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ABSTRACT OF THE DISSERTATION

Accurate, Efficient, and Robust 3D Reconstruction of Static and Dynamic Objects

by

Kyoung-Rok Lee

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California, San Diego, 2014

Professor Truong Q. Nguyen, Chair

3D reconstruction is the method of creating the shape and appearance of a real

scene or objects, given a set of images on the scene. Realistic scene or object recon-

struction is essential in many applications such as robotics, computer graphics, Tele-

Immersion (TI), and Augmented Reality (AR). This thesis explores accurate, efficient,

and robust methods for the 3D reconstruction of static and dynamic objects from RGB-D

images.

For accurate 3D reconstruction, the depth maps should have high geometric

quality and resolution. However, depth maps are often captured at low-quality or low-

resolution, due to either sensor hardware limitations or errors in estimation. A new

sampling-based robust multi-lateral filtering method is proposed herein to improve the

resolution and quality of depth data. The enhancement is achieved by selecting reliable

xiv



depth samples from a neighborhood of pixels and applying multi-lateral filtering using

colored images that are both high-quality and high-resolution.

Camera pose estimation is one of the most important operations in 3D recon-

struction, since any minor error in this process may distort the resulting reconstruction.

We present a robust method for camera tracking and surface mapping using a handheld

RGB-D camera, which is effective for challenging situations such as during fast camera

motion or in geometrically featureless scenes. This is based on the quaternion-based ori-

entation estimation method for initial sparse estimation and a weighted Iterative Closest

Point (ICP) method for dense estimation to achieve a better rate of convergence for both

the optimization and accuracy of the resulting trajectory.

We present a novel approach for the reconstruction of static object/scene with

realistic surface geometry using a handheld RGB-D camera. To obtain high-resolution

RGB images, an additional HD camera is attached to the top of a Kinect and is cali-

brated to reconstruct a 3D model with realistic surface geometry and high-quality color

textures. We extend our depth map refinement method by utilizing high frequency in-

formation in color images to recover finer-scale surface geometry. In addition, we use

our robust camera pose estimation to estimate the orientation of the camera in the global

coordinate system accurately.

For the reconstruction of moving objects, a novel dynamic scene reconstruction

system using multiple commodity depth cameras is proposed. Instead of using expen-

sive multi-view scene capturing setups, our system only requires four Kinects, which are

carefully located to generate full 3D surface models of objects. We introduce a novel

depth synthesis method for point cloud densification and noise removal in the depth

data. In addition, a new weighting function is presented to overcome the drawbacks of

the existing volumetric representation method.
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Chapter 1

Introduction

1.1 Problem Statement

3D reconstruction is the process of generating the geometry and appearance of

real objects using computer vision and computer graphics. Building realistic 3D models

of real environments is an important task in computer vision. There has been growing

interest in the reconstruction of realistic 3D models of objects or scenes using stereo

cameras [2], range sensors [3, 4], and uncalibrated image collections [5, 6]. Some meth-

ods produce very accurate, high-quality results; however, image-based methods suffer

from problems of noise contamination and the presence of illumination changes in dif-

ferent views. Laser scanning or structured light systems may require specialized train-

ing, expensive devices, or special environmental setups, all of which restrict their ability

to be commonly used in daily life.

Recently, affordable RGB-D cameras such as Intel’s Interactive Gesture Camera

and Microsofts Kinect [7] have been rapidly adopted by computer vision researchers.

These low-price RGB-D sensing technologies have enabled many system capabilities

for both customers and researchers. RGB-D cameras have several advantages over other

capturing devices; first, an RGB-D camera can be operated in the same way as ordinary

video cameras, and so it is easy to use and requires no specialized training. Second, since

RGB-D sensors use infrared light for depth measurement, it is independent from scene

color textures and does not interfere with the visual information of the scene. Therefore,

we are able to utilize both color and depth information for reconstruction. Finally, they

1



2

can measure 3D information of the scene at the rate of a video, which enables real-time

surface model generation. In this thesis, we present 3D capturing systems that generate

3D reconstructions of both stationary and dynamic scenes using RGB-D images.

1.2 Motivation

The development of real-time 3D scanning technology with low cost devices

has allowed researchers and consumers to digitalize high quality models of objects or

scenes easily. The applications of 3D reconstruction are diverse, and include human

body scanning system, geometry-aware scene interaction, view synthesis for multi-view

display, and Archeological research/education.

• Real-time human body scanning system: Real-time reconstruction will provide a

3D representation of the user’s body. The system can be used for the treatment

of patients with neurological disorders by displaying a realistic, allocentric view

of the body to manipulate visual body feedback. The advantages of this tech-

nology lie in its rapid, non-intrusive, high-precision data capture, which can be

used to build personalized 3D models. These models can be used in various other

applications, including anthropometry, animation, and consumer-retail situations.

• Geometry-aware scene interaction: With a detailed 3D model, user interaction

can be performed in the reconstructed scene. A user’s touch will be determined

by computing the intersection between their body and background surfaces; the

visual feedback from touch creates an immersive interaction experience for the

user.

• View synthesis for multi-view display: Over the past few years, there has been in-

creasing interest in 3D display research. The ability to synthesize multiple views

is essential for autostereoscopic displays, which is glasses-free 3D visualization.

Given a dense 3D reconstruction, a series of multiple plausible virtual views along

the stereoscopic baseline can be generated from multiple virtual cameras for pre-

sentation in autostereoscopic displays.
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• Archeological research/education: A digitalized 3D model of real objects can be

used for research and education in Archeological study. 3D scanning of objects

and specific locations enables innovative applications for the historical archive.

The virtual archive will be a good way for both scholars and the public to access

and interact with historical objects or sites.

1.3 Contributions

This work presents a novel depth map enhancement method, robust camera pose

estimation, realistic stationary object reconstruction using a handheld RGB-D camera,

and dynamic scene reconstruction using multiple RGB-D cameras. Our main contribu-

tions are:

1. We present a new method of enhancing noisy or low-resolution depth maps us-

ing high-resolution color images. Our method is based on sample selection and

refinement in conjunction with multi-lateral filtering.

2. The proposed robust camera pose estimation method is effective in challeng-

ing situations such as during fast camera motion or in geometrically featureless

scenes. Our approach is based on sparse visual feature-based tracking in conjunc-

tion with dense estimation using a weighted ICP method.

3. We propose an accurate and robust 3D reconstruction system which utilizes high

quality RGB images by attaching a HD RGB camera onto a Kinect to reconstruct

a 3D model with realistic surface geometry and high-quality color textures.

4. For accurate dynamic scene reconstruction, we present a depth synthesis tech-

nique that generates synthesized depth maps at virtual viewpoints to densify the

point cloud so that it covers some surfaces that may be inaccessible to the cameras,

and a reliability-based weight function to overcome the drawback of the existing

volumetric representation method.
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Figure 1.1: A summary of the structure of the dissertation

1.4 Organization

Figure 1.1 shows the organization of this dissertation. This dissertation is orga-

nized as follows:

Chapter 2: This chapter provides the background information of this dissertation. The

basic pinhole camera model and projective geometry for the Kinect depth map are

reviewed. In addition, the specifications and mechanisms of the Kinect, the device

used in this work, are presented.

Chapter 3: This chapter explores a novel depth refinement method. It presents sample

selection and multi-lateral filtering techniques to enhance the quality of raw depth

data. Evaluations on the Middlebury dataset and performance gains over existing

methods are provided.
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Chapter 4: In this chapter, a robust camera pose estimation method for accurate tra-

jectory estimation is investigated. Quantitative results on an RGB-D trajectory

benchmark dataset is provided.

Chapter 5: This chapter presents a novel method for the reconstruction of real ob-

jects/scenes with realistic surface geometry using a handheld RGB-D camera.

Comparisons with other 3D reconstruction methods using real-life datasets are

provided.

Chapter 6: This chapter presents a real-time 3D reconstruction method that generates

an accurate surface model of dynamic scenes using multiple Kinect cameras. Met-

rical evaluations and computational analysis on various real-life datasets are pro-

vided.

Chapter 7: This chapter presents the conclusions of the dissertation and reviews the

contributions; future research directions will be discussed.



Chapter 2

Background

This chapter describes background information and concepts used within this

dissertation. Section 2.1 introduces the recent RGB-D sensing device, Kinect. Sec-

tion 2.2 briefly covers the basic pinhole camera model and camera projection matrix for

depth map generated by Kinect.

2.1 Kinect

Many researchers have been extensively studying the subject of 3D reconstruc-

tion with range sensing devices including structured light camera, and laser scans. How-

ever, these devices are expensive and require highly specialized knowledge and practice

to use them. Kinect is a recently developed RGB-D sensing device, and is originally

designed for natural human interaction in gaming environment. Since it produces gen-

erally good depth map in real-time at an affordable cost, it is widely used in computer

vision applications.

Figure 2.1 shows the components of the Kinect device. The Kinect sensor con-

sists of an RGB camera, an infrared (IR) pattern projector, and an IR camera. For pur-

poses of sensing 3D information, the IR projector emits a predefined pattern of speckles

onto the scene and the IR camera captures the scene to triangulate 3D scene [7]. In

Figure 2.2, the distance between ai and ai+1 is defined in the reference and the distance

between bj and bj+1 is the observed distance. The sensor knows the calibration informa-

tion between the IR projector and the IR camera and the distances between points of the

6
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Figure 2.1: Components of Kinect.

Figure 2.2: Triangulation of each speckle between a predefined pattern and observed
pattern.
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(a) Depth map (b) Color image

Figure 2.3: Kinect data. The calibration is performed in depth map to align with color
image. (a) Calibrated depth map. (b) Color image. In (a), nearer surfaces are brighter;
further surfaces are darker. The black pixels represent the occlusion region.

pattern at reference distance. Therefore, the depth is computed by triangulation of each

speckle between the expected pattern at reference distance and the observed pattern; if

the distance of points is larger than the predefined distance, it means that the object is

closer; further surfaces would have smaller distance. This distortion of IR pattern al-

lows for computing the 3D structure of the scene. The Kinect captures 640× 480 depth

data and 640 × 480 color data at 30 fps. The range of operation is from 0.7m to 6m

approximately.

Although Kinect has many advantages over other existing range sensing meth-

ods, it also has some drawbacks. Since the speckle pattern from the IR transmitter in

Kinect cannot cover detail, it causes occlusion regions as well as errors in the boundary

area. Figure 2.3 shows the calibrated depth and the color image captured by Kinect. In

the depth map, the black pixels in depth map represent unknown region where Kinect

cannot obtain depth information. The possible reasons for this are: the region is oc-

cluded from the point of view of the IR camera, or infrared light is absorbed in that

region.
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2.2 Camera Model and Calibration

For understanding 3D reconstruction problem, the first step is to understand cam-

era model and projective geometry. In this section, we review the pinhole camera model

and projective geometry for depth map from Kinect.

2.2.1 Basic Pinhole Camera Model

In the basic pinhole camera model, 3D points in camera space are projected onto

an image plane placed at the position z = f . Figure 2.4 shows a camera with camera

center O and the principal axis parallel to the Z axis.

Figure 2.4: Basic pinhole camera model.

A 3D point P = [ x y z ]> is projected on the camera’s image plane at position

p : [ u v ]>. By using ”similar triangles” (the sides facing the equal angles are always

in the same ratio), the position of the point on the image plane p is computed as:

f

z
=
u

x
=
v

y
(2.1)
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Figure 2.5: Similar triangles for perspective camera

which gives us:

u =
fx

z
(2.2)

v =
fy

z
(2.3)

If the 3D and image points are represented by homogeneous vectors, we can

rewrite this as: 
u

v

w

 =


f 0 0

0 f 0

0 0 1



x

y

z

 (2.4)

We can verify that this generates u = fx
z

and v = fy
z

when we simply divide them by

the third coordinate w to transform a point in the projective plane back into Euclidean

coordinates.

