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Integrated analysis of an in vivo 
model of intra‑nasal exposure 
to instilled air pollutants reveals 
cell‑type specific responses 
in the placenta
Anela Tosevska1,3,4, Shubhamoy Ghosh2,4, Amit Ganguly2,4, Monica Cappelletti2, 
Suhas G. Kallapur2, Matteo Pellegrini1* & Sherin U. Devaskar2*

The placenta is a heterogeneous organ whose development involves complex interactions of 
trophoblasts with decidual, vascular, and immune cells at the fetal–maternal interface. It maintains 
a critical balance between maternal and fetal homeostasis. Placental dysfunction can lead to adverse 
pregnancy outcomes including intra‑uterine growth restriction, pre‑eclampsia, or pre‑term birth. 
Exposure to environmental pollutants contributes to the development of placental abnormalities, 
with poorly understood molecular underpinning. Here we used a mouse (C57BL/6) model of 
environmental pollutant exposure by administration of a particulate matter (SRM1649b at 300 μg/
day/mouse) suspension intra‑nasally beginning 2 months before conception and during gestation, 
in comparison to saline‑exposed controls. Placental transcriptomes, at day 19 of gestation, were 
determined using bulk RNA‑seq from whole placentas of exposed (n = 4) and control (n = 4) animals 
and scRNAseq of three distinct placental layers, followed by flow cytometry analysis of the placental 
immune cell landscape. Our results indicate a reduction in vascular placental cells, especially cells 
responsible for structural integrity, and increase in trophoblast proliferation in animals exposed to 
particulate matter. Pollution‑induced inflammation was also evident, especially in the decidual layer. 
These data indicate that environmental exposure to air pollutants triggers changes in the placental 
cellular composition, mediating adverse pregnancy outcomes.

The impact of the intra-uterine environment upon the conceptus can be far reaching, given that changes incurred 
during this vulnerable and critical developmental period have long standing implications with changes of per-
manency. Much of this adaptive imprint is delivered to developing tissues by changes in gene expression and 
cellular content. The placenta, an organ that co-habitats with the conceptus, acts as a functional interface deliver-
ing oxygen and nutrients to the developing  fetus1,2. In addition, the placenta produces a plethora of hormones 
necessary for the physiological adaptation necessary during  pregnancy1,3. The placenta also serves as an effec-
tive barrier protecting the fetus from toxins and  pathogens1,4. Since the placenta co-exists with the fetus, it also 
encounters various intra-uterine exposures, and experiences certain detrimental effects, which in turn could 
negatively impact maintenance of a pregnancy or fetal  health2. Such imposition of placental changes ultimately 
adversely affects the well-being of mother and  conceptus2. Environmental exposures from air pollution, espe-
cially particulate matter originating in urban areas can have far-reaching effects on maternal well-being and fetal 
 development5–7, and have been implicated in adverse pregnancy outcomes, such as preterm  labor8, gestational 
diabetes  mellitus9 or pre-eclampsia10 presenting with fetal growth restriction and low birth  weights8,11,12. In 
order to understand the effects of environmental exposures on mother and conceptus, it is important to study 
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the placenta. In particular one needs to understand the complex cellular and signaling patterns underlying 
placental development.

Tissues, including the placenta, are comprised of diverse cell types with distinguishable developmental or 
functional origin that form a complex  niche1. A comprehensive assessment of cellular heterogeneity is tradition-
ally performed by immunophenotyping which can be biased and relies on a small set of pre-selected markers, 
limiting the cell types that can be  inspected13. Alternatively, Bulk RNA sequencing (RNA-seq) offers an unbiased 
approach to tissue profiling with greater resolution, accounting for the dynamic nature of the  transcriptome14. 
RNA-seq can also help to identify novel transcripts, alternately spliced genes, and allele-specific expression. 
However, RNA-seq typically represents an average of gene expression across millions of cells which may obscure 
cellular heterogeneity, especially in organs or tissues with multiple cell  types15. To overcome this barrier, one could 
isolate single cells and capture their transcripts by employing single cell RNA-seq, a technique that can assess 
the cell population structure in depth and the nuances of various cell signaling pathways with unprecedented 
 resolution16. Single cell transcriptomics performed by 10X genomics is an established technology that is helpful 
in deciphering cell-specific gene expression in complex organs and tissues subjected to various environmental 
 stressors17. The introduction of this technology has proven to be highly useful in unraveling the major and minor 
cell types present in a sample, in addition to identifying differentially expressed genes. This has resulted in the 
discovery of various novel cell types and their abundance under normal and pathological  circumstances18,19.

