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1 ABSTRACT

2 DNA metabarcoding is an important tool for molecular ecology. However, its effectiveness 

3 hinges on the quality of reference sequence databases and classification parameters employed. 

4 Here we evaluate the performance of MiFish 12S taxonomic assignments using a case study of 

5 California Current Large Marine Ecosystem fishes to determine best practices for 

6 metabarcoding. Specifically, we use a taxonomy cross-validation by identity framework to 

7 compare classification performance between a global database comprised of all available 

8 sequences and a curated database that only includes sequences of fishes from the California 

9 Current Large Marine Ecosystem. We demonstrate that the curated, regional database provides 

10 higher assignment accuracy than the comprehensive global database. We also document a 

11 tradeoff between accuracy and misclassification across a range of taxonomic cutoff scores, 

12 highlighting the importance of parameter selection for taxonomic classification. Furthermore, we 

13 compared assignment accuracy with and without the inclusion of additionally generated 

14 reference sequences. To this end, we sequenced tissue from 597 species using the MiFish 12S 

15 primers, adding 252 species to GenBank’s existing 550 California Current Large Marine 

16 Ecosystem fish sequences. We then compared species and reads identified from seawater 

17 environmental DNA samples using global databases with and without our generated references, 

18 and the regional database. The addition of new references allowed for the identification of 16 

19 additional native taxa representing 17.0% of total sequence reads from eDNA samples, including 

20 species with vast ecological and economic value. Together these results demonstrate the 

21 importance of comprehensive and curated reference databases for effective metabarcoding and 

22 the need for locus-specific validation efforts.
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25

26 INTRODUCTION

27 Metabarcoding is a process in which multiple species are identified from bulk DNA (e.g. 

28 homogenized gut contents, settlement tile scrapings, etc.) or environmental samples  (Bohmann 

29 et al., 2014; Deiner et al., 2017; Taberlet, Coissac, Pompanon, et al., 2012). Metabarcoding is 

30 increasingly used to study marine ecosystems as the ability to sequence tens to hundreds of 

31 millions of reads in a single sequencing run allows the development of novel research questions, 

32 including species mapping, biomonitoring, gut content analyses, and population genomics, all of 

33 which aid understanding of the ecology of marine ecosystems (Baetscher et al., 2019; Closek et 

34 al., 2019; Goodwin et al., 2017; Guo, 2017; Kelly, Port, Yamahara, Martone, et al., 2014; 

35 Sanders et al., 2015; Thompson et al., 2017; Yamahara et al., 2019). In particular, metabarcoding 

36 of environmental DNA (eDNA), freely associated DNA obtained from environmental samples, is 

37 an increasingly attractive approach for marine ecosystem characterization because it can detect a 

38 broad range of diversity from a single liter of seawater, and has the potential to transform marine 

39 biomonitoring efforts (Kelly, Port, Yamahara, Martone, et al., 2014).

40 Metabarcoding typically employs PCR amplification and sequencing of a target gene 

41 (Goodwin et al., 2017) followed by comparison of these sequences to a database of known 

42 reference sequences to identify species present in the sample (Taberlet, Coissac, Hajibabaei, et 

43 al., 2012). Incomplete databases cannot identify all species present, leading to a lack of 

44 assignment despite the actual detection and capture of the sequences, potentially biasing the 
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45 interpretation of results (Boyer et al., 2016; Deiner et al., 2017; Machida et al., 2017). Thus, 

46 building complete and accurate reference databases is paramount to the success of molecular 

47 ecology monitoring efforts (Schenekar et al., 2020). 

48 One approach for maximizing metabarcoding taxonomic assignment is to compare query 

49 sequences to a global database of archived sequences (Camacho et al., 2009; Edgar, 2018b). 

50 Global databases, such as GenBank, include nearly all publicly available sequences for specific 

51 barcode loci and are thus inherently comprehensive (Benson et al., 2018). However, the 

52 inclusion of reference barcodes from non-target or biologically irrelevant species may potentially 

53 bias taxonomic assignment algorithms (Curd et al., 2019). This issue is particularly problematic 

54 for lowest common ancestor taxonomic assignment methods that make inherent assumptions that 

55 each best sequence alignment is equally valid, irrespective of the geographic distributions and 

56 ecologies of these taxa (Curd et al., 2019; Gao et al., 2017), potentially leading to assignments of 

57 biologically implausible species. This problem can be compounded by the occurrence of mis-

58 annotated sequences, a well-known problem in global reference databases (Heller et al., 2018; 

59 Leray et al., 2019; Nobre et al., 2016; Wakeling et al., 2019).

60 An alternative approach to using global databases for taxonomic classification is to 

61 employ a curated reference database that includes only appropriately annotated sequences for 

62 taxa that occur in a given region (Macheriotou et al., 2019; Poloczanska et al., 2013; Richardson 

63 et al., 2018). However, the inclusion or exclusion of barcodes from a reference database can 

64 affect metabarcoding taxonomic assignments (Macheriotou et al., 2019; Poloczanska et al., 2013; 

65 Richardson et al., 2018), yet few studies systematically addressed this problem (Bergsten et al., 

66 2012; Stoeckle et al., 2020). As such, it is currently unclear whether global or regional reference 
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67 databases produce more accurate taxonomic assignments. Systematically quantifying error and 

68 bias associated with global and curated database is essential to identifying best practices for 

69 metabarcoding taxonomic assignment.

70 Critical to such assessments are methods that validate taxonomy prediction and evaluate 

71 the sensitivity to bioinformatic and database parameters. One key method for comparing the 

72 performance of taxonomic classification across different reference databases or classification 

73 parameters is the taxonomy cross-validation by identity (TAXXI) framework (Edgar, 2018a). 

74 The TAXXI framework is executed by using a reference database with known taxonomic 

75 identities that is split into test and training sets and then assigning taxonomy to the training set 

76 using the test set. The TAXXI framework can then be applied to allow taxonomic assignment 

77 performance to be compared across different metabarcodes, reference databases, and different 

78 assignment parameters. 

79 Critically, TAXXI approaches allow for comparing the performance of bioinformatic 

80 pipelines within and across loci, including informing the proper selection of classifier parameters 

81 for a given metabarcoding locus (Boyer et al., 2016; Machida et al., 2017). Taxonomic 

82 assignments made by metabarcoding classifiers are particularly influenced by taxonomic cutoff 

83 scores (e.g., exact alignment match or 97% identity threshold) (Edgar, 2018c, 2018a). Using this 

84 cross-validation approach to evaluate the performance of taxonomic assignments for 16S and 

85 fungal ITS metabarcoding loci across a range of classification parameters revealed that percent 

86 identities below 95% had poor classification performance (Edgar 2018a), and highlighted key 

87 tradeoffs between assignment confidence and taxonomic resolution (Edgar, 2018c, 2018a). 

88 Frequently, attempts to balance confidence–resolution tradeoffs leads to the selection of 
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89 conservative taxonomic cutoff scores to avoid over-classification errors (Alberdi et al., 2018; 

90 Camacho et al., 2009; Port et al., 2015; Siegwald et al., 2017; Wood & Salzberg, 2014). 

91 However, parameter selection is rarely systematically evaluated across different taxonomic 

92 groups or metabarcoding loci, inadvertently leading to poorer quality taxonomic assignments 

93 (Curd et al., 2019; Edgar, 2018a, 2018c). Importantly, the few studies that explored classification 

94 parameter performance across metabarcoding loci found that a “one size fits all” approach (e.g., 

95 97% identity threshold) is inappropriate across different metabarcoding loci (Curd et al., 2019; 

96 Edgar, 2018c, 2018a). Thus, evaluating the performance of taxonomic assignments across a 

97 range of cutoff scores for a given metabarcoding target is important for maximizing the accuracy 

98 of metabarcoding efforts (Balakirev et al., 2017; Bokulich et al., 2018; Hassanin et al., 2010). 