2.2.2 Projective Geometry for Depth Map from Kinect

While the basic pinhole camera model assumes image coordinates are Euclidean

coordinates, the image plane of Kinect cameras is formed by pixels. Therefore, we need

to convert the Euclidean coordinates to image pixel coordinates. For this operation, we
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first need to know the resolutions of the camera in pixels/millimeters since p should be

expressed in pixels. We use ru and rv to represent the resolution of the camera in terms

of pixel dimensions on the u and v directions, respectively. Also, the origin of the 2D

image coordinate system can be different from where the Z axis intersects the image

plane. We define this translation by (tu, tv). As a result, the pixel coordinates from

Euclidean 3D points are given as

u = ru
fx

z
+ rutu (2.5)

v = rv
fy

z
+ rvtv (2.6)

We can express the above in matrix form as
u

v

w

 =


ruf 0 rutu

0 rvf rvtu

0 0 1



x

y

z

 =


fu 0 uO

0 fv vO

0 0 1


︸ ︷︷ ︸

K


x

y

z


︸ ︷︷ ︸

P

= KP (2.7)

where fu, fv are focal lengths in pixels along u and v axis respectively, uO and vO

are translations in pixels along u and v axis respectively. We call the upper triangular

matrix K as the camera calibration matrix or intrinsic parameter matrix for the camera.

Figure 2.5 shows similar triangles for Kinect camera.



Chapter 3

A Depth Refinement Method

Depth maps are commonly used in many 3D applications. For these applica-

tions, the depth maps should be of high geometric quality and resolution since a minor

error may result in distortions. Recent advances use various types of sensors to obtain

depth maps, such as Time-of-Flight cameras(ToF) [8], real-time infrared projectors and

cameras (e.g. Microsoft Kinect), or stereo vision systems. Unfortunately, most of the

time, the quality and resolution of the acquired depth is not up to par with the analogous

color images obtained from standard cameras.

Due to this limitation, the subject of depth map up-sampling/refinement has been

extensively studied. Many existing methods try to solve the problem by aligning the low-

resolution depth map with its corresponding high-resolution color image. They obtain

up-sampled depth maps by taking weighted averages of depth values in a local win-

dow for each pixel. Therefore, the window size is the most critical parameter affecting

performance, which is undesirable.

In this chapter, we introduce a novel method to enhance noisy or low-resolution

depth maps using high-resolution color images. Our approach is based on selecting re-

liable depth samples from a neighborhood of pixels and applying multi-lateral filtering.

Figure 3.1 shows the flow chart of our method. We first define unreliable regions by

calculating a measure of reliability for each pixel in the depth map. The reliability is

determined by calculating the sum of gradients for each pixel’s neighborhood. Every

pixel in the region of low reliability collects samples from the region of high reliability

and selects the best sample with the highest fidelity. Each pixel’s selected depth sample

12
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Figure 3.1: Flow chart of the proposed depth refinement method.



14

is refined by sharing its information with its neighbors’ selected samples in the sample

refinement stage. Finally, a robust multi-lateral filter, which is an extended joint bilateral

filtering technique with an additional factor for robustness weights, is applied to reduce

noise while preserving sharpness along edges. We evaluate our approach on the Mid-

dlebury dataset [9] and show that our method provides performance gains over existing

methods.

The remainder of this chapter is organized as follows. Section 3.1 describes

the related work. Section 3.2 presents our proposed method. A visual and quantitative

comparison of a number of key methods and improvement results are reported in Section

3.3. Finally, a summary is given in Section 3.4.

3.1 Related Work

As depth sensors have been widely used in the field of computer vision, the

problem of depth refinement has received ever-increasing attention. A seminal work

in the study of the depth map refinement problem is the work by Diebel et al. [10].

They assumed that discontinuities in range and color tend to co-align. In their work,

the posterior probability of the high-resolution reconstruction is designed as a Markov

Random Field (MRF) and it is optimized with the Conjugate Gradient (CG) algorithm.

Following with a similar depth refinement method, Kopf et al. proposed Joint

Bilateral up-sampling (JBU) [11]. This approach leverages a modified bilateral filter.

The traditional bilateral filter is an edge-preserving filter where the value of each output

pixel is a weighted average of pixels in a neighborhood [12]. They up-sample a low-

resolution depth D by applying a spatial filter, while jointly apply a similar range filter

on the high-resolution color image I . In other words, the up-sampled depth value at

pixel p is determined by:

D(p)JBU =

∑
q∈Ωp

fr(|I(p)− I(q)|)fs(||p− q||)D(q)∑
q∈Ωp

fr(|I(p)− I(q)|)fs(||p− q||)
(3.1)

where Ωp is the support window centered at p. Here, fr is the range filter and fs is

the spatial filter, which are Gaussian filters with variances σr and σs, respectfully. Re-

search in depth map refinement has recently experienced large progress by the initial
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introduction of JBU [13, 14, 15, 16, 17, 18, 19, 20, 21].

Additionally, Yang et al. presented an refinement method based on bilateral fil-

tering the cost volume with sub-pixel estimation [22]. They build a cost volume of

depth probability and then iteratively apply a standard bilateral filter to it. The final out-

put depth map is generated by taking the winner-takes-all approach on the weighted cost

volume. Finally, a sub-pixel estimation algorithm is applied to reduce discontinuities.

It is worth noting that all of the methods mentioned above may suffer from ar-

tifacts, such as texture copying and edge blurring. Texture copying occurs in smooth

areas with noisy depth data and textures in the color image, while edge blurring occurs

in transition areas if different objects (located in different depth layers) have similar

color.

To overcome these problems, the Noise Aware Filter for Depth Up-sampling

(NAFDU) was proposed by [14]. The method switches between two different filters; a

standard bilateral up-sampling filter on smooth regions and a joint bilateral up-sampling

filter on transition areas in the depth map. A blending function is used for a gradual

intermixing between the two filter outputs.

The approach closest to ours, the Pixel Weighted Average Strategy (PWAS) by

Frederic et al., also proposes to resolve artifacts [17]. They build multi-lateral up-

sampling filters, which are an extended joint bilateral filter with an added credibility

factor. The factor takes into account the low reliability of depth measurements along

depth edges and the inherent noisy nature of real-time depth data. As a further im-

provement upon PWAS, Adaptive Multi-lateral Filtering (AMF) has been proposed to

improve accuracy within smooth regions [19].

These approaches may solve the texture copying and edge blurring problems,

but their performances are unfortunately very sensitive to the window size of their filter,

making the window size the most critical parameter. If the window size is too large, it

might cause boundary blurring and lose details of complex objects. If the window size

is too small, it may fail to collect significant information from its neighborhood.

In light of these problems, we present a new depth sampling method and multi-

lateral filtering technique. Our method is based on the concept of sample selection and

refinement, introduced by [23], and multi-lateral filtering, which is inspired by [17]. To
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our knowledge, our work is the first of its kind that presents a sampling-based depth

refinement.

3.2 Proposed Method

Errors in range images generated by real-time depth sensors or stereo vision

systems can be roughly categorized into two broad categories:

• Errors in transition areas: Inadequate calibration, occlusion area, or motion arti-

facts often lead to wrong distance values at object boundaries when we fuse the

depth maps with color images.

• Random noise on geometrically flat or smooth surfaces: Properties of the object

surface, lighting conditions, or systematic errors may generate noise on the sur-

face.

In our work, we investigate a method that is able to fix both errors. Our method

takes a color image I and a depth map D as inputs. The process consists of sample

selection, sample refinement, and robust multi-lateral filtering. Before refining the depth

map, we first measure depth reliabilities and define unreliable regions in it. In the sample

selection stage, for every pixel in the unreliable region we collect samples from reliable

regions and select the best sample giving the highest fidelity. Then the selected depth

samples are refined by sharing their information with their neighbors’ selected samples.

Finally, a robust multi-lateral filter is applied to reduce noise in smooth areas, while

preserving sharpness along the edges.

3.2.1 Unreliable Region Detection

We use the gradient of the depth map as an important key for measuring reliabil-

ity of depth values based on our assumption that depth values with high variance in their

neighborhood or depth values along edges are not reliable. We first take the derivative of

the depth map and calculate its magnitude. Then for each pixel, we compute an average

function of Gaussian of the gradient magnitude in a small window. Thus, the reliability
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Figure 3.2: Pixel p shoots several rays (red lines) toward reliable (white) region and
collects the closest samples (blue squares).

for each pixel is determined by the following equation:

R(p) =
∑
q∈Ωp

ft(|D(p)−D(q)|)/|Ωp| (3.2)

where ft is the Gaussian function with variance σt , and Ωp is the window centered at

pixel p. The unreliable region Φ is the set of pixels whose reliability values are less than

a certain threshold:

Φ← {p|R(p) < τ} (3.3)

The threshold τ controls the width of the unreliable region. The remaining pixels in

the depth map are identified as the reliable region. Every depth value in this unreliable

region Φ will be refined by the following sample selection and refinement steps.

3.2.2 Sample Selection

To recover the pixels in the unreliable region, we collect depth samples from a

nearby reliable region, inspired by [23]. In the alpha matting problem, color samples are

extracted from the reliable regions to estimate the unknown pixels’ alpha values. Similar

to this, we collect depth samples from the reliable regions to refine the unreliable depth

values.

We collect depth samples from a neighborhood by shooting several rays toward

the known region. The slope of each ray is given by θ, θ ← { jπ
η
|j = 0, 1, ..., 2η − 1}.

When the ray from pixel p meets the known region, the closest depth sample is saved to
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Ψp. Figure 3.2 illustrates rays (red lines) and collected depth samples (blue squares) for

the pixel location p.

The best depth sample for pixel p ∈ Φ is obtained by calculating the fidelity

for all collected depth samples Ψp. For every i ∈ Ψp, the fidelity function is computed

based on the criteria that pixels with similar color tend to share similar depth values and

that they are likely to have the same depth value if they are spatially close. Therefore, at

a given pixel p, we compute the fidelity function as:

gSS(p, i) =
∑
q∈Ωp

fr(|I(q)− I(i)|)fs(||q− i||)/|Ωp| (3.4)

where fr and fs are taken to be Gaussian functions with standard deviations σr and σs
respectively. The chromatic similarity in the RGB color space is computed by Euclidean

distance metric. To suppress errors from image noise caused by low lighting, high ISO

settings, or chromatic distortion, we take into account the average of all pixels in a 3×3

window centered at pixel p.

Eq. (3.4) will have a large response for the depth value D(i) which has a similar

color and spatial proximity, but a value close to zero for the rest. We select the i∗ giving

the largest fidelity value among depth samples:

i∗ = arg max
i∈Ψp

gSS(p, i) (3.5)

Then we save the selected depth and fidelity for each pixel p ∈ Φ.

DSS(p) = D(i∗),

ESS(p) = gSS(p, i∗) (3.6)

We use the selected disparity mapDSS and the fidelity mapESS in the following sample

refinement stage.

3.2.3 Sample Refinement

Since we collect depth samples with the ray searching scheme, where several

rays spread out like the spokes of a bicycle wheel, the method occasionally fails to

collect appropriate depths in some situations. For example, the desirable depth sample
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may be located between the rays or it may happen that the color affected by noise with

a false depth sample is accidentally very similar to the target’s color. Therefore, an

additional refinement stage is required.

In the sample refinement stage, the samples are refined by comparing their own

choice of best depth sample with the choices of their neighborhood. The design of

the fidelity function for sample refinement is based on color fitness and spatial distance

between pixel p and its neighbor q as well as q’s fidelity value from the sample selection

stage. The fidelity for sample refinement is determined by:

gSR(p,q) = E(q)SSfr(|I(p)− I(q)|)fs(||p− q||) (3.7)

where E(q)SS is the fidelity value of the pixel q from the previous stage. q∗ is chosen

to give the largest fidelity value among p’s neighborhood:

q∗ = arg max
q∈Ωp

gSR(p,q) (3.8)

Similar to the sample selection stage, both refined depth value and fidelity are saved.

DSR(p) = D)(q∗),

ESR(p) = gSR(p,q∗) (3.9)

Up to this point, we have estimated new depth values for pixels in the unreliable region.

In the next step, the refined depth data will be used as an initial depth estimate and the

fidelity values will be used to determine the robustness factor.

