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1. INTRODUCTION

Landslides, rock falls, and debris avalanches can
generate significant tsunami waves in the coastal areas. 
Although landslide-generated tsunamis are decidedly 
more localized than seismically generated tsunamis, they 
can produce destructive coastal run-up and cause severe 
damage, especially where the wave energy is trapped by 
the confines of inlets or semi-enclosed embayments  [1, 
2]. Among the best known examples of catastrophic 
landslide-generated tsunamis are the 1958 Lituya Bay, 
the 1963 Vaiont Valley, and the 1934 Tafjord events. 
The Lituya Bay event of July 10, 1958 was caused by a 
large rockslide at the head of Lituya Bay, Southeast 
Alaska, that produced a giant wave that impacted the 
sides of the inlet to a height of 525 m [1, 3, 4]. The 
Vaiont Valley event occurred on October 9, 1963 when a 
massive rock slide fell 175 m into a reservoir in the 
Vaiont Valley, North Italy, creating a wave that 
destroyed a town and killed approximately 3000 people 
[1, 5]. In 1934 roughly 1.5·106 m3 of rock plunged into 
the Tafjord in Western Norway [6]. fjord and produced 

water run-up heights up to 60 m which resulted in the 
death of 41 people. 

The complexity of the water-rock mass interaction 
has been studies using both experimental and analytical 
methods. Fritz [7] and Fritz et al. [8, 9, and 10] 
performed experiments to study waves created by a 
deformable landslide in a 2D wave tank. Zweifel et al. 
[11] also used experiments to study the non-linearity of 
impulse waves. Huber and Hager [12] looked at both 3D 
and 2D impulse waves. Raichlen and Synolakis [13] 
performed experiments with a freely sliding wedge 
representing a land slide. Liu et al. [14] used the same 
type of experiments to validate a numerical model, based 
on the large-eddy-simulation approach. Recently, 
Saelevik et al. [6] performed two-dimensional 
experiments of wave generation from the possible 
Akneset rock slide using solid block modules in a 
transect with a geometric scaling factor of 1:500. 

The numerical simulation approaches used a number 
of different methods. For example, Harbitz [15] 
simulated tsunamis generated by Storegga slides using 
linear shallow water equations. Jiang and Leblond [2, 
16], Fine et al. [17], Thomson et al. [18], Imamura et al. 
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[19], Titov and Gonzalez [20] used nonlinear shallow 
water approximation to model the slide-water system as 
a two-layer flow. Lynett and Liu [21] discussed the 
limitations of the depth-integrated models with regards 
to landslide-generated waves, and developed fully 
nonlinear weakly dispersive model for submarine slides 
that is capable of simulating waves from relatively deep 
water to shallow water. Grilli and Watts [22] derived and 
validated a two-dimensional fully nonlinear dispersive 
model that does not have any restrictions on the wave 
amplitude, wavelength, or landslide depth, and describes 
the motion of the landslide by the position of its center 
of mass. 

The limitation of these approaches has been the 
assumption that the slide mass, soil or rock, could be 
approximated as an equivalent fluid mass or a 
continuous solid. While this approximation may be 
adequate and valid in many instances, it is desirable to 
be able to model the complexity of individual rock 
blocks interacting with water independently, thus 
allowing a greater flexibility in the type of phenomena 
that is modelled.   

In this paper we present Discontinuous Deformation 
Analysis (DDA) coupled with Smoothed Particles 
Hydrodynamics (SPH) numerical model for the study of 
rock-fluid interaction in 3-D. Since its introduction by 
Shi [23], 2-D DDA has been extensively developed in 
theory and computer codes, and there has been a 
significant interest in extending the formulation to 3-D. 
Shi [24, 25] presented the 3-D block matrices such as 
mass matrix, stiffness matrix, point load matrix, body 
load matrix, initial stress matrix and fixed point matrix. 
Grayeli and Hatami [26] presented formulation of 
coupled DDA and FEM in three dimensions. Mikola and 
Sitar [27] presented a new explicit time integration 
procedure for the solution of 3D-DDA algorithm in 
order to reduce the computational effort and memory 
requirement. They utilized a uniform spatial 
discretization method to eliminate unnecessary contact 
computations and the contact resolution was handled by 
FCP approach [28], HalfEdge data structure was used to 
handle the frequent navigation into the topological 
information associated with polyhedral blocks.  

