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Abstract

A quadrilateral membrane finite element with drilling degrees of freedom is derived
from variational principles employing independent rotation field. Both displacement based
and mixed approach are investigated. The element exhibits excellent accuracy characteris-
tics. When combined with a plate bending element, the element provides an efficient tool

for linear analysis of shells.
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A Robust Quadrilateral Membrane Finite

Element with Drilling Degrees of Freedom

Adnan Ibrahimbegovicr, Robert L. Taylor’ and Edward L. Wilson?
Department of Civil Engineering
University of California, Berkeley, CA 94720, U.S.A.

1. Introduction

The need for membrane elements with drilling degrees of freedom (see Figure 1)
arises in many practical engineering problems (e.g. in-filled frames, folded plates etc.).
When combined with a bending element, a membrane element of this kind provides a versa-
tile tool for analysis of shells. While early efforts to construct an element of this type were
unsuccessful, more recent works, including the independent approaches of Allman[1984]
and Bergan&Fellipa [1985], opened the prospectives for a successful solution. As a result,
the revived interest of engineering community in membrane elements with drilling degrees
of freedom is manifested by a series of papers on the subject (e.g. Taylor&Simo [1985],
Carpenter et al. {1985], Allman [1987], Taylor [1987], Allman [1988], MacNeal&Harder
[1988]). However, most of the proposed solutions are based on some form of ’free formu-
lation’, which concentrates solely on the choice of the finite element interpolation fields.
The clever procedures of the finite element technology’ are used to improve the perfor-

mance of proposed elements.
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A novel approach, which relies on a variational formulation employing an independent
rotation field, has been presented recently by Hughes&Brezzi [1989]. Reissner [1965)] was
the first to suggest a variational formulation which utilized the skew-symmetric part of the
stress tensor as a Lagrange multiplier to enforce the equality of independent rotations with
the skew-symmetric part of the displacement gradient. However, in a significant contribu-
tion to the solution of this problem, Hughes&Brezzi [1989] have extended Reissner’s for-
mulation by recognizing instability of discrete approximations and suggested a way in
which the discrete approximation can be stabilized. Some membrane elements with drilling
degrees of freedom, derived from the displacement-type formulation of Hughes&Brezzi, are
presented by Hughes et al. [1989]. Their work has assumed that the variational formulation
employs an independent rotation field, i.e. strictly speaking it is based on the separate

kinematics variables, of displacement and rotation.

In this work, we extend the applications of the Hughes&Brezzi to combine an
Allman-type interpolation for the displacement field combined with an independently inter-
polated rotation field. A mixed-type variational formulation is presented with the skew-
symmetric part of the stress tensor introduced as a Lagrange multiplier to enforce the equal-
ity of independent rotations with the skew-symmetric components of displacement gradient.
A penalty displacement-type formulation with selective reduced integration is also
employed. The displacement and rotation fields are the same in both formulations. In the
mixed-type formulation the skew-symmetric part of stress is chosen constant over each ele-

ment.

An outline of the paper is as follows. In Section 2 we give a short review for both the
displacement-type and the mixed-type variational formulation. Our consideration follows
closely the work of Hughes&Brezzi [1989]. The finite element interpolation and the
discrete versions for both variational formulations is given in Section 3. Numerical evalua-
tions of the derived membrane elements are presented in Section 4. Some closing remarks

are given in Section 5.



2. Variational Formulation

In this section we follow closely the work of Hughes&Brezzi [1989]. The same
index-free notation is utilized. For the sake of brevity, the discussion of boundary condi-
tions is omitted. Inclusion of boundary conditions presents no difficulties for considerations
to follow, and it can be handled in a standard manner (e.g., see Hughes [1987]). We also

limit ourselves to linear elastostatic problems.

Let Q2 be a region occupied by a body. The boundary value problem under considera-

tion is: For agll x €

dive +f=0 2.1)
skew o =90 (2.2)
w = skew V u (2.3)
symm ¢ = C - symm V u (2.4)

where (2.1) to (2.4) are, respectively, the equilibrium equations, the symmetry conditions
for stress, the definition of rotation in terms of displacement gradient, and the constitutive

equations.

