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Crop growth and 
irrigation 
interact to 
influence surface
fluxes in a 
regional 
climate-croplan
d model 
(WRF3.3-CLM4c
rop)

Yaqiong Lu · Jiming Jin · Lara M. Kueppers

spaceAbstract  In this  study,  we coupled  Version  4.0 of
the Community Land Model that includes crop growth and
man- agement (CLM4crop) into the Weather Research and
Fore- casting (WRF) model Version 3.3 to better represent
inter-  actions  between  climate  and  agriculture.  We
evaluated the performance of the coupled model (WRF3.3-
CLM4crop)  by  comparing  simulated  crop  growth  and
surface  climate  to  multiple observational  datasets across
the continental United  States.  The  results  showed  that
although  the  model  with  dynamic  crop  growth
overestimated  leaf  area  index  (LAI) and  growing  season
length, interannual  variability  in peak LAI  was improved
relative  to a model with prescribed crop LAI and  growth
period, which has no  environmental  sensi-  tivity.  Adding
irrigation largely improved daily minimum temperature but
the  RMSE  is  still  higher  over  irrigated  land  than  non-
irrigated  land.  Improvements  in  climate  variables  were
limited  by  an  overall  model  dry  bias.  However,  with
addition of an irrigation scheme, soil moisture and surface
energy flux partitioning were largely improved at irrigated
sites. Irrigation effects were sensitive to crop growth:
the

spacecase  with  prescribed  crop  growth
underestimated irrigation water use and effects
on  temperature  and  overestimated  soil
evaporation relative  to the case with dynamic
crop  growth  in  moderately irrigated regions.
We  conclude that studies exam-  ining
irrigation effects on weather and climate using
coupled  climate–land  surface  models  should
include  dynamic  crop  growth  and realistic
irrigation schemes to better capture land
surface effects in agricultural regions.

Keywords WRF · CLM · Dynamic crop 
growth · Irrigation · Climate · Surface energy 
flux

1 Introduction

The response of agricultural systems to a changing climate
has  attracted  considerable  attention  due  to  increased
potential for global food crises (Adams et al. 1990; Lawlor
and  Mitch-  ell  1991; Long et al.  2006; Mendelsohn et al.
1994;  Rosenz-  weig  and  Parry  1994).  Crop  models,
including both process-  based  and  statistical  models,  are
widely used to simulate
space                                                                                        climate 
impacts on crop growth and production. For exam-
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spaceple,  a  warming  of  2–4  °C  could  increase  crop
development  rates,  which  would  shorten  the  growing
season and alter crop phenology calendars (Butterfield and
Morison  1992; Peiris  et  al.  1995); elevated atmospheric
CO2  concentrations  can  increase  crop  yield  (Brown  and
Rosenberg  1999;  Easterling  et  al.  1992;  Mearns  et  al.
1992); and yields of wheat, maize, and barley are declining
with  increased  temperature  glob-  ally  (Lobell  and  Field
2007;  Lobell  et  al.  2008).  Although  agronomic  models
have increased  our  understanding  of  crop responses  to
climate  change,  they  have  not  typically  accounted  for
interactions between climate and crop growth.

Crop growth and climate are highly coupled. Opti-  
mum soil temperature and moisture yield the maximum

spaceseed  germination  rate  for  a  given  crop  (Covell  et  al.  1986;
Wagenvoort and Bierhuizen 1977). Growing degree days (sum of daily
temperature degrees above a baseline) based on the air temperature can
be used to predict the phenologi- cal phase and physiological activity
of crops (Bonhomme 2000). Furthermore, crop productivity is reduced
by  many  forms  of  environmental  stress,  such  as  high  temperature,
drought,  low  atmospheric  humidity  (Lobell  et  al.  2014),  and  air
pollution (Pessarakli  1999).  At the same time, cropland plays a very
important biogeophysical role in a changing climate (Feddema et al.
2005; Foley et al.  2005; Pitman et al.  1999). Crops alter  the  small-
scale bound- ary layer structure (Adegoke et al. 2007), such as surface
wind and boundary layer height, with increasing canopy height during
the growth processes. Converting forest to cropland generates a higher
surface albedo that alters the energy budget (Bonan 2008; Oleson et al.
2004). Cropland also alters water cycles. Both field observations and
mod- eling have shown that conversion of forest to rainfed crop- land

mailto:ylu9@ucmerced.edu
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can  reduce  evaportranspiration  and  precipitation  at  a
regional scale (Sampaio et al. 2007).

Cropland management, such as irrigation, has been 
found

to affect climate through changes in water and energy
budg- ets (Adegoke et al. 2003; Cook et al. 2011; Harding
and  Snyder  2012b;  Jin  and  Miller  2011;  Ozdogan  and
Salvucci 2004; Sorooshian et al. 2011). Irrigation’s impacts
on energy budgets are complex. The extra water applied to
the  soil  enhances  evapotranspiration,  thereby  reducing
surface tem-  perature  through  evaporative  cooling
(Kueppers  et  al.  2007;  Lobell  et  al.  2009;  Sacks  et  al.
2009).  The  surface  cooling  reduces  emission  of  surface
long wave radiation, while water vapor in the upper air can
absorb and release more long wave radiation to the surface
(Boucher  et  al.  2004;  Kueppers  and  Snyder  2012).
Irrigation  can  also  increase net  solar  radiation  at  the
surface  due  to  the  decreased  albedo   of  the  wet  soil
(Otterman  1977).  Irrigation  increases  local  and  regional
precipitation  in  regions  where  the  atmosphere  and soil
moisture are highly coupled. For example in the US Great
Plains,  irrigation  enhances  convection  by  increasing
convective  available potential  energy (CAPE) and intro-
duces  additional  precipitable  water,  therefore  increasing
precipitation (DeAngelis et al.  2010; Harding and Snyder
2012a). Although irrigation effects are most significant in
irrigated land, irrigation also affects the surrounding region
through changes in atmospheric circulation. For example,
irrigation affects the Asian summer monsoon by reducing
the differential heating between land and sea (Saeed et al.
2009), and irrigation in California’s Central Valley
strength-  ens  the  southwestern  US  water  cycle  (Lo  and
Famiglietti  2013).  A  key  issue  is  that  numerical  models
used  to explore  these mechanisms have  prescribed crop
leaf area values that  do  not  respond  to  environmental
changes or inter-annual variations in weather and climate.
This prescribed approach

spacecould  result  in  significant  errors  in
estimating  evapotran-  spiration  from
croplands,  because crop leaf  area  and physi-
ological  activity  are  known  to  dynamically
respond  to  cli-  mate variation (Fang et al.
2001; Porter and Semenov 2005). In addition,
such an approach cannot be used to predict the
effects of future climate on crop processes.