99 Using the TAXXI framework, Curd et al. (2019) compared the performance of reference 

100 databases for taxonomic assignment, demonstrating the utility of custom reference libraries. The 

101 Creating Reference libraries Using eXisting tools (CRUX) module of the Anacapa Toolkit 

102 constructs custom reference databases by querying public sequence archives based on primer sets 

103 defined by the user. Curd et al. (2019) showed that CRUX-generated custom reference databases 

104 were more comprehensive and provided improved taxonomic assignment compared to 

105 previously published CO1 reference databases [Midori (Machida et al., 2017) and CO-Arbitrator 

106 (Heller et al., 2018)], yielding results nearly equal to heavily curated reference databases for 16S 

107 [SILVA (Quast et al., 2012)] and 12S [MitoFish (Sato et al., 2018)] metabarcodes. The TAXXI 

108 framework thus provides a critical set of tools to evaluate the performance of taxonomic 

109 assignment across classification parameters and reference databases for any metabarcoding locus 

110 of interest.
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111 The MiFish Universal Teleost and MiFish Elasmobranch primer sets (Miya et al., 2015) 

112 target the same portions of the mitochondrial 12S RNA gene, but differ by a few critical base 

113 pairs on the forward primer. These metabarcodes are vertebrate specific, provide species-level 

114 resolution for many fishes, and are well suited to short read-length next-generation DNA 

115 sequencing, such as Illumina platforms (Collins et al., 2019; Jo et al., 2017; Miya et al., 2015; 

116 Valsecchi et al., 2019). As such, they are becoming the standard barcode locus for marine 

117 vertebrate metabarcoding studies (Bista et al., 2017; Closek et al., 2019; Miya et al., 2015; 

118 Thomsen et al., 2016; Valsecchi et al., 2019; Yamamoto et al., 2017). However, 12S fish 

119 reference databases are relatively incomplete compared to traditional barcoding loci, such as the 

120 655 bp region of the mitochondrial Cytochrome Oxidase I (COI) gene (Ardura et al., 2013; Duke 

121 & Burton, 2020; Hastings & Burton, 2008; Ward et al., 2009). For example, there is an extensive 

122 CO1 barcode database of fishes of the California Current Large Marine Ecosystem (Hastings & 

123 Burton, 2008) that, according to the MitoHelper query of the MitoFish database (accessed April 

124 2021) includes 878 of 1,144 (76.7%) species (Iwasaki et al., 2013; Lim & Thompson, 2021)] 

125 facilitating numerous recent metabarcoding studies (Closek et al., 2019; Djurhuus et al., 2020; 

126 Pitz et al., 2020). However, there are relatively few reference 12S sequences that overlap with 

127 the MiFish primer sets, limiting the utility of 12S metabarcoding approaches in this region. 

128 The California Current Large Marine Ecosystem is a highly productive coastal ecosystem 

129 that extends approximately 3,000 km across most of the Northeast Pacific from Baja California, 

130 Mexico to British Columbia, Canada (Checkley Jr & Barth, 2009; Coleman, 2008; Ekstrom, 

131 2009; Koslow & Davison, 2016). This large marine ecosystem has enormous regional and global 

132 importance (Ekstrom, 2009; Sherman, 1991; Wells et al., 2020), driving an ocean economy 
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133 valued at over $56 billion USD, employing over 675,000 people (Block et al., 2011; Koslow & 

134 Davison, 2016; NMFS, 2017) and supporting food security of the region. The California Current 

135 Large Marine Ecosystem also plays a vital role in the cultures and traditional practices of coastal 

136 North American tribes and First Nations by supporting species such as Pacific salmon 

137 (Oncorhynchus spp.), orcas (Orcinus orca), eulachon (Thaleichthys pacificus), and abalone 

138 (Haliotis spp.) (Armstrong, 2017; Braje et al., 2017; Brooks et al., 2012; Lepofsky et al., 2017; 

139 Norgaard, 2019; Wadewitz, 2012). 

140 Unfortunately, this ecosystem is increasingly facing numerous threats including 

141 overexploitation (Koslow & Davison, 2016), ocean acidification and hypoxia (Chan et al., 2008; 

142 Crozier et al., 2019; Hofmann et al., 2014; Samhouri et al., 2017), pollution (Good et al., 2020; 

143 Halpern et al., 2009), and climate change induced marine heat waves (Rogers-Bennett & Catton, 

144 2019; Santora et al., 2020). Metabarcoding has the power to address many critical management 

145 questions in this region, ranging from shifting species distributions, effectiveness of marine 

146 protected areas, and seasonal patterns of larval fish recruitment, among others (Duke & Burton, 

147 2020; Kelly, Port, Yamahara, Martone, et al., 2014; Port et al., 2015). However, the ability of 

148 metabarcoding efforts to address these important questions hinges on the availability of 

149 comprehensive reference databases and appropriate methods of bioinformatic analysis. 

150 To improve the utility of 12S metabarcoding of marine fishes for the California Current 

151 Large Marine Ecosystem and to address larger questions regarding the impact of bioinformatic 

152 processes on taxonomic classification, we 1) generated and contributed 741 additional MiFish 

153 12S sequences representing 597 fish species to global sequence databases; 2) used these 

154 additional sequences to create a reference database curated specifically for the California Current 
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155 Large Marine Ecosystem; 3) compared the performance of taxonomic assignments made by this 

156 regional curated reference database to those made by global marine vertebrate reference 

157 databases; and 4) assessed the effect of classifier parameters on phylum through species level 

158 assignments of MiFish 12S sequences to identify optimal locus-specific bioinformatic 

159 parameters.

160

161 METHODS

162 Reference Barcode Generation from Fish Tissue Samples

163 To generate a more complete 12S barcode reference database for California Current Large 

164 Marine Ecosystem fishes, we assembled a list of the 1,144 marine teleost and elasmobranch 

165 species that occur in this system (Allen & Horn, 2006; Froese & Pauly, 2010; Hastings & 

166 Burton, 2008; Love, & Passarelli, 2020) (Table S1). From this list, we acquired 741 ethanol-

167 preserved voucher specimens representing 597 species (Table S1, Table S2) from the Scripps 

168 Institution of Oceanography Marine Vertebrate Collection at the University of California San 

169 Diego. DNA was extracted from each tissue sample using a Chelex 100 extraction method 

170 (Walsh, Metzger, & Higuchi, 1991), as described in the Supplemental Methods. We amplified all 

171 teleost DNA extracts (n=701) using the MiFish Universal Teleost Primers  (Miya et al., 2015), 

172 and all elasmobranchs (n=55) using the MiFish Elasmobranch primers (Miya et al., 2015) 

173 following the thermocycler profile of Curd et al., (2019) (Table S3). We Sanger sequenced 

174 purified amplicons (see Supplemental Methods for details), and aligned and trimmed forward 

175 and reverse sequences in Sequencher version 5.4.6 (Nishimura, 2000). We used R package taxize 

176 (version 0.9.99) (Chamberlain & Szöcs, 2013) to synonymize taxonomic names of all vouchered 
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177 specimens and GenBank. We then checked the accuracy of generated reference barcodes by 

178 building a UPGMA phylogenetic tree of all reference sequences and California Current Large 

179 Marine Ecosystem fishes using phangorn (2.5.5). In addition, we queried each sequence using 

180 blastn (Camacho et al., 2009) and removed any sequence that did not cluster or align to known 

181 taxonomic lineages (data available at https://doi.org/10.5068/D1H963). The resulting 12S 

182 reference barcodes were deposited into GenBank (SAMN19289093–SAMN19289810; Table 

