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Shotgun metagenomics and computational analysis are used to compare the taxonomic and func-
tional profiles of microbial communities. Leveraging this approach to understand roles of microbes
in human biology and other environments requires quantitative data summaries whose values are
comparable across samples and studies. Comparability is currently hampered by the use of abun-
dance statistics that do not estimate a meaningful parameter of the microbial community and
biases introduced by experimental protocols and data-cleaning approaches. Addressing these
challenges, along with improving study design, data access, metadata standardization, and anal-
ysis tools, will enable accurate comparative metagenomics. We envision a future in which micro-
biome studies are replicable and new metagenomes are easily and rapidly integrated with existing
data. Only then can the potential of metagenomics for predictive ecological modeling, well-pow-
ered association studies, and effective microbiome medicine be fully realized.
Shotgun sequencing is revolutionizing our understanding of mi-

crobiomes associated with humans and other environments by

enabling in situ, culture-free genomic characterization of micro-

bial communities. A shotgun metagenomic experiment involves

sequencing a random sample of DNA fragments (to generate

‘‘reads’’) from the pool of microbial genomes in a biological sam-

ple. Typically millions of reads, each on the order of 100 base

pairs (bp), are obtained. Although complex and challenging to

analyze, these metagenomic libraries can be used to identify

and quantify microbial taxa and/or genes so that ‘‘who’’ is there

and what they are doing can be compared across communities.

This tool offers a powerful means for characterizing the immense

microbial diversity on earth. However, there are a number of

challenges standing in the way of ready comparisons across

shotgun datasets. This Perspective seeks to outline the major is-

sues and discuss how they might be overcome through applica-

tion of current methods or development of new approaches.

Shotgun metagenomics has the potential to be highly quanti-

tative, but it also presents many unique challenges. The genome

from which each read comes and its position in that genome are

unknown. Furthermore, the vast majority of microbial diversity is

not represented in reference databases or otherwise character-

ized inmost environments (Wu et al., 2009). Even for species with

sequenced genomes, reference databases do not capture the

full collection of genes present across different strains (Malm-

strom et al., 2013). Leaving aside reads that cannot be confi-

dently assigned to a taxon or gene, we are still faced with the

challenge of converting the remaining reads to comparable

estimates of abundance. This quantification is difficult due to a

variety of experimental and bioinformatics biases that affect
our ability to accurately estimate meaningful parameters of

the underlying community. Another challenge is the size of

shotgun metagenomes, which are typically much larger than

data from individual genomes, targeted sequencing of specific

genes from microbial communities (e.g., 16S, other taxonomic

markers, biosynthetic genes), or other meta‘omic experiments

(e.g., meta-proteomics, meta-metabolics).

Despite this complexity, metagenomic analyses have already

revealed massive amounts of novel diversity, shed light on host-

microbe interactions, explained cryptic health outcomes (Alivisa-

tos et al., 2015; Dubilier et al., 2015), and been used for clinical

diagnosis (Wilson et al., 2014b). Bioinformatics and statistics

research has produced a first generation of tools for estimating

the taxonomic and functional composition of a microbial commu-

nity from shotgunmetagenomics data (Box 1). Analysis strategies

include mapping reads to reference databases using sequence

homology, clustering reads to discover new taxa or protein fam-

ilies, assembling reads into genes or genomes, and various com-

binations of these approaches (Prakash and Taylor, 2012; Segata

et al., 2013; Sharpton, 2014). The key data summaries are based

on counts of reads assigned to taxa or functions. Studies examine

different levels of taxonomic resolution, including individual

strains (Box 2). As methods are rigorously benchmarked (Carr

and Borenstein, 2014; Lindgreen et al., 2016; Nayfach et al.,

2015a), iterative improvements and new approaches should

soon enable accurate quantification of the abundances of individ-

ual taxa, genes, or pathways in a single metagenome.

The real power of metagenomics comes from comparing data

across samples, either within a study or across studies. Detect-

ing differences in abundance for individual microbes or microbial
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Box 1. Taxonomic and Functional Profiling

A common approach to quantifying organisms and functions represented in a shotgun metagenome is to first classify sequencing reads by using

alignment to a reference database of genes and/or genomes to establish homology. The resulting counts of classified reads are used to compute

statistics that estimate the abundance of taxonomic groups and gene families.

One promising extension of this approach is to generate a gene catalog by using metagenome assembly applied to samples from a similar environ-

ment (Li et al., 2014b; Sunagawa et al., 2015). In some environments, assembling complete or draft genomesmay also be possible. The accuracy and

efficiency of assembly algorithms can be improved by binning reads and/or assembled contigs based on features such as sequence composition,

coverage, and co-variation (Alneberg et al., 2014; Cleary et al., 2015). Metagenome-derived sequences are then added to the reference database,

which can increase the number of shotgun reads that can be classified by adding novel gene families and increasing the diversity of known gene

families (Li et al., 2014b). Given that reads are expected to closely match one of the reference sequences, extremely fast sequence-alignment tools

(e.g., Bowtie 2; Langmead and Salzberg, 2012) can then be used to map metagenomic reads to the gene catalog and quantify gene abundance.

A complementary approach, termed de novo profiling, involves applying unsupervised clustering to group shotgun reads into operational taxo-

nomic units (OTUs) or gene families. This method does not rely on homology to known sequences and is therefore well suited to discovering novel

taxa. De novo analysis hasmostly been applied with targeted 16S gene sequencing, but the approach has been extended to shotgunmetagenomes

to identify OTUs (PhylOTU; Sharpton et al., 2011) and operational protein families (OPFs; Schloss and Handelsman, 2008), where longer reads will

likely make the approach more useful. Although clustering can be performed without a reference database, the resulting OTUs and OPFs are typi-

cally assessed for homology to known sequences in order to infer annotations (Wang et al., 2007).

