
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Essays in Urban Economics and Spatial Econometrics

Permalink
https://escholarship.org/uc/item/9v440181

Author
Aljutaili, Dhari S. R. S. E.

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9v440181
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
IRVINE

Essays in Urban Economics and Spatial Econometrics

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Economics

by

Dhari S. R. S. E. Aljutaili

Dissertation Committee:
Professor David Brownstone, Chair

Professor Jan K. Brueckner
Associate Professor Ivan Jeliazkov

Kevin D. Roth, Ph.D.

2018



c© 2018 Dhari S. R. S. E. Aljutaili



DEDICATION

To my mother, Dhiaa,

and my wife, Eman,

for their love, support, and sacrifice.

ii



TABLE OF CONTENTS

Page

LIST OF TABLES v

ACKNOWLEDGMENTS vi

CURRICULUM VITAE vii

ABSTRACT OF THE DISSERTATION ix

1 The Relationship Between Neighborhood Design and Social Capital as
Measured by Carpooling 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Replication Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Model of Neighborhood Design and Social Capital . . . . . . . . . . . 15

1.4 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 Effect of Neighborhood Design on Social Capital . . . . . . . . . . . . 18
1.4.2 Exogenous Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Modeling Panel Count Data with Dynamics and Spatial Correlation 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Spatiotemporal Panel Count Model . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Temporal Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Poisson-Lognormal Model . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.3 Estimation via Bayesian MCMC Simulation . . . . . . . . . . . . . . 41

2.4 Simulation Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 Empirical Illustration: Solar Panel Adoption . . . . . . . . . . . . . . . . . . 48

2.5.1 Empirical Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.2 CSI Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.4 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

iii



3 Peer Effects and Spatial Correlation in Solar Panel Adoption 56
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 California Solar Initiative . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 Estimation Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.3 Exploratory Duration Analysis . . . . . . . . . . . . . . . . . . . . . 64

3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.1 Spatial Transition Model with Peer Effects . . . . . . . . . . . . . . . 67
3.4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography 79

Appendix A 85

Appendix B 94

Appendix C 99

iv



LIST OF TABLES

1.1 Household summary statistics (N = 42, 431) . . . . . . . . . . . . . . . . . . 9
1.2 Individual summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Replication results: effect of census tract density on carpooling . . . . . . . . 13
1.4 Estimates of the effect of CDS on carpooling to work . . . . . . . . . . . . . 20
1.5 Estimates of the effect of CDS on carpooling to school . . . . . . . . . . . . 21
1.6 Effects of exogenous variables in the restricted (ρ = 0) school model . . . . . 24
1.7 Sensitivity analysis–varying CDS street lengths . . . . . . . . . . . . . . . . 25
1.8 Sensitivity analysis–omitted variables . . . . . . . . . . . . . . . . . . . . . . 27
1.9 Sensitivity analysis–non-linearity . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Posterior mean and standard deviation estimates using simulated data . . . . . . 47
2.2 Posterior mean and standard deviation estimates from the non-spatial model . . . 51
2.3 Posterior mean and standard deviation estimates from the spatial model . . . . . 53

3.1 Summary statistics (N = 7, 379) . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Exposure and reservations by step . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Exploratory analysis results (N = 7, 378) . . . . . . . . . . . . . . . . . . . . 66
3.4 Posterior average marginal effects . . . . . . . . . . . . . . . . . . . . . . . . 74

v



ACKNOWLEDGMENTS

This research would not have been possible without the support of my dissertation com-
mittee members. Meeting Professor David Brownstone, my committee chair, during the
recruitment visit in March of 2013 was one of the reasons I chose to attend UCI. I am always
awed by his depth of knowledge and experience in economics and other fields. I am equally
appreciative of his guidance and calming effect in every challenge I was confronted with in
my research. I am honored to have been David’s last student before he retired and wish him
a happy and well-deserved retirement.

Professor Jan Brueckner’s scholarly contributions and neat lectures solidified my interest
in urban economics. His capacity to take genuine interest in my research, reading drafts
meticulously and providing constructive feedback, is something I hope to emulate with my
students. I greatly appreciate his spreading the word about my work, most times unbe-
knownst to me. Hearing someone in the department or at a conference say “Jan told me
about your paper” was always a pleasant surprise.

I am a Bayesian because of Professor Ivan Jeliazkov, who showed me how Bayes works
and why it makes more sense. It was a privilege to know the secret door knock to which Ivan
always answered and generously took the time to discuss my work in his office. I especially
appreciate the hours of coding I was spared multiple times because he knew of a shortcut
function that accomplished what I needed.

Professor Kevin Roth has been integral to my transition into becoming an economist. I owe
the coherence and economic grounding in my way of thinking and writing to his challenging
me with tough, fundamental questions in the kindest, most constructive ways possible. I
appreciate Kevin staying on my committee after he left UCI and wish him the best.

I recognize funding provided by David Brownstone, the Department of Economics, and
the School of Social Science to support my research. I thank my professors and peers in the
department for making it a place where knowledge was not only gained but also enjoyed.
I am especially thankful to my study group mates, Kelsey Heider and Jessica Monnet, for
making the first two years survivable. I will dearly miss my weekly lunch with Jessica.

I am indebted to my home country, Kuwait, for the countless opportunities I was given in
life, including my education from the first day of kindergarten to the last day of my Ph.D.
While the causes and consequences of the resource curse remain a subject of debate among
economists, it surely has been nothing but a blessing to this son of a middle-class teacher
and single mother. I look forward to returning home and giving back.

I owe a debt of gratitude to my family for their positive vibes from half the world away:
Mama Latifah’s prayers, my wife’s good-luck wishes, and my mother’s pride. I thank my
friends Dalal Alfares and Abdullah Husain for the travels, group chats, and shared moments
of our graduate school endeavors. Finally, I am thankful to Loomi, our sweet dog, for the
joy, comfort, and companionship that eased the stresses of the last two years.

On to the next adventure...

vi



CURRICULUM VITAE

Dhari S. Aljutaili

EDUCATION

University of California, Irvine

Doctor of Philosophy in Economics 2018

Master of Arts in Economics 2015

Oregon State University

Master of Science in Mechanical Engineering 2007

Bachelor of Science in Mechanical Engineering with a Minor in Entrepreneurship 2005

RESEARCH FIELDS

Urban and transportation economics.

Applied spatial, discrete choice, and Bayesian econometrics.

RESEARCH

Working Papers

“The Relationship Between Neighborhood Design and Social Capital as Measured by

Carpooling,” (under review).

“Modeling Panel Count Data with Dynamics and Spatial Correlation.”

“Peer Effects and Spatial Correlation in Solar Panel Adoption.”

Research Experience

Research assistant to Profs. Linda Cohen & Kevin Roth, Dept. of Economics, UCI. 2016

CONFERENCE & SEMINAR PRESENTATIONS

Annual Meetings, Urban Economics Association, Minneapolis, MN. Nov. 2016

International Transportation Economics Association, Santiago, Chile. Jun. 2016

Transportation, Urban, & Regional Seminar, Dept. of Economics, UCI. Nov. 2015

vii



AWARDS & FELLOWSHIPS

North American Regional Science Council

Best Student-Authored Paper Award 2016

Department of Economics, UCI

Summer Research Fellowship 2015–2017

David Brownstone Award for Best Paper in Econometrics 2017

Ken Small Award for Best Paper in Urban & Transportation Economics 2016

AFFILIATIONS

Urban Economics Association; International Transportation Economics Association;

The Econometric Society; American Economic Association.

SOFTWARE SKILLS

Matlab; Stata; R; ArcGIS; QGIS; LaTeX; MS Office.

PROFESSIONAL EXPERIENCE

Transport Specialist (JPO), World Bank, Washington, DC. Jul. 2012–Jul. 2013

Corporate Banking Manager, Gulf Bank, Kuwait. Dec. 2007–Jun. 2012

Associate Engineer, Oregon Dept. of Transportation, Salem, OR. Jun.-Sep. 2006

Engineering Intern, Kuwait National Petroleum Co., Kuwait. Jul.-Sep. 2004

OTHER

Vice President, National Union of Kuwaiti Students–USA Branch 2007

Language fluency: Arabic & English.

Citizenship: Kuwait.

viii



ABSTRACT OF THE DISSERTATION

Essays in Urban Economics and Spatial Econometrics

By

Dhari S. R. S. E. Aljutaili

Doctor of Philosophy in Economics

University of California, Irvine, 2018

Professor David Brownstone, Chair

This dissertation features research that contributes to understanding the role of social in-

teractions and social capital in the economy. Social capital (e.g. social norms and networks

that facilitate coordination and cooperation in society) has been shown to correlate with

desirable socioeconomic outcomes. The three chapters of this dissertation present economet-

ric methods and empirical analyses aimed at evaluating the potential of policy interventions

that enhance or leverage the stock of social capital in addressing certain market failures

when they emerge.

Chapter 1 studies the relationship between neighborhood design and social capital using

a household survey from California. It offers two contributions: (i) an objective measure of

social capital–carpooling–that has not been used previously in this context and (ii) a precise

definition of the neighborhood using geocoded data. Living on a cul-de-sac (a special case

of neighborhood design) is found to be associated with a higher probability of carpooling to

school, suggesting that planners can enhance social capital by favoring neighborhood designs

that foster social interactions.

Chapter 2 presents a spatiotemporal model for panel count data that preserves the discrete

nature of the data, incorporates different forms of dynamics and heterogeneity, accounts for

spatial correlation, and is estimated via an efficient Bayesian MCMC algorithm. An empirical

ix



application of solar panel installations in zip codes reveals the presence of spatial correlation

that would lead to over-confidence in the estimates if ignored. It also raises a question that

is overlooked in the literature about the proper specification of the dynamics.

Chapter 3 is motivated by the well-established result that a market failure in the form

of imperfect information causes consumers to under-invest in energy-efficient technologies.

It contributes to the literature on peer effects in technology adoption and, hence, whether

consumers’ social networks can be leveraged by policy makers to fill the information gap

and accelerate adoption. Estimating a spatial transition model using individual-level data

on solar panel adoption in California and Bayesian MCMC methods, the analysis finds a

positive but not statistically important peer effect. The results, though, reveal that failure

to control for spatially correlated unobservables leads to biased estimates.

x



Chapter 1

The Relationship Between

Neighborhood Design and Social

Capital as Measured by Carpooling

1.1. Introduction

In his popular book–Bowling Alone: the Collapse and Revival of American Community

(2000), political scientist Robert Putnam blamed what he observed as an eroding social

fabric on the decline of social capital in American society. In a widely-cited article that

inspired the book, Putnam (1995) defined social capital as follows:

By analogy with notions of physical capital and human capital—tools and training
that enhance individual productivity—“social capital” refers to features of social or-
ganization such as networks, norms, and social trust that facilitate coordination and
cooperation for mutual benefit.

Extensive research across different fields of social science is devoted to uncovering links

between social capital and socially desirable outcomes. Putnam (1994) shows its positive

correlation with economic development as well as effective and stable democratic government.
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Social capital also lowers transaction costs and facilitates voluntary cooperation between

members of a community, enabling them to overcome dilemmas of collective action (Ostrom,

1990). There is also a growing literature showing how strong neighborhood social networks

improve labor market outcomes for their members (Hellerstein et al. 2014; Hellerstein et al.

2011; Bayer et al. 2008)

Though as described above, social capital takes on the definition of a public good that is

prone to inefficient private under-provision. Consider a community whose members invest

time and effort in cultivating social bonds and establishing norms of trust and reciprocity

among them. A situation may arise whereby a few members free-ride by consuming the

benefits of these bonds and norms without contributing to them (e.g., only a handful of

neighbors are needed to perform neighborhood watch duty, but its security benefit extends

to all of the neighbors). The question, then, is: can this market failure be corrected by a

policy intervention? Urban planning policy has been proposed as an answer. Putnam (2000)

suggests that social capital can be enhanced by urban design innovations, such as mixed-use

zoning, pedestrian-friendly streets, and public spaces, that promote social interaction among

people. Glaeser (2000) also emphasizes the importance of studying the impact of the physical

built environment on social capital.

This paper examines these suggestions empirically by analyzing the relationship between

neighborhood design and social capital. Using a transportation survey from California, social

capital is proxied here by respondents’ decisions to carpool to work or school based on the

presumption that people carpool only after having interacted socially and established trust

between one another. Such interaction can be thought of as an investment in the stock of

social capital between its participants, from which they reap the benefit of carpooling as a

form of cooperation and reciprocity. Data from the 2012 California Household Travel Survey

(CHTS) on respondents’ mode choice for their commute to work or school are reclassified

into a binary (carpool or not) dependent variable.
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The analysis focuses on the cul-de-sac (henceforth, CDS) as a special case of neighborhood

design, identified using geographic information system (GIS) software and restricted access

to respondents’ geocoded residential locations. Focusing on the CDS is motivated by its

unique design features that render it relevant to the development of social capital. Because

it is a dead-end street with no through traffic, CDS residents experience less and slower

auto traffic that may lead them to perceive it as safe for pedestrians and outdoor play by

children (Cao et al., 2008). Moreover, persons entering the CDS are more likely to be known

to its residents, which increases the probability of spotting strangers, and more importantly

criminals, who do not belong in the neighborhood, further enhancing the perceived sense of

security and familiarity. These features set the CDS apart from other designs and may serve

as potential channels for fostering social interaction. The CDS is convenient for the analysis

at hand, but the general policy implication is that urban planners may be able to increase

the stock of social capital in a place by favoring spatial designs that foster social interaction

between its inhabitants.

The choice of neighborhood design is endogenous though, making it difficult to claim a

causal impact on social capital. People who are inherently socially interactive may self-select

into a CDS for the very same features mentioned above. Therefore, estimates will be biased

unless the neighborhood design effect is disentangled from other confounding effects. In-

strumental variables that are unrelated to people’s unobserved socialization tendencies but

induce an exogenous variation in the choice of neighborhood design are hard to come by

since choosing the residential environment is closely related to people’s social preferences.

Previous attempts at mitigating the self-selection problem involved controlling for people’s

attitudes and perceptions about the social environment in the neighborhood (Cao et al.

2008 and Kamruzzaman et al. 2014) while others simply ignored the problem altogether.

The CHTS data used in the present paper are cross-sectional, thus eliminating the possi-

bility of differencing out unobserved effects as a longitudinal sample would otherwise allow.

Also, survey respondents were not asked about their neighborhood preferences. As an al-
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ternative approach, the CDS choice and social capital are modeled jointly in this paper in a

simultaneous equations model with a rich set of control variables.

The empirical evidence on the relationship between neighborhood design and social capital

is mixed and mostly found in the urban planning literature. Cao et al. (2008) report no sig-

nificant differences between traditional (grid-street) and suburban neighborhoods, but found

the preference for CDS to be a significant predictor of children’s outdoor play. Kamruzzaman

et al. (2014) find that transit-oriented developments and standard suburban neighborhoods,

under which the CDS falls according to their definition, are both associated with higher

social capital than transit-adjacent developments. Similarly, Wood et al. (2012) and Mason

(2010) find higher levels of social capital are associated with CDS-related neighborhoods.

Conversely, Mason and Frederickssen (2011) find traditional (grid-street) neighborhoods to

be associated with higher social capital. Similarly, Mayo (1979) proclaims that “design-

ers can not directly influence suburban neighboring through street forms” after finding an

inverse relationship between CDS and neighbor familiarity and participation. Brown and

Cropper (2001), on the other hand, find no significant differences in the sense of community

between residents of New Urbanist and standard suburban (which typically include CDS’s)

neighborhoods.

There is also a small but growing literature in economics on the effect of the built en-

vironment in general on social capital. Glaeser and Gottlieb (2006) find mostly negative

correlations between density and civic engagement. Borck (2007) find social capital to be

positively associated with city size (though not strictly a feature of the built environment).

Brueckner and Largey (2008) report a negative effect of density on social interaction, using

an instrumental variables approach to address the self-selection problem. Another related,

but larger, literature is that on the effect of the built environment on travel behavior. It

is relevant to the present paper given the use of a transportation variable (carpooling) as

a measure of social capital. Cao and Mokhtarian (2008) and Cao et al. (2009) provide

comprehensive surveys of the methodologies and empirical findings of this literature.
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This paper offers two main contributions. Carpooling was first introduced as a measure of

social capital by Charles and Kline (2006), but, to the best of the author’s knowledge, this

is its first use in studying the effects of the built environment. To the extent that carpooling

is considered both an investment in and a benefit of norms of trust and reciprocity between

participants, this argument is even more compelling in the case of carpooling to school;

it takes a higher level of trust for people to let their children carpool with those who are

otherwise strangers. In that sense, carpooling is an action that embodies the elements of

Putnam’s definition of social capital. Using this measure, however, is a double-edged sword.

On the one hand, it is an advantage in that the survey respondents are blind to the hypothesis

at hand. Earlier studies used surveys that elicited respondents’ subjective perceptions of their

communities’ social environments or self-reported level of social interaction, in which there is

potential for social desirability bias whereby respondents might provide answers that would

portray them as more sociable than they actually were. Using carpooling instead reduces this

risk. On the other hand, this measure makes the task of addressing the self-selection problem

even harder because it invalidates any instrumental variable candidate that is correlated with

respondents’ unobserved transportation mode preferences.

The other contribution is the use of a large and comprehensive dataset. While prior studies

mostly targeted households in only a handful of neighborhoods, the CHTS sampled 42,431

households across the state of California, allowing the construction of the neighborhood

design variable that is representative and includes CDS’s of different shapes and lengths.

Furthermore, access to the restricted geocoded residential locations allows identifying house-

holds who reside on CDS’s and how far from the end of the CDS they are. It also helps

in overcoming a major challenge often faced by urban economic researchers who attempt

to analyze data from large surveys. Because of privacy concerns, exact locational data are

often unavailable, forcing researchers to resort to coarser definitions of the neighborhood

(e.g. census tract or zip code). This is not an issue in this paper.

5



1.2. Data

The CHTS data are obtained from the National Renewable Energy Laboratory (NREL).1

It is a statewide survey lead by the California Department of Transportation for transporta-

tion and environmental policy and planning purposes. It sampled 42,431 households (encom-

passing 109,113 individuals) from all of California’s 58 counties. In addition to socioeconomic

information, households recorded their travel activities in a diary for a pre-assigned 24-hour

period, covering every day of a full year, and some were given global position system (GPS)

devices. The data were retrieved from the travel diaries, GPS devices, computer-assisted

telephone interviews, and online forms.

GIS software is used to identify CDS streets, which vary in shape and length, and house-

holds’ positions along them also vary. Thus, some criteria must be established to form the

basis upon which a household is considered as belonging to a CDS neighborhood. Ben-

Joseph (1995) reports that the Institute of Transportation Engineers recommends 1000ft

as the maximum length of the CDS street, but in a survey of 75 U.S. city planning codes

(including 56 from California), he found a majority of them set the maximum length be-

tween 500 and 600ft (approximately 152 and 183m). In this analysis, 150m is chosen as a

reasonable length. However, households may experience different levels of the neighborhood

social environment depending on where along the CDS street they are located (e.g., parents

may be more willing to let their children play outdoor if their home is directly at the circular

end of the CDS than those located at its other end). This possibility will be examined in

a sensitivity analysis by varying the CDS length (50, 100, and 200m). The second criterion

is that a CDS has only one point of access such that a resident can only enter and exit the

CDS through that point (equivalently, an individual must be able to reach the circular end

of the CDS from their home without having to cross a street). Finally, while the automated

1“Transportation Secure Data Center” (2015). National Renewable Energy Laboratory. October 25th,
2015. www.nrel.gov/tsdc.
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GIS algorithm does not differentiate between a typical CDS and a standard dead-end street,

instances of the latter are manually re-coded as non-CDS2.

The binary dependent variable (carpooling) is constructed from the respondents’ reported

mode of transportation to work and school out of an exhaustive list of 29 modes. It is

worth noting that “auto passenger” and “carpool/vanpool” are listed as separate modes.

Responding to an e-mail enquiry, the survey manager3 explained that unless respondents

asked for additional clarification, it was assumed that they would consider the latter to be

travel with non-relatives while the former signifies travel with relatives. “Private shuttle

(employer)” is also listed as a mode, which rules out group transportation arranged by

employers from being considered as resulting from social interaction.

One crucial limitation in the data is that they do not indicate that carpooling is neces-

sarily occurring between individuals in the same neighborhood, which could undermine the

ability to attribute it to the neighborhood design or the social environment as other factors

may be responsible for it. For example, a worker may pick up a co-worker who lives on

their driving path, indicating that carpooling is a result of proximity or social interaction

at the job location. The presence of amenities shared by several neighborhoods may also

provide opportunities for social interaction. For example, children from different but prox-

imate neighborhoods may form social bonds by playing at a public park nearby. In this

case, carpooling between them would be attributed to the park. In this paper, the contrast

between the results from the work and school analyses helps gain some insight about the

patterns of carpooling activity, but without specific information on who is carpooling with

whom, the results should be interpreted with caution.

2A previous version of the paper did not differentiate between CDS’s and standard dead-end streets
based on the assumption that, as they relate to social capital, they are functionally similar. However,
upon close examination, this was not found to be the case; many streets identified by the automated GIS
algorithm as dead-ends are in fact intersection nodes in urban areas or streets that lead to remote prop-
erties in rural areas. Neither case constitutes a neighborhood comparable to a typical CDS. Hence, the
analysis is restricted to CDS’s while standard dead-ends are removed.

3Daigler, Vivian (NuStats Research Solutions). “Re: CHTS 2012.” Received on 24 Aug. 2017.
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To control for destination accessibility, travel times of the shortest paths (in terms of

driving time) from home to work and school are calculated based on speed limits, using

work and school geocoded locations. In some instances, the travel times are found to be

unusually large because the sample included individuals working or studying in different

regions or states (despite the survey manual’s specific instructions to exclude them). To

address this problem, only travel times less than 90 minutes are included in the analysis.

The survey oversampled “hard-to-reach” groups based on demographic (hispanic, low-

income, young, or large households) and transit-use (households with zero-vehicles or residing

near transit facilities) factors. Table 1.1 shows weighted and unweighted summary statistics

of the sample of households, which do not show any appreciable differences. Therefore, the

unweighted estimates will be reported as the paper’s main results.

Variables with “don’t know” or “refuse to answer” values, which represent a negligible

share of the sample, are treated as missing and excluded from the analysis. One exception

is made for the household income variable, for which these missing values constitute 8.6% of

the sample. A “missing income” category is added to the income categories.

Finally, supplementary variables were constructed using data from the following secondary

sources: 2010 U.S. Census (population density and dissimilarity indices), 2012 American

Community Survey 5-year estimates (zip code variables), and the California Department of

Justice (2012 murder rate).

