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ABSTRACT OF THE DISSERTATION

Theory of Quantum Control of Spin-Photon Dynamics and Spin Decoherence in Semiconductors

by

Wang Yao

Doctor of Philosophy in Physics

University of California, San Diego, 2006

Professor Lu Jeu Sham, Chair

Single electron spin in a semiconductor quantum dot (QD) and single photon wavepacket propa-

gating in an optical waveguide are investigated as carriers of quantum bit (qubit) for information

processing. Cavity quantum electrodynamics of the coupled system composed of charged QD,

microcavity and waveguide provides a quantum interface for the interplay of stationary spin

qubits and flying photon qubits via cavity assisted optical control. This interface forms the basis

for a wide range of essential functions of a quantum network, including transferring, swapping,

and entangling qubits at distributed quantum nodes as well as a deterministic source and an effi-

cient detector of a single photon wavepacket with arbitrarily specified shape. The cavity assisted

optical process also made possible ultrafast initialization and QND readout of the spin qubit in

QD. In addition, the strong optical nonlinearity of dot-cavity-waveguide coupled system enables

phase gate and entanglement operation for flying single photon qubits in waveguides. The co-

herence of the electron spin is the wellspring of these quantum applications being investigated.

At low temperature and strong magnetic field, the dominant cause of electron spin decoherence

is the coupling with the interacting lattice nuclear spins. We present a quantum solution to

the coupled dynamics of the electron with the nuclear spin bath. The decoherence is treated

in terms of quantum entanglement of the electron with the nuclear pair-flip excitations driven

by the various nuclear interactions. A novel nuclear interaction, mediated by virtue spin-flips of

the single electron, plays an important role in single spin free-induction decay (FID). The spin

echo not only refocuses the dephasing by inhomogeneous broadening in ensemble dynamics but

also eliminates the decoherence by electron-mediated nuclear interaction. Thus, the decoherence

times for single spin FID and ensemble spin echo are significantly different. The quantum theory

of decoherence also leads to a method of coherence recovery of the electron by disentanglement,

realized through maneuvering the nuclear bath evolution by control of the electron spin-flip. The

studies form the basis to outline the construction of a solid-state quantum network for scalable

and distributed processing of quantum information.

xii



I

Introduction

I.A Motivation

With the advance of technologies, novel quantum systems becomes accessible in labo-

ratories, e.g., the microscopic system of atoms in engineered electromagnetic environment (e.g.,

optical cavity) [1], the mesoscopic system of semiconductor quantum dots [2, 3, 4], and the macro-

scopic system of Bose-Einstein condensate (BEC) of alkali atoms [5]. Coherent quantum effects

have recently been observed in all of these systems, making them well suited for use as quantum

logic devices (the analog of classic logic devices, however with operation based on quantum me-

chanics) [6]. Yet several fundamental questions must be answered before these systems can be

used as building blocks for large scale quantum computation. These include: (a) how to control

the quantum dynamics in these systems in order to realize the desired quantum logic operations;

(b) the origin and mitigation of decoherence processes that can be deleterious to these quantum

operations. The focus of this dissertation is placed on these two aspects in the mesoscopic system

of semiconductor quantum dots.

Quantum dots formed in III-V semiconductor compounds have featured in numerous

recent proposals for quantum computing and information processing [7, 8, 9]. The spin of the sin-

gle electron localized by the three-dimensional confinement in quantum dots has been considered

a promising carrier of quantum bit due to the desired features of stability and long coherence

time. The mature semiconductor technology also promises the large scale integration and incor-

poration with other existing semiconductor devices. The various types of III-V quantum dots

under intensive investigations includes the gate defined dot formed on two-dimensional electron

gas [9, 10, 11], the GaAs fluctuation dot [4, 12, 13], and In(Ga)As self-assembled dot [14, 15, 16].

Our interests have been focused on the latter two types of dots where arbitrary control of spin dy-

1
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namics for universal information processing may be realized by ultra-fast laser techniques [17, 18].

The ultra-short operation time allows a sufficiently large number of operations before the sys-

tem lost its quantum coherence. Preliminary experimental efforts have indeed demonstrated the

ultra-fast optical control of the quantum dynamics in these dots [4]. Meanwhile, optical stud-

ies have also started in parallel on other types of semiconductor nanostructures, e.g., the II-VI

core shell quantum dots embedded in ploy methyl methacrylate (PMMA) [19] and the diamond

nano-crystals with nitrogen vacancy (NV) centers [20, 21, 22], which have exhibited potentials

for quantum applications.

There is an entirely different type of quantum information carrier in semiconductor

structures, i.e., single photon wavepacket propagating in optical waveguides. Qubit can be en-

coded either in the photon number subspace or the polarization subspace of the single photon

wavepackets. While the stationary qubit carried by the quantum dot spin is of better stability

and addressability, encoding qubit in flying single photons enables the information to be carried

over long distance.

As pointed out by DiVincenzo in his seven criteria for the physical implementation

of quantum computation [23], the ability for faithful interconversion between flying qubit and

stationary qubit can greatly increase the chances for realizing a scalable quantum computer.

Semiconductor offers an arena for both types of qubit, i.e., the stationary spin qubit in quantum

dot and the flying photon qubit in waveguides. The integration of the spintronic and electronic

dynamics with photonic dynamics is made possible through the interface offered by micro-cavity

quantum electrodynamics (QED) with quantum dot, which is one of the main focuses of this

study. As we will show in this dissertation, micro-cavity QED enables the coherent interplay

between the electron spin qubit and the single photon flying qubit as well as the ultra-fast

initialization and readout of the spin qubit through photon detection. Together with the optical

manipulation of the quantum dot spin established in previous work [8, 17, 18], these form the

basis of the construction of an optically controlled spin-based quantum network for scalable and

distributed processing of quantum information.

In addition, all-photonics quantum computation is possible provided that efficient two

photon universal gates can be realized. The conditional dynamics at the single photon level

requires the ultra-large optical nonlinearity which may be provided by the quantum dot micro-

cavity QED. Part of our effort has also been along this direction.

A major obstacle to quantum logic is the various decoherence processes in these solid

state systems. While decoherence is in general deleterious to quantum operations, fault-tolerant

quantum computation is nonetheless possible by quantum error correction [24, 25, 26, 27, 28, 29],

provided that the ratio between the decoherence time versus the operation time exceeds some
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threshold value. Investigation of the dominant decoherence processes in our system and efficient

methods to ameliorate their effects on quantum operation is another major consideration in this

dissertation.

I.B Dissertation outline

In Chapter II, we briefly review the electronic and optical properties of quantum dots

formed in the III-V semiconductor compounds. The three-dimensional confinement in quantum

dots leads to the fully quantized electronic energy levels. As a consequence, quantum dot resem-

bles atom in many ways although it is essentially a mesoscopic system. The atom-like electronic

and optical properties is the basis for ultra-fast optical control of the quantum coherent effects

in quantum dots, in a similar fashion to the development in atomic physics in the past decades.

In Chapter III, we give a brief review to the various micro-cavity and optical waveguide

structures that can now be realized in semiconductors. While micro-cavity and optical waveg-

uide are of important applications in other fields, e.g., optical communication and semiconductor

lasers, our focus will be placed on their potential use for strong-coupling cavity quantum elec-

trodynamics with quantum dots and discussion on merits of the various structures are based on

this need.

The above two chapters provide the knowledge base on the quantum dot and micro-

cavity systems on which we are going to explore the quantum control of the single spin and single

photon dynamics.

In Chapter IV, we explore the potential of micro-cavity quantum electrodynamics with

quantum dot for realizing conditional dynamics of single photons. Ultra-large optical nonlinearity

may arise from the strong coupling of quantum dot exciton with micro-cavity photons. We show a

integrated dot-cavity-waveguide structure for realizing a prototype two photon gate for universal

quantum information processing, i.e., a phase gate on the polarization qubit. The phase gate

structure can also be used to generate polarization entangled photon pairs.

In Chapter V, we investigate the coupled dot-cavity-waveguide structure as the spin-

photon interface for solid state quantum networks. Interconversion between the stationary spin

qubit and the flying photon qubit is realized through a cavity-assisted Raman process. This

Raman process can be made to generate or annihilate an arbitrarily shaped single-photon wave-

packet by pulse shaping the controlling laser field. This quantum interface forms the basis for

many essential functions of a quantum network, including sending, receiving, transferring, swap-

ping, and entangling qubits at distributed quantum nodes as well as a deterministic source and

an efficient detector of a single-photon wavepacket with arbitrarily specified shape and average
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photon number.

In Chapter VI, we discuss applications of the coupled dot-cavity-waveguide structure

for ultrafast initialization and quantum nondemolition (QND) measurements of the spin qubit

in quantum dot. QND measurements and ultrafast cooling of single spins are critical for scalable

quantum computation. For such purposes, quantum evolution in a coupled structure of a nan-

odot, a microcavity, and a waveguide can be coherently controlled to establish efficient quantum

pathways connecting in sequence an electron spin, a charged exciton, a cavity photon, and finally

a flying photon in the waveguide. As an example of suppressing unwanted dynamics in complex

solid-state systems, pulse shaping is employed to switch the nanodot-cavity coupling on demand

and to perform robust quantum operation.

In the above three chapters, we focuse on the optical control of the quantum dynamics

of single spin and single photon. The efficiency or fidelity of these quantum operations depends

critically on the coherence times in the system. The optical relaxation due to spontaneous

emission is taken into account and the effect is efficiently ameliorated in the design. The dot-

cavity-waveguide coupled structure is an example of engineering the electromagnetic vacuum

to guide the spontaneous optical relaxation into the desired quantum channel instead of the

deleterious leakage into free space. The electron spin coherence time is assumed to be sufficiently

long in the design of quantum optical control. The study in Chapter VII and VIII serves as a

foundation for such assumption, where the issues of quantum dot electron spin decoherence and

coherence control are addressed.

In Chapter VII, we present a quantum theory of the electron spin transverse deco-

herence induced by interacting nuclear spins in quantum dot. At low temperature and strong

magnetic field, the most relevant relaxation process for electron spin is in the form of transverse

decoherence, or pure dephasing, and the mechanism is inferred, by process of elimination through

experiments and theoretical arguments, to be the lattice nuclear spins that inevitably exist in

the III-V materials. We solve the electron spin decoherence by a nuclear pair-correlation method

for the electron-nuclear spin dynamics. The theory incorporates the hyperfine interaction, the

intrinsic (both direct and indirect) nuclear interactions, and the nuclear coupling mediated by

the hyperfine interaction with the electron in question. The last is shown to be important in

free-induction decay (FID) of the single electron spin coherence. The spin echo eliminates the

hyperfine-mediated decoherence but only reduces the decoherence by the intrinsic nuclear inter-

actions. Thus, the decoherence times for single spin FID and ensemble spin echo are significantly

different.

In Chapter VIII, we present a theory to ameliorate the electron spin transverse decoher-

ence induced by the lattice nuclear spins. In the timescale of interest, the relevant environment
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for the electron spin in the host quantum dot is of a mesoscopic size which is composed of the

nuclear spins that are in direct contact with the quantum dot electron. The coupled dynamics

of the electron and the nuclear bath can be treated as a coherent quantum evolution where the

decoherence of the electron spin results from the entanglement with the mesoscopic nuclear bath

established by this evolution. This quantum picture of decoherence leads to a theory of coherence

recovery of the electron spin by disentanglement, realized though maneuvering the nuclear bath

evolution by control of the electron spin.



II

Electronic and Optical Properties

of III-V Semiconductor Quantum

Dot: A Brief Review

In this chapter, we briefly review an important element that is being investigated for

an optically controlled quantum computer: quantum dot in III-V semiconductor structures. The

carrier of quantum bit is the spin of the electron confined in singly n-doped quantum dot formed

in III-V compounds.

In all the III-V compounds, the top of the valence band occurs at the center of the

Brillouin zone (Γ point). For the compounds of our interest, i.e., GaAs, AlGaAs and InAs, the

conduction band minimum also occurs at the Γ point (see Fig. II.1) and this leads to direct

optical transitions which are advantageous for low-temperature optical controls as phonons are

not required for compensating the momentum difference. Two types of MBE grown quantum dot

formed in direct bandgap III-V compound offer excellent controllability by ultra-fast optics and

are being investigated as building blocks for an optically manipulated quantum computer. The

first is referred to as interface fluctuation formed quantum dots in GaAs/AlGaAs quantum well

structures [12, 13, 30, 31, 32, 33, 34, 35, 36]. Throughout this dissertation, we will refer them

in short as GaAs fluctuation quantum dots. As illustrated in Fig. II.2(a), electrons and holes

in these samples are localized in the growth direction (z direction) by growing a low bandgap

GaAs layer, with a thickness of tens of Å, between two higher bandgap Al0.3Ga0.7As layers.

Growth interruption at the material interfaces leads to a roughness, usually of one monolayer,

that has a lateral length scale sufficient to localize electron-hole pair laterally in the quantum

6
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Figure II.1 Bulk band structures of direct bandgap semiconductors.

well. The second type of quantum dot, referred as the InAs self-assembled dots, are formed using

the Stranski-Krastanow growth mode which utilizes the strain caused by the lattice mismatch

between the InAs QD layer and the GaAs substrate. InAs self-assembles into islands which are

primarily in the shape of a pyramid (see Fig. II.2(b)), with a height of tens of Å and a base size

of tens of nanometers [14, 15, 37, 38]. Single conduction band electrons can be incorporated in

these quantum dot, e.g., by modulation Si doping in the barriers [39]. The spin of these single

electrons will play the critical role as qubit carrier in the optically controlled solid state quantum

computation to be discussed in this dissertation.

The confinement principle, energy level structures and optical properties are similar in

these two types of quantum dot. The difference lies in the quantitative values of the spatial

dimensions, energy scale of confinement potential, electron g factors and the optical transition

dipole moments, etc. Below, we will review the electronic and optic properties with the example

of GaAs fluctuation quantum dot and the quantitative difference of InAs self-assembled dot will

be mentioned when necessary.

II.A Electronic properties

The electronic properties of semiconductor bulk and heterostructures have been ex-

tensively discussed in many classical textbooks , e.g., [40, 41]. Here we simply summaries the

relevant points to our studies from these discussions.
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GaAsAlGaAs AlGaAs GaAs InAs GaAs

(a) (b)

z z

Figure II.2 Illustration of two types of optically controllable quantum dot. The arrow indicate
the growth direction (z direction). The ellipse regions show schematically the confinement of
electrons in the dot. (a) GaAs fluctuation quantum dot. The dark region is AlGaAs material
and the bright region is GaAs material. (b) InAs self-assembled quantum dot. The dark region
is GaAs material and the bright region is InAs material.

II.A.1 Bulk properties

For the direct bandgap semiconductors, both the conduction band and the valance

band extrema are at the Brillouin zone center (Γ point). For the relevance of the study in

this dissertation, of interest are those low-lying states located in the vicinity of conduction and

valance band edge. The k · p method provides a powerful approach to find these low-lying

electronic states. The starting point is the Hamiltonian describing the dynamics of electrons in

a semiconductor within the single-particle approximation
[

p2

2m
+ V (r) +

~
4m2c2

(σ ×∇V ) · p
]

ψnk(r) = Enkψnk(r), (II.1)

where m is the free electron mass, V (r) is the periodic crystalline potential and p = −i~∇. The

third term in the equation represents the spin-orbit coupling. The solution can be written in the

Bloch form ψnk(r) = unk(r)eik·r where unk(r) has the same periodicity as the crystal potential,

n = 1 · · ·∞ denotes the band index and k the crystal momentum. The idea of the k · p method

is to first solve these equations at the band edge (in this case the Γ point, k = 0)
[

p2

2m
+ V (r) +

~
4m2c2

(σ ×∇V ) · p
]

un0(r) = En0un0(r), (II.2)

The solutions un0(r) form a complete and orthonormal set of basis functions. At the Γ point,

the lowest conduction band has an s-like Γ 6 symmetry. Considering the spin, there is a two-fold

degeneracy. In absence of the spin-orbit coupling, the top valance band which originate from p-

orbital of the onion has a p-like Γ4 symmetry at the Γ point with a six-fold degeneracy considering
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the spin degrees. The spin-orbit coupling lifts the degeneracy and give rise to a quadruplet with

Γ8 symmetry (or total angular momentum J = 3/2) and a doublet with Γ7 symmetry (or total

angular momentum J = 1/2) as illustrated in Fig. II.1.

Away from the Γ point, the equations for Enk and unk(r) has extra terms containing k
[

p2

2m
+ V (r) +

~2k2

2m
+
~k · π

m
+

~
4m2c2

(σ ×∇V ) · p
]

unk(r) = Enkunk(r), (II.3)

where π ≡ p + ~
4mc2 (σ ×∇V ). In the vicinity of the band edge where |k| is small, we can treat

the term ~k·π
m as perturbations and solve for Enk and unk(r) from En0 and un0(r) using either

degenerate or nondegenerate perturbation theory.

The conduction band is nondegenerate excluding the spin degrees of freedom. Using

the standard nondegenerate perturbation theory, we have

uck(r) = uc0(r) +
~
m

∑

n′ 6=c

〈uc0|k · π|uc0〉
Ec0 − En′0

un′0(r), (II.4)

and

Eck = Ec0 +
~2k2

2m
+
~2

m2

∑

n′ 6=c

|〈uc0|k · π|un′0〉|2
Ec0 − En′0

, (II.5)

where we have used the symbol c to denote the lowest conduction band. The term linear in k

in the energy correction vanish because we have neglected the small inversion asymmetry in the

zinc-blende compound, which is equivalent to assuming the band edge occurs at Γ point. The

important result is the effective mass of the conduction band electron

1
m∗ =

1
m

+
2

m2k2

∑

n′ 6=c

|〈uc0|k · π|un′0〉|2
Ec0 − En′0

, (II.6)

The matrix element 〈uc0|π|un′0〉 and the energy separation Ec0 − En′0 between the two bands

c and n′ determines the contribution to the correction to m∗. The most important contribution

comes from the top Γ4 valance band where Es0−En′0 is positive. As a consequence, the effective

mass of the conduction band electron is less than that of the free electron. In Table. II.1, the

effective mass (bulk value) of the conduction band is listed for the relevant III-V compounds.

