UC Berkeley

UC Berkeley Previously Published Works

Title

Sugar-Sweetened Beverage Consumption 3 Years After the Berkeley, California, Sugar-Sweetened Beverage Tax.

Permalink

https://escholarship.org/uc/item/9v5936g3

Journal

American Journal of Public Health, 109(4)

ISSN

0090-0036

Authors

Lee, Matthew M Falbe, Jennifer Schillinger, Dean et al.

Publication Date

2019-04-01

DOI

10.2105/ajph.2019.304971

Peer reviewed

1	Sugar-Sweetened Beverage Consumption Three Years After the Berkeley Sugar-Sweetened
2	Beverage Tax
3	
4	Matthew M. Lee, BA, 1 Jennifer Falbe, ScD MPH, 2 Dean Schillinger, MD, 3 Sanjay Basu, MD
5	PhD, ⁴ Charles E. McCulloch, PhD, ⁵ Kristine A. Madsen, MD MPH ¹ *
6	
7	* madsenk@berkeley.edu
8	

- 9 Abstract
- 10 **Objectives:** To estimate changes in sugar-sweetened beverage (SSB) and water consumption
- three years after an SSB tax in Berkeley, California, relative to unexposed comparison
- 12 neighborhoods.
- 13 **Methods:** Repeated annual cross-sectional beverage frequency questionnaires from 2014-2017
- in demographically-diverse Berkeley (N=1,513) and comparison (San Francisco/Oakland,
- N=3,712) neighborhoods. Pre-tax consumption (2014) was compared to a weighted average of 3
- 16 years of post-tax consumption.
- 17 **Results:** At baseline, SSBs were consumed 1.25 times/day (95% CI: 1.00, 1.50) in Berkeley and
- 18 1.27 times/day (95% CI: 1.13, 1.42) in comparison city neighborhoods. Adjusting for covariates,
- consumption in Berkeley declined by 0.55 times/day (95% CI: -0.75, -0.35) for SSBs and
- increased by 1.02 times/day (95% CI: 0.54, 1.50) for water. Changes in consumption in Berkeley
- 21 were significantly different from those in the comparison group, which saw no significant
- 22 changes.
- 23 Conclusions: Reductions in SSB consumption were sustained in demographically-diverse
- 24 Berkeley neighborhoods over the first three years of an SSB tax, relative to comparison cities.
- 25 **Policy Implications:** This study, demonstrating longer-term reductions in SSB consumption
- 26 following SSB taxation in a U.S. city, suggests SSB taxes are an important public health
- 27 intervention.

28

29

Introduction

- 30 SSB consumption, a major contributor to obesity, cardiometabolic disease, and dental caries,
- 31 carries significant health care costs. 1,2 SSB consumption has declined but remains high in the
- 32 U.S. (50% of adults and 61% of children consume SSBs daily³) particularly among low-income
- and racial/ethnic minority populations, who bear a disproportionate burden of diet-related
- 34 disease.⁴
- 35 SSB consumption fell in the short-term after SSB excise taxes were introduced into U.S. cities.
- 36 Consumption in demographically-diverse neighborhoods in Berkeley, California declined by
- 37 21%⁵ four months after Berkeley levied a \$0.01/oz excise tax on distributors of non-milk, non-
- 38 alcoholic beverages containing caloric sweeteners (≥2 calories/oz). SSB consumption fell by
- 39 26% in Philadelphia, Pennsylvania 2 months after its beverage excise tax.⁶
- 40 Determining longer-term SSB consumption changes is critical for determining the health effects
- of an SSB tax. Here, we estimated SSB consumption changes in demographically-diverse
- 42 neighborhoods in Berkeley and in neighboring cities 3 years after Berkeley's tax.

Methods

43

- 44 Using a repeated cross-sectional design, SSB consumption was measured annually through
- 45 beverage frequency questionnaires (BFQs) administered in demographically-diverse
- 46 neighborhoods in Berkeley, Oakland, and San Francisco (SF).
- Oakland and SF were chosen as comparators given shared exogenous but difficult-to-measure
- factors (e.g., culture, media, and retail environments) with Berkeley that might affect SSB
- 49 consumption. In Berkeley and SF, 2010 Census data were used to identify two large,
- 50 neighborhoods with the highest combined proportion of African-American and Hispanic
- residents. Two Oakland neighborhoods were selected to match the distribution of African-
- 52 American and Hispanic residents in the Berkeley and SF neighborhoods.
- Baseline consumption was assessed in April-July 2014, before SSB taxes were proposed on the
- Berkeley and SF November ballots. Only Berkeley's tax passed in 2014. During the 3 post-tax
- years, data were collected between April and October. In 2016, Oakland and SF surveys