183 S2). 

184

185 Reference Database Creation

186 To test variation in taxonomic assignment among reference databases, we generated three 

187 distinct reference sequence databases: “CRUX-GenBank”, “global”, and “regional” (Table 1 and 

188 Table 2). CRUX-GenBank is a custom 12S reference database generated using Creating 

189 Reference libraries Using eXisting tools (CRUX) module of the Anacapa Toolkit to query 

190 GenBank for reference barcodes conducted with standard search parameters (Benson et al., 2018; 

191 Curd et al., 2019) and MiFish Universal 12S sequences (Table S1) as the user‐defined primers. 

192 Briefly, we created this reference database by running in silico PCR (Ficetola et al., 2010) on the 

193 European Molecular Biology Laboratory (EMBL) standard nucleotide database (Stoesser et al., 

194 2002) to generate a seed library of 12S references. Next, we used blastn (Camacho et al., 2009) 

195 to capture reference barcodes without included primer sequences and to query the seed database 

196 against the NCBI non‐redundant nucleotide database (Gold, 2020; Pruitt et al., 2005; sequences 

197 downloaded in October 2019). The resulting blastn hits were de‐replicated by retaining only the 

198 longest version of each sequence and taxonomy for each accession was retrieved using 
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199 Entrez‐qiime (Baker, 2016). The resulting set of reference sequences in the CRUX-GenBank 

200 database included any GenBank reference barcodes that in silico amplified to the MiFish 12S 

201 primers at the time of this analysis. 

202 We created the global database to evaluate whether increasing database completeness 

203 improves taxonomic assignment. To create the global database, we supplemented the CRUX-

204 GenBank database with 741 additional California Current Large Marine Ecosystem fish 12S 

205 barcodes generated for this study (Table S2). Thus, the global database includes all fish 12S 

206 reference sequences available at the time of download. From this global database, we created the 

207 regional database, including only 12S sequences of fishes known to occur in the California 

208 Current Large Marine Ecosystem. We created this database to specifically test whether databases 

209 curated to specific ecosystems enhance taxonomic assignment performance relative to more 

210 comprehensive databases (“global”). Because of the high degree of similarity between the 

211 MiFish Universal and Elasmobranch loci and the flexibility built into CRUX, a single CRUX 

212 generated 12S reference database performs well for both markers (Curd et al., 2019), so we did 

213 not create separate teleost and elasmobranch databases. Additionally, because the MiFish primer 

214 set amplifies nearly all vertebrate taxa (Miya et al., 2015; Valsecchi et al., 2019), the global 

215 database include teleosts, elasmobranchs, mammals, reptiles, amphibians, birds, etc. All 

216 databases are available at https://doi.org/10.5068/D1H963. 

217

218 Taxonomy cross-validation by identity comparisons

219 We implemented the taxonomy cross-validation by identity (TAXXI) framework developed by 

220 (Edgar, 2018a) to 1) compare taxonomic assignment performance metrics for global versus 
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221 regional reference databases, 2) determine the resolution of taxonomic assignments for all 

222 available MiFish barcodes in the global database, and 3) understand the performance of the 

223 MiFish barcode across taxonomic classifier cutoff scores. Although we use three databases 

224 (global, CRUX-GenBank and regional) on our test dataset below, we did not include the CRUX-

225 GenBank database in taxonomic cross validation comparisons because the global database 

226 contains all these sequences.

227 The TAXXI analyses were implemented using scripts from Curd et al. (2019) which 

228 adapted TAXXI to the Anacapa Toolkit (https://drive5.com/taxxi/doc/index.html and 

229 https://github.com/limey-bean/Anacapa). We conducted taxonomic assignments using the 

230 Anacapa Toolkit classifier which implements the Bayesian Lowest Common Ancestor (BLCA) 

231 classifier (Gao et al., 2017) modified to incorporate sequences from Bowtie2 (Langmead & 

232 Salzberg, 2012). In brief, amplicon sequence variants (ASVs; exact unique sequences 

233 dereplicated from generated metabarcoding data) are first aligned to reference barcodes using 

234 Bowtie2 retaining the top 100 alignments. Then the BLCA classifier conducts multiple sequence 

235 alignment for each query ASV to inform a weighted Bayesian posterior probability of taxonomic 

236 assignment. Taxonomy is then ultimately assigned based on the lowest common ancestor of the 

237 total weighted reference database matches; reliability is evaluated through bootstrap confidence 

238 scores which are analogous to percent identity metrics provided by other metabarcoding 

239 classifiers (Gao et al., 2017; See Curd et al. 2019 for full description). 

240 We evaluated taxonomic assignment performance by comparing the following metrics: 1) 

241 true positive rate – the number of correct taxonomic assignments divided by the total 

242 opportunities for correct classification, 2) over-classification rate - the number of assignments 
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243 incorrectly made to additional lower taxonomic ranks divided by the total opportunities to make 

244 an over-classification error, 3) under-classification rate - the number of assignments incorrectly 

245 made to fewer taxonomic ranks divided by the total opportunities to make an under-classification 

246 error, 4) misclassification rate - the number of assignments incorrectly predicted divided by the 

247 opportunities for correct classification, and 5) accuracy - the number of correct assignments 

248 divided by the taxonomic assignment opportunities for which correctness can be determined (R. 

249 C. Edgar, 2018a). The 6) sensitivity was calculated as the true positive rate / (true positive rate + 

250 under-classification rate) as under-classification is analogous to a false negative rate. The 7) 

251 specificity was calculated as 1- (misclassification rate + over-classification rate) as the 

252 combination of the misclassification rate and over-classification rate is analogous to the false 

253 positive rate.

254

255 Taxonomic Resolution of the MiFish 12S primer

256 To provide insights into which fishes can be resolved to species level using the MiFish 12S 

257 primer set, we conducted TAXXI comparisons using the global database as both the test and 

258 training database to assign taxonomy to itself. We then calculated the seven taxonomic 

259 assignment metrics described above. Additionally, we identified families and genera of fishes for 

260 which the MiFish 12S locus performed poorly, defined as frequently failing to assign species 

261 level identification. Although all vertebrate sequences in the global database were used in the 

262 taxonomic cross validation, only results for fishes are discussed here.

263
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264 Regional vs. global reference databases

265 To compare the relative ability of regional versus global reference databases to accurately assign 

266 taxonomy, we conducted two additional TAXXI comparisons using the reference databases 

267 created for this study. First, we used the global reference database as a training database to assign 

268 taxonomy to the regional reference database that only contained sequences for fishes known 

269 from the California Current Large Marine Ecosystem. Second, we used the regional reference 

270 database as both the test and training database to assign taxonomy against itself. The taxonomic 

271 assignments made by the global and regional reference databases were compared across the 

272 taxonomic assignment metrics described above.

273

274 Effect of Bootstrap Confidence Scores on Taxonomic Assignment

275 To understand the performance of the MiFish barcode across a range of taxonomic classifier 

276 cutoff scores, we repeated each of the three TAXXI analyses described above (global-regional, 

277 regional-regional, global-global) using bootstrap confidence cutoff scores of 40, 50, 60, 70, 80, 

278 90, 95, and 100. We then evaluated the effect of bootstrap confidence cutoff scores across the 

279 various taxonomic assignment metrics, as described above. 

280

281 eDNA Metabarcoding Case Study

282 Seawater Sample Collection, DNA Extraction, and Library Generation

283 To specifically test the impact of 12S database design on taxonomic assignment in real world 

284 applications, we compared the performance of the three databases in assigning taxonomy to 

285 existing eDNA sequence data as a test case. Briefly, we used MiFish 12S metabarcoding 
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286 sequence data generated from three seawater samples collected from 10 m depth from three sites 

287 off eastern Santa Cruz Island, CA in 2017 that were part of a larger ecological study of 

288 biodiversity patterns within rocky reef ecosystems. These sequences were generated using 

289 standard eDNA collection, processing, and sequencing methods, as outlined in Gold et al., 

290 (2021).