To apply the k · p method to calculate the band dispersion near the edge of the top

valance band, a degenerate perturbation theory has to be used. As the spin-orbit coupling split

the valance band edge states into quadruplet and doublet with a large splitting of ∼ eV, they

can be treated separately. The quadruplet J = 3/2 band is of our interest. We can write the

wave-function as linear combination of the four degenerate states

ψk(r) =
3/2∑

m=−3/2

Fkmeik·ruvm0(r). (II.7)
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Table II.1 Band parameters (bulk value) for several direct bandgap III-V compounds at the Γ
point [40, 42, 43]. Eg(Γ) denotes the energy gap between the top valance band and the lowest
conduction band. ∆so denotes the splitting of Γ15 valence band state into Γ7 and Γ8 valance
bands. mc is the effective mass of the conduction band. mhh (mlh) is the spherically averaged
effective mass of the heavy (light) hole branch of Γ8v bands. m is the mass of free electron. †
Extrapolated value from measurement performed on AlxGa1−xAs with x from 0 to 0.21.

Eg(Γ) (eV) ∆so (eV) mc/m mhh/m mlh/m gc

GaAs 1.519 0.341 0.067 0.5 0.08 -0.44

InAs 0.45 0.38 0.026 0.4 0.026 -15.0

Al0.3Ga0.7As 1.949 0.084 0.575 0.104 0.6 †

The expansion coefficients Fkm are determined from the Luttinger Hamiltonian

HL =
~2

2m

[(
γ1 +

5
2
γ2

)
k2 − 2γ2(k · J)2 + 2(γ3 − γ2)(k2

xJ2
x + k2

yJ2
y + k2

zJ2
z ))

]
, (II.8)

where the parameters γ1,γ2 and γ3 are known as the Kohn-Luttinger parameters and J =

(Jx, Jy, Jz) is an operator whose effects on the Γ8 valance band edge states are identical to

those of the angular momentum operator on the J = 3/2 atomic states. The first two terms

in Eqn. (II.8) have spherical symmetry while the last represents the effect of the lower cubic

symmetry which will cause warping of the constant energy surfaces in the Brillioun zone. The

Luttinger Hamiltonian can also be expressed in matrix form [44]

HL =




P + Q −S R 0

−S† P −Q 0 R

R† 0 P −Q S

0 R† S† P + Q




. (II.9)

The matrix elements are

P =
γ1~2

2m
(k2

x + k2
y + k2

z), (II.10)

Q =
γ2~2

2m
(k2

x + k2
y − 2k2

z), (II.11)

S =
√

3γ3~2

m
kzk−, (II.12)

R = −
√

3~2

4m
(γ2 + γ3)k2

− −
√

3~2

4m
(γ2 − γ3)k2

+, (II.13)

where k± = kx ± iky. The basis set for the matrix in Eqn. (II.9) is : |J = 3/2, Jz = 3/2〉,
|J = 3/2, Jz = 1/2〉, |J = 3/2, Jz = −1/2〉 and |J = 3/2, Jz = −3/2〉.

In bulk material, we can always choose the quantization axis for angular momentum J

to be along the direction of the crystal momentum k and if we neglect the non-spherical terms
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in Eqn. (II.8), we obtained the eigenenergies of Eqn. (II.8),

Ekm =





k2

2mhh
, m = ± 3

2

k2

2mlh
, m = ± 1

2

, (II.14)

where mhh = m/(γ1−2γ2) and mlh = m/(γ1+2γ2). Eqn. (II.14) describes two doubly degenerate

subbands with the effective mass mhh and mlh respectively in the vicinity of the band edge. The

subband with the larger effective mass mhh is referred as the heavy hole (hh) band and the

subband with the smaller effective mass mlh is referred as the light hole (lh) band. Therefore,

the degeneracy of the valance band originated from the quadruplet is lifted for finite |k| by the

different effective mass as shown in Fig. II.1. In Table. II.1, the effective mass (bulk value) of the

heavy hole and light hole band is listed for several relevant bulk material of III-V compounds.

II.A.2 Vertical confinement

The eigenstates in the quantum well is obtained based on the envelope function approach

[41]. The method requires that the A and B materials constituting the quantum well structures

are well lattice matched and they crystallize with the same crystallographic structure which are

well satisfied for the GaAs/AlGaAs and GaAs/InAs heterostructures.

In the envelope function model, the key assumption is to write the heterostructure

wavefunction as,

ψ(r) =
∑

n

f (A,B)
n (r)un0(r), (II.15)

where the band edge Bloch functions are assumed to be the same in each kind of layer that

constitutes the quantum well structure. The objective is to determine f
(A,B)
n (r). Since un0(r)

are linearly independent, the continuous condition for the wavefunction at z = z0 gives

f (A)
n (r⊥, z0) = f (B)

n (r⊥z0), (II.16)

where r⊥ is a two-dimensional position vector perpendicular to the growth direction (z direction).

The lattice match condition ensures the heterostructure to be translationally invariant in the layer

plane. Therefore, fn can be further factorized into,

f (A,B)
n (r) =

1√
S

exp(ik⊥ · r⊥)χ(A,B)
n (z), (II.17)

where S is the sample area and k⊥ = (kx, ky) is the in plane wavevector.

The relevant heterostructure states are constructed from the host states near the zone

center which are well described by the k · p method in II.A.1. We further take the Ben Daniel-

Duke Model [41] which assumes the heterostructure state is built from host states that belongs
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to a single band. This model works qualitatively well for the lowest conduction states of GaAs-

Ga(Al)As heterostructures with GaAs layer thickness larger than ∼ 100 Å and for the heavy

hole levels at k⊥ = 0 in any heterostructure. Since most of the physics can be made transparent

within this simple model, we will apply it for calculation of the quantum well confinement for

the conduction band state and also use the model as the starting point for the discussion of the

confined heavy hole and light hole valance band states.

We first look at the conduction band. The effective masses will be denoted by m∗
A(m∗

B)

and the energy of conduction band edge by ε
A(B)
c in the A(B) layers. We have [41],

[
εc(z) +

~2k2
⊥

2µ(z)
− ~

2

2
∂

∂z

1
µ(z)

∂

∂z

]
χ(z) = εχ(z) (II.18)

where µ(z) = m∗
A (m∗

B) and εc(z) = εA
c (εB

c ) if z corresponds to layer A (B). The boundary

conditions at the A-B interfaces are such that χ(z) and 1
µ(z)

dχ
dz both being continuous. The

difference in energy of the conduction band edge of the two materials form a one-dimensional

potential trap for the conduction band electron (see Fig. II.4). The energy scale of this trap is

∼ 0.1− 1 eV which is a rather strong confinement. The effective mass mismatch also contributes

to the total confining barrier by a term which is k⊥ dependent. This term is small in most

instances, e.g., conduction states in GaAs/AlxGa1−xAs. If we further neglect this effective mass

mismatch by assuming m∗
A = m∗

B = m∗, Eqn. (II.18) reduces to the quantum mechanics textbook

problem of a particle confined in a one-dimensional square well.

To have a qualitative picture of the trapped states in this square well potential, we first

estimate the energy levels for an infinite potential well problem,

En(kx, ky) =
~2

2m∗
A

[
(
nπ

d
)2 + k2

x + k2
y

]
n = 1, 2, 3, · · ·

At kx = ky = 0, the energy levels are equal to El = ~2
2m∗ ( lπ

d )2. The quantum well structure for

the GaAs fluctuation quantum dot under investigation has a thickness d ranges from ∼ 3− 6 nm

[30, 37]. By plug in this number and the effective mass of the conduction band electron (see

Table. II.1), we have the ground state energy E1 ∼ 0.1 eV which is in the same order of magnitude

as the confinement potential. Therefore, we conclude that while the quantum well potential in

the growth direction is sufficient to hold several energy levels confined in growth direction, in

the real situation, the potential is not sufficiently strong to confine the electron entirely in the

GaAs layer and a portion of it will evanescently penetrate into the AlGaAs layer. This could

lead to the large deviation of the heterostructure electron g-factor from the bulk value in GaAs

[45] (note the sign and magnitude difference in the bulk g-factor of GaAs and AlGaAs materials

in Table. II.1). The lift of the energy of the conduction band electron by this quantum well

confinement from the bulk band edge is ∼ 0.1 eV.
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For the confinement of holes in quantum well, it is convenient to use the Luttinger

Hamiltonian of Eqn. (II.8) to which we add the confinement potential due to the difference in

energy of the band edge of host material A and B. For simplicity, we also neglect the non-spherical

term in the Luttinger Hamiltonian and further assume that the Kohn-Luttinger parameters are

identical in the layers A and B. We denote the energy of the valance band edge by ε
A(B)
c in the

A(B) layers. The hole Hamiltonian in the quantum well becomes [40],

H =
~2

2m

[
(γ1 +

5γ2

2
)∇2 − 2γ2(J ·∇)2

]
+ εv(z) (II.19)

where ∇ act on the envelope part of the hole wave function, and εv(z) = εA
v (εB

v ) if z corresponds

to layer A (B). The Hamiltonian of Eqn. (II.19) is non-separapable because of the terms like

JxJz(∂/∂x)(∂/∂z)) (the off-diagonal term S in the matrix form of Eqn. (II.9)). These “off-

diagonal” term will have negligible effect for small in plane k⊥ but could induce band anti-crossing

for large k⊥. Here we first neglect these “off-diagonal” terms and consider their effects later.

If we choose the quantization axis of the angular momentum J along the growth direction

(z direction), the Hamiltonian for motion in the z direction becomes,

H =
~2

2m

[
(γ1 +

5γ2

2
)− 2γ2J

2
z

](
∂

∂z

)2

+ εv(z) (II.20)

For Jz = 3/2 state, the above Hamiltonian is a one-dimensional square potential for a particle

with mass equal to the heavy hole effective mass mhh = m/(γ1 − 2γ2) in the bulk. Similarly,

Jz = 1/2 state acts as if it had the light hole effective mass mlh = m/(γ1 + 2γ2) in the bulk.

Therefore, the confinement energy is larger for the Jz = 1/2 state than the heavy Jz = 3/2 state,

as illustrated in Fig. II.3(a). This lifts the degeneracy of the Jz = 3/2 band and Jz = 1/2 and

the energy spacing of the ground states of confinement of the two bands can be estimated by

assuming the infinite potential well: EJz=3/2 − EJz=1/2 ∼ − ~2
2mhz

(π
d )2 + ~2

2mlz
(π

d )2 ∼ 0.1 eV.

The Hamiltonian for the in plane motion is given by,

H =
~2

2m

[
(γ1 +

5γ2

2
)− 2γ2J

2
x

](
∂

∂x

)2

(II.21)

As we have chosen the quantization of angular momentum J to be along the z direction, we shall

evaluate J2
x in the z basis. We have the expectation values,

〈J = 3/2, Jz = ±3/2|J2
x |J = 3/2, Jz = ±3/2〉 = 3/4

〈J = 3/2, Jz = ±1/2|J2
x |J = 3/2, Jz = ±1/2〉 = 7/4

Plug into Eqn. (II.21), we find that the Jz = ±3/2 bands behaves as if it had the in-plane

mass mhx = m/(γ1 + γ2) while the Jz = ±1/2 states had the in-plane mass mlx = m(γ1 − γ2).

Therefore, the Jz = ±3/2 states has a smaller in-plane mass than the Jz = ±1/2 states. This
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Figure II.3 Dispersion relation of the Jz = 3/2 and Jz = 1/2 valence bands in quantum well
[40]. (a) Energy shift due to the confinement in the growth direction. (b) In plane dispersion of
the two valance bands when the “off-diagonal” terms are neglected (without mixing). (c) Level
anti-crossing when “off-diagonal” terms are included.

phenomenon is referred as mass reversal in the literature. In absence of the off-diagonal terms

(S and R in Eqn. (II.9)), the two bands Jz = 3/2 and Jz = 1/2 will cross each other due

to the mass reversal as illustrated in Fig. II.3(b). The off-diagonal terms lead to the mixing

(anti-crossing) of the two bands Jz = ±3/2 and Jz = ±1/2 at large k⊥ as shown in Fig. II.3(c).

Nonetheless, the terms “heavy hole” and “light hole” will be used, as in the literature [40], to

designate the subbands in quantum well arising from the Jz = ±3/2 and Jz = ±1/2 band edge

states respectively. The heavy hole subband will be of our interest for optical control of quantum

dynamics in the dot.

II.A.3 Lateral confinement

Electron and hole confinement within the plane of the quantum well (in the x and y

direction) is made possible by the fact that the quantum well thickness is not uniform. Fig. II.4

show schematically how monolayer-size fluctuations in the quantum well can give rise to the

localized ϕ(r⊥) part of the envelope function. We focus on the conduction band electron and the

“heavy hole” valance band. The energy lift by the quantum confinement in the z direction can

be roughly estimated by ~2
2m∗ (π

d )2 for the lowest energy state. This energy lift is larger where the

quantum well is thinner and therefore provide lateral confinement where the quantum well has

an island (see Fig.II.2(a)). The energy scale of this lateral confinement is typically of several to

several tens meV in GaAs fluctuation dot. GaAs fluctuation dot with lateral size ∼ 40 nm can

hold several localized energy levels for electron and hole. Since the lateral length scale is also

larger than the exciton Bohr diameter (∼ 23 nm in GaAs), the localized electrons and holes will

bind together to form excitons in the fluctuation island.

In InAs self-assembled quantum dot, the lateral confinement is much stronger due to
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Figure II.4 Schematics of the three-dimensional confinement of electrons and holes in a GaAs
fluctuation quantum dot [46]. (a) Interface fluctuation, typically of one monolayer, form a fluc-
tuation dot. The bright region is the GaAs material and the dark region is AlGaAs. (b) Vertical
confinement for electrons and holes in the growth direction (z direction) at x = x1 where the
quantum well is thinner d = d1. (c) Vertical confinement in the growth direction at x = x2

where the quantum well is one monolayer thicker d = d2. (d) The difference of the energy lift by
vertical confinement in regions of different thickness form a lateral confinement for the electrons
and holes.
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its pyramid structure as shown in Fig. II.2(b).

II.A.4 Hole-mixing

The “off-diagonal” terms S and R of the Luttinger Hamiltonian (Eqn. (II.9)) will couple

the heavy hole and light hole subbands for non-zero k⊥ (see also Fig. II.3). For quantum dot with

inversion symmetry in the growth direction, the expectation value of kz in the envelope function

of the lowest confined states vanishes and therefore, S will have a negligible effect. In this case,

the dominant contribution to heavy hole light hole mixing comes from R. In presence of hole

mixing, the states that originate from the Jz = 3/2 heavy hole state can be generally written

as: (1, η+
2 , η+

1 , 0) with normalization understood. The basis set is |J = 3/2, Jz = 3/2〉, |J =

3/2, Jz = 1/2〉, |J = 3/2, Jz = −1/2〉 and |J = 3/2, Jz = −3/2〉. Similarly, the state originate

from Jz = −3/2 state is: (0, η−1 , η−2 , 1). η±1 and η±2 are typically small in GaAs fluctuation dot

(η±1 can be of several percent and η±2 usually negligible) and can be taken as real numbers.

In InAs self-assembled quantum dot, due to stronger lateral confinement, the confined

states will have larger values of k⊥ and therefore, hole-mixing effect can be larger in these dots.

