforms functionally distinct in 

protease digestion patterns, cell migration, and cisplatin chemoresistance. Consistent with our 

cell-based studies, we found that lower editing levels of the PODXL recoding site and lower 

inclusion of the PODXL alterative exon correlated with worse overall survival in kidney cancer 

(KIRC). Further, we showed that, in general, exonic RNA editing sites were enriched in 
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alternatively spliced exons, indicating a potentially prevalent role of exonic RNA editing in 

regulating alternative splicing.  

 

Our findings of different protease digestion patterns among PODXL isoforms motivate 

further structural studies on the PODXL extracellular domain, which contains the PODXL 

recoding site. In our proposed model, the recoding event on PODXL may alter its protein 

conformation, which is more prone to protease digestion. Currently the protein structure of 

PODXL is not solved, making it hard to model structural alterations upon the amino acid change 

caused by RNA editing. We attempted to predict the protein structure of PODXL using 

AlphaFold308. A small disruption of the alpha helix, formed by the PODXL alternative exon, was 

observed for the edited PODXL isoform (data not shown). Future experimental studies are 

needed to assess the protein conformational change caused by the recoding event in PODXL, 

and its impact on the interaction of PODXL with other binding factors, either extracellularly or 

intracellularly.  

 

Chapter 4 also revealed a more generalized role of exonic RNA editing in regulating 

alternative splicing, which will need further investigation. Direct impact of exonic RNA editing on 

alternative splicing should be addressed at a larger scale, potentially using MPRAs. Yet, as 

mentioned above, MPRAs are limited in the length of the tested sequences, which is a 

bottleneck in this effort, since most RNA editing sites are associated with double-stranded RNA 

(dsRNA) structures formed by long sequences. Alternatively, high-content CRISPR screens can 

be used to avoid the limitations of MPRAs. However, most editing sites are located in repetitive 

regions, such as Alus, which are hard to target specifically using CRISPR. Future efforts should 

be dedicated to study SNVs located in these long and repetitive regions.  
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In summary, our studies enabled improved understanding of the functional roles of 

SNVs, both genetic variants and RNA editing sites, in post-transcriptional regulation. The MPRA 

platform established in this work can be applied to decipher the functions of many SNVs in 

different cellular contexts. The insights generated in our work builds a foundation for future 

functional and translational discoveries.  
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