
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Magnetohydrodynamic Turbulence Simulations on the Earth Simulator Using the Lattice 
Boltzmann Method

Permalink
https://escholarship.org/uc/item/9v50f67d

Authors
Carter, Jonathan
Soe, Min
Oliker, Leonid
et al.

Publication Date
2005-08-18

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9v50f67d
https://escholarship.org/uc/item/9v50f67d#author
https://escholarship.org
http://www.cdlib.org/


Magnetohydrodynamic Turbulence Simulations on the Earth 
Simulator Using the Lattice Boltzmann Method

Jonathan Carter1, Min Soe2, Leonid Oliker1, Yoshinori Tsuda3, George Vahala4, Linda 
Vahala5, and Angus Macnab6

1
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

2
Rogers State University, OK 74017, USA

3Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology,
Yokohama 236-0001, Japan

4
College of William & Mary, Williamsburg, VA 23187, USA

5
Old Dominion University, Norfolk, VA 23529, USA

6
CSCAMM, University of Maryland, 20742, MD

Highly optimized large-scale lattice Boltzmann simulations of 3D magnetohydrodynamic turbulence are 
performed on the Earth Simulator.  We discuss code optimization schemes for both single processor and parallel 
performance, and present performance data at various concurrencies and grid sizes.  A production run on a 
14403 grid using 4800 processors achieved a total aggregate performance of over 26 Tflop/s, making this study 
one of the largest yet undertaken and allowing access to an unprecedented level of detail. While a full analysis 
will require much more work, representative features of some 3D MHD turbulence are presented.

Introduction
Magnetohydrodynamics (or MHD) describes self-consistently the macroscopic 

behavior of an electrically conducting fluid by combining the Navier-Stokes equations with 
Maxwell’s equations.  MHD turbulence plays an important role in many branches of physics 
[1]:  from astrophysical phenomena in stars, accretion discs, interstellar and intergalactic 
media to plasma instabilities in magnetic fusion devices. It is well known that the simulation 
of turbulent flows in complex geometries places great strain on computational algorithms 
designed for the direct solution of the MHD equations. Sophisticated schemes must be 
developed to handle the singular matrices that crop up in accurately resolving the nonlinear 
convective derivatives, e.g., high order finite elements or Newton-Krylov algorithms.

Lattice Boltzmann (LB) schemes are an alternate approach that circumvent the 
resolution problems with the macroscopic nonlinear convective derivatives by embedding 
into a higher dimensional (kinetic) phase space. While this appears to be an inverse-
Statistical mechanical approach, the resulting kinetic equations can be discretized on a phase 
space lattice that has a minimal number of (discrete) velocities sufficient that the long-time, 
long-wavelength (Chapman-Enskog) limit reproduces the desired macroscopic nonlinear 
equations. With simple linear advective terms the difficult macroscopic non-local 
nonlinearities are recovered by simple polynomial (local) nonlinearities in the collision 
operator of the kinetic equation.

For Navier-Stokes turbulence, one needs to introduce only a scalar distribution whose 
discrete moments yield the fluid density and mean velocity. While this LB algorithm has 
been used extensively over the past ten years for simulating Navier-Stokes flows [2], its 
application to MHD has not been as vigorously pursued─presumably because of the 
difficulty of introducing the magnetic field at a kinetic level. The first attempts introduced a 
complex double velocity lattice-streaming algorithm on a scalar distribution function. 
Recently for 2D MHD, Dellar [3] introduced a separate vector distribution function for the 
magnetic field whose zero (vector discrete) moment yielded the magnetic field. These sets of 



coupled kinetic equations could then be discretized on the standard lattices used in fluid 
turbulence. Here we extend this algorithm to 3D MHD.

In earlier work [4], we noted that the Earth Simulator showed very impressive 
performance for a variety of scientific applications, including a two-dimensional LB 
application. The very high memory bandwidth coupled with the large amount of data 
parallelism present in the LB scheme made this architecture an obvious choice for some of 
the largest LB MHD simulations attempted so far.