Summary Statistics

Table 1.1 provides summary statistics of a subset of household characteristics broken down

by CDS status. Tests of mean difference (for continuous variables) and independence (for

categorical variables) show a statistically significant difference in most characteristics based

on CDS status. Most importantly, households tend to carpool to school or work more if

they reside in CDS neighborhoods. Travel time to work is statistically significantly longer

for CDS households, which is consistent with the fact that CDS neighborhoods tend to be in

8



Table 1.1: Household summary statistics (N = 42, 431)

CDS Non-CDS Mean Full Sample Full Sample
(N = 3, 264) (N = 39, 167) Comparison Unweighted Weighted
Mean (SD) Mean (SD) Test Stat.b Mean (SD) Mean (SD)

Endogenous variables
Census tract densitya 4.793 (3.729) 6.463 (8.283) 11.4 6.335 (8.037) 7.693 (8.868)
Carpool to workc 0.028 0.017 20.4 0.018 0.017
Carpool to schoold 0.030 0.011 88.4 0.013 0.015
Household characteristics
Household size 3.088 (1.356) 2.529 (1.367) -22.5 2.572 (1.374) 2.695 (1.501)
No. of children ≤ 16 years 0.716 (1.056) 0.461 (0.915) -15.1 0.481 (0.929) 0.556 (0.989)
No. of students ≤ 8th grade 0.422 (0.785) 0.268 (0.653) -12.7 0.280 (0.665) 0.326 (0.711)
No. of workers 1.695 (0.735) 1.182 (0.883) -32.2 1.222 (0.883) 1.186 (0.944)
No. of vehicles 2.286 (0.936) 1.827 (0.993) -25.5 1.862 (0.997) 1.812 (1.065)
Tenure (years) 15.21 (10.37) 15.99 (12.74) 3.42 15.93 (12.58) 15.75 (12.78)
Non-white householder 0.217 0.262 33.4 0.258 0.292
Hispanic householder 0.142 0.186 39.6 0.182 0.211
Unemployed householder 0.029 0.040 11.1 0.039 0.048
Householder college degree 0.596 0.495 123 0.503 0.477
Income(2) $25,000 - $49,999 0.113 0.193 127 0.187 0.221
Income(3) $50,000 - $99,999 0.327 0.299 11.0 0.301 0.264
Income(4) $100,000 - $149,999 0.231 0.146 169 0.153 0.110
Income(5) $150,000 or more 0.216 0.115 291 0.122 0.126
Income(6) Income missing 0.070 0.087 12.0 0.086 0.078
Avg. travel time to work c 20.37 (14.04) 19.16 (15.07) -4.30 19.30 (14.96) 18.48 (13.83)
Avg. travel time to Schoold 7.415 (7.162) 7.257 (7.971) -0.544 7.276 (7.875) 6.867 (7.154)

Variables without a standard deviation are binary.
a Census tract population density in units of 1000 people per square-mile.
b t-test of mean difference for continuous variables or chi-squared test of independence for categorical variables.
c For the subset of households with one or more non-home-based workers (n = 26, 781).
d For the subset of households with one or more non-home-based students from kindergarten to 8th grade (n = 6, 777).

the suburbs away from the city center where employment is normally concentrated. School

distance, on the other hand, shows no statistically significant difference, reflecting the fact

that schools are more evenly distributed over space. Overall, households tend to reside closer

to their schools than their employment locations.

Table 1.2 shows summary statistics for the subsamples of individual workers and students

used in the analysis. The reported values indicate which variables were included in each of

the work and school models. The dissimilarity indices are used to control for the possibility

that individuals may be more socially interactive with others of the same race or ethnicity.

Dissimilarity is a measure of segregation between two groups in a geographical area. Racial
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Table 1.2: Individual summary statistics

Subsample Workers (N = 38, 494) Students (N = 10, 324)
Mean (SD)a Mean (SD)a

Endogenous variables
Reside in CDS neighborhood 0.125 0.124
Census tract density 6.357 (7.527) 6.267 (6.869)
Carpool 0.019 0.027
Individual characteristics
Age 47.36 (13.49) 9.371 (2.599)
Male 0.519 0.512
Black 0.028 0.028
American Indian or Alaskan Native 0.046 0.074
Asian 0.068 0.063
Mixed or other race 0.128 0.230
Hispanic 0.212 0.412
Citizen or in US 10+ years 0.982 0.970
Education: college or higher 0.509 -
Travel time (minute) 19.15 (16.06) 6.104 (7.577)
Household characteristics
Age of householder 50.99 (12.17) 42.92 (9.404)
Male householder 0.473 0.418
Household size 3.061 (1.414) 4.629 (1.213)
Number of vehicles 2.202 (1.015) 1.981 (0.841)
Tenure (years) 14.42 (10.88) 9.213 (7.549)
Number of children 0.632 (0.997) 2.353 (0.985)
1-worker household 0.342 0.447
2-or-more-workers household 0.658 0.506
Number of students 0.359 (0.727) 1.831 (0.804)
Householder lives w/ spouse/partner 0.764 0.852
Householder unemployed 0.023 0.048
Householder retired or homemaker 0.121 0.199
Householder other employment status 0.031 0.050
Retired or homemaker in household 0.165 0.337
Householder education: college or higher 0.543 0.462
Income(2) $25,000 - $49,999 0.147 0.175
Income(3) $50,000 - $99,999 0.329 0.271
Income(4) $100,000 - $149,999 0.205 0.173
Income(5) $150,000 or more 0.181 0.163
Income missing(6) 0.062 0.045
Avg. household travel time to school (minute) 2.937 (6.365) -
Avg. household travel time to work (minute) - 16.93 (15.55)
County characteristics
Racial dissimilarity (white vs. non-white) 0.309 (0.066) 0.304 (0.066)
Ethnic dissimilarity (hispanic vs. non-hispanic) 0.402 (0.104) 0.402 (0.100)
Murder rate 4.971 (3.220) 5.029 (3.143)
Regions
(2) Central Coast 0.052 0.042
(3) Central Sierra 0.019 0.013
(4) Greater Sacramento 0.054 0.057
(5) Northern California 0.035 0.026
(6) Northern Sacramento Valley 0.021 0.022
(7) San Joaquin Valley 0.123 0.159
(8) Southern Border 0.054 0.061
(9) Southern California 0.375 0.382
Instrument
% pre–1940 homes in county subdivision 0.091 (0.105) 0.083 (0.096)

a Variables without a standard deviation are binary, equaling 1 if the condition is met and 0 otherwise.
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(white vs. non-white) and ethnic (hispanic vs. non-hispanic) dissimilarity indices at the

county level are calculated using a formula proposed by Duncan and Duncan (1955). Residing

in a high dissimilarity area is correlated with being more exposed to people of own race or

ethnicity.

1.3. Methodology

Since this is the first use of carpooling as a measure of social capital in the current context,

it is prudent to ask how well does it perform in comparison to the more direct measures used

in prior studies? Ideally, one way to answer this question is by replicating one of those

studies but with using the carpooling variable and comparing the results. However, an exact

replication is not possible since none of the prior studies had data on carpooling. As a second

best, a quasi-replication exercise of a prior study (i.e., replicating the model to answer the

same question but with using the CHTS data and the carpooling dependent variable) can

be performed and results can be compared qualitatively. The Brueckner and Largey (2008)

study cited earlier (henceforth, BL2008) is used for this exercise as a first pass to judge the

reliability of using carpooling as a measure of social capital.

Following this exercise, the main model of the relationship between neighborhood design

and social capital is presented and estimated.

1.3.1. Replication Exercise

Summary of BL2008

The BL2008 study used national cross-sectional data from the 2000 Social Capital Bench-

mark Survey to estimate the effect of census tract population density on 10 social interaction

measures involving interacting and cooperating with neighbors, confiding with people, so-

cializing with friends, and membership in hobby-based clubs and non-church groups. The

authors employed an instrumental variables approach to address the problem of self-selection
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into census tracts. Population densities of metropolitan statistical areas (MSA) and urban

areas were used as instruments for census tract density. Their identifying assumption was

that respondents’ choose their metro area based on factors (such as job location and family

ties) that are unrelated to their tendencies to be socially interactive. They also use MSA

terrain ruggedness4 as an additional instrument based on the assumption that residential

development is constrained by terrain ruggedness, thus affecting density.

For the binary dependent variables, a joint model of density and social interaction was

estimated by maximum likelihood. For the continuous dependent variables, a two-stage least-

squares model was estimated. Nine of the 10 estimations produced negative coefficients for

density, 7 of which were statistically significant (the 10th was positive but not statistically

significant). The authors concluded that the evidence did not support the claim that urban

sprawl erodes social capital. To the contrary, their results indicated that, controlling for self-

selection, people living in the low-density suburbs are more socially interactive than those

in city centers. They also showed estimates from a single-equation model that ignores the

endogeneity were biased upward, taking it as evidence of self-selection by respondents into

census tracts with higher density.

Replication of BL2008

Mimicking BL2008’s analysis, the effect of census tract density on social capital is esti-

mated but using the CHTS data and carpooling as the dependent variable instead. Two

separate models for carpooling to work and school are estimated by maximum likelihood,

using the same instrumental variables as in BL2008 and a similar set of covariates augmented

by additional ones relevant to the current setting. In each model, a 2-equation system is used

to jointly model the binary outcome (carpooling) and the continuous endogenous variable

(density).

4Obtained from Burchfield et al. (2006).
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To evaluate the performance of the instruments, first-stage results are obtained by re-

estimating the models via two-stage least-squares, which reveals that the MSA terrain

ruggedness is a weak instrument in the school model but relevant in the work model. There-

fore, the ruggedness instrument is removed from the school model in the replication exercise.

Summary statistics of the estimation samples reveal that the students subsample has a lower

and less variable average census tract density (7,034 persons per sqm. with a standard devia-

tion of 6,976) than the workers subsample (7,276 persons per sqm. with a standard deviation

of 7,712). Coupled with the fact that there are far fewer students than workers in the data,

the weakness of the terrain ruggedness instrument in the school model might be attributed

to the fact there is less variability in the density for it to induce. The discrepancy in the

instrument’s performance as it relates to BL2008 may also be due to their use of a national

sample with sufficient variation in terrain as opposed to only California.

Replication Results

Table 1.3 presents the average partial effects (APE) of census tract population density on

carpooling to work and school along with results of statistical tests. The complete first-stage

and reduced-form results are presented in appendix A.

Table 1.3: Replication results: effect of census tract density on carpooling

Dependent variable
Carpool to work Carpool to school

APE of census tract density -0.0003 (0.0004) -0.0030 (0.0012)**
Correlation, ρ 0.028 0.188
Wald exogeneity (Ho : ρ = 0) test statistic [P -value] 0.20 [0.652] 4.23 [0.040]
N 33,140 9,581
Number of clusters 22,838 6,264
First-stagea F -statistic 1041 436.0
APE from single-equation probit model -0.0001 (0.0001) -0.0008 (0.0004)*

Statistical significance: ∗ (P < 0.10); ∗ ∗ (P < 0.05); ∗ ∗ ∗ (P < 0.01)
Standard errors are in parentheses; P -values are in square brackets.

a First-stage is obtained by re-estimating the model with a linear two-stage least-squares estimator.

In both models, density has a negative effect on carpooling to work and school, but only

the latter is statistically significant, implying that students in lower-density census tracts
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tend to be more socially interactive as measured by their carpooling to school. This result

is consistent with the findings of BL2008. Moreover, the bottom row of Table 1.3 reports

estimate from a single-equation probit model, that is, ignoring the endogeneity of density.

These estimates are biased upward compared to those from the 2-equation joint model,

implying the error term is positively correlated with density. In other words, it suggests that

individuals who are inherently socially interactive tend to reside in denser census tracts. This

observation about self-selection behavior is also consistent with the one made by BL2008.

The lack of statistical significance for the effect on carpooling to work also sheds some

light on the performance of the carpooling variable as a measure of social capital. As men-

tioned previously, the CHTS data do not indicate that carpooling is occurring exclusively

between neighbors. In the workers case, carpooling might be a result of factors related to the

destination, such as proximity or social interaction at the job location, and not necessarily

due to density at home. On the other hand, it is more likely that students who live in the

same census tract also attend the same or nearby school (Table 1.1 showed that, on average,

households reside closer to their schools than their job locations). In other words, finding a

carpool partner who shares the destination location is less of an obstacle for a student than

it is for a worker. Therefore, attributing the estimated effect to density at home is more

plausible in the school model than the work model.

Based on this intuition, the contrast in statistical significance between the two models

shows that the observed carpooling variable operates in the way social interaction is expected

to operate. This conclusion and the qualitative agreement with the findings of BL2008—

and other studies in the literature that showed the adverse effects of low density on social

capital disappearing after accounting for self-selection—provide the key take-away from the

replication: the results do not rule out carpooling as a plausible measure of social capital.
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1.3.2. Model of Neighborhood Design and Social Capital

For the main analysis, let Di denote neighborhood design, equaling 1 if individual i resides

on a CDS and zero otherwise. Let Si denote social capital, equaling 1 if the individual

carpools and zero otherwise. These two decisions are modeled jointly as follows:

Di = 1{x′
1iα+ ε1i > 0} (1.1)

Si = 1{x′
2iβ +Diγ + ε2i > 0}, (1.2)

where x1 and x2 are vectors of (common and unique) exogenous variables, α and β are

vectors of their associated coefficients, and γ is the coefficient of interest associated with

neighborhood design. The errors account for unobserved determinants of Di and Si and are

assumed to be distributed bivariate normal:(
ε1i

ε2i

∣∣∣∣∣ x1i,x2i

)
∼ N2

((
0

0

)
,

[
1 ρ

ρ 1

])
,

where ρ is the correlation between the unobservables and the unit-variances are the usual

normalization in probit models. This model is commonly known as the recursive bivariate

probit in that D influences S, but not vice-versa (Maddala, 1983, p.122). The coefficients,

θ = (α,β, γ, ρ), are estimated by maximizing the log-likelihood function.

The neighborhood design equation (1.1) is identified by construction since it is determined

by exogenous variables. Identification of the social capital equation (1.2) is possible theo-

retically by relying solely on the model’s non-linearity (Wilde, 2000); however, Wooldridge

(2010, p.596-599) showed how this approach sometimes results in poor convergence. Instead,

identification can be improved using variables that appear in x1 but not in x2, and thus

are excluded from (1.2). In instrumental variable terminology, these are variables that are

relevant (correlated with Di), exogenous (uncorrelated with ε2i), and excludable (influence

Si only through Di).
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For this analysis, the fraction of housing units built prior to the year 1940 at the county

subdivision level is used as an instrument. The relevance of this variable is based on the

historical argument that the urban sprawl phenomenon, of which the CDS is a prominent fea-

ture, coincided with the post-World War 2 economic expansion. As such, a subdivision with

a higher fraction of units built prior to the war is less likely to contain CDS neighborhoods.

Thus, the variable is expected to be negatively correlated with Di. To satisfy the exogeneity

condition, recall that the variable of interest here—neighborhood design—represents a choice

at a much finer spatial scale (i.e., street level) than the subdivision. In California, county

subdivisions are areas delineated by the Census Bureau for statistical purposes. There are

58 counties in California divided into 397 subdivisions (e.g., Los Angeles county has 20 sub-

divisions while San Diego county has 13). The choice of this spatial scale for the instrument

is reasonable given the fine scale of Di. Otherwise, an instrument at, say, the census tract

or zip code levels would likely violate the exogeneity condition, whereas an instrument at a

much coarser scale, such as county or MSA levels, would lose its relevance to Di. The key

identifying assumption is that a household first chooses the general area of the county (i.e.,

county subdivision) to move to based on factors unrelated to social capital or preference

for carpooling (e.g., density, amenities, terrain, etc.), and then chooses the neighborhood

design within their chosen area. Thus, to the extent that this sequential decision process

is realistic, the choice of county subdivision is assumed to be pre-determined outside the

model. The assumption would be violated if a household first developed a preference for a

CDS neighborhood and then chose a subdivision made up primarily of CDS’s. This reversal

of the decision sequence is plausible, but throughout the manual GIS procedure conducted

earlier to identify CDS households, areas made up primarily of CDS’s were extremely rare.

Partial Effects

As with any non-linear model, coefficient estimates from the bivariate probit model are

not interpretable beyond their signs. Partial effects must be computed in order to produce
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meaningful results. Of primary interest is the partial effect of changing the endogenous

neighborhood design variable, D, on the probability of carpooling.

There are different kinds of partial effects that can be computed. One of which is the

effect on the marginal probability of carpooling:

E(S | x2, ρ = 0, D = 1)− E(S | x2, ρ = 0, D = 0) = Φ(x′
2β + γ)− Φ(x′

2β), (1.3)

where Φ(.) denotes the cumulative distribution function (cdf) of the univariate standard

normal distribution. Another type of partial effect is that on the conditional probability of

carpooling:

E(S | x, ρ,D = 1)− E(S | x, ρ,D = 0) =
Φ2(x′

2β + γ,x′
1α, ρ)

Φ(x′
1α)

− Φ2(x′
2β,−x′

1α,−ρ)

1− Φ(x′
1α)

(1.4)

where x = (x1, x2) and Φ2(.) denotes the bivariate standard normal cdf.

Which partial effect is appropriate? It depends on the policy experiment of interest. First

notice that if the correlation (ρ) is zero, (1.4) collapses to (1.3), which highlights the difference

in interpretation between the two. The effect on the marginal probability (1.3) represents

a ceteris-paribus scenario whereby the policy experiment involves changing the household’s

CDS status while holding all other observed and unobserved variables constant. On the

other hand, the effect on the conditional probability (1.4) holds only the observed variables

constant, keeping ρ unrestricted to account for changes in the unobserved variables as a result

of the policy experiment. As such, (1.4) is appropriate if the policy maker is interested not

only in the effect on social capital, but also on how other effects on unobserved variables

might interfere with it, either by amplifying or attenuating it, depending on the sign of ρ.

In the results section, both effects (evaluated at each observation and averaged over the

sample) will be reported and discussed. For convenience, the estimate using equation (1.3)
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will be referred to as the Marginal APE while that from equation (1.4) will be referred to as

the Conditional APE. Standard errors for the partial effects are calculated using the delta

method.

The complete derivation of the joint probabilities, log-likelihood function, and the partial

effects of all variables is presented in appendix A.

1.4. Estimation Results

Two separate models are estimated: the first examines the effect of neighborhood design

on carpooling to work using the subsample of individual non-home-based workers and the

second examines the effect on carpooling to school using the subsample of non-home-based

school students between Kindergarten and 8th grade (High school students are excluded

because, since the driving age in California is 16, they might carpool with schoolmates

with whom they formed relationships at school and not as a result of the neighborhood

environment).

1.4.1. Effect of Neighborhood Design on Social Capital

Tables 1.4 and 1.5 present the estimated APE of living in a CDS neighborhood on social

capital as measured by carpooling to work and school, respectively. The CDS coefficient (γ)

as well as the marginal and conditional APE’s are reported for several model specifications

in columns (1) to (5) based on which covariate groups are included as indicated in the table,

with (5) being the preferred specification. In addition, column (6) presents estimates from

a restricted model specification similar to (5) but with the correlation fixed at zero (i.e.,

equivalent to a univariate probit that does not account for the endogeneity). The lower two

panels of the tables report the correlation estimates, diagnostic statistical tests, and first-

stage results from re-estimating the models using a two-stage least-squares estimator.
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Note that under the restricted model, the two types of APE are numerically equivalent,

but the estimate is reported on the row pertaining to the conditional APE for conceptual

consistency. To elaborate, recall that the marginal APE imposes the restriction ρ = 0

regardless of the estimated ρ recovered along with the coefficients from the estimation. On the

other hand, the conditional APE maintains ρ from the model estimation as is in computing

the partial effects. Since under the restricted model both the coefficient estimates and the

partial effects are based on ρ = 0 by construction, the resulting APE is thus conceptually

comparable to the conditional APE’s under specifications (1)-(5).

Work Model

Table 1.4 shows the results for the model with carpooling to work as the dependent

variable. With the exception of the first specification that does not include any covariates

besides the instrument, none of the coefficient and APE estimates is statistically distinguish-

able from zero. The first-stage results indicate the instrument employed here is relevant, with

F -statistics well above the rule of thumb of 10. The Wald exogeneity tests for specifications

(2) to (5) fail to reject the null hypothesis that ρ = 0, implying the D is not endogenous. As

such, more efficient estimates can be obtained by estimating the model with ρ restricted to

zero. Indeed, the APE estimate in column (6) has a smaller standard error, but it does not

change the conclusion that living in a CDS neighborhood has no appreciable effect on social

capital as measured by carpooling to work. This result is consistent with the discussion of

the replication results; the decision to carpool to work is likely more attributable to factors

related to the workers’ destinations (e.g. proximity or social interaction at the job location)

than the social environment in their residential neighborhood.

School Model

The results from the school model are presented in Table 1.5. All of the APE estimates

are positive, but only the marginal APE under specification (2) is statistically significant

at the 10% level. The magnitudes of the effects get smaller as more covariate groups are
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Table 1.4: Estimates of the effect of CDS on carpooling to work

Unrestricted ρ Restricted ρ
Specification (1) (2) (3) (4) (5) (6)
Coefficient, γ 0.9259 −0.0859 0.1391 0.0831 0.0072 −0.0233

(0.4169)∗∗ (0.3624) (0.3608) (0.2838) (0.3038) 0.0521
Marginal APE (eq. 1.3) 0.0992 −0.0036 0.0069 0.0039 0.0003

(0.0807) (0.0143) (0.0198) (0.0142) (0.0136)
Conditional APE (eq. 1.4) −0.0020 −0.0009 −0.0010 −0.0009 −0.0011 −0.0010

(0.0195) (0.0156) (0.0154) (0.0122) (0.0129) (0.0022)
Covariate group
Instrument X X X X X X
Individual X X X X X
Household X X X X
County X X X
Regional fixed effects X X
Correlation, ρ −0.44 −0.03 −0.08 −0.05 −0.02 0.00
Wald exogeneity test of ρ = 0 5.12 0.03 0.18 0.12 0.01

[0.02] [0.87] [0.67] [0.73] [0.92]
Goodness of fit: Wald χ2 (d.f.) 265 (2) 882 (22) 1164 (55) 1225 (61) 1338 (77) 1339 (77)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
N 38,607 38,607 38,485 38,485 38,485 38,485
Clusters 26,772 26,772 26,668 26,668 26,668 26,668
First-stagea F -statistic 877 880 79.0 76.5 60.0
First-stagea adjusted R2 0.02 0.02 0.03 0.04 0.04

Statistical significance: ∗ (P < 0.10); ∗ ∗ (P < 0.05); ∗ ∗ ∗ (P < 0.01)
Standard errors are in parentheses; P -values are in square brackets.

a First-stage is obtained by re-estimating the model with a linear two-stage least-squares estimator.

added and soak up the variation in carpooling. The conditional APE’s are similar across

all specifications since the effect of adding covariates on the APE estimate is offset by the

unrestricted correlation. The Wald test fails to reject the exogeneity of D, indicating the

model can be estimated more efficiently by restricting ρ at zero. Estimates from the restricted

model (column 6) show a positive and statistically significant APE, indicating that, on

average, residing in a CDS neighborhood is associated with an increase of 1.5 percentage

points in the probability of carpooling to school.

