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ABSTRACT 

Solutions to the Bethe-Salpeter bootstrap equations are found 

in the sense that the exchanged particle and the composite state have 

. the same mass and coupling constant' to the external (Le. bound) 

particles. One solution predicts a (nonexistent) ~ ~ bound state 

at 1.76 m. The method of calculation is numerical and utilizes the 
1l 

Schwinger variational principle. 
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I. MODEL AND RESULTS 

The Bethe-Salpeter (BS) equation provides a possible dynamics 

for the binding of two elementary particles (~,m2) through the 

exchange of a third particle (M). The general spirit of single 

channel bootstrap calculations in the context of the BS equation is 

to impose conditions which force the bound state (energy E) to be 

the "same" particle as the exchanged meson, M. A truly self-consistent 

bootstrap involves the solution of nonlinear integral equations such as 

are described in a recent article by Harte. l We have not attempted to 

solve these difficult equations, but instead restricted ourselves in 

this article to a much simpler model (also proposed by Harte2 ) which 

can be summarized in two steps. 

L Same Mass. Using the usual ¢3 BS equation, (Fig. 1) adjust the 

elementary coupling parameter \e C:: ge 
2 /(4 rc )2) to make the bound 

state and exchange masses equal: 

E = M. (Ll) 

2. Same Coupling to ml , m2 • Compute the effective coupling par.ameter . 

= 

Go" the free t"do-body propagator, and ;{(p,p), the BS wavefunction, 

are defined in Section II; and "on shell" me:3.ns all three :particles 

(~, m2, and the composite) are on their res~ective mass shells. As 
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the bound-state BS equation is homogeneous, the Cutkosky-Leon 

normalization·condition3 can be used to fix the absolute scale. The 

second bootstrap condition is 

>-e 

where j,c= gc
2/(4 T()2. 

Using the Schwinger variati.onal principle, 4 we have calculated 

>- and >-. as a function of E(=M) for three representative cases 
c e 

(all with £ = 0): 

(a) ground state with ~= m = 1 2 

(b) . first excited state with ~ = m2 = 1 

(c) ground state with ml = 1.5, m2 = 0·5 

Case (a) is shown in Fig. 2. A "bootstrap" solution (Le. the inter-. 

section of >-e and >-c curves) is possible for all three cases. As 

case (a) corresponds to the T( T( system interacting through an 

isosinglet scalar meson (a), this model predicts the occurrence of a 

(nonexistent) scalar meson of mass 

under strong interactions. 

1.76 m 
T( 

which must be stable 

We wish to emphasize that the conditions 1.1 and 1.3 are riot 

sufficient to insure a complete bootstrap because the vertices involved 

in the BS equation may have all three legs off the mass shell; so we 

have implicitly assumed that >-c is not strongly altered by off-mass

shell effects. We feel that this assumption is the weak link in this 

type of bootstrap procedure and look forward to a detailed study of 

the nonlinear eouations of Ref. 1. 
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II. NUMERICAL DETAILS 

2 2 2 
In the following we use a Euclidean metric with p = & + P4 . 

TheBS equation can be written in terms of the center-of-mass momentum 

(p) and the relative 'momentum (p) as 

, Go -l(p,p) X(p,p) = Ae f V(p - q) X(q,p) d4q !!£ Ae u(p,p), 

(2.1) 

where 

vip -q) = {i [(p - .q)2 + III f -1 . 

and 

-l( Go' p,p) = 

The parameters ~i 4efine the,relative coordinate system and are 

taken to be 

where 22" wi =: (A, + mi )" and wl + w2 = E. 

The bootstrap condition 1.; can then be expressed as 

A = c ' 
2 

[rc Ae u(p,p) ] 

where the normalization coefficient N is 

INI2 jx(P,p) (Of~) X(p,p) d4P 

= A, e 

:: 2E. 

(2.2) 

(2.4) 

'l'he adjoint wavefunction i(p,p) equals x (p ,P. ) for ml and 

f. == 0 (even time parity)., 
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For equal mass kinematics "on shell" means 

2 
p == (0, iM) and p2 m • 

The Schwinger variational form of 2.1 is4 

f X( -x) V(x) x(x) d
4
x 

J u(p) GO(p) u(p) d
4
p 5. 

UCRL-18069 

(2.6) 

, 

where we have suppressed P. The coordinate-space functions in the 

numerator are defined by 

V(x) 

R 

x(x) ~ exp(-i q·x) x(q) 

Combining 2.5 and 2.7 leads to 

4 M Kl(MR) 

R 
(2.8) 

(2.10) 

(V-I> where is evaluated in terms of the unnormalized solution used 

to calculate u. Solution of 2.7 automatically gives u(p) and 

( -1 \ V " hence can be computed directly from 2.4. It should be 

:pointed out that by evaluating u by use of the right hand side of 
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2.1, the continuation of p to the physical value is reliable, 

provided the state is not too deeply bound, because the approximate 

variational solution X is used only in the Euclidean region, where 

it vIas originally calculated. 