II.B Optical properties

II.B.1 Light-exciton interaction in quantum dot

We review here the exciton-light interaction in the quantum dot [46]. The wavelength

of the optical field (λ ∼ µm) is typically much larger than the dimension of the quantum

dot, therefore, the light-matter interaction Hamiltonian can be written in the electric dipole

approximation

Hi(t) = −P ·E(r0, t), (II.22)

where P = −er is the polarization operator and r0 is the central position of the quantum dot. We

first derive below the second quantized form for this polarization operator. The second quantized

field operator for the electron in the quantum dot can be expressed as,

ψ(r) =
∑
m,σ

Fc,m(r)uc,0(r)χ(σ)ac,m,σ +
∑

m,l,σ

Fv,m(r)uv,l,0(r)χ(σ)av,m,l,σ (II.23)

where F (r) is the envelope function, u(r) is the band edge Bloch function and c (v) denotes the

conduction (valance) band respectively. We have limited the expansion to the lowest conduction

band and the heavy hole subband of the top valance band. All the rest bands are far off-resonance

from the frequency of the optical field we will be using. m denotes the quantum number in the

quantum dot confinement and for the same reason, we have also limited the expansion in m to
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cover only the lowest several confined states (all with the lowest quantum number in the vertical

confinement, but excited states in the lateral confinement can sometimes be involved due to

the smaller energy spacing ∼meV). l = ±1 is the orbital angular momentum of the heavy hole

valance states (notice that Jz = 3/2 (−3/2) is formed by the orbital angular momentum state

l = 1 (-1) with spin on state ↑ (↓)). χ(σ) are the spin wavefunction,

χ(↑) =


 1

0


 , χ(↓) =


 0

1


 (II.24)

The second quantized form of the polarization operator can be written as,

P =
∫

d3rψ†(r)rψ(r) (II.25)

=
∫

d3r
∑

m,σ;m′,σ′,l

F ∗c,m(r)u∗c,0(r)rFv,m′(r)uv,l,0(r)δσ,σ′a
†
c,m,σav,m′,l,σ′

+
∫

d3r
∑

m,σ;m′,σ′,l

Fc,m(r)uc,0(r)rF ∗v,m′(r)u∗v,l,0(r)δσ,σ′a
†
v,m′,l,σ′ac,m,σ

= P†− + P− + P†+ + P+

The four components are respectively

P†− ≡
∑

m,m′
µε̂+Pc,m;v,m′a†c,m,↑av,1,m′,↑ (II.26)

P− ≡
∑

m,m′
µε̂−P∗c,m;v,m′a

†
v,1,m′,↑ac,m,↑

P†+ ≡
∑

m,m′
µε̂−Pc,m;v,m′a†c,m,↓av,1̄,m′,↓

P+ ≡
∑

m,m′
µε̂+P∗c,m;v,m′a

†
v,1̄,m′,↓ac,m,↓

where

Pc,m;v,m′ ≡
∫

d3rF ∗c,m(r)Fv,m′(r), (II.27)

and

µ ≡ 1
Ω

∫

cell

d3ruc,0(r)xuv,x,0(r) =
1
Ω

∫

cell

d3ruc,0yuv,y,0 =
1
Ω

∫

cell

d3ruc,0zuv,z,0, (II.28)

are both real numbers by our convention. The polarization vector ε̂± has the properties:

ε̂± = ε̂∗∓ ≡
x̂± iŷ√

2
, ε̂± · ε̂∗± = 1, ε̂± · ε̂∗∓ = 0. (II.29)

In the last step of Eqn. (II.25), we have used,

uv,±1,0(r) =
uv,x,0(r)± iuv,y,0(r)√

2
(II.30)
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We have also used the property that the envelope function Fc,m(r) and Fv,m(r) are slowly varying

within a unit cell so that,
∫

d3r
∑

m,σ;m′,σ′
F ∗c,m(r)u∗c,0(r)rFv,m′(r)uv,l,0(r)

=
∑

i

F ∗c,m(Ri)Fv,m′(Ri)
∫

cell

d3ru∗c,0(r)ruv,l,0(r) (II.31)

=
∫

d3RF ∗c,m(R)Fv,m′(R)
1
Ω

∫

cell

d3ru∗c,0(r)ruv,l,0(r)

where Ω is the unit cell volume and the integral
∫

cell
runs over the unit cell. The normalization

condition is such that,
∫

d3RF ∗c(v),m(R)Fc(v),m(R) = 1,

∫

cell

d3ru∗c(v),0(r)uc(v),0(r) = Ω (II.32)

The electric field of the σ± circular polarized light propagating in the z-direction has

the form,

E±(z, t) = E± (x̂ cos(kz − ωt + φ)∓ ŷ sin(kz − ωt + φ)) (II.33)

=
E±√

2

(
ε̂±eiφei(kz−ωt) + ε̂∗±e−iφe−i(kx−ωt)

)
,

The positive and negative frequency part of E±(z, t) can be separated,

E(+)
± (z, t) =

E±
2

(x̂± iŷ)eiφei(kz−ωt) =
E±√

2
ε̂±eiφei(kz−ωt) (II.34)

E(−)
± (z, t) =

E±
2

(x̂∓ iŷ)e−iφe−i(kz−ωt) =
E±√

2
ε̂∗±e−iφe−i(kz−ωt) (II.35)

Therefore, the light-exciton Hamiltonian with polarization operation expressed in the

second quantized form is,

Hi = E ·P = (P†− + P− + P†+ + P+) · (E(+)
− + E(−)

− + E(+)
+ + E(−)

+ ) (II.36)

= (P†− + P+) · (E(+)
− + E(−)

+ ) + (P− + P†+) · (E(−)
− + E(+)

+ )

where in the last step we have used the properties of ε̂± in Eqn. (II.29)

From now on, we will work with the rotating wave approximation (RWA). In this ap-

proximation, terms in a Hamiltonian which oscillate rapidly are neglected. This is a valid ap-

proximation when the applied optical field is near resonance with the transition in quantum dot,

and the intensity is low. Explicitly, terms in the Hamiltonian which oscillate with frequencies

ω + E, are neglected while terms which oscillate with frequencies ω−E are kept, where ω is the
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light frequency, and E is a transition frequency. The Hamiltonian in RWA is therefore,

HRWA = P†− ·E(+)
− + P+ ·E(−)

+ + P− ·E(−)
− + P†+ ·E(+)

+ (II.37)

=
∑

m,m′,i

Ωm,m′
i,−
2

eiφiei(kiz0−ωit)a†c,m,↑av,1,m′,↑

+
∑

m,m′,i

Ωm,m′
i,+

2
eiφiei(kiz0−ωit)a†c,m,↓av,1̄,m′,↓

+
∑

m,m′,i

Ωm,m′
i,−
2

e−iφie−i(kiz0−ωit)a†v,1,m′,↑ac,m,↑

+
∑

m,m′,i

Ωm,m′
i,+

2
e−iφie−i(kiz0−ωit)a†

v,1̄,m′,↓ac,m,↓

where

Ωm,m′
i,σ ≡

√
2µPc,m;v,m′Ei,σ, (II.38)

usually referred as the Rabi frequency in the literature. z0 is the central coordinate of quan-

tum dot in the growth direction and Ei,σ denotes the amplitude of the σ circularly polarized

component of the ith optical field.

Eqn. (II.37) describes the interaction of quantized mode of electrons and holes with

classical electromagnetic field. As the interaction of quantum dot with quantized mode of elec-

tromagnetic field is also involved in our work, we provide the form of the Hamiltonian where the

electromagnetic field operator is quantized,

E(+)
± (r) = i

∑

j

√
~ωj

2ε
ε̂±vj(r)bj,± (II.39)

where bj,σ is the photon annihilation operator of a photon in mode j with polarization σ, fre-

quency ωj and spatial profile vj(r). Similarly, E(−)
± is the sum of the b†j terms with,

E(−)
± (r) =

[
E(+)
± (r)

]†
(II.40)

HRWA in the second quantized form is therefore,

HRWA = i
∑

m,m′,j

µPc,m;v,m′

√
~ωj

2ε
vj(r0)a

†
c,m,↑av,1,m′,↑bj,− (II.41)

+i
∑

m,m′,j

µPc,m;v,m′

√
~ωj

2ε
vj(r0)a

†
c,m,↓av,1̄,m′,↓bj,+

−i
∑

m,m′,j

µP∗c,m;v,m′

√
~ωj

2ε
v∗j (r0)ac,m,↑a

†
v,1,m′,↑b

†
j,−

−i
∑

m,m′,j

µP∗c,m;v,m′

√
~ωj

2ε
v∗j (r0)ac,m,↓a

†
v,1̄,m′,↓b

†
j,+
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(a) (b)

σ − σ +

Figure II.5 Schematic illustration of the creation of trion states in quantum dot. The quantum
dot initially holds a single conduction band electron with spin up in the lowest state of the
confinement potential. (a) Due to the Pauli exclusion law, a σ− circularly polarized light can
only create an exciton on the excited state of the quantum dot confinement. (b) σ+ polarized
light can create the lowest energy trion state with two electrons forming a singlet and a hole in
the spin up state.

The physical interpretation of Eqn. (II.41) is transparent. By absorption of a σ− polarized

photon (therefore annihilate it), a spin up electron can be promoted from the heavy hole valance

band with orbital angular momentum +1 to the conduction band. Alternatively, we can also say

that absorption of a σ− polarized photon will create an exciton consist of a Jz = 1/2 electron and

a Jz = −3/2 heavy hole. The term with σ+ polarized photon has a similar interpretation. The

conjugate term just describes the conjugate process: annihilation of an exciton accompanied by

the photon emission. The neglected terms by the RWA is also easily understood, it just describes

the process that an exciton and a photon are annihilated together or created together both of

which are extremely unfavorable in energy.

II.B.2 Optical transition selection rules

If an optical field is in resonance with one of transitions, e.g., (c,m) → (v, m′), and the

bandwidth and Rabi frequency of this field is much smaller than the energy spacing between the

quantized states by the lateral confinement (∼ 1 − 10 meV), it is then well justified to assume

that only the electrons ac,m,σ and av,±1,m′,σ are involved in interaction with this optical field.

This is usually the situation in this study. Without causing confusion, we are going to use below

the e†± to denote the creation of an conduction band electron of Jz = ±1/2 with the quantum

number m in the confinement potential understood and similarly h†± to denote the creation of

a heavy hole with Jz = ±3/2 (annihilation of an electron in the heavy hole valance band with

Jz = ∓3/2).

In the most cases of interest, the GaAs fluctuation dot or InAs self-assembled dot is
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Figure II.6 Optical transition selection rules in quantum dot illustrated in various basis sets. (a)
The basis being eigenstates of Ĵz. Red single solid line denotes σ+ polarized light and blue double
solid line denotes σ− polarized light. (b) The two electron spin states are transformed to the
basis in x direction: |x±〉 ≡ (| ↑〉± | ↓〉)/√2. Red single solid line denotes σ+ polarized light. (c)
The two trion states are also transformed to the basis in x direction: |T±〉 ≡ (|t 3

2
〉± ||t− 3

2
〉)/√2.

Purple double solid line denotes X-polarized light and orange single solid line denotes Y -polarized
light.

charged with one extra electron in the conduction band, e.g., by modulation Si doping in the

barrier. Optical field with σ± polarization can create charged exciton state (also known as trion)

as illustrated in Fig. II.5. Due to the coulomb interaction, the spatial part of the wavefunction of

exciton in presence of the extra electron could be slightly modified, leading to quantitative change

in the envelop part of the transition dipole moment Pc,m;v,m′ . The energy of the excitonic states

can also be affected by the coulomb binding energy. Nonetheless, we can expect that the form

of the light-matter interaction will NOT be changed qualitatively by the presence of the single

electron. Trion states can be created in two types of configurations as illustrated in Fig. II.5. We

are interested in the lowest trion states which correspond to the configuration in Fig. II.5(b): the

two electrons form a spin singlet and the hole spin can be up and down and both the electrons and

hole are in the lowest energy states of quantum dot confinement. In this case, the four states that

are involved in the interaction with light are the two single electron states and two trion states.

In the eigenbasis of Ĵz, they are respectively: | ↑〉 ≡ e†+|G〉, | ↓〉 ≡ e†−|G〉, |t 3
2
〉 ≡ e†+e†−h†+|G〉

and |t− 3
2
〉 ≡ e†+e†−h†−|G〉 where |G〉 denote an empty conduction band and full valence band. We

have neglected the heavy hole light hole mixing for the moment. The transition selection rule

between these four states is shown Fig. II.6(a). The transition selection rule represented in other

basis sets are also useful in our study. In Fig. II.6(b) and (c), we have changed the basis for

the spin states and the trion states respectively so that they are eigenstates of the total angular

momentum in the x direction Ĵx. The selection rule can also be represented with the linearly



22

2η+
2η−

1η−
1 1η+

1

23 /t 23 /−t

↑ ↓

Figure II.7 Imperfect transition selection rule in the growth direction in presence of heavy hole-
light hole mixing. Red single solid line denotes σ+ polarized light and blue double solid line
denotes σ− polarized light.

polarized basis for the optical field as shown in Fig. II.6(c).

II.B.3 Control of spin qubit in quantum dot via the optical Raman

process

In our system, the qubit is encoded in the spin 1/2 subspace of the quantum dot single

electron in the conduction band. The localized single electron has the advantage of long spin

coherence time (a detailed investigation of this is the subject of chapter VII). Arbitrary control

of the spin, i.e., rotation from an arbitrary initial state α| ↑〉 + β| ↓〉 to an arbitrary final

state µ| ↑〉 + ν| ↓〉 in the spin subspace, is realized through an optical Raman process via the

intermediate trion states. As shown in previous section, optical field can create or annihilate

an electron-hole pair in the quantum dot, coupling the single electron spin states to the trion

states. Depending on the polarization and frequency of the optical field, various optical paths

can be established to realize the rotation of the spin via the Raman scheme. For example, if

we select the optical field to be σ+ circularly polarized, as shown in Fig. II.6(b), then the |t− 3
2
〉

trion state is decoupled from optical field and not involved in the dynamics. Therefore, we

obtained a Λ like three level system. A scheme for arbitrary rotations in the spin subspace via

an optical Raman transition through the intermediate trion state |t 3
2
〉 has been proposed in [17]

and serves as the main method for single qubit control. In this scheme, rotations of spin are

realized with pulse shaped single laser field with σ+ polarization. Alternatively, the two arms

of the Raman transition in the Λ system can be coupled independently by two different optical

fields. This could be realized by applying a strong magnetic field, e.g. in the x direction, to
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Figure II.8 Imperfect transition selection rule in the x basis. Purple double solid line denotes
X-polarized light and orange single solid line denotes Y -polarized light. The left part shows
the major selection rules with each transitions denoted by thick solid lines and the right part
denotes the small corrections due to hole mixing with each transitions denoted by thin solid lines.
The coefficients are respectively:a ≡ (η+

1 + η+
2 + η−1 + η−2 )/2; b ≡ (−η+

1 + η+
2 + η−1 − η−2 )/2; c ≡

(−η+
1 − η+

2 + η−1 + η−2 )/2; d ≡ (η+
1 − η+

2 + η−1 − η−2 )/2.

split the spin states |x±〉. Due to the vanishing g factor of holes in the x direction, the two

trion states |T±〉 will remain degenerate. By having a X-polarized optical field with frequency

near the resonance of |x+〉 → |T−〉 transition and a Y -polarized field with frequency near the

resonance of |x−〉 → |T−〉 transition, the transition to trion state |T+〉 is off-resonance with both

fields and therefore negligible as compared to the doubly resonant Raman transition between the

rest three states and a desired Raman configuration is obtained. As shown in later chapters,

the optical Raman process will play a central role in control of spin and photon dynamics in the

quantum dot.

II.B.4 Optical transition selection rules with imperfections

In presence of the heavy hole-light hole mixing, we still use |t 3
2
〉 to denote the mixed

state trion which has the general form of the coefficients of the hole components: (1, η+
2 , η+

1 , 0)

in the basis with hole spin on |J = 3/2, Jz = 3/2〉, |J = 3/2, Jz = 1/2〉, |J = 3/2, Jz = −1/2〉
and |J = 3/2, Jz = −3/2〉 state respectively and its time reversed components as |t−3/2〉 with

the corresponding components (0, η−1 , η−2 , 1) (see the discussion in section II.A.4). η±1 and η±2 are

typically small (η±1 can be of several percent and η±2 usually negligible) and can be taken as real

numbers. The imperfect transition selection rule in the growth direction is shown in Fig. II.7.

By a transform to the basis {|T±〉 ≡ (|t3/2〉 ± |t−3/2〉)/
√

2, |x±〉 ≡ (| ↑〉 ± | ↓〉)/√2}, the

corresponding transition selection rules are obtained as shown in Fig. II.8. At zero magnetic field,

there is time reversal symmetry between the two sets of states {|t3/2〉, | ↑〉} and {|t−3/2〉, | ↓〉}
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Figure II.9 Level schemes and transition selection rule in the x basis under a magnetic field
in the x direction. Solid line are used to denote on-resonance transitions and dotted lines for
off-resonance transitions. Purple double line denotes X-polarized light and orange single line
denotes Y -polarized light.

in the growth direction, thus we have η+
1,2 = η−1,2 so that b and c vanishes in Fig. II.8. The

transition selection rules in the x basis are thus purely the left part of Fig. II.8. In this case, the

imperfection in transition selection rules in the growth direction is eliminated in the x basis and

the coefficients a, d only contribute to a small modification of the transition strength which can

be characterized in experiments.

b and c can have small but non zero values in a magnetic field and the right part

of Fig. II.8 contributes to the imperfections in optical transitions. Nonetheless, the facts that

trion states only play a role as intermediate states and that the two trion states |t±3/2〉 have

degenerate energies allow the Raman schemes to be further protected automatically against this

small imperfections. Fig. II.9 shows the transition selection rules with a basis transform in the

subspace of the two trion states. The desired Raman path with Y -polarized light coupling the

|x−〉 ↔ (1−a)|T−〉− b|T+〉 transition and X-polarized light coupling the |x+〉 ↔ (1−a)|T−〉−
b|T+〉 transition are dominant with strong transition strength and double resonances while all

undesired Raman pathes are either of weak transition strength in the order of b(c) or far detuned

or both. Thus, we still obtained a three level Λ system with desired Raman transitions as a good

approximation.

II.C Chapter summary

We have reviewed in the chapter the electronic and optical properties of quantum dot

formed in the III-V compounds. As a summary, we will first draw below an analogy between an

electron in the crystal periodic potential under the single particle effective mass approximation
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and a bare electron in free space. First of all, the envelope part of the wavefunction is analogous

to the spatial wavefunction of a bare electron and the band edge Bloch function |un,0〉 (where

spin-orbit coupling has been considered) is analogous to the spin wavefunction. In kinetics, the

effective mass m∗ replaces the free mass of a bare electron m and the crystal momentum ~k (or

−i~∇ acting on the envelop function in the coordinate representation) replaces the momentum

of the bare electron. In response to the external magnetic field, the effective g-factor will play the

role of the g-factor (g0 = 2) of a bare electron. For interband optical transitions with the light

propagating in the growth direction, a similar “selection rule” can be applied here: for allowed

transitions, we require ∆Jz = ±1 for the band edge Bloch function while for the envelope part

of the wavefunction, we require ∆Lz = 0 if there is rotational symmetry in the x-y plane or

a non-vanishing overlap between the envelop function of initial and final states in the broader

case. The quantum dot confinement is also well understood in analogy to a single particle

confined in quantum box, i.e., the band edge energy mismatch of different materials offers the

three-dimensional confinement potential that can be plugged into the Schrödinger equation for

the envelope wavefunction. This confinement leads to discrete quantized energy levels. Indeed,

with all these properties, the quantum dots behave very much like “artificial atoms” with well

defined optical transition selection rules. The discrete energy levels have been confirmed from

the photoluminescence (PL) or photoluminescence excitation (PLE) spectrum in various types of

quantum dot systems [12, 13, 14, 15, 31, 32, 33, 34, 35, 36, 38]. Quantum Dots are particularly

significant for optical applications due to their large optical dipole moment. Coherent Rabi

oscillations of single exciton have been observed in GaAs flucution dot [2] and In(Ga)As self

assembled dot [47, 48]. Coherent oscillations between exciton to biexciton transitions have also

been experimentally demonstrated in GaAs fluctuation dot [3, 4].