In (2.1) to (2.4) the Euclidian decomposition of second-rank tensors is employed, e.g.

o = symm o + skew & (2.5)
where
1 T
symm ¢ = > (o0 + 0') : (2.6)
1 T
skew o = —2- (o0 - o) 2.7)

For the isotropic case and plane stress state, the constitutive modulus tensor C =

{Cijis} has the form

Cijkl =A Sijé,d + U (5,1.5,-, + 6,‘18,*) i,j,k,l € {1,2} (2.8)



where
a=-YE (2.9)
(1-v°)
E
- , 2.10)
K= 20+ (2.10)

while £ and v are Young’s modulus and Poisson’s ratio, respectively.

Reissner [1965] presented a variational formulation for the boundary value problem
(2.1) to (2.4). This principle leads to a formulation which is inappropriate for numerical
applications. Essentially, too many parameters for the skew-symmetric part of o exist and
the numerical problem fails the LBB conditions as well as the counts for the mixed patch
test (e.g., see Zienkiewicz&Taylor [1989]). Hughes and Brezzi modified variational prob-
lem of Reissner in order to preserve the stability of the discrete problem. The modification
(see Hughes&Brezzi [1989]) preserves (2.1) to (2.4) as the Euler-Lagrange equations. In
addition, the symmetrical components of stress are eliminated using the constitutive equa-

tions (2.4) to give

Problem (M)

I (v, skew T) = -:21~ f symm (V v) - C - (symm V v) dSQ2 + J‘ skew 17 - (skew V v—@) dQ
Q Q
-——21-)/""[ | skew tlde—jv-fdQ 2.11)
Q Q

where ve V, @ € W, Tt € T are spaces of trial displacements, rotations and stresses. This
variational formulation requires that the rotations @ and stresses 7 together with both the
displacement v and displacement derivatives, belong to the space of square-integrable func-
tions over the region £2.

The variational equation which results from variations on (2.11)

0 = DIl (u,y,skew ©) . (V,@,skew T) = _f (symm V v) - C - (symm V u) dQ
Q

+ f skew 7 - (skew V u—w) dQ + '|' (skew V vT . skew o — @7 - skew o) dQ
Q Q



- y! j skew t7 - skew ¢ dQ - _[ v -fdQ (2.12)
Q o

In the next section the variational equation (2.12) is used to construct a mixed-type
discrete formulation. It is possible (o eliminate the skew-symmetric part of the stress tensor

(see Hughes&Brezzi {1989]) by substituting
vy skew o = skew Vu -y (2.13)

into Problem (M) to obtain

Problem (D)

fly(v,m) = J symm (V v) - C - (symm V v) d§QQ
Q

1

2

+ 2y tskew Vv-w12dQ - [ v fdQ (2.14)
2 fe) 0

The corresponding variational equation now is

0= Dﬁ,)(u,v) (v,@) = j (symm V v) - C - (symm V u) dQ
Fo
+ Y j (skew V v—@)7 - (skew V u—y) dQ - f v-fdQ (2.15)
Q Q

The variational equation (2.15) is taken as the basis for constructing displacement-type

discrete formulation which is presented in the next section.

The parameter y, which appears in the formulations is problem dependent (see
Hughes&Brezzi [1989]). For isotropic elasticity and Dirichlet boundary value problem

Hughes et al. [1989] suggest y be taken as shear modulus value, i.e. y = u. However, the

pumerical studies we have performed, have shown that the formulation is insensitive to the

value of y used (at least for several orders of magnitude which bound the shear modulus).

3. Finite Element Interpolation

The particular choice for finite dimensional spaces V*,W"T” (subspaces of V,W,T,

respectively) is presented in this section along with the resulting discrete formulations.



We first consider the discrete version of Problem (M)

Problem (M*)

= j (symm V v*) - C - (symm V u") dQ + J' skew € 7 . (skew V u"—y") dQ
Fol o

+ I (skew V' T . skew 6" =" T - skew o7) dQ
Q

-y j skew T T . skew o dQ - j vh £ 4dQ 3.1
Q Q
We consider a 4-node quadrilateral element with degrees of freedom shown in Figure
1. The independent rotation field is interpolated as a standard bilinear field over each ele-

ment. Accordingly

m

4
=2, > Ni(r.s) v (3.2)
e I=1
where (e.g., see Zienkiewicz&Taylor [1989])
Ni(r,s) = % (+rr) Q+sp8) 3 1=1,23,4 (3.3)

The in-plane displacement approximation is taken as an Allman-type interpolation (see

Figure 1)

8
-8£ Y 2 NS{(r,s) (wx—wy) njx + 3, NB§(r,s) Aug (3.4)

where /I and njg are the length and the outward unit normal vector on the element side

associated with the corner nodes J and K, i.e.