To evaluate the economic significance of the effect, it must be compared to the sample

average predicted probability of carpooling, which is given by the conditional mean function

E(S | x) = P̂r(S = 1, D = 1) + P̂r(S = 1, D = 0)

= Φ2(x′
2β̂ + γ̂,x′

1α̂, ρ̂) + Φ2(x′
2β̂,−x′

1α̂,−ρ̂),

(1.5)
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Table 1.5: Estimates of the effect of CDS on carpooling to school

Unrestricted ρ Restricted ρ
Specification (1) (2) (3) (4) (5) (6)
Coefficient, γ 1.954 1.675 0.8504 0.7342 0.4335 0.2249

(0.8106)∗∗ (0.4876)∗∗∗ (0.5247) (0.5590) (0.6021) (0.0851)∗∗∗
MarginalAPE (eq. 1.3) 0.4473 0.3219 0.0957 0.0715 0.0335

(0.3220) (0.1753)∗ (0.0950) (0.0850) (0.0613)
Conditional APE (eq. 1.4). 0.0197 0.0144 0.0128 0.0127 0.0138 0.0150

(0.1014) (0.0476) (0.0410) (0.0428) (0.0456) (0.0065)∗∗
Covariate group
Instrument X X X X X X
Individual X X X X X
Household X X X X
County X X X
Regional fixed effects X X
Correlation, ρ −0.72 −0.66 −0.33 −0.27 −0.11 0.00
Wald exogeneity test of ρ = 0 2.59 6.25 1.454 0.86 0.13

[0.11] [0.01] [0.21] [0.35] [0.72]
Goodness of fit: Wald χ2 (d.f.) 79.3 (2) 269 (18) 420 (56) 421 (62) 421 (77) 425 (78)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
N 10,324 10,324 10,324 10,324 10,324 10,324
Clusters 6,775 6,775 6,775 6,775 6,775 6,775
First-stagea F -stat. 194 188 31.5 28.0 23.7
First-stagea adjusted R2 0.01 0.02 0.04 0.04 0.05

Statistical significance: ∗ (P < 0.10); ∗ ∗ (P < 0.05); ∗ ∗ ∗ (P < 0.01)
Standard errors are in parentheses; P -values are in square brackets.

a First-stage is obtained by re-estimating the model with a linear two-stage least-squares estimator.

which is calculated to be 2.7%, reflecting the fact from Table 1.2 that only a very small

percentage of the sample carpools to school. Therefore, while the estimated 1.5-percentage-

point increase in the probability seems small in the abstract, it is nonetheless substantial

relative to the sample average probability.

1.4.2. Exogenous Covariates

Only the estimates from the school model are reported and discussed here (since the work

model does not produce statistically significant APE’s on carpooling, the effects of exogenous

covariates are not of interest and not discussed here. They are, nevertheless, tabulated in

appendix A for completeness). Appendix A contains a description of the covariates and the

rationale behind including them in the model.
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Table 1.6 presents the reduced-form estimates of the APE’s of the covariates included in

specification (6). Since neighborhood design is assumed determined by exogenous variables

only, the reported total effects (first two columns) represent the direct effect on D and are

equivalent to what would have been obtained from a univariate probit model with D as the

dependent variable. On the other hand, the reported total effects on carpooling to school

(last two columns) equal the sum of the direct (on S) and indirect (on S through D) effects.

Neighborhood Design Equation (1.1)

The effects on the choice of neighborhood design (CDS or not) and their standard errors

are presented in the first two columns. The effect of the instrumental variable (fraction of

housing units in a county subdivision built prior to 1940) is statistically significant and has

the expected negative sign. Ethnicity does not have a statistically significant association

with neighborhood design whereas out of the race categories, only being black is negatively

associated with CDS relative to being white. Households headed by older males tend to reside

in CDS neighborhoods. Larger households are negatively associated with CDS whereas those

with more children or two or more workers tend to reside in CDS neighborhoods. Household

income and the number of vehicles are also positively associated with CDS. Travel time

to school is not statistically significant, but CDS households tend to have a longer average

travel time to work. None of the county-level variables (dissimilarity and murder rate) is

statistically significant while some of the regional dummy variables are.

Social Capital Equation (1.2)

The total effects of the exogenous variables on social capital as measured by carpooling to

school are reported in the last two column. Of the individual characteristics, students who

carpool tend to be older and reside farther (in terms of travel time) from school. Black, Asian,

and mixed-race students tend to carpool less relative to white students. Hispanic students

also carpool less. Of the household characteristic, only the householder having a college

degree or higher has a (positive) statistically significant effect at the 5% level. Other effects
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that are statistically significant only at the 10% level are the number of children (positive),

the $100,000-$149,999 income category (positive), having a male householder (negative),

and the presence of a retired person or homemaker aged 18-65 in the household (negative).

County racial dissimilarity has a positive and statistically significant effect, indicating that

students who are more exposed to people from their own race in their residential environment

are more likely to carpool to school. Finally, the indirect effect of the instrument (fraction

of homes built prior to 1940) is negative and statistically significant.
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Table 1.6: Effects of exogenous variables in the restricted (ρ = 0) school model

Explanatory variables Dependent variables
Neighborhood design (D) Carpool to school (S)

APE (SE) APE (SE)
Individual Characteristics
Age - - 0.0028 (0.0008)∗∗∗
Male - - −0.0025 (0.0031)
Blacka −0.0403 (0.0224)∗ −0.0165 (0.0063)∗∗
American Indian or Alaskan Native a −0.0158 (0.0198) 0.0012 (0.0084)
Asiana −0.0088 (0.0163) −0.0137 (0.0054)∗∗
Mixed or other racea −0.0003 (0.0118) 0.0107 (0.0065)∗
Hispanic −0.0060 (0.0114) −0.0145 (0.0051)∗∗∗
Citizen or in US 10+ years - - 0.0086 (0.0098)
Travel time to school −0.0003 (0.0005) 0.0008 (0.0002)∗∗∗
Household Characteristics
Household size −0.0120 (0.0070)∗ −0.0002 (0.0001)
Number of children 0.0206 (0.0088)∗∗ 0.0003 (0.0002)∗
Number of students - - −0.0030 (0.0032)
1-worker household 0.0331 (0.0219) 0.0013 (0.0092)
2-or-more-workers household 0.0488 (0.0239)∗∗ 0.0058 (0.0099)
Income(2)a $25,000 - $49,999 0.0234 (0.0134)∗ −0.0034 (0.0068)
Income(3)a $50,000 - $99,999 0.0470 (0.0138)∗∗∗ 0.0016 (0.0075)
Income(4)a $100,000 - $149,999 0.0832 (0.0171)∗∗∗ 0.0156 (0.0093)∗
Income(5)a $150,000 or more 0.1035 (0.0199)∗∗∗ 0.0096 (0.0095)
Income missinga 0.0650 (0.0226)∗∗∗ 0.0056 (0.0100)
Tenure (years) 0.0007 (0.0006) 0.0004 (0.0003)
Number of vehicles 0.0105 (0.0063)∗ −0.0040 (0.0030)
Household average travel time to work 0.0005 (0.0003)∗ 0.0000 (0.0001)
Age of householder 0.0010 (0.0006)∗ 0.0001 (0.0003)
Male householder 0.0179 (0.0097)∗ −0.0066 (0.0039)∗
Householder lives w/ spouse/partner −0.0005 (0.0147) 0.0038 (0.0058)
Householder has college degree or higher 0.0155 (0.0109) 0.0090 (0.0045)∗∗
Householder unemployeda 0.0100 (0.0253) 0.0002 (0.0004)
Householder retired or homemakera 0.0178 (0.0153) 0.0003 (0.0003)
Householder other employment statusa 0.0347 (0.0277) 0.0006 (0.0005)
Retired or homemaker aged 18-65 in household - - −0.0086 (0.0050)∗
County characteristics
Racial dissimilarity 0.0789 (0.0970) 0.1040 (0.0487)∗∗
Ethnic dissimilarity −0.0983 (0.0810) −0.0368 (0.0360)
Murder rate 0.0011 (0.0016) −0.0008 (0.0006)
Regional dummy variablesa

(2) Central Coast −0.0420 (0.0220)∗ 0.0072 (0.0115)
(3) Central Sierra −0.0691 (0.0330)∗∗ −0.0019 (0.0135)
(4) Greater Sacramento −0.0134 (0.0218) 0.0079 (0.0098)
(5) Northern California −0.0921 (0.0240)∗∗∗ −0.0097 (0.0086)
(6) Northern Sacramento Valley −0.0032 (0.0365) −0.0049 (0.0102)
(7) San Joaquin Valley −0.0171 (0.0180) −0.0008 (0.0065)
(8) Southern Border 0.0177 (0.0234) 0.0054 (0.0092)
(9) Southern California −0.0152 (0.0148) 0.0112 (0.0066)∗
Instrument
% pre-1940 housing units in county subdivision −0.5822 (0.0699)∗∗∗ −0.0098 (0.0044)∗∗

Statistical significance: ∗ (P < 0.10); ∗ ∗ (P < 0.05); ∗ ∗ ∗ (P < 0.01)
a Reference categories: Income (< $25, 000); race (white); employment status (employed); region (Bay Area)
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1.4.3. Sensitivity Analysis

CDS Street Length

Table 1.7 examines the sensitivity of the estimate to varying the length of the CDS street,

using the preferred model specification (5) that includes all covariate groups as well as

regional dummy variables.

Table 1.7: Sensitivity analysis–varying CDS street lengths

CDS street lengh
50m 100m 150m 200m

Fraction of the sample living in CDS neighborhood 0.073 0.107 0.124 0.131

Unrestricted model
Marginal APE (eq. 1.3) 0.0973 0.0580 0.0321 0.0353

(0.5190) (0.1316) (0.0592) (0.0604)
Conditional APE (eq. 1.4) 0.0086 0.0065 0.0138 0.0107

(0.2038) (0.0652) (0.0450) (0.0417)

Correlation, ρ −0.327 −0.255 −0.107 −0.146
Wald exogeneity test (Ho : ρ = 0) 0.062 0.275 0.115 0.223

[0.804] [0.600] [0.735] [0.637]

Restricted model (ρ = 0)
APE 0.0118 0.0091 0.0150 0.0121

(0.0079) (0.0064) (0.0065)∗∗ (0.0061)∗∗
Statistical significance: ∗ (P < 0.10); ∗ ∗ (P < 0.05); ∗ ∗ ∗ (P < 0.01)
Standard errors are in parentheses; P -values are in square brackets.

First, note that the preferred length of 150m results in the lowest magnitude of the cor-

relation coefficient, indicating that it is the best at capturing the unobserved determinants

of neighborhood design and carpooling to school. Also note that, for all lengths, the Wald

test fails to reject the exogeneity of D, implying that the model with ρ restricted to zero

would produce more efficient estimates, which are shown on the last row. These estimates

are all positive and similar in magnitude for all lengths, but only those resulting from CDS

lengths of 150m and 200m are statistically significant. At first glance, this pattern is sur-

prising since one would expect the effect to be stronger when the neighborhood boundary

is closer to the CDS street end. However, recall from Table 1.2 that the estimation sample

is highly unbalanced in the dependent variable. Shortening the neighborhood street length
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shifts more observations to non-CDS status, further exacerbating the sample imbalance and

reducing the variation in the treatment variable. This insight, hence, helps explain the lack

of statistical significance for the shorter street lengths.

Omitted Variable Bias

The estimated effects may be confounded by potential omitted variables that factor into

the negative correlation between the structural errors. The downward bias in the conditional

APE relative to the marginal APE implies the omission of a variable that is correlated

positively with CDS and negatively with carpooling. Two examples of such a variable are

access to school bus service and access to public transit. If either of these services is more

available in CDS areas, then it would also reduce the need for carpooling to school.

The CHTS does not contain data on school bus service. Instead, it is collected by the

author.5 This variable was not included in the main analysis because the school bus data

reflect the year 2016, whereas the CHTS is from 2012, which was a year that experienced

statewide cuts to school transportation budgets in California.6 Assuming the budgets recov-

ered with the economic recovery since then, the collected data my overstate the school bus

availability in 2012

Second, access to public transit may have similar effects. Ideally, one would measure

transit accessibility using information on routes, schedules, and congestion conditions using

services such as Google Maps. However, use of online resources is restricted by NREL (the

CHTS data vendor). Instead, the CHTS indicated which census tracts were within 0.25 and

0.5 miles from bus stops and rail stations, respectively. The caveat, however, is that this

variable is not optimal as living close to a bus stop does not necessarily mean its routes serve

the destination school.

5School bus data were collected from online sources such as the school and school district websites as
well as www.greatschools.org.

6Los Angeles Times (2011, December 14). http://articles.latimes.com/2011/dec/14/local/la-me-
california-budget-cuts-20111214. Accessed on April 3rd, 2016
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Table 1.8 compares the estimated effects from the main model specification (first column)

to those from adding the school bus and public transit variables to it. Adding the variables

does not change the general conclusions of the main analysis. An interesting observation is

that adding the school bus variable drives the correlation coefficient closer to zero, implying

that this variable further helps in capturing the unobserved factors determining the choices

of neighborhood design and carpooling to school. In all specifications, the Wald test fails to

reject the null hypothesis that CDS is exogenous. As such, the estimates under the restricted

model are more efficient and slightly larger when the school bus variable is included. The

findings from Table 1.8 do not necessarily rule out the potential for omitted variable bias, but

if it exists, then it must be caused by variables other than school bus and transit accessibility.

Table 1.8: Sensitivity analysis–omitted variables

Main specification School bus Transit School bus + transit
Unrestricted model
Marginal APE (eq. 1.3) 0.0321 0.0222 0.0346 0.0251

(0.0592) (0.0468) (0.0655) (0.0524)
Conditional APE (eq. 1.4) 0.0138 0.0164 0.0136 0.0160

(0.0450) (0.0427) (0.0481) (0.0456)

Correlation, ρ −0.107 −0.038 −0.121 −0.057
Wald exogeneity test (Ho : ρ = 0) 0.115 0.016 0.128 0.031

[0.735] [0.901] [0.720] [0.860]

Restricted model (ρ = 0)
APE 0.0150 0.0168 0.0150 0.0167

(0.0065)∗∗ (0.0068)∗∗ (0.0054)∗∗ (0.0067)∗∗
Statistical significance: ∗ (P < 0.10); ∗ ∗ (P < 0.05); ∗ ∗ ∗ (P < 0.01)
Standard errors are in parentheses; P -values are in square brackets.

Identification by Non-Linearity

As mentioned earlier, identification of the social capital equation (1.2) is possible theoret-

ically by relying on the model’s non-linearity. To ensure that the identification of the model

stems from the instrumental variable and not the its non-linearity, a simple falsification test

can be performed to compare the estimates with and without the instrument in the unre-

stricted model. If they are not affected, then it is a sign that the non-linearity is driving the

model identification.
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Table 1.9: Sensitivity analysis–non-linearity

With instrument Without instrument
CDS Coefficient, γ 0.4335 −0.3591

(0.6021) (1.0379)

Statistical significance: ∗ (P < 0.10); ∗ ∗ (P < 0.05); ∗ ∗ ∗ (P < 0.01)
Standard errors are in parentheses; P -values are in square brackets.

As Table 1.9 shows, the coefficient estimates with and without the instrument have the

opposite sign, indicating that the estimated coefficients and marginal effects in tables 1.5

and 1.6 are a result of the model being identified by the instrument and not its non-linearity.

1.5. Conclusion

Recognizing that social capital is a public good that can be prone inefficient private under

provision, this paper tests suggestions that have been put forth in the urban economics and

social capital literatures to use innovative urban designs to enhance social capital in commu-

nities. A simultaneous equations model is implemented to estimate the effect of neighborhood

design, namely the cul-de-sac, on social capital, taking into account the endogenous sorting

into neighborhood types. The paper offers two contribution: using carpooling as an objective

measure of social capital that has not been previously used in the literature on the effects of

the built environment on social capital and a precise spatial definition of the neighborhood

through access to confidential geocoded household data from a California travel survey.

A quasi-replication exercise of a prior study in the literature is first performed using the

proposed measure of social capital. The results of this exercise are in line with the replicated

study as well as other studies in the literature, suggesting that carpooling can be considered

a plausible measure of social capital.

The results of the main analysis yielded positive effects on carpooling to school that are

consistent with the hypothesis that the certain neighborhood designs enhance social capital.

A student living in a CDS neighborhood has a 1.5-percent higher probability of carpooling to

28



school than a comparable student living in a neighborhood of a different design. Considering

that the probability of carpooling to school is 2.7% for the average student in the sample,

the estimated effect is relatively substantial. On the other hand, the effect on carpooling to

work is not statistically distinguishable from zero, which is not unreasonable since proximity

and social interaction at the job location are expected to be the drivers of the decision to

carpool as opposed to the residential social environment.

The analysis carries a few limitations. First, the instrumental variable (fraction of pre-

1940 housing units in the county subdivision) that was utilized to address the endogenous

self-selection into CDS neighborhoods hinges on a strong identifying assumption about the

household’s decision process for choosing a neighborhood and its design. It can also be

argued that while this instrument can predict whether or not a neighborhood is a CDS, it

may not necessarily predict the individual household’s choice of neighborhood design. This

distinction may undermine the instrument’s relevance conceptually.

Second, statistical tests failed to reject the hypothesis that CDS is exogenous, owing to

the rich set of control variables included in the model. Based on these tests, the statisti-

cally significant results were obtained from a model with the correlation between the errors

restricted to zero and in which the instrument does not play an important role. These

results effectively rely on statistical control for identification, which is a less than optimal

identification strategy.

Third, the data lacks information on whether the carpooling is occurring exclusively be-

tween neighbors. Thus, the estimated effects might reflect factors influencing carpooling

other than the neighborhood design and social environment.

The positive and statistically significant estimates of the effects held up consistently

through the sensitivity analyses presented above, but these limitations present a challenge

to attributing the results to neighborhood design. A causality claim may be made with more

confidence if additional information is obtained on the social and spatial relations between

29



carpoolers or improvements are made to the identification strategy, such as employing more

convincing instruments, using longitudinal data, or explicitly controlling for preferences and

attitudes towards neighborhood design and social interaction.

Finally, the focus on the CDS design is motivated by its unique features, such as the

perceived sense of security, safety, and familiarity, that may serve as the mechanism for

enhancing the stock of social capital in the neighborhood. As such, the results cannot be

generalized to other neighborhood designs. Broader insights can be gained by consider-

ing other neighborhood designs, other aspects of the built environment, or the presence of

amenities that may promote social interaction.

This study is, nonetheless, an addition to a growing body of literature on the effects of the

built environment on social capital. The findings suggest that the spatial configuration of

residential communities (and not only spatial proximity between people) matters for enhanc-

ing social capital. The conclusion could potentially extend to any situation where the spatial

configuration creates opportunities for social interaction for the people sharing that space,

be it a neighborhood, public space, office space, or apartment floor. Therefore, the general

policy implication is that social capital may be enhanced if urban planners, architects, and

developers incorporated social interactions in their designs.
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Chapter 2

Modeling Panel Count Data with

Dynamics and Spatial Correlation

2.1. Introduction

The spatial econometrics literature has a well-established collection of models and estima-

tors for analyzing continuous spatial data (see LeSage and Pace (2009) for a comprehensive

textbook overview). While these models have been extended to some types of discrete data

(e.g., binary and ordinal), there has been much less work on modeling spatial count data,

which are common in studies of whether the variation between regions in the observed count

of some event is a function of their location in space or proximity to one another. Count

data also appear in situations where micro data on atomistic units of interest (e.g. persons,

households, firms, etc.) are not available, so the researcher is forced to analyze aggregate

data at the region-level (e.g. census tracts, zip codes, counties, etc.) instead where the

counts represent the sum of individual observations of units located in each region.

This paper extends the Poisson-lognormal model to accommodate spatial correlation and

temporal dynamics in panel count data and presents an efficient Bayesian Markov chain
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Monte Carlo (MCMC) simulation algorithm to estimate its parameters. The dynamics can be

in the form of separably additive time lags or the cumulative sum of lags, whichever is relevant

for the application at hand. Basing the model on the Poisson process eliminates the need

for linear transformations that alter the very nature of the observed count data. The spatial

correlation is modeled through the covariance matrix of the random effects. The model also

accommodates both within- and between-units overdispersion. After a series of simulation

exercises, the model is applied to a dataset of zip codes in Southern California to study the

spatial patterns of solar panel adoption. This application falls under studies of technology

diffusion, and it has been the subject of recent research where linear transformations of the

count data are common.

2.2. Related Literature

Early developments of spatial count models are found in the statistics literature. Data

analysis is usually done in a hierarchical modeling framework where the count data follow a

Poisson process whose conditional mean function includes a set of random effects assumed

to follow a conditional autoregressive (CAR) procress to incorporate the spatial correlation

(more discussion of CAR in the next section). Cressie (1993) and Banerjee et al. (2003)

provide general overviews of this literature.

The spatial econometrics literature, on the other hand, has been experimenting with var-

ious approaches to modeling count data. Most commonly, empirical researchers often resort

to transforming the observed count data into continuous data in order to take advantage

of the well-established linear spatial models, their least-squares and likelihood-based esti-

mators, and their specification tests. Others build upon the approaches from the statistics

literature. Simões and Natário (2016) provide an overview of these approaches.

Other interesting approaches have also appeared in the spatial econometrics literature.

Lambert et al. (2010) present a departure from the hierarchical modeling framework by
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specifying a spatial lag model for the Poisson conditional mean directly, and they develop

a two-step limited information maximum likelihood estimator. Similarly, Liesenfeld et al.

(2016a) develop a panel count model with a spatially- and temporally-dependent Poisson

latent variable. They estimate the model parameters using maximum likelihood, aided by

an efficient importance sampling method that exploits the sparsity of spatial covariance ma-

trices. Finally, Castro et al. (2012) adopt a different approach based on recasting the Poisson

model into an ordinal probit model with a spatially-dependent latent variable and estimate

it by maximizing the composite marginal likelihood function, which redefines the data as

if they were observed in pairs.. The ordinal probit model is desirable because the model

automatically accounts for overdispersion. The drawback, however, is the need to estimate

the cut-points along the latent variable domain that define the observed ordinal categories.

