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BOOTSTRAP SOLUTIONS OF THE BETHE-SALPETER EQUATION*

William B.. Kaufmann

Lawrence Radiation Laboratory,
University of California,.
Berkeley, California

February 2, 1968

ABSTRACT

Solutions to the Bethe-Salpetéf béotstrap equations are found
Jin the sense that the exchanged particle and the com@osite state have
- the same mass and coupling constant to the extérnal (1.e. bound)
‘particles. One solution predicts a (nonexistent) x x bound sfafe.
“at 1.76 mn. The method of calculation is numerical and gtilizes thé‘

Schwinger variational principle.
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I. MODEL AND RESULTS

The Betﬁe-Salpeter (BS).equation provides a possible dynamicg,
for the binding of two elementary parficleé (ﬁl,mz) “through the
exchange of a third particle (M). The general spirit of single
“channel bootstrap calculations in the context of the BS equation is
to impose conditions which force the bound state.(energy E) to be
' the "same" particle as the exchanged meson, M. A truly self-consisfent'
~ bootstrap involves the solution of nonlinear integrel equations such as
are described in a recent article by.Harte.l We have not attempted to -
 solve these difficult equations, but instead restricted ourselves in_
this article to a much simple? model (also proposed by Harte?) which
can be summarized in two steps..

1. Same Mass. Using the usual ¢3 BS eqﬁation, (Fig. 1) adjust the
elementary coupling parameter Ke<% ge2/(h n)2:> to make the bound

state and exchange masses equal:

E = M | S @)
2. Same Coupling to my, My Compute the effective coupling parameter -
2 -1, | S
. : 8 = (2 %) % x(P,p) on shell ° - (.2)

Gy, the free two-body propagator, and «(P,p), the BS wavefunction,
are defined in Section II; and "on shell™ means all three particles

(ml, m,, and the composite) are on their resvective mass shells. As
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the bound-state BS eQuation is homogeneous, the Cutkosky-Leon
normalization-condition5 can be used to fix the absolute scale. The

second bootstrap condition is

-V
where ) = g, /(& ) . |
Using the Schwinger variational principle,h we have calculated
A, and Xe' as a function of E(=M) for three representative cases
(all with £ = 0):
(a) ground state with m =m, =1
(b) - first excited state with m o=m, =1

(¢) ground state with m, = 1.5, ms = 0.5

case (a) is shbwn_in Fig. 2. A "bootstrap" solution (i.e. the inter-
section of xe and kc curveé) ig possible for all three cases.' As
case (a) corresponds folthé x n system interacting through an
isosing;et'séalar meson. (o), this model predicts the occurrence bf a
(nonexistent) scalar méson of mass 1.76.m.]T which'ﬁust be stable
“under stréng interactions.

We wishvto emphasize that’the-coﬁditiOns 1.1 and’l33 are not .
sufficient to insure a complete bootstrap because the vértices iﬁvolved
in the BS equation may have all three legs off the mass shell; so we:

. have im@liéitly assumed that Kc is not strongly‘altered by off-maés-
shell effécts. We feel that this assumption is the weak link in this
type of bootstrap procedure and look forward to a detailed study of .

the nonlinear equations of Ref. 1.
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IT. NUMERICAL DETAILS

. In the following we use a Euclidean metric with p2 = 3‘2 + phz.
The BS equation can be written in terms of the center-of-mass momentum

(P) and the relative momentum (p) as

5 em) x(20) =, [V - 9) 2e,?) d = (o),
— I ) (2.1)
where _ , Lo : |
§ > ., 2. -1 |
I e T T
and |
G (®p) = [P + )%+ m P I(P - )T e ml) . (203)

The parameters: by define thelrelative coordinate system and are

taken to be
o= oe/(ey +wp) end oy o= w/ () wy),

here o = (12 2% -
whe?e ,wi = Qﬁ +‘mi )? eand Wy + Wy = E.