Further details of different approaches to taxonomic and functional profiling are given in the following: Prakash and Taylor, 2012; Segata et al.,

2013; Sharpton, 2014.
genes often requires larger sample sizes than are feasible within

a project. Hence, meta-analyses and comparisons of newmeta-

genomes to existing cohorts are increasingly being done (Aru-

mugam et al., 2011; Finucane et al., 2014; Koren et al., 2013;

Li et al., 2014b; Lozupone et al., 2013; Yatsunenko et al.,

2012), and large studies usually involve experiments conducted

across multiple institutions (Ehrlich, 2011; Peterson et al., 2009).

Databases of publicly available gene sequences, genomes, and

metagenomes are growing exponentially (Kodama et al., 2012),

providing rich information for contextualizing new experiments

and fodder for computational studies that ask new questions

of existing data. These investigations typically involve compari-

sons of the abundance of taxa and/or genes across samples

or summarymeasures based on these, such as diversity metrics.

Meaningful comparative metagenomics requires accurate

quantification of taxon and gene abundances so that they can

be numerically compared across samples. For example, a 3-fold

higher gene abundance estimate should indicate roughly 3-fold

more of the gene rather than a systematic difference in the scale

of abundance estimates. This is unfortunately a much taller order

than computing relative levels of genes or taxawithin each sample

because many aspects of study design, experimental protocols,

and bioinformatics pipelines affect the relationship between true

abundance in the community and the number of reads observed

for a taxon or gene. Some of these issues have been previously

described in the context of taxonomic profiling with 16S seq-

uencing (Finucane et al., 2014; Goodrich et al., 2014), but others

are specific to shotgun data. Our goal is to promote accurate

comparative shotgun metagenomics by describing the primary

hurdles and highlighting existing or potential solutions.

Experimental Protocols Affect Results and Should Be
Tracked in Sample Metadata
Experimental protocols influence the sequences obtained in a

metagenomics experiment in a variety of ways (Figure 1). The In-

ternational Human Microbiome Standards (IHMS) project (Voigt

et al., 2015), Microbiome Quality Control (MBQC) project (Sinha
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et al., 2015), and numerous other studies are measuring the

effects of different techniques on read distributions. Sample

collection, storage (Voigt et al., 2015), DNA extraction (Kennedy

et al., 2014), and library preparation (Jones et al., 2015) all influ-

ence the taxonomic composition of a metagenome and, by

extension, the functional composition. Variable amounts of

DNA from the host (Ames et al., 2015), reagents (Tanner et al.,

1998), and post-sampling environment (Salter et al., 2014) will

be sequenced along with microbial DNA and can strongly influ-

ence coverage and quantification of microbiota, especially in

low biomass body sites and environments (Weiss et al., 2014).

Additionally, the amount of DNA extracted per cell depends on

growth rate of microbial populations—actively dividing cells

will yield more genomic DNA, which accumulates at the origin

of replication (Korem et al., 2015).

DNA fragmentation (Poptsova et al., 2014) and PCR biases

(Benjamini and Speed, 2012) introduced during library prepara-

tion result in a non-uniform sampling of possible sequencing

reads and an under-representation of DNA with certain seq-

uence features. Benjamini and Speed found that genomic frag-

ments with high and low GC content are under-represented in

Illumina libraries (Benjamini and Speed, 2012), and Manor

and Borenstein found that intra-metagenome differences in

coverage of different universal, single-copy genes can be ex-

plained by their GC content (Manor and Borenstein, 2015).

Non-uniform coverage skews representation of both genomes

and genes in shotgun data. Correction of these biases has yet

to be incorporated into most analysis methods in part because

solutions from other genomics applications (Benjamini and

Speed, 2012; Roberts et al., 2011) require complete and high-

quality reference genomes, which are unavailable for the vast

majority of microbes in the environment.

Sequencing is another potential source of bias. Commonly

used sequencers have different error rates and patterns (Quail

et al., 2012), but their effects on taxonomic (Sinha et al., 2015)

and functional (Nayfach et al., 2015a) composition are surpris-

ingly minimal (O’Sullivan et al., 2014). Read length, on the other



Box 2. Strain-Level Variation

The sequences in a shotgun metagenome contain information about nucleotide and copy-number variants carried by the specific strains of mi-

crobes in a community. Resolving metagenomics data at the sub-species level has great potential for understanding functional differences between

communities, shedding light on the recent evolution of microbial populations (Kashtan et al., 2014; Shapiro et al., 2012), providing critical insight into

pathogenicity (Rasko et al., 2011), and uncovering transmission between hosts (Nayfach et al., 2016). Strain analysis may also be able to shed light

on processes occurring during host colonization, including niche competition and population bottlenecks (Lam andMonack, 2014). However, quan-

tifying strain-level variation frommetagenomes is challenging. Formost species, directly detecting strains based on known strain-specific variants is

impossible because very few (if any) genomes from the species have been sequenced.

One solution is to quantify genomic variation by aligning reads to reference genomes and identifying gene copy-number variants (Greenblum et al.,

2015) and/or single-nucleotide variants (Nayfach et al., 2016; Schloissnig et al., 2013). Reference-based approaches work well for species from the

humanmicrobiome, which are well represented in genome databases, butmay not be suitable in other environments, like soil, that are dominated by

genes and genomes from microbial dark-matter (Rinke et al., 2013). These methods have the advantages of estimating patterns of variation

genome-wide and being fast, automated tools that produce output that can be easily compared across samples. An alternative approach is to

deconvolute mixtures of strains from patterns of genomic variation in metagenomes, either de novo (Luo et al., 2015) or using reference panels

(Joseph et al., 2014). Other techniques include reference-free assembly from shotgun data (Cleary et al., 2015; Nielsen et al., 2014) and sub-species

resolution analyses of 16S amplicons (Tikhonov et al., 2015).

These methods have revealed that different humans harbor quite distinct strains, and some of this variation is correlated with host phenotypes

(Greenblum et al., 2015) and body sites (Oh et al., 2014). Levels of variation differ across bacterial species and genes (Schloissnig et al., 2013). Impor-

tantly, genes with copy-number variants are enriched for specific functions that may affect interactions with other microbiota and the host (Green-

blum et al., 2015).