COS
Ny = " = K Ur = (xg 1= X7 1)+ (xg21=x72))1 2 3.5)
JK n, SinajK JK K1 J1 K27AT2 .

and FORTRAN-like definition of adjacent corner nodes

J=I-4; K = mod(l4)+1 (3.6)



In (3.4) we also employ Serendipity shape funcuions defined by (see Zienkiewicz&Taylor
[1989])

NSf(r,s) = % (1-r%) (A+sys) 5 1=57 (3.7)

NSf(r,s) = —;j (I4ryr) (1-s%); 1=68 (3.8)

To reflect the superior performance of the 9-node Lagrangian element over that for 8-node

Serendipity element, a hierarchical bubble function interpolation is added in (3.4) where

NB§(r,s) = (1-r%) (1-5?) (3.9)

The terms in the element stiffness matrix arising from this interpolation may be eliminated

at the element level by static condensation (see Wilson [1974]).

The skew-symmetric stress field is chosen constant over the element, i.e.

skew " = Z 5 (3.10)

We further define matrix notation
symm V u® = B u; + Gy y; (3.11)

where u; and w, are nodal values of the displacement and the rotation fields, respectively.

The B} matrix in (3.11) has the standard form

Nf. O
Bi=| 0 N, | : 1I=1234 (3.12)

N le,Xz Nl‘,xn

and the part of the displacement interpolation associated with the rotation defines

(1” Cos ayy NSlf,n - IIK COS ayx NS;l.Xu)
(I[] sin oy NSEJ;°IIK sin (297% NS;{,XJ) (3.13)

(1]] COS ayy ]\TSIf’:‘-2 - IIK COS Qi NS;,!Jz)‘f‘(I” sin oy NSEJ, - IIK sin (2774 NSA?,M)




where, in (3.13) above

1=1234;,M=1+4;,L=M-1+4aint(V/I);K =mod(M,4)+1,J=L -4 (3.14)

Furthermore, we denote

skew V u® =bj u; + gf v (3.15)
where
e -1 e 1 e
b, =< "'2"-" NI,Iz: '5" N]',‘ >, I=1,234 (3.16)
and

& 1 €
g = [—Tg (I cos ayy NS ., = lix cos ayx NSy ;)

+ —115-(1,, sin oy NSf . — Iy sin ogx NSF, ) = Nfl s 1=1,234 (3.17)

with indices J,K,L ,M again defined by (3.14).

The first term in the discrete formulation (3.1) of Problem (M ky gives rise to the ele-

ment stiffness matrix

T
Kczi, [B‘ Ge] C [B’ G‘] aQ (3.18)

The second term in (3.1) is denoted

he = [ <b; g*> dQ (3.19)
Ql

With this notation at hand, the discrete mixed-type formulation can be rewritten as

K* h* a f u
h* T __,y-th 70 = 0 sy a= v (3.20)

Since the skew-symmetric part of the stress is interpolated independently in each ele-

ment, the corresponding part of the stiffness matrix (3.20), may be eliminated at the element

level using static condensation to yield
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Kea=f; f(‘=K’+S—27—;h’h’T (3.21)

In a completely analogous manner we can construct an approximation for the
displacement-type variational formulation. The discrete version of Problem (D) follows

from (2.15)

Problem (D")

0= .f (symm V v") . C - (symm V u") dQ
QA

+y j (skew V v'—o")T . (skew V u*~y") dQ - j vl . £dQ (3.22)
o Q

The rotation and displacement fields are again interpolated by (3.2) and (3.4), respec-
tively.
The first term in the displacement-type formulation (3.22) produces the same element

stiffness matrix K° defined by (3.18). The second term in (3.22), however, is different.
Note that using the interpolations for displacement (3.4) and rotation (3.2), this term can be

directly obtained via (3.15)

[ 4

b
Pr=y | { } <b®; g*> dQ (3.23)
Ql g

Hence the matrix counterpart of (3.22) for one element in a displacement-type formulation

is

u
[K +P]a=f; a={v) (3.24)

The parts of the element stiffness matrix K° and h° in (3.20) and (3.24) are computed
using 3x3 Gaussian quadrature. The matrix P¢ in (3.24) is integrated by a single point
Gaussian quadrature. By fully integrating K and combining with P¢ or h*h7y/Q° the
spurious zero energy modes are prevented; and no additional devices are needed (see, e.g.