The factor (d ~e/dE2) is computed numerically by fixing M 

and varying E2 (see Fig. 3). The cusp at threshold, which is 

familiar from Schrodinger theory,5 is in part responsibie for the 

sharp drop of the A.c curve of Fig. 3. This cusp feature also seems 

to occur for .£ = 0 excited states (except for the "abnormal" 

solutions) although we have not proven this. Choosing the coefficient 

(V-I) of the leading trial function equal to unity, we find u and 

to be finite at threshold. The large slope at threshold then drives 

/N/ 2 
to zero and hence to zero. This leads us to conjecture 

that there exists a whole family of excited solutions to the bootstrap 

conditions. 
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III. FURTHER COMMENTS 

A few more comments about the cusplike threshold behavior of 

as a function 2 of E may be in order. It is easily shown that 

the £ = 0 Schrodinger solution with a single attractive Yukawa 

potential has this cusp. In fact, the result of a Schwinger variational 

calculation with a hydrogen atom trial function (a scale factor being 

the v~riational parameter) is approximately 

, 

where 

= 

/ 
2 _1.. 

and leads to d Ae dE total ~ EB 2. In the course of the derivation 

1 
of this formula it is found that the (E

B
)? term comes from the 

matrix element of the Green's function (unitarity cut), and a similar 

factor arises in the BS calculation from the Schrodinger piece of the 

four-dimensional Green's fUnction. 6 When. M and EB are small 

compared to the external masses, the BS equation reduces to the 

Schrodinger equation; but we find that the general form of3.l as a 

function of EB persists even when M is no longer small (see 

Fig. 3). 

As an application we' briefly consider the calculation of the 

nucleon~deuteron coupling constant. With our conventions, the 
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Landau-Nauenberg N/D type calculation7ofthe coupling of a composite 

deuteron to its constituent nucleons leads to 

"N/D = (~) 

where EB is approximately 2 MeV and m is the nucleon mass. We 

have taken spinl~ss "nucleons" bound in a pure s-state •. The derivation 

assumes there are no CDD:poles (Le. the deuteron is purely composite), 

the numerator function is not a strong function of energy near the 

deuteron pole, and that EB is small. It is easy to see that 2.4 and 

2.10 also imply this energy dependence. Because the dominant threshhold 

energy dependence of ~c comes from /N/ 2, the form 3.1 implies 

~c 

We have done some numerical calculations of ~c using the techniques 

of Section II. The results are summarized in Table I. Note the weak 

dependence of the coupling strength on the potential range (see also 

Fig. 4). 

The a meson has been of great utility as a phenomenological 

. tool in the fitting of NN scattering data at low energies, where it 

is believed to summarize the contributions of multiple n exchange. 

Using the "Equivalent Potential Method",8 Binstock9 has shown that 

the potential constructed from the Feynman amplitude 
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+ (:n:, p, ••• , exchange terms), 

with m a 2·m and g NN '" 0.9, provides a good fit to the low :n: a-

energy singlet data in the higher partial waves. In an attempt to 

get some correlation to our bootstrap result, we blindly put 

;\NNa A:n::n:a' the latter being 

to find 

2 3 m :n: 
from our bootstrap result, 

which is embarrassingly close to the phenomenological fit. We see 

no a priori justification for setting the NNa and :n:-:n:-a couplings 

equal, however. 

Finally, as the variational calculation gives us an approximate 

wavefunction, we could calculate the a mean radius; but w'e have not 

at present undertaken this. 

. .\:, 
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IV. CONCLUSION 

If we assume that the general bootstrap approach is valid, the 

unphysical solutions which we have found can be due to several things. 

(a) The external lines (~ mesons) have been taken to be elemen-

tary with only the bound state (a meson) as composite [Fig. 5(a)J. A 

true bootstrap would have to produce the ~ts as composite states as 
, 

well. If ~ is mainly formed out of, say, bound NN systems, then 

our treatment of the ~ as elementary is not important in this context. 

If, however, the ~ is to a large extent a a-rr bound state, then 

for any reasonable self-consistent result we would have to include 

processes as shown in Fig. 5(b). We can easily see that the rr 

exchange potential shown there is not sufficient to give a bootstrap 

solution because a bound state of a-~ with the mass of a ~ needs 

an (elementary) coupling of 7.15, while we have found a result of 

approximately 3. The next extension would be to include a a-a-a 

coupling. This would require the solution of the system shown in 

Figs. 5(b), (c), (d). This problem can be treated by our methods, 

but we have not undertaken it. 