In the future, it will be important to evaluate the emerging approaches to strain-level analysis. One consideration is the data needed for good per-

formance, such as dependence on reference genomes or a large number of samples (e.g., for covariation analysis). Other criteria for evaluation

include sensitivity for low-abundance organisms, ability to resolve strains from high-diversity populations, ability to capture both core and variable

genomic regions, and robustness to different levels of recombination.
hand, is a source of bias on its own (Carr and Borenstein, 2014;

Nayfach and Pollard, 2015), in large part because it is more diffi-

cult to detect homology for short reads, especially when

sampled from a taxonomic group that is poorly represented in

reference databases (Wommack et al., 2008). Long-read tech-

nologies help with homology detection but are currently much

lower throughput and also prone to insertion and deletion (indel)

errors (Carneiro et al., 2012) that can affect read-mapping accu-

racy (Nguyen et al., 2014). Further evaluations are needed to

determine how different analysis methods perform across

various length reads and indel rates.

With all of these biases, it is critical to ask whether the effects

are comparable in scale to biological variation and therefore a

threat to accurate comparisons. For example, the MBQC found

that inter-laboratory variation (combined effects of many exper-

imental differences) is on the same order as biological variation

(Sinha et al., 2015). Voight et al. showed that technical variability

from freezing fecal samples versus preserving them in solution is

small compared to temporal and inter-subject variability. Lozu-

pone et al. found that samples from different studies of Western

adults clustered by study, whereas strong effect sizes such as

age and lifestyle were great enough to outweigh technical varia-

tion (Lozupone et al., 2013). Thus, most experimental biases

examined to date are not large enough to obscure biological

effects. Quantifications of error from additional experimental

protocols would enable the field to identify best practices.

There will always be some variability in experimental details,

particularly when using old datasets. It is therefore imperative

that all experimental methods be tracked in sample metadata

so that protocol differences can be adjusted for in downstream

comparisons. Currently, this is essentially never done. Ideally,

experimental metadata would be required in order to upload
sequence data to public repositories like the NCBI Sequence

Read Archive and the European Nucleotide Archive. Capturing

protocols at the time of data generation rather than months or

years later at the time of a publication would improve the accu-

racy of the recorded information. On the computational side,

tools that combine data across samples should be developed

and benchmarked with various sources of experimental bias

and their magnitudes in mind. Overall, we believe that these

biases can be minimized through careful sample annotation

and innovations in analysis.

Communities Should Be Profiled with Meaningful
Parameters
It is important to askwhat aspect, or parameter, of the underlying

community we wish to estimate in any metagenomic analysis.

For example, defining what we mean by abundance in the

community, which is distinct from any statistic computed from

a sequencing library, clarifies the objectives of a metagenome

analysis. Absolute abundance, relative abundance, and copy

number are examples of parameters that capture different

biological properties of a taxon or gene in a community

(Figure 2A). These parameters vary in how they depend on abun-

dances of other taxa and genes (Figure 2B). By detailing these

differences, we aim to guide researchers toward appropriate

parameter choices for their goals and provide insight into which

analysismethods produce taxonomic and functional profiles that

are comparable across samples.

Most metagenomics studies have focused on community

composition, meaning the relative amounts of different taxa

and genes contained within a sample. A common parameter

for taxonomic profiling is cellular relative abundance. This is

the proportion of all cells in the community that belong to a
Cell 166, August 25, 2016 1105



Figure 1. Challenges Associated with Estimating the Composition of a Microbial Community from Shotgun DNA Sequencing
(A) A sample from a microbial community composed of four different microbial species. Colored cells (blue, red, green) indicate ‘‘known’’ species that have at
least one genome sequence in reference databases. The green cell indicates a species that is rare within the microbial community. DNA contamination includes
DNA from the host, laboratory environment, or experimental reagents.
(B) DNA is extracted from the microbial cells in the sample. Extraction efficiency varies for different taxa, depending on the experimental protocol. The amount of
DNA extracted per cell depends on growth rate—actively dividing cells yield more genomic DNA, which accumulates at the origin of replication.
(C) Extracted DNA is broken into fragments by mechanical or enzymatic methods. Certain sequences are more likely to be breakpoints.
(D) A library is prepared from DNA fragments and sequenced. DNA fragments with high or low GC% are under-represented in the sequencing reads. Typically
millions of short (e.g., 150 bp) reads are generated per sample.
(E) Bioinformatics quality-control steps may be performed to eliminate duplicate reads, trim low-quality bases from read ends, and remove reads from
contamination sources or with low-quality scores.
(F) To infer the composition of the microbial community, high-quality reads are either compared to reference sequences or assembled de novo. Reference-based
classification cannot account for unknown species and overestimates the abundances of known species. Metagenomic assembly may not detect rare species
and overestimates abundance of abundant species.
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Figure 2. Parameters Used for Taxonomic

and Functional Profiling
When computing the abundance of taxa and
genes, it is important to think about what param-
eter of the underlying community one wishes to
quantify.
(A) A community with ten cells composed of three
taxa with different subsets of four different gene
families (colored arrows). Two cellular abundance
parameters and four gene abundance parameters
are defined by examples.
(B) A comparison of gene relative abundance,
average genomic copy number, and absolute
abundance across three communities (top, mid-
dle, and bottom). The red gene is present at one
copy per cell and has constant absolute abun-
dance in all communities, but its relative abun-
dance decreases with increasing genome size.
The copy number of the blue gene increases
with genome size, but its relative abundance is
constant.
taxonomic group or, equivalently, the probability that a randomly

sampled cell is from that group. A functional analog of cellular

relative abundance is gene relative abundance, which is also a

compositional parameter. It can be conceptualized by com-

bining the genomes from all cells in the community into a ‘‘bag

of genes’’ and asking what proportion of genes belong to each

gene family. Relative abundance is compositional, so an in-

crease in the number of cells of a single taxon implies a decrease

in the proportion accounted for by other taxa, even though their

cell counts remain constant. Before using compositional param-

eters, it is important to note that they require specialized statis-

tical methodology (Aitchison, 2003; Fisher and Mehta, 2014;