This feature presents a challenge in the context of count data: an assumption must be made

about the value of upper-most cut-point above which the counts will be combined into a

single category. Moreover, in cases where the observed counts are wide-ranging, further as-

sumptions are needed regarding combining ranges of counts into representative categories in

order to reduce the number of cut-points to be estimated.

2.3. Spatiotemporal Panel Count Model

2.3.1. Temporal Dependence

In addition to a static specification, the model developed here is capable of incorporating

dynamics in two forms: separably additive lags and cumulative sum of lags.

Static Model

The Poisson distribution is the workhorse of models of count data, but its requirement that

the conditional mean equal the conditional variance is at odds with the overdispersion often

observed in most empirical applications. This overdispersion is interpreted as unobserved
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heterogeneity in panel and spatial data. One way of accounting for it is by introducing

unit-specific unobserved effects that are multiplicative in the conditional mean. For units

i = 1, 2, ..., N and time t = 1, 2, ..., T , the observed counts, yit, are non-negative integers

generated from the following model:

yit | µit ∼ Po(µit)

µit = exp(x′itβ + ai) = αi exp(x
′
itβ)

αi = exp(ai) ∼ g(αi)

(2.1)

where g(.) is the assumed distribution of (the exponent of) the random effects, α = (α1, α2, ..., αN)′.

The two most commonly assumed distributions of αi are (i) gamma, resulting in the nega-

tive binomial model, and (ii) log-normal, resulting in the Poisson-lognormal mixture model.

The latter is better suited to model spatial correlation. Thus, this paper will focus on the

Poisson-lognormal mixture model.

The random effects model requires two key assumptions. First, conditional on the indi-

vidual effect, αi, all past, current, and future regressors, xit, are strictly exogenous :

µit ≡ E(yit|xi1, xi2, ...xiT , αi) = αi exp(x
′
itβ)

Second, the random effect, αi, is assumed to be uncorrelated with the regressors, xit. The

joint probability function for unit i across all time periods is obtained by integrating out the

random effect:

p(yi1, yi2, ..., yiT ) =

∫ ∞
0

p(yi1, yi2, ..., yiT , αi) dαi

=

∫ ∞
0

p(yi1, yi2, ..., yiT | αi) g(αi) dαi

=

∫ ∞
0

[∏
t

p(yit | αi)
]
g(αi) dαi

(2.2)
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Dynamics Through Separably Additive Lags

The strict-exogeneity assumption rules out the presence of temporally lagged counts in

the conditional mean. To see this result, let one of the regressors be a lagged value of the

outcome (i.e. xit = yi,t−1). The future value of the regressor is then xi,t+1 = yi,t. Maintaining

strict exogeneity implies that yit is exogenous—an obvious violation. To accommodate the

dynamics, a less restrictive weak-exogeneity assumption is made instead:

µit ≡ E(yit|xi1, xi2, ...xit, αi) = αi exp(x
′
itβ)

where now only past and current values of the regressors, xit, are assumed exogenous.

An important feature of the dynamic random effects model is the need to control for initial

conditions, yi0, as they are potentially correlated with the random effects. Wooldridge (2005)

proposed conditioning the data and the random effects on the initial conditions as follows:

p(yi1, yi2, ..., yiT , αi|Xi, yi0) = p(yi1, yi2, ..., yiT , |Xi, yi0, αi) p(αi|Xi, yi0)

That way, the initial conditions yi0 are taken as given without the need to specify a dis-

tribution for them. There is, however, a need to specify the form of dependence between

yi0 and αi. One way of doing so is through a conditionally correlated random effects model

(Mundlak, 1978), with the initial conditions added as a regressor:

αi = exp(δ0yi0 + x̄′iγ + ai)

where x̄i denotes the average (over time T ) of the time-varying covariates and ai is a random

effect that now represents the heterogeneity. Another benefit of Mundlak’s correction is

that it relaxes the second assumption above that the random effects are uncorrelated with

the included regressors, which is difficult to justify in most applications. Stated differently,

the correction assumes that the addition of the time-average regressors, which are sufficient
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statistics for the covariates, controls for the potential correlation between the random effects

and the regressors; therefore, any remaining unobserved effects can be assumed random and

uncorrelated with the regressors (Cameron and Trivedi, 2013, p. 363).

Combining the exponents, the dynamic model can be written as:

yit | µit ∼ Po(µit)

µit = exp(x′itβ + δyi,t−1 + δ0yi0 + x̄′iγ + ai),

(2.3)

which is of the same form as the static model (2.1); therefore, the same techniques used

for estimating it can be used for the dynamic model. A problem arises, however, from the

presence of the lag in the exponent that may result in the model becoming explosive. Since

the lag is non-negative, δyi,t−1 ≥ 0 for δ > 0. Moreover, if widely-varied counts across

time periods are observed for unit i, the conditional mean function, µit, may exhibit sharp

discontinuities that can result in a poor fit (Cameron and Trivedi, 2013, p. 370). This

problem can be mitigated by replacing the lagged term with ỹi,t−1 = ln(yi,t−1 + 1), where the

addition of 1 is necessary for the case of yi,t−1 = 0.

Dynamics Through Cumulative Sum of Lags

In some contexts (as in the empirical application in this paper), it can be argued that

the cumulative sum of past counts (denoted by Bit) influences the current count. With the

weak-exogeneity assumption still maintained, the dynamic model can be adjusted as follows:

yit | µit ∼ Po(µit)

µit = exp(x′itβ + δBit + δ0yi0 + x̄′iγ + ai)

Bit =
t−1∑
j=1

yij

(2.4)

The same problem of explosive behavior arises as in the standard dynamic model. It can be

mitigated similarly by replacing Bit with B̃it = ln(Bit + 1).
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2.3.2. Poisson-Lognormal Model

The standard (non-spatial) Poisson-lognormal model assumes a normal distribution for ai,

which induces a lognormal distribution, αi = eai . Before proceeding, an important omission

from the model (2.1) is worth addressing. As Cameron and Trivedi (2013, p.346) note, α is

used in this model as a unit unobserved effect rather than an overdispersion parameter. In

other words, it is used to account for the heterogeneity resulting from the panel structure

of the data. While it may soak up the overdispersion across units, potential time-varying

within-unit overdispersion may still persist. To account for it, a random-error term, εit, that

varies across units and time may be included. The model, then, becomes:

yit | µit ∼ Po(µit)

µit = exp(x′itβ + ai + εit)

a ∼ NN(0, D)

εit ∼ N (0, σ2
ε)

(2.5)

where xit is a (K×1) vector that contains an intercept term and the covariates (as well as the

additional regressors associated with the dynamic models), and β is a vector of corresponding

coefficients. D is a (N ×N) covariance matrix that may be diagonal for a non-spatial model

or unrestricted to account for spatial correlation.

The model can be equivalently written in error-component form, ηit = ai + εit, with

a combined covariance matrix, Σ = D + σ2
εIT . However, Σ is a structured matrix, and

estimating its components separately is more informative about the nature of correlation in

the data.

Latent Variable Representation

For estimation purposes, obtaining the marginal likelihood analytically from (2.2) is not

possible as the integral is intractable. Thus, frequentist estimation is usually done through
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simulated likelihood or Gaussian quadrature methods (Cameron and Trivedi, 2013, p.122).

Alternatively, Bayesian MCMC methods can be utilized to circumvent the evaluation of the

integral and simulate the joint posterior distribution of the parameters. In this framework,

the random effects are treated as parameters to be sampled to augment the data (Chib et al.,

1998). However, the resulting full conditional posterior distribution of β is non-standard, re-

quiring an Metropolis-Hastings (MH) step in the MCMC algorithm. An alternative approach

that leads to a standard distribution is to adopt a latent-variable representation (Cameron

and Trivedi, 2013, p.462):

yit | zit ∼ Po(exp(zit))

zit ≡ ln(µit) = x′itβ + ai + εit

(2.6)

where now the data augmentation procedure consists of sampling the latent variables, {zi},

as well as the random effects, {ai}.

Spatially-Correlated Random Effects

Spatial correlation is introduced into the model by specifying the following spatial autore-

gressive process for the random effects:

a = ρWa+ v (2.7)

where ρ is the spatial correlation, W is the (N × N) spatial weight matrix defining the

relationships between units, and v is a vector of errors. Model (2.11) implies that the

random effect of one observational unit is a function of the random effects of other units

related to it through W plus an error. If the unit of analysis is a region (e.g., zip code), then

the elements of W can be based on contiguity, where two regions are considered neighbors

if they share any part of a border:
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wik =


0 if i = k

1 if i ∼ k (i.e., i and k are neighbors)

0 if i��∼k (i.e., i and k are not neighbors)

It is common practice to standardize W such that its rows sum to unity as it results in

desirable properties that are computationally useful. The resulting row-standardized W also

has an interpretive benefit in that the spatial lag variable (Wa) for unit i represents the

average of random effects of its neighbors.

Define A = IN − ρW and solve for the random effects to get

a = A−1v ∼ NN(0, D) (2.8)

The nature of the spatial correlation is manifest in the covariance structure of D, with Dik

(the [ik]th element of D) representing the correlation between ai and ak. There are two

approaches to specifying D. The first, introduced by Besag (1974), assumes the following

conditionally autoregressive (CAR) prior distribution for the random effects explicitly:

ai|{aj}j 6=i ∼ N
(
ρ
∑
j∈Ni

wijaj, σ
2
a

)

From which the covariance matrix of the joint distribution (2.8) is derived to be Dc = σ2
aA
−1.

This distribution then induces the following distribution for the errors: v ∼ NN
(
0, σ2

a A
)
,

which are heteroscedastic and not independent. The second approach, called the simulta-

neously autoregressive (SAR), works in reverse by assuming independently and identically

distributed errors, namely v ∼ NN(0, σ2
aIN), and letting it induce a distribution for the

random effects implicitly. The resulting covariance matrix is Ds = σ2
a(A

′A)−1. Note that

without the spatial correlation (i.e., ρ = 0), both Dc and Ds become diagonal matrices and

the model reduces to the non-spatial Poisson-lognormal model.
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CAR vs. SAR

The CAR specification features more prominently in the statistics literature, which cites

as one of its advantages the fact that, in a hierarchical model such as the one developed here,

it lends itself readily to conditional sampling of the random effects in a Bayesian MCMC

simulation. Furthermore, the errors (v) induced by CAR are necessarily heteroscedastic,

which removes the researcher’s discretion over assuming homoscedasticity. In addition, it can

be shown that SAR can be recast as a CAR, but not vice-versa; thus, the latter is considered

more general. The SAR specification, on the other hand, is favored by econometricians

as it is analogous to the autoregressive disturbance process in time-series models where

the serial correlation in the disturbances stems purely from the lag term while the shocks

are maintained as random. Cressie (1993) and Banerjee et al. (2003) discuss the technical

differences between the two approaches, and Wall (2004) provides an empirical illustration

of the spatial structure implied by them.

In their discussion of the two specifications in a linear hierarchical model, Parent and

LeSage (2008) state that choosing one or the other is “a matter of modeling preference,

computational convenience, or empirical performance in any particular application.” For

their application, they estimate both specifications and choose the one favored by the data

based on estimating the Bayes factor.

In this paper, the SAR specification will be adopted. Besides the appeal of the similarity to

standard time-series models, the advantage cited above of the explicit conditional structure

of the CAR approach will prove to be irrelevant for the model developed here. As will be

seen in the next subsection, the proposed MCMC algorithm will rely on sampling the latent

variables, {zi}, marginally of the random effects, {ai}. This approach allows for sampling

the random effects jointly as a vector, not conditionally element-by-element. Finally, while

not considered in this paper, heteroscedasticity can be easily incorporated into the SAR

approach by simply specifying unit-specific variances, σ2
ai.
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In summary, the Poisson-lognormal model for panel data with spatially-correlated random

effects can be written in matrix form (i.e. stacking over N and T ) as:

y | Z ∼ Po(exp(Z))

Z = Xβ +Q a+ ε

a ∼ NN(0, D)

ε ∼ NNT (0, σ2
ε INT ),

(2.9)

where Q = IN ⊗ 1T with size (NT × N) and D = σ2
a(A

′A)−1. In the case of a dynamic

model, the additional variables are simply part of X.

2.3.3. Estimation via Bayesian MCMC Simulation

Bayesian estimation proceeds by simulating draws from the joint posterior density of the

model parameters with data augmentation. Let θ ≡ (β, σ2
a, σ

2
ε , ρ)′ denote the vector of

parameters to be estimated. By Bayes’ Theorem, the augmented joint posterior density of

(z, a, θ) is proportional to the product of the augmented data likelihood function and their

joint prior density:

p(Z, a, θ|y) ∝ L(Z, a, θ ; y) p(Z, a, θ)

= L(Z, a, θ ; y) p(Z|a, θ) p(a|θ) p(θ),
(2.10)

For the density of the latent variables, p(Z|a, θ), it is desirable to marginalize out the

random effect (a) to improve the mixing of Markov chains in the simulation (Chib and

Carlin (1999) and Chib and Jeliazkov (2006)). To derive the marginalized distribution,

p(Z|θ), let ηi = (ηi1, ηi2, ..., ηiT )′ be the error-component form for unit i. The within-unit

covariance matrix is:

41



Ωi ≡ E(ηiη
′
i|xi) =



(Dii + σ2
ε) Dii . . . Dii

Dii
. . .

...

...
. . . Dii

Dii . . . Dii (Dii + σ2
ε)


(T×T )

= Dii1T1′T + σ2
εIT ,

where Dii is the [ii]th element of D. For units i and k, let their between-units covariance

matrix be Ωik ≡ E(ηiη
′
k|X) = Dik1T1′T , which is of size (T × T ) and captures the spatial

correlation. Then, stacking all N units, the overall covariance matrix is:

Ω = E(ηη′|X) =



Ω1 Ω12 . . . Ω1N

Ω12 Ω2
...

...
. . . Ω(N−1)N

Ω1N . . . Ω(N−1)N ΩN


(NT×NT )

= (D ⊗ 1T1′T ) + σ2
ε INT

Finally, the distribution of Z, marginalized over the random effects, is:

Z = Xβ + η ∼ NNT (Xβ,Ω), (2.11)

Note that for the non-spatial model, Ω becomes a block-diagonal matrix, with each block

having (σ2
a + σ2

ε) on its diagonal and σ2
a as its off-diagonal elements.

While the latent variable representation makes it possible to sample the vector of random

effects jointly, the drawback is that each vector zi must be sampled conditionally on all

other {zj}j 6=i since they are correlated through Ω. To derive the conditional distribution

of zi, one can use standard properties of the multivariate Normal distribution. However,

those properties are based on partitioning Ω and then repeatedly inverting large blocks from

it of size ((NT − T ) × (NT − T )), thus severely slowing down the algorithm. Instead, an

42



alternative, but equivalent, set of properties that are based on the precision matrix, Λ ≡ Ω−1,

can be used (see Rue and Held (2005)). To see how, first re-arrange Z, Xβ, and Λ such that

the ith subvectors and submatrix are at the top:

Z̃ =

 zi(T×1)

zj((NT−T )×1)

 , X̃β =

(xiβ)(T×1)

(xjβ)((NT−T )×1)

 , Λ̃ =

Λii(T×T )
Λij(T×(NT−T ))

Λji((NT−T )×T )
Λjj((NT−T )×(NT−T ))


Then,

zi|{zj}j 6=i ≡ zi.j ∼ NT (z̄i, Ω̄i)

z̄i = xiβ − Λ−1
ii Λij(zj − xjβ)

Ω̄i = Λ−1
ii

(2.12)

Thus, Ω need only be inverted once to conditionally sample all {zi} in each MC cycle.

Repeated inversion of Λii of size (T×T ) is still needed though not computationally intensive.

With the conditional distribution of zi derived, the augmented joint posterior density

(2.10), with the redundant variables and parameters suppressed from the conditioning sets,

can be written as:

p(Z, a, θ|y) ∝
[ N∏

i

fPois(yi|zi) φT (zi|z̄i, Ω̄i)

]
φN(a|0, D) p(β) p(σ2

a) p(σ
2
ε) p(ρ) (2.13)

Note that for the non-spatial model, Λij becomes a zero-matrix, eliminating the second term

of z̄i and thus no inversion would be needed. As a result, {zi} could be sampled independently

(and, hence, more rapidly) of one another.

Priors

The prior for the spatial correlation parameter, ρ, can be specified as a uniform dis-

tribution over its feasible range, which is defined as the range of values that ensures the

non-singularity of the matrix A = (IN − ρW ). Anselin (1988) showed that for a symmetric

W , ρ ∈ (λ−1
min, λ

−1
max), where λmin and λmax are the minimum and maximum eigenvalues of
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W . Furthermore, if W is row-standardized, then λmax = 1. For a non-symmetric, row-

standardized W (as is the case in this model), LeSage and Pace (2009) showed that the

eigenvalues of W may be complex numbers, in which case ρ ∈ (r−1
s , 1), where rs equals the

smallest purely real eigenvalue.

Hence, the prior distributions assumed for the model parameters are:

β ∼ N(β0, B0), ρ ∼ U(r−1
s , 1),

σ2
a ∼ IG(c1/2, d1/2), σ2

ε ∼ IG(c2/2, d2/2)

Full Conditional Posterior Distributions

The parameters (β, σ2
a, σ

2
ε) and the random effects, a, all have full conditional posterior

distributions of standard forms. That is not the case for ρ and the latent variables, {zi};

therefore, they must be sampled via MH steps embedded in the MCMC algorithm and using

proposal densities that converge to the parameters’ target densities. Using an independence-

chain proposal density tailored to envelop the target density and centered at its mode results

in an efficient algorithm. However, the mode must be estimated through maximization, which

can be computationally intensive in for high-dimensional parameters such as {zi}. A less

efficient but faster algorithm generates candidate draws from a random-walk proposal den-

sity: θp = θc + N(0, τ), where θp is the proposed iterate, θc is the current iterate, and τ is

a tuning parameter that shrinks or expands the spread of the standard-Normal deviate to

achieve an acceptance rate between 0.25 and 0.5 (Chib and Greenberg, 1995). Derivation of

the algorithm components can be found in the appendix.
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MCMC Algorithm

The MCMC algorithm to simulate (2.15) proceeds as in the following algorithm, comprised

of 3 (collapsed) sampling blocks:

1. Sample Z, β, and a in one (collapsed) block comprised of two sub-blocks:

1.a) Jointly sample (Z, β) marginally of a as follows:

•
[
{zi}|{zj}j 6=i, β, σ2

a, σ
2
ε , y
]
∼ fPois(yi|zi) φT(zi|z̄i, Ω̄i) via a MH-step for each

i = 1, 2, ..., N

•
[
β|Z, σ2

a, σ
2
ε , ρ
]
∼ NK(β̂, B̂), where

B̂ =
[
B−1

0 +X ′Ω−1X
]−1

and β̂ = B̂
[
B−1

0 β0 +X ′Ω−1Z
]

1.b)
[
a|Z, β, σ2

a, σ
2
ε , ρ,

]
∼ N(â, V̂a)

where V̂a =
[
D−1 + Q′Q

σ2
ε

]−1
and â = V̂aQ′(Z−Xβ)

σ2
ε

2. Jointly sample σ2
a and ρ conditionally on a:

2.a) [σ2
a|ρ, a] ∼ IG

(
1
2
[c1 +N ] , 1

2
[d1 + a′A′Aa]

)
2.b) [ρ|σ2

a, a] ∼ φN(Aa|0, σ2
aIN) pU(ρ) via a MH-step (If the proposed candidate for ρ

falls outside the feasible region, discard it and re-draw until a feasible candidate

is obtained).

3. σ2
ε |β, Z, a,∼ IG

(
1
2
[c2 +NT ], 1

2
[d2 + (Z −Xβ −Qa)′(Z −Xβ −Qa)]

)
For the non-spatial model, sub-block (2.b) simply drops out.

2.4. Simulation Exercise

To evaluate the performance of the algorithm, it is implemented using simulated data

generated according to (2.9). The spatial and non-spatial models are fit, each with their
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static and dynamic specifications. The spatial weight matrix, W , must be constructed

somehow. Rather than generating artificial regions, a set of N = 500 actual zip codes from

California are used, where the contiguity relationships are determined using a GIS algorithm.

The average number of neighbors for each region comes out to be approximately 5.6 with

a standard deviation of 1.9. Then, artificial count data are simulated using two covariates

generated as follows:

xi1 = U(−2, 2) +N(0, 9)

xi2 = U(−2, 2) +N(0, 4)

The uniform means and large variances provide sufficient variation for the time-average co-

variates of the Mundlak correction. The time horizon, T , is set to 4 and the prior distributions

are specified to be diffuse. The simulation results are presented in Table 2.1.

The results from the non-spatial model (ignoring the spatial correlation) are presented

in the top panel of Table 2.1. The algorithm recovers the true values of the parameters of

interest, namely (β1, β2, δ, σ
2
a, σ

2
ε), with accuracy. The intercept tends to be biased downward

and less precise in the dynamic specifications. The coefficients of the initial condition and

the Mundlak-correction variables (δ0, γ1, γ2) are all biased downward but remain within two

standard deviations. Finally, the spread of the proposal density for the latent variables had

to be shrunk considerably in all models in order to achieve the desired acceptance rate.

Turning to the bottom panel, the algorithm performs as well for the spatial model in recov-

ering the true values of the parameters. The estimate of the spatial correlation coefficient,

ρ, shows a downward bias but still falls within one standard deviation of the true value.

Similar to the non-spatial model results, (β1, β2, δ, σ
2
a, σ

2
ε) are recovered accurately and the

other coefficients are biased downward but within two standard deviations. Also the spreads

of the proposal densities for both the latent variables and the spatial correlation had to be

shrunk considerably.
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Table 2.1: Posterior mean and standard deviation estimates using simulated data

Parameter True value Static One lag Cumulative lags

Non-spatial model
β0 0.6 0.7425 (0.0492) 0.4150 (0.0756) 0.4034 (0.0793)
β1 -0.5 -0.5036 (0.0093) -0.5109 (0.0091) -0.5095 (0.0084)
β2 0.2 0.2050 (0.0100) 0.2039 (0.0115) 0.2049 (0.0111)
δ 0.3 - 0.3379 (0.0196) 0.3496 (0.0178)
δ0 0.1 - 0.0782 (0.0470) 0.0915 (0.0455)
γ1 -0.2 - -0.1723 (0.0317) -0.1382 (0.0306)
γ2 0.4 - 0.3487 (0.0359) 0.3063 (0.0350)
σ2
a 0.7 0.8342 (0.0690) 0.8089 (0.0730) 0.7663 (0.0716)
σ2
ε 0.3 0.3077 (0.0231) 0.3466 (0.0229) 0.3370 (0.0202)

Tuning, τz, for {zi} 0.08 0.08 0.07

Spatial model
β0 0.6 0.7386 (0.0756) 0.3984 (0.1001) 0.3903 (0.0995)
β1 -0.5 -0.5000 (0.0088) -0.5128 (0.0091) -0.5096 (0.0085)
β2 0.2 0.2054 (0.0108) 0.2063 (0.0111) 0.2055 (0.0110)
δ 0.3 - 0.3389 (0.0196) 0.3515 (0.0186)
δ0 0.1 - 0.0816 (0.0437) 0.0981 (0.0427)
γ1 -0.2 - -0.1691 (0.0291) -0.1317 (0.0302)
γ2 0.4 - 0.3700 (0.0335) 0.3140 (0.0332)
σ2
a 0.7 0.7191 (0.0644) 0.6766 (0.0674) 0.6406 (0.0647)
σ2
ε 0.3 0.3039 (0.0229) 0.3480 (0.0222) 0.3400 (0.0211)

Spatial correlation, ρ 0.5 0.4443 (0.0677) 0.5041 (0.0643) 0.4694 (0.0664)
Tuning, τz, for {zi} 0.08 0.08 0.07
Tuning, τρ, for ρ 0.02 0.02 0.02

N = 500;T = 4; MC sample size = 10,000; burn-in = 2,000.