291 We processed this eDNA metabarcoding data three separate times using the Anacapa 

292 Toolkit (Curd et al., 2019), assigning taxonomy using the CRUX-GenBank, global, and regional 

293 reference databases (Table 2). We used the default Anacapa Toolkit parameters and a bootstrap 

294 confidence cutoff score of 60. We then examined the total number of ASVs and taxonomic ranks 

295 identified by each of the three reference databases. We also investigated differences in 

296 taxonomic assignment between single direction ASVs (comprised of forward- and reverse-only 

297 sequence reads) and merged ASVs (merged paired-end sequence reads) to understand the 

298 importance of full length vs. partial length sequences for taxonomic assignment (See 

299 Supplemental Results and Discussion). 

300

301 RESULTS

302 Generation of Novel Barcodes and 3 References Databases

303 We generated 741new 12S MiFish barcode sequences for 597 California Current Large Marine 

304 Ecosystem fishes (Table S1 and Table S2), 545 teleosts (bony fishes), 49 elasmobranchs 

305 (cartilaginous fishes), and 3 cyclostomatan (jawless fishes) (Table S2). This dataset includes 252 

306 that had no previous 12S reference barcodes (Table S1).
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307 CRUX created a custom 12S database comprised of 14,066 taxa and 44,140 sequences 

308 with existing entries in GenBank. Adding the 741 novel sequences, above, resulted in a global 

309 database comprised of 14,321 species and 44,882 sequences. Restricting these sequences to only 

310 fishes from the California Current Large Marine Ecosystem resulted in a curated regional 

311 database that includes 706 out of 1,144 (61.7%) reference 12S barcodes from fishes known from 

312 this region. Excluding 382 species missing from the database that are rare in California (n=357) 

313 or not coastal (n=25), resulted in a total coverage of  92.7% of the 763 common coastal fishes in 

314 this region.

315

316 Taxonomy Cross-validation by Identity Comparisons

317 Regional Versus Global Reference Database Comparisons

318 The TAXXI quality metrics indicate that the regional reference database yielded more reliable 

319 taxonomy at genus and species ranks relative to the global reference databases across all 

320 bootstrap confidence scores; regional database species level accuracy ranged from 64.2-94.2% 

321 compared to 51.3-90.8% for the global database (Table 2 & Table S4; Figures S1 and S2). This 

322 difference was driven by higher misclassification and under-classification rates for the global 

323 reference databases. In particular, database misclassification rates were higher for the global 

324 compared to the regional reference database across all bootstrap confidence cutoff scores less 

325 than 60 (global reference database misclassification 1.8-4.5%, regional database 

326 misclassification rate 1.3-3.1%) (Table S4). Likewise, global reference database under-

327 classification rates were higher than regional reference database under-classification rates across 
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328 all bootstrap confidence cutoff scores (global reference database under-classification 4.8-48.7%, 

329 regional database under-classification rate 2.8-35.8%).

330

331 Taxonomic Resolution of the MiFish 12S primer

332 Cross validation of the 44,896 sequences within the global database demonstrated that the 

333 MiFish primer set delivered 88.0% sensitivity [true positive rate / (true positive rate + under-

334 classification rate)] and 98.2% specificity [1- (misclassification rate + over-classification rate)] at 

335 a bootstrap cutoff score of 60 (Table 2, Table S5), providing species level taxonomic 

336 assignments to 6,762 fish species, genus level resolution to 923 fish species, family level 

337 assignments to 180 fish species, and class level assignments to 2 fish species while 

338 overclassifying 214 fish species (Table S5). While poor taxonomic resolution with the MiFish 

339 primer sets (e.g. assigned taxonomic rank above species) spanned a large number of genera and 

340 families, the genus Sebastes and families Cichlidae, Cyprinidae, and Pleuronectidae were 

341 particularly problematic (Figures 4 and 5). Of these, Sebastes and Pleuronectidae are highly 

342 prevalent within the California Current Large Marine Ecosystem. A full breakdown of 

343 taxonomic assignment resolution is provided in the Supplemental Results.

344

345 Effect of Bootstrap Confidence Scores on Taxonomic Assignment

346 Across all TAXXI comparisons, accuracy and true positive rates increased with decreasing 

347 bootstrap confidence cutoff scores (Figure 1, Figures S1 and S2, Table S4). Likewise, the 

348 proportion of species level assignments also increased with decreasing bootstrap confidence 

349 score (Figure 2, Figures S3 and S4). We also found that misclassification rates increased with 
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350 decreasing bootstrap confidence cutoff score, but at much lower rate (Figure 3, Figures S5 and 

351 S6). These results indicate a clear tradeoff between under-classification and misclassification 

352 across bootstrap confidence cutoff scores.

353

354 eDNA Metabarcoding Example

355 Unassigned MiFish 12S ASVs

356 The Anacapa Toolkit failed to assign taxonomy to 49.6% (169/341) of ASVs representing 24.5% 

357 (81,002/330,877) of all reads using all three reference databases investigated in this study (Table 

358 S6). Of the 169 unassigned ASVs, 16 were forward-only reads, and 153 were merged reads. To 

359 explore the origins of these unassigned reads, we used BLAST to query all GenBank sequences, 

360 revealing that 94.7% (160/169) of these ASVs aligned to marine prokaryotic and eukaryotic 16S 

361 sequences (Max Alignment Scores 87.9-475). Of these aligned ASVs, 85% (136/160) matched to 

362 uncultured sequences generated from marine metagenomic studies. 80.0% (128/160) of 

363 successfully aligned ASVs matched to bacterial barcodes including those from Psychromonas 

364 sp., Photococcus caeruleum, Loktanella sp., Leucothrix sp., and Gimesia sp., and cyanobacteria. 

365 A smaller fraction of assigned ASVs (18.8%; 30/160) best aligned to eukaryotic sequences 

366 including those from diatoms (e.g. Nitzschia alba and Eucampia antarctica) and other marine 

367 microalgae (e.g. Picobiliphytes, Heterosigma akashiwo, Mesopedinella arctica, and Phacus 

368 warszewiczii). Given that these 169 unassigned sequences were non-vertebrate, we excluded 

369 these ASVs from all subsequent comparisons. All remaining 172 ASVs were assigned to a class 

370 of vertebrates by at least one of the three reference databases used. Of these vertebrate ASVs, 58 

371 were merged, 107 were forward-only, and 7 were reverse only reads.

Page 18 of 57Molecular Ecology Resources



For Review Only

19

372

373 Comparisons of CRUX-GenBank, Global, and Regional Reference Database Taxonomic 

374 Assignments

375 The inclusion of additional reference barcodes increased the total number of ASVs and reads 

376 assigned to marine fishes resident in the California Current Large Marine Ecosystem (Tables 2 & 

377 Table S7). Importantly, the inclusion of novel voucher sequences within the global database 

378 resulted in species-level identification for 11 additional California Current Large Marine 

379 Ecosystem fishes including Kelp Bass (Paralabrax clathratus), California Moray (Gymnothorax 

380 mordax), Opaleye (Girella nigricans), Giant Kelpfish (Heterostichus rostratus), Ocean 

381 Whitefish (Caulolatilus princeps), and California Halibut (Paralichthys californicus) (Table S8). 

382 Use of the regional database largely increased accuracy of taxonomic assignments. The 

383 regional database assigned an ASV to the Black Croaker (Cheilotrema saturnum) that was only 

384 assigned to the family Sciaenidae by the global database. Additionally, the regional database 

385 assigned one ASV as Bat Ray (Myliobatis californica) and another as Jack Mackerel (Trachurus 

386 symmetricus), species native to the California Current Large Marine Ecosystem, that the global 

387 database assigned to the non-native species, Common Eagle Ray (Myliobatis aquila) and Rough 

388 Scad (Trachurus lathami), respectively. However, the regional reference database failed to 

389 resolve the taxonomy of one ASV that the global database assigned to the family of Delphinidae. 