Resistive Magnetohydrodynamic Turbulence
Here we consider the compressible resistive MHD equations for the density ρ , 

velocity u and magnetic field B

ρ ∂u
∂t + u.∇u





 = − ∇p + ∇ × B( )× B + µ∇2u

∂B
∂t = ∇ × u × B( ) + η∇2B (1)

∂ρ
∂t + ∇. ρ u( ) = 0

Closure is achieved by an isothermal equation of state: p = ρ cs
2  with constant sound speed 

cs and ∇. B = 0 . 
The disparate length and time scales that appear in the solutions of resistive MHD 

require careful numerical treatment. A semi-implicit time scheme with high-order finite 
element spatial discretization will result in the inversion of ill-conditioned matrices which 
appear as a manifestation of the underlying numerical instabilities inherent in the explicit 
numerical scheme. The ill-conditioned matrices are handled in Jacobi-free Newton Krylov 
techniques by suitably chosen pre-conditioners. While the implicit time step interval can be 
on the order of 200 times greater than that permitted by Courant-Friedrichs-Levy constraints
on standard explicit codes, the overall speed-up of the implicit codes are only a factor of 10-
30 faster due to all the extra computational effort. 

Here we present an alternative explicit scheme[3, 5] to direct MHD solvers, which 
bypasses the difficult resolution of the nonlinear convective derivatives by embedding the 
problem into a higher dimensional kinetic phase space. In this lattice Boltzmann method 
(LBM), we discretize a set of coupled linear scalar-vector Bhatnagar-Gross-Krook (BGK)[6] 
kinetic equations 

∂f x,ξξξξ,t( )
∂t + ξξξξg∇f x,ξξξξ, t( ) = − 1

τ u

f x,ξξξξ, t( )− f eq x,ξξξξ,t( )      ,

∂g x,ξξξξ,t( )
∂t + ξξξξg∇g x,ξξξξ,t( ) = − 1

τm

g x,ξξξξ,t( )− geq x,ξξξξ,t( )  (2)

where one connects back to the macroscopic variables by the appropriate moments:

ρ x,t( ) = dξξξξ f x,ξξξξ,t( )∫  ,     ρ u x,t( ) = dξξξξ f x,ξξξξ,t( ) ξξξξ∫
B x,t( ) = dξξξξ g x,ξξξξ, t( )∫ (3)



τu and τm are the relaxation rates at which collisions drive the distribution functions to their 
equilibrium states: f → f eq and g → geq. The nonlinear convective derivatives in MHD are 
now replaced by linear kinetic advective terms in the LBM. On discretizing the kinetic 
equations, one chooses the velocity lattice geometries and the polynomial representation of 
f eq(u,B) and geq(u,B) so that in the Chapman-Enskog (long wavelength, long time) limit one 
recovers the original nonlinear resistive MHD equations (1).  

For 3D resistive MHD, an appropriate phase velocity lattice has 27 velocities: ξ→ cα, 
α = 1,…,27, where the speeds on a unit cube are √2 [velocities of the form (±1,±1,0), α = 
1,…,12], 1 [velocities of the form (±1,0,0), α = 13,…,18], √3 [velocities of the form 
(±1,±1,±1), α = 19,…,26] as well as one rest particle α = 27.  The lattice symmetries are such 
that the resulting discretized kinetic equations (∆x = 1 = ∆t) 

fα x + cα ,t +1( ) = fα x, t( ) − 1

τ u

fα x,t( ) − fα
eq x,t( )  , α = 1...... 27

 

gα x + cα , t +1( ) = gα x,t( ) − 1

τm

gα x, t( ) − gα
eq x,t( )  , α = 13, ... , 27

 (4)
are second order in space and time. The asymmetry in the choice of the (scalar) velocity and 
(vector) magnetic distributions arises from the different symmetry properties of the second 
moment tensors arising in Eq. (2):

Πij  = ρcs
2 + B2

2





 δ ij  + ρuiu j − Bi Bj = Π ji  = fαcαicα j

α =1

27∑
Λij = Biu j − Bjui = − Λ ji  = cαi gα j

α =13

27∑ (5)