In the  past  15  years,  several  studies  have
coupled a dynamic crop growth model with a
climate model to explore  the  importance  to
two-way feedbacks between crop growth and
climate. For example, Lu et al. (2001) coupled
the daily time step version of the CENTURY
model into the Regional  Atmospheric
Modeling System (RAMS) and found seasonal
vegetation  phenology  strongly  influences
climate  patterns  over  the  central  US.
Tsvetsinskaya et al. (2001) introduced growth

functions  into  the  Biosphere–Atmosphere  Trans-  fer
Scheme  (BATS)  and  coupled  it  into  the  Atmospheric
Research Regional Climate Model  (RegCM2) and found
up to a 45 % change in surface energy fluxes in response
to dynamic leaf  area index (LAI).  Osborne et  al.  (2007)
coupled a General Large Area Model for annual crops into
a global climate model (HadAM3) and found growing sea-
son temperature variability was increased by up to 40 %
with the inclusion of dynamic crops (Osborne et al. 2009).
Levis et al. (2012) incorporated an agriculture version of
the Community Land Model (CLM) into the Community
Earth  System  Model  (CESM)  and  found  dynamic  crop
growth not only improves biogeophysical simulations (e.g.,
surface energy fluxes), but also improves biogeochemistry
simula- tions (e.g., net ecosystem exchange).

These   studies   revealed   that   dynamic   crop   growth
strongly  influences  regional  climate  patterns  by  altering
land surface energy fluxes. However, except for Levis et al.
(2012), none of these studies validated the surface energy
fluxes against observations before and after incorporating
the dynamic crop growth model. The role of crop growth
in  regional  climate  systems  has  not  been  quantitatively
investigated.  Furthermore,  the  extent  to  which  dynamic
crop growth alters irrigation effects on climate is not well
known. Only Xu et al. (2005) and Liang  et  al.  (2012)
took irrigation into account in their studies, but they were
focused mainly on how irrigation affects cotton yields and
the  irrigation  effects  on  climate  after  adding  a  dynamic
crop  scheme have not  been  discussed.  In  addition,  as  a
widely used regional climate model, the Weather Research
and Forecasting Model (WRF) does not include a dynamic
crop growth model, and is therefore limited in its capabil-
ity for studying the interactions between climate and crop
growth.  To fill these gaps, we incorporated a crop growth
model and an irrigation scheme into WRF. The objectives
of this study were: (1) to evaluate a newly coupled regional
climate-cropland model’s performance in simulating crop
growth  and  surface  climate  using  multiple  observational
datasets, and (2) to investigate the extent to which dynamic

spacecrop growth alters irrigation effects on climate relative to a case with
prescribed crop growth.

2 Methods

2.1 Regional climate model

For  this  study,  we  coupled  the  Community  Land  Model  version  4
(CLM4)  to  WRF3.3  with  a  focus  on  improving  crop  process
simulations  within  regional  climate  systems.  CLM4  includes  new
treatments of soil column-groundwa- ter interactions, soil evaporation,
aerodynamic parameters for sparse/dense canopies, vertical  burial  of
vegetation by  snow, snow cover fraction and aging, black carbon and
dust deposition, and vertical distribution of solar energy (Law- rence et
al. 2012; Oleson et al. 2010). Simulations with CLM have been shown
to improve daily temperature and precipitation when compared with
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those  with  the  Noah  land  surface  model  in  an  earlier
version of WRF (WRF3.0- CLM3.5) (Jin et al.  2010; Lu
and Kueppers 2012; Subin   et al. 2011). However, we also
found that CLM prescribed crop LAI in the Midwest was
low compared to observa- tions, potentially contributing to
a  large  warm bias  (Lu  and  Kueppers  2012).  Further,  in
both Noah and CLM3.5, for natural vegetation and crops,
plant  parameters,  such as leaf  and stem area indices are
fixed for each month of the year and do not have year-to-
year  variations.  This  limits  appli-  cations  of  WRF3.0-
CLM3.5 for studying two-way interac- tions between crops
and climate.

To better simulate interactions between the atmosphere
and cropland, we further developed a version of the
coupled  model  (WRF3.3-CLM4crop)  that  simulates
dynamic  crop  growth  following  work  by  Levis  et  al.
(2012). The details of the crop growth parameterizations in
the WRF3.3-CLM- 4crop are described in “Appendix” and
are briefly  sum- marized here.  The crop growth module
calculates  the  LAI, stem area  index,  canopy height,  and
carbon and nitrogen in

spaceleaf,  stem, grain,  and root  at  each time
step based on envi- ronmental conditions. The
LAI, stem area index, and can- opy height are
used  in  hydrology  and  radiation  modules  to
calculate the energy and water state variables
that  are trans-  ferred  into  the  atmospheric
modules.  LAI  and  plant  carbon  allocation
differ according to phenological  stage (plant-
ing, leaf emergence, grain filling, and harvest).
Transitions  between  phenological  stages  are
controlled  by  growing  degree  days  (with  a
base of 8 °C for C3 crops and 10 °C for C4
crops).  We  used  C3  and  C4  crop  types  to
represent the potential growth of major crops
(e.g.,  C3  crops:  wheat, soy-  bean,  and  C4
crops: corn, sorghum). C3 and C4 crops dif-
fer  in  their  photosynthesis  pathways.  C3
photosynthesis is more efficient than C4 under
cool,  moist,  and normal light  conditions,  but
C4 photosynthesis  is  more  efficient  than  C3
under  high  light  intensity  and  high
temperatures.  In CLM- 4crop, C3 (Collatz et
al. 1991; Farquhar et al. 1980) and C4 (Collatz
et al.  1992) photosynthesis are represented by
dif-  ferent  parameterizations  for  stomatal
resistance and photo- synthesis, and also have
different phenological thresholds.

2.2 Irrigation scheme

We  developed  a  precision  agriculture-type
irrigation  scheme,  where  the  amount  and
timing  of  irrigation  simu-  lates  efficient
irrigation practices. Irrigation water is applied
as  a  function  of  root  water  stress  (βt),  leaf

tempera-  ture  (Tveg),  and  LAI.  The  root  water  stress  is
monitored by βt, which varies from near zero (dry soil) to
one (wet soil). Leaf temperature also is used, not only to
more realistically simulate irrigation processes (Howell et
al.  1984; Wanjura et  al.  1992), but to maintain optimum
plant  growth as well,  because  high leaf  temperature can
inhibit plant photosyn- thesis (Wise et al. 2004). Irrigation
starts after leaf emer- gence (LAI >0.1 m2 m−2), and occurs
when  either  plant  water  is  low  (βt  <  0.99)  or  leaf
temperature is >35 °C. In irrigated cropland areas (Fig. 1a),
we applied irrigation water to the top of the crop plants to
represent sprinkler

space

spaceFig. 1 Modeled domain showing a percent of cropland equipped for 
irrigation (%) within each grid cell (Sie- bert et al. 2005), and b mean 2004–2006 
irrigation water applied (million gallons per day) simulated in WRF3.3-
CLM4crop. The four AmeriFlux observational sites are indicated in a, Ne3 has the
same locationl as Ne1

space(a) (b)
space

spaceirrigation, a widely used irrigation method in the US (50 % of land
equipped  for  irrigation  in  2005  reported  in  http://
water.usgs.gov/edu/wuir.html). The irrigated cropland area was derived
from the 0.05° global irrigation map (Siebert et al. 2005), as updated in
2006  (http://www.geo.uni-frank-
furt.de/ipg/ag/dl/forschung/Global_Irrigation_Map/index. html).  The
irrigation scheme dynamically  determines when and where  to  apply
irrigation water at a consistent rate of 0.0002 mm s−1. We tested several
different irrigation rates within the range of current irrigation systems
(4–20 gallons per min per acre) and selected the rate (0.0002 mm s−1)
that  yielded  reasonable  cumulative  annual  irrigation  water  use
compared to USGS surveys.  The simulated annual irri-  gation water
use (Fig. 1b) is within 14 % of US water usage estimated by USGS for
2005 (Kenny et  al.  2005).  The range in  annual  simulated  irrigation
water use from 2004 to 2006 was 113–149 billion gallons per day (143
for 2005); the USGS survey estimates 128 billion gallons per day in
2005 (http://ga.water.usgs.gov/edu/wuir.html).