3.2.4 Robust Multi-lateral Filtering

After the unreliable region is refined by the sample selection and refinement

stages, the depth map still needs to be processed to reduce discontinuities in the final

depth map. Therefore, we apply a robust multi-lateral filter. It is an extended joint

bilateral filtering technique, but the robustness factor is added to reduce blurring along

edges as well as to refine edges. The robustness value for pixel p is determined by

choosing the minimum value between R(p) and E(p)SR since we want to disregard

depth values with low plausibility as much as we can:

R̃(p) = min {R(p), E(p)SR} (3.10)
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With this robustness factor, our final depth is determined by

D(p)MF =

∑
q∈Ωp

fr(|I(p)− I(q)|)fs(||p− q||)R̃(q)D(q)SR∑
q∈Ωp

fr(|I(p)− I(q)|)fs(||p− q||)R̃(q)
(3.11)

The spatial weighing term fs is based on pixel position and the range weight fr is based

on color data. Thus, this filter adjusts the edges in the input depth map DSR to the edges

in the guidance color image I and the robustness factor R̃ gives low weight to depth

values with low fidelity, preventing artifacts such as texture copying and edge blurring.

Figure 3.3 shows some of the results of our algorithm as will be discussed in the next

section.

3.3 Results

In this section we describe the experiments performed to evaluate our algorithm.

We provide both qualitative and quantitative comparisons with other existing methods.

Also, we show an improvement benchmark by applying our refinement method to dis-

parity estimation results from all of the 109 methods on the Middlebury stereo evaluation

website.

3.3.1 Visual and Quantitative Comparison

For a quantitative comparison, we utilize the Moebius, Books, and Art scenes

from the Middlebury datasets. We have evaluated the performance of the proposed

method against the state-of-the-art methods presented by [19]. Down-sampled disparity

maps are generated by down-sampling the ground truth by a factor of 3×, 5×, and 9×.

In [19], they used the structural similarity (SSIM) measure as a quantitative comparison.

SSIM is a method for measuring perceptual image quality [24]. However, this measure

is not appropriate for depth map evaluation because it does not function properly with

disparities in unknown or occluded regions. Middlebury’s ground truth maps contain

regions of unknown disparity and depth refinement algorithms do not produce meaning-

ful results in those regions. As a fair comparison, we calculate the average percentage

of bad pixels with an error threshold of 1 for all known regions; pixels whose disparity
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Moebius Book Art

Figure 3.3: Experimental results of our method. The input disparity maps are generated
by downsampling ground truth with factor of 5. (First Row) Color images, (Second
Row) Input disparity map, (Third Row) Our results, and (Fourth Row) Ground truths
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(a) (b) (c) (d) (e) (f)

Figure 3.4: Visual comparison on the Middlebury dataset. (a) Color image, (b) Ground
truth, The refinement methods include: (c) JBU, (d) PWAS, (e) UML, (f) proposed
method

error is greater than threshold are regarded as the bad pixels. This is the same scoring

scheme employed in the Middlebury evaluation. Figure 3.4 and Table 3.1 show that our

method performs better than all of the other methods.

3.3.2 Improvements

Also, we apply our refinement method to the disparity estimation results of all

methods submitted to the Middlebury stereo evaluation. Figure 3.5 shows the improve-

ment in terms of the percentage of bad pixels. Note that the proposed method improves

the results of most methods. One limitation of the proposed algorithm is that its per-

forms drops with small and complex images or poorly estimated initial disparity maps.
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Figure 3.5: Percentage improvement in terms of number of bad pixels after applying
the proposed algorithm to all the 109 methods on the Middlebury stereo evaluation.
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Table 3.1: Quantitative comparisons (average percent of bad pixels)
Dataset JBU PWAS AMF Proposed Method

Moebius
3x 7.43 4.68 4.5 3.62
5x 12.22 7.49 7.37 4.87
9x 21.02 12.86 12.75 9.02

Books
3x 5.4 3.59 3.48 2.38
5x 9.11 6.39 6.28 3.58
9x 15.85 12.39 12.24 7.11

Art
3x 15.15 7.05 6.79 5.07
5x 23.46 10.35 9.86 6.91
9x 38.41 16.87 16.87 11.7

3.4 Summary

In this chapter, we have proposed a new depth map enhancement method based

on sample selection, refinement, and robust multi-lateral filtering. Specifically, we have

introduced a new sampling method to get better accuracy on boundaries. Also we have

investigated multi-lateral filtering with a new robustness factor. Experiments clearly

show that our algorithm significantly outperforms other state-of-the-art methods in the

depth refinement problem.
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Chapter 4

A Robust Camera Pose Estimation

Method

Camera pose estimation is the process of recovering the relative orientation and

position of one camera system to another. In recent years, there is an increasing inter-

est in camera localization problem due to the fact that it is a fundamental operation in

many computer vision applications such as robot localization, 3D reconstruction, and

augmented reality.

Many studies of sparse feature-based approaches using visual information have

been proposed [25]. Parallel Tracking and Mapping (PTAM) system is proposed in [26],

which achieves remarkable accuracy and real-time interactivity in camera tracking. How-

ever, the sparse feature-based approach has several drawbacks. Motion blur from rapid

camera motion causes erroneous feature localization which in turn results in tracking

failure. Besides, there is a possibility that valuable information in images is ignored

since only a limited number of points are used in the estimation.

With the advance of low-cost depth sensing devices such as time-of-flight (ToF)

and Microsoft’s Kinect, numerous studies exploiting both visual and per-pixel depth

information have achieved great progress in Simultaneous Localization And Mapping

(SLAM) in recent years [1, 27, 28, 29, 30, 31, 32]. While these methods are promising

for some datasets, serious challenge arises in situations where camera motion is fast or

the scene has very few geometric features.

In this chapter, we propose a robust method for camera tracking and surface

25
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mapping using a handheld RGB-D camera. Our method is based on a sparse visual

feature-based tracking in conjunction with a dense estimation using a weighted ICP

method. The proposed algorithm first performs an initial motion estimation using sparse

feature detection and matching which assists in reducing the negative effects of rapid

camera motion. Then, dense estimation is applied by weighted ICP to enhance the

accuracy of estimated motion parameters. Given the estimated transformation, a global

model is built and the reconstructed surface of the model is utilized by registering it with

incoming depth data for next dense estimation to reduce time-evolving drift. The main

contributions of this chapter are summarized as follows.

1. We propose a robust orientation estimation based on quaternion method for initial

sparse estimation. We use a robust estimation to reduce the effect of noise or

outliers. Using feature point detection and tracking, no prior assumption regarding

the camera motion was made.

2. We introduce a novel weighted ICP method for better rate of convergence in op-

timization and accuracy in resulting trajectory. While the conventional ICP in [1]

fails when there is no 3D features in the scene, our approach achieves robustness

by emphasizing the influences of points that contain more geometric information

of the scene.

3. We evaluate the proposed method using the RGB-D benchmark dataset which

includes both color and depth data captured with Kinect and ground truth tra-

jectory [33]. We show the accuracy and robustness of our proposed method and

compare our results with existing methods.

The remainder of this chapter is organized as follows. Section 4.1 describes

related work and addresses challenges in the pose estimation problem. Details of the

proposed method are elaborated in Section 4.2. In Section 4.3, we analyze the per-

formance of our system on an RGB-D benchmark dataset. Summary is discussed in

Section 4.4.
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Figure 4.1: Block diagram of the proposed method.
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4.1 Related Work

Recently, Kinect has become an attractive alternative to expensive range sensors.

Because Kinect captures depth information in real-time and produces generally good

depth map at an affordable cost many recent works on camera pose estimation have been

conducted with this affordable device. We discuss specifically recent camera tracking

methods using Kinect.

RGB-D Mapping system was proposed to build dense 3D model of indoor en-

vironments using Kinect [29]. The camera pose estimation is done by establishing cor-

respondences between sparse feature points from two consecutive color frames and ap-

plying ICP to improve accuracy. Also, a view-based loop closure detection method is

presented to achieve globally consistent maps. However, this method has not achieved

real-time computation because of high computational complexity in the global optimiza-

tion step. Therefore, it lacks the ability for user interaction and feedback.

KinectFusion [1] proposed a real-time indoor scene construction exploiting GPU

programming with commodity graphics hardware. In their method, the camera pose is

computed by coarse-to-fine iterative closest point algorithm (ICP), and all of range data

are fused into a global volume model. They achieve less drift error without global op-

timization by aligning incoming depth data to the model. However, the method fails in

cases where there are no significant 3D features since only depth information alone is

exploited to estimate rigid body motion. Also, it fails on situation that frames are cap-

tured from remotely located cameras since small motion is assumed in the optimization.

Several different approaches have been introduced to utilize color information

as well as depth data for camera pose estimation. Steinbruecker et al. [27] and Tykkala

et al. [28] propose direct methods utilizing image warping function. In their methods,

relative camera pose is estimated by minimizing the photometrical error between two

frames.

Recently, fast visual odometry and mapping method is introduced by [30]. The

system utilizes sparse feature points rather than dense data to estimate camera trajectory.

The sparse features in the current frame is registered against a model of previous features

and the model is updated using a probabilistic Kalman Filter. They perform the visual

odometry estimation in real time (30Hz) with no GPU acceleration.
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Most similar to our work is the approaches in [31, 32]. In their approach, sparse

feature points of color images are extracted and matched by RANSAC. Then, the ini-

tial estimate is improved with a variant of the ICP algorithm and the resulting pose is

optimized using by g2o solver.

In most of the above approaches, the pose estimation problem is solved based

on an assumption that camera motion is small or the camera moves with constant ve-

locity. Therefore, their optimization may not converge to the optimal solution when

displacement of camera between two frames become larger [1, 27].

4.2 Proposed Method

This section provides a detailed description of our approach as shown in Fig-

ure 4.1. Our camera pose estimation method mainly consists of three steps as follows.

• Initial Sparse Estimation: A coarse estimation of relative rigid body motion be-

tween two consecutive frames is performed. Visual feature points between two

consecutive frames are detected and matched using Scale-Invariant Feature Trans-

form (SIFT) and a relative pose is recovered using quaternion-based orientation

estimation method of Faugeras and Hebert [34] and robust estimation [35].

• Dense Estimation: The initial estimation of camera pose is refined by the proposed

weighted multi-scale ICP method. In contrast to the conventional ICP [1], we

adaptively assign weights for each point to improve the rate of convergence in

optimization and avoid possible failure in situations where 3D features are absent.

• Integration and Surface Reconstruction: Given the estimated camera pose, depth

data is integrated into a single global volume using truncated distance function

(TSDF) representation [36, 1]. Then, a surface geometry is reconstructed from

the volume by raycast algorithm. The reconstructed surface data is used for dense

estimation in the next frame to reduce time-evolving drift problem.
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4.2.1 Notation and Background

We denote Ik, k = 1, ..., K and Dk, k = 1, ..., K as the color images and depth

maps of the k-th frame, respectively, where K is the total number of the frames. The

value of color image and depth map at pixel p : [u v ]> in k-th frame are represented as

Ik(p) and Dk(p), respectively. To convert each point in a depth map into a 3D point, we

assume a constant intrinsic camera calibration matrix K. Along with the depth data D,

a 2D point p is converted into a 3D point v in the camera’s coordinate space as shown

in Eq. (4.1)

vk(p) = Dk(p)K−1

[
p

1

]
(4.1)

Also, the normal vector is calculated as

nk(x, y) = Normalize((vk(u+ 1, v)− vk(u, v))

×(vk(u, v + 1)− vk(u, v))) (4.2)

where Normalize(·) is a function which gives the normalized form of the input vector.

We also denote the six-degrees-of-freedom (6DOF) camera orientation matrix at time

k as Tk, which transforms the acquired point cloud in camera space into the global

space. The rigid transformation matrix Tk contains a rotation matrix Rk and a trans-

lation vector tk, i.e. Tk = [Rk|tk]. Finally, the 3D points and normal vector in the

global coordinate system can be easily computed by the transformation matrix Tk as

vgk = Tkvk and ngk = Rknk, respectively.

4.2.2 Initial Sparse Estimation

Initial pose estimation is performed using sparse feature-point detection and

matching processes. Since the feature-point matching method does not require any cam-

era motion priors to find correspondences, the points with larger displacement caused by

the rapid motion (shaky frames) can be matched. To speed up detection and matching

process, a SIFT method implemented with GPU programming is utilized [37]. First,

SIFT feature points from two consecutive RGB images are detected and matched. We

denote the corresponding feature points as pk−1(i) and pk(i), i = 1, ..., N , where N
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is the total number of the corresponding points. Next, RANSAC is applied to find an

initial transformation parameters. Using the camera matrix K, the 2D corresponding

points can be converted into 3D corresponding points. We repetitively select three ran-

dom pairs of corresponding points at a time and estimate a transformation matrix [34].

