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Vol. 22, No. 2, Summer 1991

Some simple analytics of peak-load pricing

Ted Bergstrom*
and

Jeffrey K. MacKie-Mason* *

Consider a public utility that offers its service at two different times. We study the effects of
a change from uniform pricing throughout the day to peak-load pricing. We show that for a
utility constrained to operate with a fixed rate of return on capital, the introduction of peak-
load pricing can plausibly reduce the price of the service bqth in peak and off-peak times.
We also find that peak-load pricing can lead to either greater or smaller capacity than
uniform pricing. We find a simple criterion for determining whether a particular individual
gains or loses from peak-load pricing.

1. Introduction

B Consider a public utility that offers its product at two different times, morning and
afternoon. Capacity in place can be used in both periods, but the amount consumed in
either period must not exceed capacity. If price is the same in both periods, afternoon
demand will exceed morning demand. Accordingly, we refer to afternoon as the peak and
morning as the off-peak demand period.

Suppose that the utility, which has been constrained to charge the same price at both
times of day, is allowed to use peak-load pricing. Will prices in the peak period necessarily
rise? Will equilibrium capacity increase or decrease? Which consumers will gain and which
will lose? The comparative statics of peak-load pricing work out in a neat and decisive way,
and we find rather surprising answers to these questions. For example, under plausible
demand conditions, peak-load pricing will reduce prices in both the peak and off-peak
periods. Also, introducing time-of-day pricing may lead to an increase in capacity.

A related article is by Bailey and White (1974 ), who analyze peak-load pricing under
alternative assumptions about market structure and regulation.' Unlike Bailey and White,
who assume that price in either period has no effect on demand in the other period, we
allow substitutability or complementarity between peak and off-peak consumption. Several
extensions and generalizations of the results found here appear in a (much longer) previous
version of this article, Bergstrom and MacKie-Mason (1989).

* University of Michigan.

** University of Michigan, Hoover Institution, and NBER.

We are grateful to Donna Lawson and Jim Poterba for careful reading and comments. Bergstrom’s research
was supported by a grant from the National Science Foundation. MacKie-Mason gratefully acknowledges financial
support from the MIT Center for Energy Policy Research.

! Additional literature is surveyed by Brown and Sibley (1986).
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2. The basic model
B Technology and costs.

Assumption T. A firm with capacity K, morning (off-peak ) output x,,, and afternoon (peak )
output x, will have total costs rK + u, x4 + upxs. Output in each period is constrained
by capacity, so that max (x,s, x4) < K. Morning and afternoon “user costs” #, and u;, may
differ, but it is assumed that u, + r > uy,.

O Preferences and demand. Let p;, and p, denote the prices charged in the morning and
the afternoon and let x,, and x4 denote total consumption in the morning and in the
afternoon. We assume the following about preferences:

Assumption PI. Preferences are weakly separable between utility services and other goods,
with a homothetic aggregator for preferences over utility services. The utility function of
consumer, i, is of the form U;(y’, f(xl, x%4)), where y' is i’s consumption of “other
goods,” and f( -, -) is homothetic, twice differentiable, and strictly quasi-concave.

The assumption of homothetic separability with identical aggregators simplifies analysis
because it makes the ratio of aggregate demand for afternoon consumption to aggregate
demand for morning consumption a function of the ratio of afternoon price to morning
price. This assumption is common in the empirical literature on peak-load pricing.?

Let “other goods™ be the numeraire and let aggregate demands for morning and after-
noon use of the utility be functions, x4 (P4, pa) and xa;(p4, Par). At an interior maximum,
an optimizing consumer will choose a consumption bundle such that her marginal rate of
substitution between afternoon and morning consumption equals the price ratio p,/pu,.
We define the price ratio as p = p4/pys. Since the functions fare homothetic and strictly
quasi-concave, it must be that person i’s marginal rate of substitution between afternoon
and morning consumption is determined by the ratio x/x,, and is a strictly monotone
decreasing function of this ratio. Then for all i,

(X X)) _ Pa

MRS (/) = 220 = 2
1 Ms A4 M

(1)

Strict quasi-concavity of f implies that as the ratio x},/x’, ranges from zero to infinity,
MRS (x};/x}) decreases monotonically over a real interval, R,. Since the function
MRS (x)4s/x}4) is monotonic, it has an inverse. That is, for any price ratio, p4/py € R,,
there is a unique ratio x4,/ x’, such that MRS(x'y/x’)) = pa/pu. Indeed, since all individuals
have the same aggregator function, f, and all face the same price ratio, p,/pys, it must be
that x/;/ x}, is the same for all i. Therefore the ratio x,(p., Pa)/Xr (D, Par) is determined
by the price ratio p4/pas. These facts allow us to make the following definitions.