2.3 Experimental design

We  set  up  two  10-year  (2002–2011)  simulations  using  WRF3.3-
CLM4crop to evaluate crop growth (LAI and growing season length).
One is the control simulation with- out irrigation (hereafter referred to
as CROP), and the other includes irrigation (hereafter referred  to  as
CROPIRR)  to quantify irrigation effects  on climate with  dynamic
crop growth. In addition, we set up two additional 5-year (2002–2006)
standard  simulations  with  (hereafter  referred  to  as  STDIRR)  and
without irrigation (hereafter referred to as STD) using the prescribed
LAI  version  of  the  coupled  model  (WRF3.3-CLM4)  to  quantify  a
baseline for irriga- tion effects on climate.  We  compared CROPIRR-
CROP and STDIRR-STD differences to  understand  the  extent  to
which irrigation effects are altered by dynamic crop growth. Based on
several  1-year  test  simulations  evaluat-  ing  model  performance,  the
physical modules used in all simulations include the MYNN boundary
layer  scheme  (Nakanishi  and  Niino  2006),  the  CAM
longwave/shortwave radiation scheme (Collins  et  al.  2004),  the new

http://ga.water.usgs.gov/edu/wuir.html
http://www.geo.uni-frankfurt.de/ipg/ag/dl/forschung/Global_Irrigation_Map/index.html
http://www.geo.uni-frankfurt.de/ipg/ag/dl/forschung/Global_Irrigation_Map/index.html
http://www.geo.uni-frankfurt.de/ipg/ag/dl/forschung/Global_Irrigation_Map/index.html
http://water.usgs.gov/edu/wuir.html
http://water.usgs.gov/edu/wuir.html
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Bondville (Bo1)

Grell cumu- lus scheme (Grell and Devenyi 2002), and the
Thompson microphysics scheme (Thompson et al.  2004).
The simula- tions focused on the contiguous United States
(US)  with  25  vertical  layers  and  a  50  km  horizontal
resolution.  We  inter-  polated  (using  the  inverse  distance
weighting method) 0.5° CLM surface input data (including
plant  functional  types,  plant  function  type  percent,  LAI,
and  stem   area   index)  into  the  model  domain.  We
regridded  National  Centers  for  Environmental
Prediction/Department  of  Energy  Reanaly-  sis  II  global
data  to  our  domain  as  lateral  boundary  con-  ditions
(Kanamitsu et al.  2002).  For analysis, we removed eight
grid cells from the full perimeter of the domain

spaceas a buffer, which diminished the original domain 
from
109 129 to 93 113 grid cells. The first 2 years
of the simulations were discarded as spin-up;
for LAI validation we used 2004–2011 output
and other validation focused on 2004–2006.

2.4 Validation data

We validated the simulated LAI, sensible heat
flux  (H),  and  latent  heat  flux  (LE)  at  five
AmeriFlux sites (ARM, Ne1, Ne3, Bo1, Ro3)
in the US Midwest (shown in Fig. 1a). Except
for ARM, which has a semiarid steppe climate,
all other sites have humid continental climates.
These five sites  all  are agricultural  but  have
different  crop  types  and  till-  age  practices.
ARM  has  a  periodic  rotation  among  winter
wheat, corn, and soybean; Ne1 has continuous
corn; Bo1, Ro3, and Ne3 have annual rotations
between corn and soy- bean. Among the five
sites, only Ne3 is an irrigated crop site, which
is located 1.6 km away from Ne1.

We  obtained  9-years  (2002–2010)  of  LAI
data  (Fischer  2005)  at  ARM,  which  was
measured with a light wand (Licor LAI-2000)
during  the  active  growing  season  (Marc
Fischer,  personal  correspondence).  We
downloaded LAI measurements at three other
sites  (Bo1,  Ne1,  Ne3)  from
ftp://cdiac.ornl.gov/pub/ameriflux/data/Level
2/AllSites/   biological_data/.  The  simulated
LAI  (for  crop  PFTs  only),  H,  and  LE were
extracted at  the grid cell  nearest  to each site
from the CROP simulations for  non-irrigated
sites  (ARM,  Bo1,  Ne1  Ro3)  and  from  the
CROPIRR simulation  for  the  Mead irrigated
site (Ne3).  We compared monthly variation in
LAI and interannual variation in annual peak
LAI.  For  the  monthly  LAI  comparison,  the
simulated  LAI  is  the  10-year  (2002–2011)
averaged  monthly  LAI,  while  the  observed
LAI  is  averaged  over  different  numbers  of

years depending on availability of observations. We did not
compare interannual variation in peak LAI at Bo1 because
observations were only available for 5 years, 1997–2001.
For H and LE, we compared the 3 year (2004–2006) aver-
aged monthly model output to gap-filled level 2 AmeriFlux
sites observations. Among the six levels of data provided
by AmeriFlux, Level 2 is the standardized data that have
been  reviewed  for  consistent  units,  naming  conventions,
reporting  intervals,  and  formats  (http://ameriflux.lbl.gov/
data/aboutdata/).

We   used  in  situ  soil  moisture  data  from  the interna-
tional soil moisture network (http://ismn.geo.tuwien.ac.at/).
Over the validation period of 2004–2006, the soil moisture
measurements were available from Soil Climate Analysis
Network  (SCAN),  Snow  Telemetry  (SNOTEL),  Atmos-
pheric Radiation Measurement (AtmRM), and AmeriFlux
networks.  Different  networks measured the soil  moisture
at different depths, which cannot be directly compared to
the  ten  soil  depths  in WRF3.3-CLM4crop. Therefore, we

Fig. 2 Simulated monthly LAI compared to observations at four AmeriFlux sites. 
Modeled and MODIS LAI are averaged for 2002–2011, and observed LAI is 
averaged for 2002–2010 for ARM SGP main site, 2002– 2007 for Mead irrigated 
and rainfed sites, and 1997–2001 for Bondville)
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2 4 6

month

space
compared the soil water (mm) in the upper soil (0–50 cm)
instead of  directly  comparing  the  soil  water  content
(m3 m−3)  at  each  soil  layer.  After  a  data  quality  control
procedure (missing values <10 %), we selected 18 SCAN
sites, 47 SNOTEL sites, ten AtmRM sites, and nine Ameri-
Flux sites.

We validated the 3-year (2004–2006) daily mean tem-
perature (an average of minimum and maximum tempera-
tures), dew point temperature, and precipitation using the
Parameter-elevation  Regressions  on  Independent  Slopes
Model (PRISM) 4 km product (Daly et al. 1997; Di Luzio
et  al.  2008).  We  interpolated  the  PRISM  values  to  the
model domain for comparison with model output.