We find the best initial transformation parameters which have the most inlier feature

points. Given the set of inlier 3D corresponding points vk−1 and vk, next step is to seek

relative transformation matrix Tsparse
k = [Rsparse

k |tsparsek ], minimizing the error.

Esparse
k =

∑
i

ρ(rk(i)/σMAD)rk(i) (4.3)

and

rk(i) = ‖vk−1(i)−Rsparse
k vk(i)− tsparsek ‖2 (4.4)

M-estimator weight function ρ is employed to suppress the effect of inaccurate local-

ization of feature points. The ρ(·) is the Tukey bi-weight function M-estimator, defined

as

ρ(c) =

(1− c2

β2 )2, if |c| ≤ β,

0, otherwise.
(4.5)

where β is set to 4.6851 to obtain 95% asymptotic efficiency assuming Gaussian residual

error. Since the residual errors in Eq. (4.4) does not follow a standard normal distribu-

tion, the residual errors are scaled by σMAD which is the Median Absolute Deviation

(MAD) [38]. Eq. (4.3) is minimized using quaternion-based orientation method which

does not require any priors or small movement assumption to estimate a rigid trans-

formation between frames [34]. More specifically, we update Rsparse
k and tsparsek as

follows.

1. Compute weight using Eq. (4.5)

2. Compute Rsparse
k and tsparsek that minimize Eq. (4.3) using [34].

3. Iterate the above steps until the update of both Rsparse
k and tsparsek are small.

It is important to note that inaccurate sparse points are downweighted by using robust

estimation [35].
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Figure 4.2: Weighted point-to-plane error between the observed depth data and the
reconstructed surface data. In this example, the points at p = 1, 2, 3 have more weights
than the points at p = 4, 5 since their geometric features are more significant.

4.2.3 Dense Estimation

Once the initial transformation has been estimated using sparse corresponding

points, the transformation is refined to enhance the accuracy of the estimated motion

parameters. Our dense estimation is based on the variant of ICP described in [1]. First,

whole depth data is converted to point cloud using a constant camera Matrix. Then,

the point-to-point correspondence between frames is recovered using projection-based

matching [4]. After establishing corresponding pairs in the overlapped area, the cam-

era pose is estimated using multi-scale ICP method. Given two point clouds, the ICP

algorithm iteratively computes a rigid transformation that minimizes the mean squared

Euclidean distance between corresponding points. However, the traditional ICP may

converge to a local minimum for scene lacking 3D features, e.g., a large flat area such as

a wall or desk surface. Since the method assumes that all points are equally important

in the ICP method, it would lead to misalignment in the result. If the majority of corre-

sponding points are selected from featureless regions and used for pose estimation, the

algorithm converges slowly or finds inaccurate pose because of lack of constrains.

Instead of selecting a subset of points, we take into account the significance of

corresponding points in terms of the contribution to the residual errors to avoid local
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minimum. In our approach, a weight is adaptively assigned to each point based on the

criteria that points around the edges of objects often have high geometric features. The

weight for a point p is determined by the following equation.

ξk(p) = 1−
∑
q/∈Φ,
q∈Ωp

Π(|Dk(p)−Dk(q)|, σD(p))/(# of q) (4.6)

where Φ is uncertain region where Kinect cannot capture depth information and Ωp is

the window centered at pixel p with an empirically chosen size. Π is the Gaussian func-

tion with variance σD(p). The variance is chosen adaptively based on an observation

that the random error of depth measurements increases quadratically with increasing

distance from Kinect camera [39].

σD(p) = αDk(p)2 (4.7)

where α is 2.85× 10−5 when the unit of D is millimeters.

Finally, a rigid transformation matrix Tdense
k is obtained by minimizing the point-

to-plane error metric [40] with the weight, which is defined as the weighted sum of

squared errors between each point in the current data and the tangent plane at its corre-

sponding point in the surface model reconstructed from previous frame (Figure 4.2).

Edense
k =

∑
p

ξk(p)‖(v̇gk−1(p)−Tdense
k vgk(p)) · ṅgk−1(p)‖2 (4.8)

where v̇gk−1 and ṅgk−1 denote corresponding 3D points and their normal vectors in the

surface model, respectively. Since we have coarsely aligned two points clouds using

initial estimation, we can safely assume that the displacement between frames is very

small. The minimization problem of Eq. (5.10) can be approximated by linearizing

it [1].

Algorithm 1 summarizes the overall dense estimation process. For each scale,

the current camera transformation matrix Tk is estimated. The current camera pose is

updated with incremental transform Tdense
k per iteration by registering a newly trans-

formed point cloud to the previous frame based on the geometry in overlapping areas.

The resulting transformation matrix from coarser scale is used as an initial guess for

finer scale. The maximum numbers of iteration for level 2, 1, and 0 are 8, 10, and 20,

respectively.
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Algorithm 1 Dense Estimation from current RGB-D image and the surface model
input: Tsparse

k ,Tk−1, v̇
g
k−1, ṅ

g
k−1,vk,nk

Tk ← Tsparse
k Tk−1

for l = 2 (coarsest level) to 0 (finest level) do

Decimate vk,nk, v̇
g
k−1, ṅ

g
k−1 by decimation factor 2l

for iteration = 1 to max iteration do

vgk ← Tkvk

ngk ← Rknk

Find point correspondences using [4]

Compute weight ξk using Eq. (5.8)

Estimate transformation Tdense
k minimizing Eq. (5.10)

Tk ← Tdense
k Tk

end for

end for

4.2.4 Integration and Surface Reconstruction

In most real-time odometry methods, the camera pose estimation is performed

on a frame-by-frame basis. Therefore, motion error is accumulated over time (e.g., time-

evolving drift), since the camera path is computed by chaining the relative pose between

consecutive frames.

Given the estimated global camera pose in the previous stage, the geometric in-

formation of the current scene is transformed into a single volume space, consisting

of small cubical volume elements called voxels. Then, the transformed information is

projected into each corresponding voxel in a global volume with a value determined by

volumetric truncated signed distance function (TSDF) [1]. TSDF represents the trun-

cated signed distance of each voxel to the nearest surface along the line between the

voxel and camera origin.

For dense surface reconstruction, raycasting method is used [1] in our approach.

For every pixel of the image, a ray is sent to the global volume with a direction from the

camera origin to the pixel coordinate of the image. When it intersects a surface on its

way, the surface information is obtained from the global volume and the reconstructed
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surface is used for surface reconstruction.

4.3 Experiments

In this section, we describe the experiments performed to evaluate the proposed

method. We first demonstrate the benefits of the proposed weighting function. Then,

we compare the performance of our method with state-of-art methods. Finally, runtime

evaluation of the proposed method is presented. In our experiments, we use an RGB-

D benchmark dataset [33] which includes calibrated and registered RGB-D sequences

captured from Kinect and ground truth trajectory data obtained from a high-accuracy

motion-capture system.

4.3.1 Conventional ICP and Weighted ICP

To demonstrate the benefits of our weighting function, we evaluate the perfor-

mance for freiburg1 desk sequence which contains scenes with fewer number of geo-

metric features. Figure 4.3 shows the convergence profile of the conventional ICP [1]

and our weighted ICP method for the dataset. In this test case, each iteration’s residual

error for whole frames is averaged. The y-axis is the averaged residual error for each

iteration, and the x-axis is iteration number. As shown in the figure, the proper weight

notably improves the rate of convergence.

To demonstrate the accuracy improvement, we evaluate relative pose error (RPE)

to compare drift errors between traditional ICP and the weighted ICP on freiburg1 desk

dataset. Figure 4.4(a) and (b) shows a RGB-D sequence with fewer number of geomet-

ric features (Frames 240 to 290 of freiburg1 desk dataset) and the relative pose error

comparison in sequences is shown in Figure 4.4(c). As seen in this figure, the relative

pose error is reduced in the most of feature-less frames by using the proposed weighting

function.
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(a) Decimation factor: 22

(b) Decimation factor: 21

(c) Decimation factor: 20

Figure 4.3: Convergence profile of the conventional ICP [1] and our weighted ICP
method for freiburg1 desk. Note that the proposed method improves the rate of
convergence.
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(a) Color Images (Frames 240 to 290)

(b) Depth Maps (Frames 240 to 290)

(c) Relative translational pose error

Figure 4.4: Relative pose error comparison between traditional ICP and our weighted
ICP on scenes with fewer number of geometric features of freiburg1 desk dataset
(Frames 240 to 290).
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Table 4.1: Comparison results of our approach with other methods in absolute trajectory
error (ATE).

freiburg1 xyz freiburg1 desk freiburg1 plant

RMSE (mm)

RGB-D SLAM [31] 13.473 25.831 61.407
KinectFusion [1] 15.612 224.194 187.545

CCNY RGBD [30] 17.339 106.186 93.893
Proposed Method 13.346 20.419 41.043

Mean (mm)

RGB-D SLAM [31] 12.029 23.132 55.567
KinectFusion [1] 14.005 44.376 163.632

CCNY RGBD [30] 15.302 92.005 83.861
Proposed Method 11.75 18.661 37.127

Median (mm)

RGB-D SLAM [31] 11.176 21.388 51.533
KinectFusion [1] 12.432 23.440 152.564

CCNY RGBD [30] 14.004 73.002 75.237
Proposed Method 10.341 17.889 35.296

Std. Dev. (mm)

RGB-D SLAM [31] 6.068 11.497 26.135
KinectFusion [1] 6.901 219.758 91.639

CCNY RGBD [30] 8.153 53.014 42.228
Proposed Method 6.330 8.289 17.803
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RGB-D SLAM [31] KinectFusion [1]

CCNY RGBD [30] Proposed method

Figure 4.5: Ground truth and estimated camera trajectories of freiburg1 xyz.
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RGB-D SLAM [31] KinectFusion [1]

CCNY RGBD [30] Proposed method

Figure 4.6: Ground truth and estimated camera trajectories of freiburg1 desk.
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RGB-D SLAM [31] KinectFusion [1]

CCNY RGBD [30] Proposed method

Figure 4.7: Ground truth and estimated camera trajectories of freiburg1 plant.
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4.3.2 Quantitative Comparisons

For a quantitative comparison, we compare the performance of our approach

with three different methods that are RGB-D SLAM [31], KinectFusion [1], and CCNY

RGBD [30]. Since original KinectFusion cannot handle large scale area, an extended

KinectFusion with capability of shifting the global volume based on an implementation

in the Point Cloud Library (PCL) 1 is used.

We select three sequences from the benchmark dataset that are freiburg1 xyz,

freiburg1 desk, and freiburg1 plant because they are real world examples with vari-

ous scenes and fast camera motion. Average translation velocities for freiburg1 xyz,

freiburg1 desk, and freiburg1 plant are 0.24m/s, 0.41m/s, and 0.37m/s, respectively.

Figures 4.5, 4.6, and 4.7 show the ground truth and estimated trajectories pro-

jected onto the x-y plane. The ground truth trajectories, estimated trajectories, and the

differences are presented in black, blue, and red lines, respectively. Trajectories gener-

ated from RGB-D SLAM method are inaccurate because the motion is estimated on a

frame-by-frame basis. KinectFusion method fails to track camera motion when the cam-

era is moving fast such as in dataset freiburg1 desk and freiburg1 plant. CCNY RGBD

method is also very inaccurate since the method uses only sparse points in their estima-

tion rather than dense data. On the other hand, the proposed method yields smoother

and more accurate trajectory due to the accumulated global volume data and is more

robust to fast motion because of sparse feature-based estimation.

Table 4.1 shows the absolute trajectory error (ATE) measuring the difference be-

tween points of the ground truth and the estimated trajectory. This table verifies that

our approach achieves better accuracy than other approaches. Note that the trajectory of

RGB-D SLAM is unstable in a plot with a finer scale even though our RMSE improve-

ment over RGB-D SLAM method on freiburg1 xyz is small.

4.3.3 Computational Performance

We use a computer with Intel Core i7 2.93GHz processor with 12GB RAM and

NVidia GTX 680 graphic card with 2GB GPU memory in all experiments. By im-

1http://pointclouds.org/documentation/tutorials/using kinfu large scale.php
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plementing our approach with GPU programming, we have achieved a near real-time

performance. Our system runs on average at 12.78Hz. Average timing for each process

are: SIFTGPU: 25.45ms, RANSAC: 3.17ms, Quaternion-based method: 3.53ms, ICP:

36.32ms, and Integration: 9.81ms.