Definition 1. Define the function X(p) implicitly by the equation MRS(X(p)) = p. That is,
X(p) is the ratio of demand for afternoon consumption to demand for morning consumption,
when their price ratio is p.

Definition 2. The elasticity of substitution between afternoon and morning consumption is
a(p)=—dInX(p)/dIn p.

Definition 3. The expenditure shares of afternoon and morning consumption are respectively

_ DaX4 _ DPmXnm
= and Opyy=——""".
DmXm + DaXy DmXm + DaXy

2 See, e.g., Parks and Weitzel (1984); Howrey and Varian (1984 ); Caves, Christensen, and Herriges (1984),
and Hausman, Kinnucan, and McFadden (1979).
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Notice that since MRS(p) is a monotone decreasing function and X(p) is its inverse
function, it must be that X(p) is monotone decreasing. Therefore o(p) > 0 for all p.

We assume that if prices are the same in both periods, demand in the afternoon will
exceed demand in the morning. This assumption is expressed in our notation as X(1) > 1.
The assumption that the afternoon is the peak-load period at uniform prices does not exclude
the possibility that at some prices morning demand might be higher.

O Pareto-efficient pricing. Where marginal costs are well defined, a necessary condition
for Pareto efficiency is that consumers’ marginal rates of substitution between morning and
afternoon consumption equal the ratio of marginal costs. So long as demand in the afternoon
exceeds demand in the morning, an additional bit of service can be provided in the morning
without changing capacity, while an extra bit provided in the afternoon requires a corre-
sponding increase in capacity. Therefore, if afternoon demand exceeds morning demand
Uy

. .. r+ . . . . .
when the price ratio is p* = , p* is the Pareto-efficient price ratio. If morning demand

exceeds afternoon demand at the price ratio p*, then Pareto efficiency requires that demands
be equalized with a price ratio p* * satisfying 1 < p** < p*.

O Constrained rate of return and equilibrium. We assume that the public utility is con-
strained to operate at a fixed rate of return on capital. This constraint might be enforced
by a regulatory agency, or it might be an equilibrium rate of return that is enforced by
potential competition. The capital base on which the utility is allowed to earn this rate of
return is proportional to its capacity. Let cx denote the return per unit of capacity that will
yield the allowable rate of return on capital. If the regulatory agency seeks a Pareto-optimal
outcome, it will set cx = r. But it might allow a rate of return cx > r, as in the model of
Averch and Johnson (1962).

Assumption R. The firm is constrained to operate at a fixed rate of return on capital, so
that pyx4 + PyXar — UgaXq — Uy X = cxK.

We assume that the utility produces to meet demand in each period. This means that
the prices and quantities chosen must satisfy equation (1). We also assume that the utility
uses its full capacity at least some time during the day, so that when x, > x;,, it must be
that x4, = K. These assumptions restrict the set of possible equilibria to a ‘“‘one-dimensional
continuum” determined by the parameter p. This fact is expressed by the following lemma.

Lemma 1. For any p such that X(p) = 1, there is exactly one set of equilibrium prices and
quantities, p4, Pu, X4, and X, that satisfies Assumption R and equates capacity to peak-
load demand.

Proof. See the Appendix.

In consequence of Lemma 1, we can study the comparative statics effects of moving
from uniform pricing to peak-load pricing by studying the derivatives of equilibrium prices
and quantities with respect to the variable p. This allows one to use the same tools to analyze
an Averch-Johnson regulator—who allows the firm to maximize profits subject to a max-
imum rate of return; a Ramsey regulator—who requires a declining-cost firm to maximize
welfare subject to a minimum rate of return; or a market in which free entry maintains the
rate of return on capital at the market rate of interest.