390

391 DISCUSSION

392 Taxonomic assignment in metabarcoding studies typically employ large public sequence 

393 databases such as GenBank or Barcode of Life (Leray & Knowlton, 2015; Schenekar et al., 
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394 2020; Stat et al., 2017), or databases that are curated to specific barcoding markers or taxonomic 

395 groups without consideration of species distributions (e.g. Curd et al. 2019). However, 

396 systematic comparison of these approaches to a curated, region-specific reference database 

397 shows that the region-specific database outperforms the global databases in metabarcoding 

398 taxonomic assignment (Table 1). Accuracy of eDNA metabarcoding only improved by including 

399 GenBank sequences from fishes native to the California Current Large Marine Ecosystem and 

400 supplementing these sequences with additional reference barcodes. Furthermore, examination of 

401 taxonomic assignment over a range of bootstrap cutoff scores revealed key tradeoffs, with lower 

402 bootstrap confidence cutoffs yielding more accurate species assignment, but at the cost of higher 

403 misclassification rates. Combined, these results highlight the importance of reference database 

404 and bootstrap cutoff selection in obtaining the best results from metabarcoding studies. 

405 In a test dataset for fish eDNA extracted from seawater collected from three sites on 

406 Santa Cruz Island, the regional database performed the best. The regional database identified 16 

407 additional ASVs to species not identified by the CRUX-GenBank database, and an additional 3 

408 fishes that were misidentified by the global database (Table 2). Higher accuracy with increased 

409 database completeness echoes previous research on the importance of complete reference 

410 databases in metabarcoding (Leray et al., 2012; Machida et al., 2017), and greatly improves the 

411 utility of eDNA for monitoring the California Current Large Marine Ecosystem. 

412 Although the 12S barcodes and reference databases tested here performed well with 

413 regard to annotating fish species (e.g., 91.3% sensitivity and 98.3% specificity across MiFish 

414 reference barcodes), almost half of the ASVs and a quarter of all reads generated in our eDNA 

415 test datasets were not assigned to any fish reference barcode (Table 2). While other 
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416 metabarcoding studies report similar levels of unassigned taxa (Leray & Knowlton, 2017) and 

417 others have encountered this issue (Goodwin, personal communication), this issue isn’t widely 

418 reported in the literature, particularly considering the popularity of the MiFish primers. Further 

419 investigation showed that the vast majority of unassigned ASVs were uncultured bacteria 16S 

420 loci (Table S6) derived from marine shotgun sequencing metagenomic studies (Bork et al., 

421 2015). This result highlights that the MiFish Teleost 12S primer set, while extremely useful for 

422 targeting vertebrate 12S loci, can also amplify non-target 16S genes, raising the possibility that 

423 non-target amplification may at best result in lower returns of target sequences, and at worst 

424 artificially increase estimates of fish diversity. 

425

426 Importance of Regional reference databases

427 Given that increased reference database completeness increases the ability to assign ASV’s to 

428 species (Table 2), it is logical to assume that databases with more taxonomic coverage are 

429 universally better (Curd et al., 2019). However, our results suggest an unexpected trade-off 

430 between greater diversity of barcodes and ecologically informed taxonomic assignment. For 

431 example, using only the regional database specific to California Current Large Marine 

432 Ecosystem marine fishes, we identified important native taxa like Black Croaker (Cheilotrema 

433 saturnum) and Bat Ray (Myliobatis californica) in eDNA isolated from seawater samples. 

434 However, while the global database contained the largest total number of barcodes, including all 

435 taxa in the regional database, Black Croaker was not identified and Bat Ray was inconsistently 

436 identified across multiple ASVs. The global database failed to identify Black Croaker due to the 

437 high similarity of 12S barcode sequences within the Family Sciaenidae, specifically within the 
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438 clade that includes Cheilotrema, a genus native to California, as well as Equetus and Pareques, 

439 non-native coral reef-associated genera (Table S8). Similarity of barcode sequences also explains 

440 the loss of taxonomic resolution in Myliobatis.

441 By excluding highly similar non-native 12S barcodes, the database curated for the region 

442 of interest provided more accurate species-level assignments and far fewer under-classifications 

443 and misclassifications, demonstrating that a database comprised of only local taxa is preferred to 

444 maximize identification of local species. Yet, this improvement was not universal. For example, 

445 the regional database failed to classify one ASV belonging to the family Delphinidae that was 

446 identified by both the CRUX-GenBank and global databases. This result stems from the regional 

447 database being specific to California Current Large Marine Ecosystem fishes, and could thus not 

448 identify a marine mammal. This shortcoming easily could be overcome, however, by appending 

449 the regional database with barcodes for other marine-associated vertebrate taxa of regional 

450 management interests (Valsecchi et al., 2019). An alternative and taxon agnostic approach 

451 currently employed by the co-authors is to conduct taxonomic assignments twice. First, 

452 taxonomic assignments are conducted using a regional reference database to get the best 

453 taxonomic assignment for focal taxa of interest, and second using a global reference database to 

454 identify as many remaining unidentified ASVs as possible (Gold et al., 2021). We did not 

455 directly report the results of the two-step taxonomic assignment method here as the only 

456 difference between this approach and the taxonomic assignments made using the regional 

457 database alone is the additional assignment of the single Delphinidae ASV.

458 These results highlight the tradeoff between identifying local species from clades with 

459 little genetic variation and providing taxonomic coverage across a broad range of species. As 
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460 such, researchers need to identify their research priorities when deciding on which reference 

461 databases to use, with a particular focus on defining the scope of the target taxa. Future work 

462 could alleviate this tradeoff by building bioinformatic pipelines that prioritize assignments to a 

463 reference set of resident species, perhaps by including information on species ranges and sample 

464 locations in the assignment algorithm. However, an advantage of the two-step approach outlined 

465 above is that it allows for eDNA studies to address specific ecological questions without having 

466 a specific target list in mind. This approach is particularly important for eDNA studies which 

467 directly test for the presence of invasive species or range shifts associated with climate change 

468 (Bohmann et al., 2014; Klymus et al., 2017).

469

470 Importance of Taxonomic Cutoff Scores

471 Taxonomic cutoff scores, or percent identity, strongly influenced taxonomic assignments (Edgar, 

472 2018c). Patterns for the MiFish 12S locus showed a similar pattern with higher true positive and 

473 misclassification rates and lower under-classification rates at lower bootstrap confidence cutoff 

474 scores (Edgar, 2018a). These results highlight a key tradeoff between under-classification and 

475 misclassification for metabarcoding taxonomic assignment, and demonstrate that the decision of 

476 which taxonomic cutoff score can strongly influence results (Edgar, 2018a). Lower bootstrap 

477 confidence cutoffs ensure a higher overall accuracy in species-level identification but come at 

478 the cost of higher misclassification rates to an incorrect species-level assignment. 

479 Our results suggest that a TAXXI bootstrap confidence cutoff score of 60 provides a 

480 balance between maximizing species-level assignment accuracy (89.7%, global reference 

481 database) while minimizing misclassification rates (1.7%, global reference database), matching 
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482 the general findings of Curd et al. (2019). However, in instances in which metabarcoding results 

483 may influence management or health decisions with substantial legal or economic ramifications 

484 (i.e., detection of an endangered or invasive species or discriminating a putative disease causing 

485 microbe) a misclassification error may be valued as a far less desirable outcome than an under-

486 classification error (Bohmann et al., 2014; Lodge et al., 2012; Wakeling et al., 2019). In such 

487 cases, results indicate that there isn’t one single bootstrap confidence cutoff score that 

488 completely ameliorates these tradeoffs (Figure 1). 