4.4 Summary

In this chapter, we propose a robust method for camera tracking and surface

mapping method to cope with challenging situations such as fast camera motion or ge-

ometrically featureless scenes. In our approach, sparse feature-based estimation is used

for initial pose estimation which handle frames that are captured with a fast camera

motion. Then, we improve the accuracy of the estimated transformation matrix by us-

ing dense data and assigning weights adaptively according to the importance of each

point. Finally, a global surface model is built with the estimated transformation and

reconstructed surface model is used for next dense estimation for less drift errors. Ex-

perimental results show that our method outperforms state-of-the-art approaches signif-

icantly.
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Chapter 5

Reconstruction of Static Objects

The 3D reconstruction of real objects or scenes is a fundamental problem in the

field of computer vision and graphics. Using an image sequence captured from arbitrary

view points, the goal is to build geometry and appearance of 3D model.

Recently, the KinectFusion method has been proposed for real-time scene recon-

struction by exploiting GPU programming with common graphics hardware [1]. In the

method, the camera pose is estimated by a coarse-to-fine iterative closest point algorithm

(ICP), then all the range data is integrated into a single global volume using volumetric

representation. The resulting surface model is reconstructed from the volume by ray-

cast algorithm. One drawback of KinectFusion is that such methods suffer from a lack

of realism with low quality depth maps, since the Kinect is only able to acquire surface

depths from areas on which the infrared (IR) speckle points have been sampled. These

limitations reduce the quality of surface geometry by discarding desired complex and

finer-scale textures. Furthermore, the camera tracking method of the KinectFusion may

fail when a scene has very few 3D features. In other words, if the majority of points are

located in featureless regions such as a wall or desk surface, the algorithm may fail to

find an optimal solution, because of its lack of constraints.

We propose a novel approach for realistic surface geometry reconstruction using

RGB-D images. While the proposed method follows the framework of KinectFusion, it

differs in three ways:

1. We utilize high quality RGB images by attaching an HD RGB camera onto a

44
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Kinect to reconstruct a 3D model with realistic surface geometry and color tex-

tures.

2. We extend the depth map refinement presented in Chapter 3 and exploit a robust

camera tracking method presented Chapter 4 to achieve accurate camera pose

estimations.

3. We evaluate the proposed method using our real object dataset, which has been

generated by laser scans.

The rest of this chapter is organized as follows. Section 5.1 discusses previous

methods in 3D reconstruction of static scene. Section 5.2 briefly describes an overview

of the proposed system. In Section 5.3, we describe the proposed surface geometry

refinement method to recover finer-scale surface geometry. In Section 5.4, we describe

a robust camera tracking method that can find accurate camera poses. In Section 5.5,

we describe integration method to fuse all live data into a global volume space and

reconstruct surface models from the global volume. In Section 5.6, we demonstrate our

experimental results. Finally, summary are presented in Section 5.7.

5.1 Related Work

Recently, affordable depth sensing devices such as Time-of-Flight (ToF) [8] and

Microsofts Kinect [7] have been rapidly adopted by computer vision researchers. These

low-price easy-to-use range sensing technologies enables many system capabilities for

both customers and researchers. Cui et al. presented a 3D object scanning system using

a ToF camera [3]. In their system, data captured by moving the camera around an object

is integrated into a single model through a probabilistic scan alignment approach. In

addition, a resolution enhancement method using sensor’s noise characteristic to achieve

3D model with reasonable quality, is proposed.

A scanning system for capturing 3D full human body models using multiple

Kinects is proposed in [41]. They constructed a rough mesh template and updated the

model by deforming it in successive frames. Global alignment was exploited to solve

the loop closure problem by distributing errors in the deformation space.
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Figure 5.1: Left: The reconstructed surface model from the raw data of capturing
anatomy with Kinect camera. Middle: The reconstructed surface model anatomy gen-
erated using KinectFusion. Right: The improved surface model generated using our
method.

Even though the above approaches created high-quality models from difference

scan views, they did not achieve real-time computation, because of the high computa-

tional complexity. Therefore, their methods lack the possibility for user interaction and

feedback.

In [42], a 3D capturing system using a tracked Kinect is proposed. They achieved

real-time camera tracking with an AR tracking system1. A tracker is attached to the top

of Kinect, and four ceiling-mounted infrared cameras are used to estimate the Kinects

precise camera pose. Then, triangle meshes with texture maps are generated by inte-

grating scans into a global point cloud and connecting nearby points. However, this

real-time tracking method requires complex environmental setups, which restricts the

capability of common usage in daily life.
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Figure 5.2: Flow chart.

5.2 System Overview

The Kinect sensor consists of an RGB camera with a 1.3 megapixel (MP) resolu-

tion, an infrared (IR) camera with resolution of 1.3 MP, and an IR pattern projector. Fig-

ure 5.1(a) shows the reconstructed surface model from the raw depth data from Kinect.

To obtain high-resolution RGB images, an additional HD camera with a 5 MP resolution

is attached to the top of a Kinect and is calibrated with the Kinect IR camera, using a

checkerboard pattern [43]. Figure 5.3 shows the components of our Kinect device with

an HD RGB camera.

Figure 5.2 shows an overview of the proposed 3D reconstruction system. Our

reconstruction method mainly consists of four stages, which are surface geometry re-

finement, robust camera tracking, data integration, and visualization.

• Surface Geometry Refinement: The live range data is captured by either handheld

scanning or scanning under controlled motion (with a turntable). The raw depth

map is refined by utilizing high frequency information in color images.

• Robust Camera Tracking: Using a weighted ICP method, the orientation of the

camera in the global coordinate system is estimated for registration between frames.

Unlike conventional ICP, the weight is assigned to each point to achieve robust-

1http://www.ar-tracking.com/home/
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Figure 5.3: Components of Kinect with an HD camera. The top HD RGB camera is
used to capture high quality color images to refine surface geometry and integrate color
texture.

ness by emphasizing the influence of points that contain more of the scenes geo-

metric information.

• Data Integration: The aligned data is fused together to update a single global 3D

volume.

• Visualization: The global volume is visualized as either a rendered image or a

mesh model.

5.3 Surface Geometry Refinement

Since the Kinect only sparsely samples the scene using its IR speckle pattern,

there is the possibility that finer object details are missing, and data near an object’s

boundaries may not be accurate. This problem degrades the overall surface geometry

reconstruction results. On the other hand, color images from HD RGB cameras can

present much finer-scale information.

In Chapter 4, we proposed the sampling-based robust multi-lateral filter (SRMF),

which is a method of refining depth maps using high-resolution color images. In the
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method, unreliable regions are first defined by calculating the reliability measure for

each pixel in the depth map. Then, samples from the region of high reliability are

collected, and the best sample with the highest fidelity is selected. Finally, a robust

multi-lateral filter, which is an extended joint bilateral filtering technique, is applied

to reduce noise while preserving the edges’ sharpness. Although SRMF successfully

improved the quality of depth maps, the method is primarily focused on the refinement

of objects boundaries. The color image’s accurate boundaries are used as guidance to

fix errors in the depth maps transition areas. Instead, one can utilize high frequency

information in color images to estimate an object’s geometry.

Our work is inspired by Beeler et al. [44]. In their method, surface geometry is

refined based on the observation that the intensities of images in small concavities tend

to be darker when we assume albedo is uniform in the surface, since the light reflected

by a diffuse surface is partially obstructed. Our surface geometry refinement method

takes a color image I and a depth data R as inputs. First, SRMF is applied to raw depth

to reduce noise in an object’s boundaries while recovering precise edges. We denote the

filtered depth map as D(p). To convert each pixel p : [ u v ]> in the filtered depth data

into a 3D point v(p), we assume a constant intrinsic camera calibration matrix K, which

transforms 3D points in the camera coordinate system into the image plane. Given the

intrinsic camera calibration matrix K, a back-projected 3D point v(p) in the camera

space is computed as:

v(p) = D(p)K−1

[
p

1

]
(5.1)

In addition, the normal vector at pixel p is calculated as:

n(y, x) = Normalize((v(u+ 1, v)− v(u, v))

×(v(u, v + 1)− v(u, v))) (5.2)

where Normalize(·) is a function that gives the normalized form of the input vector.

For geometry refinement, we first find high frequency features in color image

using a high-pass filter. The filter is implemented by subtraction of a blurred version

of an original image from the original image itself. The blurred image is generated by

convolving the original I with a Gaussian kernel, i.e. N (0, σ2
gI). We denote µ(p) as a
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high frequency feature, and it is computed as:

µ(p) = I(p)− [I ∗ N ](p) (5.3)

where ∗ denotes the convolution operation in x and y spaces.

Next, based on our assumption that gradient changes in image intensity are re-

lated to variations in the geometry, we define a correction factor as:

δ(p) = η

∑
q∈Ωp

w(p,q)fµ(p,q)fξ(p,q)∑
q∈Ωp

w(p,q)
(5.4)

where Ωp is the neighborhood of v(p), η is an embossing parameter that controls

the strength of the correction factor, and w(p,q) is a radial basis function, defined as

e−‖v(p)−v(q)‖.

The weight fµ can be computed, based on the criteria that the surface geometry

forms a concavity when µ(X) decreases, and it is likely to form a convexity when µ(X)

increases.

fµ(p,q) = µ(p)− µ(q) (5.5)

The weight fξ is used to attenuate Eq. (5.5) when the geometric gradient is significant.

fξ(p,q) = 1− | < v(p)− v(q),n(p) > |
‖v(p)− v(q)‖

(5.6)

Eq. (5.6) will be close to zero when the angle between a vector v(p) − v(q) and n(p)

is small, but the value will be one if the angle is 90◦. Therefore, Eq. (5.4) will create a

large response when there is little or no geometric variation.

Finally, a new 3D point is updated using the normal as:

vnew(p) = v(p) + δ(p)n(p) (5.7)

The refined geometry data is aligned in the global space after the camera pose estima-

tion, and is integrated into a global 3D volume in our reconstruction method.

5.4 Camera Tracking

For a real-time, accurate 3D reconstruction method, we require fast, robust cam-

era pose estimation method. The ICP algorithm is widely used for 3D alignment, be-

cause the algorithm is conceptually simple and fast. After the first introduction of the
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ICP algorithm [45, 46], many variants have been introduced [47]. KinectFusion uses a

coarse-to-fine ICP algorithm for its camera pose estimations [1]. By closely analyzing

the ICP method in [1], we observe that the method fails when the scene lacks geomet-

ric features. In our system, we use a robust camera pose estimation method that uses

weighted ICP, which is discussed in the previous chapter. While the conventional ICP

of a KinectFusion assumes that every point has the same importance, the weighted ICP

method assigns a weight to each point to improve the accuracy of the camera tracking.

The weight for a point p in a depth map at time k is determined by:

ξk(p) = 1−
∑
q/∈Φ,
q∈Ωp

Π(|Dk(p)−Dk(q)|, σD(p))/(# of q) (5.8)

where Φ is an unknown region in which the Kinect cannot capture depth value, and

Ωp is the box window centered at pixel p with an empirically chosen size. Π is the

Gaussian function with variance σD(p) which is chosen based on the observation that

the random error of depth measurements will increase quadratically as the distance from

Kinect camera increases [39].

σD(p) = αDk(p)2 (5.9)

where α is 2.85× 10−5; (D is in millimeters).

Finally, a global transformation matrix Tk is calculated by minimizing the point-

to-plane error metric [40] with the weight.

Ek =
∑
p

ξk(p)‖(v̇gk−1(p)−Tkvk(p)) · ṅgk−1(p)‖2 (5.10)

where v̇gk−1 and ṅgk−1 represent the corresponding 3D points and their normal vectors

in the generated surface model, respectively. Assuming that camera motion is slow, the

minimization problem of Eq. (5.10) can be approximated and linearized [1].

5.5 Integration and Visualization

Given the estimated global camera pose, the aligned geometric information and

color information require integration in a single domain. Volumetric representation is
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widely used for data integration in 3D reconstruction [48]; in the volumetric representa-

tion, 3D models are built in a single volume space that consists of small cubical volume

elements called voxels. In our system, the Truncated Signed Distance Function (TSDF)

is utilized [1]. The value of each voxel in the 3D volume represents the truncated signed

distance of each voxel to the nearest surface, along the line between the voxel and cam-

era origin. During the integration process, the data in voxels is assigned by new data, or

is incrementally updated by averaging if data exists in the voxel.