3. Does peak-load pricing make peak prices rise or fall?

B With time-of-day pricing, it is possible to allocate capacity more efficiently between
morning and afternoon use. Since the rate of return on capacity is fixed, this gain in efficiency
may lead to a decline in the equilibrium prices in both periods.
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O Two easy cases. To see how this works, it helps to think about two special cases that
are easy enough to “solve in one’s head.” In each of these special cases, we assume that
user costs #; = u, = 0 and the allowable rate of return on capacity is cx.

First consider the extreme case of “perfect substitution” between morning and afternoon
consumption where a unit of afternoon consumption is exactly as good as two units of
morning consumption. The aggregator function for utility services is

S (X4, Xp) = 2X4 + Xp1.

If there is a uniform price p, the only demand for utility services will be in the afternoon.
The zero-profit constraint requires that the entire cost of capacity be repaid by afternoon
usage, so that p = cx. On the other hand, peak-load pricing would equalize morning and
afternoon demands. This happens when p, = 2p,,. At these prices, consumers are indifferent
between using the service in the morning and afternoon, and consumption in both periods
can be set equal to capacity. In effect, peak-load pricing allows the firm to sell its entire
capacity twice, once in the morning and once in the afternoon. The profit constraint is
satisfied when p, + py = ck. Since py = 2py, it must be that with peak-load pricing,
P4 = 2¢k/3, and py, = cx/3. Moving from uniform pricing to peak-load pricing results in
lower prices in both periods.

Now consider the case of “perfect complements,” where at any price, consumers always
want to consume exactly twice as much in the afternoon as in the morning. Let

S(x4, xpr) = min {x4, 2Xp} .

At any price, consumers choose x,/x) = 2. No matter what prices it chooses, the utility
can sell all of its capacity in the afternoon and only half of its capacity in the morning.
Therefore the profit constraint is satisfied for any pair of prices, p4 and pss, on the locus
D4+ Pu/2 = cx.’ In this example, increasing the price ratio from uniform pricing requires
an increase in the peak price and a decrease in the off-peak price to remain on the profit
constraint locus.

O The case of zero user costs. More generally, assume that u, = u), = 0 and that
full capacity is used in the afternoon. The constraint on the rate of return simplifies to
DaXa + DXy = cxX4. Multiply both sides of this equation by 6,/ x, to obtain p, = 6,4c.
It follows that an increase in the price ratio p will make afternoon consumption go up
or down depending on whether the expenditure share 64 is an increasing or decreasing
function of p. A familiar result from production theory is that 6, is an increasing (decreas-
ing) function of p if and only if the elasticity of substitution ¢ is less than (greater than)
one. Therefore as p is increased, the price of afternoon consumption will rise if ¢ < 1,
fall if ¢ > 1, and stay constant if ¢ = 1.

O A general answer. Define the ratio of net return on morning sales to price of morning
consumption as*

Ly = (Par — Un)/ Py = 1 — Ut/ Pt

Lemma 2 supplies explicit formulae for the change in price in each period as the price ratio,
p, is changed.

3 There is not a unique solution as in Lemma 1 because the utility function does not satisfy Assumption P1.
4 In the discussion below, we implicitly assume that L,, = 0. But our equations apply whether L, is positive
or negative. The results apply even when regulators require the utility to set the morning price below variable user
cost. Wenders (1976) shows that a profit-maximizing utility with a regulated rate of return on installed capital may
set the off-peak price below marginal cost in order to encourage the expansion of capital-intensive base-load capacity.
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Lemma 2. Assume the technology, preferences and profit constraint given in Assump-
tions T, P1, and R. Then for all p such that X(p) > 1,

‘fill‘””‘ = 001 — Luo(p)) 2)
np

and

dlan= dlnpA_
dlnp dinp

Proof. See the Appendix.