489 Given that previous work demonstrates that results may not be consistent across loci 

490 (Curd et al., 2019), we can only generalize our results to the MiFish 12S primer set. Determining 

491 confidence–resolution tradeoffs in other widely used primer sets will be fundamental for 

492 effectively interpreting metabarcoding results from those loci. Combining the capabilities of 

493 CRUX with the TAXXI framework provides a critical set of tools to both generate and evaluate 

494 the performance of a range of metabarcoding loci and reference databases (Table 1; Curd et al., 

495 2019; Edgar, 2018a), facilitating such studies. Given the growing number of metabarcoding 

496 applications across a broad range of ecosystems and taxa (Curd et al., 2019; Deiner et al., 2017; 

497 Edgar, 2018a), assessing the performance of barcoding markers in the taxonomic group of 

498 interest is critical.

499  

500 Importance of Complete Reference Databases

501 Previous eDNA metabarcoding efforts in the California Current Large Marine Ecosystem report 

502 poor species-level identification and frequent taxonomic assignment to non-native sister taxa 

503 (Closek et al., 2019; Kelly, Port, Yamahara, & Crowder, 2014; Port et al., 2015). For example, 
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504 an eDNA metabarcoding study in Southern California (Curd et al., 2019) assigned multiple 12S 

505 ASVs to Girella simplicidens, the Gulf Opaleye, a fish that does not occur in California Current 

506 Large Marine Ecosystem coastal waters (Froese & Pauly, 2010; Love & Passarelli, 2020). This 

507 incorrect assignment occurred due to the lack of 12S reference sequences for the local native 

508 Opaleye, G. nigricans. By maximizing the number of local reference barcodes, regional 

509 databases allow the reads to be correctly assigned to ecologically and geographically relevant 

510 species. 

511 In our eDNA samples, the regional database improved species-level assignments, 

512 identifying an additional 17.0% of the total vertebrate sequence reads. Much of this improvement 

513 was due to the inclusion of reference barcodes for Kelp Bass (Paralabrax clathratus), one of the 

514 most abundant marine species in Southern California kelp forest ecosystems and an important 

515 sport fishery target (Pondella II et al., 2015). By including a reference barcode for this species, 

516 the regional database assigned 20 previously unidentified ASVs to P. clathratus, which 

517 accounted for 16.4% of our total sequence reads. Thus, even the inclusion of reference barcodes 

518 for a few key native taxa can dramatically improve metabarcoding efforts.

519

520 Taxonomic Assignment Limitations of MiFish primers

521 Of the 8,084 fishes represented in the global database, the MiFish primers were unable to 

522 provide species level taxonomic assignments to 1,322 species (See Table S5 for complete list of 

523 putative in silico taxonomic assignments). Thus, although the MiFish primer set has broad utility 

524 for fish metabarcoding, this portion of 12S cannot resolve many fishes to species (Miya et al., 

525 2015). These results highlight the tradeoff between breadth and specificity of any metabarcoding 
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526 primer set, a result consistent with previous investigations of the MiFish primer set and universal 

527 barcodes in general (Deiner et al., 2017; Miya et al., 2015). Critically, these results provide much 

528 needed insights into taxonomic blind spots of the MiFish primers, informing primer selection for 

529 future fish metabarcoding applications both in the California Current Large Marine Ecosystem 

530 and globally (Figures 4 and 5). 

531 Another key limitation to metabarcoding taxonomic assignment is the prevalence of 

532 sequence misannotations in public sequence repositories. Misannotations arise predominantly 

533 from subtle incidental issues, such as mislabeling of sequences, and thus are particularly difficult 

534 to address bioinformatically (Heller et al., 2018; Nobre et al., 2016; Wakeling et al., 2019). To 

535 date, the onus of identifying and preventing misannotations are on the user and research 

536 community and there remain few systematic methods for identifying and removing misannotated 

537 sequences although Kozlov et al., 2016 is a notable exception (we also note there is a process to 

538 flag and report such sequences are available through GenBank). One potential solution to the 

539 issue of misannotated sequences is the development and maintenance of global curated datasets 

540 (e.g., MitoFish, Silva, and UNITE) (Nilsson et al., 2018; Quast et al., 2012; Sato et al., 2018). 

541 However, while these approaches may work well for a handful of key loci and taxonomic targets, 

542 these approaches are not scalable with the rapid development of additional metabarcoding loci 

543 and targets of interest (Curd et al., 2019). Thus, further efforts to systemically prevent and 

544 address mis-annotations in public sequence repositories clearly are warranted.

545
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546 Limitations of Barcoding Efforts

547 The regional database did not include barcodes for all California Current Large Marine 

548 Ecosystem fishes (Table S1) due to a combination of limited resources, difficulties amplifying 

549 vouchered tissue samples, the onset of the COVID-19 pandemic (Omary et al., 2020), and a lack 

550 of some vouchered reference material within the Marine Vertebrates Collection of the Scripps 

551 Institution of Oceanography. In total, our regional database did not include  438 of 1,144 

552 (38.3%) California Current Large Marine Ecosystem fishes. However, the vast majority of these 

553 (n=357) are rare in the state of California (the focus of the collection and study), others  (n=25) 

554 are common but not coastal species. Discounting these, our barcoding efforts provide coverage 

555 for 92.7% of the 763 marine fishes common in this ecosystem, making it an important tool for 

556 metabarcoding studies, despite a small number (n=53) of common coastal species missing from 

557 the database (Table S9).

558 The one major shortcoming of our barcoding efforts is that 7.3% (n=32) of the missing 

559 taxa are rockfishes in the genus Sebastes. Rockfishes are ecologically important (Hyde & Vetter, 

560 2007), form the basis of many commercial and recreational fisheries (Lea et al., 1999; Williams 

561 et al., 2010), and declines in rockfish stocks led to the establishment of the largest marine 

562 protected areas in southern California, the Cowcod Conservation Areas (Thompson et al., 2017). 

563 Unfortunately, this shortcoming cannot be easily overcome through additional 12S barcoding 

564 because rockfish are a recent and diverse radiation comprised of 110 species (Ingram & Kai, 

565 2014) and 12S fails to resolve most Sebastes to species-level (Hyde & Vetter, 2007; Yamamoto 

566 et al., 2017). Thus, effective metabarcoding of Sebastes will require designing novel Sebastes-

567 specific metabarcoding primers that target a more rapidly evolving region of the mitochondrial 
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568 genome (e.g. CytB) (Min et al., 2020; Thompson et al., 2017). Importantly, this Sebastes 

569 example highlights the importance of comprehensively evaluating the taxonomic performance of 

570 a particular locus (here MiFish 12S) for a given taxonomic group and the difficulty of using 

571 metabarcoding methods for delineating species within an adaptive radiation.

572 Despite these limitations, however, the current regional California Current Large Marine 

573 Ecosystem 12S-specific reference database includes all but one non-Sebastes nearshore species 

574 monitored by the Channel Islands National Kelp Forest Monitoring Program (n=80, Sprague et 

575 al., 2013), as well as by PISCO, the Partnership for Interdisciplinary Studies of Coastal Oceans 

576 (n=76; the only missing species is White Sea Bass Atractoscion nobilis; Caselle, Rassweiler, 

577 Hamilton, & Warner, 2015; Pondella II et al., 2015). Further, there is now a 12S reference 

578 sequence for 98 of the 100 most abundant ichthyoplankton species collected by the California 

579 Cooperative Oceanic Fisheries Investigation (CalCOFI) from the California Current Large 

580 Marine Ecosystem between 1951-2019 (only missing Showy Bristlemouth Cyclothone signata 

581 and White Barracudina, Arctozenus risso) (Moser, 1993). Moreover, in real world application, 

582 this reference barcode database assigned taxonomy to over 90% of vertebrate ASVs detecting a 

583 broad range of ecologically and commercially important nearshore rocky reef species (Pondella 

584 II et al., 2019). As such, our barcoding efforts represents an important genetic resource for 

585 coastal California marine metabarcoding monitoring efforts.