Moreover, because closure for the gα -equation is attained at the 1st moment (while 

that for fα -equation is attained at the 2nd moment), the number of phase space velocities to 

recover information on the magnetic field is reduced from 27 to 15. The nonlocal 
nonlinearities in the resistive MHD are recovered from the linear LBM through the quadratic 
local field nonlinearities in the relaxation distribution functions:

fα
eq = fα

eq u ⋅ cα , B ⋅ cα , u2 , B2( )  ,     gα
eq = gα

eq B, B ⋅ cα , u ⋅ cα( ) (6)

and the transport coefficients are related to relaxation rates

µ = 1

3
τ u − 1

2




 ,         η = 1

3
τm − 1

2




 (7)

Thus, in a minimal dimensional discrete phase space the evolution of the distribution 
functions in LBM are obtained from: (a) BGK collisional relaxation, which uses only local 
information at each spatial node, and (b) Lagrangian streaming of this information from one 
spatial node to neighboring nodes. This makes LBM ideal for large-scale vector parallel 
machines like the Earth Simulator.

As can be expected from explicit algorithms, LBM is prone to numerical nonlinear 
instabilities as one pushes to even higher Reynolds numbers. These numerical instabilities 
arise since there are no constraints imposed to enforce the distribution functions to remain 
non-negative. Such entropic LBM algorithms, which do persevere the non-negativity of the 
distribution functions---even in the limit of arbitrary small transport coefficients---now do 
exist for Navier-Stokes turbulence [7], and there is active research in developing such 
entropic LBM algorithms for MHD.  



Finally, we should comment on the important constraint ∇ ⋅B = 0  [8]. While LBM 
does not enforce this constraint explicitly, numerous tests have indicated that the algorithm 
somehow keeps ∇ ⋅B  within acceptable bounds without the need for divergence cleaning.

Earth Simulator
The Earth Simulator (ES) hardly needs an introduction. Since it debuted in the spring 

of 2002 it has attracted worldwide attention─it occupied the number 1 spot on the Top 
500[9] list for a record two and a half years before moving down the list in November 2004.

The ES uses a dramatically different architectural approach than conventional cache-
based systems that comprise the rest of the top 10 spots in the Top 500 list. Powerful vector 
processors are connected via a fast single stage switch. 

 The 500 MHz ES processor contains an 8-way replicated vector pipe capable of 
issuing a multiply-add each cycle, for a peak performance of 8.0 Gflop/s per CPU. The 
processors contain 72 vector registers, each holding 256 64-bit words (vector length = 256).  
For non-vectorizable instructions, the ES contains a 500 MHz scalar processor with a 64 KB 
instruction cache, a 64 KB data cache, and 128 general-purpose registers. The 4-way 
superscalar unit has a peak of 1.0 Gflop/s and supports branch prediction, data prefetching, 
and out-of-order execution. 

Like traditional vector architectures, the ES vector unit is cacheless. Memory 
latencies are masked by overlapping pipelined vector operations with memory operations. 
The main memory chip for the ES uses a specially developed high speed DRAM called 
FPLRAM (Full Pipelined RAM) operating at 24 ns bank cycle time. Each SMP contains 
eight processors that share the nodes memory with a bidirectional bandwidth of 32 GB/s. 

The ES contains 640 nodes connected through a custom single-stage crossbar. This 
high-bandwidth interconnect topology provides impressive communication characteristics, as 
all nodes are a single hop from one another. The peak performance of the interconnect is 12.3 
GB/s (11.8 GB/s measured with MPI) in each direction. The latency of most internode MPI 
functions is approximately 6µs [10].

The 5120-processor ES runs Super-UX, a 64-bit Unix operating system based on 
System V-R3 with BSD4.2 communication features. As remote ES access is not available, 
the results reported here were performed during the authors' visit to the Earth Simulator 
Center located in Kanazawa-ku, Yokohama, Japan in October 2004, and later by one of us 
(YT) with local access.

Computational Implementation
     While LBM methods lend themselves to easy implementation of difficult 

boundary geometries, e.g., by the use of bounce-back to simulate no slip wall conditions, 
here we report on 3D MHD simulations under periodic boundary conditions. The structure of 
the program is straightforward, two multi-dimensional arrays hold the particle distribution 
function, f, and magnetic field distribution function, g, for each of the rectilinear mesh of grid 
points. We use the 3DQ27 model which, as previously noted, uses 27 discrete velocities for f, 
and 15 (corresponding to the last 15 vectors of f) for g. The arrays are further doubled in size 
to accommodate the values for the current and next time step in the simulation. 
Approximately 1 KB of storage is required per grid point, leading to quite large memory 
requirements for relatively small grids.