Previous studies have examined the human placenta during the first trimester and provided information 
regarding the cellular content and transcriptomics under normal  circumstances20,21 and in the presence of pre-
eclampsia20. Similarly, murine placental scRNA-sequencing has been performed under normal  circumstances22–24. 
However, given distinct differences between human and murine  placentas25 and the fact that manipulations dur-
ing human pregnancy are not possible, the development of genetic and pathological murine pregnancy models 
has been applied to various conditions. Examples include intrauterine growth  restriction26 due to maternal calorie 
 restriction27, maternal  diabetes28 and  hypertension27, among others. More recently, the effect on pregnancy 
of exposures to air pollutants has gained increasing visibility resulting in the development of multiple mouse 
 models29,30. Using one such nasal instillation gestational model, we sought to assess the impact of air pollutants on 
the late gestation placental transcriptomics and cellular composition. We hypothesized that employing single-cell 
transcriptomics and deconvolution of placental bulk transcriptomics will provide the basis for identification of 
cellular composition, setting the stage for application to various murine models beyond the one we have tested 
here. To test this hypothesis, we studied the late gestational placentas divided into three layers, namely the 
decidual, junctional and labyrinthine layers and identified the cellular and gene expression signatures.

Results
Differential abundance of cell types observed by scRNAseq in air pollution exposed placentas 
versus controls. Six animals (3 exposed to air pollution and 3 controls) were used for scRNAseq analysis. 
Placentas were collected from each pregnancy, separated into 3 placental layers and tissue from the same placen-
tal layers were pooled for each group, yielding a total of six samples (two treatments and three layers). A total 
of 40,739 cells were processed, of which 9007 cells were extracted from the control (CON) decidual, 8654 from 
the air pollution (AP) decidual, 4410 cells from CON junctional, 5665 from AP junctional, 5978 cells from CON 
labyrinthine and 7025 from the AP labyrinthine layers (Table S1).

A schematic of placental cell type(s) distribution is depicted in Fig. 1a. To display various cell clusters of E19 
mouse placentas, uniform manifold approximation and projections (UMAP) were applied to the scRNAseq data. 
Twenty-five distinct clusters were identified, amongst which 24 were annotated to cell types based on signature 
genes (Fig. 1b) as described in the Mouse Cell  Atlas31. The majority of these clusters were grouped together based 
on cell-type similarity, and all cell types could be found in both AP and CON conditions (Fig. 1c). We observed 
variation in cell type composition among the three different placental compartments, namely the decidual, 
junctional and labyrinthine (Fig. 1d) regions, and across the two treatment groups (Fig. 1c,e). While the major-
ity of cell types were identified across all placental compartments (Fig. S1), certain cell types were identified to 
be predominantly present in the decidua (decidual and stromal cells, decidual trophoblasts, macrophages and 
NK-cells). Other cell types were more abundant in the junctional and labyrinthine layers (B-cells, endothelial 
and endodermal cells, erythroid cells, invasive spongiotrophoblasts and spongiotrophoblasts) (Fig. 1d). The 
trophoblast lineage, as the major cell type(s) that shapes the placenta, consists of numerous subtypes present 
at various stages of differentiation, ranging from undifferentiated progenitor trophoblast to fully differentiated 
syncytiotrophoblasts. Based on the scRNAseq data we detected an increase in certain structural and proliferat-
ing trophoblasts following AP exposure (Fig. 1e). NK-cells, spongiotrophoblasts, and decidual cell-types were 
enriched upon AP exposure, while other cell types such as granulocytes, macrophages, endodermal and stromal 
cells were depleted upon AP exposure. However, due to the lack of biological replicates (as all animals were 
pooled into a single sample to generate sufficient cell numbers) in the scRNAseq analysis, these results are not 
statistically significant.