(b) As we pointed out at the close of Section I, ,the assumption 

that ~c is not strongly dependent on off-mass-shell effects is 

suspect. The coupling ~c was evaluated for timelike values of the 

total momentum; however, the exchanged particle momentum is to a large, 

extent spacelike. As the'equations introduced in Ref. 1 do not suffer 

fro:Ol this defect, 'de hope that further study of these equations (now 

in progress) vlill clarify this point. 



-10- UCRL-18069 

V. ACKNOWLEDGMENTS 

I would like to thank Dr. John Harte for suggesting this 

problem and for his help, Professor Charles Schwartz for suggesting 

the easy and interesting way of computing N, and Dr. Bert McInnis 

for his interest and comments. 



-11- UCRL.,.18069 

FOOTNOTES AND REFERENCES 

* This work was done under the auspices of the U.S. Atomic Energy 

Commission. 

1. J. Harte, Crossing-Symmetric Bootstrap andE~orientially Falling 

Form Factors, Lawrence Radiation Laboratory Report UCRL-17735, 

August 1967. See also R.E. Cutkosky, Phys. Rev. 154, 1375 (1967). 

2. J. Harte, NUovo Cimento ~, 179 (1966). 

3. R. cutkoskyand M. Leon, Phys. Rev. 138, B667 (1965). The potential 

V is not an explicit function of E. The condition M = E merely 

serves to pick out a particular solution from an already normalized 

set of solutions. 

4. C. Schwartz and C. Zemach, Phys. Rev. 141, 1454 (1966). The 

techniques developed here are easily generalized to include the 

case ml 1= m2 . The reader is referred to this article for a 

detailed discussion of the method of solution of the BS equation 

which we have used. 

5; For example, look at the Bohr formula~ For the BS equation we 

find empirically 2 
(E -E) ~ c(~ - ~ ) near threshold, . thres e thres 

where c is a constant. It follows that 

d\ /dE
2 ~ [4 c E(~ - ~th )]-1. e e res 

6. See Ref. 4, Eq. 2.36 for the Green's function as the sum of a 

Schrodinger Green's function and a "correction" term. The correc-

tion term does not have a singularity at EB = O. Alternately we 



-12- , UCRL-18069 

1 

can extract the, EB2 behavior of G ,from the small p behavior 

of their momentum space expression B 15. 

7. See, for example, G. Barton, Dispersion Techniques in Field Theory 

Cw. A. Benjamin, Inc., New York, 1965), p. 196. The elementary 

coupling to bind a deuteron was also calculated by S. H. Vosko, 

J. Math. Phys. 1, 505 (1960). 
, , 

8. See J. Finkelstein, (Ph,D. thes:Ls), Lawrence Radiation Laboratory 

Report UCRL~173l1, Jan. 1967, for the formulation used. 

9.J. Binstock, private communication. I would'like to thank 

Dr. Binstock for supplying these numbers. ' The conventions used 

are those of Ref. 7. 
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Table 1. Results of' the "deuteron" calculation. 
The parameters are m = ~ = m2 = 0.938, and 

EB = 0.002. The exchange mass is M. 

M !I.e !l.c "w/D --

0.14 0.112 0.19 0.125 

0.25 0.183 0.16 0.125 

0.50 0.364 0.13 0.125 

0.76 0·578 0.12 0.125 

UCRL-18069 
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FIGURE CAPTIONS 

Fig. 1. The Bethe-Salpeter equation for a composite system of ~ 

and m2 bound by exchange of meson M. The total energy of 

the bound state is E. 

Fig. 2. Coupling constant bootstrap condition. The BS equation is 

Fig. 3. 

solved for various E subject to the condition M = E. 

The eigenvalue Ae is seen to coincide with the composite 

coupling constant A calculated from the eigenfunction and c 

the normalization condition at E ~ 1.8. 
. 2 

Elementary .coupling constant as a function ·of E. Note that 

both the ground state and excited states have a cusp at 

threshold. 

Fig. 4. Elementary and composite couplings for fixed exchange mass 

. (M = 1.6). The intersection at E = 1.8 does not correspond 

t() a bootstrap. The curve,labeled ~/D and AC are the 

same as threshold is approached. Due to the approximations 

made in the derivation of ~/D the only reliable points are 

these threshold values; Le. EB« mred!'2 = 0.25. 

Fig. 5. Some generalizationso. We have found bootstrap solutions to 

(a). To include th~ fC as composite, at least (b) and (a) 

would have to be solved simultaneously. This is incompatible 

with the bootstrap conditions. If a cr-cr-cr interaction is 

included, (b), (c), and (d) would have to solved 

simultaneously. 
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