     After initialization, the simulation proceeds conceptually via two phases, each 
repeated for every time step. In the first phase, collision, the macroscopic quantities, density, 
momentum density, and magnetic field are constructed from the moment expressions detailed 
above, the equilibrium values f eq and geq calculated, and updated values of f and g are 
calculated from (4). In the second phase, stream, the updated values are streamed to the 
appropriate neighboring cell according to the value of cα. The first step is computationally 
intensive, but requires only data local to the grid point. The second step is a set of shift 
operations, moving data from grid point to grid point according to the lattice vector.

     Wellein and co-workers have discussed optimal layouts for the particle 
distribution function functions in the case of LB fluid dynamics [11]. For most architectures 
they found the “propagation optimized layout” to be optimal, where the first dimensions are 
the Cartesian coordinates, followed by an index representing the streaming vector, i.e. 
f(x,y,z,27). We have followed this choice, and simply extended it for the magnetic 
field distribution function, g(x,y,z,13:27,3). Fortran array syntax is assumed with x 
varying fastest when stepping contiguously through memory.

     The simplest implementation is outlined in the code fragments shown below in 
Figure 1:

For the parallel implementation each array is partitioned onto a 3-dimensional 
Cartesian processor grid, and MPI is used for communication. As in most simulations of this 
nature, ghost cells are used to hold copies of the planes of data from neighboring processors. 
For ghost cell updates during the stream phase, we use the shift algorithm [12]. In this 
method we make use of the fact that after the first exchange is completed in one direction, we 

function collision
dimension f(nx,ny,nz,27), g(nx,ny,nz,13:27,3)
dimension feq(nx,ny,nz,27), geq(nx,ny,nz,13:27,3)

do x=1,nx: do y=1,ny: do z=1,nz
 do i=1,27
! compute density, momentum density
   density+=f(x,y,z,i)
   …
 end do
 do i=13,27
! compute magnetic field
   b(1)+=g(x,y,z,i,1)
   …
 end do

 do i=1,27
! compute feq
   feq(x,y,z,i)=…
   …
 end do
 do i=13,27
! compute geq
   geq(x,y,z,i,1)=…
   …
 end do
end do: endo do: end do

function stream
dimension f(nx,ny,nz,27), g(nx,ny,nz,13:27,3)
dimension feq(nx,ny,nz,27), geq(nx,ny,nz,13:27,3)

do x=1,nx: do y=1,ny: do z=1,nz
! stream feq and geq values to appropriate 
! neighboring cells
  f(x,y,z,1)=feq(x+1,y,z,1)
  f(x,y,z,2)=feq(x,y+1,z,2)
…
  g(x,y,z,1,:)=geq(x+1,y,z,1,:)
  g(x,y,z,2,:)=geq(x,y+1,z,2,:)

end do: endo do: end do

Figure 1 Outline of initial LB MHD code



have partially populated ghost cells. The next exchange includes this data, further populating 
the ghost cells. A diagram showing the 2D case is shown in Figure 2 below.

     This procedure has the advantage of reducing the number of neighbors included in 
message-passing from 26 to 6, a beneficial optimization considering the MPI latency of the 
ES is reasonably high compared with the bandwidth. Because different lattice vectors 
contribute to different spatial directions, the data to be exchanged are not contiguous. For 
example, 12 of the 26 lattice vectors have a component in the +x direction, and must be sent 
in this direction, but are not contiguous in the arrays f or g. The data is packed into a single 
buffer, resulting in 6 message exchanges per time step. The initial implementation made use 
of mpi_isend/mpi_irecv pairs.

     Initial experiments using 4 processors on the ES showed very poor single 
processor performance, about 330 Mflop/s. Using the ftrace tool showed that while the 
vector operation ratio (VOR) was reasonably high at 89%, the average vector length (AVL) 
was very short at around 10. Inspection of the compiler listing showed that the innermost 
loops (see Figure 1) had been vectorized, corroborating the ftrace output. To improve 
performance, the innermost loops were unrolled using compiler directives and the innermost 
grid point loop vectorized giving a much-improved result of 3.97 Gflop/s with an AVL of 
over 255 and VOR of over 99%.