Kurtz et al., 2015), without which spurious correlations and other

errors are made (Faust and Raes, 2012). Also, the relative abun-

dance of a taxon (or gene) is expected to differ between commu-

nities even when the absolute amount is constant because of

changes in other taxa (or genes).
An alternative, and arguably more bio-

logically meaningful, parameter for func-

tional profiling (Beszteri et al., 2010;

Manor and Borenstein, 2015; Nayfach

and Pollard, 2015) is average genomic

copy number, which is the expected

number of copies of the gene (or pathway)

per cell or, equivalently, in a randomly

sampled cell. Average genomic copy

number is less than one for many gene

families, equal to one for universal, sin-

gle-copy genes, and above one for gene

families with multiple paralogs in a typical

microbe from the community. In a micro-

bial community with an average genome

size of 1,000 genes, average genomic

copy number will be three orders of

magnitude greater than gene relative

abundance. It is independent of genome

size and the percentage of unknown

genes and does not sum to one over all
genes. It remains a relative parameter because adding cells

with a particular set of genes to a community will alter average

copy numbers. A related parameter is the copy number per

taxon, which is a vector of expected copies per cell for each

taxonomic group (e.g., species) in the community.

Another option is to consider absolute amounts of taxa or

genes in a community (e.g., per unit of volume). Cellular absolute

abundance of a taxon does not change with the addition or sub-

traction of cells from other taxa. Similarly, gene absolute abun-

dance only changes if the cells that are added or subtracted

carry that gene. Absolute abundances are quantitative parame-

ters that can be compared across samples with standard statis-

tical methods. On the other hand, they do not quantify composi-

tion or relative amounts of taxa or genes and cannot be

estimated with sequence data alone.

By carefully defining different choices of taxonomic and func-

tional parameters, we have highlighted the information that they
Cell 166, August 25, 2016 1107



capture and how their values will change across different com-

munities (Figure 2B). The goals of a given analysis should drive

the choice of taxonomic and/or functional parameters to investi-

gate. For example, taxa or genes that vary by several orders

of magnitude across communities will likely be detected as

different using any of the abundance parameters, whereas

those with small dynamic ranges might be detected using

copy number, but not relative abundance.

Unbiased Estimation of Taxonomic and Functional
Profiles from Shotgun Data
Once a community parameter is selected, one should consider

how best to estimate it from shotgun data. Many computational

tools have been designed for classifyingmetagenomic reads into

taxonomic groups (reviewed in Lindgreen et al., 2016) or gene

families (reviewed in Prakash and Taylor, 2012; Segata et al.,

2013; Sharpton, 2014), but relatively few have been developed

for accurately estimating abundance parameters.

Accurately estimating cellular or gene relative abundance pa-

rameters from shotgun metagenomes is difficult. The typical

approach is to use the proportion of classified reads in a

shotgun metagenome that map to a genome or gene. However,

this statistic is biased and introduces unwanted variability into

comparisons between communities. One important reason is

variation in the proportion of unmapped reads across samples,

which results in the overestimation of the relative abundance of

known taxa or genes (Prakash and Taylor, 2012) (Figure 1).

Two major sources of unmapped reads are novel taxa and

taxa that are poorly characterized in reference databases

because the sequenced representative(s) have different gene

content from the strains in a sample. Even in well-studied envi-

ronments like the human gut, it has been estimated that 43% of

prokaryotic species abundance (Sunagawa et al., 2013) cannot

be captured by current reference genome-based methods.

Similarly, 64% of gene abundance in the human microbiome

is not found in databases (Abubucker et al., 2012). The situation

is far worse in other environments (e.g., soil, seawater), where it

has been estimated that between 90% and 98% of microbes

have no sequenced genome at the species level (Nayfach

et al., 2016). A proposed solution is to estimate relative abun-

dance with the proportion of total reads that map to a taxon

or gene (i.e., include ‘‘unclassified’’ as a category, as in

GRAMMy; Xia et al., 2011). However, this is still a poor estimate

of cellular or gene relative abundance because unmapped

reads derive from sources other than novel microbes, including

host DNA, other contamination, sequencing errors, and read

length (which affects sensitivity of alignment-based homology

detection) (Wommack et al., 2008).

Statistics based on proportions of reads also suffer from diffi-

culties related to the unknown sizes of genomes and genes in a

metagenome. Because the probability of sequencing a read

from a gene depends on its length, the number of mapped reads

will vary between equally abundant genes with different lengths.

For well-characterized genes, length can be estimated from

gene-family models or database sequences to which reads

from a metagenome map (Prakash and Taylor, 2012; Segata

et al., 2013; Sharpton, 2014). Normalizing by lengthmakes abun-

dance estimates more comparable across genes, but it does not
1108 Cell 166, August 25, 2016
address comparability across samples. The problem is worse for

estimating cellular relative abundance because genome sizes

vary greatly, even within species. Additionally, the number of

mapped reads to a genome will depend on the average length

of other genomes in the community. As taxon-specific genome

sizes in a metagenome are difficult to estimate for most commu-

nities, it is not feasible to normalize by this factor to get an unbi-

ased estimate of cellular relative abundance.

A potential solution for accurately estimating cellular relative

abundance is to use only shotgun reads thatmap to a set of taxo-

nomically informative marker genes, whose length and copy

number are constant or known across taxa (e.g., certain ribo-

somal proteins). The rationale for this approach is that genome

size is not an issue, as in targeted 16S sequencing. It may also

address issues with unmapped reads if the marker genes are

able to recruit reads from novel taxa. Identifying accurate marker

genes can be challenging, particularly for environments with

limited genomes sequenced. Several tools implement the

marker gene approach. MetaPhyler (Liu et al., 2011) maps reads

to a set of universal, single-copy genes using alignment param-

eters that are tuned for specific taxonomic levels (Liu et al.,

2011). mOTU (Sunagawa et al., 2013) also maps reads to a set

of universal, single-copy genes but uses a reference database

that contains genes from ‘‘novel’’ taxa identified from human

gut metagenomic assemblies (Sunagawa et al., 2013). Meta-

PhlAn (Segata et al., 2012) utilizes a hierarchical framework to

assign reads to genes that are unique to taxonomic groups (Se-

gata et al., 2012). MicrobeCensus (Nayfach and Pollard, 2015)

estimates the total read-depth of all cellular microbes (Bacteria,

Archaea, Eukaryotes) in a metagenome, which can be used to

normalize the read-depth of known taxonomic groups (Nayfach

et al., 2016). All of these methods enable detection of novel or-

ganisms at lower levels (e.g., species) because they estimate or-

ganism abundance at higher taxonomic levels (e.g., domain).