3 Results

3.1 Model evaluation

3.1.1 Crop growth

Compared to the site observations, the dynamic crop 
growth model overestimated monthly LAI in most months

space
and sites (58 % higher in average), displayed a

longer growing season, but simulated the
pattern of LAI increasing with irrigation (Fig.

2). The prescribed and MODIS LAI (Zhu et al.
2012) are smaller than the site-level observed

LAI during summer by 52 and 38 % on average
for the four sites, and showed no difference

between the Mead irrigated (Ne3) and rainfed

(Ne1) sites. Even though the dynamic crop

growth model overestimated the LAI
magnitude at Mead irrigated and Mead rainfed,

it simulated a similar increase in LAI due to
irrigation as in the site-level obser- vations

(29.8 % higher modeled vs. 29 % higher
observed). Although the dynamic crop

simulation (CROP) over- estimated peak LAI
in some years, it captured the inter-annual

variation in peak LAI better than the simu- lation with
prescribed LAI (Fig. 3), which has no inter- annual

variation. Furthermore, dynamic crop with irri- gation
(CROPIRR) simulated the reduced interannual variability in
peak LAI at the Mead irrigated relative to the Mead rainfed

site. The standard deviation of peak LAI was 1.09 m2 m−2

smaller in the model and 0.09 m2 m−2 smaller in the
observations in the Mead irrigated relative to the Mead
rainfed site. The tenfold higher reduction in simulated

standard deviation at the Mead irrigated site is
space
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Fig. 3 Variation in simulated annual peak LAI compared to three AmeriFlux sites
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0 ~ 30
30 ~ 60
60 ~ 90
>90
0 ~ -30
-30 ~ -60
-60 ~ -90
<-90mm

observation CROP
STD CROPIRR STDIRR

Fig. 4 Averaged (2004–2006) difference between the 
CROP simulation and PRISM observations for a mean 
daily air temperature, b dew point temperature, and c 
precipitation

spacedue to overestimated interannual variation in peak
LAI at  the Mead rainfed site,  which is  likely due to an
overesti- mate of interannual variation in precipitation by
26.6 %. This greater variation in precipitation resulted in a
large  variation  in  plant-available  water  and  therefore
higher  peak LAI in some years (Fig. 3c).

The dynamic  crop  growth model  simulated an earlier
planting date for most C3 crops and some C4 crops than
observed soybean and maize planting dates available from
USDA crop calendar surveys summarized in Sacks et al.
(2010). Simulated planting dates were within the observed
planting date range for 34 % of C3 and 62 % of C4 crop-
land. For the C3 cropland, the model simulated too-early
planting by 5–6 days in the remaining 66 % of C3 crop
area. For the C4 cropland, the model simulated too-early
planting by 6–10 days in 38 % of the C4 crop area, mostly
in the Midwest and East. Only  1.1  %  of  the simulated
C4 cropland had later than observed planting dates, by 7–
13 days in Montana and Wyoming.

3.1.2 spaceSurface climate and energy fluxes

The  CROPIRR  simulation  overestimated  the
annual  aver-  age  mean  daily  temperature
(Tmean;  Fig.  4a)  in  the Mid-  west  by up to
3.5 °C. The largest monthly warm bias      ( 7
°C) was in July and the smallest ( 0.5 °C) was
in March. These warm biases were larger—
by an additional

1.4 °C in JJA average—without irrigation in
CROP (the  July bias  increased  by up  to  3.3
°C). The warm bias in CROPIRR was reduced
by 2–5 °C from the previous ver- sion of the
coupled model (Lu and Kueppers 2012). Dew
point temperature (Td) was underestimated in
most  regions  (Fig.  4b),  indicating  low
humidity in the model simu- lations even with
irrigation. For 18 % of the continental US, this
underestimation  was  strongly  correlated  (r  >
0.8) to the low precipitation bias. Precipitation
(ppt;  Fig.  4c)  was  underestimated  in  the
Midwest and Eastern US and overestimated in
the  Western  US by up to 2 mm day−1. Where
the model simulated excessive precipitation
in the

spaceTable  1  Spatially  averaged  root  mean  square  error  (RMSE)  for  max-  imum

temperature (Tmax), minimum temperature (Tmin), mean tem- perature (Tmean),
dew point temperature (Td), and precipitation (ppt)

spacebetween PRISM and the four simulations (STD, STDIRR, CROP, and 
CROPIRR) in 2004–2006

space

All domain Non-irrigated cropland
Irrigated cropland

STD STDIRR CROP CROPIR
R

STD STDIRR CROP

Tmax (°C) 3.51 3.29 3.47 3.42 3.57 3.24 3.49
Tmin (°C) 2.82 2.68 2.53 2.47 2.43 2.27 2.01

Tmean (°C) 2.71 2.51 2.48 2.41 2.62 2.35 2.29

Td (°C) 2.7 2.76 2.71 2.69 2.35 2.42 2.28

ppt (mm/day) 1.25 1.22 1.22 1.22 1.32 1.27 1.28

a There is no irrigation in STD and CROP. The averaged value over the irrigated 
cropland (Fig. 1a) is shown here for comparison

space
Fig. 5   Comparison of simulated and observed soil moisture. a Soil water (0–0.5 m)
difference between CROP and observed and b soil moisture comparison at the 
Mead irri- gated site

space

(a)
space

(b)
space

space-120 -110 -100 -
90 -80 -70

space

2 4 6 8 10 12
month

space

spaceWestern US, there was a cold bias, and the low Td was due to
underestimated air temperature since Td never exceeds air temperature.

Adding  a  crop  growth  model  and  irrigation  improved  domain
average  Tmin  the  most  relative to  other  varia-  bles listed  in Table  1
(RMSE was reduced by 18 % for Tmin, 16 % for Tmean, 6 % for Td, 4
% for Tmax, 2 %  for ppt from STD to CROPIRR). However, the Tmin
RMSE was still higher in irrigated than  non-irrigated  grid cells (Table
1). In  general,  the  improvements  tend to be  greater  over  irrigated
land.  The RMSE of  Tmax is  always greater than  the  RMSE of Tmin
no matter which simulation or subset grid cells, and it only is slightly
improved by adding crop  growth and  irrigation  for  non-irrigated (1.7
%) and irrigated land (3.7 %).  Simi-  lar to Tmax, Td and precipitation
are not substantially improved in CROPIRR.

The coupled model generally over-predicted 0–50 cm soil water by
20 mm in the Western  US and under-predicted  soil  water  in  the
Midwest by 49 mm and Eastern US by   20 mm when compared to site
level observations (Fig.  5a). CROPIRR showed the best simulation of
soil water among all four simulations. Adding the dynamic crop model
did not improve  the  soil  moisture  simulation  everywhere;  at  some
sites, the low soil moisture bias was exacerbated
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observation dynamic crop prescribed crop

observation dynamic crop prescribed crop
dynamic crop + irrigation prescribed crop+irrigation

spacebecause higher LAI in the dynamic crop
model  increased  evapotranspiration  over  that
in the prescribed crop (not shown).  However,
adding  irrigation  largely  improved the soil
moisture simulation in irrigated grid cells. At
the  Mead  irrigated  site,  the  simulation
including both irriga-  tion and dynamic crop
growth (CROPIRR) best matched the observed
soil  moisture levels over the growing season
(Fig. 5b).