     A second key optimization, described by many workers in the field[13, 11], was
then implemented. They noticed that the two phases of the LB simulation could be combined, 
so that either the newly calculated particle distribution function could be scattered to the 
correct neighbor as soon as it was calculated, or equivalently, data could be gathered from 
adjacent cells to calculate the updated value for the current cell. 

Figure 2 a) ghost cells (green) populated by first exchange b) this data 
then used to populate ‘corner’ ghost cells when exchanged in other direction



The memory access pattern for the collision phase becomes much more complex, but 
the amount of data transferred each time step is reduced dramatically. Figure 3 attempts to 
sketch how we implemented this algorithm.

We benchmarked the effect of this algorithm change on a small 2563 grid simulation 
running on 16 processors. The effect was to boost the per processor performance by 13% to 
4.8 Gflop/s, and produce a decrease in time to solution of 12%.

Turning to parallel performance, we examined the behavior of 256 and 512 processor 
simulations for an intermediate 5123 grid. A speedup of 1.978 was obtained on doubling the 
processor count, with the larger run achieving 5.2 Gflop/s per processor. Two experiments to 
improve MPI performance were conducted, to see if the already outstanding scaling could be 
improved. The first was to replace the mpi_isend/mpi_irecv/mpi_wait calls with simple 
mpi_sendrecv calls. This was motivated by the fact that little computational work (just a 
small amount of copying to the send buffers) could be overlapped with communication, and 
that the mpi_wait calls would likely be associated with some additional overhead. The 
performance of the mpi_sendrecv implementation was close enough to that of the original 
implementation to be within the variability we had seen during several runs, approximately 
4%. The second experiment concerns the use of global memory. The NEC MPI 

Figure 3 Optimized LB MHD code

function collision
dimension f(nx,ny,nz,27), g(nx,ny,nz,13:27,3)
dimension feq(nx,ny,nz,27), geq(nx,ny,nz,13:27,3)
dimension ft(27), gt(27,3)

do x=1,nx: do y=1,ny: do z=1,nz
! collect feq and geq values from appropriate 
! neighboring cells
  ft(1)=f(x+1,y,z,1)
  ft(2)=f(x,y+1,z,2)
…
  gt(1,:)=g(x+1,y,z,1,:)
  gt(2,:)=g(x,y+1,z,2,:)
…
 do i=1,27
! compute density, momentum density
   density+=ft(i)
   …
 end do
 do i=13,27
! compute magnetic field
   b(1)+=gt(i,1)
   …
 end do

 do i=1,27
! compute feq
   feq(x,y,z,i)=
   …
 end do
 do i=13,27
! compute geq
   geq(x,y,z,i,1)=
   …
 end do
end do: endo do: end do



implementation reserves an area of memory on each node through which all messages are 
staged. User defined storage may be allocated in this area either by compiler directives, or by 
allocating memory via mpi_alloc_mem. The code was slightly modified to use the latter 
approach, and timings were obtained for the 256 and 512 processor runs. Again, the 
performance fell into the range of times we had observed for the initial version. With 
hindsight, the reason is quite clear. For messages of this size (roughly 1-2 MB, so latency 
dominates), compared with the cost of an MPI message, moving data within memory is 
extremely fast on the ES. That is, each message is sped up by only a small amount. In 
addition, looking from the single node performance point of view, for the 512 processor case, 
assuming we save one memory copy on the send and one on the receive, we eliminate only 
about 8 GW of copying. This is less than 0.5% of the total vector elements processed during 
all operations. 

     Turning to our first production grid of 10243 we carried out simulations at 1024, 
2048, and 4096 processors. Table 1 shows performance data for these and the previous two 
benchmarking runs described above.

Proc. Grid % MPI 
comm.