Smoothed Particle Hydrodynamics (SPH), a meshless 
Lagrangian method, is a method that can capture the 
complexity of free surface flow with fragmentation and 
splashes. The SPH technique was conceived by Lucy 
[29] and further developed by Gingold and Monaghan 
[30] for treating astrophysical problems. Its main 
advantage is the absence of a computational grid or 
mesh, since it is a Lagrangian particle based method. 
This allows the possibility of easily modelling flows 
with a complex geometry or flows where large 
deformations or the appearance of a free surface occur. 

Our interaction model uses SPH to model the fluid and 
the rigid body solids are modelled using 3-D DDA [31]. 
However, the general interaction model we propose 
works with any type of solid model representation as 
long as the object is represented by a polygonal surface 
and the fluid by Lagrangian particles. 

2. EXPLICIT TIME INTEGRATION SCHEME  

DDA models a discontinuous material as a system of 
individually deformable blocks that move independently 
without interpenetration. Following the second law of 
thermodynamics, a mechanical system under loading 
must move or deform in a direction that produces the 
minimum total energy of the whole system. For a block 
system the total energy consists of the kinetic energy, 
potential energy, strain energy and the dissipated energy. 
In DDA individual blocks form a system of blocks 
through contacts among blocks and displacement 
constrains on a single block. For a system of n blocks the 
simultaneous equilibrium equations, derived by 
minimizing the total energy Π of the block system.  

Let D� and D��� denote the approximation to the 
values D�t� and D�t + 1� for a time step ∆t, 
respectively. Recall the system of equations Eq. 1 of 
motion for a DDA system [23]: 

MD� ��� + CD� ��� + KD��� = F���                       (1) 

with D�0� = 0, D� �0� = D� � as initial boundary 
conditions. In the above M, C, K are the global mass, 
damping and stiffness matrices, F is the time dependent 
applied force vector, and D� , D� , D and denote 
acceleration, velocity and displacement vectors, 
respectively. 

Original DDA time integration scheme adopts the 
Newmark [32] approach, which for a single degree of 
freedom can be written in the following manner: 

u��� = u� + ∆tu� � + ��
� − β� ∆t�u� � + β∆t�u� ���            (2) 

u� ��� = u� � + �1 − γ�∆tu� � + γ∆tu� ���                             (3) 

Where u� , u� , and u are acceleration, velocity, and 
displacement respectively, ∆t is the time step, β and γ 
are the collocation parameters defining the variation of 
acceleration over the time step. Unconditional stability 
of the scheme is assured for 2β ≥ γ ≥ 0.5 . DDA 
integration scheme uses β = 0.5 and γ = 1, thus setting 
the acceleration at the end of the time step to be constant 
over the time step. This approach is implicit and 
unconditionally stable. Substituting Eqs. 2 and 3 into Eq. 
1 results in the system of equations for solving the 
dynamic problem: 

� �
∆"# M + �

∆" C + K� D��� = F��� + � �
∆" M + C� D� �      (4) 



The solution of Eq. 4 requires assembling the global 
mass and stiffness matrices and solving the coupled 
system of equations using a direct matrix inverse 
operation or an iterative solver. The global stiffness 
matrix, K, includes the sub-matrix representing 
deformability of blocks and contacts, with contact 
matrices as off-diagonal terms. 

Shi [23] solved the global equations iteratively by 
repeatedly adding and removing contact springs (penalty 
values) until each of the contacts converges to a constant 
state at each time step. This procedure of adding and 
removing contact springs (penalty values) is known as 
open-close iterations in the DDA literature [33]. If 
contact convergence is not achieved typically within six 
iterations, the time step is reduced and the analysis is 
repeated with the reduced time step. The incremental 
displacement is restricted also by user-specified 
displacement limit to enforce infinitesimal 
displacements. If the incremental displacement is greater 
than the threshold, ∆t is divided by three and the analysis 
is repeated. Large values of ∆t may cause large 
penetrations at contact points; which results in more 
iterations to satisfy the penetration threshold. Also, large 
penetrations result in large contact matrices which can 
reduce the diagonal dominance of the global stiffness 
matrix leading to poorly conditioned system of 
equations.  

In the explicit solution procedure presented herein the 
discrete blocks are integrated explicitly by the central 
difference method, which gives 

u��� = u� + ∆t���                                                         (5) 

u� ���/� = u� �%�/� + �
� �∆t��� + ∆t��                                (6) 

Where i, i + 1/2 and i − 1/2 refer to the increment 
number and mid-increment numbers 

u� � = M%��F� − I��                                                         (7) 

where M is mass matrix, F the applied load vector and I 
is the internal force vector. The equations relating these 
values to each other are solved locally for each time-
step. Moreover, since there is no need to solve a 
complete system of equations, the incremental 
calculations for each degree of freedom are done 
independently at the local level. This uncoupling of the 
equations of motion is one of the major advantages of 
explicit integration schemes. In contrast to the implicit 
time integration scheme, the explicit solution scheme 
eliminates the need for assembly of global mass or 
stiffness matrices and inversion of the global matrix. 
However, computations are conditionally stable, i.e., the 
time-step size must be smaller than a certain critical 
value (critical time step, ∆t() for numerical errors not to 
grow unbounded. The time increments must satisfy the 
well-known criterion 

∆t ≤ �
*+,-                                                                      (8) 

where ω/01 is the element maximum eigenvalue.  