Incorporating  only  dynamic  crop  growth
into  the model does not substantially improve
simulated  surface  energy  fluxes,  but  the
addition  of  irrigation  does.  Both  STD and
CROP simulated much higher sensible heat
flux
(H)  than  observations  at  all  four  Ameriflux
sites (Fig.  6)  and did not  capture the double
peak  pattern  at  Bondville  (Bo1)  and  Mead
Irrigated  (Ne3).  There  was  only  slight
improvement  in  simulated  H  at  Rosemount
G19  (Ro3)  and Ne1 sites. CROP simulated
higher latent heat  flux (LE) than STD, but still
produced a peak in LE that  was    1 month
earlier than observed at Bo1 and 2 months ear-
lier  at  Ro3.  With  the  addition  of  irrigation,
biases in H   and LE at the Mead irrigated site
were reduced most in CROPIRR. The double
peak pattern of H and the peak month of LE
were well  simulated by CROPIRR, but were
not  captured  in  STDIRR,  which  lacks  a
dynamic crop growth model.

space3354
Y. Lu et al.
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Soil evaporation Leaf evaporation Transpiration

Fig. 6 Comparisons of 2004–2006 monthly mean 
sensible heat flux (a) and latent heat flux (b) between 
model simulations and observations at four AmeriFlux 
sites

3.2 spaceThe role of dynamic crop growth in climate 
effects of irrigation

We compared the differences between the simulated sur-
face variables for the period of 2004–2006 to quantify how
dynamic crop growth influences irrigation effects on sur-
face energy fluxes and temperature. Dynamic crop growth

spacerequires more irrigation water during  the
growing  sea- son than prescribed crop growth
(Fig.  7a).  From  April  to  September,  the
irrigation  water  applied  in  the  CROPIRR
simulation is almost twice than in STDIRR. In
winter, the simulation with prescribed crop had
higher  irrigation  water  use  (0.05  mm  day−1)
because  the  dynamic  crop  module  in  CROP
does not simulate winter crops or cover
crops and

spaceFig. 7 Monthly variation in domain averaged a irrigation water 
(mm/day) and b leaf area index (m2/m2) in prescribed crop and 
dynamic crop simula- tions

space(a)

space(b)
space

2 4 6

Month

space

STD CROP STDIRR CROPIRR

Fig. 8  Simulated 2004–2006 averaged latent  heat  flux  partitioned
into three components for the four models

does  not  apply  irrigation  water  from  November  to  February.  When
comparing the two simulations with dynamic crop growth (CROPIRR
vs. CROP), LAI was 29.8 % greater with irrigation, while LAI did not
change with irrigation under prescribed LAI (STDIRR vs. STD) (Fig.
7b).  This  increase  in LAI due to irrigation is comparable to
observations  (29 % higher LAI at Mead irrigated than Mead rainfed,
Fig. 2c, d).

Dynamic  crop  growth  plus  irrigation  improved  the  sim-  ulated
partitioning of surface energy fluxes. In CLM, the latent heat flux was
partitioned  into  soil  evaporation,  wet  leaf  evaporation,  and  dry  leaf
transpiration.  Because  the  LAI does not  change with the prescribed
crop,  a  large  frac-  tion  of  the  water  applied  to  the  soil  column
evaporated from the soil. In STDIRR, 50 % of the total evapotranspira-
tion was soil evaporation and 35 % was leaf transpiration (Fig.  8). In
the  simulation  with  dynamic  crop  growth,  the  increase  in  LE  with
irrigation is mainly due to increased leaf transpiration resulting from
the larger leaf area; soil evaporation is only a small portion of LE.

The  averaged JJA differences (irrigation run–non irrigation run)  in
climate variables with irrigation have a similar pattern

spacebut  a  different  magnitude  in  the  prescribed  and
dynamic crop growth cases as the cell-fraction of irrigated
cropland increased  (Fig.  9).  Irrigation  increased  LE and
reduced H, but these effects are 34.6 % greater for ΔH and
24.6 % greater  for  ΔLE with dynamic crop in moderately
irrigated regions (20–50  %  irrigated). Irrigation increased
net radiation simi- larly in STDIRR and CROPIRR, except
when irrigation area was >60 %, when the increase in net
radiation  is  41.9  %  smaller  with  dynamic  compared  to
prescribed crops. Irriga- tion reduced  2-m air  temperature
(due to less sensible heat flux) more strongly in CROPIRR
than  in  STDIRR when grid cell percentage irrigated was
>15 %.

4 Discussion  and conclusions

4.1 Model evaluation

By  coupling  CLM4Crop  into  WRF (version   3.3),   we
have taken the first step  toward  extending  the  capabil-
ity of WRF to simulate the two-way interactions between
crop growth and climate. As one of the most widely used
regional climate models, it is important that WRF have a
comprehensive land surface model option. Jin et al. (2010)
first coupled the CLM (version 3) into WRF (version 2)
and then Subin et  al.  (2011) updated the coupled model
(WRF3.0-CLM3.5). We further updated the coupled model
to  WRF3.3-CLM4  and  incorporated  a  dynamic  crop
growth scheme to better reflect seasonal changes in LAI,
and added an irrigation scheme to capture large effects of
increased soil moisture on surface energy and water fluxes.

Our  surface  energy  flux  evaluation  suggested  that
improvements to dynamic crop growth are not sufficient
to  better  simulate  energy  fluxes;  improvements  to  other
physical  processes  (such  as  precipitation)  are  equally
important.  We  expected  the  larger  and   more   dynamic
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LAI simulated in CROP to improve simulation
of   sur-  face  energy  fluxes  where  the
prescribed LAI was small

spaceFig. 9   2004–2006 JJA aver-
aged difference along different grid cell irrigated cropland 
percentage of a latent heat flux (W m−2), b sensible heat flux (W 
m−2), c net radiation

(W m−2), d 2 m air temperature (°C), e soil moisture (m3 m−3), and f 
Bowen ratio reduction (%) in prescribed crop and dynamic crop 
simulations. The error bar shows the standard error among 9 months
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obs
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space

spacecompared  to  observations.  However,  site-level
compari- sons to three non-irrigated AmeriFlux sites in the
Mid-  west  suggest  that  we  did  not  realize  the  expected
improve- ments. The reason may be that although the LAI
is  larger  in  CROP,  the  low  precipitation  bias  persists,
resulting  in  the  low  soil  moisture,  which  limited
evapotranspiration  regardless  of  the  LAI.  This  is
accompanied  by  an  under-  estimated  cloud  cover  and
overestimated downward solar radiation and net radiation
(not  shown),   biases   persist-   ing  from  the  previously
coupled  version  (Lu  and  Kuep-  pers  2012).  As  a
consequence,  gross  energy  fluxes  (e.g.,  latent  heat  flux,
sensible heat  flux) and the Bowen ratio have RMSEs in
CROP comparable  to  those  in  STD at  ARM  and  Bo1.
However,  when  irrigation  was  applied  at  the  Ne1  site,
surface  energy  flux  partitioning  was  sub-  stantially
improved. Therefore, we suspect that in regions with a dry
bias, if the precipitation simulation could be improved, the
simulated surface energy fluxes and  flux  partitioning will
also be improved.