Avg. Msg. Size 
(MB)

Perf./proc. 
Gflop/s

VOR AVL

256 512 7.7 2.1 5.43 99.72 254.2
512 512 9.1 1.1 5.19 99.59 253.2
1024 1024 5.1 2.3 5.44 99.62 254.5
2048 1024 8.6 2.1 5.36 99.71 254.5
4096 1024 - 1.1 5.16 99.58 253.3

Table 1 Performance data for LBMHD obtained via ftrace

For each grid size with increasing concurrency, the performance per processor drops 
off slightly. This is mainly the effect of communication overhead increasing, due to both the 
cost of communication and the increasing ratio of communication to computation. Both of 
these effects can be seen in the column listing the percentage of time spent in MPI 
communication. The VOR and AVL values show that the performance of the computational 
kernel is hardly affected by the scaling up of the problem. 

The previously discussed experiments were performed with all I/O turned off. Our 
application can use either MPI I/O or I/O to separate files to record snapshots for 
visualization, or for saving the final state. Even though the ES can support MPI I/O, because 
each node has a separate filesystem and MPI I/O is implemented through a software layer on 
top of this, the separate file I/O strategy proved the most efficient. Saving the full magnetic 
field and velocity data at 4096 processors took less than an additional 1% wall clock time for 
a simulation of 5000 iterations (1.5 seconds out of 315).

Finally, for one special run using a 14403 grid and 4800 processors we ran the 
simulation at length to probe the onset evolution of turbulence at high resolution. This 
calculation ran for almost 2 hours at an average performance of 5.47 Gflop/s per processor 
giving a total aggregate performance of 26.25 Tflop/s. The ftrace output is shown is Figure 
4.



Figure 4 ftrace output from a 4800 processor 14403 grid point simulation

Simulation Results
     There is considerable interest in the time evolution of the Taylor-Green vortex in 

fluid turbulence, the initial conditions for which are as follows: 
ux x,0( )=U0 sin kx( )cos ky( )cos kz( ),
uy x,0( )= 0 , 

uz x,0( )= −U0 cos(kx)cos ky( )sin kz( )
as vortex stretching occurs in the y-direction. The interaction of the Taylor-Green vortex with 
a magnetic field has been examined in the context of dynamo theory [?]. Here, we choose a 
somewhat novel initial condition: what is the effect of a Taylor-Green initial magnetic field 
profile (with no magnetic field component in the y-direction) constraining a criss-cross 
pattern of Kelvin-Helmholtz unstable vorticity layers at Reynolds numbers in the range of 
100 [Reynolds number Re =U0L / µ , and magnetic Reynolds number Rem =U0L /η ].  The 
vorticity layers are in the xy-plane and the vorticity tubes are initially uniform in z.  After 10 
K iterations, the 3D turbulence induces vortex stretching in the z-direction as seen in the 
view of the vorticity isosurfaces for magnitudes ≥ 0.4 ωωωω max

shown in upper Figure 5 below. 

Cut-away planes after 10 K iterations of the vorticity, corresponding to the isosurface, are 
shown in lower Figure 5.

Global Data of 4800 processes:          Min [U,R]             Max [U,R]         Average
=============================

Real   Time (sec)           :     7009.577 [0,1727]     7014.524 [0,3936]     7012.237
User   Time (sec)           :     6980.809 [0,47]       7008.636 [0,58]       7002.136
System Time (sec)           :        0.108 [0,3174]       14.399 [0,2420]        2.096
Vector Time (sec)           :     6750.045 [0,599]      6806.688 [0,1]        6779.005
Instruction Count           : 442363454165 [0,47]   444864848376 [0,6]    444098440561
Vector Instruction Count    : 275326393521 [0,47]   275730111623 [0,1]    275611247439
Vector Element Count        : 66001820265319 [0,900]  66135946388005 [0,4494] 66090298297808
FLOP Count                  : 38290765605961 [0,2404] 38290765620970 [0,0]    38290765607203
MOPS                        :     9448.137 [0,539]      9487.749 [0,1253]     9462.661
MFLOPS                      :     5463.369 [0,58]       5485.147 [0,47]       5468.446
Average Vector Length       :      239.640 [0,299]       239.873 [0,1734]      239.795
Vector Operation Ratio (%)  :       99.745 [0,6]          99.748 [0,242]        99.746
Memory size used (MB)       :     1391.518 [0,2404]     1395.830 [0,0]        1391.831

Overall Data:
==============
Real   Time (sec)           :     7014.524
User   Time (sec)           : 33610251.045
System Time (sec)           :    10060.747
Vector Time (sec)           : 32539225.401
GOPS   (rel. to User Time)  :    45420.738
GFLOPS (rel. to User Time)  :    26248.517
Memory size used (GB)       :     6524.206



At 40 K iterations, the vorticity isosurfaces exhibit interesting structures throughout the 
volume as the vorticity tubes deform, (with the cutaway xy-planes also displayed) as shown 
in Figure 6.