Implementation Issues

A few implementation issues are worth discussing. First, the time horizon was restricted to

4 periods for computational convenience. Increasing T to, say, 12 slowed down the algorithm

severely. This limitation is mostly driven by the inversion of Ω and Λii. Indirect methods

of inversion such as using matrix decomposition may provide improvements. Second, the

spatial correlation reduces the effective sample size. Ignoring the correlation in the non-

spatial model should result in underestimating the posterior standard deviations. While this

result can be seen by comparing the static models, it is not as clear in the dynamic models.

In general, the differences in standard deviations are very small. The lack of appreciable

differences may be an artifact of the simulated data, which needs further exploration.
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2.5. Empirical Illustration: Solar Panel Adoption

In this section, the model and algorithm are applied to data from the California Solar

Initiative (CSI). There has been an increased interest in understanding the patterns of solar

panels adoption in recent years. In particular, some of the empirical literature is focused

on whether neighborhood peer effects can explain some of the spatial clustering observed in

the data. As a matter of policy, the presence of such effects would suggest a role for social

interaction within neighborhoods in promoting sustainable energy sources more effectively.

2.5.1. Empirical Literature

The CSI data were featured in a study by Bollinger and Gillingham (2012) where they

fit a linear panel model to estimate the effect of the installed base (i.e., the cumulative

sum of lags) on the fraction of solar homes in a zip code. While they control for zip code-

quarter fixed effects, they do not allow for correlation between zip codes. They find that,

on average, an additional installation in a zip code has a small but positive effect on the

probability of future adoption in that zip code. In an earlier working-paper version, Bollinger

and Gillingham (2010) estimate a hazard model, and their findings are consistent with their

latter conclusion. Richter (2013) fits a linear model (similar to Bollinger and Gillingham

(2012)) to data from the UK and finds similar results.

Gillingham and Graziano (2015a) use data from Connecticut and a negative binomial

model to estimate the effect of the installed base within a certain distance and time window

on the number of new installations in a block group. They control for spatial correlation only

partly by including a dummy variable for block-groups that are part of a wider-area promo-

tion campaign. They find a positive relationship between adoption and the installed base

that diminishes with distance and time. They infer that this is suggestive of neighborhood

peer effects through social interaction and visibility.
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Balta-Ozkan et al. (2015) employ a spatial econometrics approach (i.e. via a spatial weight

matrix) to study solar panel adoption in the UK, but they log-transform the dependent

count variable to estimate a linear model. Using cross-sectional data, they find statistically

significant spillover effects in the adoption of solar panels between regions.

In contrast, the proposed model in this paper preserves the count nature of the data and

incorporate the installed-base specification, all while also controlling for spatial correlation

between regions that is often omitted in the literature.

2.5.2. CSI Background

California has actively promoted the shift to sustainable sources of energy in the last two

decades. Given its geographic location and the abundance of sunshine that it enjoys, the

state has dedicated considerable effort to harnessing solar energy. Much of this effort has

focused on the demand side, implementing policies that aim to spur demand for solar panels

through incentive programs.

The CSI is a cash rebate program that was launched in 2007 with a budget of over USD2

billion, aiming to achieve nearly 2 giga Watts (GW) of installed solar capacity. The initiative

targeted customers of the state’s three investor-owned utilities, offering rebates for existing

homes as well as new and existing commercial, agricultural, government, and non-profit

buildings. The incentive is structured by 10 levels such that early adopters receive a higher

rebate, with the decline in incentive level triggered by achieving pre-set milestones based on

the installed capacity.

2.5.3. Data

Data on installations are published on the CSI website, spanning the period from 2007 to

2016. Among other variables, the data include the zip code of the customer as well as the

date of applying for the rebate, which is a proxy for the date of adoption. A panel is then

constructed of the number of installations in zip codes by any preferred time unit.
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The CSI data are supplemented by data from other sources: annual socioeconomic and

built environment variables from the American Community Survey (ACS); monthly energy

consumption by county from California Energy Commission; national average monthly elec-

tricity prices from the Energy Information Administration; 2012 presidential election results

by county. Most of these variables are annual; therefore, the CSI installation counts are

aggregated to annual counts.

The analysis is performed on the subset of zip codes of residential customers falling within

the jurisdiction of the utility company Southern California Edison. After excluding zip codes

with missing data and those with no neighbors, the final sample is comprised of 458 zip codes

and 4 years (2011-2014; the ACS data are only available from 2011 and there were no new

installations by SCE customers under the CSI program after 2014), resulting in 1,832 zip

code-year observations.

2.5.4. Analysis Results

The model is estimated with the static and dynamic specifications. Year dummy variables

are added to control for potential region-wide unobserved time effects that may influenced

adoption (e.g. marketing campaigns or changes in incentive level). To avoid explosive

behavior in the algorithm, the covariates that are not fractions are standardized to have a

mean of zero and a standard deviation of one.

Non-Spatial Model

The results from the non-spatial model are presented in Table 2.2. Note that these are

estimates of coefficients, not marginal effects. Therefore, meaningful discussion of effect size

is not possible. However, the coefficient signs are interpretable.
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Table 2.2: Posterior mean and standard deviation estimates from the non-spatial model

Static One lag Cumulative lags
Intercept -0.2155 (3.6743) -0.8293 (3.6436) -1.2529 (3.6388)
Fraction voted Obama 2012 0.8251 (1.1595) 0.2941 (0.5143) 0.4455 (0.4339)
Fraction owner-occupied 2.3448 (0.4572) 1.9014 (0.8509) 2.2058 (0.8595)
Fraction white 1.1229 (0.4586) 0.5136 (0.6152) 0.6041 (0.5798)
Fraction Black -0.1211 (0.7122) -0.9249 (1.5898) -0.9465 (1.6292)
Fraction Asian 1.2416 (0.6291) -1.3429 (1.5224) -1.4718 (1.3921)
Fraction Hispanic -1.5738 (0.4594) -1.3897 (0.9491) -1.9036 (0.9078)
Fraction with college degree 0.2351 (0.5770) 0.3219 (1.0193) 0.4086 (1.0456)
Unemployment rate 0.7429 (0.9156) -0.0364 (1.1682) 0.3838 (1.1782)
Fraction of households with children under 6 -0.0197 (0.3521) 0.4766 (0.4404) 0.5765 (0.4290)
Number of housing units 0.8437 (0.0545) 0.3105 (0.5290) 0.1661 (0.5034)
Housing density per square-mile -0.4324 (0.0784) -0.9832 (1.0861) -0.8622 (1.0548)
Median income ( × USD 1000) 0.1909 (0.0825) -0.2776 (0.1312) -0.3106 (0.1308)
Median age -0.3690 0.0786) -0.1540 (0.1321) -0.1710 (0.1344)
Average household size 0.0956 (0.1004) 0.3205 (0.1731) 0.3711 (0.1626)
Commute to work (minutes) 0.0025 (0.0467) 0.0478 (0.0719) 0.0308 (0.0731)
Electricity consumption -0.0012 (0.1366) 1.1214 (0.5371) 1.1729 (0.5307)
Price of electricity 0.0286 (2.5920) -0.0771 (2.6155) -0.3893 (2.6201)
yt−1 - 0.5852 (0.0529) -
Installed base - - 0.8075 (0.0282)
y0 - 0.0173 (0.0027) 0.0072 (0.0017)
σ2
a 1.0372 (0.0837) 0.1376 (0.0319) 0.0855 (0.0099)
σ2
ε 0.0670 (0.0052) 0.0965 (0.0100) 0.0926 (0.0070)

Tuning, τz, for {zi} 0.04 0.04 0.04

N = 458 zip codes; T = 4 years; MC sample size = 10,000; burn-in = 2,000.

The installed-base coefficient is positive and statistically important, which is in line with

the previous studies and suggestive of a neighborhood peer effect. The signs of the other

coefficients that are of statistical import are generally consistent across the three specifica-

tions. Focusing on the installed-base specification (3rd column), zip codes with a higher

fraction of owner-occupied units tend to have more installations, which is reasonable since

homeowners have more power than renters over the decision to install. Higher fraction of

hispanics is associated with fewer installations. Zip codes with higher median income have

fewer installations, which is puzzling based on the presumption that installation is costly.

However, the negative relationship may be explained by the fact that this cost is reduced by

the rebate. Coupled with the expected savings on electricity bills, lower income households

may be the ones more likely to install. The same rationale may explain the positive coeffi-

cient of the average household size. Higher electricity consumption is associated with more
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installations, which is expected. Finally for the initial condition variable, a higher number

of installations at the beginning of the sample period is associated with more installations

later, which is reasonable.

Spatial Model

Next, the coefficient estimates from the spatial model are presented in Table 2.3. Across

the three specifications, the spatial correlation estimate is positive and statistically different

from zero, implying that zip codes are influenced by unobserved factors that their neighboring

zip codes are subjected to. The presence of the correlation reduces the effective sample size,

which should produce larger posterior standard deviations in the spatial model compared to

the non-spatial model. The installed-base variable has a positive coefficient that is similar in

magnitude to that from the non-spatial model. However, it has a larger posterior standard

deviation as expected. The signs and statistical importance of the other covariates are similar

to those from the non-spatial model with the difference in posterior standard deviations as

well.

Discussion of Results

Dynamics

An interesting observation from the results is that the coefficients of the lagged-count

(yt−1) and the installed-base are both statistically important in their respective models,

which raises an interesting question about the nature of the dynamics underlying the effect

on adoption. On the one hand, the installed-base specification assumes that a household

develops the intent and decision to install as a result of observing the accumulation of

installations in its zip code over the period spanning the entire past. On the other hand,

the lagged count specification suggest that the household is influenced more by recent trends

in new installations. Both hypotheses are plausible but tell a different story about the

mechanism of the social interaction effect and, thus, have different policy implications. If
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Table 2.3: Posterior mean and standard deviation estimates from the spatial model

Static One lag Cumulative lags
Intercept 0.2539 (3.7205) -0.3731 (3.6311) -0.8189 (3.6734)
Fraction voted Obama 2012 0.1873 (1.5739) -0.1388 (0.8547) 0.0285 (0.6706)
Fraction owner-occupied 2.2403 (0.4872) 1.9288 (0.8933) 2.1820 (0.8796)
Fraction white 1.2106 (0.4685) 0.5620 (0.5808) 0.7446 (0.5819)
Fraction Black -0.1630 (0.7927) -0.6951 (1.7659) -1.0995 (1.6571)
Fraction Asian 0.9652 (0.7026) -1.1650 (1.5161) -1.3662 (1.4549)
Fraction Hispanic -1.9445 (0.4865) -1.3347 (1.0001) -1.8874 (0.8722)
Fraction with college degree 0.2802 (0.5960) 0.2542 (1.1452) 0.4004 (1.0197)
Unemployment rate 0.2192 (0.9168) 0.0113 (1.1515) 0.5049 (1.1108)
Fraction of households with children under 6 0.1405 (0.3677) 0.4772 (0.4608) 0.3513 (0.4345)
Number of housing units 0.8201 (0.0534) 0.3865 (0.5037) 0.2434 (0.5166)
Housing density per square-mile -0.3628 (0.0859) -1.2474 (1.0351) -0.9718 (1.0812)
Median income ( × USD 1000) 0.1554 (0.0901) -0.2757 (0.1253) -0.2841 (0.1212)
Median age -0.3136 (0.0895) -0.1669 (0.1480) -0.1782 (0.1386)
Average household size 0.2064 (0.1109) 0.3170 (0.1741) 0.3465 (0.1682)
Commute to work (minutes) -0.0584 (0.0501) 0.0457 (0.0712) 0.0455 (0.0648)
Electricity consumption 0.0998 (0.1770) 1.1550 (0.5530) 1.0951 (0.5165)
Price of electricity -0.0055 (2.6122) -0.1059 (2.5958) -0.4908 (2.6345)
yt−1 - 0.5632 (0.0453) -
Installed base - - 0.7741 (0.0294)
y0 - 0.0158 (0.0024) 0.0071 0(.0017)
Spatial correlation, ρ 0.4253 (0.0570) 0.5444 (0.0930) 0.5246 (0.0981)
σ2
a 0.9112 (0.0796) 0.1199 (0.0238) 0.0771 (0.0101)
σ2
ε 0.0670 0.0053) 0.0930 (0.0087) 0.0891 (0.0065)

Tuning, τz, for {zi} 0.04 0.04 0.035
Tuning, τρ, for ρ 0.015 0.012 0.012

N = 458 zip codes; T = 4 years; MC sample size = 10,000; burn-in = 2,000.

the installed-base hypothesis is supported more by the data, then a promotional program can

exploit the influence of existing installations in a neighborhood regardless of how far in the

past they have been in place. On the other hand, the lagged-count hypothesis suggests that

such a program should discount the effect of installations that took place in the distant past.

A specification test (e.g. via Bayesian model comparison) would be necessary in deciding

which specification is more appropriate.

Identification

While the signs of the coefficients are not out of the ordinary and in line with other

studies, this paper does not make any claims about the identifiability of the neighborhood

peer effects. Generally, spatial models are plagued by three main identification challenges.
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The first is the reflection problem highlighted by Manski (1993), which is a simultaneity

problem in which the direction of the peer effect is not identifiable. This is not an issue in

this paper by virtue of specifying the temporal dependence through past counts only.

The second challenge is the endogenous self-selection of peers based on, say, preferences

towards residing close to other environmentally-conscious households. Including a rich set

of covariates that proxy for environmental preferences may help control for any correlation

between the error term and installed-base. Including the 2012 election data may capture

some of the unobserved political orientation of zip code residents, but this is only a single

variable that is also time-invariant, so by no means is it sufficient. Including a rich set of zip

code fixed effects (as is done in other studies) is not possible as the random-effects model

assumes away any fixed effects by construction through the assumption that the unobserved

effects are uncorrelated with the included regressors. The model only partially relaxes this

assumption by implementing the Mundlak correction.

The third challenge is the potential presence of correlated unobservables between house-

holds within a zip code (e.g. marketing campaigns targeted at neighborhoods rather than

individual households). As already stated, including zip code fixed effects as a remedy is

ruled out. Time dummy variables only control for region-wide effects. An additional remedy

that is possible in principle is the inclusion of zip code-year dummy variables to control

for any zip code-specific, time-varying effects, such as the targeted marketing campaigns.

However, including those (1,374 of them) may result in overfitting.

The proposed model, nonetheless, goes a step further to address a related problem that

has been overlooked in previous studies: correlated unobservables between the zip codes

themselves. This correlation can still be the result of marketing campaigns targeted at

neighborhoods in contiguous zip codes or be based on the economic conditions in the city or

county. Rather than including higher (spatial) level dummy variables, this paper’s approach

models this correlation explicitly and allows for it to vary in intensity through the spatial

lag variable defined by the spatial weight matrix.
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2.6. Conclusion

A Poisson-lognormal model count data with spatially-correlated random effects is pre-

sented. The paper adds to the spatial econometrics toolkit a model that preserves the

discrete nature of the data and incorporates time dynamics (both in the form of separately

additive lags or cumulative sum of lags). The model parameters are estimated by an MCMC

algorithm that exploits the hierarchical structure of the model, relying on the latent-variable

representation and a collapsed-block sampling scheme. The algorithm is also capable of esti-

mating the spatial and non-spatial components of the covariance matrix separately, enabling

the researcher to gain more insight about the correlation structure in the data.

After a simulation exercise to evaluate the performance of the algorithm, the model is used

to analyze the spatiotemporal patterns of solar panel adoption using data from Southern

California. The results show the importance of controlling for the spatial correlation in

the random effects in order to draw correct inferential conclusions about the neighborhood

effect. The empirical results raise an interesting question about the proper specification for

the dynamics—namely, lagged count vs. installed base—that has been overlooked in the

literature. An immediate extension to this paper that can help resolve this question is to

employ Bayesian model comparison methods (via estimation of the marginal likelihood and

Bayes factor) to choose the specification that is supported by the data. Model comparison

is also useful in testing the presence of spatial effects to warrant estimating a spatial model

in the first place and, if so, in deciding between the SAR and CAR specifications.

The analyses reveals a few implementation issues that warrant further investigation. First,

alternative matrix inversion techniques may potentially speed up the MCMC simulation to

allow for panels with longer time horizons. Also, while the empirical results show that

ignoring the spatial correlation leads to over-confidence in the estimates as expected, the

results from the simulation exercise are not as clear and, thus, needs be explored further.
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Chapter 3

Peer Effects and Spatial Correlation

in Solar Panel Adoption

3.1. Introduction

Theoretical economic models of efficient-technology diffusion predict, with empirical sup-

port, a gradual diffusion process as consumers weigh the trade-off between the expected

future benefits of the technology and the upfront cost of acquiring it (Jaffe and Stavins,

1994). When the diffusion process is slower than optimal, an energy efficiency gap forms

between the optimal and realized levels of investment in the technology. The underlying

behavior is that consumers undervalue the expected discounted future energy cost savings

brought upon by the efficient technology, leading them to under-invest in it. This inefficient

investment may be a result of a market failure in the form of imperfect information that

biases the consumer’s valuation.

Policies aimed at promoting adoption of efficient technologies are seen as addressing two

market failures. First, adopting the efficient technology reduces the negative externalities,

such as climate change and pollution, generated by the existing inefficient ones that it replaces
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(albeit a second-best measure compared to a Pigouvian carbon tax). Second, consumer

private welfare is improved by the energy cost savings. The question is how to address the

information imperfection? As a general principle, a first-best intervention is one that tackles

it directly via information disclosure. However, when it is ineffective in practice, subsidizing

the efficient technology as a second-best can improve welfare (Allcott and Greenstone, 2012).

Solar photovoltaic (PV) panels, as a technology that generates clean renewable energy

that directly replaces fossil fuel-based energy while at the same time immediately offsetting

consumers’ energy costs (and sometimes generating revenue for them), is a neat application

of these concepts. The fact that it is a niche good that consumers are still in the process of

accumulating their collective knowledge and experience about it, coupled with uncertainty

about future fossil fuel energy prices and government energy policies, highlights the infor-

mation imperfections associated with it and raises the stakes of the trade-off that consumers

weigh in the face of the high upfront cost of equipment and installation. However, the recent

exponential growth in solar panel adoption globally (Figure 1 in the appendix) has all the

ingredients of the discussion above that make it a fertile ground for research. Interest lies

in what, if any, may have contributed to addressing potential information imperfections in

light of technological advances, financing solutions, and subsidies of various forms that co-

incided with the phenomenon and may have all contributed, to varying degrees, to lowering

both direct (equipment and installation) and indirect (information) costs and spurred the

demand.

Using data from the California Solar Initiative (CSI) rebate program in a spatial econo-

metric framework to estimate a discrete-time transition model, this paper contributes to a

small but growing literature on the role of peer effects play in the diffusion process. If peer

effects are found to have played a meaningful role, controlling for other contributing factors,

then the government and solar panel suppliers may consider leveraging consumers’ social

networks as a conduit for disseminating information and raising awareness about the bene-

fits of solar energy, thus lowering information search and learning costs with an intervention
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that is closer to the direct first-best. The sign of the peer effect estimated in this paper

is consistent with that found in prior studies, but the effect is not statistically important.

Further development of the estimation strategy—to address the outstanding identification

issues as well as explicitly control for other determinants of adoption—is needed before a

definitive conclusion can be stated about the existence and magnitude of the peer effect.

However, the results do reveal that correlated unobservables, if left unaccounted for, lead to

an upward bias in the peer effect estimate.

3.2. Related Literature

According to the International Renewable Energy Agency, global solar PV capacity grew

from 14.6 to 385.7 giga Watts (GW) since 2008. The years 2015-2017 alone accounted for

58% of the 371 GW added, with net additions in 2017 more than doubling those in 2015

(IRENA, 2018). During the same period, solar PV module prices and installations costs

have fallen substantially (Figure 2 and 3), thus reducing the direct portion of the upfront

cost of adoption.

Various market solutions and government policies have also contributed to lowering this

barrier. Most notably, third-party ownership (TPO)—a leasing arrangement whereby the

solar contractor bears the installation cost and retains ownership of the solar system while

the consumer reaps its benefit for a monthly payment—is a market innovation that is credited

with attracting new consumer segments, especially younger, less educated, and lower income

ones (Rai and Sigrin, 2013; Drury et al., 2012). Also, Ameli et al. (2017) and Kirkpatrick and

Bennear (2014) find that the Property-Assessed Clean Energy program—loans provided by

municipalities to homeowners to finance the purchase and installation of their solar systems

and are repaid over 20 years through an increment added to their property tax—increases

solar panel adoption. These findings imply that, for some consumers, TPO and financing

arrangements solve a credit constraint problem that might have been part of slow diffusion
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inefficiency. In addition, there have been policies designed to shape the incentive structure

faced by energy users, such as cash subsidies, tax credits, tiered-electricity pricing, and net

energy metering (NEM) that allows consumers to sell excess solar power back to the grid.

Several studies find different combinations of these policies to be effective in accelerating

adoption (Borenstein, 2017; Vaishnav et al., 2017; Matisoff and Johnson, 2017; Crago and

Chernyakhovskiy, 2017).

There are also documented efforts by governments and suppliers to address the information

imperfections. The TPO arrangement, for example, is seen as a way of mitigating the

uncertainty associated with adopting a new technology by having the TPO assume the

operational and maintenance duties on behalf of the host customer (Rai et al., 2016; Rai

and Sigrin, 2013; Rai and Robinson, 2013). Information disclosure, in the form of marketing

and information announcements, is also found to be effective in bridging the information gap

(Reeves and Rai, 2018; Rai et al., 2016; Sigrin et al., 2015).