Deconvolution of bulk RNAseq data from whole placentas with scRNAseq as a reference. To 
further elucidate the cell-type specific impact of air pollution on placenta, bulk RNAseq data was deconvoluted 
using gene expression from scRNAseq. To perform an unbiased cell type deconvolution of bulk RNAseq, we 
created an average pseudo bulk expression matrix from the 25 cell types in the scRNAseq dataset and used 
this as a reference for deconvolution. We used  GEDIT32 to perform the deconvolution analysis with the bulk 
RNAseq data from AP and Control samples as inputs (n = 4 that arose from 6 separate mice, respectively), as 
GEDIT was shown in a recent report to compare favorably with other deconvolution  tools33. A second tool, 
designed specifically for scRNAseq references,  MuSic34 was also used to verify the deconvolution results. While 
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Figure 1.  (a) Schematic representation of mouse placenta and location of various cell types in different 
placental compartments. (b) Uniform Manifold Approximation and Projection (UMAP) plot of cell and tissue 
clusters detected in scRNAseq in all 6 samples. Sub-clusters of related cell types could be detected for immune 
cells, decidual cells, endo/epithelial-like cells, erythroid cells and trophoblasts. (c) UMAP projection of cells 
originating from air pollution (AP) samples (n = 3) and control (CON) samples (n = 3). (d, e) Quantification of 
each cell type by placental layer, decidual, junctional and labyrinthine (d) or treatment groups, namely AP and 
CON (e). Cell counts were normalized by the total cell count per sample and depicted as fractions of the total 
cell count for each cell/tissue type.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8438  | https://doi.org/10.1038/s41598-022-12340-z

www.nature.com/scientificreports/

both tools performed similarly in identifying cell types present in bulk (Fig. 2a and S2a), GEDIT was able to 
identify a higher number of cell types compared to MuSic. A comparison between the two methods was per-
formed, and the concordance  (R2 value) as calculated for the CON group was 0.9 and for the AP group was 0.95 
(Fig. S2b). Our analysis showed a significantly higher representation of various trophoblast cells i.e. invasive 
spongiotrophoblast2 (ISpT) and spiral artery trophoblast giant cells along with granulocytes in AP treated sam-
ples whereas, stromal cells and trophoblast-like cells showed a significant decrease (Fig. 2a). A similar trend of 
increased and decreased abundance was observed among other subtypes of spongiotrophoblast and decidual 

Figure 2.  Deconvolution of Bulk RNA-Seq data. (a) Cell-type deconvolution of bulk RNAseq data based on 
pseudobulk scRNAseq as a reference. Numbers present a fraction of the total count. Stars represent an FDR-
corrected significant difference (t-test) between the detected cell type fractions in AP (air pollution; n = 4 
sequenced samples obtained from 6 pregnant mice) and CON (control; n = 4 sequenced samples obtained 
from 6 pregnant mice) at a level below 0.05. (b) Overlap between the 50 top marker genes for each tissue 
(Supplementary Table 2) type in the scRNAseq dataset and genes up- or downregulated in AP versus CON 
detected by bulk RNAseq (Supplementary Table 3). A higher value (depicted with darker color) represents a 
higher level of overlap. (c) Differential abundance of cell types based on z-scores calculated using cell specific 
marker genes from scRNAseq analysis which were significantly expressed among all samples and filtered by p 
value < 0.05. Students t-test was performed to calculate the significance between two groups InvSpT1 = Invasive 
Spongiotrophoblasts Type 1. InvSpT2 = Invasive Spongiotrophoblasts Type 2.
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cell subtypes respectively, which did not reach statistical significance (Fig.  2a). After performing differential 
expression analysis on the bulk RNAseq data, comparing AP and Control samples, we detected an upregulation 
of some cell-specific signature genes, notably, macrophage, monocyte and granulocyte signature genes, as well 
as invasive spongiotrophoblast-specific genes in AP (Fig. 2b). Conversely, decidual, stromal and activated T-cell 
specific signature genes appeared to be downregulated in AP.

To validate the deconvolution results, we generated a z-score normalized expression matrix from bulk RNAseq 
using cell specific marker genes from our scRNAseq analysis. These markers were considered in the analysis 
if they had been found as being cell-type specific with a maximum p value < 0.05. Although this method only 
provides relative and not absolute abundance estimates, it can evaluate the relative representation of various 
cell types in bulk RNAseq. This analysis further revealed a significantly enhanced representation of invasive 
spongiotrophoblasts and progenitor trophoblast cells among AP samples (Fig. 2c). A relevant increase of spi-
ralarterytrophoblast giant cells was also noted in the AP group. We have also noticed a significant increase in 
erythroblasts which are the progenitors of red blood cells. Furthermore, we observed a significant reduction 
in the abundance of stromal cells in AP (Fig. 2c). These cell types depleted in AP are primarily responsible for 
the construction of the placental vasculature. Hence, an impaired vasculature due to air pollution exposure is 
apparent. Cytotrophoblasts or progenitor trophoblasts are considered precursors of various invasive trophoblasts 
or syncytiotrophoblasts. However, these two subpopulations originate from different progenitors with distinct 
survival characteristics. In our study, we have not observed any alterations in either gene expression pattern or 
the abundance of these cell types (Fig. S3).