III

Single Photons in Optical

Micro-Cavities and Waveguides:

A Brief Review

In this chapter, we briefly review the confinement of photons in semiconductor mi-

crostructures, i.e., optical micro-cavities and waveguides.

III.A Single photon as carrier of quantum bit

We have mentioned in the previous chapter that the spin of the electrons in quantum

dots is an excellent candidate as the carrier of qubit. As the electrons are confined to a definite

spatial region, the spin qubit belongs to the type which is usually referred as the stationary qubit.

Alternatively, if the carrier qubit can move freely from one region of the space to another, it is

referred as the flying qubit. A canonical example for the flying qubit is the photon wavepacket

which is widely used for photonic quantum computation with linear optics elements [49] and

quantum cryptography [50, 51]. As the photon can have many degrees of freedom, there are

more than one ways to encode the quantum information. We show below several examples.

Polarization qubit. Here the quantum information is encoded in the polarization

subspace. For example, for photon in free space, we can use the basis of linear polarization,

|ψ〉 = a|X〉+ b|Y 〉 (III.1)

26
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or the basis of circular polarization,

|ψ〉 = a| ª〉+ b| ©〉 (III.2)

The requirement is that the different polarization components have an identical spatial wavefunc-

tion so that they can not be distinguished unless polarization degrees are measured (no leakage

of quantum information outside the polarization subspace). Single qubit rotation can be easily

achieved, e.g., with wave plate.

Number qubit. Here the quantum information is encoded in the photon number

subspace, e.g.,

|ψ〉 = a|vac〉+ b|α〉 (III.3)

where |vac〉 denote the vacuum and |α〉 denote a single photon wavepacket |α〉 ≡ ∫
dkαk|k〉

where |k〉 represents plane waves. Single qubit ration for this type of number qubit is not easy.

Nonetheless, they can be used in the intermediate step of a quantum operation, e.g., for transfer

of quantum information [52].

Photon propagation in free space is subjected to attenuation and decoherence. A more

ideal propagation channel for photons are provided by optical fiber [53, 54] or optical waveguides

which can be etched on semiconductor structures [55] or formed in line defects in photonic crystals

[56, 57]. In optical fiber or waveguides, number qubit can be similarly defined as in free space.

Propagation modes with orthogonal polarization but degenerate in energy also exists in fiber and

waveguides and therefore polarization qubit can be defined in a similar way, e.g., in the basis of

TE and TM modes or alternatively in the linearly polarized basis of LP modes [53, 54].

III.B Confinement of single photons in micro-cavities

Stationary spin qubit in quantum dot has the advantage of addressability, stability and

integrability. Single photon travels at the speed of light and therefore is an ideal candidate for

quantum communication between spatially separated regions. Flying photon qubit and stationary

spin qubit are complementary to each other in their advantages. In order to integrate the

dynamics of photonic qubit with spin qubit in quantum dot and utilize the advantages of both,

we need the single photon to interact appreciably with the electronic states in a single quantum

dot. From the light-matter interaction Hamiltonian Eqn. (II.41), as the quantum dot has a fixed

optical transition dipole moment which is limited by its size, one way to have strong interaction

is to make the spatial wavefunction of the photon having a large amplitude (v(r0) in Eqn. (II.41))

in the quantum dot vicinity. This can be achieved by confining photons in optical micro-cavity

structures [58].
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(a) (b)

d D

Figure III.1 Fiber coupled micro-cavities. (a) Micro-disk cavity. (b) Micro-toroid cavity. D
denotes principal diameter and d denotes minor diameter [59].

III.B.1 Micro-cavities in semiconductor structures

Optical cavity refers to the resonant structures for light confinement. The principle of

cavity can be illustrated with two parallel dielectric mirrors. Light is reflected back and forth

in the region between the two mirrors and if the distance between mirrors satisfy: d = nλ/2

where λ is the wavelength of light and n is a integer, a standing wave cavity mode can be formed

in the intermirror region. This type of cavity is usually referred as the Fabry-Perot cavities in

the literature and has been widely used in the study of quantum coherent dynamics in atomic

physics experiments [60].

For the purpose of strong interaction of single photons with single quantum dot, the

critical properties for an optical cavity is the quality factor Q and the mode volume V .

The quality factor of a cavity mode is defined as: Q ≡ λ
δλ where δλ is the uncertainty

of the wavelength due to the imperfections of cavity confinement. Interband transitions in semi-

conductor quantum dot usually occurs at the energy scale ∼eV and therefore, cavity modes with

λ0 ∼ µm is of interest. For a high-Q cavity, we can also express Q ≡ λ
δλ = ω

δω where ω is the

frequency of the mode and δω is its broadening in spectrum. Obviously, the life time of the

cavity mode is proportional to Q. A cavity with high Q-factor allows light to be confined in the

quantum dot vicinity for sufficient long time for interaction with the electronic states. Finesse

F ≡ ∆λ
δλ is also used in complementary with the Q-factor to characterize the cavity property.

Here ∆λ is the separation in wavelength between adjacent cavity modes (also known as free

spectral range (FSR) ). Finesse tells how well each cavity modes can be distinguished from each

other and it has an intuitive interpretation of how many times light can be reflected between the

mirrors before it escapes the cavity region. For low order cavity mode, Q is in the same order of

F .

A cavity with small mode volume allows a strong electric field from a single photon and
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Figure III.2 Waveguide coupled micro-disk cavity on chip.

hence the strong coupling with the quantum dot. We have the relation,
∫

dr2εE(+)
cav (r)E(−)

cav (r) = ~ω (III.4)

where Ecav(r) is the electric field of the cavity mode and the integration runs over the whole

cavity region. Therefore, the electric field is inverse proportional to
√

V .

In conventional Fabry-Perot cavity, ultra high finesse F ∼ 5 × 105 has been achieved

through improvement of the dielectric mirror [58]. But as the cavity mode is not well confined in

the two directions that is parallel to the mirror surface, the mode volume can not be made too

small. The state of art mode volume that can be achieved is ∼ O(103)µm3 [58].

Semiconductor micro-structure offers a good chance to achieve optical cavities with

high-Q and small V (see [58] for a review of the progress in this field). These micro-structures

are usually referred as micro-cavities for their small size. Light is confined by total internal

reflection (TIR) in the inner wall of the micro-cavities (see Fig. III.4(a) for illustration). Micro-

cavities can be realized in a number of ways in semiconductor structures. In Fig. III.1 and

III.2, we show several examples of the micro-cavities etched on semiconductor surfaces. Two

dimensional photonic bandgap crystals is also an ideal structure to form a cavity resonator [56,

57]. Propagation of light in the plane has a forbidden bandgap for carefully designed periodical

arrays of air-holes drilled on the 2-D slab. As shown in Fig. III.3, by forming a point defect in

the 2D arrays of air holes, the light can be almost perfectly confined in the plane of the slab if

its frequency lies in the forbidden bandgap. The vertical confinement, achieved by total internal

reflection at the slab semiconductor - air interfaces, is imperfect, in that light with small in-plane

wavevectors can leak out of the top and bottom. Vertical leakage can also be greatly limited

by proper engineering of the defect [61, 62]. We listed below the critical properties of several

micro-cavities structures.

Silicon microsphere: Q exceeding 108, V ∼ 103µm3 [63] [64].

Microdisk: Q ∼ O(104) in III-V materials and Q ∼ O(105) in polymer; V ∼ 6(λ0/n)3 where n

is the refractive index of the material and λ0 the wavelength of cavity mode [58].
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Waveguide

Cavity

Figure III.3 Coupled cavity and waveguide structure formed by point and line defects in 2D
photonic crystals.

Microtoroid: Q ∼ 108 achieved with principle diameter D ∼ 100 µm and minor d ∼ O(1) µm

(see Fig. III.1(b) for the definitions of D and d) [59] . Theoretical analysis shows the possibility

of realizing micro-toroid with intrinsic Q-factor exceeding 108 and mode volume ∼ O(10) µm−3

[65].

Defect cavity in 2D PC: Q ∼ 6 × 105, V ∼ 1.2(λ0/n)3 ∼ 0.072 µm3 achieved [61, 62].

Theoretically analysis show that Q-factors greater than 2×107 may be obtained when optimizing

the structure [62]. The matrix of the 2D photonic crystal can either be silicon or III-V compounds

[66].

III.B.2 Whispering gallery mode

The cavity mode that is confined by the various types of micro-cavities discussed in

III.B.1 all belongs to the same class which is usually referred as the whispering gallery mode

(WGM). WGMs occur at particular resonant wavelengths of light confined to a spherical or

cylindrical volume with an index of refraction greater than that surrounding it. At these wave-

lengths, the light undergoes total internal reflection at the volume surface and becomes trapped

inside the volume (see Fig. III.4(a)). Ideal dielectric spheres have modes characterized by four

indices (n, l, m, p), where (n, l,m) are radial and angular indices while p designates either TE

(transverse electric) or TM (transverse magnetic) polarization. The mode number n tells the

number of wavelengths around the circumference of the cavity (see Fig. III.4(b)) and the mode

order l denotes the number of maxima in the radial dependence of the electromagnetic field

within the cavity (see Fig. III.4(c)). In the ideal sphere each (n, l, m) subspace is 2l + 1 degener-

ate. Actual resonators exhibit slight eccentricity which splits the resonant frequencies into 2l +1

distinct values associated with the index m. Beyond the Q and V properties discussed in III.B.1,
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Figure III.4 Whispering gallery mode (WGM) in a micro-sphere cavity [67]. (a) Illustration of
photon confinement by total internal reflection on the cavity wall. (b) WGM with mode number
n = 10. (c) Mode intensity as a function of radial coordinate r for WGMs with the lowest several
mode order l.

the spacing of cavity modes in frequency is also an important properties for applications. In a

silica microsphere with diameter ∼ 100 µm, the spacing in energy between modes with different

n and l quantum number is larger or in the order of ∼meV. The splitting of modes with different

m in the same (n, l) subspace due to the eccentricity is typically one fold smaller, e.g. ∼ 100 µeV

for a microsphere with diameter of 35µm with 2% deformation. Therefore, if coupling with a

single cavity mode is desired, silica microsphere of this size is suitable for use with system where

the relevant energy scales ¿ 100 µeV, e.g., diamond nano-crystals with NV centers [20, 21, 22].

Modes with different polarizations, TE and TM, have very different electric and mag-

netic field profile [68]. The TE modes have no electric field amplitude in the radial direction and

the electric field is in-plane along the azimuthal direction in the equator plane. The TM modes

have no in-plane electric field components in the equator plane and outside the equator plane,

there is a predominantly radial electric field vector.

The different geometric shape of micro-disk and micro-toroid cavities can affect the

energies distributions and field profiles of the WGMs. But qualitatively, we still have quantized

cavity modes characterized by the (n, l, m, p) quantum numbers which are well separated in

energies. p quantum number again distinguishes TE and TM modes. For example, for micro-

disk cavity, the TE modes have the electric field parallel to the disk plane; while for the TM
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modes, the electric field is perpendicular to the disk plane [69].

Defect cavities formed in 2D photonic bandgap crystals lacks the cylindrical or spherical

symmetry. However, the cavity modes are still referred as whispering gallery modes and denoted

using the quantum numbers mentioned above. WGMs of interests here are those of the lowest

several n quantum number. These modes have the smallest mode volume (in the order of cubic of

half the wavelength, which is the ultimate value that can be achieved). Again, they are divided

to TE type and TM type depending on the electric and magnetic field profile. Because of the

strong confinement in the extreme small volume, the spacing of the cavity modes in energy is

very large in this type of cavities. For the state of art micro-cavity achieved in Noda’s group

[61, 62], the measured spectrum shows a single resonant peak in a spectral range of ∼ 100meV.

So this type of cavity is ideal for cavity QED applications with quantum dot where a single cavity

mode is desired.

III.B.3 Strong coupling of single cavity photon with quantum dot

The strong confinement of light in an extremely small region allows the strong cou-

pling regime between a single quantum of photon and a single excitation of matter. Strong

coupling regime in cavity QED is defined for which the coupling energy gcav between a single

quantum of cavity photon and a single excitation of matter becomes larger than max(γcav, γt)

where γcav is the cavity leakage rate and γt is the relaxation rate of the energy excitation of

matter. Strong coupling regime is signatured, e.g. in the photoluminescence spectrum, by the

observation of vacuum Rabi splitting [60]. Strong coupling regime has been achieved in several

different cavity - quantum dot (nano-crystal) systems as briefly mentioned below and efforts are

still being made in many other systems.

In order for the quantum dot to interact with the cavity photon, they have to be spatially

arranged in the cavity field. Various arrangement is possible depending on the types of cavity

we will be using.

Layers of quantum dots can be embedded in the matrix slab where the 2D photonic

crystal with point defects are formed. Quantum dot sitting inside the defects at the mode maxima

can have the strongest coupling with the cavity mode. Strong coupling of the defect cavity in

2D GaAs photonic crystal with the self-assembled InAs quantum dot has already been achieved

[66] which is one of the first demonstration of strong coupling for single quantum dot cavity

QED. Achieved simultaneously is the strong coupling of self-assembled InGaAs quantum dot

with micro-pillar cavities [70]. The coupling strength gcav ∼ 0.1meV in both cases.

Micro-disk cavities can be used for coupling with III-V quantum dots. Quantum dots

can be embedded inside the micro-disk so that those sitting in the mode maxima will have
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the strongest possible couplings with the WGMs. Strong coupling regime for GaAs fluctuation

quantum dot embedded in micro-disk structure similar to the illustration of Fig. III.1(a) has

been recently achieved [71]. Due to the large dipole moment of the fluctuation dot, the coupling

strength gcav ∼ 0.2meV from the measurement. For the micro-disk structures shown in Fig. III.2,

quantum dot can also sits outside of the cavity in the evanescence field of WGM..

For the silicon micro-sphere cavities, nano-crystals are usually used for coupling with

the cavity photons. These includes the CdSe-Cds core-shell nano-crystals [63] and diamond

nano-crystals with nitrogen vacancy (NV) centers. The nano-crystals can be deposited on the

surface of the micro-sphere and they sit in the evanescence field of WGMs (shaded area shown

in Fig. III.4(c)).

The development in this field is so rapid that our knowledge needs to be refreshed

frequently.

III.B.4 Dot-cavity-waveguide coupled structure for interplay between

flying photon and stationary spin

Here we come back to the original motivation for the investigation of cavity QED: the

coupled dynamics between flying photons and stationary spins.

For all applications involved in this study, only one cavity mode is involved. Therefore,

the cavity shall be sufficiently small so that the mode separation in energy is much larger than

all relevant energy scales and all other cavity modes can be neglected due to far detuning. For

coupling to a III-V quantum dot, the micro-disk cavities and the defect cavities in 2D PBC

well satisfy this condition. Micro-sphere cavities might be used together with nano-crystals (as

mentioned in III.B.3) in which the excitation can be predominantly coupled to a single WGM.

The inclusion of multi-cavity modes, on one hand might add to the complexity of the dynamics,

and on the other hand, may provide more freedoms in dynamical control which will be the topics

for future study.

For the definiteness of the transition selection rules, we may want the cavity mode have

a well defined electric field direction in the vicinity of the quantum dot. Whether TE or TM

mode shall be used depends on the specific spatial arrangement and the quantum operation.

The cavity-dot coupling allows the interplay between the excitation in single quantum

dot with single photon confined in cavities. As we shall see in the succeeding chapters, useful

applications is possible by further integration of micro-cavities with fibers or waveguides as shown

in Fig. III.1, III.2 and III.3 for the various systems. The electric field of the propagating mode

in fiber or waveguides overlaps with the evanescence part of the cavity field and the coupling is

controllable by tuning of the distance in design. Through this coupling, a confined cavity photon
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can be interconverted with a propagating single photon wavepacket in the fiber or waveguide. The

selected cavity mode with the specific polarization configuration may have non-zero couplings

only with propagation mode with a particular polarization in the fiber or waveguide. Notice that

with the fiber or waveguide attached to the cavity, the total Q-factor may drop. But what is

of importance is the intrinsic Q-factor in absence of the fiber or waveguide. The coupling to a

highly directional out coupling channel is by design and is an important ingredient in the desired

quantum dynamics as we will show in the next several chapters.

The dot-cavity-waveguide coupled structure has integrated the photonic, electronic and

spintronic components in the semiconduct structures. Implementation of these coupled structures

for quantum information processing will be the theme of the following chapters.
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Solid State Phase Gate and

Quantum Entanglement for Single

Photon Pairs

Entangled photon pairs are the main stay of quantum information processing [26] and

the controlled gate which conditions the dynamics of one photon on the state of the other also

enables a key logic operation for quantum computation. There are two approaches to realize

such gates: (1) linear optics with projective measurements [49]; (2) nonlinear optics at the single

photon level. Photon gate can be realized with linear optics elements, e.g., phase plate and

beam splitters, facilitated by post selection based on measurement of ancillary photons. There-

fore, the gate operation based on linear optics elements is probabilistic and conditioned on the

measurement results. The prototype two photon gate by nonlinear optics for universal quantum

information processing is the nonlinear phase gate [72]. Due to the Kerr-type nonlinearity, the

presence of a second photon can induce a conditional phase shift on the other photon. A two

qubit phase gate with nonlinear shift π can be shown to be equivalent to a CNOT gate facilitated

by single qubit rotations and is therefore a universal two qubit gate.