MacNeal&Harder [1988]). The ’equivalence theorem’ of Malkus&Hughes [1978] may be

used to show that this approach of selective reduced integration is equivalent to the mixed
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formulation (3.21). The only difference in our case, however, occurs due to hierarchical
interpolation of displacement field by the bubble function (see (3.4)). For selective reduced
integration of the displacement-type interpolation the bubble function gives no contribution
to the penalty stiffness P¢, as opposed to its analog of a rank-one update (h°h*7y/Q°) in the
mixed-type approach. This difference occurs only for skewed elements, and, as demon-

strated by the numerical examples, it is of minor importance.

4. Numerical Evaluation

Several numerical examples are presented to demonstrate accuracy of the membrane
element presented herein. The element is also combined with the well known DKQ plate
bending element (see Batoz&Tahar [1982]) and used to solve a spherical shell with a hole,
one of the problems in the set posed by MacNeal&Harder [1985]. To avoid the membrane

locking and correct for element warpage, the modification suggested by Taylor [1987] and
Jeteur [1987] are performed. In addition, 8-point integration rule on K° is used.

Both mixed-type (3.21) and displacement-type formulation (3.24) are evaluated. In

results to follow they are denoted as M-type and D-type, respectively.
4.1 The Patch Test

First a patch test (see Taylor et al. [1986]) is performed on a one-element test. This
will not only test the coding for our elements but can also detect any spurious modes which
may exist in the elements. A skewed element (see Figure 2) is fixed with a minimum
number of constraints and exposed to uniform tension. Both displacement-type and mixed-

type pass the paich test.

Similar formulations with an Allman-type interpolation field (e.g., see Allman [1984]
or Taylor&Simo [1985]), however, do not pass the one-element patch test. The reason is

the presence of a spurious mode which occurs for constant values of nodal rotations.
4.2 A Simple Beam: The Higher Order Patch Test

A simple beam with a length to height aspect ratio of 10 is subjected to a pure bend-
ing state. The beam is modeled by one row of six membrane elements with drilling degrees

of freedom as shown in Figure 3. No drilling degree of freedom is restrained; only a

minimum number of restraints is imposed. Two load cases are considered. The first load
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case is a unit couple applied at the free end and represents a higher-order patch test (see
Taylor et al. [1986]). When a regular mesh is used, the solution is exact. For a distorted
mesh (see Figure 3) the accuracy is still good. The second load case is, to our knowledge,
a novel test. The loading is again a unit moment, but this time applied as a concentrated
moment at the drilling degrees of freedom at both ends. The value of parameter y set equal
to shear modulus yields excellent results. The difference from the exact solution, for regu-
lar mesh, is due to the fact that a single concentrated moment at a drilling degree of free-
dom is not a consistent loading (which follows from displacement interpolation (3.4)). The
results of the analysis can be compared with the beam theory exact solution of 1.5 for verti-

cal displacement and 0.6 for end rotation.

The same analysis is repeated for the membrane element of Taylor&Simo [1985]. To
prevent the occurrence of the spurious mode, besides the minimum number of restraints (see
Figure 3), one drilling degree of freedom is fixed as well. The results of this analysis are
also presented in Table 1. Note that, in this case, the computed rotations are wrong as dic-

tated by the need to restrain the spurious singular rotation mode.

Table 1. A Simple Beam (Fig. 3)

Formulation Mesh Load Case Vert. Displ. End Rot.
M-type reg. 1 1.5 0.6
M-type dist. 1 1.14185 0.57255
M-type reg. 2 1.5 0.62070
M-type dist. 2 1.39220 0.50612
D-type reg. 1 1.5 0.6
D-type dist. 1 1.14045 0.57247
D-type reg. 2 1.5 0.62070
D-type dist. 2 1.39200 0.49508
Taylor reg. 1 1.5 1.2
Taylor dist. 1 1.14195 1.10485
Taylor reg. 2 1.5 2.18980
Taylor dist. 2 1.39300 2.30490

4.3 A Cantilever Beam

A shear-loaded cantilever beam is selected as a test problem by many authors (e.g.,

see Bergan&Fellipa [1985], Allman[1988], MacNeal&Harder [1988], Hughes et al. [1989]).
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The elasticity solution (e.g., see Timoshenko&Goodier [1951]) for the tip displacement is

pPI3 N (4+5v)PI

3El 2ER 03933

Uz =

for the properties selected (see Figure 4 for details, and also pages 219-220 and 254-255 of
Hughes [1987]).