spaceEven though the warm bias in 2-m air
temperature  was  reduced  relative  to  the
previous version of the coupled model, there is
still unresolved warm bias in the  Mid- west.
In  the  previous  version  (WRF3.0-CLM3.5),
there was a very large warm bias of up to 10
°C in the Midwest (Lu and Kueppers  2012).
This  warm bias  was  reduced  by  2–3  °C  by
updating the land surface model, as well as by
using  the  MYNN boundary  layer  scheme in
STD. It was further reduced by 1–2 °C when
adding  dynamic  crop  growth  model  and
irrigation processes. To diagnose the source of
the  warm  bias,  we  conducted  nine  1-year
(2004) offline CLM simulations at  the ARM

site. The original offline test was driven by the 6 h output
from the CROP simulation.  Then in the remaining eight
simulations, we replaced one of the eight forcing variables
(air  temperature,  pressure,  water  mixing ratio, u wind, v
wind, precipitation, downward solar radiation, downward

longwave radiation) with the site observations.  We  found
that only when using observed air temperatures was the
warm bias eliminated,

spaceCrop growth and irrigation
3357

spaceFig. 10 Monthly variation of 2-m air temperature for the eight 1-year offline 
simulations and site observation
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2 4 6

spaceeven though the forcing data still have biases in other
driv- ing variables, such as large downward radiation and
low precipitation (Fig. 10a). Replacing these other driving
vari- ables did not reduce the warm bias, but did improve
surface  energy  fluxes.  For  example,  replacing  model
precipitation  with  site  precipitation  in  the  forcing  data
increased  the  LE  and  reduced  H,  and  using  the  site
downward solar radia- tion largely reduced H (not shown).
These offline simula-  tions indicated that  the unresolved
warm bias in the cou- pled model came from the warm bias
in  the  lowest  level  atmosphere  temperature  (24–30  m
above  the  land  with  spa-  tial  variations)  that  cannot  be
removed by improvements to the land surface model.

The summer dry bias in the central US is mainly due to
poor simulation of the Great Plain Low Level Jet (GPLLJ),
which is defined by the 925 mb meridional wind averaged
across 25°N–35°N and 100°W–95°W (Weaver et al. 2009).
The  GPLLJ  plays  an  important  role  in  summertime
precipi- tation and moisture transport over the Central US
(Higgins et al.  1997). In NARR and NCEPR2 reanalyses,
the sum- mer GPLLJ ranges from 4 to  7 m s−1 and the
Central US precipitation ranges from 3 to 5 mm day−1. The
GPLLJ in our best simulation (CROPIRR) is only around 2
m s−1,

spaceand the summer precipitation is about 1–
2  mm  day−1.  From  spring  to  summer,  the
GPLLJ  in  NARR  and  NCEPR2  gradually
increased and reached a peak in June, while in
our model, the GPLLJ increased from January
to March and then decreased. The underlying
mechanism   of   why  the  model  cannot
realistically  simulate  the  strength  of  the
meridional  wind  from  April  to  August  is
beyond  the  scope  of  this  paper.  For  the
Southeast  US,  the  dry  bias  is  due  to  the
incorrect simulation of the western ridge of the
North  Atlantic  subtropical  high.  Li  et  al.
(2014)  found  a  similar  dry  bias  in  summer
precipitation to be because the western ridge of
the  North  Atlantic  subtropical  high  in  WRF
simu-  lations  shifts  7°  northwestward
compared  to  the  reanalysis  ensemble.  In  our
simulations,  we  found  a  similar  north-
westward shift of the western ridge.

The  warm  and  dry  bias  in  WRF-CLM
affected  crop growth by advancing the  grain
fill  phenology  phase,  increasing  leaf  carbon

allocation  coefficients,  and  reducing  net  primary
production (NPP). As described in the above offline tests,
keeping other  forcing variables  the same, we found that
crop  growth  in  the  offline  simulation  driven  by  the
modeled temperature (with warm bias) has an earlier grain
fill by 33 days for C3 crop and by about 25 days for

spaceC4 crop as compared to the offline simulation driven by the observed
temperature (without warm bias). The warm bias also increased the leaf
carbon allocation coefficient  by 5.7 % for C3 crop and 3.8 % for C4
crop (Fig. 10b). The warm and dry conditions limit the maximum rate
of carboxylation (Vcmax) and therefore reduced plant photo- synthesis.
NPP was reduced by 33 and 4 % for C3 and 16 and 13 % for C4 (Fig.
10c) with warm bias and dry bias respectively. A similar offline test at
Ne1 sites showed sim- ilar decline of NPP due to warm bias (69 %
lower for C3 and 59 % lower for C4 at Ne1). This result indicates that
C3 and C4 crop growth are both sensitive to atmospheric model biases.
We  expect  improvements  in  crop  growth sim-  ulation with reduced
warm  and  dry  bias,  especially  for  the  C3  crop  because  C3
photosynthesis is more limited in dry and warm conditions.

The  overestimated  LAI  in  WRF3.3-CLM4crop  is  not  due  to  the
warm and dry biases, which would reduce NPP as described above. We
found that the offline simulations have a smaller LAI than the coupled
simulation (CROP).  The mean LAI bias  at  ARM in 2004 is    0.06
m2/m2 for   the offline simulations but increased to 0.7 m2/m2 for the
coupled  simulations  (Fig.  10d).  Differences  in  atmospheric  forcing
between the  offline  and  coupled  models  may have  contributed.  For
example,  photosynthetically  active  radia-  tion  was  calculated  as  a
constant  rate  of  the  total downward  solar  radiation  in  the  offline
simulations, but the coupled model used a dynamic calculation in the
radiation scheme. Nevertheless, the overestimate of LAI in both offline
and  coupled  models  indicates  that  the  crop  models  still  need
improvements,  which  in  turn  requires  high  temporal resolu-  tion
observations such as crop phenology, crop NPP, across leaf carbon at a
broader range of sites.