The logic gate working with few-photon nonlinear optics requires impractical interaction

length (e.g. several meters) in conventional Kerr media [72]. To obtain giant optical nonlinearity

for a two-photon logic gate, novel schemes have been demonstrated, e.g. the atom-cavity QED

[73], or proposed, e.g. slow light in a coherently prepared atomic gas exhibiting electromagnet-

ically induced transparency (EIT) [74]. In these schemes, prior preparation of the atom media

is needed. Furthermore, the interacting photons are in free space and in practical application,

35



36

collection into optical fiber or waveguide for propagation is needed. The collection processes can

lower appreciably the quantum efficiency of the whole operation.

For the sake of stability and integrability, a solid state quantum phase gate for single

photons is highly desirable. Calculation shows that with moderate system parameters achievable

in experiments, a quantum dot embedded micro-cavity exhibit giant third order optical nonlin-

earity, promising for a conditional phase shift of O(π) [75, 76]. Here we propose a solid state

phase gate based on the dot-cavity-waveguide coupled system. The quantum dot coupled micro-

cavities act as a scattering center with the desired large nonlinearity for photons propagating in

the optical fibers. The unique fiber-cavity structure circumvents the problem of photon collec-

tion. The photon scattering at the phase gate have inevitably some unwanted dynamics such

as polarization-dependent reflection and motion-polarization entanglement. By relying on the

transmission probability, the gate has some inevitable probabilistic nature as the linear optics

procedure. The essential distinction lies in our use of the strong nonlinearity to provide definite

interaction dynamics in the cavities versus the entanglement generated by the projective mea-

surement. The probabilistic nature arises from the coupling of the photons to the solid state

system, which is unavoidable in any system, but its effect can be ameliorated. Our solution

is two pronged: to eliminate the linear reflection by EIT and to minimize motion-polarization

entanglement by pulse shaping and system design.

Y

X

Z(a)

Y
X

Z

(b)

|X>=TE01-HE21|Y>=TM01-HE21

, , c cY ωΩ

Figure IV.1 Dot-cavity-fiber coupled system as a solid state gate for single photon pairs.
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IV.A System configuration

The arrangement of our proposed device is given in Fig. IV.1(a). Two photons travelling

along two optical fibers receive their interaction by coupling to two silicon microsphere cavities

which are joined by a doped quantum dot. The dot provides in theory [75] a strong third-

order optical nonlinearity which is essential for a controlled interaction between two photons.

Two cavities of different resonant frequencies are needed to afford control of coupling to either

photon. They also act as an in-situ energy filter preventing two photons ending in the same fiber.

A strong magnetic field is applied in the x direction and a classical pump field propa-

gating in the z direction with Y polarization is shinning on the quantum dot. Their effects on

the system dynamics is explained in the succeeding sections.

The two LP11 modes in a step index optical fiber [53, 54] are chosen as the two polariza-

tion states |X〉 and |Y 〉 for the qubits (see Fig. IV.1(b)). The relevant modes in the microcavities

are chosen to be the TM modes resonant with the quantum dot transitions while the other TM

modes and all TE modes are tuned far off-resonant for a small cavity (∼ µm) [77]. The TM

cavity mode can be excited only by an |X〉 photon in the fiber, whose coupling strength to the

cavity on the left (right), κL(R), are designed by adjusting the distance between the cavity and

the fiber [78]. |Y 〉 photon has zero coupling with the selected cavity mode due to their orthogonal

electric field configuration. Thus, only in the |XX〉 state do the two incoming photons interact

via the cavity-dot coupling system, resulting a conditional phase-shift.

The spatial configuration of the cavity-dot structure is such that the TM cavity modes

are predominantly X-polarized at the site of the quantum dot. Therefore, the cavity field does

not couple to the quantum dot transition where Y -polarized field is needed (see Fig. II.6(c) for

optical transition selection rules expressed with optical field in linear polarized basis).

We shall emphasize that the above choices of the system configuration is not the only

possibility. Other configuration, e.g, by making use of the TE cavity mode instead and (or) with

Table IV.1 Truth table for the phasegate operation in the ideal case. φL
R(L) denotes the lin-

ear phaseshift of X-polarized photon in right (left) channels and φNL denotes the nonlinear
phaseshift.

|XX〉 |XY 〉 |Y X〉 |Y Y 〉
|XX〉 exp(iφNL + iφL

L + iφL
R) 0 0 0

|XY 〉 0 exp(iφL
R) 0 0

|Y X〉 0 0 exp(iφL
L) 0

|Y Y 〉 0 0 0 1
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Figure IV.2 Optical processes of the phase gate operation. (a) The energy structure. (b) The
dressed energy states.

flying photon qubit defined by the TE and TM propagating mode in fiber, is possible and could

be more suitable depending on the experimental realization. The only objective here is to realize

the truth table in the form as shown in Table. IV.1.

IV.B Nonlinearity, EIT, and laser cooling

The strong photon-photon interaction induced by the dot-coupled cavities is favored by

both the small cavity-mode volume and the large dipole moment of the quantum dot transitions.

The quantum dot which contains a single active electron plays an essential role. The basic

nonlinear optical process is illustrated with the aid of the energy structures in Figure IV.2(a).

The strong magnetic field applied along the x direction produce non-degenerate transitions from

the electron spin states to the charged exciton states (trions), which are tuned respectively in

resonance with the two cavity modes. The two split electron states are |x±〉 ≡ (1/
√

2)(e†+ ±
e†−)|G〉, and the two degenerate trion states are |T±〉 ≡ (1/

√
2)(e†+e†−h†− ± e†+e†−h†+)|G〉, where

e†± and h†± create electron and hole spin states along the z axis. The transition selection rules

are: |x±〉 ↔ |T∓〉 via the X-polarized field and |x±〉 ↔ |T±〉 via the Y polarized field (see Fig.

II.6(c) of Chapter II). Therefore, these transitions are coupled by selected TM cavity mode. The

strong coupling between the trion state |T−〉 and the cavity-dot state |x+, CL〉 (or between |T+〉
and the cavity-dot state |x−, CR〉) mixes each pair into two split trion-polariton states, where

CL(R) denotes the left (right) cavity mode. We denote the lower polariton states as |3〉 and |4〉,
respectively. The four states, |x+〉, |x−〉, |3〉, and |4〉, form the level structure for the optical
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nonlinearity and all other states are assumed far off resonance. This situation is well satisfied by

the cavity-dot coupling gcav ∼ 0.5 meV, cavity decay rate into the fiber ∼ 0.1 meV, and Zeeman

splitting gµBBx ∼ 1 meV. The large value of gcav is not critical provided that it is much larger

than the cavity decay rate.

To induce an interaction between the photons from the left and right channels, a strong

Y -polarized pump pulse is applied to resonantly couple the states |x−〉 and |3〉. We consider

the effect of this classical field in the dressed basis: |1d〉 ≡ |x+〉 |N〉, |3d〉 ≡ |3〉 |N〉, |2d〉 ≡
|x−〉 |N + 1〉, and |4d〉 ≡ |4〉 |N + 1〉 , where the Y -polarized coherent field is approximated by

the Fock state |N〉 with large N . Fig. IV.2(b) shows how the two X photons on separate fibers,

which affect separately the modes in the left and right cavities, are coupled by the Y pump.

In these dressed state picture, the X-polarized single photons in the left fiber couples the two

states |1d〉 and |3d〉 and the X-polarized single photons in the right fiber couples |2d〉 and |4d〉.
|2d〉 is coupled to |3d〉 by the Y -polarized classical field. The coupling strength Ωc between |3d〉
and |2d〉 is proportional to the electric field strength. Thus, the nonlinear optical coupling is

readily manipulated by switching on and off the pump pulse. With the pump field on, nonlinear

scattering with one photon in each channel is established in the sense that left channel photon

can populate the initial state |2d〉 for right channel photon scattering while right channel photon

may deplete the final state |3d〉 for the left channel photon scattering.

The classical pump field also increases the efficiency of the operation by eliminating

the linear reflection through the electromagnetical induced transparency (EIT) effect [74, 79, 80]

and the laser cooling process as explained below. With the pump field resonantly coupling the

|x−〉 ↔ |3〉 transition, the linear reflection of the left fiber photon is significantly suppressed if its

frequency is tuned in resonant with the |x+〉 ↔ |3〉 transition, which results from the destructive

interference between the damped polariton state |3d〉 and the meta-stable state |2d〉 coupled by

the classical pump field (this will be evidenced in the linear scattering T matrix for left fiber

photon, Eq. (IV.2) in the next section). The linear reflection of the X-polarized photons from

the right channel is eliminated since the initial state of the system has been prepared in |1d〉
by the laser cooling cycle: the classical pulse pumps the ground state |x−〉 to |3〉, and then the

polariton state relax to |x+〉 through the cavity-to-fiber leakage. The reduction of the linear

reflection in both fibers brings to prominence the third order terms which are responsible for the

gate operation.
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Figure IV.3 Feynman diagrams for the scattering processes. (a) The linear scattering. (b) The
nonlinear scattering. Note that both are shown only with the lowest order diagram in terms of
the coupling by the Y -polarized pump field.

IV.C Two photon scattering process

The transformation of the polarization state of two photons is carried out by scattering

theory. In the momentum space, the two photon scattering matrix is given by,

Sk′Lσ,k′Rσ′;kLσ,kRσ′ = δkL,k′LδkR,k′R − 2πiδ (}ω′L + }ω′R − }ωL − }ωR)
(
T

(1)
fi + T

(3)
fi

)
(IV.1)

where the δ function signatures energy conservation. The linear scattering T matrix

T
(1)
fi = δσL,XδkR,k′R

|κL|2
2

(IV.2)

× E1d + ~ckL − E2d

(E1d + ~ckL − E3d + iΓ3/2) (E1d + ~ckL − E2d)− Ω2
c

,

and the nonlinear scattering T matrix

T
(3)
fi =

δσL,XκLΩc/
√

2
(E1d + ~ckL − E3d + iΓ3/2) (E1d + ~ckL − E2d)− Ω2

c

(IV.3)

× δσR,X |κR|2 /2
E1d + ~ck′L + ~ck′R − E4d + iΓ4/2

× δσL,Xκ∗LΩ∗c/
√

2
(E1d + ~ck′L − E3d + iΓ3/2) (E1d + ~ck′L − E2d)− Ω2

c

,

are obtained from non-perturbative calculation [81]. Γ3(4) is the decay rate of the polariton states

|3〉 (or |4〉). In silicon microspheres, the whispering gallery modes can have Q-factor as high as

∼ 108 [82], so the intrinsic decay of the cavity modes can be neglected. The relaxation rate of

trions is of the order of µeV, much less than the cavity-to-fiber loss. Thus, the decay of the trion

polaritons is dominated by the leakage of the cavity modes into the fiber modes. The decay rates

thus can be approximated as Γ3(4) ≈
∣∣κL(R)

∣∣2 /c.
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Figure IV.4 Schematic illustration of phase and amplitude modulation effect on the transmitted
photons due to the convolution of the incoming photons with the scattering matrix. The incoming
wavefunctions are assumed real. Red triangle-shaped and black start-shaped dots indicate two
component of the transmitted two photon wavefunctions that is differently modulated due to the
different integration length (shown by the solid red line and the dotted black line respectively).

The Y -polarized photons are not scattered as they are not coupled to the cavities by

design. The linear term in Eq. (IV.2) contributes to the reflection of the X-polarized photon

from the left channel. EIT effect is evident from the vanishing of T
(1)
fi when the incoming photon

is in resonance with the |1d〉 → |3d〉 transition. The linear reflection of the X-polarized photons

from the right channel is absent since the initial state of the system has been prepared in |1d〉
by the laser cooling cycle as mentioned in Section IV.B. The linear scattering processes for

X-polarized photons in left and right channels are shown schematically with the lowest order

feynman diagram in Fig. IV.3(a). Notice the linear scattering T matrix of Eq. (IV.2) and hence

the phenomena of EIT is actually a non-perturbative results in terms of the coupling by the

Y -polarized pump field.

The nonlinear scattering matrix in Eq. (IV.3), with one photon in each channel, is

composed of three fractions corresponding to three processes: the excitation of the trion-polariton

by the left-channel photon, the induced scattering of the right-channel photon, and the emission

of the left-channel photon by the polariton recombination. Again, the nonlinear scattering T

matrix of Eq. (IV.3) is a non-perturbative results in terms of the strong coupling by the pump

field. The nonlinear scattering processes are shown schematically with the lowest order feynman

diagram in Fig. IV.3(b).

The two photon outgoing wave function is a convolution of the incoming wave function
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Figure IV.5 The amplitude and nonlinear phaseshift of the transmitted two-photon wavefunction
as functions of the detuning for the incoming photons being Gaussian wavepackets of equal width
in spectrum.

with the S Matrix,

Ψout (k′L, σ; k′R, σ′) =
∑

kL,kR

Sk′Lσ,k′Rσ′;kLσ,kRσ′Ψin
L (kL, σ)Ψin

R (kR, σ′) (IV.4)

Due to the resonance features in the T-matrix, the transmission coefficient tXX = fe−iφ,

where f and φ are in general functions of the wavevectors, can cause the amplitude and phase

modulation of the transmitted wave since the incoming photons are in wave packets. The mod-

ulation by the resonance structure in linear and nonlinear T matrix might be suppressed either

by using pulses with longer duration in time or by working in far off-resonance region. How-

ever, there is an extra source of amplitude and phase modulation of the transmitted photon

wavepactets which is specific to the nonlinear scattering only. By the δ function in the S ma-

trix Eqn. (IV.1), the |k′L, X; k′R, X〉 component of the outgoing wavefunction has a contribution

from all incoming components |kL, X; kR, X〉 where k′L + k′R = kL + kR is satisfied, which cor-

responds to the integration over a straight line in the momentum space, as shown schematically

in Fig. IV.4. Different components of the outgoing wavefunction may corresponds to different

integration length and hence subject to different nonlinear phaseshift and reflection.

We can generally express the transmitted part of the two photon outgoing wave function

in |XX〉 configuration as,

Ψout (k′L > 0, k′R > 0) = ei∆φ(k′L,k′R) (
Ψout

L (k′L) Ψout
R (k′R) + B (k′L, k′R)

)
(IV.5)

where Ψout
L (k′L)(Ψout

R (k′R)) are the transmitted part of the linearly scattered wave function cor-
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Figure IV.6 The amplitude and nonlinear phaseshift of the transmitted two-photon wavefunction
as functions of the detuning for the incoming photons being square wavepackets of equal width
in spectrum.

responding to the incoming wave function Ψin
L (kL)(Ψin

R (kR)). ∆φ (k′L, k′R) correspond to the

nonlinear phase shift. B (k′L, k′R) is the nonlinear correction to amplitude and is typically small

compared to Ψout
L (k′L)Ψout

R (k′R) if the detuning ∆, of the right channel photon frequency from

the |x−〉 ↔ |4〉 transition energy (see Fig. IV.2(b)), is large. In principle, ∆φ (k′L, k′R) is a func-

tion of k′L, k′R resulted from the convolution form of Eqn. (IV.4) and a global nonlinear phase shift

is not well defined as illustrated in Fig. IV.5 for incoming photon wavepackets both in gaussian

shape and Fig. IV.6 for incoming photon wavepackets both in square shape in spectrum.

Although often overlooked in the literature, the phase-variation effect results in distor-

tion of the pulse shape and entanglement of the motion and polarization of the photons.

IV.D Pulse shaping for suppression of the phase variation

effect

Since the qubit is encoded in the polarization subspace of the single photon, we have

the freedom to choose the shape of its spatial wavefunction. We show how the carefully selected

shapes of the input single photon wavepackets leads to reduction of the output pulse deformation.

The guideline for pulse shape selection is listed below. (1) As a consequence of the

EIT effect induced by the optical coupling between the |3d〉 and |2d〉 states, the choice of the

left input photon to be within ±Ωc of being in resonance with the |1d〉 → |3d〉 transition, the
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Figure IV.7 Optimized phase gate operation with the incoming photons in selected shapes I. Left
(right) part is the amplitude (nonlinear phaseshift) of the transmitted two-photon wavefunction
as functions of the detuning ∆ωL ≡ ~ck′L − (E3d − E1d) and ∆ωR ≡ ~ck′R − (E4d − E2d). The
parameters are: Γ3 = Γ4 = 60 µeV, Ωc = 8 µeV; gcav = 0.5 meV. The input wavefunction is
such that Ψi(kL, kR) = θ(48 + ∆ωR)θ(−16−∆ωR)θ(1.6 + ∆ωL)θ(1.6−∆ωL) with arguments in
units of µeV.

linear reflection is reduced and the first factor on the right side of Eq. (IV.3) will yield a strong

third-order transmission. (2) To diminish the pulse shape distortion due to the sharp resonant

structure around the |2d〉 → |4d〉 transition, the right-channel photon is detuned about ∼ Γ4/2

below the transition where the real part (corresponding to the nonlinear phaseshift) of T (3) is

large and flat while the imaginary part (corresponding to the reflection) has decreased to a small

value. (3) To minimize the pulse broadening and distortion resulted from the convolution of the

input pulses with the S matrix, we choose the two input pulses to have sqaure-shaped spectra

with much different widths. In our design, Γ4/2 is much larger than Ωc, so the right-channel pulse

is set the wider in frequency. Such a choice will allow a uniform integration length (which may

be inferred from Fig. IV.4 if the area is further elongated vertically) for almost all components

of the transmitted two photon outgoing wavefunction.