Similar approaches could be used to estimate the relative abun-

dance of viruses inmetagenomes, although in reality this will be a

much more difficult task due to the lack of universal marker

genes in viruses and because viral diversity in many environ-

ments is poorly represented in reference databases (Dutilh

et al., 2014).

For gene abundance, a solution is to estimate average

genomic copy number, which is straightforward to estimate

and easy to interpret. MUSiCC does so by normalizing gene rela-

tive abundances by the median relative abundance of universal

single-copy genes whose genomic copy number is very close

to one in all sequenced microbes (Manor and Borenstein,

2015). MicrobeCensus also uses reads mapped to single-copy

genes and estimates the total coverage of genomes from cellular

organisms, which can be used to compute reads per kilobase

per genome (RPKG), which is closely related to average genomic

copy number (Nayfach and Pollard, 2015). Because these met-

rics are normalized using a relatively small subset of genes in

the community, estimating them with low error may require

deeper sequencing than is needed for gene relative abundance.

Copy number per taxon can be estimated directly by mapping

reads to reference genomes (Greenblum et al., 2015; Nayfach

et al., 2016) or indirectly using methods that deconvolute read

counts across taxa (Carr et al., 2013).



Another appealing strategy is to focus on absolute taxon and

gene abundances, which avoids challenges associated with

compositional statistics. Unfortunately it is impossible to esti-

mate absolute abundance parameters from shotgun metage-

nomes alone. However, progress has been made toward doing

so by combining sequencing with density measurements from

flow cytometry (Hingamp et al., 2013) or quantitative PCR (Liu

et al., 2012) and by incorporating DNA or mRNA standards (Sat-

insky et al., 2013). Good standards capture technical variation in

sample preparation and sequencing, and hence they may also

be useful for estimating biases and normalizing read counts to

compare relative abundance across samples. On the other

hand, standards depend on recovery rate being constant and

do not quantify variation from obtaining or handling the sample.

As density estimation techniques and standards improve in ac-

curacy and cost, absolute abundance estimation may be a

promising direction.

We conclude that the most biologically meaningful and quan-

tifiable parameters for metagenome profiling are cellular relative

abundance and average genomic copy number. For cellular rela-

tive abundance, the best estimation approach appears to be us-

ing marker genes. However, the different marker gene methods

have not yet been thoroughly benchmarked and compared to

genome coverage approaches using realistic datasets. One

approach would be to create in silico or in vitro metagenomes

with different read lengths, novel taxa, host contamination,

sequencing biases, and PCR artifacts. An ideal method should

produce accurate estimates of cellular relative abundance that

are not biased by these factors. An additional important goal is

to detect the presence and identity of novel taxonomic groups,

just as 16S sequencing is able to detect novel operational taxo-

nomic units (OTUs). Even after benchmarking has been done, it

will be critical to rigorously evaluate and periodically update

marker gene sets asmore genomes are sequenced. In the future,

it also may be possible to accurately estimate gene relative

abundance as reference databases continue to expand. Data-

base bias can be reduced by building comprehensive gene cat-

alogs for different environments, as has been done for the human

gut microbiome with metagenome assembly methods (Li et al.,

2014b).

Meta-analysis Benefits from Uniform Bioinformatics
Processing of Raw Sequence Data
Analysis of a shotgun metagenome typically begins with bioin-

formatics processing of sequencing reads to ensure high-

quality data for read mapping or assembly. These steps include

but are not limited to trimming bases with low quality, filtering

low-quality reads, removing sequencing adaptors, removing

host sequences, and removing duplicated reads. Data in

public repositories are a mix of raw data (e.g., Consortium,

2012; Sunagawa et al., 2015) and quality-controlled data

(e.g., Li et al., 2014b) that differ in sequence quality, read

length, and library size. It is unclear whether these differences

prevent accurate meta-analyses. Furthermore, it is not known

what data-processing methods are optimal for various types

of analysis.

To quantify the magnitude of technical differences intro-

duced by data processing, we took 26 human gut metage-
nomes of varying quality, processed them using different qual-

ity-control methods, and used the resulting reads to estimate

the average genomic copy number and relative abundance of

KEGG Orthology Groups. Similar trends were observed for

both abundance parameters, so we emphasize results for

average genomic copy number. We compared the variation

introduced by data processing to the variation observed be-

tween a large set of gut metagenomes from the Human

Microbiome Project (Consortium, 2012), including technical

replicates (N = 1,474; median = 1.3% variation), biological

replicates from the same host at different times (N = 144;

median = 6.8%), and non-replicates from different hosts

(N = 179; median = 12.1%). A separate cohort of European in-

dividuals from the MetaHIT Consortium (Nielsen et al., 2014)

showed similar levels of variability for technical replicates, bio-

logical replicates, and non-replicates (medians = 2.3%, 5.9%,

10.9%, respectively).

Surprisingly, most of the data-processing methods had rela-

tively little impact on the functional profiles of the metagenomes

(Figure 3). For example, sequence quality filtering rarely altered

copy-number estimates bymore than the variation observed be-

tween technical replicates, and differences in read length intro-

duced only slightly more variation. Metagenomes naturally differ

in their sequencing depth and are sometimes rarefied (i.e.,

downsampled to the smallest library). We found that average

genomic copy-number estimates were surprisingly robust to li-

brary-size differences, with libraries only 5% of their original

size introducing <2.5% variation overall, although effects differ

for common versus rare genes. Although rarefaction may

improve accuracy of tests for taxonomic differences in 16S

studies when library sizes differ by more than 2-fold (Weiss

et al., 2015), our results suggest that large library-size differ-

ences do not significantly confound biological effects in gene

profiling with shotgun metagenomics. We therefore suggest

that rarefaction not be used on shotgun metagenomes, except

perhaps for statistics that are correlated with sequencing effort

(e.g., richness) and those that are biased (e.g., nucleotide diver-

sity, beta-diversity; Nayfach et al., 2015a) or have high variance

at low coverage. Explicit normalization methods that use all

reads (e.g., mixed models; McMurdie and Holmes, 2014) may

be more effective.