1= —(64 + Lao(p)bar)- (3)

From equation (2), it is apparent that the sign of dp,/dp is the same as that of
1 — Lyo. From equation (3), we see that dp,,/dp is always negative. This permits us to
claim

Theorem 1. Under Assumptions T, P1, and R, moving toward peak-load pricing results in
(a) lower prices in both peak and off-peak times if the elasticity of substitution between
peak and off-peak consumption is greater than p,/(py — ) and (b) higher prices in
peak times and lower prices in off-peak times if the elasticity of substitution is less than

Dm/ Py — Uar).

4. Does peak-load pricing increase or decrease industry capacity?

B The conventional view seems to be that peak-load pricing will reduce utilities’ demand
for capacity. (See Berlin, Cicchetti, and Gillen (1974), Nemetz and Hankey (1984) and
Caves, Christensen, and Herriges (1984 ).) But it isn’t necessarily so. There are two forces
at work here. Peak-load pricing allows more efficient use of capacity, since less capacity is
idle off-peak. This means that less capacity is required to generate a given amount of the
composite commodity, utility services. On the other hand, utility services become cheaper,
which tends to increase the demand for utility services. Which effect is dominant turns out
to depend in a simple way on the elasticity of demand for utility services.

The weakly separable functional form for utility allows us to define a composite com-
modity, x, such that the quantity of x is f( xy, x4) and the “price” p of the composite
commodity is just equal to the value of the expenditure function

p=e(pm, Pa) = mMin  pyXy + DaXy. (4)

Sixpsxq)=1
Since the equilibrium conditions determine p, and p,, as functions of p, we can define

p(p) = e(par(p), Pa(p)). &)

Let D.(p) be the total demand for the composite commodity with price p, and let » denote
the price elasticity of demand. We use duality theory to prove:

Lemma 3. Under Assumption T, P1, and R, the following hold:

dlnp(p) _ _
s - Lyo(1 — 6,).
1
din K _ g o(1 + Lom).
dlnp

Proof. See the Appendix.

The first result in Lemma 3 states that if demand in the afternoon exceeds demand in
the morning at the price ratio p = p4/pas, then moving toward peak-load pricing must lower



246 |/ THE RAND JOURNAL OF ECONOMICS

the price of the composite good. This result is not surprising, since an increase in p tends
to equalize demand in the morning and afternoon, thus allowing more “efficient” production
of the composite commodity. But whether a reduction in its price results in an increase or
a decrease in expenditure on the commodity depends on the magnitude of the elasticity of
demand, as seen in the second result of the lemma. From these results we deduce

Theorem 2. Under Assumptions T, P1, and R, moving toward peak-load pricing will lower
the price of the composite good, utility services, and will increase or decrease the equilibrium
capacity depending on whether the absolute value of the price elasticity of demand for the
composite good is greater or smaller than pas/(par — Uar)-

In case uy, = u, = 0, it is easy to interpret this result. Since the composite price p falls
when prices move toward peak-load pricing, total consumer expenditures must increase if
the aggregate elasticity is greater than one. But the rate of return on capacity is constrained
to stay constant, and since user costs are zero it must be that in equilibrium the extra
consumer expenditures are spent on more capacity. If instead user costs are positive, then
lowering the morning price increases off-peak utilization of the capacity, which increases
the total off-peak user costs. Only when the demand elasticity is large enough relative to
the user cost effect (—n > 1/L,,) will an increase in total expenditure require a higher
equilibrium capacity.

5. Who gains and who loses from peak-load pricing?

B In the last section we showed that when preferences over time of use are homothetic
and identical, moving from uniform pricing toward time-of-day pricing will reduce the cost
of the composite good, “utility services,” for every consumer. All consumers benefit from
the change. Now suppose that preferences differ between individuals. If the prices of morning
and afternoon consumption both fall as the system is moved toward peak-load pricing, then
of course all consumers will benefit. But if the price of afternoon consumption rises and
the price of morning consumption falls, then those for whom an especially large proportion
of consumption is in the afternoon might be worse off.
To analyze these effects, we assume:

Assumption P2. Different consumers have different aggregator functions, f;( x, x4), that
are homogeneous of degree one. The ratio X of rotal afternoon demand to total morning
demand is determined by the ratio of p of the afternoon price to the morning price.’