Immune cell abundance in AP‑treated placentas. Apart from trophoblasts and other structural cells, 
bulk RNAseq revealed a significant increase in various immune cells including granulocytes, monocytes, B 
lymphocytes, macrophages and activated T-cells in AP samples compared to controls. Maternal leukocytes of 
myeloid or lymphoid origin were also enriched in the decidual layer, predominantly among the samples of the 
AP group. Our analysis of bulk RNAseq revealed an increase in the NK cell population among AP samples which 
was also supported by the scRNAseq data (Fig. 1e). In addition, data obtained from flow cytometry showed 
a significant increase in NK cells within the decidual fraction of the AP group (Fig. 3a). We have also identi-

Figure 3.  Abundance of various immune cells in different placental compartments: (a, b) showing the 
abundance of NK cells (a) and T cells (b) in placentas of CON or AP group based on Bulk RNA-seq (left panel; 
n = 4 sequenced from each group obtained from n = 6 pregnant mice) or Flow cytometry data (right panel; n = 6 
from each group) from three different compartments of placentas. (c) abundance of total macrophages between 
CON and AP groups (left panel) as obtained from Bulk RNA-Seq and abundance of M1 and M2 macrophages 
from three different compartments of mouse placentas by Flow cytometry (right panel). Statistical analysis 
was undertaken using the Student’s t-test to compare AP versus CON groups with significance achieved at a p 
value < 0.05.
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fied activated T-cells, predominantly in the decidual layer (Fig. 3b). Using bulk RNAseq showed a significantly 
higher abundance of activated T-cells in the AP group (Fig. 3b), without any significant difference in expression 
between AP and CON in the scRNAseq data. Activated T-cells usually secrete pro-inflammatory cytokines that 
can damage the placental structure, resulting in dysfunction, thereby impairing maintenance of pregnancy. Data 
obtained from flow cytometry also indicated a significant increase in CD8/cytotoxic T-cells within the junctional 
and labyrinthine regions of the placenta exposed to AP. A tendency towards an increased T-cell population is 
also evident in the decidual region of the same group (Fig. 3b) using flow cytometry, however, it was not signifi-
cant. We also observed small clusters of B-cells and dendritic cells from the scRNAseq analysis, but no differ-
ences were evident from bulk RNAseq or flow cytometry data analysis.

Besides NK and T-cells, the other predominant immune cells in the placenta are macrophages which act as 
primary antigen presenting cells, especially in the decidua during a normal pregnancy. Macrophages are tis-
sue resident immune cells, regularly replenished by circulating monocytes, that exist in two different states of 
activation, defined as M1 and M2. We have observed higher representation of monocytes and macrophages in 
the decidual region of placenta and deconvolution of bulk RNAseq data revealed up-regulation of macrophage 
and monocyte specific genes. Although layer or region-specific location and cell subtype specific information 
are missing from the bulk RNAseq analysis, the overall representation of various macrophages was increased in 
AP. We found two distinct clusters of macrophages and both of them were significantly increased in AP samples 
(Fig. 3c), although these two cell types could not be defined as M1 and M2 macrophages in the current dataset. 
Moreover, flow cytometry showed significant enrichment of both M1 and M2 macrophages, especially in the 
decidual layer among the AP samples (Fig. 3c).