Comparing to CESM1 (Levis et al. 2012), WRF3.3- CLM4crop has
similar  biases  in  crop  growth  even  with    the  modified  carbon
allocation parameters. Both models overestimated the LAI and growing
season length. CESM1 simulated a higher LAI for soybean (C3 crop)
than for maize (C4 crop) and our model displayed similar results. Mean
C3  LAI  was  greater  than  C4  LAI  by  0.19  but  with  clear  spatial
variation (higher C3 LAI in the northern US and higher C4 LAI in the
southern US). Excluding the soil carbon and nitrogen calculations from
WRF3.3-CLM4crop limits its capability for studying biogeochemical
interac- tions between cropland and climate. Levis et al. (2012) found
that adding dynamic crop growth resulted in stronger improvements in
the simulations of  biogeochemical  vari-  ables  (such as NEE) versus
biogeophysical variables (such as H and LE). Our current version of
the  model  can  be  only  used  to  study  biogeophysical  interactions
between  climate  and  cropland.  Furthermore,  the  root  distribution
parameters (Zeng 2001) were not updated as crops developed through

spacethe  growing  season  in  either  model.  In  future
versions,  a  root  growth  submodel  is  needed  to  better
capture the rela-  tionship  between crop  growth and root
water uptake.
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Irrigation  increased  latent  heat  flux  (LE),
comparably   to that generated by other similar
models with precision irrigation schemes run
over the US. Irrigation produced an increase in
JJA LE of 21.4 W m−2 under prescribed crop
and  30.8  W  m−2 with  dynamic  crops  over
irrigated  land.  Harding  and  Snyder  (2012b)
simulated an increase in  JJA LE of 21 W m−2

using the standard  WRF,  Sacks et  al.  (2009)
simulated an increase in JJA LE 20–30 W  m−2

using CCSM, and Cook et al. (2011) simulated
an  annual  increase  in  LE  by  16–20  W m−2

using  GISS  ModelE.  Pre-  vious  work  using
simpler irrigation schemes applied in arid and
semi-arid  regions  produced   much   greater
increases  in LE.  For  example,  Kueppers  et
al.  (2007)  simulated  a 152 W m−2 (20 years
JJA average) increase in LE in California, and
De Ridder and Gallee (1998) simulated a 75 W
m−2 (at  midday)  increase  in  LE  in  southern
Israel.  In  observations,  LE  is  16.5  W  m−2

higher  on average  in  JJA  at  Mead irrigated
sites compared to that  at Mead rainfed sites;
we  would  expect  there  to  be  site-to-site
variation in this value.

4.2 The role of dynamic crop growth in 
climatic effects of irrigation

Our  results  suggest  that  the  dynamic  crop
growth model   is important for evaluation of
irrigation effects on climate. Without dynamic
crop growth, models could underestimate the
irrigation  effects  on  climate  in  moderately
(20–50 % irrigated cropland) irrigated regions
(Fig. 9). This is due to the amount of irrigation
water applied. On average, simu- lations with
dynamic crop growth required more irrigation
water  (Fig.  7a)  and  therefore  resulted  in
greater increases in soil moisture and LE, and
greater decreases in H, T2, and Bowen ratio in
moderately irrigated cropland. In addition, the
dynamic  crop growth simulation had a more
reason-  able  simulation  of  latent  heat  flux
components,  with  higher  latent  heat  flux
resulting  from  increased  leaf  evapotranspi-
ration,  not  increased  soil  evaporation  as
occurred  with  pre-  scribed  LAI.  Such
increased soil evaporation is not reason- able
because  observations  have  shown  that  soil
evaporation  is  about  30  %  of
evapotranspiration  for  irrigated  cropland
(Lascano et al. 1987).

Our simulation used a  precision  irrigation
practice  and the amount of annual irrigation
water  over  the  entire  domain  was  validated

with a USGS irrigation  survey.  How-  ever,  the amount of
water added to each state differed sub- stantially from the
USGS irrigation  survey  (Fig.  11).  This  is  due  to  model
biases in soil moisture. For example, too much irrigation
water was added to Texas and Nebraska

spaceFig. 11 State level irriga- tion percentages for model

spaceModel (143 Mgal/day) USGS (128 Mgal/day)
space(CROPIRR) and USGS in
2005. The total amount applied is 143 million gallons per day in CROPIRR, and 
128 million gallons per day according to the USGS survey

space40.4% Other

0.4% Wyoming
0.3% Utah

0.7% Arizona
0.4% Oregon

16.5% Texas

space

7% California
2% Idaho
1.9% Colorado
1.3% Montana

8.9% Arkansas

20.4% Nebraska

space
17% Other

3% Wyoming
3% Utah

4% Arizona
4% Oregon

6% Texas
7% Nebraska

space19% California

13% Idaho

10% Colorado

7% Montana
7% Arkansas

space

spacein the model because the dry bias in this region resulted    in
insufficient  soil  water to support  crop  growth, while less irrigation
water  was  applied  in  western  states,  such  as  California,  Idaho,  and
Colorado due to  the wet biases  in these states.  Therefore,  ensemble
simulations  with  multi-  ple  regional  climate  models  and  irrigation
schemes may be required to average over model biases and accurately
quan- tify the effects of irrigation on surface climate.

4.3 Conclusions

In summary, this work evaluated the performance of a cou- pled crop-
climate  model  (WRF3.3-CLM4crop)  in  the  sim-  ulations  of  crop
growth  and  surface  climate.  We  found  that  the  coupled  model
overestimated  crop  LAI  and growing season length  but  displayed  a
reasonable  interannual  vari-  ability.  Adding  both  the  dynamic  crop
model  and  the irriga-  tion  scheme  improved  model  simulation  of
temperature and precipitation within and beyond agricultural regions.
Add-  ing  irrigation  reduced  the  dry  bias  in  irrigated  cropland  and
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greatly improved the energy flux simulation at the Mead
irrigated site, while the improvement was limited in other
regions by the model’s dry bias. A dynamic crop growth
model  is  important  for  evaluation  of  crop  management
effects on climate. Excluding dynamic crop growth under-
estimated irrigation water demands and climate effects of
irrigation in moderately irrigated regions.
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Appendix: Dynamic crop module 
in WRF3.3-CLM4crop

We incorporated  the  dynamic  crop  growth  module from
CLM4CNCrop into the coupled regional model WRF3.3-
CLM4.  The  dynamic  crop  growth  module  is  based  on
AgroIBIS (Kucharik 2003) and described in detail in Levis
et al. (2012).

spaceModifications

We made several modifications to the dynamic
crop  module  to  better  fit  into  the  coupled
regional model framework. First, we fixed the
soil carbon and nitrogen state variables. In the
original CLM4CNCrop  model, crop growth is
linked  to  the  carbon  and  nitrogen  model,
which updates multiple soil  and  plant carbon
and  nitro-  gen  variables  at  each  time  step
based  on  crop  phenology  and  environmental
changes.  It  requires a long spin-up time (over
1000s  of  years)  to  enable  the  soil carbon and
nitrogen  to  reach current steady states.  For a
high-reso- lution regional climate model, such
long spin-up  simula-  tions  are  difficult  with
current  computing  resources.  Fur-  ther,  even
though soil carbon and nitrogen are simulated
in  CLM4CNCrop, these  values would not be
routinely  coupled  to  atmospheric carbon  and
nitrogen  in  a  regional  model.  Because  our
regional  scale  focus  is  on  biogeo-  physical,
not  biogeochemical  feedbacks,  between  land
and  atmosphere,  we  assumed that  for  crops,
the  soil  car-  bon  and  nitrogen  could  be
maintained at optimum levels year–year.

Second, at this stage, we consider WRF3.3-CLM4crop
able to simulate C3 and C4 crops, not specific
crop  types.  The  current  version  of
CLM4CNCrop simulates three crops (summer
cereal,  soybean,  corn).  The  growth  of  these

crops is strongly dependent on photosynthetic pathway. We
assume that at a regional scale, it is inappropriate to expect
the  model  to  simulate  specific  crops  across  the  domain
with  validation  only  at  one  or  several  grid  cells  where
observa- tions are available. Therefore, we used C3 and C4
crop types to represent the potential growth of major crops
(e.g.,  C3  crops:  wheat,  soybean,  and  C4  crops:  corn,
sorghum). The next phase of our work will aim to gather
more  obser-  vations  and  validate  growth  parameters  for
more specific crop types.