Figure IV.7 presents the transmitted wavefunction (k′L, k′R > 0) for incoming photons in

square pulses with the polarization state |XX〉. Though visible, the pulse distortion and broad-

ening and the inhomogeneity in nonlinear phase-shift ∆φ (k′L, k′R) is quite small. A nonlinear

phaseshift of π/29 is obtained with a two photon transmission probability of f = 0.72 where

f ≡ ∫∞
0

dk′L
∫∞
0

dk′R |Ψout (k′L, k′R)|2.
The loss in transmission and the pulse distortion in Fig. IV.7 result mainly from the

imperfect EIT when the photon is off-resonant with the |1d〉 → |3d〉 transition. Improvement

of both the pulse shape and transmission is effected by increasing the pump power Ωc (in order
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Figure IV.8 Optimized phase gate operation with the incoming photons in selected shapes II. The
plot is the same as Fig. IV.7 except that the parameters are: Γ3 = 45 µeV, Γ4 = 60 µeV; Ωc = 15
µeV; gcav = 0.5 meV and Ψi(kL, kR) = θ(38 + ∆ωR)θ(−26−∆ωR)θ(0.6 + ∆ωL)θ(0.6−∆ωL).

to open a larger EIT window) and by using narrower bandwidth pulses at the expense of a

weak nonlinear phase shift. An example is shown in Fig. IV.8, in which a nonlinear phase shift

∼ π/330 is obtained almost without pulse-shape change or reflection loss, shown by the computed

transmission probability of f ∼ 0.982.

IV.E Gate operations

The suppression of the phase-variation effects allows the well defined conditional phase-

shift on photon polarization qubit. The efficiency of gate operation is analyzed here. The qubit is

specified to be the polarization state of single photon pulse of the designated shape, e.g., the se-

lected shapes discussed in section IV.D. Any distortion of the spatial wavefunction is considered

as a leakage out of the qubit subspace.

The initial state is specified by the density matrix ρi in the basis set of the direct

products of the polarization states, |σLσR〉 with σ = X or Y , and of the wave vector states

|kL, kR〉. For characterizing gate operations, we take the initial state to be 1√
2
(|X〉L + |Y 〉L) ⊗

1√
2
(|X〉R + |Y 〉R) with the spatial part having the selected shapes understood. So ρi in the

polarization subspace is,

ρi =
1
4




1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1




(IV.6)

The transmitted state ρf is given by the normalized tρit
†, where t is the transmission matrix.
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By design, t is diagonal in the polarization states. The final density matrix of the two-photon

polarizations is obtained by tracing ρf over the wave vectors of the photons [83]. We assume the

linear part of the phaseshift is always compensated, e.g., by passing the photon through some

dispersive media and we do not consider this effect on the transmitted wavepackets.

In the ideal phase gate operation with conditional phaseshift φ, we have

t =




eiφ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




(IV.7)

so

ρideal
t =

1
4




1 eiφ eiφ eiφ

e−iφ 1 1 1

e−iφ 1 1 1

e−iφ 1 1 1




(IV.8)

Considering the reflection and pulse distortion, both effects will result in the leakage

out of the qubit subspace and therefore,

t =




f1e
iφ 0 0 0

0 f2 0 0

0 0 1 0

0 0 0 1




(IV.9)

Therefore, ρt is,

ρt =
1

f2
1 + f2

2 + 2




f2
1 f1f2e

iφ f1e
iφ f1e

iφ

f1f2e
−iφ f2

2 1 1

f1e
−iφ 1 1 1

f1e
−iφ 1 1 1




(IV.10)

Fidelity Tr
[
ρideal

t ρt

]
is a quantity for characterizing the gate efficiency. As the input

state in the current discussion is a pure state and the ideal gate transform preserve the pure

state properties, the purity Tr[ρ2
t ] is another quantity for characterizing the gate operations. In

addition, the measure of the deterministicity of the gate is given by the normalization factor
f2
1 +f2

2 +2
4 .

We take the two examples of pulse shaping in the previous section and characterize

their gate operations.
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In the first case (Fig. IV.7),

ρt =
1

3.557




0.7027 0.7698 + 0.0824i 0.8308 + 0.0890i 0.8308 + 0.0890i

0.7698− 0.0824i 0.8543 0.9220 0.9220

0.8308− 0.0890i 0.9220 1 1

0.8308− 0.0890i 0.9220 1 1




(IV.11)

while the corresponding target state with the same amount of nonlinear phase shift (∼ π/29) is

given by,

ρideal
t =

1
4




1 0.8308+0.0890i
0.835554

0.8308+0.0890i
0.835554

0.8308+0.0890i
0.835554

0.8308−0.0890i
0.835554 1 1 1

0.8308−0.0890i
0.835554 1 1 1

0.8308−0.0890i
0.835554 1 1 1




(IV.12)

The purity of the state after the gate transform,

Tr[ρ2
t ] = 0.997089

and the fidelity of the gate,

Tr
[
ρideal

t ρt

]
= 0.9935

In the second case (Fig. IV.8),

ρt =
1

3.9804




0.9816 0.9901 + 0.0092i 0.9907 + 0.0092i 0.9907 + 0.0092i

0.9901− 0.0092i 0.9988 0.9994 0.9994

0.9907− 0.0092i 0.9994 1 1

0.9907− 0.0092i 0.9994 1 1




(IV.13)

while the corresponding target state with the same amount of nonlinear phase shift is given by,

ρideal
t =

1
4




1 0.9907+0.0092i
0.990735

0.9907+0.0092i
0.990735

0.9907+0.0092i
0.990735

0.9907−0.0092i
0.990735 1 1 1

0.9907−0.0092i
0.990735 1 1 1

0.9907−0.0092i
0.990735 1 1 1




(IV.14)

The purity of the state after the gate transform,

Tr[ρ2
t ] = 0.999999

and the fidelity of the gate,

Tr
[
ρideal

t ρt

]
= 0.99998
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Figure IV.9 Proposed structure for realizing multi-shot phase gate operations to accumulate
nonlinear phase shift. The four legs of the gate are controlled by the Fabri-Perot structures.
One quantum dot is coupled to each structure and polariton state is formed. These structures
act as double barrier tunnelling potentials (shown on top) for photons. By tuning the resonance
energy of the polariton state via DC electric field, single photon can either tunnel through or get
reflected by these structures. After the incoming single photons enter into the phase gate region,
the Fabri-Perot structures are set on “close” positions so that photons are reflected about the
phase gate structure to accumulate the nonlinear phaseshift. The single photons can leave the
phase gate if the Fabri-Perot structures are set on “open” positions.

Phase gate may be used to generate entangled photon pairs. An ideal phase gate

transform with π nonlinear phase shift will produce fully entangled pairs of photons for the

initial state of Eqn. (IV.6). We may examine the amount of entanglement generated by the gate

operations in the two examples of pulse shaping.

To calculate the entanglement of formation [84], we define,

ρ̃t = (σ1y ⊗ σ2y) ρ∗t (σ1y ⊗ σ2y) (IV.15)

where ρ∗t is the complex conjugate of ρt and σ1y, σ2y are pauli matrix acting on left and right

photon qubit respectively.

We label the eigenstates of ρtρ̃t as λ1, λ2, λ3, λ4 in decreasing order. The concurrence

is then defined by,

C ≡ max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4} (IV.16)

The Entanglement of Formation is related to the concurrence by:

E (C) = h

(
1 +

√
1− C2

2

)
(IV.17)

where,

h (x) = −x log2 x− (1− x) log2 (1− x) (IV.18)
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Table IV.2 n+n gates with parameters: Γ3 = 0.06 meV, Γ4 = 0.5 meV Ωc = 6.2 µeV. The
left- and right-channel Gaussian pulses with FWHM 7.5 µeV and 50 µeV are resonant with the
left and right polariton transitions, respectively. The parameters are optimized for the largest
nonlinear reflection. C denotes the concurrence and E(C) the entanglement of formation.

n Transmission Probability Fidelity Purity C E(C)

2 0.1165 0.8638 0.9591 0.7277 0.6272

4 0.02074 0.9758 0.9850 0.9515 0.9306

We may verify that a fully entangled pure state, e.g., 1√
2
(|XX〉 + |Y Y 〉), corresponds to C = 1

and E(C) = 1.

By taking the initial state given by Eqn. (IV.6), and passing through the phase gate

with pulse shaping of Fig. IV.7, we have the final state Eqn. (IV.11) and the computed con-

currence C = 0.0717 and entanglement of formation E(C) = 0.0142. For comparison, the

corresponding quantities for the ideal gate transform with the same amount of nonlinear phase

shift (Eqn. (IV.12)) are: C = 0.0533 and E(C) = 0.0087.

For the second example of pulse shaping of Fig. IV.8, we have the final state Eqn. (IV.13)

and the computed concurrence C = 0.0064 and entanglement of formation E(C) = 0.00018. For

comparison, the corresponding quantities for the ideal gate transform with the same amount of

nonlinear phase shift (Eqn. (IV.14)) are: C = 0.0046 and E(C) = 0.0001.

The examples above show that reduction of the reflection and distortion of the photon

pulses diminishes the gate phase and the entanglement. A small entanglement is still useful for

some quantum information purposes [85]. Moreover, a large phase-shift can be accumulated,

either by passing a photon pair many times through the phase gate (see Fig. IV.9), or by using a

series of many identical gates integrated into a single chip. With modern fabricating techniques,

the integrated quantum gates can be constructed either with micro-disks and wave guides etched

on semiconductor heterostructures [55] or with point- and line-defects engineered in photonic

lattices [56, 57] (see illustrations in Fig. IV.10).

IV.F Nonlinear reflection and photon entanglement

To use the system to produce an entangled photon pair rather than to perform a con-

trolled phase operation, we optimize the entanglement by a different procedure. The nonlinear

reflection which is a deleterious factor in the phase gate operation might be utilized for entan-

glement generation. First the input state is prepared as the equal linear combination of the

four polarization states of the two photons 1
2 (|XX〉+ |XY 〉+ |Y X〉+ |Y Y 〉). Then the state is

passed n times through the coupled system. Due to the nonlinear reflection, the amplitude on
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(a) (b)

Figure IV.10 Solid state phase gate on chip. (a) Realization in 2D photonic crystals. (b) Etched
on surface.

the |XX〉 component is suppressed after projection onto the two photon transmission subspace

which results in 1√
3
(|XY 〉 + |Y X〉 + |Y Y 〉). By single bit operation swapping the |X〉 and |Y 〉

states in both photons, the above state is transformed to 1√
3
(|Y X〉+ |XY 〉+ |XX〉) and is then

passed through the phase gate n more times and we obtain the final state in the two photon

transmission subspace as 1√
2
(|Y X〉+ |XY 〉). By this procedure, we obtain fully polarization en-

tangled photon pairs which is a probabilistic process. While the quantum phase gate operation is

favored by maximizing the transmission, the entanglement is favored maximizing the nonlinear

reflection and symmetrizing the two photons for maximal projection of the polarization degrees

of freedom.

Table V.2 shows the calculated results for 2+2 and 4+4 gates. The transmission proba-

bilities are much lower than for the phase operation. The quantitative measures of the operation

including fidelity Tr [ρtρideal] towards the maximally entangled state 1√
2
(|XY 〉+ |Y X〉), the pu-

rity Tr
[
ρ2

t

]
, the concurrence C and the entanglement of formation E(C) [84], all show excellent

entanglement.

IV.G Chapter summary

In summary, we have proposed a solid-state controlled phase gate for two photons. The

flying qubits are conducted through fibers coupled to scattering centers composed of microcav-

ities connected by a doped semiconductor quantum dot. This allows a fiber implementation of

quantum information processor. Calculated results show that the system is flexible as a phase

gate as well as producing strong entanglement. The obtained single photon nonlinearity may be

implemented in photon based quantum information processing. It is recently recognized that lin-

ear optical elements combined with some nonlinear effects may appreciably improve the efficiency

of photonic quantum computation [86]. The trions in doped quantum dot used for nonlinear in-

teraction here can be replaced by other electronic systems, such as biexcitons in an undoped

quantum dot (results will be published elsewhere), states in nanoclusters, or even some strong

transitions in rare-earth impurities, e.g., the 4d-5f transition in Er2+. The microcavity may be
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micro-disks or defects in photonic lattices (see Fig. IV.10). The structure has unique features,

such as small size, integrability, and stability, useful for quantum information and for scalable

quantum computing.
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V

Control of Spin-Photon Interface

for Quantum Networks

Quantum networks composed of local nodes which are connected by quantum channels

are essential for quantum communication and desirable for scalable and distributed quantum

computation [23, 87]. The local nodes consist of clusters of stationary qubits and can be operated

in parallel. Flying qubits in the quantum channel can take quantum information from one cluster

to another when necessary. The stationary qubit can be provided by stable levels of atoms,

quantum dots or impurity centers in solid state structures. Photon wavepacket will be an ideal

carrier for flying qubit with either the photon number states or the polarization forming the

qubit. The key part here is the quantum interface that allows deterministic interplay between

stationary and flying qubits. The ability for faithful mapping between the two types of qubit is

essential towards the scalability of the distributed quantum computer [23].

The prototype quantum interface for this purpose was proposed by Cirac et al. [88]

which is composed of a cavity coupled to a three-level Λ system. Through the cavity assisted Ra-

man process, the stationary qubit formed by stable levels of atoms and the flying qubit formed by

number states of photon wavepacket can be inter-converted. Via similar cavity assisted Raman

process, schemes for mapping between motional states of single trapped atom [89] or collective

excitation of atomic ensembles [90, 91] and the quantum states of single photons are also pro-

posed. Proper dynamic control is essential for implementing desired functions of the quantum

network. Previously available controls include the time symmetric scheme [88] and the adiabatic

scheme [90, 91, 92], with which useful network operations such as deterministic state transfer

can be performed. However, both schemes are subject to some constraints, not fully utilizing the

52
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potential of the quantum interface.

In this chapter, we discuss a most general form of the control of this prototype quantum

interface [93, 94]. The time symmetric scheme of [88] and the adiabatic scheme of [90, 91, 92]

form special and approximate cases. The constraints imposed by these two schemes can be

shown to be unnecessary, greatly saving the physical resources and improving the time efficiency

for implementing the quantum network. We show that the dot-cavity-waveguide coupled system

is a very promising structure for the physical realization of the quantum interface.

V.A Survey of previous work

Illustration of this prototype quantum interface is shown in Fig. V.1. The two ground

states, |g〉 and |e〉, of the three level system form the stationary qubit. State |g〉 is coupled to

the intermediate state |t〉 by the cavity mode and |e〉 to |t〉 by classical light. Direct excitation

of cavity by classical light is assumed absent. The cavity is coupled to the electromagnetic

continuum outside which forms a photonic channel. A Raman path from |e〉 to |g〉 through the

intermediate state |t〉 is thus formed. If the three level system is initially on state |e〉, the classic

light can bring it to state |t〉 by a π rotation which can then relax to state |g〉 by spontaneous

emission of a cavity photon. The cavity photon can then leak into the photonic channel forming

a single photon wavepacket. If the three level system is initially on state |g〉, it will remain on

this state provided the cavity is in its vacuum. The qubit of information carried by the three

level system can thus be mapped onto a flying qubit in the photonic channel whose number states

form the qubit and the sending function of this node is completed,

(Cg|g〉+ Ce|e〉)⊗ |vac〉 → |g〉 ⊗ [Cg|vac〉+ Ce|αout〉] . (V.1)

where |α〉 denotes a single photon wavepacket in the photonic channel and |vac〉 the channel

vacuum. The receiving function is the mapping of flying qubit to the stationary qubit and can

be considered as the time reversal of the above process,

|g〉 ⊗ (Cg|vac〉+ Ce|αin〉) → (Cg|g〉+ Ce|e〉)⊗ |vac〉. (V.2)

With the output of the sending node directed as the input of the receiving node (see Fig. V.1),

transfer of qubit between the two distant nodes can be performed.

The difficulty in realizing the network lies in the receiving end. Instead of being absorbed

by the three level system, the single photon pulse can be reflected by the cavity mirror unless the

pulse shape of the classic control light matches the single photon pulse exactly. However, it has

been considered to be a difficult problem as the classic control light has a functional dependence

on the single photon wavepacket. A way to get around this difficulty was provided in [88]. The
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Figure V.1 Schematic illustration of the quantum network. The node is composed of cavity
coupled to three level Λ system. The two ground states |g〉 and |e〉 of the three level system
form the Hilbert space for the stationary qubit. State |g〉 is coupled to the intermediate |t〉 by
the cavity mode with strength gcav and |e〉 to |t〉 by classical light with Rabi frequency Ω(t).
Direct excitation of cavity by classical light is assumed absent. The cavity itself is coupled to the
continuum outside which forms a photonic channel. Two nodes are connected by the photonic
channel in the following way: the output of node 1 is directed to node 2 as its input and vice
versa.

central idea is that if the quantum interface can be controlled to generate an outgoing photon

wavepacket of a time symmetric shape, by setting the classic control at the receiving node just

the time reversal of that at the sending node, the time reversal symmetry will guarantee the

photon wavepacket to be completely absorbed at the receiving node. A solution for this time

symmetric operation was also provided in [88].

Many atom CQED based experiments have been stimulated by this proposal in the past

several years, e.g., by Kuhn et al. [95], McKeever et al. [96] and Keller et al. [97]. When atoms

are used as stationary qubit, its center of mass dynamics can be deleterious to the quantum

interface operations. In the two latest experiments [96, 97], efforts were made to trap atoms

or ions inside the optical cavity so that the uncertainty in position is greatly reduced and the

interface functions in a rather deterministic way. The dependence in shape of the generated

single photon wavepacket on the classic control light has also been demonstrated in [97].