Differentially expressed gene (DEG) analysis from bulk RNAseq data. Next, we set out to ana-
lyze the bulk gene expression and identify genes influenced by AP exposure. We observed 118 differentially 
expressed genes (DEGs) in bulk RNAseq out of which 48 genes were significantly upregulated and 70 genes were 
downregulated in placentas of mice exposed to AP (Fig. 4a and Supplementary Table 2). We used an FDR value 
of < 0.05 and a fold difference of > 4 in selecting DEGs to minimize false positive outcomes. Gene Set Enrichment 
Analysis (GSEA)35 using all expressed genes showed positive enrichment of pathways related to inflammation 
and proliferation typical for lymphocytes and Natural Killer (NK) cells including Allograft Rejection, Inflam-
matory Response, E2F Targets, Myc-Targets-V1 in the AP group versus CON (Fig. 4b). Conversely, pathways 
related to signaling in general or development were reduced in AP compared to CON. Pregnancy involves close 
apposition of two disparate tissues: the uterus and placenta. The tenets of transplantation immunology predict 
that the placenta along with the fetus would be rejected like all genetically mismatched organ transplants. How-
ever, there are mechanisms in place which attenuate immune surveillance of the fetal–maternal interface during 
gestation by minimizing exposure to maternal T-cells and activation of NK and activated T-cells, thereby pro-
ducing immune tolerance. In the present study, this attenuation of immune surveillance may be lost in response 
to AP exposure, setting the stage for pregnancy related adverse outcomes.

Figure 4.  (a) Differentially expressed genes (DEGs) obtained from placental samples of control (CON) and air 
pollution (AP) exposed mice. DEGs were selected based on FDR < 0.05 and Log2Foldchange > 2. Genes which 
are part of any of the pathways in the right panel have been labeled. A full list of differentially expressed genes 
can be found in Supplementary Table 3. (b) List of Hallmark pathways positively or negatively enriched between 
AP and CON groups obtained using GSEA are shown.
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Discussion
A strong association between exposure to particulate matter (PM) pollutants found in traffic related air pollutants, 
and pregnancy complications such as preterm labor or pre-eclampsia has been reported previously, indicating 
a pivotal role for placental dysfunction leading to these  conditions6,7,36. However, these associative studies lack 
information regarding the cellular mechanisms responsible for such outcomes. Exposure to a low level of PM 
(namely  PM2.5) is known to damage trophoblast cells either by direct cellular endocytosis of PM or due to a 
local oxidative stress or inflammatory response to the particle and other components such as endotoxins or poly 
aryl hydrocarbons (PAHs), within the  pollutants6,7,12,29,36,37. The placenta is essential for a successful pregnancy 
and for maintaining the health of both mother and fetus. The mature placenta is heterogeneous in nature with 
a panoply of diverse cell types expressing unique  transcriptomes38,39. However, conventional bulk RNAseq can 
provide an average expression of signals for an ensemble of cells, without distinguishing between the cell types. 
We therefore aimed to resolve this issue by adopting scRNAseq using single cell suspensions obtained from three 
different compartments of the placenta. While scRNAseq is a useful tool for identifying cell-type specific profiles 
and detecting markers, this technique is usually computationally challenging with a low signal to noise ratio due 
to the high variability. This method is also not ideal for characterizing the cell type proportion from a solid tissue 
as the cell dissociation process by itself can introduce bias as larger cells such as the syncytiotrophoblasts may be 
excluded by the 10X genomic  platform40. By contrast, bulk RNA-seq measures the average expression of genes 
from all cell types, an outcome of cell type specific gene expression weighted more by the cell type proportion, 
and provides a better sequencing depth, thereby increasing the resolution of gene expression analysis. Hence, 
bulk RNA-seq is more cost-effective when evaluating adequate numbers of biological replicates in order to 
attain sufficient experimental power. However, unlike scRNAseq, bulk RNA-seq lacks cell- or region-specificity, 
which could be important to the clinical condition as certain cell types may be more involved than others in a 
specific response. In our study, scRNAseq data obtained from placenta of AP exposed mice showed damaged 
trophoblast and placental vasculature along with inflammation. These findings were further validated by esti-
mating the abundance of each placental cell type from bulk transcriptional profiles of heterogeneous samples 
using signature genes derived from the scRNAseq analysis. Since, neither of these methods are ideal, each having 
their own limitations, and the fact that certain placental cells, namely trophoblasts, are highly heterogeneous, we 
used a combined approach utilizing signature genes and cell type abundance inferred by deconvolution of bulk 
RNAseq. In addition, we used flow cytometry to assess the abundance of immune cells arising from three different 
placental compartments. We noticed some discrepancies in the cell abundance of macrophages and granulocytes 
detected by scRNAseq and estimated by bulk RNAseq/Flow cytometry. There can be multiple sources of these 
discrepancies, such as technical bias or lack of biological replicates in the scRNAseq or inadequate cell-proportion 
estimation from bulk RNAseq. These limitations highlight the importance of employing multiple methodologies 
to verify cell abundances when estimating tissue heterogeneity.