Filtering duplicate metagenomic reads had the greatest effect

on estimates of gene copy number (median = 3.6%) with some

samples changing by up to 7.6%. This procedure is commonly

employed based on the hypothesis that duplicate reads arise

as a result of experimental biases from PCR (Gomez-Alvarez

et al., 2009). However, biological duplicates can also arise

from abundant organisms, especially in deeply sequenced

libraries. In these cases, de-duplication can lead to underestima-

tion of the abundance of common taxa and genes. Supporting

this hypothesis, 63% of the variation in duplication rates across

HMP gut metagenomes was explained by library size (R2 = 0.51,

p = 3e-53) and species-level alpha diversity based on the Shan-

non diversity index (Keylock, 2005) (R2 = 0.12, p = 1e-10)

(Figure 4). For these reasons, we recommend against duplicate

filtering for quantitative metagenomic analysis and instead sug-

gest minimizing experimental biases, for example by using a

PCR-free library preparation (Jones et al., 2015) or employing
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Figure 3. Differences in Functional Profiles

due to Read Length, Library Size, and

Quality Control Are Small Compared to Bio-

logical Variation
Publicly available metagenomes often differ in their
library sizes, read lengths, and quality-control
measures, which leads one to ask, how compa-
rable are metagenomes from different studies?
Twenty-six human gut metagenomes of varying
quality were processed using different quality-
control methods, and the resulting reads were
used to estimate the relative abundance of KEGG
Orthology Groups (KOs). We compared the varia-
tion introduced by these factors (top) with the
variation observed between a large set of technical
(N = 1,474), biological (N = 144), and non-replicate
gut metagenomes (N = 179) from the Human
Microbiome Project (Consortium, 2012) that con-
tained at least one million reads (bottom). Trim-
ming reads from their 50 ends was done to simulate
libraries of different read length; downsampling
metagenomes by 95% was done to simulate li-
braries of different size; fastq-mcf (Aronesty, 2011)
was used for de-duplication and quality filtering. To
estimate the average genomic copy number of
functional groups, reads were mapped to the in-
tegrated catalog of reference genes in the human
gut microbiome (Li et al., 2014a, 2014b) using
bowtie2 (Langmead and Salzberg, 2012) and
normalized by themedian coverage of 30 universal

single-copy genes (Wu et al., 2013). The percent variation between two metagenomes was measured by the following: (1) taking the sum of absolute deviations
across KOs, (2) dividing this by the total abundance of KOs in both metagenomes, and (3) multiplying this by 100.
statistical models designed to correct these issues (Benjamini

and Speed, 2012; Roberts et al., 2011).

Although the effect of the quality-control methods we evalu-

ated was small compared with biological variation, we expect

that these differences can add up, especially when combined

together or with other technical differences, such as DNA extrac-

tion and library preparation. Likewise, we expect that larger dif-

ferences in read length, sequence quality, and/or library size will

have a greater impact on comparability. We will only be able to

fully assess these effects through cross-study comparisons,

which will require analysis of unprocessed datasets. Deposition

of such datasets into public repositories has not been consis-

tently practiced, and we strongly encourage it to enable uniform

processing of the raw sequences to avoid bioinformatics bias in

meta-analyses and to allow researchers to choose the optimal

quality-control methods for their specific goals.

Additionally, we recommend that bioinformatics tools build in

quality-control features needed for their specific goals. For

example, metagenomic assembly clearly benefits from using

sequence quality scores to trim and filter reads (Mende et al.,

2012), as does 16S-based diversity estimation (Bokulich et al.,

2013) and polymorphism quantification. Likewise, methods

that reduce redundancy of high coverage reads (Howe et al.,

2014) can increase the efficiency of metagenomic assembly by

reducing library complexity. On the other hand, functional pro-

files (Nayfach et al., 2015a) and taxonomic profiles (Nayfach

et al., 2016) can be estimated with only a few million reads,

reducing computational burden. Deposition of raw data and

integration of tunable quality processing into bioinformatics tools

are important steps for improving the accuracy of comparative

metagenomics.
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Study Design and Statistical Modeling
When designing a metagenome study, we advocate using suffi-

cient replication and controlling or randomizing over variables

that affect microbiome composition. But this is not always

possible, especially in meta-analyses. Biological effects (e.g.,

disease status, drug sensitivity) will frequently be confounded

with technical biases (Knight et al., 2012), as well as population

differences in variables associated with microbiome shifts,

such as diet, geography, animal facility, antibiotics (Goodrich

et al., 2014), or other aspects of medical treatment (Forslund

et al., 2015). Furthermore, metagenomes are often convenience

samples that are not representative of the underlying population

of interest (Knight et al., 2012). For example, ocean expedition

routes are understandably determined by weather, so analyses

of marine metagenomes must account for sampling date when

estimating microbial distributions (Ladau et al., 2013). Similarly,

failure to account for metformin treatment led to discordant

findings regarding gut microbiome dysbiosis in type 2 diabetes

(Forslund et al., 2015).