At 70 K iterations, one sees some of the vortex tubes contort further as they tend to radiate 
outwards in the xy-plane, as seen in the vorticity isosurfaces and corresponding cutaway xy-
planes. This is shown in Figure 7 below.

Figure 5 Vorticity plots after 10K iterations

Figure 6 Vorticity plots after 30K iterations



Summary
We have presented data on the performance and initial analysis of LB MHD 

simulations carried out at unprecedented scale and resolution. The preliminary results are 
very interesting and more time is needed to analyze the results and novel turbulence features 
exposed in our simulation. In addition, simulations need to be performed at even higher 
Reynolds and magnetic Reynolds numbers, with even greater resolution.

The simple LBMHD algorithm will now need to be extended to incorporate 
constraints that enforce the positive-definiteness of the distribution functions. In the Navier-
Stokes case, such an entropic algorithm requires a slight augmentation to the collision 
operator

∂f x,ξξξξ,t( )
∂t + ξξξξg∇f x,ξξξξ, t( ) = − α x,t( ) β f x,ξξξξ, t( )− f eq x,ξξξξ,t( )  ,

where β  is a fixed (tunable) parameter while α x,t( )  must be determined by a Newton-

Raphson iterative scheme such that the discrete H-function for the system satisfies

H f[ ] = H f −α f − f eq( ) 
at each grid point at each time step. It can be shown that α = 2  in equilibrium. Our Navier-
Stokes entropic simulations have shown that typically one requires less than 5 iterations to 
obtain convergence with errors of order 10−10 . Since analytic expressions exist for both the 
H-function and f eq , the Newton-Raphson iterations require only local node information and 
should be easily vectorized.  By extending this entropic algorithm to MHD, we would have 
an unconditionally stable tool to examine MHD phenomena at arbitrary viscosity and 
resistivity in arbitrary geometry (since boundary conditions are readily handled by bounce-
back rules [2]), ideally suited for vectorization and parallelization.

Acknowledgements
The authors would like to thank S. Kitawaki for his help and assistance during our 

visit, and Dr. T. Sato of the Earth Simulator Center for granting us access to the ES.

Figure 7 Vorticity plots after 70K iterations



JC and LO were supported by the Director, Office of Science, Office of Basic Energy 
Sciences, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. GV 
and LV were supported by respective grants from DoE.

References
[1] D. Biskamp, Magnetohydrodynamic Turbulence, Cambridge Univ. Press, 2003
[2] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon 

Press, Oxford 2001 
[3] P. J. Dellar, J. Comput. Phys. 179, 95 (2002)
[4] L. Oliker, J. Carter, J. Shalf, D. Skinner, S. Ethier, R. Biswas, J. Djomehri, and R. Van 

der Wijngaart, Concurrency and Computation Journal: Practice and Experience, 17, 69 
(2005)

[5] A. Macnab, G. Vahala, L. Vahala and P. Pavlo, Proc. 29th EPS Conf. P-1.111 (2002)
[6] P.L. Bhatnagar, E.P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954)
[7] S. Ansumali, I. V. Karlin and H. C. Ottinger, Europhys. Lett. 63, 798 (2003).
[8] G. Toth, J. Comput. Phys. 161, 605 (2000)
[9] Top 500 List: http://www.top500.org
[10] H. Uehara, M. Tamura, and M. Yokohawa, NEC Res. & Develop., 44, 75 (2003)
[11] G. Wellein, T. Zeiser, S. Donath and G. Hager, Computers and Fluids, Accepted for 

publication
[12] B. Palmer and J. Nieplocha, Proc. PDCS 2002, 192 (2002)
[13] B.H. Elton, SIAM J. Sci. Comp., 17(4), July 1996