3. NUMERICAL MODELING OF WATER 
FLOW 

3.1. Navier-Stokes Equations. 

The dynamic behaviour of a viscous fluid, like water, is 
completely described by the so-called Navier-Stokes 
equations (NSEs). The equations for incompressible 
fluids are the mass conservation equation and the 
momentum conservation equation. Many forms of the 
NSEs appear in the literature. Equations (9) and (10) 
represent a simplified version for incompressible fluids. 

∇. 3 = 0                                                                         (9) 

45
46 + �3. ∇�3 = − �

7 ∇8 + 9∇�3 + :                           (10) 

where ρ, u, P, ν, g are density, velocity, pressure, 
dynamic viscosity coefficient of the fluid and 
gravitational acceleration, respectively. The first 
equation is the incompressibility condition. The second 
equation is called momentum equation which describes 
how fluid moves due to the forces. 

3.2. Smoothed Particle Hydrodynamics (SPH) 
equations 

The SPH is an interpolation method for fluid motion 
simulation. SPH uses field quantities defined only at 
discrete particle locations and can be evaluated 
anywhere in space. SPH distributes quantities in a local 
neighborhood of the discrete locations using radial 
symmetrical smoothing kernels. A scalar value A is 
interpolated at location r by a weighted sum of 
contributions from the particles. In SPH, a physical 
value at position x is calculated as a weighted sum of 
physical values ;< of neighbouring particles j 

=>�?� = ∑ A< BC7C< D�? − ?<�                                    (11) 

where A< , E< , ?< are the mass, density and position of 
particle j, respectively and W is a weight function. 

The use of particles instead of a stationary grid 
simplifies these two equations substantially. First, 
because the number of particles is constant and each 
particle has a constant mass, mass conservation is 
guaranteed and (9) can be omitted completely. Second, 

the expression 
45
46 + �3. ∇�3 on the left hand side of (10) 

can be replaced by the substantial derivative 
45
46  Since the 

particles move with the fluid, the substantial derivative 
of the velocity field is simply the time derivative of the 
velocity of the particles meaning that the convective 
term u•∇. 3 is not needed for particle systems. We regard 



NSEs as the governing equations, and calculate density, 
pressure and viscosity force separately using SPH 
numerical methods. The density of fluid is calculated 
with (12) as 

E< = ∑ A<D�FG − F<, ℎ�<                                              (12) 

Accuracy of the algorithm highly depends on the 
smoothing kernels. For our implementation we used the 
following kernel: 

D�F, ℎ� = I�J
KLMNO P�ℎ� − F��I  �0 ≤ F ≤ ℎ�0                         �F > ℎ�                (13) 

We use the weight functions proposed by Muller et al. 
[34] and a modified solution is obtained for pressure 
force guaranteeing the symmetry of forces: 

:GRST>>5ST = − ∑ A< RU%RC�7C ∇D>RGVWXFG − F< , ℎY<           (14) 

For pressure computations we use Debrun’s spiky kernel 
[34]: 

∇D>RGVW�F, ℎ� =
LJ

MNZ [�N#�S#
S − 2ℎ� F  �0 ≤ F ≤ ℎ, F = |F|�

0                         �F > ℎ�                  (15) 

The pressure at particle locations has to be calculated 
first, which can be computed via the ideal gas equation: 

8 = ]F                                                                         (16) 

where ] is a gas constant that depends on the 
temperature. A modified version - which we used in our 
implementation - makes the simulation numerically 
more stable:  

8 = ]�E − E��                                                            (17) 

where E� is the at-rest density. Applying the SPH rule to 
the viscosity term also yields to asymmetric forces 
because the velocity field varies. A symmetric 
expression is obtained using velocity differences: 

:G^G>_`>G6W = a ∑ A< ^U%^C7C ∇�D^G>_`>G6W�FG − F< , ℎ�<     (18) 

Muller et al. [34], designed a kernel for the computation 
of viscosity forces as follows: 