The finite element solution is obtained for a coarse mesh of four square elements and
also for finer meshes constructed by bisection. The results obtained are compared with

some of the results available in the literature. All are presented in Table 2.

Table 2. Short Cantilever Beam (Fig. 4)
Mesh Allman MacNeal M-type D-type
4x1 0.3026 0.3409 0.3445 0.3445
8x2 0.3394 - 0.3504 0.3504
16x4 0.3512 - 0.3543 0.3543
4x1’ - 0.2978 0.3066 0.3065

* irregular mesh after MacNeal&Harder [1988]
4.4 Cook’s Problem

A trapezoidal membrane, suggested by Cook [1974], is another popular test problem
(e.g., see Allman [1988], Bergan&Fellipa [1985], Simo et al. [1989]). Besides the shear
dominated behavior (similar to the previous test), it also displays the effects of mesh distor-
tion. The results for the tip deflection can be compared to the reference value 23.91,

obtained by numerical analysis for a refined model.

Table 3. Cook’'s Membrane (Fig. 5)

Mesh Allman Simo M-type D-type
1x1 - 16.743 14.066 14.065
2x2 20.27 21.124 20.683 20.682
4x4 22.78 23.018 22.993 22.984
8x8 23.56 23.685 23.668 23.626

4.5 Hemispherical Shell with 18 Hole
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The membrane presented herein is combined with a DKQ plate element (see
Batoz&Thar [1982]) to construct a flat quadrilateral shell element. The performance of the
shell element is evaluated on a standard test problem of a hemispherical shell with a hole
(see MacNeal&Harder [1985]). It is important to establish that the proposed formulation
causes no membrane locking when applied to shell analysis. The results of this analysis
should be compared with the solution of 0.094 given by MacNeal&Harder [1985] and the
value 0.093 suggested recently by Simo et al. [1989]. The performance of the shell element
(see Table 4) is only slightly better than the one of Taylor [1987], since the difference con-
sists only in the new membrane formulation. Even for a relatively coarse mesh, the accu-
racy of the element is comparable to the geometrically exact shell model of Simo et al.
[1989].

Table 4. Hemispherical Shell (Fig. 6)
Mesh Taylor Simo M-type D-type
4x4 0.086524 0.093372 0.087548 0.087528
8x8 0.094153 0.092814 0.093714 0.093701
12x12 0.093679 - 0.093587 0.093584
16x16 0.093501 0.092907 0.093488 0.093487

The analysis of this problem is repeated for different values of y, other than y = u
used to obtain the results presented in Table 4. The finite element model with the 8x8
mesh is used for this purpose. The results of the analysis are presented in Table 5. Note
that the formulation is rather insensitive to the chosen value of y. For the higher values of y
the results exhibit an asymptotic behavior. This is a consequence of enforcing the equality

between the independent rotation field and skew-symmetric part of displacement gradient.

Table 5. Hemispherical Shell (Fig. 6) - Mesh 8x8
v/ u M-type D-type
0.001 0.093967 0.093853
0.05 0.093813 0.093711
1. 0.093714 0.093701
50. 0.093700 0.093700
1000. 0.093700 0.093700
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8. Closure

We have presented a novel membrane element with drilling degrees of freedom based
on a variational formulation which employs an independent rotation field. Both
displacement-type and mixed-type formulations are considered. The element exhibits excel-
lent accuracy characteristics for both regular and distorted meshes. The element’s versatil-
ity and robustness are demonstrated on a problem where the loading is a concentrated
moment directly applied at the drilling degree of freedom. When the membrane element is
combined with a plate bending element, a flat shell element is formed which also performs

with high accuracy.

6. References

Allman D.J. {1984], A Compatible Triangular Element Including Vertex Rotations for Plane Elasti-
city Problems, Comput. Struct., 19, 1-8

Allman D.J. {1987], The Constant Strain Triangle with Drilling Rotations: A Simple Prospect for
Shell Analysis, Proceedings The Mathematics of Finite Elements and Applications, (ed. J.R.
Whiteman), Academic Press, 230-236

Allman D.J. [1988], A Quadrilateral Finite Element Including Vertex Rotations for Plane Elasticity
Problems, Int. J. Numer. Methods Eng., 26, 717-739

Bergan P.G. and C.A. Fellipa [1985], A Triangular Membrane Element with Rotational Degrees of
Freedom, Comput. Methods Appl. Mech., 50, 25-60