Third, we made changes to crop phenology and carbon
allocation to better suit the regional coupled model frame-
work and applications. In the planting phase, we changed
the 20-year running mean growing degree days into 5-year
running  mean growing degree  days  to  better  match  our
sim- ulation period. In the harvest phase, we assumed
harvest

space3360
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spaceoccurs  when  the  crop  reaches  1.5  times  the  GDD  required  for
maturity rather than occurring as soon as the crop reaches maturity as
in CLM4CNCrop, since some crops such as corn (Nielsen  2011) are
left in the field after matu- rity to dry. We also modified the carbon
allocation  to  better  reflect  environmental  stress  on  crop  growth  as
described in section A3 of the appendix.

Phenology

Planting

The thresholds for planting, and thus initiation of the crop development 
cycle, are defined as:

T2m > Tp

GDD8 > GDDmin

where T2m is the instantaneous 2-m air temperature (°C),  Tp is a crop-
specific planting temperature (7 °C for C3 crop and 10 °C for C4 crop),
GDD8  is the 5-year running  aver-  aged growing degree days (base 8
°C) from March to Sep- tember, and GDDmin is the minimum growing
degree day requirement (50 degree days for both C3 and C4 crops).  C3
crop must meet the planting temperature requirement between March
1st and May 14th, and C4 crop between May 1st and June 14th.

At  planting,  some  initial  values  are  assigned,  including  leaf  area
index (0.1 m2/m2), stem area index (0.01 m2/m2), leaf carbon (3 gC/m2),
stem carbon (3 gC/m2), and fine root carbon (4.5 gC/m2). The growing
degree  days  value  nec-  essary  for  the  crop  to  reach  vegetative  and
physiological maturity, GDDmat, is updated:

GDD
c3crop 

= 0.85GDD8
GDD

c4crop 
= 0.85GDD

spaceGrain fill

Grain begins to fill  when the growing degree days since
planting (GDDplant) reaches 70 % for C3 and 65 % for C4
crop of  GDDmat. The leaf area index and stem area index

ma
t
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decline and transfer some amount (defined in
A3) of leaf and live stem carbon to grain.

Harvest

We assumed harvest occurs when the crop reaches
1.5 times  the  GDD  required  for  maturity
(GDDplant > 1.5GDDmat) rather than as soon as
the crop reaches maturity  as  defined  in
CLM4CNCrop,  because  crops,  such  as  corn
were left in the field after maturity to dry
(Nielsen 2011).

CN allocation

Initial leaf carbon and nitrogen is  assigned  at
planting.  We  adjusted the value from 1gC/m2

in  CLM4CNCrop  to    3  gC/m2 because  the
small initial leaf carbon generated a too small
leaf carbon, resulting in low LAI compared to
observations  and  too  little  gross  primary
production  (GPP)  for  carbon  allocation.  The
initial leaf nitrogen was calcu- lated using leaf
C:N ratio from Levis et al. (2012). C and  N
allocation starts with leaf emergence and ends
with har- vest.  Carbon allocation is based on
allocation  coefficients  and  the  nitrogen  is
assigned based on the tissue (leaf, stem, root,
and grain) C:N ratio.

Leaf emergence to grain fill

The allocation coefficients to each C pool are defined as:

agrain = 0
spacemat 10

spaceGDD8 = GDD8 + T2m − 8, 0 ≤ T2m − 8◦ ≤ 30◦ days
spaceafroot = 0.7(1 − βp)

spaceGDD10 = GDD10 + T2m − 10, 0 ≤ T2m − 10◦ ≤

30◦ days
spacealeaf = 0.5(1 − afroot)
alivestem = 0.5(1 − afroot )
spacewhere  GDD8  and  GDD10  are  the  5-year  running
averaged growing degree days from March to September.

Leaf emergence

Leaves  emerge  when  the  growing  degree  days  for  soil
temperature (0.05 m depth soil, third layer of CLM) since
planting (GDDTsoil  ,  base 0 and 8 °C for C3 and C4 crop)
reaches 3 % of GDDmat. At this phase, available carbon    is
allocated  to  leaf,  live  stem,  and  fine  root  according  to
constant  allocation  coefficients.  Leaf  area  index  gener-
ally  increases  and  reaches  a  maximum  value,  which  is
prescribed as 6 m2 m−2 for C3 and 5 m2 m−2 for C4 crop.
Also, the stem area index is updated as stem carbon gain or
loss.

space

βp  is a plant functional type dependent variable that indi-
cates the root water stress and varies from near zero (dry
soil) to one (wet soil).  We used βp to better inform carbon
allocation between root  and shoot.  When the  soil  is  dry
(small  βp), more carbon is allocated to the root (Ericsson
et al. 1996) to a maximum of 0.7. The rest of the available
carbon is allocated to leaf and live stem in equal amounts.

Grain fill to harvest

During the grain filling period, fine root carbon allocation
is still controlled by βp, while the maximum C allocation to
fine root is changed to 0.2. 80 % of the remaining carbon is
allocated to grain and the other 20 % to tissues that are not

spaceexplicitly simulated in the model, such as corn silk, flow- ers, etc. We
assume the leaf and live stem carbon decline in this stage, and some
portion of the carbon is transferred to grain

afroot = 0.2(1 − βp) agrain = 

0.8(1 − afroot) aleaf = 0

alivestem = 0

spaceCovell S, Ellis RH, Roberts EH, Summerfield RJ (1986) The
influ-  ence  of  temperature  on  seed-germination  rate  in  grain
legumes.
1. A comparison of chickpea, lentil, soybean and cowpea at con- 
stant temperatures. J Exp Bot 37:705–715

Daly  C,  Taylor  G,  Gibson  W  (1997)  The  PRISM  approach  to
mapping precipitation and temperature.  In:  10th conference on
applied cli- matology, pp 10–12

De Ridder K, Gallee H (1998) Land surface-induced regional climate
change in southern Israel. J Appl Meteorol 37:1470–1485

DeAngelis A, Dominguez F, Fan Y, Robock A, Kustu MD, Robinson
D (2010) Evidence of  enhanced precipitation due to  irrigation
over the great plains of the United States. J Geophys Res Atmos

spacetran = ctimestep

space
tan

 GDD  plant 
GDDp

space115:D15115. doi:10.1029/2010JD013892
Di Luzio M, Johnson GL, Daly C, Eischeid JK, Arnold JG (2008) 

Constructing retrospective gridded daily precipitation and tem-
spacewhere tran is the transfer coefficient of leaf and live stem carbon
to grain carbon,  ctimestep  is  an adjusted coefficient  for each timestep,
GDDplant  is the soil growing degree days since planting (base 8 °C for
C3 crop  and  10  °C for  C4 crop),  and  GDDp  is  the  5-year  running
averaged soil grow- ing degree days from April to September (base 8
°C for C3 crop and 10 °C for C4 crop).
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