There has been development on the control scheme as well. The original proposal by

Cirac et al. requires the sending and receiving node to be identical and operated in a time

symmetric way. This would impose a great demand on the physical resource to build a quantum

network. Later, Lukin et al. [90, 91] showed that if the this quantum interface is operated in

the adiabatic regime, the driving field for generation of a single photon wavepacket of arbitrary

shape can be found. However, the operation has to be slow enough to guarantee the adiabaticity.
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V.B Exact solution of the quantum interfacing dynamics

In this section, we will present the general and exact solution for the dynamics of this

prototype quantum interface, based on which is a new control scheme without any constraint

of time reversal symmetry or adiabaticity. We will show that both the sending and receiving

processes can be independently controlled by designing the laser pulses. The controllability are

two-folded: First, the single-photon pulse shape, provided smooth enough, can be arbitrarily

specified; Second, the Raman process can be operated as a partial cycle, in which arbitrary

amount of entanglement between the stationary qubit and the flying qubit can be created on

demand. This second controllability makes possible a new scheme to deterministically create

non-local entanglement between distant nodes in the quantum network. The time symmetric

scheme of [88] is a special case of our scheme operated as a full cycle and the adiabatic scheme

of [90, 91, 92] forms the approximation of our scheme in the slow operation regime.

For the quantum interface shown in Fig. V.1, the Hamiltonian describing the interaction

of the single mode cavity with the three level system and with the channel continuum is,

H = ωca
†a + ωt |t〉 〈t|+ ωe |e〉 〈e|+

∫ ∞

0

dωωb†ωbω + gcav (i |t〉 〈g| a + H.c.)

+
1
2

[
iΩ(t) e−iωLt |t〉 〈e|+ H.c.

]
+

∫ ∞

0

dω
(
i
√

γ/2πb†ωa + H.c.
)

(V.3)

where bω is the annihilation operator for the mode of frequency ω in the channel continuum and

a is the annihilation operator for cavity mode. The energy of state |g〉 is set as zero. |g〉 → |t〉
transition is coupled to cavity mode with strength gcav. |e〉 → |t〉 transition is coupled by classic

control light of time dependent Rabi frequency Ω(t) and central frequency ωL. The coupling of

the cavity mode to the channel continuum is assumed constant:
√

γ/2π. An ideal situation is

assumed neglecting photon leakage into free space through intermediate state |t〉 or the cavity

wall.

We note that the system described by this Hamiltonian, under the optical excitation

and the cavity-dot and cavity-channel interaction, has two invariant Hilbert subspaces, with the

basis {|g, 0〉 |vac〉} and {|e, 0〉 |vac〉, |t, 0〉 |vac〉, |g, 1〉 |vac〉, |g, 0〉 |ω〉}, respectively (where in |s, n〉,
s = g, e, t or t̄ denotes the state of three level system and n denotes the number of photons in the

single cavity mode, |ω〉 denotes the one-photon Fock state of the channel mode of frequency ω).

So the evolution of the system can be generally described by the state Cg |g, 0〉 |vac〉+Ce |Ψe (t)〉
in the interaction picture, where

|Ψe (t)〉 = βe (t) |e, 0〉 |vac〉+ βt (t) |t, 0〉 |vac〉+ βc (t) |g, 1〉 |vac〉+
∫ ∞

0

dωωαω (t) |g, 0〉 |ω〉 . (V.4)

The time evolution of the amplitudes in the interaction picture is described by the following
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Schrödinger equations,

β̇e = −Ω∗1
2

e−i(ωt−ωL−ωe)tβt (V.5a)

β̇t = gcavei(ωt−ωc)tβc +
Ω
2

ei(ωt−ωL−ωe)tβe (V.5b)

β̇c = −gcave−i(ωt−ωc)tβt −
√

γ/2π

∫ ∞

0

dωe−i(ω−ωc)tαω (V.5c)

α̇ω =
√

γ/2πei(ω−ωc)tβc (V.5d)

From Eq. (V.5d), αω can be formally expressed as,

αω (t) = αω (t0) +
√

γ/2π

∫ t

t0

dt′ei(ω−ωc)t
′
βc (t′) (V.6)

or

αω (t) = αω (t1)−
√

γ/2π

∫ t1

t

dt′ei(ω−ωc)t
′
βc (t′) (V.7)

where t0 → −∞ and t1 → +∞ represents the remote past and remote future respectively when

the incoming/outgoing photon wave-packet are in the far field not interacting with the quantum

interface. By substituting Eqs. (V.6) and (V.7) into Eq. (V.5c), the Schrödinger equations

become,

β̇e = −Ω∗1
2

e−i(ωt−ωL−ωe)tβt (V.8a)

β̇t = gcavei(ωt−ωc)tβc +
Ω
2

ei(ωt−ωL−ωe)tβe (V.8b)

β̇c = −gcave−i(ωt−ωc)tβt −√γαin (t)− γ

2
βc (V.8c)

= −gcave−i(ωt−ωc)tβt −√γαout (t) +
γ

2
βc (V.8d)

where,

αin (t) ≡
∫

dωαω (t0) e−i(ω−ωc)t/
√

2π

with t0 → −∞ and,

αout (t) ≡
∫

dωαω (t1) e−i(ω−ωc)t/
√

2π

with t1 → +∞ are the incoming and outgoing pulse of the photon in the quantum channel,

respectively. Eqs. (V.8c) and (V.8d) are obtained within the Weisskopf-Wigner approximation

[98]. The quantum fluctuation caused by the quantum channel is on the order of γ/ωc ¿ 1

(which is the typical situation for both atom-CQED system and solid state systems) and thus

the Weisskopf-Wigner approximation is well justified here. Although Eqs. (V.8c) and (V.8d)

contain terms which yield exponential dependence on time, they are time reversible with each

other. Thus, Eqs. (V.8) describe a reverable quantum evolution.

Below, we will show that, from Eqs. (V.8), the amplitudes βe(t), βc(t) and βt(t) as well

as the Rabi frequency Ω(t) of the control field can be expressed in terms of αin and αout. Thus
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the desired operation, with αin and αout arbitrarily specified, can be generated on demand as

long as the normalization of the wavefunction of Eq. (V.4) is not violated.

First, we note that βc(t) is immediately available from Eqs. (V.8c) and (V.8d),

√
γβc (t) = αout (t)− αin (t) (V.9)

which is an instantaneous map of the difference between the input and output in the photonic

channel. From Eq. (V.8c), βt(t) is also readily expressible in terms of αin and αout as,

βt =
−β̇c −√γαin (t)− γ

2 βc

gcav
ei(ωt−ωc)t (V.10)

=
−(α̇out − α̇in)/

√
γ − (αin(t) + αout(t))

√
γ/2

gcav
ei(ωt−ωc)t

From Eq. (V.8a) and (V.8b), we can solve for the amplitude of βe(t),

d

dt
|βe|2 = − d

dt
|βt|2 + gcav(β∗c βte

−i(ωt−ωc)t + βcβ
∗
t ei(ωt−ωc)t) (V.11)

and the phase,

d

dt
arg(βe) =

1
2i
|βe|−2 (β̇tβ

∗
t − βtβ̇

∗
t ) +

gcav

2i
|βe|−2 (βtβ

∗
c e−i(ωt−ωc)t − βcβ

∗
t ei(ωt−ωc)t) (V.12)

And finally, from Eq. (V.8b), we can express Ω(t) in terms of the amplitudes that have been

solved above,

Ω (t) = 2
β̇t − gcavβc

βe
(V.13)

The normalization condition can also be obtained from Eqs. (V.9), (V.10) and (V.11),

d

dt
(|βe|2 + |βt|2 + |βc|2) = |αin|2 − |αout|2 (V.14)

The functions of this quantum interface can be classified into three types: (I) there

is no incoming photon and the quantum interface generates an outgoing photon wavepacket of

a specified shape; (II) there is an incoming photon wavepacket of a specified shape and it is

completely absorbed by the quantum interface; (III) there is an incoming photon wavepacket

of a specified shape, and the quantum interface generates an outgoing photon wavepacket of

another specified shape. The first two type of controls form the basis for the quantum network

operation. With control of type III, the quantum interface can act as a controllable scatter or

pulse shaper for single photon wavepacket. This control can also be considered as the combination

of consecutive controls of type II and I. In the following, we will discuss in more details the first

two types of controls.

The sending node of the quantum network is operated with control of type I. The initial

conditions are: αin(t) = 0, βc(t0) = 0, βe(t0) = 1 and βt(t0) = 0. The integral form of Eq. (V.14)

becomes,

|βe|2 = 1− sin2 θ

∫ t

t0

|α̃out (τ)|2 dτ − |βc|2 − |gcav|−2
∣∣∣β̇c + γβc/2

∣∣∣
2

, (V.15)
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where α̃out is the normalized wavepacket of the emitted photon, and sin2 θ is the average photon

number. For a photon number and a pulse shape arbitrarily specified, the amplitude of the cavity

mode is determined by Eq. (V.9) as βc = α̃out sin θ
(√

2πκ
)
. If we pose the problem of finding

the optical control to produce a specified shape of the outgoing photon wavepacket, the fact that

the right-hand side of Eq. (V.15) is positive requires the specified output pulse be sufficiently

smooth, i.e., the pulse generation process be slower than the cavity-channel and the dot-cavity

tunnelling rate (with timescales γ−1 and g−1
cav, respectively). At the remote future time t1 → +∞,

the photon emission process is completed, i.e., βc(t1) = β̇c(t1) = 0, so βe(t1) = eiφ cos θ with

the controllable phase φ given by Eq. (V.12). The most general form of the photon generation

process can be expressed as,

(Cg|g〉+ Ce|e〉)⊗ |vac〉 Ω(t)→ Cg|g〉 ⊗ |vac〉+ Ce

[
eiφ cos θ|e〉 ⊗ |vac〉+ sin θ|g〉 ⊗ |α̃out〉

]
(V.16)

When the full Raman transition is completed, θ = π/2 and βe(t1) = 0, Eq. (V.16) is reduced to,

(Cg|g〉+ Ce|e〉)⊗ |vac〉 Ω→ |g〉 ⊗ (Cg|vac〉+ Ce|α̃out〉) , (V.17)

which corresponds to mapping of the stationary qubit onto the flying qubit. If initially the

three level system is entirely in state |e〉, this mapping operation can function as deterministic

generation of a single-photon wavepacket with any desired pulse shape α̃out. If the Raman cycle

is controlled to be partially completed (θ < π/2), the state initially in |e〉 ⊗ |vac〉 is transformed

into an entangled state of the stationary spin and the flying photon

eiφ cos θ|e〉 ⊗ |vac〉+ sin θ|g〉 ⊗ |α̃out〉. (V.18)

The entanglement entropy E = − cos2 θ log2 cos2 θ−sin2 θ log2 sin2 θ can be set any value between

0 and 1 depending on the rotating angle θ.

The receiving node is operated with control of type II, typically as a full Raman cycle,

in the quantum network scheme. It is basically the time-reversal of the full-cycle sending process.

With the three level system initially on state |g〉 and the incoming photon Cg|vac〉+ Ce|αin(t)〉,
the mapping transformation is

|g〉 ⊗ (Cg|vac〉+ Ce|αin〉) Ω→ (Cg|g〉+ Ce|e〉)⊗ |vac〉. (V.19)

As in the sending process, the incoming photon pulse αin(t) can be arbitrarily specified, provided

that it is smooth enough, and that the photon can be absorbed without reflection. As the

stationary qubit converted from the photon state can be read out non-destructively (this will be

discussed in chapter VI), the receiving node can also act as an efficient photon detector which

measures the photon number state when the photon pulse shape is known.



59

By combining the sending and receiving processes, the transfer of a qubit from one node

to another can be easily implemented, with the outgoing photon from the sending node directed

as the incoming photon for the receiving node. Obviously, when two state-transfer operations

with opposite directions are combined together, the two qubits are swapped. For swap operations,

the waveguide connecting the two nodes should be long enough to make the photon travelling

time longer than the operation time.

If the operation at the sending node has been designed to produce an entangled state of

the stationary and the flying qubit, the mapping process at the receiving node will just produce

a non-locally entangled state of the two nodes by the transformation

|e〉1|g〉2 ⊗ |vac〉 Ω1→ eiφ cos θ|e〉1|g〉2 ⊗ |vac〉+ sin θ|g〉1|g〉2 ⊗ |α̃out〉 (V.20)
Ω2→ [

eiφ cos θ|e〉1|g〉2 + sin θ|g〉1|e〉2
]⊗ |vac〉.

We end this section with a summary of the essential quantum network functions enabled

by the exact solution: (i) It can send a flying quantum state and can also function as a deter-

ministic source of single-photons with arbitrary pulse shape and controllable photon number.

(ii) It can receive a flying quantum state, being an efficient single-photon detector provided that

the incoming photon pulse shape is known. (iii) The sending and receiving processes combined

transfer a state from one node to another. (iv) An incoming flying qubit may be swapped with

a stationary qubit which enables the swap of two remote qubits. (v) An entangled state of the

stationary and flying qubits is produced in a partial Raman cycle. (vi) Two stationary qubits

separated far away are entangled when the photon state generated by the partial Raman cycle

is mapped into a stationary qubit.

V.C Dot-cavity-waveguide realization of the quantum in-

terface

Here we discuss a physical structure that is well suited for the realization of the quantum

interface discussed in the previous section. The basis for our proposed physical implementation

of a node is formed by a substantial list of recent experimental advances on optical manipulation

of excitons in single nanodots [4], nanodot-microsphere coupling [63], cavity-fiber coupling [58],

fabrication of high-quality microcavities and waveguides, both on semiconductor surfaces [58]

and in photonic crystals [56, 61] and especially the very recent findings of vacuum Rabi splitting

of nanodot embedded in such cavities [66, 70, 71]. The duration of a typical operation in the

node is of the order 100 ps, consistent with the theoretical estimates of optical operations on spin

qubits in dots for network purposes [8, 17, 18]. The speed and pulse shaping may well be within
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Figure V.2 Dot-cavity-waveguide structure as a quantum interface: system configuration and
energy level schemes. (a) A high-Q micro-sphere coupling a ‘tapered’ waveguide and a doped
quantum dot. (b) The level diagram and optical process. In |s, n〉, s = g, e, t or t̄ denotes
an electronic state in the dot and n denotes the number of photons in the single cavity mode.
Straight, curved, and wavy arrows represent the laser excitation, dot-cavity coupling, and cavity-
fiber tunnelling, respectively. The resonant and off-resonant processes are represented by solid
and dashed lines, respectively. (c) The simplified cavity-assisted Raman process.

the capability of the existing ultrafast optics.

The quantum interface is made up of a high-Q microcavity coupling a quantum dot

and an optical waveguide (or a fiber), such as the cartoon shown in Fig. V.2(a). Lowering of

the Q of the cavity due to the strong coupling with the waveguide is part of the process and

has no deleterious effect on the quantum operation. The detailed optical process is depicted in

Fig. V.2(b). The qubit is represented by the two spin states |g〉 and |e〉 which have split energies

ωg and ωe in a static magnetic field normal to the optical axis of the dot. The lowest two optically

excited states are the trion states |t〉 and |t̄〉, with energies ωt and ωt̄ respectively. If we choose

the active cavity mode of an electric field in the Y -direction at the vicinity of the dot and the

control laser of X-polarization, the states |g〉, |e〉, |t〉 and |t̄〉 then corresponds respectively to the

electron spin states |x+〉, |x−〉 and the trion states |T+〉, |T−〉 defined in Chapter II. The cavity

mode of frequency ωc couples with strength gcav only to the transitions |g〉 → |t〉 and |e〉 → |t̄〉 ,

and the controlling laser of central frequency ωL and complex Rabi frequency Ω(t) couples only

to the cross transitions |g〉 → |t̄〉 and |e〉 → |t〉. The laser light and cavity mode satisfy the

resonance condition: ωL + ωe = ωc + ωg = ωt. By the Zeeman splitting and the selection rules,

the trion state |t̄〉 is off-resonant to the laser light and the cavity mode (shown by dashed lines in

Fig. V.2(b)). The cavity mode is coupled to the waveguide continuum by the coupling constant

κ.
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Figure V.3 Numerical simulation of generation of a single photon pulse with double sech shape
from the dot-cavity-waveguide structure. (a) Real part of the dimensionless amplitude of the
simulated photon pulse (solid line) as a function of the dimensionless time γt/2. The deviation
from the target pulse is not visible. (b) Imaginary part of the simulated pulse (solid line) and the
target pulse (dashed line). (c) Phase drift of the state |g, 0〉. (d) Rabi frequency of the control
laser. The trion decay rate is set at Γ = 3µeV, and the intrinsic loss rate of cavity mode is
assumed to be γ′ = 0.1 µeV. The cavity-fiber tunnelling rate is chosen to be γ = 0.2 meV and
the dot-cavity coupling constant gcav = 0.1 meV.

At a sending node, the Raman process consists in first the laser field resonantly exciting

the spin state |e, 0〉 to the trion state |t, 0〉, then the trion state resonantly coupled to the cavity

state |g, 1〉 which finally is rotated to the spin state |g, 0〉 forming a photon wave packet in the

waveguide. The receiving mode is just the time-reversed process. Undesirable dynamics involving

the state |t̄〉 is eliminated by making the Zeeman splitting sufficiently larger than the cavity-dot

coupling and the Rabi frequency. The resultant optical process is the cavity-assisted resonant

Raman process in a Λ-type three-level system shown in Fig. V.2(c). Then for any shape of the

single-photon wave packet in the waveguide, an analytical solution of the pulse shape of the laser

field may be found based on the derivation of section V.B. With this analytically obtained laser

pulse shape as the controlling input, numerical calculations including the non-resonant transitions

and realistic decoherence have been performed and high efficiency of desired operations at the

quantum interface is demonstrated.