Multiple immune cell types including different leukocyte subtypes are recruited into different compartments 
of the placenta in response to chemokine gradients created by trophoblasts or stromal  cells41–43. Although these 
leukocytes are present throughout pregnancy, their abundance changes temporally with a reduction at term. 
Most of the immune cells in the decidual layer of the placenta are NK cells that regulate vascularization, thereby 
establishing utero-placental vascular connection and ensuring adequate blood flow from mother to  fetus44,45. 
The presence of inflammation during pregnancy abnormally activates NK cells with perforin secretion, which 
is one of the main mediators of cytotoxicity. Mounting evidence has also linked adverse NK cell activation to 
reproductive failure in human and  mouse45–52. In our study, we detected an increased abundance of NK cells in 
AP exposed placentas which can in turn adversely affect the placental cells that contribute towards maintaining 
its architecture and thereby normal structure.

We have also observed increased numbers of M1 macrophages in the decidua, and CD8 T-cells in response 
to AP exposure. M1 macrophages act as antigen presenting cells and skew the T cell response towards TH1 
mediated cellular immune  response53. Accumulation of macrophages, plasma cells and T lymphocytes in the 
placenta have been reported in response to certain inflammatory conditions, such as chronic decidualitis, villitis 
of unknown etiology (VUE) and at times even in chronic  chorioamnionitis54. Of note, T cell accumulation is also 
observed in solid organ transplant  rejection55. VUE, is an inflammatory state described to mimic graft rejection, 
and noted in maternal auto-immune  disorders56–58, which often complicates a pregnancy and at times leads to 
preterm labor. Normal pregnancies are characterized by immunological tolerance of the allogenic fetus, which is 
mediated by the absence or scarce presence of classical MHC class I receptors on placental trophoblasts designed 
to prevent NK or T cell mediated cytotoxic targeting within the  decidua45,59,60. In the case of AP exposure, in our 
present study, we have seen increased numbers of cytotoxic CD8+ T cells not only in the decidua but also in the 
junctional and labyrinthine regions of the placenta.

GSEA analysis showed positive enrichment of the allograft rejection pathway and immune response path-
way genes (predominantly expressed by macrophages or lymphocytes) in placentas exposed to AP. Besides M1 
macrophages, there is also an increased abundance of M2 macrophages in the decidual region of AP placentas. 
Unlike M1, M2 macrophages are immunosuppressive and facilitate tissue  remodeling53. In parallel, increased 
abundance of progenitor trophoblasts and various subtypes of invasive spongiotrophoblasts were detected in 
response to AP exposure. These findings support a compensatory M2 response geared towards reducing the 
encountered AP induced inflammation whereas actively dividing trophoblasts may target the rebuilding of pla-
cental  vasculature61 or the overall placental architecture. Alternately, the AP induced increase in progenitors may 
signify a downstream arrest in cellular maturation leading to premature yet terminal differentiation of certain 
trophoblastic cell types. It is intriguing to apply a similar analysis by deploying insights gained from scRNAseq 
towards deconvoluting bulk RNA-seq analyses from other conditions known to adversely affect placental vascu-
lature and structural components, as encountered in our previous studies related to maternal caloric restriction 
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induced reduction in uteroplacental blood  flow26, or in murine models of pre-eclampsia62, and in genetically 
modified mouse models culminating in fetal growth  restriction63. In addition to the advantage of applying such 
deconvolution strategies to other murine conditions of clinical significance in the human, the addition of spatial 
transcriptomics in the future may help decipher the spatial configuration of various identified cell types within 
their normal habitat within the  placenta64, shedding additional light on the clinical problem at hand.

We did not examine the timing of birth or other birth outcomes as has previously been reported in rodents 
by others, where resorption of embryos, preterm birth and reduction in fetal weights emerged, in response to 
pre-gestational and gestational air pollution  exposure29,65–67. In addition, while we did not decipher any changes 
in litter size or placental weights at gestational day 19, similar to previous  reports29,66. We preliminarily observed 
cellular necrosis and hemorrhages histologically in placentas exposed to AP versus CON. In addition, we noted 
that a single dimensional immunohistochemical analysis of immune cells within placental tissue sections using 
antibodies against specific markers proved insensitive in detecting differences between the two groups, neces-
sitating scRNAseq and flow cytometric analyses as described above.