The color data from the Kinect is also transformed with the estimated transfor-

mation parameters from the previous camera tracking stage, and each color datum is

integrated into the corresponding voxel in a separate color volume, which has same di-

mensions as the TSDF volume. Our color texture integration method is based on an

implementation of KinectFusion in the Point Cloud Library (PCL)2. For every 3D point

that exists within the distance of µ to the surface, the color data is fused to the corre-

sponding voxel in the color volume by either assigning new data or updating the existing

data by averaging their values with a constant weight. In our implementation, we extend

the existing color integration method by employing a spatial weight function to improve

the color texture quality. The weight λ(p) is likely to have a high value when the 3D

point converted from p is spatially close to the surface of the object, and computed as

λ(p) = fc(|TSDF(p)|) (5.11)

where fc is taken to be a Gaussian function with standard deviations σc. The TSDF(p)

represents the truncated signed distance to the surface of the objects. By accumulating

the values with this weight, we can build accurate 3D representations that are consistent

with all views.

5.6 Experimental Results

First, we demonstrate the benefits of the proposed surface geometry refinement

method using the Middlebury dataset [9]. Then, we compare the accuracy of the pro-

posed method with state-of-art methods, using real statue objects. Finally, we present

2http://www.pointclouds.org/news/kinectfusion-open-source.html
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computational analysis. Our system uses an Intel Core i7 2.93GHz processor with 12GB

RAM and NVidia GTX 680 graphics card with 2GB GPU memory. The depth data is

acquired using the Kinect for XBOX360 and the color data is captured using Logitech

HD webcam.

5.6.1 Depth Refinement Results on Middlebury Dataset

To prove the effectiveness of the proposed surface refinement method, we apply

our method to the Middlebury datasets Moebius, Books, and Art. First, we generate

downsampled versions of the provided ground truth disparity maps with a factor rate of

3×, 5×, and 9×, and upsample them using a nearest-neighborhood method to produce

the initial estimate of the interpolated result. The original corresponding color images

were directly used as high-quality guidance images. For each factor, the average per-

centage of bad pixels with an error threshold of 1 for all known regions is calculated.

Figure 5.4 shows the evaluation results of the proposed method and other depth refine-

ment methods, which are Joint Bilateral Upsampling (JBU) [11], Pixel Weighted Aver-

age Strategy (PWAS) [17], and Adaptive Multi-lateral Filtering (AMF) [19]. The com-

parison plots show that the proposed method outperforms the other refinement methods.

5.6.2 3D Reconstruction Results

We compare the resulting mesh models from the proposed approach with two

different methods, which are open-source KinectFusion from PCL and SCENECT3 from

FARO. Since the trial version of SCENECT only produces registered point clouds from

RGB-D video input, we utilize a screened Poisson method [49] to create watertight

surface mesh models from the point cloud for fair comparison.

For the reconstruction, the Kinect and the HD RGB camera capture different

statue models rotating counterclockwise on a turntable. Final mesh models generated

from different 3D reconstruction methods are shown in Figure 5.5. As presented in the

figure, our reconstruction system produces 3D models of better quality comparing to

the other methods. Models from both KinectFusion and SCENECT have distortion due
3http://www.faro.com/scenect/scenect
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(a) Input RGB image (d) Downsampled by 3×

(b) Input disparity map (e) Downsampled by 5×

(c) Refined disparity map (f) Downsampled by 9×

Figure 5.4: Depth enhancement comparison of average percentage of bad pixels using
Middlebury dataset.
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Anatomy Apollo Lion

Figure 5.5: Reconstructed mesh model comparisons. First Row: real statue model,
Second Row: Laser scan model, Third Row: SCENECT, Fourth Row: KinectFusion,
and Fifth Row: Proposed method.
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Figure 5.6: Quantitative evaluation results on anatomy, apollo, and lion. The y-axis is
the accuracy and the x-axis is the target percentage.
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Figure 5.7: Results created with the proposed method, shown as color textured meshes.
All results were computed from a handheld camera which captures depth and color
images. Note that the mesh models are rendered from two view points.
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Figure 5.8: Results created with the proposed method, shown as shaded meshes. All
results were computed from a handheld camera which captures depth and color images.
Note that the mesh models are rendered from two view points.
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Table 5.1: Statistics for the reconstruction of anatomy dataset at various resolutions.
Voxel

Resolution
(voxel/m)

Running
Time
(ms)

Mesh Extract.
Time
(ms)

#
Triangles

512 29.5 547 205K
416 25.6 360 135K
256 19.8 127 50K

to the low-quality of depth data and inaccuracy of camera tracking. Figures 5.7 and

5.8 demonstrate the results, shown as color textured and shades meshes. The proposed

method achieves accurate color texture reconstruction, since depth data is successfully

aligned with color information in the surface refinement process.

We calculate the accuracy metric for quantitative comparisons. The accuracy

represents the distance (error) in which a given percentage of the reconstruction is within

the distance from the ground truth model [50]. To generate a ground truth model, we

use FARO Focus3D scanner4 which generates accurate 3D model with upto ±2mm

distance accuracy. Figure 5.6 shows the statistical accuracy of different target per-

centages. This figure proves that our system produces more accurate 3D models than

the other methods. Input RGB-D video and resulting mesh models can be found at:

http://videoprocessing.ucsd.edu/ ultralkl/projects/RealisticReconstruction/

5.6.3 Processing Time

The computation time mostly depends on the number of 3D points and the global

volume resolution. Since the 3D point cloud is converted from a depth map, and depth

map size is fixed, data acquisition and tracking time are almost constant for each frame.

To speed up the camera tracking process, we do not use our initial estimation in SRMF

by assuming that we move the camera slowly and steadily. In our system, the recon-

struction quality is dependent on the resolution of the volume. The larger the volume,

the more details about an object that can be stored, resulting in a more accurate recon-

struction. However, the larger global volume size causes the global volume integra-

tion and visualization stages to take longer. The results in this chapter were generated
4http://www.faro.com/en-us/products/3d-surveying/faro-focus3d/overview
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in a volume size 512 × 512 × 512. We tested with different voxel resolutions on the

anatomy dataset. Table 5.1 summarizes the results of the reconstruction of our dataset

at various resolutions. A higher voxel resolution increases the sampling rate, and this

improves the reconstruction quality. A reconstruction with the lowest voxel resolution

(256 (voxel/m)) can be generated in 19.8ms, and it can produce a mesh model with

50K triangles. On the other hand, at the highest voxel resolution (512 (voxel/m)), the

reconstruction is done in 29.5ms, and produces a mesh model with 205K triangles.

5.7 Conclusion

In this chapter, we have proposed a novel approach for realistic surface geometry

reconstruction using RGB-D images. In our reconstruction system, high quality color

data is acquired by attaching a HD RGB camera on top of the Kinect. This allows us

to refine surface geometry using the high frequency features of color images. Using

weighted ICP for camera tracking, we achieved better accuracy in the global alignment

of scans. The experimental results demonstrate that the proposed refinement method

significantly enhances visual appearances and outperforms other state-of-the-art meth-

ods.
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Chapter 6

A Method of 3D Reconstruction of

Dynamic Objects

In this chapter, we propose a real-time 3D reconstruction method which gen-

erates accurate surface model of dynamic scenes using multiple Kinect cameras. We

extend KinectFusion method [1] to reconstruct dynamic objects at each frame. One of

the drawbacks of volumetric representation in KinectFusion is that it fails to represent

object’s surface accurately when the number of views is small. In this work, we present

a new depth synthesis technique and a reliability-based weight function to overcome the

drawback. The contribution of this chapter is summarized as follows.

• Depth Synthesis: We propose a depth synthesis technique which generates syn-

thesized depth maps at virtual view points by projecting 3D point cloud into 2D

image plane. The synthesized depth maps densify the point cloud to cover some

surfaces that may be inaccessible to the cameras. Also, a de-noising filter is ap-

plied to synthesized depth maps to remove noise caused by properties of the object

surface, lighting conditions, or systematic errors.

• Reliability-based Weight Function: We propose a new weighted volumetric rep-

resentation method to avoid inaccurate surface information in the area where vari-

ance of the surface normals is high. We calculate reliability-based weight for

each point based on a criteria that depth values with high variance in their neigh-

borhood or depth values along edges are not appropriate for volumetric repre-

61
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sentation. This weight is used in integration process to attenuate the artifacts of

unreliable depth measurements.

• Quantitative Evaluations: We evaluate the proposed method using real-life datasets

which include different statues and real people. We compare our results with ex-

isting methods by calculating distance error against laser scanned models. We also

show accuracy of our proposed method by comparing our reconstruction results

with biometric measurements on the corresponding real people.

The rest of this chapter is organized as follows. In Section 6.1, previous methods

in dynamic scene reconstruction are described. Then, we give a description of the system

setup and overview of the proposed reconstruction system in Section 6.2. We discuss

details of the proposed reconstruction method including offline calibration process and

online reconstruction process in Section 6.3. In Section 6.4, we provide evaluation

on various datasets and analyze the performance of the proposed system. Summary is

presented in Section 6.5.

6.1 Related Work

In this section, we discuss recent 3D reconstruction methods that are designed

for capturing dynamic scenes or objects using multiple cameras. In recent years, there

has been an increasing interest in real-time dynamic scene reconstruction systems for

video conferencing, augmented reality, and markerless motion capture. Hasenfratz et

al. [51] proposed a real-time full body interaction system using multiple RGB cameras.

In their system, full body models are reconstructed using visual hull carving technique

and integrated in a virtual environment. Vasudevan et al. [52] proposed a 3D teleimmer-

sive system using multi-view stereo technique. After extrinsic calibration and rectifica-

tion, a triangular mesh is firstly constructed and disparities of the vertices of the mesh

are estimated using a version of normalized cross correlation to reconstruct 3D data.

Several systems achieve 3D reconstruction using range sensors. Kainz et al. [53]

presented OmniKinect system which extends KinectFusion to accommodate multiple

Kinects simultaneously. In their work, an additional histogram volume is introduced to
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filter outlier measurements. Also, silhouette carving technique using background sub-

traction based on color and depth values is exploited for precise edges. Alexiadis et

al. [54] presented a multiple Kinects capturing system to generate 3D mesh model of

moving foreground objects. In their method, separate meshes is firstly generated by

aligned point cloud from each camera. Then, redundant triangles in mesh pairs are re-

moved and meshes are stitched together while removing artifacts in the overlap of the

meshes. As a further improvement upon this method, a real-time reconstruction method

with volumetric representation is proposed to improve the visual quality of the textures

in 3D models [55]. In their volume calculation, they assigned a weight to each voxel

based on confidence map to suppress errors that exist on object’s boundaries and the sur-

faces that are perpendicular to the viewing angle. Maimone et al. [56] proposed telepres-

ence system using Kinects, which is designed for personal autostereoscopic telepresence

using eye tracking. In their system, depth and color data are merged using photometric

constraint to obtain realistic synthesized views based on the location of user’s eye.

The performance and accuracy of the reconstruction model for these methods are

not presented, as no comparison is made with high-resolution scan. In this chapter, we

present an accurate dynamic scene reconstruction system using multiple Kinect cameras.

We provide accuracy metrics on our benchmark datasets acquired via a laser scanning

process to prove accuracy and robustness of the proposed method.

6.2 Overview of the system

The goal of our 3D reconstruction system is to generate geometrically accurate

full 3D surface model of real-life dynamic scenes or objects in real-time. In this section,

we introduce hardware layout of the proposed system and overview of the proposed

reconstruction method.

6.2.1 Kinect Device and System Setup

Our full 3D reconstruction system consists of four Kinect cameras as shown in

Figure 6.1(a). We place the cameras on tripods which are located at the corners of a

2m x 2m square. The top view of the layout is shown in Figure 6.1(b). All cameras
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(a) (b)

Figure 6.1: Camera setup.

are connected to a single computer with Intel i7 processor and 12GB RAM with CUDA

enabled NVidia GTX Titan. Our system is designed to capture objects which are as large

as human upper body. The capturing region can be changed by repositioning the cameras

on a larger square. The raw depth and color data are obtained using OpenNI library. In

[57, 58, 53], vibrating motors are utilized to reduce the effects of interference between

cameras. Unlike these systems, we do not use vibrating motors since the overlapping

area is small and interfere between Kinect cameras is trivial. Other literature also shows

that interference issues are not as severe as expected [54].