A subset of the studies cited above has uncovered, somewhat tangentially, suggestive ev-

idence of peer effects on adoption decisions, which the literature that is exclusively focused

on the subject appears to develop a consensus around. Studying adoption in California,

Bollinger and Gillingham (2012) estimate the consumer’s probability of adopting to be 0.78

percentage points higher in response to new installations in their zip code, reflecting a neigh-

borhood peer effect. Using data from Connecticut, Gillingham and Graziano (2015b) find

that the number of installations in a census block group increases by an average of 0.44 solar

systems if an installation occurred in the prior year within half a mile. They show that the

effect decays in space and time, attributing it to social interaction and the visibility of the

solar panels. Richter (2013) finds a positive but very small effect on adoption in the United

Kingdom. Noll et al. (2014) find positive peer effects on adoption as a result of leveraging

trust networks in solar community organizations that are formed to encourage adoption by

providing financing options and information about the benefits of solar PV’s.
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3.3. Data

3.3.1. California Solar Initiative

The CSI1 was a statewide incentive program that provided cash rebates for new solar PV

installations. Following Governor Arnold Schwarzenegger’s Million Solar Roofs initiative,

the state passed a law in 2006 allocating a budget of USD2,167 million to achieve 1,940

mega Watts (MW) of installed capacity by the year 2016, of which the vast majority (1,750

MW) were sought from the general market and the remaining 190 MW from two specialized

programs for low-income residential customers.

The CSI targeted customers of California’s 3 investor-owned utilities (Southern California

Edison (SCE), Pacific Gas and Electric (PGE), and San Diego Gas and Electric (SDGE))

that represent 68% of the state’s electric load. It covered installations in existing homes

as well as new and existing commercial, industrial, government, non-profit, and agricultural

properties, with the utilities administering the program directly under the oversight of the

California Public Utilities Commission (CPUC). The CSI launched in 2007 and ran until the

capacity or budget targets were reached for each utility.

Incentive Structure

The overall target for each utility is broken down into 10 intermediate sub-targets (called

steps) of varying capacity to be achieved over the lifespan of the program. The incentive rate

is lowered automatically each time a sub-target is reached. As such, the CSI program was

designed to reward early adopters better than later ones. The cash rebate amount received

by the system owner was determined based on the prevailing step incentive rate at the time

of applying to the program as well as the physical attributes of the solar system. The targets,

budgets, and incentive rates varied across utilities and sectors.

1The complete program details can be found in the CSI Program Handbook (2017)
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Application Process

To encourage adoption, the CPUC designed a simplified application process. First, the

customer conducts an online energy efficiency audit of their home to determine the need for

and size of the solar system. Second, the customer hires a solar contractor from a searchable

database of licensed contractors on the CSI website. Third, the customer applies for the

incentive, often done by contractor on their behalf. Completing this step as early as possible

is critical as it locks in the prevailing incentive rate on the date of the application. On

this reservation date, the funds for the customer’s rebate are reserved based on the size and

estimated performance of the system. Fourth, the customer must install system within 12

months of the reservation date. Upon completing the installation, the utility interconnects

the system to the grid, after which the customer begins to reap four types of benefits.

First, the customer’s electricity consumption is immediately offset by the solar energy they

generate, lowering their electricity bill. Second, excess energy is fed back into the grid in

exchange for credit applied towards the customer’s electricity bill for further offsets. Third,

and the final step in the application process, the customer claims the cash rebate if they own

the system. Finally, they can claim federal or local tax credits they are eligible for.

3.3.2. Estimation Sample

The estimation is restricted to 7,379 SCE customers representing the entire population of

the CSI general market participants from Orange County with accounts established before

or during the first phase of the CSI. The data contain customers’ street addresses as well as

dates of installations, thus enabling the construction of a spatiotemporal estimation dataset.

Table 3.1 presents the summary statistics of the main variables.
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Table 3.1: Summary statistics (N = 7, 379)

Mean (St. Dev.)
All electric appliancesa 0.025 (0.156)
Pool at homea 0.338 (0.473)
Electric vehiclea 0.069 (0.253)
Energy efficiency program participationa 0.289 (0.453)
Energy efficiency total rebate (USD) 31.80 (201.91)
Reserved CSI incentive rate (USD per Watt) 0.948 (0.751)
CSI rebate (USD) 3869 (4035)
Install price (USD per Watt) 8.138 (2.956)
Total installation cost (thousand USD) 33.175 (16.143)
System size (kW) 4.600 (2.208)
Home ownera 0.988 (0.108)
Solar system ownera 0.554 (0.497)
Solar irradiation (MW per sq-meter) 2.071 (0.807)
Tax capa 0.928 (0.258)
Tax credit if system owner (USD) 9621 (4361)

a Binary variables

Besides the CSI-related variables, the all-electric-appliances and pool variables aid in cap-

turing irregularities in consumption. The electric vehicle and energy efficiency program

participation variables serve as proxies for environmental preferences. Almost the entire

sample is comprised of homeowners, reflecting the fact that renters seldom have the power

to install solar panels over properties they don’t own. Solar irradiation is a measure of the

amount of energy from the sun that the customer receives at their location.

One noteworthy statistic is the fact that only 55% of customers own their CSI solar systems

while the rest act as hosts to systems owned by TPO’s. This fact has implications on how

certain covariates are specified in the model as only system owners receive the CSI rebate

and bear the upfront installation cost. Specifically, the incentive rate and install price must

interacted with system ownership status. The tax credit also can only be claimed by the

owner, which is already factored into calculating the credit value. In addition, the tax credit

was capped at USD2,000 prior to the year 2009. Therefore, a dummy variable representing

the tax credit cap must be interacted with the tax credit in order to capture changes in the

effect before and after the cap was lifted.
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Exposure vs. Reservation

The sample exhibits a few irregularities that may present challenges in interpreting the

results. First, as mentioned earlier, the CSI incentive rate is a 10-step function that declines

over time as more systems are installed. Second, not all customers are exposed to the CSI

program from its launch to its conclusion. Third, customers reserve their rebates at different

incentive rates at different points in time. Table 3.2 presents a breakdown of all 9,214 OC

customers by exposure and reservation step.

Table 3.2: Exposure and reservations by step

Step Incentive rate Avg. installation price Target Step length Exposed Reserved
USD per Watt USD per Watt MW Days Percent Percent

2 2.50 9.90 10.6 618 80.12 2.64
3 2.20 10.90 15.2 396 3.92 5.86
4 1.90 10.78 19.7 400 4.94 10.08
5 1.55 9.91 24.3 223 2.15 11.72
6 1.10 8.98 28.8 207 2.51 11.28
7 0.65 7.48 32.6 202 1.70 10.98
8 0.35 6.67 38.0 210 2.56 11.44
9 0.25 6.18 43.3 182 1.15 11.92
10 0.20 5.79 53.1 476 0.95 24.08

The vast majority (80%) of customers were exposed to the highest incentive rates available

at the start of the CSI program. They include customers that were present prior to the CSI

or those who moved to Orange County during step 2. The remaining 20% are customers who

moved in during later steps, which are excluded from the main analysis. In contrast, the

majority of customers reserved their rebates during the later steps of the program: about

58% customers installed during or after step 7, which went into effect in September of 2011,

at incentive rates markedly lower than those during the first 3 steps that ended in July of

2010.

While the declining incentive rate over time was designed to encourage early adoptions,

the observed influx of CSI reservations during the later steps (at low incentive rates) of the

program may be driven by the dramatic decline in installation cost that was alluded to in

Section 2. The second column in Table 3.2 presents the in-sample average installation price.
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Throughout the CSI program, the average price dropped by 42%. Another factor that may

explain the increased reservations during the later steps is that the MW targets for said steps

were higher, requiring, on average, a larger number of customers to reach them.

3.3.3. Exploratory Duration Analysis

Before delving into the main analysis of peer effects, it is instructive to explore the data

using standard continuous-time duration models, taking advantage of the availability of

duration data in days. Specifically, these models shed light on the pattern of duration

dependence as well as the effect of key time-varying covariates that cannot be modeled

explicitly in the main analysis due to their lack of cross-sectional variation in a discrete-time

setting.

Let T denote duration until transition from one state (no adoption) to another (adoption),

and let t be its observed realization. The workhorse of these models is the hazard function,

which is the instantaneous probability that T ends (i.e. transition occurs) at t conditional

on having survived until t. Different distributional assumptions give rise to different shapes

of the hazard function and, hence, the pattern of duration dependence.

Three models are used in this exploratory analysis. The first is the Weibull model, which

is characterized by a monotonic hazard whose shape parameter determines if it is increasing

(decreasing), indicating positive (negative) duration dependence. The second model assumes

duration follows a lognormal distribution, leading to a hazard function that slopes upward

initially then downward, thus relaxing the monotonicity assumption, albeit still a restrictive

shape. The third is the piecewise constant hazard model that allows the hazard to flexi-

bly take on different baseline values in different periods. In the three models, unobserved

heterogeneity is incorporated via individual random effects assumed to follow a lognormal

distribution with variance v.
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Exploratory analysis results

It must be noted that since the time-varying covariates do not vary cross-sectionally, their

effects are estimable under the Weibull and lognormal models only as they are absorbed by

the step-specific constants in the piecewise constant hazard model. The maximum likelihood

estimates from the three models of the effects of the covariates on expected log-duration

are presented in Table 3.3. As such, the coefficients represent elasticities (for logarithmic

covariates) and semi-elasticities (for linearly-specified covariates).

As mentioned earlier, the most valuable insights from this exploratory analysis are those

related to time-varying covariates and duration dependence. A detailed discussion of all of

the covariate effects is preserved for the main analysis of the peer effects model in Section 5.

The Weibull and lognormal models show that, for system owners, higher incentives and

lower installed prices are associated with shorter duration—both are expected results. A

Weibull shape parameter (α) that is greater (smaller) than 1 indicates a hazard that is

monotonically increasing (decreasing). The lower panel of Table 3.3 reports an estimate of

ln(α) that is significantly greater than zero, indicating positive duration dependence. This

pattern is corroborated by the estimates of the step-specific constants under the piecewise

constant hazard the model, indicating an overall increasing baseline hazard with an inter-

mediate flat region. Finally, the heterogeneity variance estimates are very small, with the

likelihood ratio test failing to reject the null hypothesis on two of them. This result indicates

that, after controlling for the observed covariates, the sample is fairly homogeneous.

65



Table 3.3: Exploratory analysis results (N = 7, 378)

Model Weibull Lognormal PWCH
Outcome of interest E(ln t|x) E(ln t|x) E(ln t|x)

Coef. (SE) Coef. (SE) Coef. (SE)
Time-varying covariates
Ln(incentive rate) 0.164 (0.034)*** 1.270 (0.122)*** -
Ln(incentive rate) × Owner -0.113 (0.047)** -0.397 (0.118)*** -
Ln(install price) -1.004 (0.19)*** -3.807 (0.393)*** -
Ln(install price) × Owner 0.955 (0.178)*** 2.187 (0.422)*** -
County unemployment rate 0.023 (0.004)*** 0.012 (0.006)** -
Time-invariant covariates
All electric appliancesa -0.034 (0.016)** -0.072 (0.034)** -0.163 (0.080)**
Pool at homea -0.017 (0.005)*** -0.025 (0.011)** -0.107 (0.026)***
Electric vehiclea -0.006 (0.009) -0.017 (0.020) 0.003 (0.048)
Energy efficiency programa 0.045 (0.006)*** 0.131 (0.012)*** 0.168 (0.027)***
Log(tax credit) -0.251 (0.014)*** -0.375 (0.023)*** -1.203 (0.055)***
No tax capa 0.947 (0.027)*** 1.682 (0.063)*** 4.699 (0.091)***
Ln(tax credit) × No tax capa 0.001 (0.003) 0.001 (0.008) -0.067 (0.012)***
System ownera 0.333 (0.406) -1.124 (0.914) 11.872 (0.517)***
Ln(system size) 0.195 (0.011)*** 0.274 (0.015)*** 1.086 (0.042)***
Ln(solar irradiation) -0.001 (0.002) -0.003 (0.005) -0.008 (0.012)
Large contractora -0.048 (0.006)*** -0.115 (0.012)*** -0.300 (0.029)***
Zip code covariates (2012)
Log(median income) 0.014 (0.025) 0.041 (0.051) 0.056 (0.127)
% with college degree -0.001 (0.000)* -0.001 (0.001)* -0.003 (0.002)*
% Homeowners 0.001 (0.001) 0.001 (0.001) 0.004 (0.003)*
% Electric heating 0.000 (0.001) 0.001 (0.001) 0.001 (0.003)
% Single-family homes -0.001 (0.001) -0.001 (0.001) -0.005 (0.003)
Intercept 8.325 (0.266)*** 13.406 (0.810)*** -
Ancillary parameters
Weibull shape, ln(α) 1.605 (0.028) - -
Lognormal scale, ln(σ) - -1.083 (0.041) -
Step-specific constants, α2 - - 5.818 (0.489)***

α3 - - 3.389 (0.490)***
α4 - - 1.778 (0.496)***
α5 - - 0.779 (0.497)
α6 - - 0.527 (0.498)
α7 - - 0.288 (0.499)
α8 - - -0.002 (0.500)
α9 - - -0.495 (0.502)
α10 - - -1.588 (0.503)***

Heterogeneity variance, v 0.000 (0.001) 0.037 (0.009) 0.018 (0.019)
LR test of v = 0 [P − value] 0.00 [1.000] 12.87 [0.002]*** 0.99 [0.159]
log-likelihood -54656.2 -55101.1 –54847.9

Statistical significance: ∗ (P < 0.10); ∗ ∗ (P < 0.05); ∗ ∗ ∗ (P < 0.01)
a Binary variable.
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3.4. Methodology

The spatial autoregressive process is the workhorse of the spatial econometrics framework.

It can be assumed for the outcome variable, resulting in the spatial autoregressive (SAR)

model:

y = δWy + xβ + ε,

or the errors, resulting in the spatial error model (SEM):

ε = ρWε+ v

where the spatial weight matrix, W , defines the relationships between individuals in the data.

The terms (Wy) and (Wε) are spatial lags, with their corresponding coefficients (δ and ρ)

representing interaction effects between individuals or spatial correlation in the unobservable

determinants of the outcome.

3.4.1. Spatial Transition Model with Peer Effects

The model implemented in this paper combines the SAR and SEM specifications into a

model of transitions occurring at different points in time. Suppose the time horizon of the

data is divided into discrete periods q = 1, ..., Q. In each period, the individual is faced

with a binary choice of transitioning (yiq = 1) or not (yiq = 0). Consider the following

latent-variable representing the difference in utility from the two choices:

z0
q = δMqy

1
q +X0

q γ + αq1N0
q

+ Cqa+ ε0
q

ε0
q = ρWqε

0
q + v0

q

(3.1)

where the superscript “0” denotes individuals that have not yet transitioned at the beginning

of interval q and “1” denotes those that have anytime prior to q. In each period, there are
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N0
q of the first group and N1

q of the latter group. This formulation implies that those

that have transitioned are discarded from the left-hand side in the next period, which is

one way of representing the data as an unbalanced panel (i.e., the final period (Qi) varies

between individuals). Discarding transitioned individuals also rules out feedback effects of

transitioning on time-varying covariates, thus maintaining their strict exogeneity assumption.

In total, there are N0 =
∑Q

q=1N
0
q observations used in the estimation and N1 =

∑Q
q=1N

1
q

cumulative transitions, all generated by N unique individuals.

Wq is the (N0
q ×N0

q ) matrix of spatial relationships among individuals in interval q whereas

Mq is the (N0
q ×N1

q ) matrix of spatial relationships between them and their peers who have

transitioned prior to q. Both matrices are constructed based on inverse distance. As such,

nearby peers are more influential on an individual’s choice to transition than those farther

away. X0
q is a (N0

q ×K) matrix of exogenous covariates and γ is their corresponding (K× 1)

vector of coefficients; αq is an period-specific constant; a is a vector of unobserved individual

random effects and Cq is an incidence matrix that assigns them to their corresponding

individuals in q; v0
q is a vector of normal iid errors with the variance normalized to an

identity matrix. The model is a similar but extended version of the one proposed by Elhorst

et al. (2017).

The model can be written in stacked (over q) format as follows (with the superscripts

suppressed):

y = 1{z > 0}

z = Xβ + Ca+ ε

a ∼ N (0, σ2
aIN)

ε ∼ N (0, (A′A)−1)

(3.2)
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where

X =

[
M1N1 X Cα

]
β =

[
δ γ′ α′

]′
A = IN0 − ρW

The vectors z and y are of size (N0 × 1), W is a (N0 × N0) block-diagonal matrix with

Wq occupying each block, and M is a rectangular matrix of size (N0 ×N1) with Mq on its

diagonal blocks. The combined coefficient vector β has K̃ = 1 +K +Q elements, including

the (Q× 1) vector of period-specific constants, α. The (N0 × K̃) matrix X combines all of

the regressors, including the (N0×Q) incidence matrix Cα that assigns appropriate period-

specific constant. Similarly, C is a (N0 ×N) incidence matrix that assigns individuals their

corresponding random effects. A is a non-singular matrix that induces the spatial correlation

in the reduced-form errors.

The quantity of interest is the conditional mean of the outcome y, which is also the

probability that transition occurs in period q conditional on surviving up until interval q−1:

E(yq|Xq, a, β) = Pr(tq−1 ≤ T < tq|T ≥ tq−1, x) = Φ(Xqβ + Cqa) (3.3)

where Φ(.) is the standard normal cdf, resulting in a binary choice probit model of unbalanced

panel data. Note that (3.3) is analogous to the hazard function in standard duration models

discussed in the previous section.

Identification Issues

Spatial models of peer effects suffer from three identification challenges: reflection, cor-

related unobservables, and self-selection. Reflection is when peers influence one another

simultaneously such that the direction of the effect is not discernible (Manski, 1993). Cor-

related unobservables is a situation whereby peers are subjected to common time-varying

shocks such as a marketing campaign targeting their area. Self-selection is a result of en-
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dogenous group formation whereby peers choose to reside near each other based on, say,

shared environmental consciousness. Bollinger and Gillingham (2012) provide a mathemat-

ical illustration of these challenges and their threat to the consistency of the peer effect

estimate.

In this paper, the reflection problem is addressed by discarding transitioned individuals

from the left-hand side in each period; hence, only past transitions can influence individuals

remaining in the sample, thus eliminating the simulteneity. As such, past transitions are ef-

fectively temporally exogenous with respect to the current period. Correlated unobservables

are accounted for through the spatial autoregressive process of the errors. Self-selection,

though, remains a threat to identification; thus, the estimated peer effect may possibly be

confounded by omitted factors that may be driving the transition decisions of peers, such as

shared preferences.

3.4.2. Estimation

Due to the spatial correlation in the errors, the likelihood function resulting from the model

is not a simple product of independent likelihood contributions. As a result, integrating out

the latent variable involves evaluating a N -dimensional integral, rendering likelihood maxi-

mization prohibitively infeasible. Instead, researchers usually resort to simulated-likelihood

methods (Elhorst et al., 2017; Liesenfeld et al., 2016b; Franzese et al., 2016).

Alternatively, likelihood evaluation can be avoided altogether in a Bayesian framework

whereby the joint posterior distribution of the parameters, given the data, is simulated

via Markov-chain Monte Carlo (MCMC) methods (LeSage and Pace, 2009). Rather than

integrating out the latent variable and random effects, they are estimated alongside the model

parameters. The procedure starts with deriving the augmented joint posterior density using

Bayes’ theorem:

p(z, a, θ|y) ∝ L(z, a, θ; y)p(z, a, θ)

= L(z, a, θ; y)p(z|a, θ)p(a|θ)p(θ)
(3.4)
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where θ ≡ (β, ρ, σ2
a). Since y is determined solely by z, the likelihood function can be written

as f(y|z) where f(.) is the appropriate probability density function (pdf). Also, the latent

variables can be marginalized over the random effects as follows:

z = Xβ + η

η ∼ NN0(0,Ω)

Ω = σ2
aCC

′ + (A′A)−1

(3.5)

which leads to efficiency improvements during the mixing of the Markov chains (Chib and

Carlin, 1999; Chib and Jeliazkov, 2006).

The parameters are assumed to be independent with a joint prior density p(θ). The prior

distribution of ρ is specified as uniform over the region that ensures non-singularity of A.

For the non-symmetric, row-standardized W used in this model, LeSage and Pace (2009)

showed that ρ ∈ (r−1, 1) where r is the smallest purely real eigenvalue of W . The prior

distributions of β and σ2
a are assumed to be NK̃(β0, B0) and IG(c/2, d/2), respectively.

The joint posterior density then takes the following final form:

p(z, v, θ|y) ∝
[
1{z > 0}

]
φN0(z|Xβ,Ω)φN(a|0, σ2

aIN)φK̃(β|β0, B0)fIG(σ2
a|c/2, d/2)fU(ρ|r−1, 1)

(3.6)

71



MCMC Simulation Algorithm

The joint posterior density (3.6) is simulated using the following collapsed block-sampling

algorithm:

1. Jointly sample (z, β) marginally of a in one (collapsed) block:

•
[
z|β, σ2

a, ρ, y
]
∼ T N R(Xβ,Ω) where the elements {ziq} are sampled conditionally

on one another from the appropriate region of truncation, R.

•
[
β|z, σ2

a, ρ
]
∼ NK̃(β̂, B̂), where B̂ =

[
B−1

0 + X′Ω−1X
]−1

and β̂ = B̂
[
B−1

0 β0 +

X′Ω−1z
]
.

2.
[
a|z, β, σ2

a, ρ
]
∼ NN(â, Va), where Va =

[
IN
σ2
a

+ C ′A′AC
]−1

and â = VaC
′A′A(z −Xβ)

3. [σ2
a|a] ∼ IG

(
c+N

2
, d+a′a

2

)
4.
[
ρ|z, β, a] ∼ φN0

(
z − Xβ − Ca|0, (A′A)−1

)
pU(ρ) ≡ f(ρ|.) via a Metropolis-Hastings

step (If the proposed candidate for ρ falls outside its feasible domain, discard it and

re-draw until a feasible candidate is obtained).

The algorithm is started at some initial values for the parameters, and then cycled re-

peatedly to obtain b = 1, ..., BMC draws of each of the parameters making up their joint

posterior distribution. The posterior means and standard deviations of the parameters can

be computed after discarding earlier draws as burn-in while the chains stabilize and converge.