- occurred within 1-3 months of their SSB-tax ballot measures passing. Oakland implemented its
- 57 tax in July 2017 and SF in January 2018; thus, some 2017 surveys occurred 1-3 months after
- 58 Oakland's tax took effect.
- 59 BFQs were based on the previously validated BEVQ-15,⁷ asking "How many times per day,
- week, or month do you drink...?" each of regular (not diet) soda, energy drinks, sports drinks,
- fruit drinks, pre-sweetened coffee/tea, and unsweetened water. Responses were converted to
- daily frequencies (times/day). Total SSB consumption was determined by summing frequencies
- for regular soda energy, sports, and fruit drinks; and pre-sweetened coffee/tea.
- Within each neighborhood, questionnaires were administered as anonymous, 3-10-minute
- 65 surveys in English or Spanish near the highest foot-traffic intersection. Trained data collectors
- 66 invited passers by to complete a survey; 20% of those approached (n=2,435) in Berkeley and
- 67 22% (n=5,141) in comparison neighborhoods agreed (eFigure 1). Of these, 79% were eligible
- 68 (lived in the city in which the survey was conducted, spoke English or Spanish, were ≥18 years
- old, and could demonstrate understanding of questions, i.e. did not appear inebriated).
- 70 The primary outcome was the difference in SSB consumption pre-versus the first 3 years post-
- 71 tax in Berkeley relative to that in the comparison cities. For each beverage, generalized linear
- 72 models with a *log* link function and a gamma distribution (accounting for the non-negative and
- 73 right-skewed nature of count data), modeled mean frequency of daily consumption, adjusting for
- age, sex, race/ethnicity, language, education, neighborhood, survey month, and ambient
- 75 temperature. 8 An indicator term for Berkeley and interaction terms between Berkeley and
- categorical year were included to adjust for time-invariant unmeasured confounders unique to
- Berkeley, and robust standard errors were calculated to correct for heteroskedasticity. Pre-post
- 78 changes and 95% confidence intervals (CIs) in consumption frequency were computed within
- and between groups using *nlcom* commands in Stata (version MP-15, StataCorp; eTable 3).
- 80 Berkeley's SSB tax was levied on distributors, who were expected to pass costs onto retailers
- who, in turn, were expected to raise shelf prices. In 2015, 3 months after implementation,
- 82 roughly half of the full tax rate had been "passed through" or reflected in observed shelf prices.⁹
- Therefore, consumption in 2015, measured when pass-through was incomplete, was given only
- half the weight compared to data from 2016 and 2017, when the tax was more fully passed-
- 85 through in Berkeley. 10 In robustness checks, un-weighted and pre-post (2014 versus 2017)
- 86 models were estimated, as was a doubly robust modified-inverse probability weighted model (m-

- 87 IPW),⁶ and models with multiple imputation (MICE) for missing outcome or covariate data
- 88 (12%).

89

Results

- The primary analytic sample included 1,513 participants from Berkeley (91% of eligible) and
- 91 3,712 from the comparison cities (87% of eligible) who completed a BFQ. Berkeley participants
- were older, more likely to be white, and more highly educated (eTable 1) than comparison
- 93 participants. Post-tax participants were older than those pre-tax for both groups, and within
- 94 Berkeley, more likely to be white and more highly educated.
- Adjusted SSB consumption, similar at baseline in the two groups, diverged post-tax (Figure 1).
- The initial reduction in Berkeley from 2014 to 2015 (-0.30 times/day [CI: -0.51, -0.08]) was
- 97 amplified in 2016 and 2017 (2016: -0.66 times/day [CI: -0.87, -0.46]; 2017: -0.56 times/day [CI:
- 98 -0.78, -0.35]). In the fully adjusted model, SSB consumption in Berkeley decreased by 0.55 (CI:
- 99 0.35, 0.75) times/day from 2014 to the weighted average of 2015-2017 (52.3% reduction), with
- significant declines in all categories of SSBs except energy drinks (eTable 2); water consumption
- increased by 1.02 (CI: 0.54, 1.50) times/day (29.3% increase). There were no significant
- 102 consumption changes in the comparison group.
- In the weighted model adjusted for all covariates, SSB consumption decreased 0.55 (CI: 0.30,
- 104 0.81) times/day more in Berkeley than in the comparison (a relative decline of 52.5%), with
- significant declines in regular soda, sports drinks, and sweetened teas and coffees (eTable 2).
- Water consumption increased 0.85 (CI: 0.29, 1.42) times/day (25.1%) more in Berkeley than in
- the comparison (eFigure 2).
- All between-group results were robust to sensitivity analyses (eTable 3 and eFigure 3).