6.2.2 Dynamic Scene Reconstruction System Overview

Figure 6.2 shows an overview of our reconstruction method. Our approach in-

cludes offline external camera calibration process and online reconstruction process.

The online process consists of data acquisition, depth synthesis, weighted data integra-

tion, and visualization. First, depth and color data is captured from multiple Kinect

cameras and converted into 3D point clouds and transformed using extrinsic camera pa-

rameters from calibration process. Next, we generate synthesized depth maps between

depth maps from each camera by setting virtual cameras located between actual cam-

eras and projecting the point cloud into the image plane at a virtual camera position. The
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Figure 6.2: Flowchart of the proposed dynamic reconstruction system.

synthesized depth maps densify point cloud to cover surfaces where points are sparsely

populated. We also apply a de-noising filter to eliminate outliers and noises in the depth

maps. Then, we determine reliability of each depth value based on a criteria that depth

values with high variance in their neighborhood or depth values along edges are not ap-

propriate for volumetric representation. The depth information is integrated into a single

global volume based on the reliability-based weight. Finally, we visualize the volume

as a rendered image via ray-casting or mesh models using marching cubes method.

6.3 Real-Time Dynamic Scene Reconstruction

The proposed approach consists of offline calibration and online surface recon-

struction processes. In this section, we describe the details of these processes and de-

scribe our contributions.

6.3.1 Camera Calibration

The Kinect has a factory calibration stored onboard, based on a high-level poly-

nomial warping function for registering the depth images (taken by the IR camera) to

the RGB images. The OpenNI driver uses this calibration for undistorting the images,

which leads to a 1:1 correspondence between pixels in the depth map and the color
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(a) (b)

Figure 6.3: Calibration process to estimate extrinsic parameters between Kinects. (a)
Captured color data from multiple Kinect cameras (b) Estimated sphere and its center
point.

image.

For extrinsic calibration between Kinect cameras, we use a moving sphere as our

calibration target. We follow [59], but instead of using RGB data to extract the sphere

center in 2D image space, we seek the center from depth data by estimating sphere

equation using a sphere fitting algorithm [60]. Specifically, the extrinsic calibration

process can be summarized as follows

1. We place an unknown-sized sphere in the capturing space. User interaction is

required to select the sphere in image plane. Given known intrinsic parameters of

the cameras, we achieve 3D point cloud of the sphere using its depth values and

the intrinsic parameters.

2. Given 3D point cloud, we estimate sphere parameters using a sphere fitting algo-

rithm [60]:

x2 + y2 + z2 + ax+ by + cz + d = 0

The center point and radius of a sphere can be extracted by estimating the coeffi-

cients of the equation a, b, c, and d. We use the center point as a corresponding

point across all Kinect cameras.
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3. We move the sphere and repeat steps 1 through 3 until we achieve enough number

of corresponding points.

4. Using the corresponding points (a set of center points), we find the relative trans-

formations between prime Kinect camera and other Kinect cameras using quaternion-

based orientation estimation method [34].

Figure 6.3(a) shows RGB images captured from four Kinect cameras. The extracted

center point and contour of the estimated sphere are shown in Figure 6.3(b). After ex-

trinsic calibration, we acquire a six-degrees-of-freedom (6DOF) camera transformation

matrix for each camera, which transforms point cloud in k-th camera space into the first

(prime) camera space [34]. We denote the matrix as Tk→1, consists of a rotation matrix

and a translation vector, i.e. Tk→1 = [ Rk→1 | tk→1 ].

6.3.2 Data Acquisition

We denote Dk, k = 1, ..., K as the captured depth data from the k-th camera Ck,

where K is the total number of cameras in the system. The value of depth map Dk at

pixel p : [ u v ]> is represented as Dk(p).

We convert each pixel p in the depth data into a 3D point, by denoting vcamk (p)

as the corresponding 3D point in camera space for a pixel p in the depth data. Given

the intrinsic camera calibration matrix K which is defined in OpenNI, every 3D point

vcamk (p) in camera space is computed by the back projection function BProj : [u v ]> ∈
R2 → [ x y z ]> ∈ R3:

vcam(p) = BProj(p) = D(p)K−1

[
p

1

]
(6.1)

We also denote the global 6DOF camera transformation matrix of camera k as

Tk = [ Rk | tk ], which transforms the acquired point cloud in camera space into global

space. Without loss of generality, we assume that the prime camera coordinate system

coincides with the global coordinate system, i.e., R1 = I and t1 = 0 which leads to

a simpler notation of the transformation matrix of each camera Tk = Tk→1. Finally,

the 3D point vk in the global coordinate system can be computed by the transformation
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(a) (b)

Figure 6.4: Visualization of TSDF when surface points are sparsely populated. (a)
Points in the area where their surface normal is almost orthogonal to camera’s origin are
sparsely populated. (b) TSDF in some voxels on the real surface cannot be computed
and leads to holes.

matrix Tk as:

vk(p) = Tkv
cam
k (p) (6.2)

6.3.3 TSDF Volumetric Representation

The volumetric representation method using cumulative truncated signed dis-

tance functions (TSDF) is proposed by Curless and Levoy [36]. Because of certain

desirable features such as robustness in the presence of outliers by incremental updat-

ing and the ability to fill missing data, it is widely used in 3D reconstruction meth-

ods [1, 61, 53, 55]. In volumetric representation, each volume element, voxel, stores

a signed distance from the voxel to the nearest object’s surface; it has a negative value

when inside the surface, a positive value when outside the surface, and 0 when on the

surface. In [1], TSDF is exploited to fuse live range images incrementally in real-time.

Given the estimated camera pose, the geometric information of each frame is trans-

formed into the global space and projected into global volume space.

However, the TDSF technique is not always the most suitable method for high-

quality reconstruction when the number of views is small. There are two major draw-

backs.
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(a) (b)

Figure 6.5: Visualization when TSDF fails to represent the correct distance to surface.
(a) In [1], TSDF of g is determined by Cam 1 to 5. (b) TSDF of g is determined by
average of distances between g and v1 to v2, which is not similar to the actual distance
to v0.

• To reconstruct dynamic objects at each frame, we only use a few data points (K=

4), with small overlap regions. Therefore, we may have very sparsely populated

points in the area where its surface normal is almost perpendicular to camera’s ori-

gin (See Figure 6.4(a)). Since TSDF is only caculated for voxels which are located

on the line between the observed surface point and camera’s origin, the sparsity of

the point cloud leads to holes in surface reconstruction. Figure 6.4(b) shows the

case where TSDF cannot be computed in some voxels on the real surface.

• In [1], plenty of frames are fused into global volume to represent object’s sur-

face. Figure 6.5(a) demonstrates the visualization of TSDF determined by depth

data from camera 1 to 5. TSDF of voxel g is computed by averaging distances

between the voxel and observed surface points (v1, ..., v5). However, the volumet-

ric presentation with TSDF becomes significantly inaccurate when the number of

measurements is small and some of the TSDF values fail to represent the correct

distance to object’s surface. Figure 6.5(b) demonstrates the problem. The TSDF

of voxel g is determined by average of distances between the voxel and v1 to v2,

which is not similar to the actual distance to surface v0.

In our approach, we introduce a new depth synthesis method and reliability-
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based weight in integration process to overcome the drawbacks for high-quality 3D

reconstruction.

6.3.4 Depth Synthesis and Depth De-noising

Depth Synthesis

To generate synthesized depth maps, we first create virtual cameras that are lo-

cated between real cameras. We assume a circular camera path based on locations of

real cameras. The center point c and radius r of the circle are calculated as:

c = [ xcenter ycenter zcenter ]> =
K∑
k=1

tk/K

r =
K∑
k=1

‖c− tk‖/K (6.3)

Now, we find the position and orientation for each virtual camera. We denote Tk,k+1
s =

[Rk,k+1
s |tk,k+1

s ], s = 1, ..., S as the transformation matrix of s-th virtual camera between

two real cameras Ck and Ck+1, where S is the number of virtual cameras between two

adjacent real cameras. The position of the s-th virtual camera is determined as:

tk,k+1
s = [ r sin(θ) + xcenter 0 zcenter − r cos(θ) ]> (6.4)

where θ is the clockwise angle between the virtual camera and the first camera. i.e.,

θ = −((k − 1)π/2 + (s/S + 1)π/2). To find the orientation of virtual camera, we

convert the orientation of each real camera into its quaternions, which are considered as

a better representation for interpolation than Eulerian angles. We denote qk and qk+1

as quaternions converted from rotation matrices Rk and Rk+1, respectively. The orien-

tation of virtual camera is determined by interpolating two quaternions using Spherical

linear interpolation (Slerp) [62]:

Rk,k+1
s = Quat2Rotation(Slerp(qk,qk+1, s/(S + 1))) (6.5)

Figure 6.6 shows orientations and positions of virtual cameras which are projected onto

x-z plane when K = 4 and S = 3.
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Figure 6.6: Orientations and positions of virtual cameras, which are projected onto the
x-z plane (K = 4 and S = 3).

Next step is to generate synthetic depth maps by projecting aligned point clouds

into image plane at each virtual camera. We denoteDk,k+1
s as the synthesized depth map

with the transformation Tk,k+1
s . Using the transformation matrix of the virtual camera,

we synthesize depth Dk,k+1
s by warping both Dk and Dk+1. The warping process is

done by projecting vk and vk+1 into the virtual camera. The projection function Proj :

[ x y z ]> ∈ R3 → [ u v ]> ∈ R2 is defined as:[
p′

1

]
= Proj(vcam) =

1

z
Kvcam (6.6)

In depth synthesis process, we copy the depth value of projected point p′ to nearby pix-

els q′ ∈ Ωp′ to populate points on the surface where depth data from real cameras cannot

cover. Ωp′ is a small rectangular patch centered at pixel p′ and the size is chosen em-

pirically. We also use z-buffer to decide which points are visible and which are hidden;

if another 3D point must be projected in the same pixel in the synthesized depth map,

their depth values are compared and the closer point to the virtual camera is chosen.

Then, the chosen depth is saved to the z-buffer by replacing the old one. The process is
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summarized in Algorithm 2.

Depth De-noising

Errors in range images generated by Kinect sensor include outliers in transition

areas and random noise on geometrically flat or smooth surfaces due to properties of

the object surface, lighting conditions, or systematic errors. Since our system only uses

data from a single shot per camera for dynamic reconstruction, the quality of geometry

data is critical to the resulting 3D model. To suppress artifacts from depth noise, we

apply a bilateral filter that is composed of spatial and range filters to reduce noise while

preserving geometrical discontinuities. The filtered depth value at pixel p is determined

by:

Ḋ(p) =

∑
q/∈Φ,
q∈Ωp

fr(|D(p)−D(q)|)fs(‖p− q‖)D(q)∑
q/∈Φ,
q∈Ωp

fr(|D(p)−D(q)|)fs(‖p− q‖)
(6.7)

where Φ is the region where Kinect cannot determine depth information. fr is the range

filter and fs is the spatial filter, which are Gaussian filters with variances σr and σs,

respectively.

We denote a set of filtered real depth Ḋk and synthesized depth Ḋk,k+1
s as D̄m,

m = 1, ...,M and M = K ∗ (S + 1). Also, we denote a union set of Tk and Ts
k+1 as

T̄m.

6.3.5 Data Integration using Reliability-based Weight

Reliability-based Weight Function

We introduce a new weight function based on reliability of depth value in the

integration process. In our approach, the reliability-based weight is determined based

on the criteria that depth values with high variance in their neighborhood or depth values

along edges are not reliable for the TSDF. The reliability-based weight is determined by

the following equation:

αm(p) =
∑
q/∈Φ,
q∈Ωp

fr(|D̄m(p)− D̄m(q)|)/(# of q) (6.8)
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Algorithm 2 Depth Synthesis
input: Dk, Dk+1,vk,vk+1,Tk,Tk+1,T

k,k+1
s

output: Dk,k+1
s

for pixel p in Dk do

if Dk(p) /∈ Φ then

p′ = Proj((Tk,k+1
s )−1Tkvk(p))

for pixel q′ in Ωp′ do

if q′ ∈ [1:width,1:height] & zbuffer(q′) > Dk(p) then

Dk,k+1
s (q′) = Dk(p)

zbuffer(q′) = Dk(p)

end if

end for

end if

end for

for pixel p in Dk+1 do

if Dk+1(p) /∈ Φ then

p′ ← Proj((Tk,k+1
s )−1Tk+1vk(p))

for pixel q′ in Ωp′ do

if q′ ∈ [1:width,1:height] & zbuffer(q′) > Dk+1(p) then

Dk,k+1
s (q′) = Dk+1(p)

zbuffer(q′) = Dk+1(p)

end if

end for

end if

end for
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αm(p) in Eq. (6.8) has value close to zero unless at area with geometrically smooth

surface. The resulting weight is used in the following data integration step.