Marginal Effects

Coefficient estimates from nonlinear models are only informative about the existence and

direction of the effects of their respective covariates. Their magnitudes are obtained by

calculating the marginal effect on individual i’s transition probability in period q from a

change in each covariate xiqk, which equals the partial derivative of equation (3.3),

∂E(yiq|xiq, ai, β)

∂xiqk
= φ(x′iqβ + ai)βk (3.7)

72



This marginal effect is then averaged over all individuals and periods to obtain the average

marginal effect (AME). This formula can be embedded in the MCMC algorithm where the

AME is evaluated at each MC pass and stored. The posterior means and standard deviations

of AME’s are then obtained after discarding the initial burn-in values.

3.5. Estimation Results

Three model specifications are employed: (i) a standard non-spatial probit model (δ =

ρ = 0), (ii) a model of peer effects without spatial correlation (ρ = 0), and (iii) the full

model (δ 6= 0 and ρ 6= 0). The elements of W and M equal the inverse of the euclidean

distance between individuals up to 2 kilometers and zero for those residing farther apart.

The estimation sample is restricted to the years from 2009 to 2013 because (a) the final year

of the CSI (2014) consists of transitions only, thus predicting the outcome perfectly, and,

similarly, (b) the first two years (2007-2008) contain only a few transitions that may cause

stability problems in the simulation. Nevertheless, while these transitions are discarded from

the left-hand side, they are retained on the right-hand side as initial conditions making up

the spatial lag (M1y
1
1) in the first period of the analysis (2009).

Due to high computational costs arising from the need to invert the large covariance matrix

Ω, the estimation is performed on only a subset of the sample (region 5 in Figure C.4 in

Appendix C). In addition, all of the covariates are time-invariant except the spatial lag. The

time-varying ones can not be modeled explicitly since they do not vary cross-sectionally,

and, thus, they are perfectly collinear with the year-specific constants. The posterior AME

estimates are presented in Table 3.4.

Focusing on the preferred specification (iii), the neighborhood peer effect is positive but

not statistically important. The year-specific constant increase over time, showing a posi-

tive duration dependence pattern, which is consistent with the findings of the exploratory

duration analysis of Section 3.3. The spatial correlation (ρ) is estimated to be 0.378 and
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Table 3.4: Posterior average marginal effects

Models (i) (ii) (iii)
Posterior estimates AME (SD) AME (SD) AME (SD)
Neighborhood peer effect - 0.620 (0.445) 0.456 (0.475)
All electric appliancesa 0.046 (0.062) 0.050 (0.063) 0.047 (0.062)
Pool at homea 0.016 (0.012) 0.014 (0.012) 0.013 (0.012)
Pool at home missing 0.087 (0.022) 0.087 (0.023) 0.082 (0.027)
Electric vehiclea -0.035 (0.022) -0.035 (0.022) -0.035 (0.023)
Energy efficiency enrollmenta -0.055 (0.012) -0.056 (0.012) -0.055 (0.012)
Log(tax credit) 0.268 (0.020) 0.271 (0.021) 0.268 (0.021)
Log(system size) -0.237 (0.015) -0.237 (0.015) -0.237 (0.016)
System ownera -2.537 (0.185) -2.567 (0.189) -2.542 (0.195)
Log(solar irradiation) 0.010 (0.007) 0.010 (0.007) 0.009 (0.007)
Large contractora 0.051 (0.012) 0.051 (0.012) 0.050 (0.012)
Zip code variables (2012)
Log(median income) 0.491 (0.153) 0.510 (0.153) 0.493 (0.177)
% with college degree -0.004 (0.002) -0.004 (0.002) -0.004 (0.002)
% Homeowners -0.012 (0.003) -0.012 (0.003) -0.012 (0.003)
% Electric heating 0.002 (0.002) 0.002 (0.002) 0.002 (0.003)
% Single-family homes 0.007 (0.059) 0.007 (0.002) 0.007 (0.003)
Year-specific constants, αq
q = 2009 -1.863 (0.531) -1.925 (0.534) -1.835 (0.621)
q = 2010 -1.666 (0.531) -1.728 (0.534) -1.637 (0.621)
q = 2011 -1.565 (0.530) -1.627 (0.534) -1.535 (0.621)
q = 2012 -1.428 (0.530) -1.492 (0.535) -1.401 (0.621)
q = 2013 -1.091 (0.530) -1.158 (0.534) -1.064 (0.621)
δ - 2.982 (2.144) 2.211 (2.301)
ρ - - 0.379 (0.069)
σ2
a 0.239 (0.059) 0.248 (0.067) 0.249 (0.068)

Statistical significance: ∗ (P < 0.10); ∗ ∗ (P < 0.05); ∗ ∗ ∗ (P < 0.01)
N0 = 5, 399; N = 1, 494; BMC = 10, 000; burn-in = 2,000.

a Binary variable.

statistically different from zero, providing evidence of correlated unobservables playing a role

in individuals’ decisions to install.

Turning to the time-invariant covariates, the effects of having only electric appliances or a

pool (intended to capture abnormal demand for energy) are both positive, as expected, but

not statistically important. Having an electric vehicle or enrollment in energy efficiency pro-

grams both have negative effects, but only the latter is statistically important. The negative

sign is runs counter to the intuition behind including them as proxies for preferences of en-

vironmentally conscious individuals towards energy efficiency. One plausible explanation is

that enrollment in efficiency programs lowers the need to install solar panels. In other words,

the marginal benefit, in terms of efficiency gains and cost savings, of adopting solar energy
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is unappealingly diminished for already efficient homes. In contrast, an inefficient home

consumes more energy and, thus, faces a higher average electricity price than a comparable

efficient home, ceteris paribus, because of California’s tiered electricity pricing system. As a

result, the inefficient home has a higher incentive to adopt solar energy because it replaces

otherwise high-cost energy.

A 10% increase in the tax credit is associated with a 2.68-percentage point higher proba-

bility of adoption. Homes determined to need larger solar systems are less likely to adopt,

which is expected from a cost perspective. System ownership shows the largest effect; the

adoption probability is 254% lower for system owners compared to those in TPO arrange-

ments, also reflecting the upfront cost barrier that owners have to overcome. To complement

this finding, customers who hire a large contractor have a 5% higher adoption probability,

reflecting the market power of these contractors enabling them to compete on prices as well

as offer discounts and financing facilities.

The effects of zip code variables tell conflicting, if not puzzling, stories. Customers from

high median income zip codes are more likely to adopt, which is reasonable from an af-

fordability perspective, but runs counter to the argument that the incentive rebates, tax

credits, and TPO arrangement attract low-income customers. In contrast, zip codes with

a larger fraction of college graduates are associated with lower adoption probability, albeit

the effect is very small. Zip codes with higher fraction of single-family homes are associated

with higher adoption probability, which is expected. Finally, the most puzzling result is

the negative effect corresponding to zip codes with higher fraction of homeowners. Since,

compared to renters, homeowners have the power over the decision to install solar panels, a

positive effect would be expected instead.

Discussion of Spatial Effects

To examine the role the peer effect plays in the results, first compare the estimates from

the non-spatial model (i) to those from the peer effects model (ii). The effects of the
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time-invariant covariates are statistically indistinguishable, but the year-specific constant

are slightly smaller under model (ii). This difference suggests that, if not modeled explicitly,

the peer effect is absorbed by the year-specific constants. However, when spatial correlation

in the errors is accounted for in model (iii), the year-specific constants return to their levels

under (i) but become less precise, which is expected as the correlation reduces the effective

sample size. A more notable observation is the smaller magnitude of the peer effect under

(iii) compared to (ii), suggesting an upward bias when the spatial correlation in the errors

is not controlled for. This bias is evidence of the presence of correlated unobservables that

account for part of the peers’ decisions to adopt. As an example, a contractor might target

an area with a marketing campaign. If it caused peers to adopt, then failure to control for

the campaign or, if unobservable, the fact that spatially-proximate customers were targeted

by the same campaign, then the estimation would overstate the peer effect.

Simulation Issues

The analysis could be enriched further by using a larger sample to possibly provide more

spatial variation. Moreover, expanding the geographic coverage of the sample to include

customers from different utility jurisdictions would enable explicit modeling of important

time-varying factors such as the incentive rate and installed price that are otherwise ab-

sorbed in the year-specific constants in the current analysis. However, as alluded to earlier,

expanding the sample increases the computational demands of the simulation rapidly, owing

to the need to invert and store the large covariance matrix, Ω, in each MCMC pass.

The computation of the determinant of A required for sampling ρ is also computationally

intensive. However, since its feasible domain is finite (ρ ∈ (r−1, 1)), this burden is alleviated

in the analysis above by calculating the determinant for a grid of ρ spanning its domain

outside the MCMC algorithm. Then for each proposed candidate ρ in the MH-step, the

determinant is obtained by interpolating the pre-calculated determinant values corresponding

to the two closest ρ values in the grid (Pace and Barry, 1997). The gains in computation
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speed justify the loss of precision resulting from the interpolation, which can be mitigated

by using a sufficiently fine grid of ρ.

Finally, the stability of the Markov chains proved very sensitive to the assumed hyper-

parameters of the inverse-gamma prior for the unobserved random effect variance, σ2
a. Specif-

ically, the chains exhibit explosive behavior with outlying draws from the right tail of the

posterior inverse-gamma density. This behavior is suggestive of a true variance that is very

small or one whose distribution is highly concentrated around its mode. In order to gain

more insight into the issue, the non-spatial model (i) was estimated via maximum likeli-

hood using the 5 subsamples representing the regions of Orange County shown in Figure 5.

The estimates of σ2
a ranged between 0.16 and 0.67, which are relatively small. This finding

implies that, conditional on the included variables, these subsamples are relatively homoge-

neous, which is consistent with the results from the exploratory analysis in Section 3 and

the fact that the sample only represents solar customers who are potentially endogenously

sorted based on shared preferences and attitudes towards solar energy. To facilitate the

simulation, the hyper-parameters were chosen to be c = 40 and d = 8, resulting in a highly

concentrated prior distribution with a mean of 0.21 and variance of 0.0025. Essentially, this

is a very informative prior based on knowledge about the heterogeneity gleaned from sub-

samples from the other regions. More importantly, this discussion reveals that, for the data

at hand, the inverse-gamma may not be a suitable prior distribution. A more agnostic anal-

ysis would employ a less concentrated prior distribution that is also more accommodating

of small variances (potentially at the expense of conjugacy or parsimony). Gelman (2006)

discusses possible alternatives.

3.6. Conclusion

The literature on the diffusion of new, energy-efficient technologies points to a market

failure whereby imperfectly-informed consumers undervalue the expected future benefits of
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the technology, leading to inefficient investment in it and, hence, a slower-than-optimal

diffusion process. Second-best policies based on subsidizing adoption of the technology are

common if the first-best, in the form of information provision, proves to be practically

ineffective. A growing literature finds a role for peer effects in consumers’ decision process of

adoption that may be effective in addressing the information imperfection. If so, governments

and suppliers could leverage consumers’ social networks as an information channel. This

paper contributes to this literature by estimating a transition model of neighborhood peer

effects, controlling for spatial correlation, using data from the California Solar Initiative

rebate program and Bayesian MCMC simulation methods. The results show a positive but

not statistically important peer effect. However, they also reveal that spatially correlated

unobservables bias the peer effect upward if not controlled for.

Further development of the model and analysis are necessary in order to draw definitive

conclusions about the existence and magnitude of the peer effect. Most importantly, the

model as it stands lacks clear identification, resulting in the estimates likely being confounded

by self-selection effects resulting from the endogenous formation of peer groups. Second, the

sample can be expanded to cover a wider geographic area to possibly provide variation in

the unobserved random effects that would give insights about the role heterogeneity plays

in the rate of adoption. Finally, data from utilities other than SCE would introduce cross-

sectional variation in key time-varying covariates, such as the incentive rate and prices. While

the effects of these covariates are accounted for in the current analysis through the year-

specific constants, the ability to model them explicitly would facilitate making comprehensive

conclusions about how much each of the cash rebate, prices, and peer effects contribute to

the adoption process. These outstanding issues are to be undertaken in future extension of

this research project.
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Appendix A

A.1. Bivariate probit model

Log-likelihood function

The joint probabilities of (C, I), as presented by Greene (2012, p. 747), are

P11 = Pr(S = 1, D = 1) = Φ2(x′
2β + γ,x′

1α, ρ) (A.1)

P10 = Pr(S = 1, D = 0) = Φ2(x′
2β,−x′

1α,−ρ) (A.2)

P01 = Pr(S = 0, D = 1) = Φ2(−x′
2β − γ,x′

1α,−ρ) (A.3)

P00 = Pr(S = 0, D = 0) = Φ2(−x′
2β,−x′

1α, ρ), (A.4)

where Φ2(.) denotes the cumulative distribution function (cdf) of the bivariate standard

normal distribution. The signs of the function arguments ensure that the four probabilities

sum to one. The log-likelihood function is

L =
n∑
i=1

DiSi ln(P11,i) +Di(1− Si) ln(P10,i) + (1−Di)Si ln(P01,i) + (1− Si)(1−Di) ln(P00,i).

(A.5)

Denoting the vector of model parameters by θ = (α,β, γ, ρ), the log-likelihood function is

maximized with respect to θ to obtain estimates of the parameters, θ̂ = (α̂, β̂, γ̂, ρ̂).
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Partial Effects

Of primary interest is the partial effect of changing the endogenous neighborhood design

variable, D, on the probability of carpooling.There are different kinds of partial effects that

can be computed. One of which is the effect on the marginal probability of carpooling:

E(S | x2, ρ = 0, D = 1)− E(S | x2, ρ = 0, D = 0) = Φ(x′
2β + γ)− Φ(x′

2β), (A.6)

where Φ(.) denotes the cdf of the univariate standard normal distribution. Another partial

effect is that on the conditional probability of carpooling:

E(S | x, ρ,D = 1)− E(S | x, ρ,D = 0) =
Φ2(x′

2β + γ,x′
1α, ρ)

Φ(x′
1α)

− Φ2(x′
2β,−x′

1α,−ρ)

1− Φ(x′
1α)

(A.7)

where x = (x1, x2) and Φ2(.) denotes the bivariate standard normal cdf.

Partial effects of changes in the covariates can also be derived. The conditional mean

functions of the two endogenous variables (D and S) are

E(D | x1) = Φ(α′x1) (A.8)

E(S | x) = Φ2(x′
2β + γ,x′

1α, ρ) + Φ2(x′
2β,−x′

1α,−ρ) (A.9)

For a continuous covariate, xc, that appears in x1 and/or x2, the partial effect is

∂E(S | x)

∂xc
=

[
φ(x′

2β + γ)Φ

(
x′
1α− ρ(x′

2β + γ)√
1− ρ2

)
+ φ(x′

2β)Φ

(
−x′

1α+ ρx′
2β√

1− ρ2

)]
βc

+

[
φ(x′

1α)Φ

(
x′
2β + γ − ρx′

1α√
1− ρ2

)
− φ(−x′

1α)Φ

(
x′
2β − ρx′

1α√
1− ρ2

)]
αc (A.10)

where φ(.) is the pdf of the univariate standard normal distribution, and αc and βc are the

86



coefficients corresponding to the covariate of interest, xc. The two terms in (A.10) represent

the direct and indirect (through D) effects, respectively.

For a binary covariate, xb, that appears in x1 and/or x2, the partial effect is

E(S | x, xb = 1)− E(S | x, xb = 0) =

[
Φ2(x′

2β + γ,x′
1α, ρ) + Φ2(x′

2β,−x′
1α,−ρ)

]
xb=1

−

[
Φ2(x′

2β + γ,x′
1α, ρ) + Φ2(x′

2β,−x′
1α,−ρ)

]
xb=0

(A.11)

(A.11) is also used for computing the partial effect of a categorical variable by transforming

it into a series of binary variables representing choices between a reference category and each

of the remaining categories, respectively. Then the partial effect is obtained for the applicable

category for each observation.

Finally, the partial effects of the covariates on the choice of neighborhood design (D) can

be derived similarly using the conditional mean function of D (A.8).

A.2. Description of covariates

The first group of covariates represents individual characteristics of students. Age controls

for the possibility that students widen their network of friends, with whom they may carpool,

as they grow up. A quadratic age term is also included in case this network formation

accelerates with age. Gender accounts for the possibility that males may be more active

outdoors in the neighborhood such that they are exposed to more social interaction. Parents

may also be more inclined to allow their children to carpool with non-relatives if they are

older or males. These covariates are not included in the neighborhood design equation

because this choice is believed to be made by adult parents or heads of households.
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Other individual characteristics include race, ethnicity, and citizenship status to control

for possible differences in carpooling behavior based on demographics. Finally, travel time

to school (based on shortest driving path using speed limits) is included as students living

sufficiently close to school may walk instead of being driven to it. It also captures any travel

distance considerations that may factor into the choice of neighborhood design.

The second covariate group is related to the household. Larger households may have a

preference for more spacious homes in the suburbs where CDS’s are located. Households with

more children may prefer the CDS for its perceived benefits mentioned previously. On the

other hand, having more students in the household, especially if enrolled in different schools,

may hinder parents’ ability to chauffeur them to school and, hence, increase their need for

other modes of travel, including carpooling. The presence of a retired person or homemaker

indicates that person is available to accompany the student to school, thus reducing the need

to seek carpooling from neighbors. Although this person may at the same time provide an

opportunity for other students in the neighborhood to carpool with them, the student under

consideration is considered a member of the same household as the retired or homemaker

person and would have been coded as an “auto passenger” by the survey administrator.

Household income is expected to be positively correlated with CDS as wealthier households

are known to have a preference for and can afford living in the suburbs. However, income

can have two offsetting effects on carpooling. First, wealthier households may have less need

for carpooling because they can afford to buy cars or have the time to spare on chauffeuring

their kids to school. Conversely, from a social interaction standpoint, they may have the time

and resources to engage in neighborhood social activities. Along with income, the number

of workers in the household is also included to capture the general economic condition of the

household and how it relates to the choice of neighborhood design and carpooling.

Tenure represents the number of years the household has lived in their current home.

Households with higher tenure are expected to have had more time to form their social

networks in the neighborhood than new comers. It is worth mentioning here that home
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ownership is not included in the model due to its potentially endogeneity (as BL2008 explain,

homeowners may value investments in their neighborhood, in terms of establishment of

social bonds with neighbors, more than temporary renters). Its effect, nevertheless, may be

captured through tenure.

The number of vehicles in the household is expected to correlate positively with the CDS,

where the need for auto travel is higher and private parking space is abundant. The avail-

ability of vehicles is also expected to discourage carpooling. The average travel time to work

for households with one or more workers is included based on the possibility that it might

interfere with the school transportation mode choice.

Additional variables pertaining to the householder (defined by the US Census as the person

who owns or rents the property, or self-identified as the head of household in response to the

CHTS2) that may explain the choice of neighborhood design.

The third covariate group account for the general social environment in the wider area

where the individual lives–the county. The racial and ethnic dissimilarity are measures of

segregation. A high dissimilarity value indicates a more segregated area where an individual

is more exposed to other people of their own race or ethnicity than one in a less segregated

area. These variables account for the possibility that individuals may be more likely to

socialize with others of their own race or ethnicity. The county murder rate is meant to

capture the perception of safety in the county and how it correlates with the neighborhood

types. It is also expected to be negatively correlated with carpooling as people may be less

trusting of one another.

Finally, the last group of covariates is a set of dummy variables indicating which of the

9 California regions the individual lives in. It is meant to capture unobserved effects in the

region such as the physical environment, urban planning and transportation policies, general

economic conditions, or social and cultural norms.

2Daigler, Vivian (NuStats Research Solutions). “Re: CHTS 2012.” Received on 8 Aug. 2017.
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A.3. Results from the replication of BL2008

Table A.1: Coefficients from model of census tract density and carpooling to work

Explanatory variables Dependent variables
Census tract densitya Carpool to work

Coefficient (SE) APE (SE)
Census tract density - - −0.0003 (0.0004)
Individual Characteristics
Age 0.0644 (0.0161)∗∗∗ 0.0000 (0.0001)
Age2 −0.0008 (0.0002)∗∗∗ - -
Male 0.3216 (0.0643)∗∗∗ 0.0021 (0.0015)
Blackb 1.3684 (0.2581)∗∗∗ −0.0054 (0.0039)
American Indian/Alaskan Nativeb 0.4324 (0.2510)∗ 0.0095 (0.0051)∗
Asianb 0.4994 (0.2437)∗∗ 0.0093 (0.0037)∗∗
Mixed/other raceb 0.3080 (0.1727)∗ −0.0009 (0.0027)
Hispanic 0.7784 (0.1587)∗∗∗ 0.0009 (0.0028)
Citizen or in 10+ years −0.7786 (0.4320)∗ −0.0009 (0.0060)
College degree −0.0606 (0.0980) −0.0007 (0.0023)
Only worker in the household 0.1790 (0.1376) −0.0059 (0.0023)∗∗∗
Travel time to work −0.0413 (0.0023)∗∗∗ 0.0007 (0.0000)∗∗∗
Household Characteristics
Household size 0.4455 (0.0836)∗∗∗ 0.0053 (0.0012)∗∗∗
Number of children −0.6210 (0.0982)∗∗∗ −0.0055 (0.0017)∗∗∗
Household has students −0.2969 (0.1643)∗ −0.0015 (0.0031)
Retired person/homemaker aged 18-65 in household −0.4393 (0.1465) −0.0016 (0.0029)
Income(2)b $25,000 - $49,999 −0.6259 (0.2486)∗∗ −0.0006 (0.0034)
Income(3)b $50,000 - $99,999 −1.1385 (0.2298)∗∗∗ 0.0005 (0.0033)
Income(4)b $100,000 - $149,999 −1.6932 (0.2358)∗∗∗ 0.0058 (0.0038)
Income(5)b $150,000 or more −2.2598 (0.2476)∗∗∗ 0.0025 (0.0041)
Income missingb −1.8579 (0.2724)∗∗∗ 0.0030 (0.0044)
Tenure 0.0541 (0.0128)∗∗∗ 0.0003 (0.0001)∗∗∗
Tenure2 −0.0010 (0.0003)∗∗∗ - -
Number of vehicles −1.3378 (0.0787)∗∗∗ −0.0073 (0.0015)∗∗∗
Household average travel time to school −0.0160 (0.0099) −0.0002 (0.0002)
Age of householder −0.0580 (0.0288)∗∗ −0.0004 (0.0001)∗∗∗
Age2 of householder 0.0001 (0.0003) - -
Male householder 0.2594 (0.0946)∗∗∗ −0.0000 (0.0018)
Householder lives with spouse or partner −0.3670 (0.1405)∗∗∗ −0.0002 (0.0025)
Householder has college degree −0.2122 (0.1190)∗ −0.0031 (0.0025)
Householder unemployedb −0.0469 (0.3197) −0.0057 (0.0045)
Householder retired/homemakerb 0.1913 (0.1535) −0.0029 (0.0034)
Householder other employment statusb −0.3203 (0.2902) −0.0060 (0.0039)
County characteristics
Racial dissimilarity (white vs. non-white) 6.0565 (0.8850)∗∗∗ 0.0152 (0.0236)
Ethnic dissimilarity (hispanic vs. non-hispanic) −4.6729 (0.7756)∗∗∗ −0.0282 (0.0154)∗
Murder rate 0.5138 (0.0200)∗∗∗ 0.0004 (0.0004)
Regionsb