There is nonetheless hope for metagenomics meta-analysis. If

experimental protocols and sample characteristics are well

documented in metadata and raw data are available for uniform

processing, many biases can be accounted for in statistical

models and tests, especially when confounding is not complete

(e.g., cases are not all from one study and controls from another)

and replication is sufficient (McMurdie and Holmes, 2014). Tara

Oceans (Sunagawa et al., 2015) is an example of a project that

made highly structured experimental and environmental meta-

data publicly accessible. Tools from the RNA-seq literature

(e.g., edgeR [Robinson et al., 2010] and DESeq [Anders and

Huber, 2010]) can be employed to adjust for sources of bias



Figure 4. The Presence of Duplicated Reads

Is Largely a Function of Library Size and Mi-

crobial Diversity
FASTQC was used to estimate the percent of
duplicated reads across 181 human gut meta-
genomes from the HumanMicrobiome Project and
compared to (A) library size and (B) species-level
alpha diversity using the Shannon diversity index
(Keylock, 2005). Species abundance of bacteria
and archaea was estimated with mOTU (Suna-
gawa et al., 2013). Together, library size and
Shannon diversity explain 63% of the variation in
sequence duplication rates.
through statistical modeling, and extensions specific to metage-

nomics are being developed (e.g., metagenomeSeq [Paulson

et al., 2013] and phyloseq [McMurdie and Holmes, 2014]). As

samples frequently are not a random draw from the underlying

population of interest, it would be appropriate to control for

any measured confounders, being cognizant of unmeasured

confounders when interpreting results, and avoiding extrapola-

tion beyond the range of the observed data.

The Sequence Data Deluge Is an Opportunity and a
Challenge
There are massive amounts of publicly available data from

genes, genomes, and metagenomes that can be leveraged for

meta-analyses or interpretation of new metagenomics experi-

ments. Repositories, such as those hosted by the National Cen-

ter for Biotechnology Information (NCBI), European Bioinformat-

ics Institute (EBI), and Joint Genome Institute (JGI), containmany

terabytes of gene and genome sequence that are used to build

reference databases for metagenomics studies. Reference se-

quences are annotated in a variety of ways, including their taxon-

omy and functions when known (examples in Segata et al.,

2013). Metagenomes are hosted in the NCBI Sequence Read

Archive (SRA), EBI European Nucleotide Archive (ENA), and

other repositories like MG-RAST (Meyer et al., 2008). The growth

of available data is staggering. For example, an order of magni-

tude more metagenomics data is now publicly available in the

SRA compared to just 5 years ago (Figure 5). By hosting tera-

bytes of publicly available shotgun data, these repositories

enable meta-analyses and comparisons of new data to other

populations.

Despite having access to growing amounts of information, re-

searchers still face many challenges when leveraging these re-

sources. The sequence and annotation databases used to taxo-

nomically and functionally annotate shotgun reads can affect

estimates of abundance, diversity, and other community proper-

ties. This can even be an issue with de novo discovery of opera-

tional taxonomic units or protein families from shotgun data

because these are frequently annotated or interpreted in the

context of reference data. Taxonomy can be inconsistently

described across databases, only resolved to the genus level
(8.6% of bacterial genomes), or in

disagreement with average nucleotide

identity (9.8% of bacterial genomes)

(Mende et al., 2013; Nayfach et al.,

2016). This unevenness could be ad-
dressed by adopting a shared taxonomy based on an opera-

tional, sequence-based definition. The issue continues at the

gene level as well. Functional annotations of genes are sparse,

frequently inconsistent between databases, and differentially

mapped to pathways and other higher-order functional cate-

gories, which can lead to discordant conclusions about the bio-

logical capabilities of a community (Nayfach et al., 2015a). Addi-

tionally, there are major phylogenetic and functional biases in

what has been sequenced and annotated (Wu et al., 2009).

Metagenome assembly produces gene catalogs that help to fill

these gaps (Li et al., 2014b; Sunagawa et al., 2015). These

enable faster andmore accurate homology search when the cat-

alog is assembled from an environment resembling the shotgun

data being annotated.

Keeping pace with gene and genome sequencing is another

major issue. Many metagenome bioinformatics tools are devel-

oped and distributed with static reference databases that run

the risk of rapidly becoming out of date. For example, the num-

ber of genomes we clustered into species in 2015 (Nayfach

et al., 2016) was an order of magnitude more than were

analyzed with a similar approach 2 years earlier (Mende

et al., 2013), and our database in 2016 is already missing

new genomes. A simple solution is to say that software-associ-

ated databases should be perpetually updated. But this is a tall

order for an individual lab that is focused on methods develop-

ment rather than information management and whose projects

are not funded for ongoing data curation (Knight et al., 2012).

An alternative solution is therefore to promote development of

software that allows users to provide their own reference data-

base (e.g., Nayfach et al., 2015a). This approach puts the

burden of database creation and updating on the user, which

may be realistic if tools for querying and storing public

sequence data continue to improve and/or perpetually updated

databases in formats utilized by metagenomics tools are

hosted in reliable central repositories. An even better solution

would be for bioinformatics labs to design software to directly

query centralized databases, avoiding the need for users to

manage large databases themselves while also improving

reproducibility by ensuring that different researchers are work-

ing with the same data.
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Figure 5. Growth of Shotgun Metagenome

Data in the NCBI Sequence Read Archive
Cumulative size in terabases of publicly available
shotgun metagenomic data in the NCBI Sequence
Read Archive (SRA). Sequencing runs were
identified using the SRAdb database (Zhu et al.,
2013) by the following: library_source = ‘‘META-
GENOMIC,’’ study_type = ‘‘Metagenomics,’’ and
library_strategy = ‘‘WGS.’’
Other bioinformatics challenges in utilizing public sequence

resources include storage and manipulation of big data, tracking

quality and completeness of sequencing projects, and trans-

lating between databases. Although tools for easily querying da-

tabases for sequences based on their metadata (e.g., read

length, environment) help to address access and organization

(Börnigen et al., 2015; Zhu et al., 2013), a specific obstacle to

using public shotgun data is linking accession numbers of

metagenomes in public repositories (e.g., NCBI SRA) to the sam-

ple identifiers used in most publications. Adoption of globally

unique sample identifiers, an effort underway (Chase et al.,

2015), should improve upon error-prone and laborious manual

solutions. We conclude that widespread utilization of publicly

available shotgun metagenomes will benefit from better inter-

faces to read data and perpetually updated reference sequence

databases.