Data Integration

Given the camera poses, the surface depth information of the real and virtual

views is transformed into the global coordinate space and is projected onto each corre-

sponding voxel in a global volume space with a value determined by the weighted TSDF

ξ(g), expressed as:

ξ(g) =
M∑
m

αm(p)ψ(‖t̄m − v‖ − D̄m(p))/
M∑
m

αm(p) (6.9)

where

v = ζ(g + [ 0.5 0.5 0.5 ]>)

p = Proj(T̄−1
m (v))

ψ(n) =

min(1, n/µ)sgn(n), if n > µ

∅, otherwise

ζ is the scalar value which represents the voxel size; we assume all sides of voxel has

the same length. v is the global coordinate of voxel g and ‖t̄m − v‖ represents the

distance from camera center to voxel location in global space. Depth value D̄m(p) is

the distance from camera origin to observed surface. By averaging the values together,

we can build accurate 3D representation that is consistent with all views. While the

KinectFusion uses constant weight for averaging process, we exploit reliability factor α

to avoid possible inaccuracy especially where variance of the surface normals is large.

6.4 Results

In this section, experiments performed to evaluate the proposed system are de-

scribed. We first compare the accuracy of the proposed method with other state-of-the-

art methods. Then, we compare the real human biometric measurements with recon-

struction results. Finally, we present computation analysis by presenting execution time

and corresponding frame rate.
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(a) (b)

(c) (d)

Figure 6.7: Reconstructed mesh model comparisons on anatomy dataset. (a) Laser scan
model, (b) Screened Poisson, (c) KinectFusion, and (d) Proposed method
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(a) (b)

(c) (d)

Figure 6.8: Reconstructed mesh model comparisons on apollo dataset. (a) Laser scan
model, (b) Screened Poisson, (c) KinectFusion, and (d) Proposed method



77

(a) (b)

(c) (d)

Figure 6.9: Reconstructed mesh model comparisons on lion dataset. (a) Laser scan
model, (b) Screened Poisson, (c) KinectFusion, and (d) Proposed method
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Figure 6.10: Accuracy plot. The y-axis is the accuracy, and the x-axis is the target
percentage. anatomy (Top), apollo (Middle), and lion (Bottom).
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(a) (b) (c) (d)

Figure 6.11: Quantitative evaluation results on anatomy (Top), apollo (Middle), and
lion (Bottom). (a) Color image, and Color-coded distance errors against laser scan ((b):
Screened Poisson, (c): KinectFusion, and (d): Proposed Method)).
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6.4.1 Comparative Results

To show our performance, we convert global volume to a mesh model using

Marching Cubes method [63] and compare the results with those from laser scanner

and state-of-the-art methods KinectFusion [1] and Screened Possion method [49]. The

ground truth models are acquired by the FARO Focus3D scanner, which is an accurate

laser scanner with up to ±2mm distance accuracy. The high quality model is cap-

tured with controlled environment for several minutes. Originally, KinectFusion is de-

signed to reconstruct static scene with a handheld camera and requires multiple frames

to reconstruct the scene. In our experiments, transformation parameters from extrinsic

calibrations are used for frame registration and conventional TSDF is used for integra-

tion of data from multiple cameras. Screened Poisson reconstruction method, which is

an improved version of Poisson reconstruction method [64], creates watertight surface

models from 3D point cloud. The method is superior to [54] in subjective evaluation

of resulting mesh quality, but requires a few seconds to create surfaces because of high

computational complexity [54].

Figures 6.7, 6.8, and 6.9 show the ground truth and estimated mesh models gen-

erated from the proposed method and other methods. As illustrated, results from both

KinectFusion and Screened Poisson have significant artifacts in partial overlap of the

geometric data caused by inaccurate boundary of the depth map from Kinect camera. In

the proposed method, we are able to improve the surface quality by applying de-noising

filter at multiple synthesized views. Also, reliability weight successfully attenuates ar-

tifacts caused by erroneous depth values with high variance in their neighborhood or

depth values along edges.

For quantitative comparisons, we employ accuracy evaluation metric, which is

the distance (error) such that a given percentage of the reconstruction is within the dis-

tance from the ground truth model [50]. Figure 6.10 shows statistic of accuracy between

reconstructed model and ground truth model for different target percentages. Figure 6.11

shows color-coded distance errors against laser scan. The evaluation results show that

our approach outperforms other methods in terms of accuracy for the three dataset due

to the use of synthesized depth maps and proposed weighted TSDF.

In addition, we evaluate the proposed method in dynamic situations to prove
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Table 6.1: Biometric measurements on real persons
Chin to
Nose

Shoulder
Width

Elbow to
Wrist

Byeong
Mesh 8.9 42.5 26.8

Biometric 9.3 41.6 26.0
Error (cm) 0.4 0.9 0.8

Haleh
Mesh 7.3 36.5 25.1

Biometric 7.9 37.0 25.5
Error (cm) 0.6 0.5 0.4

Kyoung
Mesh 8.3 42.0 26.7

Biometric 7.9 41.3 25.6
Error (cm) 0.4 0.7 1.1

robustness. The apollo statue model on a turntable is rotated by 45 degrees in the cap-

turing area to capture the same model but with different poses. Eight mesh models with

eight different poses are generated to calculate error variances. Figure 6.12 shows the

variance plot on generated mesh models. As shown in the figure, the proposed method

produces smaller mean error and smaller variance compared to other methods and this

verifies that the proposed method is more robust than the others in dynamic situations.

6.4.2 Upper Body Results

Figure 6.13 shows reconstruction results of proposed method on real people.

Table 6.1 shows biometric measurements which are obtained by measuring the recon-

structed human models and comparing them with the corresponding real people. In this

experiments, three biometric measurements are calculated, which are ”Chin to Nose”,

”Shoulder Width”, and ”Elbow to Wrist”. The errors in the table show that our recon-

structed models are very accurate (about 1cm). Unlike [41] which requires people on a

turntable should stand still for a few seconds, our system can generate full 3D models

using only one frame each from four Kinect cameras.
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(a)

(b)

Figure 6.12: Robustness evaluation. (a) Color images of apollo rotating on a turntable.
(b) Mean-variance plot for apollo dataset.
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Figure 6.13: Upper Body Results. Byeong (Left), Haleh (Middle), and Kyoung (Right).
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Figure 6.14: Frame rates and cumulative execution times for each process as a function
of the number of synthesized depth maps S.

6.4.3 Computational Analysis

The detailed run-time analysis for different number of synthesized views S is

given in Figure 6.14. The performance speed of our method is on average 15.17 fps

when S = 1. GPU programming is used for depth synthesis, depth filtering, data integra-

tion, and ray-casting processes. For this test, the size of global volume is 512×512×512

and the lenght of each side of the voxel is 3.91mm. To measure time, we perform the

overall process 10 times and compute the average.

6.5 Summary

In this work, an accurate real-time dynamic scene reconstruction method using

multiple affordable depth cameras is presented. Depth synthesis followed by bilateral

filtering allowed us to densify the point cloud from a small set of depth data and elimi-

nate outliers and noise in the raw Kinect data. The proposed weighted TSDF integration

attenuates the artifacts of the conventional volumetric representation.
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Chapter 7

Conclusion and future work

This dissertation presents novel efficient and robust algorithms which produce

accurate reconstructions of 3D scenes. In particular, we propose a novel depth map en-

hancement method, robust camera tracking, realistic stationary object reconstruction us-

ing a handheld RGB-D camera, and dynamic scene reconstruction using multiple RGB-

D cameras. In this Chapter, we review our contributions and present future work.

7.1 Review of Contributions

The contributions of this dissertation are summarized as follows

Depth refinement method Despite depth maps are an important integral component

of 3D reconstruction processing, they are often captured at low quality or low resolu-

tion due to sensor hardware limitations. In Chapter 3, we have presented a new depth

map refinement method which enhance noisy or low-resolution depth maps using high-

resolution color images. Every pixel in the region of low reliability collects samples

from the region of high reliability and selects the best sample with the highest fidelity.

Then, each pixel’s selected depth sample is refined by sharing its information with its

neighbors’ selected samples in the sample refinement stage. Finally, a robust multi-

lateral filter, is applied to reduce noise while preserving sharpness along edges. With

sample selection and refinement in conjunction with multi-lateral filtering, the proposed

method significantly outperforms other state-of-the-art depth refinement methods.

86
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Robust camera tracking method In Chapter 4, we have presented a robust camera

estimation method which is effective in challenging situations such as during fast cam-

era motion or in geometrically featureless scenes. A robust orientation estimation based

on quaternion method for initial sparse estimation is presented, which requires no prior

or small movement assumption. In addition, a weighted ICP (Iterative Closest Point)

method for better rate of convergence in optimization and accuracy in resulting trajec-

tory is proposed, which achieves robustness by emphasizing the influence of points that

contain more geometric information of the scene. We showed quantitative results on an

RGB-D benchmark dataset and demonstated that our method estimates more accurate

camera trajectories than other state-of-the-art camera pose estimation methods.

3D reconstruction of static objects In Chapter 6, we have presented a 3D recon-

struction method of static object using a handheld RGB-D camera. In our approach,

high quality RGB images is acquired from an HD RGB camera which is attached onto a

Kinect to reconstruct a 3D model with realistic surface geometry and high-quality color

textures. We extended the sampling-based robust multilateral filter presented in Chap-

ter 3 and utilized high frequency information in color images to estimate an objects

geometry. Besides, the weighted ICP method presented in Chapter 4 is used to estimate

the orientation of the camera in the global coordinate system is estimated for registration

between frames. Finally, the registered data is fused together to update a single global

3D volume and visualized as either a rendered image or a mesh model.

3D reconstruction of dynamic objects In Chapter 6, we have presented a 3D re-

construction method of dynamic objects using multiple RGB-D camera. For accurate

dynamic scene reconstruction, we presented a depth synthesis technique that generates

synthesized depth maps at virtual viewpoints to densify the point cloud so that it covers

some surfaces that may be inaccessible to the cameras. In addition, we introduced a

reliability-based weight function for integration process to attenuate the artifacts of un-

reliable depth measurements. We compared our results with existing methods by calcu-

lating distance error against laser scanned models and showed accuracy of our proposed

method by comparing reconstructed mesh model results with biometric ground-truth.
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7.2 Future Work

Future research directions in 3D reconstruction of static and dynamic objects

using RGB-D images are:

• Recently, Microsoft released the second version of Kinect. With higher depth

precision and a remarkably reduced noise floor, the new Kinect produces bet-

ter geometry information of the scene and detects smaller objects that were not

detected with the old Kinect. We intend to further improve the proposed recon-

struction system by adopting the improved RGB-D sensor.

• A drawback of volumetric representation method in our approach is that the sys-

tem requires large GPU memory for large-scale scene. For building a global

model, we use a GPU memory for parallel computation. With a fixed size of

GPU memory, the size of global volume is limited, e.g., 512× 512× 512. There-

fore, a scene with farther objects to capture yields lower volume resolution in the

algorithm and consequently degrades the accuracy of the resulting reconstruction.

In future work, we plan to address this issue by using an adaptive and sparse grid

representation instead of using the dense volumetric representation.

• We plan to apply our dynamic scene reconstruction method to home-based physi-

cal therapy system. For example, in hospital, physical therapist performs therapy

to patient using our system. By capturing motion and 3D models of patient and

physical therapist, our method generates an accurate space-time trajectory of the

patient and physical therapist interaction. The recorded data can be used for phys-

ical therapy at home. The caregiver can perform the same procedure at home

with visual feedback such as arrows, arm shadows, and color coding to match the

patient’s body position with an avatar on a screen.
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