(2) Central Coast −1.8628 (0.1749)∗∗∗ 0.0005 (0.0052)
(4) Greater Sacramento −1.4748 (0.1473)∗∗∗ −0.0047 (0.0037)
(5) Northern California 0.1841 (0.3562) −0.0051 (0.0138)
(6) Northern Sacramento Valley −2.5072 (0.2231)∗∗∗ −0.0141 (0.0047)∗∗∗
(7) San Joaquin Valley −4.1000 (0.1706)∗∗∗ −0.0053 (0.0041)
(8) Southern Border 0.2952 (0.1662)∗ −0.0019 (0.0044)
(9) Southern California −0.8954 (0.1204)∗∗∗ 0.0034 (0.0030)
Instruments
MSA population density (in units of 1000) 0.4044 (0.0574)∗∗∗ - -
Urban population density (in units of 1000) 1.3866 (0.0298)∗∗∗ - -
MSA terrain ruggedness 0.0652 (0.0069)∗∗∗ - -
Intercept 2.6443 (0.9100)∗∗∗ −2.4336 (0.3554)∗∗∗

Statistical significance: ∗ (P < 0.10); ∗ ∗ (P < 0.05); ∗ ∗ ∗ (P < 0.01)
N = 33, 140; number of clusters = 22, 838.
Goodness of fit: Wald χ2(44) statistic (P -value) = 505.2 [0.000].
Correlation, ρ = 0.028; exogeneity test (ho : ρ = 0) Wald statistic [P -value] = 0.200 [0.652].

a First-stage: R2 = 0.295; F (d.f.) = 1041 (3, 22837); Overidentifying restrictions test J-statistic (P -value)=
4.545 [0.103].

b Reference categories: Income (< $25, 000); race (white); employment status(employed); region (Bay Area)

90



Table A.2: The effect of census tract density on carpooling to school

Explanatory variables Dependent variables
Census tract densitya Carpool to school

Coefficient (SE) APE (SE)

Census tract population density (1000 people per sqm.)b - - −0.0030 (0.0012)∗∗
Individual Characteristics
Age 0.0976 (0.1526) 0.0030 (0.0009)∗∗∗
Age2 −0.0067 (0.0081) - -
Male 0.1323 (0.1127) −0.0026 (0.0036)
Blackb 1.0256 (0.4433)∗∗ −0.0161 (0.0088)
American Indian/Alaskan Nativeb 0.9023 (0.3376)∗∗∗ 0.0057 (0.0104)
Asianb 0.2202 (0.3112) −0.0146 (0.0064)∗∗
Mixed/other raceb 0.4340 (0.2141)∗∗ 0.0150 (0.0079)∗
Hispanic 0.7856 (0.1928)∗∗∗ −0.0190 (0.0063)∗∗∗
Citizen or in US 10+ years −0.3529 0.4222 0.0104 (0.0110)
Travel time to school −0.0123 (0.0108) 0.0012 (0.0002)∗∗∗
Household Characteristics
Household size 0.3236 (0.0809)∗∗∗ 0.0059 (0.0025)∗∗
Number of students −0.3830 (0.1219)∗∗∗ −0.0078 (0.0042)∗
Income(2)b $25,000 - $49,999 0.2112 (0.3144) −0.0037 (0.0084)
Income(3)b $50,000 - $99,999 −0.6002 (0.2923)∗∗ −0.0000 (0.0093)
Income(4)b $100,000 - $149,999 −1.0586 (0.3322)∗∗∗ 0.0163 (0.0113)
Income(5)b $150,000 or more −1.7595 (0.3488)∗∗∗ 0.0079 0.0115
Income missingb −0.7201 (0.4501) 0.0058 (0.0120)
Tenure 0.0867 (0.0235)∗∗∗ 0.0008 (0.0004)∗∗
Tenure2 −0.0013 (0.0005)∗∗ - -
Number of vehicles −1.2888 (0.1232)∗∗∗ −0.0111 (0.0042)∗∗∗
Household average travel time to work −0.0279 (0.0043)∗∗∗ −0.0001 (0.0002)
1-worker householdb 1.0972 (0.4070)∗∗∗ 0.0054 (0.0094)
2-or-more-worker householdb 1.6011 (0.4520)∗∗∗ 0.0173 (0.0108)
Age of householder −0.0613 (0.4626) −0.0001 (0.0003)
Age2 of householder 0.0004 (0.0005) - -
Male householder 0.0464 (0.1605) −0.0076 (0.0050)
Householder lives with spouse or partner 0.0784 (0.2341) 0.0000 (0.0072)
Householder has college degree or higher −0.7663 (0.1787)∗∗∗ 0.0083 (0.0004)∗∗
Householder unemployedb 0.2765 (0.3523) 0.0093 (0.0139)
Householder retired/homemakerb 0.4575 (0.2539)∗ −0.0008 (0.0077)
Householder other employment statusb 0.1996 (0.3694) −0.0025 (0.0109)
County characteristics
Racial dissimilarity (white vs. non-white) 6.6716 (1.1855)∗∗∗ 0.1129 (0.0582)∗
EThnic dissimilarity (hispanic vs. non-hispanic) −0.6340 (1.1453) −0.0156 (0.0410)
Murder rate 0.3610 (0.0310)∗∗∗ 0.0004 (0.0010)
Regionsb

(2) Central Coast −1.4922 (0.3676)∗∗∗ −0.0023 (0.0126)
(3) Central Sierra −1.3603 (0.5366)∗∗ 0.0171 (0.0289)
(4) Greater Sacramento −1.1206 (0.2734)∗∗∗ 0.0075 (0.0114)
(5) Northern California −1.6877 (0.3810)∗∗∗ −0.0171 (0.0107)
(6) Northern Sacramento Valley −1.4923 (0.3394)∗∗∗ −0.0070 (0.0131)
(7) San Joaquin Valley −3.6564 (0.2750)∗∗∗ −0.0115 (0.0081)
(8) Southern Border 0.2781 (0.2985) 0.0027 (0.0105)
(9) Southern California −0.8232 (0.2071)∗∗∗ 0.0115 (0.0077)
Instruments
MSA population density (in units of 1000) 0.6802 (0.1112)∗∗∗ - -
Urban population density (in units of 1000) 1.3191 (0.0579)∗∗∗ - -
Intercept −0.1810 (1.4548) −2.0533 (0.7311)∗∗∗

Statistical significance: ∗ (P < 0.10); ∗ ∗ (P < 0.05); ∗ ∗ ∗ (P < 0.01)
N = 9, 581; number of clusters = 6, 264.
Goodness of fit: Wald χ2(42) statistic [P -value] = 168.4 [0.000].
Correlation, ρ = 0.186; exogeneity test (ho : ρ = 0) Wald statistic [P -value] = 4.23 [0.040].

a First-stage: R2 = 0.354; F (d.f.) = 436.0 (2, 6263); Overidentifying restrictions test J-statistic [P -value]= 0.014
[0.905].

b Reference categories: Income (< $25, 000); race (white); employment status (employed); region (Bay Area)
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A.4. Results from the bivariate probit model

Table A.3: Structural coefficient estimates from the restricted (ρ = 0) work model

Explanatory variables Dependent variables
Neighborhood design (D) Carpool to school (S)

Coef. (SE) Coef. (SE)
CDS (length of 150m) - - −0.0233 (0.0521)
Individual Characteristics
Age - - 0.0167 (0.0089)∗
Age2 - - −0.0002 (0.0001)∗∗
Male - - 0.0695 (0.0298)∗∗
Blacka −0.0997 (0.0698) −0.1450 (0.1136)
American Indian or Alaskan Native a −0.0571 (0.0602) 0.1492 9.9684)∗
Asiana 0.0601 (0.0416) 0.2153 (0.0584)∗∗∗
Mixed or other racea −0.0317 (0.0400) −0.0226 (0.0592)
Hispanic −0.0711 (0.0369)∗ 0.0695 (0.0539)
Citizen or in US 10+ years 0.2019 (0.0872)∗∗ −0.0352 (0.1174)
College degree or higher - - −0.0581 (0.0368)
Only worker in the household −0.0255 0.0291 −0.2401 (0.0482)∗∗∗
Travel time to work −0.0001 (0.0006) 0.0159 (0.0008)∗∗∗
Household Characteristics
Household size −0.0026 (0.0169) - -
Number of children 0.0168 (0.0235) −0.0231 (0.0292)
Household has students 0.1010 (0.0453)∗∗ 0.0008 (0.0661)
Retired person or homemaker aged 18-65 in household - - 0.0292 (0.0527)
Income(2)a $25,000 - $49,999 0.1197 (0.0572)∗∗ −0.0153 (0.0781)
Income(3)a $50,000 - $99,999 0.2516 (0.0548)∗∗∗ −0.0110 (0.0725)
Income(4)a $100,000 - $149,999 0.3070 (0.0593)∗∗∗ 0.0689 (0.0774)
Income(5)a $150,000 or more 0.3452 (0.0623)∗∗∗ 0.0129 (0.0828)
Income missinga 0.2843 (0.0680)∗∗∗ 0.0171 (0.0928)
Tenure 0.0199 (0.0034)∗∗∗ 0.0123 (0.0062)∗∗
Tenure2 −0.0005 (0.0001)∗∗∗ −0.0002 (0.0002)
Number of vehicles 0.0610 (0.0152)∗∗∗ −0.1102 (0.0238)∗∗∗
Household average travel time to school 0.0006 (0.0023) −0.0045 (0.0034)
Age of householder 0.0040 (0.0065) - -
(Age of householder)2 0.0000 (0.0001) - -
Male householder 0.0362 (0.0235) - -
Householder lives w/ spouse/partner 0.0647 (0.0335)∗ 0.0050 (0.0002)
Householder has college degree or higher 0.0542 (0.0262)∗∗ - -
Householder unemployeda 0.0632 (0.0730) - -
Householder retired or homemakera −0.0087 (0.0382) - -
Householder other employment statusa −0.0396 (0.0638) - -
County characteristics
County racial dissimilarity 1.4973 (0.2708)∗∗∗ 0.5290 (0.4000)
County ethnic dissimilarity −0.8468 (0.2098)∗∗∗ −0.6035 (0.3010)∗∗
County murder rate 0.0022 (0.0041) 0.0014 (0.0058)
Regionsa

(2) Central Coast −0.0343 (0.0613) 0.0554 (0.0886)
(3) Central Sierra −0.6742 (0.1146)∗∗∗ −0.3150 (0.1471)∗∗
(4) Greater Sacramento −0.1608 (0.0568)∗∗∗ −0.1194 (0.0940)
(5) Northern California −0.5725 (0.0956)∗∗∗ −0.2541 (0.1371)∗
(6) Northern Sacramento Valley −0.0999 (0.0925) −0.5720 (0.1971)∗∗∗
(7) San Joaquin Valley 0.0495 (0.0483) −0.0529 (0.0732)
(8) Southern Border 0.0751 (0.0545) −0.0491 (0.0974)
(9) Southern California 0.0618 (0.0377) 0.0931 (0.0558)∗
Instrument
% of pre-1940 housing units in county subdivision −3.1453 (0.2003)∗∗∗ - -
Intercept −2.1345 (0.2057)∗∗∗ −2.4313 (0.2629)∗∗∗

Statistical significance: ∗ (P < 0.10); ∗ ∗ (P < 0.05); ∗ ∗ ∗ (P < 0.01)
N = 33, 140; number of clusters = 22, 838.

a Reference categories: Income (< $25, 000); race (white); employment status (employed); region (Bay Area)
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Table A.4: Structural coefficient estimates from the restricted (ρ = 0) school model

Explanatory variables Dependent variables
Neighborhood design (D) Carpool to school (S)

Coef. (SE) Coef. (SE)
CDS (length of 150m) - - 0.2249 (0.0855)∗∗∗
Individual Characteristics
Age - - −0.1294 (0.0703)∗
Age2 - - 0.0089 (0.0037)∗∗
Male - - −0.0437 (0.0529)
Blacka −0.2377 (0.1510) −0.4006 (0.2351)∗
American Indian or Alaskan Native a −0.0855 (0.1114) 0.0252 (0.1413)
Asiana −0.0469 (0.0884) −0.3104 (0.1599)∗
Mixed or other racea 0.0013 (0.0611) 0.1607 (0.0902)∗
Hispanic −0.0319 (0.0607) −0.2693 (0.1014)∗∗∗
Citizen or in US 10+ years - - 0.1718 (0.2282)
Travel time to school −0.0015 (0.0029) 0.0134 (0.0028)∗∗∗
Household Characteristics
Household size −0.0630 (0.0365)∗ - -
Number of children 0.1083 (0.0456)∗∗ - -
Number of students - - −0.0513 (0.0562)
1-worker household 0.2031 (0.1507) 0.0142 (0.1788)
2-or-more-workers household 0.2852 (0.1603)∗ 0.0889 (0.1893)
Retired person or homemaker aged 18-65 in household - - −0.1586 (0.0979)
Income(2)a $25,000 - $49,999 0.1637 (0.0963)∗ −0.0829 (0.1492)
Income(3)a $50,000 - $99,999 0.2999 (0.0964)∗∗∗ 0.0181 (0.1525)
Income(4)a $100,000 - $149,999 0.4757 (0.1050)∗∗∗ 0.2312 (0.1628)
Income(5)a $150,000 or more 0.5621 (0.1126)∗∗∗ 0.1407 (0.1731)
Income missinga 0.3915 (0.1265)∗∗∗ 0.0867 (0.1844)
Tenure 0.0034 (0.0033) 0.0148 (0.0107)
Tenure2 - - −0.0004 (0.0003)
Number of vehicles 0.0551 (0.0331)∗ −0.0716 (0.0505)
Household average travel time to work 0.0024 (0.0014)∗ −0.0001 (0.0024)
Age of householder −0.0143 (0.0145) −0.0127 (0.0223)
(Age of householder)2 0.0002 (0.0002) 0.0001 (0.0002)
Male householder 0.0934 (0.0505)∗ −0.1200 (0.0696)∗
Householder lives w/ spouse/partner −0.0028 (0.0771) 0.0695 (0.1092)
Householder has college degree or higher 0.0812 (0.0570) 0.1531 (0.0800)∗
Householder unemployeda 0.0527 (0.1302) - -
Householder retired or homemakera 0.0917 (0.0773) - -
Householder other employment statusa 0.1717 (0.1279) - -
County characteristics
Racial dissimilarity 0.4152 (0.5106) 1.7681 (0.8382)∗∗
Ethnic dissimilarity −0.5168 (0.4261) −0.6056 (0.6183)
Murder rate 0.0060 (0.0082) −0.0144 (0.0105)
Regionsa

(2) Central Coast −0.2138 (0.1309)∗ 0.1397 (0.1893)
(3) Central Sierra −0.4257 (0.2604) −0.0187 (0.2901)
(4) Greater Sacramento −0.0679 (0.1132) 0.1436 (0.1568)
(5) Northern California −0.6442 (0.2449)∗∗∗ −0.2144 (0.2640)
(6) Northern Sacramento Valley −0.0158 (0.1809) −0.1087 (0.2474)
(7) San Joaquin Valley −0.0873 (0.0925) −0.0119 (0.1341)
(8) Southern Border 0.0831 (0.1076) 0.0929 (0.1597)
(9) Southern California −0.0770 (0.0744) 0.1925 (0.1102)∗
Instrument
% of pre-1940 housing units in county subdivision −3.0623 (0.3693)∗∗∗ - -
Intercept −1.4468 (0.4158)∗∗∗ −1.8742 (0.6814)∗∗∗

Statistical significance: ∗ (P < 0.10); ∗ ∗ (P < 0.05); ∗ ∗ ∗ (P < 0.01)
a Reference categories: Income (< $25, 000); race (white); employment status (employed); region (Bay Area)
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Appendix B

B.1. Basic Bayesian Updates

The proposed MCMC algorithm relies heavily on standard results from Bayesian analysis

of the Normal linear regression model, so it helps to summarize them here first. Consider

the model:

y = Xβ + ε

ε ∼ NN(0 , Σ)

where Σ = σ2IN . Assuming the conjugate prior distributions β ∼ N(β0, B0) and σ2 ∼

IG(c/2, d/2) results in full conditional posterior distributions of standard form. For β, it is

[β|σ2, y] ∼ N(β̂, B̂) where B̂ is the inverse of the sum of the prior and data precisions (i.e.

B̂ =
[
B−1

0 +X ′Σ−1X
]−1

) and β̂ is the sum of the precision-weighted average of the prior and

data means, re-weighted by the posterior variance (i.e. β̂ = B̂
[
B−1

0 β0+X ′Σ−1y]). For σ2, the

full conditional posterior distribution is [σ2|β, y] ∼ IG(ĉ/2, d̂/2) where the shape parameter is

updated by the sample size ĉ = c + N , and the scale parameter is updated by the sum of

squared residuals: d̂ = d+ (y −Xβ)′(y −Xβ).
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B.2. Derivation of the Sampling Distributions

Recall from (2.22) that the augmented joint posterior density is:

p(Z, a, θ|y) ∝
[ N∏

i

fPois(yi|zi) φT (zi|z̄i, Ω̄i)

]
φN(a|0, D) p(β) p(σ2

a) p(σ
2
ε) p(ρ)

B.2.1. Sampling Z, β, and a in one block

This block is comprised of two sub-blocks: the first jointly samples Z and β marginally of

a, and the second samples a conditional on Z and β.

Sampling (Z, β) marginally of a

The latent variables, Z, are sampled conditionally on one another using the posterior

distribution:

[
zi|{zj}j 6=i, β, σ2

a, σ
2
ε , y
]
∼ fPois(yi|zi) φT (zi|z̄i, Ω̄i) ≡ f(zi|.),

which is not of standard form; hence, sampling is done via a MH-step for each vector zi.

Denote the current iterate by zci and let τz be a tuning parameter. Then for i =, 1, 2, ..., N :

• Draw a candidate from the following random-walk proposal density: zpi = zci+NT (0, τzIT )

• Accept zpi with probability ψz = min
{f(zpi |.)
f(zci |.)

, 1
}

The result is a (NT×1) vector Z of latent variables. Note that the above MH (sub)algorithm

is run N times in each cycle of the main MCMC algorithm.

To sample β, note that it only appears in (22) in its prior density and the density of

Z. Recall from (20) that the distribution of Z marginalized over a is NNT (Xβ,Ω), which

is essentially a linear sub-model with Z as the continuous dependent variable. Thus, the
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posterior distribution of β can be obtained directly from standard results from Bayesian

analysis of linear models:

[
β|Z, σ2

a, σ
2
ε , ρ
]
∼ NK(β̂, B̂),

where

B̂ =
[
B−1

0 +X ′Ω−1X
]−1

β̂ = B̂
[
B−1

0 β0 +X ′Ω−1Z
]

Sampling a conditionally (Z, β)

The only term in (22) involving a is its own prior density; thus, using it for sampling a

does not take into account updates from the data. Instead, the updating can be obtained

by sampling a conditionally on Z and β. Recall the unmarginalized latent-variable repre-

sentation from (14) where Z ∼ N
(
Xβ , [QDQ′+ σ2

εINT ]
)
. Since Z and β have already been

sampled (i.e. observed), they can be placed on the left-hand side of (14), which results in

the following linear model:

(Z −Xβ) = Qa+ ε

ε ∼ NNT (0 , D + σ2
εINT )

where now a are the parameters of interest associated with the covariates matrix, Q. Since

this model includes all of the parameters, a is sampled from its full conditional distribution,

obtained from standard linear model results:

[
a|Z, β, σ2

a, σ
2
ε , ρ,

]
∼ N(â, V̂a)
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where

V̂a =
[
D−1 +

Q′Q

σ2
ε

]−1

â =
V̂aQ

′(Z −Xβ)

σ2
ε

B.2.2. Sampling (σ2
a, ρ) conditionally on a

σ2
a and ρ are sampled jointly in two sub-blocks by simply conditioning on a only, which

incorporates all the needed updates from “observed” (i.e. sampled) data thus far. In order

to leverage the standard linear model results, write a in its autoregressive representation

(11) and re-arrange:

A a = v

v ∼ NN(0, σ2
aIN)

A = I − ρW,

which is a simple linear sub-model with (Aa) being the dependent variable and a zero-mean.

The posterior density for this sub-model is then:

p(σ2
a, ρ|a) ∝

[
(2πσ2

a)
−N/2 |A| exp

(
−a′A′Aa

2σ2
a

)]
pIG(σ2

a) pU(ρ)

where the term in brackets is the likelihood function, representing the Normal density

φN(Aa|0, σ2
aIN).

Sampling σ2
a conditionally on (ρ, a)

With the inverse-Gamma prior assigned for σ2
a, its posterior distribution is:

[σ2
a|ρ, a] ∼ IG

(
c1 +N

2
,
d1 + a′A′Aa

2

)
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Sampling ρ conditionally on (σ2
a, a)

The posterior distribution of ρ is:

[ρ|σ2
a, a] ∼ φN(Aa|0, σ2

aIN) pU(ρ) ≡ f(ρ|.)

which is not of standard form; therefore, ρ is sampled via a random-walk MH step as follows:

• Draw a candidate from the following random-walk proposal density: ρp = ρc+N(0, τρ)

• Accept ρp with probability ψρ = min
{f(ρp|.)
f(ρc|.) , 1

}
where ρc and ρp are the current and proposed iterates, and τρ is the tuning parameter.

B.2.3. Sampling σ2
ε

Using the linear model from (1.b) and the inverse-Gamma prior for σ2
ε results in the

following posterior distribution distribution:

σ2
ε |β, Z, a,∼ IG

(
c2 +NT

2
,
d2 + (Z −Xβ −Qa)′(Z −Xβ −Qa)

2

)
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Appendix C

Figure C.1: Global cumulative solar PV installed capacity, 2000-2017. Reprinted from Solar
Energy Data. Retrieved May 24, 2018, from http://www.irena.org/solar. Copyright 2018 by
IRENA. Reprinted with permission.
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Figure C.2: Cumulative global solar PV deployment and module prices, 2000-2014. Reprinted
from Renewable Power Generation Costs in 2014. Copyright 2015 by IRENA. Reprinted with
permission.

Figure C.3: Average total installed cost of residential solar PV systems by country, 2006-
2014. Reprinted from Renewable Power Generation Costs in 2014. Copyright 2015 by IRENA.
Reprinted with permission.
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Figure C.4: Orange County
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