Then, just as in the earlier sections, we can define the elasticity of substitution to be
o(p) = —dIn X(p)/dIn p.

It is easy to figure out whether a consumer is a net gainer from the price change. Since
the aggregator functions f; are assumed to be homothetic, all we need to do to find out
whether i is a gainer or a loser is to see whether the unit cost to i of producing one unit of
the aggregate f;(x,, x»s) has gone up or down. Using duality theory we can prove

Theorem 3. Under Assumptions T, P2, and R, a move toward peak-load pricing will benefit
consumer | if

1
2> 1= a(p)Lu (6)
M

and will make consumer i/ worse off if the inequality is reversed.

Proof. See the Appendix.

3 If, for example, utility takes the quasi-linear form U;(y', /'(Xa, X4)) = ' + f'(Xum, X4), this assumption
will be satisfied.
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In particular, a move toward peak-load pricing will (a) yield a Pareto improvement if
oLy > 1 and (b) benefit customer i for any substitution elasticity ¢ if i has a higher than
average off-peak expenditure share (8%, > 6),) and if Ly, = 0.

6. Price reversals

B We have implicitly assumed that if a public utility is enabled to use time-of-day pricing,
it will increase the ratio of peak to off-peak price. Bailey and White (1974 ) show that time-
of-day pricing may lead to “price reversals” for an Averch-Johnson monopolist, who is
constrained to a rate of return, ck, greater than the market rate of return on capital. That
is, the monopolist may actually charge a lower price in the peak than in the off-peak period.
In their model, demand in each period depends only on the price in that period. The same
effect can occur in our model, where morning and afternoon consumption may be com-
plements or substitutes.

It is quite easy to see in our case why this happens. Since the Averch-Johnson monopolist
is constrained to the rate of return cgx on his investment, and since cx exceeds the market
rate of return, the monopolist’s objective is equivalent to maximizing his capacity subject
to his rate of return on capacity being at least cx.®

Lemma 4 tells us how capacity changes with p. Indeed,

dln K
dlnp

= —0Op0a(1 + Lym),

where Ly, = 1 — uy/pas and 7 is the elasticity of demand for the composite commodity,
utility services. Thus, for example, in the case where u,, = 0, capacity will be a decreasing
function of p if demand for utility services is inelastic. If this is the case, the Averch-Johnson
monopolist who starts out with equal prices in the morning and the afternoon will want to
reduce the ratio, p, of peak to off-peak prices.

The underlying reason is simple. The monopolist is assumed not to be able to increase
his rate base by adding useless capital. The only method available to him for increasing his
rate base is to use capital “wastefully” by using a “perverse” time-of-day pricing structure.
An inefficient time-of-day pricing structure makes the cost of the composite commodity
higher for consumers, but this does not reduce the monopolist’s revenue when demand is
inelastic.

7. Remarks

@ For public utilities and regulators who are considering the introduction of time-of-use
pricing, the questions we have posed and partially answered are of great interest.” The
answers to these questions depend on the size of two key empirical magnitudes: the elasticity
of substitution between peak and off-peak services and the demand elasticity for the composite
utility services commodity. What does the empirical literature say about these magnitudes?
In the time-of-day electricity literature, most estimates of the substitution elasticity are quite
low; the range of 0.10 to 0.14 reported in Caves, Christensen, and Herriges (1984 ) is typical.
It is important to notice, however, that these studies have measured only short-run response
to price changes. In the long run, when users have time to adjust their appliance holdings
or redesign their factories, the substitution elasticity may be much greater in absolute value.

Estimates of short-run demand elasticities for electricity and telephone services are also

¢ Like Bailey and White (1974), we assume that the monopolist is not allowed to include “useless™ capital in
its rate base, but must actually put the investment to work in the form of operating, peak-load capacity.

7 We have also studied (1989) an unconstrained monopolist and more general technologies, and obtained
similar results.
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rather low. For instance, MacKie-Mason and Lawson (1991) find price elasticities for local
telephone calling demand ranging from —0.1 to —0.4 depending on the time of day. The
presence of adjustment costs should again imply that long-run elasticities are higher. (Taylor
(1977) surveys several older studies that report long-run demand elasticities greater than
one in magnitude.) According to our results, if the long-run demand elasticity is greater
than one, then equilibrium capacity under time-of-day pricing may be greater than under
uniform pricing.