The bootstrap conditlion 1.3 can then bé expressed as
= 0 N u(‘ P) I lNl2| = A o (2.4)
e T X e P, ‘Ton shell =~ e’ :

'wherg the normalization coefficlent N is fixed by5

, . ) o v
2 |- oG, 4 - = N

INI= Jx(p) \—g—/ x(P,p) d&'p = 2E. , (2.5) -

The adjoiht wavefunction %(P,p) equals x(P,p) for m, = m, 'andf o

1
"ﬂ'=‘ol (even time parity). '
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For equal mass kinematics "on shell” means
2 2
P = (0, iM) and p2 = (E/2)° - m". (2.6)
The Schwinger variational form of 2.1 is

e

: = ’ | | (2.7)
(20" [ ul®) o uE) ap () |

X Jf X(-x)vV(x) x(x) dhx | <V-l>

where we have suppressed' P. The coordinate-space functions in the

numerator are defined by

4 M Kl(MR)

v = fem(aw) v dta - —2—  (2.8)
B oo gDt
: dh v |
) = [ (-1 ax) x(a) (2—‘;1; - C(2.9)

Combining‘E.S and 2.7 leads to

d -1

mE = — e

M

(2.10)

wheré (V-l> is evaluated in terms of the unnormalized solution used
to calculate. u. Solution of 2.7 automatically gives u(p) and
‘(V—l>, hence xc can be computed directly from 2.k. Tt should be

pointéd out that by evaluating u by use of the right hand side of
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2.1, thevconfinuation of p tovthe physical value is reliable,
provided tﬁe state is not too deepiy bound, because the'apprdximate
variational solution X is used only in the FEuclidean region, where
it was originally calculated.

The factor (d xe/dEz) is computed numerically bylfixing M
and varying E2 (see Fig. 3). The cusp at threéhold,vwhich is

5

familiar from Schrodinger theory,” is in part responsible for the
sharp drop of the Kc. curve of Fig. 3. - This cusp;feature also seems
to'bccur for £ = 0 excited states (except for the "abnormal"
éolutions).although we have not proven this.. Choosing the coefficient
of the léading trial function equal to unity, we find u and (V_l)
to be finite at threshold. The large slope at threshold then drives
INIQ to zero and hence A to zero. This leads us to conjecture

that there exists a whole family of excited solutions to_the bootstrap

conditions.
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III.»IFURTHER COMMENTS

A few more comments about the cusplike ﬁhreshéld behavior of '
kg BS & function .of E2 may be in order. It ié easily éhown that
the  £ =0 _Schrodingef solution with a single attrgctive Yukawa
potential has this cusp. In fact, the resﬁlt of ﬁ Schwinger variational

‘calculation with:a hydrogen atom trial function (a scale factor being

the variational parameter) is approximately

where

- 7\-0 = (27 M/32 mred)’

=

and leads to d xe/dEe ~ R

total B * In the course of the derivatlonv

: : ' L |
. of this formula it is found that -the (EB)’ term comes from the

matrix element of the Green's function‘(unitaiity cut), and a similar
factor arises in the BS calculation from the Schrodinger pigce of the

four-dimensional Green's function.6 When M and E are'small

B.
compared to'the eiternal masses, the BS equatioﬁ reduces‘tb the -
Schrodinger equationj; but we find that the general form QfAB.i as a
function of EB persists even when M is no longér small (see |
Fig. 3). -

| As an application we briefly consider the calculation éf the

nuc;eonedeuteron coupling constent.” With our conventions, the
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7

Landau-Nauenberg N/D type calculation' of the coupling cf a composite

deuteron to its constituent nucleons leads to

<-§-> m?m EB)%,, o | : (32)

’where EB' is approximately 2 MeV and m 1is the nucleon mass. We

have faken'spinlese ”nucleons"'bcund in a pure s-state. 'The derivation
assumes there are no CDD poles (i. e. the deuteron is purely comPOS1te),d
the numerator functlon is not a strong fUnctlon of energy near the
deuteron pole, and that EB is small. It is easy to see that.2.h and
2 10 also imply thls energy dependence. Becanse the dominant threshhold

" energy dependence of Xc comes from INIQ, thevform 3.1 implies
) ‘ g -l 1 : o
d 5 . »
N o O° {-——2] cc Ep? . | - (3.3)

We have done some numerical calculations of xc uéing-the techniques
of Section IT. The results are summarized in Table I. Note the weak
dependence‘of.fhe coupling strength on the potential fange (see_aleo,
Fig. 4). | |

| The _d meson. has been of great utlllty as a phenomenoloélcal:
;tool in the flttlng of NN scatterlng data at low energies, where it
"1s believed to summarize the contributions of multiple = exchange.
 Using the '"Equivalent Potential Method",8 Binstock?-has shown that

the potential constructed from the Feynman amplitude
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(x, p,**°, exchange terms), - '(3-h)