Although the current study is limited due to pooling of biological replicates into a single sample to meet 
the requisite cell numbers necessary for scRNAseq, combining scRNAseq and bulk RNAseq along with Flow 
cytometry provides a good toolbox to characterize the effects of AP exposure on the placenta at the cellular and 
molecular levels. The cellular changes we have observed could provide the missing link between adverse preg-
nancy outcomes such as initiation of preterm labor or pre-eclampsia and AP exposure, thereby helping focus 
the development of preventive strategies for at-risk pregnancies.

Materials and methods
Preparation of particulate matter (PM), experimental animals and exposure. The Airborne 
PM of Standard Reference Material (SRM1649b) was purchased from the National Institute of Standards and 
Technology (Gaithersburg, MD, USA). Prior to exposure, SRM1649b was re-suspended in sterile saline and 
sonicated for 15 min to obtain a final concentration of 15 μg/µL, and ensuring uniform suspension of dissolu-
ble PAHs, PCBs, and inorganic constituents with a heterogeneous PM size reduced to a range between ~  PM2.5 
and ~  PM10, thereby mimicking traffic-related air pollutants. C57BL/6J mice obtained from Jackson Laboratories 
were housed in filter-topped cages under dark:light 12:12(h) cycling conditions with ad lib access to water and 
chow diet (TD. 06414, Harlan Teklad Laboratories, Indianapolis, IN, USA) within the University of California 
Los Angeles Animal Care Facility. Female mice were administered SRM1649b intranasally under light restraint, 
beginning from 2 months prior to gestation until 18th day of gestation (G18; term being ~ G21) every third day 
or daily during gestation only (G1–G18). The experimental group received 20 μL (10 μL/nares) of SRM1649b 
(300 μg/day/mouse) suspension while the control group received 20 μL of sterile  saline68. Placentas were col-
lected at gestational d19, following laparotomy and hysterectomy, under 4% for induction and 1.25 to 1.5% for 
maintenance of the inhalational isoflurane anesthesia. Protocols for the care and use of mice were approved 
by the Animal Research Committee of the University of California following the guidelines provided by the 
National Institutes of Health. The study was carried out in compliance with the ARRIVE  guidelines69.

RNA extraction and library preparation for bulk RNAseq. RNA was extracted with Direct Zol RNA 
MiniPrep kit from Zymo (R2050, USA) using manufacturer’s instructions. RNA sequencing libraries were pre-
pared using KAPA Stranded mRNA sequencing kit (# KK8420; Kapa Biosystem, Cape Town, South Africa) fol-
lowing manufacturer’s protocol. Briefly, 100 ng of total RNA from each sample was used as the starting material 
with biological quadruplicates from each group. mRNA was captured using magnetic oligo-dT, fragmented by 
heat and Mg, and reverse transcribed to cDNA using random primers. After 2nd strand synthesis, cDNA was 
end-repaired, index adapter-ligated and PCR amplified. SPRIselect beads (# B23318, Beckman Coulter, Indian-
apolis, IN, USA) were used to purify nucleic acids after each step of the library preparation. RNA sequencing 
libraries were sequenced by the HiSeq-4000 sequencer (Illumina Inc.; San Diego, CA, USA).

Bulk RNAseq analysis. Raw sequences were demultiplexed using a custom script. The demultiplexed fastq 
files are available at GEO (GSE178233). Quality of the raw fastq files was reviewed using  FastQC70. Single end 
reads from individual libraries were aligned to the mouse reference genome (mm10) using STAR-2.6  aligner71. 
From each library, uniquely aligned reads were used to obtain raw counts for all the Mus musculus genes (mm10; 
ucsc genome annotation) with the featureCounts tools from the Subread  package72. Further analysis and data 
visualization were performed using various R packages.  DESEq273 was used to calculate the size factors and Raw 
read counts were scaled accordingly to normalize for library size. Low abundant genes were filtered out at this 
point. Differential expression was calculated between control and AP samples using a negative binomial general-
ized linear model, and correction for multiple testing was represented as FDRs (false discovery rates) using the 
Benjamini–Hochberg method. FDR values < 0.05 were considered statistically significant.