∇�D^G>_`>G6W�F, ℎ� =
LJ

MNZ P�ℎ − F�              �0 ≤ F ≤ ℎ, F = |F|�0                         �F > ℎ�                    (19) 

Finally, for the acceleration ai of a particle i we have 

bG = �
7U X:GRST>>5ST + :G^G>_`>G6W + :GTc6TSdefY             (20) 

where :GTc6TSdef are external body forces such as gravity 
forces. We then use a simple Euler integrator in our 
simulations, which is first order accurate in position and 
velocity, and can be written as, 

9G�g + ∆g� = 9G�g� + ∆g bG�g�  

hG�g + ∆g� = hG�g� + ∆g 9G�g + ∆g�                           (21) 

 where ∆g is the time step. 

4. COUPLING BETWEEN SPH AND DDA 

The coupling algorithm used here is parallel; fluid (SPH) 
and solid block (DDA) evolutions are calculated 
explicitly at the same time. In order to couple the SPH 
and DDA the interaction force between fluid particles 
and solid blocks needs to be estimated. We choose to 
employ a fairly standardized “repulsion” force to prevent 
a particle from penetrating the boundaries. This method 
was chosen for the ease with which multiple types of 
boundaries can be implemented. The repulsion force is 
implemented for both “wall boundaries” as well as 
“solid blocks”. The no-penetration condition states that 
the fluid cannot penetrate the boundary surface. To repel 
the fluid particles from the boundary we use a penalty-
force method: 

:Gi`5djeSW = �klm − �9. n�ko�. n                             (22) 

where kl is the penalty force stiffness and ko is the 
damping coefficient for the velocity 9 of an approaching 
fluid particle m is the penetrated distance measured 
normal to the boundary, and n is the unit-length surface 
normal. It can be seen from Equation (22) that the 
penalty force method behaves as a spring-based model, 
because the more a particle penetrates the boundary the 
more it is pushed away from the surface. 

5. SIMULATIONS 

Three examples are presented to demonstrate the newly 
developed 3-D DDA algorithm. The scenes in the 
following examples have been rendered with POV-ray, a 
free code ray tracing rendering program [35]. 

5.1. Example 1- Wave Maker 

This simulation involves a wave maker in the form of an 
oscillating piston on the one end of the model, a straight 
line beach with a slope of 4% and a horizontal section 70 
m long between the wave maker and the beach. The SPH 
simulation used almost 65000 particles and the 
boundaries as well as wavemaker itself have been 
simulated using as rigid blocks. Figure 1 shows the 
propagating waves onto the beach. 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 1. Particles and rigid block configuration for the 
wavemaker. 

5.2. Example 2- Sliding Block 

In this example we simulate waves generated by a rigid 
wedge sliding into water along an inclined plane. In this 
simulation water waves were generated by allowing a 
wedge shape block to freely slide down a plane inclined 
at 25°. The density of the wedge assumed to be 2500 
kg/m3. The SPH simulation used almost 25000 particles 
and the boundaries as well as sliding block have been 
simulated as rigid blocks. Particles configuration due to 
sliding of the rigid wedge is presented at different times 
in Figure 2. 
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Figure 2. Particles and rigid blocks configuration for the rigid 
wedge sliding down a plane inclined 25◦on the horizontal at 
different time steps. 

5.3. Example 3- Impacting Block 

In this example we simulate waves generated by a rigid 
block impacting the water surface. In this simulation 
water waves were generated by allowing a block to 
freely slide down a plane inclined at 30° on the 
horizontal and impact the water surface. The density of 
the block assumed to be 2500 kg/m3. The SPH 
simulation used almost 100000 particles and the 
boundaries as well as sliding block have been simulated 
as rigid blocks. Particles configuration due to impact of 
the rigid block is presented at different times in Figure 3. 
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Figure 3. Particles and rigid blocks configuration for the rigid 
block impacting the water surface at different time steps. 

6. SUMMARY 

We present a highly efficient, three dimensional 
numerical model coupling the SPH method and 3D-
DDA for modeling fluid-discrete solid body interaction 
problems. The explicit 3D-DDA formulation 
significantly simplifies and speeds up the computation 
which is essential for analysis of full scale problems. 
Similarly, the coupling algorithm is very efficient when 
dealing with fluid-structure interaction problems in the 
presence of a free-surface and is relatively simple to 
implement. The ability of SPH to fragment and 



reconnect interfaces presents a great opportunity when 
modeling impacts of solids on fluids, and vice versa. The 
result of the example computations show that coupled 
SPH and DDA can be used to simulate dynamic fluid 
discrete block interactions in a variety of settings.  
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