586

587 Off Target Limitations of MiFish primers

588 High numbers of unidentified ASVs are a common feature of barcoding and metabarcoding 

589 studies (e.g. Leray & Knowlton, 2017). These unidentified ASVs are typically attributed to 
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590 incomplete reference databases (Curd et al., 2019; Ransome et al., 2017; Schenekar et al., 2020) 

591 and/or novel biodiversity (Barber & Boyce, 2006; Boussarie et al., 2018). However, given that 

592 the regional database includes 92.7% of fishes common in this coastal ecosystem, it was 

593 extremely surprising that half of all ASVs and a quarter of all sequences generated in our eDNA 

594 test datasets could not be assigned. 

595 In fact, the vast majority of these sequences and ASVs did not belong to vertebrates, but 

596 instead uncultured marine bacteria, specifically matching to 16S, rather than the target 12S locus. 

597 Since mitochondria represent the capture of microbial endosymbionts by ancient eukaryotes 

598 (Roger et al., 2017) and that this capture occurred in the sea, it perhaps is not surprising that 

599 primers designed to target vertebrate 12S might also capture marine prokaryotes. Similarly, the 

600 homology between vertebrate 12S and prokaryotic and bacterial 16S genes is well known (Crews 

601 & Attardi, 1980) suggesting capturing microbial 16S with vertebrate 12S primers is not 

602 surprising. However, this particular feature of the MiFish primer set previously has not been 

603 widely reported in the scientific literature (Minamoto et al., 2020), potentially impacting the 

604 interpretation of unidentified ASVs in other fish metabarcoding studies. 

605 These findings highlight the importance of accurate universal metabarcoding primer 

606 design, especially in outlining both target and non-target sequences. In the design of the MiFish 

607 Teleost 12S primers, uncultured marine microbe 16S sequences were not considered as potential 

608 alternative targets for the primer set, resulting in the selection of a metabarcoding locus with a 

609 high degree of non-target amplification (Miya et al., 2015). This finding is important for the 

610 marine vertebrate eDNA community, which has recently converged on the MiFish 12S primers 

611 as the vertebrate barcode of choice (Closek et al., 2019; Miya et al., 2020; O’Donnell et al., 

Page 29 of 57 Molecular Ecology Resources



For Review Only

30

612 2017; Valsecchi et al., 2019; Yamahara et al., 2019). At best, this non-target amplification of 

613 microbial DNA will lead to wasted sequencing effort, as every microbial sequence generated 

614 reduces the number of vertebrate sequences captured. Such a situation would be particularly 

615 problematic for relatively rare targets. At worst, it could result in incorrect interpretation of 

616 unidentified ASVs and lead to incorrect biomonitoring assessments (Cordier et al., 2018). This 

617 problem is of particular concern in biodiversity hotspots such as the Coral Triangle where 

618 reference databases are incomplete, as well as in environments with high abundance of bacteria 

619 relative to vertebrate biomass such as in some pelagic midwater and deep-sea habitats where 

620 recent eDNA sample collection efforts have struggled to detect vertebrate sequences (K. Pitz 

621 personal communication).

622 Previous applications of MiFish 12S primer sets did not identify high rates of non-

623 homologous sequences (Collins et al., 2019; Miya et al., 2015). Interestingly, these studies used 

624 higher annealing temperatures (60-65˚C) and fewer PCR cycles than those used in this study 

625 which may potentially explain why we observed high rates of 16S amplification. We note that we 

626 used the touchdown PCR method in order to successfully amplify eDNA from sea water 

627 samples. A white paper from The eDNA Society in Japan using the original 65˚C annealing 

628 methods highlighted that the application of a size-selection step during library preparation (either 

629 via gel extraction or dual size-selection bead clean up) can be used remove off-target sequences 

630 and help ameliorate this issue (Minamoto et al., 2020; Miya & Sado, 2019). We also confirm 

631 here that non-target ASVs are substantially longer in length than vertebrate 12S fragments. 

632 Incorporating these practices to reduce microbial cross-amplification will improve the 

633 application of MiFish 12S metabarcoding efforts. Ultimately, understanding the full scope of 
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634 taxa that can be amplified by a given metabarcoding primer is critical for the successful 

635 application and interpretation of results and concerted efforts to validate markers are clearly 

636 warranted.

637

638 Towards improved metabarcoding efforts

639 The curated California Current Large Marine Ecosystem 12S-specific reference database was 

640 designed to improve effectiveness of metabarcoding of California Current Large Marine 

641 Ecosystem fishes. To further improve and expand the taxonomic coverage of the database, we 

642 generated a website that identifies species needing 12S reference barcodes and provides the 

643 research community targets for additional barcoding efforts (Zack Gold, 2020). The ability to 

644 update and expand the regional reference database will be especially important as climate change 

645 leads to range expansions of sub-tropical species that may become resident within the California 

646 Current Large Marine Ecosystem (Gentemann et al., 2017; Harvell et al., 2019; Sanford et al., 

647 2019; Walker et al., 2020). The importance of expanding the database is highlighted by our 

648 detection of Finescale Triggerfish, Balistes polylepis, in the eDNA samples, a species that has 

649 only recently become more common off Santa Cruz Island and La Jolla since the 2014-2016 

650 marine heatwave (B. Frable & S. McMillan, personal communication).

651 Additionally, while the MiFish Teleost and Elasmobranch 12S loci are important targets 

652 for current marine metabarcoding studies, future efforts and different applications of marine 

653 metabarcoding will likely rely on additional barcoding targets. Here we used the same primer set 

654 to both generate reference barcodes as well as conduct metabarcoding. Although, this choice 

655 limits the applicability and usefulness of our reference barcode generation beyond 
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656 metabarcoding efforts, it allowed us to more easily and rapidly sequence and generate barcodes 

657 for our intended purpose. Furthermore, recent efforts have found success multiplexing CO1 and 

658 16S loci simultaneously provides more species-level identifications than either marker alone, 

659 demonstrating complimentary genetic loci can improve metabarcoding assignments (Duke & 

660 Burton, 2020). Thus future efforts to develop rapid and affordable multilocus barcoding or whole 

661 mitogenomic tools will provide greater resources for marine metabarcoding and population 

662 genomic efforts (Coissac et al., 2016). As these new barcode loci are developed (e.g., Sebastes-

663 specific barcodes), the California Current Large Marine Ecosystem specific reference database 

664 can be expanded to include these loci. Additionally, resources like the SIO Marine Vertebrate 

665 Collection will continue to provide important voucher specimens for advancing marine 

666 molecular ecology resources as they accession new material.

667
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1084 TABLES

1085

1086 Table 1. Summary of Cross Validation Results. Comparison of performance metrics for 

1087 taxonomic assignments using the global database as a reference to annotate sequences in the 

1088 global database (global-global)[ (test database-training database)], the regional database (global-

1089 regional), and using the regional database as a reference to annotate sequences in itself (regional-

1090 regional). Reporting metrics calculated using a taxonomic cutoff score of 60. 