Batoz J.L. and M.B. Tahar [1982], Evaluation of a New Quadrilateral Thin Plate Bending Element,
Int. J. Numer. Methods Eng., 18, 1655-1677

Carpenter N., H. Stolarski and T. Belytschko [1985], A Flat Triangular Shell Element with Improved
Membrane Interpolation, Commun. Appl. Numer. Methods, 1, 161-168

Cook R.D. [1974], Improved Two-Dimensional Finite Element, ASCE J. Stuct. Div,, 100, 1851-
1865

Hughes T.J.R. [1987], The Finite Element Method: Linear Static and Dynamic Analysis, Prentice-
Hall

Hughes T.J.R. and F. Brezzi [1989], On Drilling Degrees of Freedom, Comput. Methods Appl. Mech.
Eng., 72, 105-121

Hughes TJR., F. Brezzi, A. Masud and 1. Harari [1989], Finite Element with Drilling Degrees of
Freedom: Theory and Numerical Evaluation, preprint

Jetteur P. [1987], Improvement of the Quadrilateral 'Jet” Shell Element for a Particular Class of
Problems, IREM Internal Report 87/1, Ecole Polytechnique Federale de Laussane, Laussane

MacNeal R.H. and R.L. Harder [1985], A Proposed Standard Set of Problems to Test Finite Element
Accuracy, J. Finite Elem. Anal. Design, 1, 3-20

MacNeal R.H. and R.L. Harder [1988], A Refined Four-Noded Membrane Element with Rotational
Degrees of Freedom, Comput. Struct., 18, 75-84



16

Malkus D.S. and TJR. Hughes [1978], Mixed Finite Element Methods - Reduced and Selective
Integration Techniques: A Unification of Concepts, Comput. Methods Appl. Mech. Eng., 15,
68-81

Reissner E. [1965], A Note on Variational Principles in Elasticity, Int. J. Solids Struct., 1, 93-95

Simo J.C., D.D. Fox and M.S. Rifai [1989], On a Stress Resultant Geometrically Exact Shell Model
Part II. The Linear Theory; Computational Aspects, Comput. Methods Appl. Mech. Eng., 73,
53-92

Taylor R.L. and J.C. Simo [1985], Bending and Membrane Elements for Analysis of Thick and Thin
Shells, Proceedings NUMETA 85 (eds. J.Middelton and G.N. Pande), 587-591,

Taylor R.L., J.C. Simo, O.C. Zienkiewicz and A.C. Chan [1986], The Patch Test: A Condition for
Assessing Finite Element Convergence, Int. J. Numer. Methods Eng., 22, 39-62

Taylor R.L. [1987], Finite Element Analysis of Linear Shell Problems, Proceedings The Mathematics
of Finite Elements and Applicarions, (ed. J.R. Whiteman), Academic Press, 211-223

Timoshenko S. and J.N. Goodier [1951], Theory of Elasticity, McGraw-Hill
Wilson E.L. [1974], The Static Condensation Algorithm, Int. J. Numer. Methods Eng., 8, 199-203

Zienkiewicz O.C. and R.L. Taylor [1989]), The Finite Element Method: Basic Formulation and
Linear Problems, vol I, McGraw-Hill



17

List if Figures

Figure 1.- A Quadrilateral Element with Drilling Degrees of Freedom
Figure 2.- The Patch Test - One-Element Test

Figure 3.- A Simple Beam

Figure 4.- Short Cantilever Beam

Figure 5.- Cook’s Membrane

Figure 6.- Pinched Hemispherical Shell with an Hole



Figure 1. - A Quadrilateral Element with Drilling
Degrees of Freedom



)

Figure 2. - The Patch Test - One-Element Test



load load
i
casel case?2

P M

regular mesh
E =100
v=0.3
P=1
distorted mesh

AR

Figure 3. - A Simple Beam




[> TPh

regular mesh E = 30000

HERE:

distorted mesh

L 12+ 12+12+12 o

48..’., 20

16 ’}

Figure 4. - Short Cantilever Beam



i‘ !
-
E=1
i v=1/3
P | hl P=1
| =48
— hl =16
h2 = 44
h2
v

FE mesh

Figure 5. - Cook’s Membrane



E =68 250 000
v=0.3
P=1
P R = 10
t =0.04

@=18 °

2R

Figure 6. - Pinched Hemisphere with an Hole