Preparing placental cells for scRNAseq and flow cytometry. Placentas collected at G19 were exten-
sively washed with cold PBS twice and the three different layers (decidual, junctional and labyrinthine) were 
separated. The whitish gray decidual layer was gently peeled off from the rest of the placenta while maintaining 
tissue integrity. Junctional zone separation from the labyrinth was done microscopically with a sterile blade. 
Decidual, junctional and labyrinthine layers from multiple placentas were pooled to obtain adequately optimal 
numbers of cells for analysis. Separated layers were minced into small pieces and digested with an enzyme 
cocktail [collagenase (1 mg/ml) (SCR-103, Sigma, USA) and DNase (20 µg/ml) (D-5025, Sigma, USA)] in RPMI 
1640 (Thermo Fisher, Cat # 61870036)] for 60 min on a shaker. Single cell suspensions were prepared by passing 
through 100 μm cell strainers (MACS, Smart Steiner) and numbers of live cells were determined by trypan blue 
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(T8154 Sigma, USA) after lysing erythrocytes with ACK Lysis buffer (Lonza, Walkerville, MD USA) for 3 min at 
room temperature. These freshly isolated single cell suspensions were directly subjected to scRNAseq using the 
Chromium Single Cell 3′-Library & Gel Bead Kit (10X Genomics; Pleasanton, CA, USA). For flow cytometry, 
cells were incubated with pre-optimized concentrations of fluorescence tagged antibodies marking different 
cell lineages. A list of antibodies used for flow cytometry has been incorporated in the Supplementary Table 4. 
Doublets were excluded based on forward scatter. At least 150,000 lymphocyte-gated cells were collected for 
each sample and negative biological populations for each subpopulation were used as references to set up the 
cut-off values. Data were collected using Fortessa II flow cytometer (BD Biosciences) and analyzed by the FlowJo 
software (v10.4.0 Tree Star; BD Life Sciences) https:// www. flowjo. com/.

Placental single cell transcriptomics. Library construction: Single cell RNAseq (scRNAseq) libraries 
were prepared using the Chromium Single Cell 3′-Library & Gel Bead Kit (P/N 1000075, 10x Genomics) fol-
lowing manufacturer’s instructions. Briefly, placental single cell suspension was prepared as mentioned above 
and loaded onto a Chromium Single Cell Controller to generate single cell gel beads in emulsion (GEM). GEM-
Reverse transcription (RT) was performed, and single stranded DNA was cleaned with Dyna beads. cDNA was 
then fragmented, end-repaired, and A-tailed. Furthermore, adaptor ligation was performed using the Chro-
mium Single Cell 3′-kit followed by post-ligation cleanup using the SPRIselect Reagent.

Single cell RNAseq (scRNAseq) analysis. The raw fastq files were processed with Cell Ranger v4.0 (10X 
Genomics) using the cellranger count and cellranger aggr pipelines against the mm10 reference package pro-
vided. Seurat v3.074,75 was used for quality control, analysis, and exploration of the data using a standard pipeline. 
Cell clusters were annotated using the Mouse Cell Atlas v.2.0 marker genes as a  guide31.

Cell type identification and signature genes quantification by bulk RNAseq. Deconvolution of 
bulk RNA-seq was executed using GEDIT v1.632 using a reference matrix from averaged “pseudo-bulk” single-
cell RNA-seq data, using the default parameters. Further verification of the results obtained by GEDIT was con-
ducted using  MuSiC21. For z-score calculation, log normalized read counts obtained from DESEq2 analysis and 
Z-scores were calculated by subtracting the average read counts (for a single gene) from the read counts of each 
sample and then dividing the result by the SD of all the read counts following the formula:

SD: standard deviation;  G1: 1st sample;  Gn: nth sample where n is the total number of samples.
To obtain aggregated Z-scores for each cell type, an average of z-scores from the top 10 signature genes for 

individual scRNA cell-types were calculated for each sample. Signature genes for cell types missing in our scRNA 
data were obtained from previous  reports21,76.

Statistical analysis and data visualization. Unpaired T tests were performed to compare differences 
in means between CON and AP groups. Any exceptions have been indicated in the text. Data visualization was 
performed using  R77 with various packages like  Seurat75,  ggplot278,  clusterprofiler79,  ComplexHeatmap80 and 
final figures were combined using Adobe Photoshop CS6 (2012).
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