Metric Global-Global Global-Regional Regional-Regional

Under-classification Rate 8.6% 11.8% 7.8%
Misclassification Rate 1.7% 1.8% 1.3%

Over-classification Rate 0.0% 0.0% 0.0%
Accuracy 89.7% 86.5% 90.9%

True Positive Rate 89.7% 86.5% 90.9%
Sensitivity 91.3% 88.0% 92.1%
Specificity 98.3% 98.2% 98.7%

1091
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1092 Table 2. Summary of Seawater eDNA Metabarcoding Taxonomic Assignments for Tested 

1093 Reference Databases.

Reference Database

Metric
CRUX-

GenBank Global Regional 

Reference Barcode Origin GenBank
GenBank + 
Generated

GenBank + 
GeneratedDatabase

Species Included All All
California 

Fishes
Total Reads 330,877
Assigned to NA 81,014 81,002 81,006
Assigned to Class Level 54,090 - - 
Assigned to Order Level 727 - - 
Assigned to Family Level 1,286 1,409 131 
Assigned to Genus Level 952 1,068 1,063

Reads

Assigned to Species Level 192,808 247,398 248,677
Total ASVs 341
Assigned to NA 172 169 170 
Assigned to Class Level 12 - - 
Assigned to Order Level 3 - - 
Assigned to Family Level 5 13 11 
Assigned to Genus Level 4 6 4

ASVs

Assigned to Species Level 145 153 156
Unique Families 
Identified 31 28 27 
Unique Genera Identified 39 38 39 
Unique Species Identified 38 38 37 
CA Native Species 25 36 37 

Taxonomy

Avg. ASVs Per Species 3.8 4.1 4.2
1094

1095 FIGURES
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1096

1097 Figure 1. Effect of TAXXI Bootstrap Confidence Cutoff Scores on Taxonomic Assignment 

1098 Metrics. Taxonomy cross-validation by identity (TAXXI) results for taxonomic assignments generated by using 

1099 the global database as a reference to annotate the sequences in that same database. Accuracy, true positive rate, 

1100 sensitivity, and misclassification increased with relaxed bootstrap confidence cutoff scores. Under-classification and 

1101 specificity decreased with relaxed bootstrap confidence cutoff scores. Results for each taxonomic rank are colored. 

1102
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1103

1104 Figure 2. Taxonomic Classification Rates Across Bootstrap Confidence Cutoff Scores. 

1105 Results from taxonomy cross-validation by identity (TAXXI) using the global database as the reference to assign 

1106 taxonomy to all sequences in that database. Correct species level matches increase with more relaxed bootstrap 

1107 confidence cutoff scores. Correct taxonomic level matches are colored by the lowest common ancestor match. 

1108 Dotted line indicates 100% and all mismatches were excluded.

1109
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1110  

1111 Figure 3. Misclassification Rates Across Bootstrap Confidence Cutoff Scores. Results from 

1112 taxonomy cross-validation by identity (TAXXI) using the global reference database to assign taxonomy to all 

1113 sequences in that database. Misclassification increased with relaxed bootstrap confidence cutoff scores. 

1114 Misclassification types are colored.

1115
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1116

1117

1118

1119 Figure 4. Genera with Poor Taxonomic Resolution. Genera poorly resolved to the species level by the 

1120 MiFish 12S barcode based on results from taxonomy cross-validation by identity (TAXXI) using the global 
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1121 reference database to assign taxonomy to all sequences in that database using a bootstrap confidence cutoff of 60. 

1122 Genera in blue occur in the California Current Large Marine Ecosystem.

1123

1124

1125

1126 Figure 5. Families with Poor Taxonomic Resolution. Families poorly resolved to the species level by 

1127 the MiFish 12S barcode based on results from taxonomy cross-validation by identity (TAXXI) using the global 
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1128 reference database to assign taxonomy to all sequences in that database using a bootstrap confidence cutoff (BCC) 

1129 of 60. Families in blue that occur in the California Current Large Marine Ecosystem.
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Figure 1. Effect of TAXXI Bootstrap Confidence Cutoff Scores on Taxonomic Assignment 

Metrics. Taxonomy cross-validation by identity (TAXXI) results for taxonomic assignments generated by using 

the global database as a reference to annotate the sequences in that same database. Accuracy, true positive rate, 

sensitivity, and misclassification increased with relaxed bootstrap confidence cutoff scores. Under-classification and 

specificity decreased with relaxed bootstrap confidence cutoff scores. Results for each taxonomic rank are colored. 
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Figure 2. Taxonomic Classification Rates Across Bootstrap Confidence Cutoff Scores. 

Results from taxonomy cross-validation by identity (TAXXI) using the global database as the reference to assign 

taxonomy to all sequences in that database. Correct species level matches increase with more relaxed bootstrap 

confidence cutoff scores. Correct taxonomic level matches are colored by the lowest common ancestor match. 

Dotted line indicates 100% and all mismatches were excluded.
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Figure 3. Misclassification Rates Across Bootstrap Confidence Cutoff Scores. Results from 

taxonomy cross-validation by identity (TAXXI) using the global reference database to assign taxonomy to all 

sequences in that database. Misclassification increased with relaxed bootstrap confidence cutoff scores. 

Misclassification types are colored.
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Figure 4. Genera with Poor Taxonomic Resolution. Genera poorly resolved to the species level by the 

MiFish 12S barcode based on results from taxonomy cross-validation by identity (TAXXI) using the global 

reference database to assign taxonomy to all sequences in that database using a bootstrap confidence cutoff of 60. 

Genera in blue occur in the California Current Large Marine Ecosystem.
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2

3 Figure 5. Families with Poor Taxonomic Resolution. Families poorly resolved to the species level by 

4 the MiFish 12S barcode based on results from taxonomy cross-validation by identity (TAXXI) using the global 

5 reference database to assign taxonomy to all sequences in that database using a bootstrap confidence cutoff (BCC) 

6 of 60. Families in blue that occur in the California Current Large Marine Ecosystem.

7
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Table 1. Summary of Cross Validation Results. Comparison of performance metrics for 

taxonomic assignments using the global database as a reference to annotate sequences in the 

global database (global-global)[ (test database-training database)], the regional database (global-

regional), and using the regional database as a reference to annotate sequences in itself (regional-

regional). Reporting metrics calculated using a taxonomic cutoff score of 60. 

Metric Global-Global Global-Regional Regional-Regional

Under-classification Rate 8.6% 11.8% 7.8%
Misclassification Rate 1.7% 1.8% 1.3%

Over-classification Rate 0.0% 0.0% 0.0%
Accuracy 89.7% 86.5% 90.9%

True Positive Rate 89.7% 86.5% 90.9%
Sensitivity 91.3% 88.0% 92.1%
Specificity 98.3% 98.2% 98.7%
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Table 2. Summary of Seawater eDNA Metabarcoding Taxonomic Assignments for Tested 

Reference Databases.

Reference Database

Metric
CRUX-

GenBank Global Regional 

Reference Barcode Origin GenBank
GenBank + 
Generated

GenBank + 
GeneratedDatabase

Species Included All All
California 

Fishes
Total Reads 330,877
Assigned to NA 81,014 81,002 81,006
Assigned to Class Level 54,090 - - 
Assigned to Order Level 727 - - 
Assigned to Family Level 1,286 1,409 131 
Assigned to Genus Level 952 1,068 1,063

Reads

Assigned to Species Level 192,808 247,398 248,677
Total ASVs 341
Assigned to NA 172 169 170 
Assigned to Class Level 12 - - 
Assigned to Order Level 3 - - 
Assigned to Family Level 5 13 11 
Assigned to Genus Level 4 6 4

ASVs

Assigned to Species Level 145 153 156
Unique Families 
Identified 31 28 27 
Unique Genera Identified 39 38 39 
Unique Species Identified 38 38 37 
CA Native Species 25 36 37 

Taxonomy

Avg. ASVs Per Species 3.8 4.1 4.2
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