Sample Metadata Is Hard to Access and Link to
Sequence Libraries
Metadata is critical for comparative metagenomics. Knowledge

of how a metagenome was produced allows researchers to

adjust for technical biases, whereas annotation of the environ-

ment from which it was sampled enables statistical adjustment

for confounders and tests of associations with host or eco-

system characteristics. Unfortunately, metadata is currently

both incomplete and difficult to access for most metage-

nomics experiments, jeopardizing the reproducibility of individ-

ual studies (Ravel and Wommack, 2014) and preventing data
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integration across studies. The Genomic

Standards Consortium’s MIxS standard

(Yilmaz et al., 2011) (MIGS, MIMS,

MIMARKS, MIENS) provides a solution

that has been adopted by several large

projects (Gilbert et al., 2010) and

extended for specific environments (e.g.,

MIxS-BE for built environments; Glass

et al., 2014). In addition to adopting a

shared standard, it is important that meta-

data be freely and easily accessible

whenever approved by ethics commit-

tees (Huttenhower et al., 2014). Parsing

metadata from files in journal supple-

ments, lab websites, or dbGaP (Mailman

et al., 2007) and manually linking it to

sequence data is error prone and untena-

ble for large meta-analyses. The Bio-

Project and BioSample databases at

NCBI are searchable, centralized solu-
tions (Barrett et al., 2012) that tools like SRAdb can parse (Zhu

et al., 2013). For example, the Tara Oceans (Sunagawa et al.,

2015) expedition used these databases to link publicly acces-

sible metadata for 243 globally distributed seawater samples

directly to raw sequencing reads. We would like to see this

approach adoptedmorewidely as an alternative to puttingmeta-

data in supplemental files or other difficult-to-access locations.

Conclusions and Future Prospects
A future in which metagenomes are quantitatively compared

across studies is within our grasp. One important step will be

adopting statistics that estimate meaningful properties of a mi-

crobial community. Cellular relative abundance and average

genomic copy number are biologically motivated parameters

that can be estimated with minimal bias using appropriate

normalization techniques. Experimental protocols and data-

analysis methods can influence taxonomic and functional pro-

files estimated from shotgun metagenomes, as well as down-

stream results. However, the magnitude of these effects is often

small relative to biological variation, and confounders that are re-

corded in accessible metadata can be included in statistical

models to adjust for bias.

Data access and standardization are therefore imperative. Ac-

curate comparativemetagenomics requires raw sequence reads

so that bioinformatics bias can be eliminated through processing

and modeling data from different studies in a uniform manner.

Because most analyses use reference databases of genes and

genomes, expanding the functional and phylogenetic diversity



of data resources is a high priority. For example, microbial eu-

karyotes (Keeling et al., 2014) and viruses (Mizuno et al., 2013)

present unique challenges but need to be represented because

they are important players in many microbial communities. Solu-

tions to database bias may include assembling novel sequences

frommetagenomes (Box 1) as well as efforts to sequence uncul-

turable genomes (Rinke et al., 2013) and newgenomes from spe-

cific environments (Fodor et al., 2012) and neglected clades (Wu

et al., 2009). Accessingmetagenomemetadata is currently ama-

jor hurdle, which can be overcome through broader utilization of

public repositories for sharingmetadata in formats that are easily

parsed and queried. To make robust meta-analytic approaches

broadly available will require further development of computa-

tional tools that empower scientists with limited programming

experience to rapidly and easily query the abundance of specific

taxa and genes across publicly available datasets (Börnigen

et al., 2015; Nayfach et al., 2015b; Pesant et al., 2015).

One of the most promising directions for microbiome research

is integration (Franzosa et al., 2015; Segata et al., 2013) and sys-

tems-level modeling (Greenblum et al., 2013) of data from multi-

ple different meta’omics platforms. To do this accurately and

quantitatively will require careful consideration of sources of

bias affecting each technology, including how methods perform

on communities with different compositions. We have focused

here on barriers to comparing shotgun DNA-sequencing li-

braries. However, similar questions should be asked of other

modalities, starting with defining a meaningful parameter of the

underlying community. For example, should metatranscriptomic

analyses aim to estimate transcripts per cell and, if so, how

should read counts be normalized to estimate this quantity

without bias? Universal, single-copy genes may not be as

useful as they are for normalizing DNA metagenomes due to dif-

ferences in the overall transcriptional activity between cells

(Maurice et al., 2013). Absolute transcript numbers of some

genes may be estimable with mRNA standards (Satinsky et al.,

2013), but this approach requires further benchmarking. An

interesting alternative is high-throughput targeted sequencing

of known taxonomic and functional markers from single cells

(Spencer et al., 2016). As good quantitative statistics are devel-

oped for each meta’omics approach, it will be important to addi-

tionally consider how measurements will be compared across

technologies.

With the development of unbiased, quantitative methods for

comparative meta’omics, many exciting new questions are

emerging. For example, it is now possible to reconstruct the

pathways, modules, and metabolic potential of microbiomes

(Abubucker et al., 2012). With accurate functional profiles, we

can infer microbial interactions (Levy and Borenstein, 2013)

and metabolic dependencies (Zelezniak et al., 2015), identify mi-

crobial metabolites that affect host biology (Donia and Fisch-

bach, 2015), and inform bioprospecting efforts (Wilson et al.,

2014a). Abundance estimates that are comparable across sam-

ples also enable ecological and evolutionary investigations of

co-variation in taxonomic groups and gene families. An inter-

esting example is the network of correlations between abun-

dances of different antibiotic resistance genes across diverse

environments, which highlights the role of specific human behav-

iors in the spread of drug resistance (Li et al., 2015). Patterns of
co-variation are also improving OTU identification (Preheim

et al., 2013), metagenome assembly (Nielsen et al., 2014), and

detection of interacting taxa (Fisher and Mehta, 2014). One

particularly exciting development is the ability to characterize

strain-level diversity in shotgun metagenomes, which has re-

vealed massive differences in strain composition and gene con-

tent within and between human hosts (Box 2). Our understanding

of this genomic variation and its consequences will no doubt be

revolutionized by the incorporation of long-read sequencing (Ku-

leshov et al., 2016), chromatin-capture technology (Marbouty

and Koszul, 2015), and single-cell genomics (Stepanauskas,

2015) into the metagenomics toolbox.
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