16 = m

S 1 ':‘ '2
m o 2lat)

_w1th m, o Q-mﬁ and Eony = 0.9, prov?des a8 good fit to the low |

energy singlet data in the higher partial waves. 1In an attempt to
get some correlation tO'oﬁf_boétstrap'result, we blindly put o
.kNNG‘ = hnnc’

the latter being 3 mﬂ? from our bootstrap result,
to find

2
. 14 T A
g~ 21

My

: '0.8’

which is embarrassingly closg.to the phenomenological fit. We see

no a priori juétifiéafion for setting the NNo and n-n-0 couplings
equal, howeVer.v |

| | Finally,vas the vériational caléulationvgivés'us an approximaté
wavefunction, we could calculate the vc mean radius; but we have not

at present undertaken this,
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IV. CONCLUSION

‘>If'we.assdme that the genefal bootstrap approéch is valid, the

unphysiéal soiutioné which we have found can beldﬁe.ﬁé sevefal thingé.

(a) The external lines (x mesons) have been taken to belelemen-
tary with only the bound state (d mééon) as'composite [Fig. 5(&)]. A
ffue 5oo£strép wouid have té producé the x's as.compoéife states as
well."If n 1s mainly forméd but of, say,vbound ﬁN-‘Systems,‘then
our treatmentof‘tﬁe 7 és“elementary is no£ impoftant in this context.
If,.howeVer, ﬁhe ﬁ is to é'large extent a o-x bound staté,'then
for any reasonable sélf-cdnsistent result wevwould have to include
processes as shown in Fig. 5(5). We can easily see that the
exéhange potentiél shown there is not sufficient tovgive a béofstfap
solution because a bound state of o-x wifh the mass of a g5 needs
an_(eiementary) coupling of 7.15,.while we have found a result bf :
approximatel& 3. The next extension would be to include a 0-0-0
coupling..‘fhis Would réquire:thé sélution of the system shown in
Figs. 5(b), (ec), (d). This problem can be treated by our methods,
but we ha&e not undertaken it. | |

(b) As we pointed out at the close of Section I, the assﬁmption
 ‘that xc is not strongly dependent on éff—mass—shell effects:is |
suépect.’ The coupling Mo waé evaluated for timelike values of the
total momentum; however, the exchanged particle momentum is tb ablérge_
extent spacelike. As’the’equations introduced in Ref. 1 do not'suffer
from this'defect, we hope thét further study of these equations (now;

in progress) will clarify this point.
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E) ~ c(a

e Athres)

find empirically (Ethres-

2 near threshold;

where ¢ 1is a constant. It follows that

=1

2
dke/dE ~ 4 c E(xe - xthres)] .

See Ref. 4, Eq. 2.36 for the Green's function as the sum of a
Schrodinger Green's function and a "correction" term. The correc- .

tion term does not have a singularity at EB = 0. Alternétely we
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Results of the "deuteron" calculation.

The parameters are m = m o=m, = 0.938, &and

E_ = 0.002. The exchange mass is M.

UCRL-18069

B
" e 2o /o
0.1 0.112 0.19 0.125
0.25 0.183 0.16 0.125
0.50 0.36k 0.13 0.125 .
0.76 0.578 0.12 0.125
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FIGURE CAPTIONS

The Bethe-Salpeter equation for a cdmposite system of my

and m, bound by exchange of meson M. The total energy of

the bound state is E.

Coupling constant bootstrap condition. The BS equdtion is

solved for various E subject to the condition M = E.
The eigenvalue Xe is seen to coincide with the composite

coupling constant’ Xc calculated ffom the eigenfunction and

the normalization condition at E ~ 1.8.

Elementary coupling constant as a function.of E?._ Note that .

both the ground‘state and excited states have a cusp at

vthreshold.

Eleméﬁtary and composite douplings for fixed exchange mass

(M = 1.6). The intersection at E = 1.8 does not correspond

to a bootstrap. The curve labeled XN/D and A, are the

same as threshold is approached. Due to the épproximations

made in the derivation of AN/D the only relisble points are

the#e tpreshold values; i.e. Ep << mréd/2 = 0.25, |
.SOhe generalizations. We have found'bootstrap'solutions'to
(a). To include the n as composite, at least (b) and‘(a)
would have to be solved simultaneouély. This is incompatible
with the bootstrap conditions. If a o-0-0 interactionvié
included, (b), (c), and (d) would have to solved

simultaneously.
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