Appendix
B Proofs of Lemmas 1, 2, and 3 and Theorems 3 and 4 follow.

Proof of Lemma 1. In Assumption R, substitute x, for K, substitute pp,, for p,, divide both sides by x;,, and
rearrange. The resulting expression is

X, X,
pM<p-—A+l)=(CK+uA)-—A+uM. (A1)
XM XM

But x4/xp = X(p). It follows from equation (A1) that

_ (ex t ua)X(p) + un
1+ pX(p)

Therefore we see that p uniquely determines p,,. Since p4 = pp)s, both prices are determined by their ratio. Then
quantities are determined by x4 = x(py4, pm) and Xy = Xp (D4, Pr). Q.E.D.

M

Fact 1. Under Assumptions T, P1, and R, with o(p) the (negative of the) elasticity of substitution between x,, and
X4 at the price ratio p,

dlné,

dinp = 0u(1 — a(p)).

Proof. See Bergstrom and MacKie-Mason (1989).

Proof of Lemma 2. If we multiply both sides of the equation in Assumption R by 8,/x,, we have

X,
Da =(ck+ uA+uM—ﬂ)0,,. (A2)
X4
From the fact that 6,, = 1 — 6,4, it follows that iﬂ 04 = p(1 — 6,4). Therefore, equation (A2) is equivalent to
A
Pa = (cx + Uy — upp)04 + Upep. (A3)

Differentiating, multiplying both sides by p/p,, and simplifying, we have
dln 0,dnb, u
S~ (o e — ) A S+ 2 (1~ g, (A%)
dinp padlnp p,

From (A3) and the definition of L,,, we see that

0 u u
(cx+ug—up) 2=1-Hp=1-H=p,. (A5)
Da Pa Pm

Therefore, using Fact 1 and (AS) we can simplify (A4) to

dlnpA
dinp

= Lafu(1 — o(p)) + Z—:’p(n —0,). (A6)

Since -zﬁ o(1 —8,4) = (1 — Ly)0,, we can further simplify (A6) to
A

dln p,

dlnp 0rm(1 — Lyo(p)).

This is the first equation claimed in Lemma 2. The second equation is a trivial consequence of the first. Q.E.D.
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Proof of Lemma 3. The first result follows from logarithmically differentiating text equation (5) and applying
standard duality results. For the second result, note that total revenue from the sales of utility services,
DaXa4 + DmXu, 1s equal to pD,(p). Therefore when X(p) > 1, so that K = x,, we can write

oK
p(p)Dx(p(p))

Logarithmically differentiating both sides of (A7) and making substitutions from text equations (2) and (3) yields
the result. Q.E.D.

(A7)

A

Proof of Theorem 3. Subscript equation (5) by i to allow the expenditure function to vary across individuals. From
standard duality results,

dinpi(p) _,, dInps  , dlnpy
dinp Adlnp Mdlnp ’

(AB)

where 8, and 8}, are the afternoon’s and morning’s shares of i’s expenditures on utility services. Substituting from
equations (2) and (3) into (A8) and rearranging terms, we find that

dln p'(p)

dinp 0r(1 = o(p)Lns) = Ol (A9)

The theorem restates equation (A9) in terms of the conditions for an individual’s composite price to fall. Q.E.D.

Proof of Theorem 4. Let the optimal uniform price be . Suppose that the uniform price is higher than both optimal
time-of-day prices. Since demands are independent, charging instead a uniform price equal to the time-of-day peak-
period price would maximize profits from that service. With a concave profit function for off-peak services, off-
peak profits would also increase by moving the uniform price closer to the time-of-day optimum. Thus, the uniform
price cannot be higher than the time-of-day peak-period price. Strict inequality is established by noting that marginal
peak-period profit is zero at the optimal peak-period price, but marginal off-peak profits are negative at that price,
so the uniform price will be set lower than the peak-period price. A similar argument works for a uniform price
below py, s0 py < p <ps. Q.E.D.
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