Discussion

109

- We observed sustained changes in SSB consumption after an SSB tax in the U.S. Similar to our
- findings, studies in Mexico (the only other geography documenting longer-term trends in post-
- tax consumption) revealed increased effects over time, with a 5.5% decrease in the volume of
- taxed beverage purchases in the first year and 9.7% decrease in the second year post-tax. 11

114	Our results reflect consumption changes in demographically-diverse neighborhoods, whose
115	residents are more likely to consume SSBs. In the second year of Mexico's tax, the volume of
116	taxed beverage purchases declined more in low- than in high-SES households (14.3% versus
117	5.6%), providing some empirical evidence that low-income populations, who bear a
118	disproportionate burden of cardiometabolic diseases, may be more responsive to taxes. ¹¹ If
119	similar patterns manifest in other jurisdictions in the U.S., taxes could reduce health disparities.
120	This study has several limitations, including a convenience sample that may limit
121	generalizability and unmeasured confounding, a concern in all non-experimental designs. Results
122	from Berkeley, a small and highly educated city, may not translate to other geographic areas.
123	Self-reported BFQ data are subject to bias; however, BFQs have been validated, and change
124	estimates are less susceptible to bias than point estimates of consumption. ¹² In 2017, Oakland
125	surveys occurred 1-3 months post tax-implementation, and both Oakland and SF had SSB tax
126	ballot measures in 2017, which might lead to conservative estimates of relative declines in
127	Berkeley.

Public Health Implications

The persistent declines in SSB consumption we demonstrate in Berkeley, 3 years into an SSB tax, could significantly reduce obesity, cardiovascular disease, and associated health care costs, particularly among populations with high initial SSB consumption.

134	
135	The authors report no conflict of interest regarding this work. No results included have been
136	published previously. Research reported in this publication was supported by the National
137	Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health
138	under Award Numbers R01DK116852 and K01DK113068, and by the California Endowment
139	under Award Number 000533. The content is solely the responsibility of the authors and does
140	not necessarily represent the official views of the National Institutes of Health or the California
141	Endowment.

Human Participant Protection

Acknowledgments

This work was considered exempt by the UC Berkeley Committee for the Protection of HumanSubjects.

References

- 1. Johnson RK, Appel LJ, Brands M, et al. Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. *Circulation*. 2009;120(11):1011-1020.
- 2. Hu FB. Resolved: there is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases. *Obes Rev.* 2013;14(8):606-619.
- 3. Bleich SN, Vercammen KA, Koma JW, Li Z. Trends in Beverage Consumption Among Children and Adults, 2003-2014. *Obesity (Silver Spring)*. 2018;26(2):432-441.
- 4. Stringhini S, Dugravot A, Shipley M, et al. Health behaviours, socioeconomic status, and mortality: further analyses of the British Whitehall II and the French GAZEL prospective cohorts. *PLoS Med*. 2011;8(2):e1000419.
- 5. Falbe J, Thompson HR, Becker CM, Rojas N, McCulloch CE, Madsen KA. Impact of the Berkeley Excise Tax on Sugar-Sweetened Beverage Consumption. *Am J Public Health*. 2016;106(10):1865-1871.
- 6. Zhong Y, Auchincloss AH, Lee BK, Kanter GP. The Short-Term Impacts of the Philadelphia Beverage Tax on Beverage Consumption. *American journal of preventive medicine*. 2018;55(1):26-34.
- 7. Hedrick VE, Savla J, Comber DL, et al. Development of a brief questionnaire to assess habitual beverage intake (BEVQ-15): sugar-sweetened beverages and total beverage energy intake. *J Acad Nutr Diet*. 2012;112(6):840-849.
- 8. National Oceanic and Atmospheric Administration. Climate Data Online. National Centers for Environmental Information. Available at: https://www.ncdc.noaa.gov/cdoweb/. Accessed July 24, 2018.
- 9. Falbe J, Rojas N, Grummon AH, Madsen KA. Higher Retail Prices of Sugar-Sweetened Beverages 3 Months After Implementation of an Excise Tax in Berkeley, California. *Am J Public Health*. 2015;105(11):2194-2201.
- 10. Silver LD, Ng SW, Ryan-Ibarra S, et al. Changes in prices, sales, consumer spending, and beverage consumption one year after a tax on sugar-sweetened beverages in Berkeley, California, US: A before-and-after study. *PLoS Med*. 2017;14(4):e1002283.
- 11. Colchero MA, Rivera-Dommarco J, Popkin BM, Ng SW. In Mexico, Evidence Of Sustained Consumer Response Two Years After Implementing A Sugar-Sweetened Beverage Tax. *Health Aff (Millwood)*. 2017;36(3):564-571.
- 12. Hedrick VE, Comber DL, Ferguson KE, et al. A rapid beverage intake questionnaire can detect changes in beverage intake. *Eat Behav*. 2013;14(1):90-94.

Figure 1: Adjusted within-group frequencies and between-group differences in sugarsweetened beverage consumption, 2014-2017