Error of the quantum operations described above is estimated in terms of fidelity by

numerical simulations including the undesired non-resonant dynamics and unavoidable decoher-
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ence. The main source of decoherence is the trion decay by spontaneous emission and the cavity

mode leakage other than the dynamics accounted above. The fiber loss and the spin relaxation

are negligible on the time-scale of 100 ps and the distance-scale of 1 cm of relevance here 1. The

trion decay rate, based on experiment [99], is set at Γ = 3µeV, and the intrinsic loss rate of a

high-Q cavity excluding coupling to the dot and the fiber is assumed to be γ′ = 0.1 µeV (corre-

sponding to a Q-factor ∼ 107). The cavity-fiber tunnelling rate is chosen to be γ = 0.2 meV and

the dot-cavity coupling constant gcav = 0.1 meV taken from state of art experiments [66, 70, 71].

The remaining sources of error are the non-resonant excitation of the multi-photon states and

AC Stark shift of the energy levels. The latter induces a deterministic phase drift between |g〉
and |e〉, which is independent of the coefficients Cg(e) as the two excitation pathways starting

respectively from |g〉 and |e〉 are independent of each other (see Fig. V.2 (b)), and thus can be

compensated by a single-qubit operation. Leakage out of the qubit subspace by the non-resonant

excitation to multi-photon states is greatly suppressed by a 1 meV Zeeman splitting (can be

achieved at less than 10 T magnetic field for InAs dots), which is much larger than the Rabi

frequency and the cavity-dot coupling.

In practical operation, we may take the strategy to design the shape Ω(t) of the control

field from the ideal set of Eqs. (V.8), and use this designed Ω(t) to drive the system dynamics

which is subject to decoherence processes and the undesired dynamics as shown in Fig. V.2(b).

We present in Fig. V.3 the simulation result of mapping a spin state to a flying photon wavepacket

with the pulse shape targeted as a superposition of two sech-functions as αideal
out (t) = sech(γt/6 +

5) + 0.5sech(γt/6− 5), with normalization understood.

The fidelity of the photon pulse generation |〈αideal
out |αout〉| ≈ 0.9912. Because of the non-

adiabatic optical pumping and dot-cavity coupling, the whole mapping process can be completed

within 300 ps. The simulation of the photon absorption process shows an overall fidelity greater

than 0.99 as well. Indeed, the dot-cavity-waveguide structure well promises the realization of a

high efficiency quantum interface for spins and photons.

V.D Pulse shaping study for the optimized efficiency in

presence of imperfections

For a quantum network function, the control scheme allows an arbitrary shape of the

intermediate single photon wavepacket, and therefore offers great flexibility in the physical im-
1With this quantum interface, we are aiming at the construction of a solid state quantum

network on chip for distributed quantum computation. See the discussion of section IX.D in the
final chapter.
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Figure V.4 Generation of single photon pulse of a target shape of a sech ram-up and a Gaussian
decay: (1− tanh(γt/4))sech(0.35γt)+ (1+tanh(γt/4))exp(−γ2t2/100). The relevant parameters
are: γ = 0.1meV, gcav = 0.1meV, γt = 3µeV, γ′ = 0.05µeV. (a) Amplitude of the state βe. (b)
Generated single photon wavepacket (solid line). The dashed line shows the target shape. The
difference is not visible in this case. (c) The Rabi frequency of the driving field.

plementation. For example, if for some technique reason, the sending or receiving node is only

capable with some fixed shapes of the single photon wavepacket, the control design at the other

node by the exact solution may well enable the network function. While both the sending and

receiving node are controllable, we have the freedom to choose an arbitrary intermediate photon

wavepacket. Yet in presence of the undesired dynamics, e.g., to the |t̄〉 state in the proposed

dot-cavity-waveguide structure, different intermediate single wavepacket may result in different

efficiency. Here we investigate the network operation with various shapes of the intermediate

single photons and show that some straightforward pulse-shaping may improve the efficiency

for some of them. As a demonstration, we focus our discussion on the Gaussian shapes and

exponential shapes as the tail and (or) ram-up of single photon pulse.

The undesired dynamics in the dot-cavity-waveguide realization is suppressed by ap-

plying the external magnetic field to detune the energy of the unwanted transitions from the

Table V.1 Merits of entanglement creation numerically simulated for the dot-cavity-waveguide
system with various photon pulse shape, normalization understood. g1,2

cav = 0.1 meV and γ1,2 =
0.2 meV.

α(t) sech(γt/6) exp(−γ2t2/128) 1+tanh(γt/8)
cosh(γt/6) + 1−tanh(γt/8)

exp(γ2t2/128)

Fidelity 0.9912 0.9908 0.9906

E(ρqubit) 0.9995 0.9995 0.9994

Pleak 0.0173 0.0182 0.0184
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Figure V.5 Creation of entanglement between the stationary and flying qubit with the target
state: (|e〉 ⊗ |vac〉 + |g〉 ⊗ |α̃out〉)/

√
2. The desired single photon pulse shape has a Gaussian

ram-up followed by a sech decay: (1+ tanh(γt/4))sech(0.15γt)+ (1− tanh(γt/4))exp(−γ2t2/64).
The parameters are: γ = 0.1meV, gcav = γ, γt = 3µeV, γ′ = 0.05µeV. (a) Amplitude of the state
βe. Notice that the amplitude ends with 1/

√
2 here in stead of 0 in the state transfer case. (b)

Generated single photon wavepacket (solid line). The dashed line shows the target shape. The
difference is not visible in this case. The integration of the pulse area is 1/2 for this entanglement
creation case instead of 1 in the state transfer. (c) The Rabi frequency of the driving field.

frequency of the laser field. To have the undesired dynamics well suppressed, a natural expec-

tation is that the system shall not be driven too hard, i.e., the Rabi frequency Ω(t) being much

smaller than the detuning energy (electron zeeman splitting in the magnetic).

The exact solution to Rabi frequency Ω(t) of the driving field for several different target

photon pulse shapes for various network operations are shown in Fig. V.4,V.6 and V.5. The

fast diminishing tails of the Gaussian pulse tends to require higher peak value of Ω(t) than the

exponential tails of the Sech pulse. In presence of the undesired coupling to the trion state |t̄〉,
the Gaussian shapes causes more non-resonant excitations than the exponential ones. Therefore,

single photon pulse with ram-up and tail both of an exponential shape, e.g., the ones shown in

Fig. V.3 and V.5, is advantageous for mediating network operations.

On the other hand, deviation from target shape at the tail region of the single photon

pulse has a negligible effect on the fidelity of interface operations as compared to non-resonant

excitation, thus tuning down Ω(t) at the tail region can make the Gaussian pulse more efficient

for achieving fidelity. Table V.3 shows the results of a comparative study of the merits of the

photon pulse in the Sech shape, the Gaussian, and an asymmetric shape with exponential shape

on the rise and Gaussian on the fall, mediating entanglement of two spin qubits to the Bell

state eiφ|g〉1|e〉2 + |e〉1|g〉2. The merits calculated are the fidelity, the entanglement of formation

E(ρqubit) in the subspace of the two spin qubits and the probability of leakage out of this subspace,
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Figure V.6 Absorption of a single photon wavepacket of shape sech(γt/4). The parameters are
γ = 0.1meV, gcav = γ, γt = 3µeV, γ′ = 0.05µeV. (a) Amplitude of the state βe. (b) Solid line
shows the incoming single photon wavepacket and the dashed line shows the reflected photon
wavepacket. (c) The Rabi frequency of the driving field.

Pleak. We can see that after pulse shaping for the driving field by smoothly tuning it down at

the tail region, the operations mediated by single photon pulse of Gaussian shapes may have

comparable efficiency as compared to that mediated by the single photon of Sech shape.

V.E Error analysis and fault tolerance

In the above discussions, exact knowledge of the coupling strength gcav, γ and Ω(t)

are assumed. But in general, there could be various errors on parameters due to imperfect

characterization of the system. Here we discuss the robustness of our scheme in presence of

unknown system parameter errors.

For generality, the discussion in this section is for the genuine three level model in

Table V.2 Fidelity of the entanglement creation and state transfer scheme in the presence of
various system parameter errors. The Rabi frequencies Ω1(2)(t) are analytically designed for a
target Bell state (|g〉1|e〉2 + |e〉1|g〉2)/

√
2 in the former scheme and for transferring (|g〉+ |e〉) /

√
2

state in the latter both with carrier shape sech(γt
6 ), assuming g1,2

cav = 0.1 meV and γ1,2 = 0.2 meV.
The evolutions are then simulated by adding +(−)10% to g

1(2)
cav , γ1(2) or Ω1(2)(t) at node 1(2)

respectively. The operation fidelity with no parameter error are listed for comparison. Photon
leakage rates γt and γ′ are set as 3µeV and 0.05µeV respectively in all cases.

no error 10% g error 10% γ error 10% Ω(t) error

Entangle 0.9922 0.9881 0.9905 0.9870

Transfer 0.9922 0.9891 0.9911 0.9901
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Figure V.7 State transfer of ((|g〉+|e〉)/√2) in presence of shape fluctuations of the control pulses.
(a) The designed control pulse at the sending node (black solid line) and the applied control pulse
with slow fluctuations (red dashed dot line) and fast fluctuations (green solid line). The control
pulse at the receiving node has a similar error applied. (b) The generated intermediate single
photon wavepacket. The black solid lines shows the target shape. Deviation of the generated
single photon wavepacket is invisible in the fast fluctuation case. The fidelity of the transfer
is 0.9912 with the slow shape fluctuations and 0.9922 with the fast shape fluctuations. The
parameters used are: γ = 0.2meV, gcav = γ/2, γt = 3µeV, γ′ = 0.05µeV.

Fig. V.1. Non-ideality including the photon leakage into free space through cavity wall (the

intrinisic cavity leakage with rate γ′) and from intermediate state |t〉 (with rate γt) is taken into

account by adding decoherence terms to Eq. (V.8),

β̇e = −Ω∗1
2

e−i(ωt−ωL−ωe)tβt (V.21a)

β̇t = gcavei(ωt−ωc)tβc +
Ω
2

ei(ωt−ωL−ωe)tβe − γt

2
βt (V.21b)

β̇c = −gcave−i(ωt−ωc)tβt −√γαin (t)− γ

2
βc − γ′

2
βc (V.21c)

= −gcave−i(ωt−ωc)tβt −√γαout (t) +
γ

2
βc − γ′

2
βc (V.21d)

For proper accounting of the effect of the “unknown” systematic errors in the numerical

simulation, we design the Rabi frequency Ω(t) of the control field from the ideal set of Eqs. (V.8)

using the assumed value of gcav and γ. And then in the numerical simulation, the dynamics

is driven by Ω′(t), g′cav and γ′ which contains errors (deviation from the assumed value gcav, γ

and the solved Ω(t)) plus the extra decoherence terms. The resonance conditions of the Raman

process is assumed: ωt = ωc = ωL + ωe.

We listed in Table. V.2 the effect of the unknown errors in the various parameters on
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the fidelity of entanglement to eiφ|g〉1|e〉2 + |e〉1|g〉2 and transfer of the state |g〉+ |e〉 state both

with the photon pulse shape sech(γt
6 ). Our system shows a surprising robustness: 10% unknown

errors on gcav, γ or |Ω(t)| only reduce the fidelity by less than 1%.

The |Ω(t)| error studied in Table. V.2 is a global one on the amplitude, e.g. induced

by the stationary qubit being slightly out of focus from the classic control field. We also studied

the efficiencies of network operations in presence of the control field shape errors, i.e., temporal

fluctuations in amplitude. Surprisingly, the control scheme is found immune against fast fluctu-

ations (see Fig. V.7). This robustness is due to the finite bandwidth of the quantum interface,

i.e., the coupling strength between the cavity and the three level system and also the cavity

waveguide tunneling rate, which forbid the single photon pulse shape to follow any fast changes

in the control. Any temporal fluctuations in the control field with the frequency higher than

the interface bandwidth are effectively averaged out. The time independent amplitude error

discussed in Table. V.2 may be considered as a special shape error which is actually the most

deleterious scenario for the network operation.

Ω(t) can also have unknown phase error due to laser phase fluctuation which can be

considered static in the time scale of our operation. We show below that what matters in two

node operations is the relative phase between Ω1(t) and Ω2(t − τ) where τ is the propagation

delay.

Assume that the classic driving field at the sending node has a unknown phase of ϕ1 and,

hence, the Rabi frequency is now Ω1 (t) eiϕ1 . From the form of the coupling term that involves

the classical field in the Hamiltonian Eq. (V.3), the unknown phase factor can be absorbed by

redefining the state |ẽ〉1 ≡ e−iϕ1 |e〉1, so that,

1
2

[
iΩ1(t)eiϕ1e−iωLt|t〉11〈e|+ H.c.

] ≡ 1
2

[
iΩ1(t)e−iωLt|t〉11〈ẽ|+ H.c.

]
(V.22)

and we can make the same transform at the receiving node. Starting from a general state

(Cg|g〉1 + Ce|e〉1) |g〉2 ⊗ |vac〉 ≡ Cg|g〉1|g〉2 ⊗ |vac〉+ Cee
iϕ1 |ẽ〉1|g〉2 ⊗ |vac〉, two-node operations

in the presence of laser phase fluctuation can be generally expressed as,

Cg|g〉1|g〉2 ⊗ |vac〉+ Cee
iϕ1 |ẽ〉1|g〉2 ⊗ |vac〉 (V.23)

Ω1(t)−→ Cg|g〉1|g〉2 ⊗ |vac〉+ Cee
iϕ1

[
eiφ cos θ|ẽ〉1|g〉2 ⊗ |vac〉+ sin θ|g〉1|g〉2 ⊗ |α̃out〉

]

Ω2(t−τ)−→ [
Cg|g〉1|g〉2 + Cee

iϕ1
(
eiφ cos θ|ẽ〉1|g〉2 + sin θ|g〉1|ẽ〉2

)]⊗ |vac〉

The final state is equivalent to,

[
cg|g〉1|g〉2 + ce

(
eiφ cos θ|e〉1|g〉2 + eiϕ1e−iϕ2 sin θ|g〉1|e〉2

)]⊗ |vac〉

If the classic driving fields at the two nodes can be phase locked in a delayed manner so that
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Figure V.8 Compare of the single photon generation by the adiabatic scheme and the exact
solution I. The target single photon wavepacket is of shape sech(γ/6t), with normalization un-
derstood. The parameters are γ = 0.2meV, gcav = γ, γt = 3µeV, γ′ = 0.05µeV. (a) The generated
single photon wavepacket using the adiabatic scheme(dashed line) and the exact solution(solid
line). The dotted line shows the target pulse shape. (b) The occupation of the intermediate state
|βt|. (c) The Rabi frequency of the driven field from adiabatic design(dashed line) and the exact
solution(solid line).

there is a certain relative phase between Ω1(t) and Ω2(t − τ), the two node operation is well

protected from laser phase fluctuations.

Photon loss in the propagation is also deleterious to quantum network applications.

However, for applications where the spatial dimension of the quantum network system is not large,

i.e., in distributed quantum computations, photon propagation in optical fibers or waveguides is

almost decoherence free. Moreover, error correction schemes dealing with this propagation loss

is available [100]. When long distance quantum state transfer is desired, the idea of quantum

repeaters [101] might be incorporated into the quantum network design for protection against

the photon propagation loss.

V.F Comparison with other schemes

In this section, we discuss the link of our scheme to other schemes that were previously

proposed, specifically, the time symmetric scheme of [88] and the adiabatic scheme of [90, 91, 92].

The solution provided in [88] is obtained in the perturbative regime for a detuned Raman

process. While detuning can suppress photon leakage into free space through the intermediate
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Figure V.9 Compare of the single photon generation by the adiabatic scheme and the exact
solution II. The plot is the same as Fig. V.8 except that the target pulse shape is sech(γ/4t) and
the parameters are: γ = 0.2meV, gcav = γ/2, γt = 3µeV, γ′ = 0.05µeV.

state, this photon leakage is shown, by the numerical simulations in the previous sections, to be

negligible when γt is much smaller than any other energy scales of the system. Such could be

the typical situation in solid state system composed of a quantum dot coupled to microcavity

[93]. The controlling scheme we presented here can be used to design both detuned and resonant

Raman process. The resonant Raman process utilizes fully the coupling between the cavity and

the three level system and thus allows the generation and absorption of ultrafast pulses.

We have compared the adiabatic scheme of [90, 91, 92] with our exact solution in various

parameter regimes for the genuine three level model (Fig. V.1). In Table. V.2, we show the

comparison results for the fidelity of state transfer operation mediated by a sech target pulse of

various duration. The adiabatic scheme works well when the duration of the incoming/outgoing

single photon pulse is much longer than the maximum of γ−1 and g−1
cav. When our scheme is

operated in this regime, the occupation of the intermediate state |t〉 is found very small and

the system indeed evolve adiabatically. We illustrate in Fig. V.8 an example of the operation in

this regime. From Fig. V.8(c), we can see that the design of the Rabi frequency Ω(t) using the

adiabatic scheme is almost identical to that given by our exact solution (the noticeable difference

in Ω(t) at the tail region of the photon wavepacket has negligible effect on the fidelity as both

|t〉 and |e〉 states have already been depleted at the moment). Both schemes give fidelity close to

perfect.
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Table V.3 Compare of the fidelity of state transfer operation using the adiabatic scheme and the
exact solution both with the same target pulse of a sech shape. We fix the cavity coupling to the
photonic channel γ = 0.2meV, the relaxation of the intermediate state into free space γt = 3µeV
and the cavity leakage into free space γ′ = 0.05µeV.

gcav γ γ γ/2 γ/2 γ/2

target pulse sech(γt/6) sech(γt/4) sech(γt/6) sech(γt/4) sech(γt/2.4)

Fexact 0.9959 0.9957 0.9844 0.9837 0.9815

Fadia 0.9936 0.9896 0.9206 0.8194 0.5547

As can be expected, the adiabatic schemes is shown to fail in generation or absorption

of fast single photon pulses. While the fidelity of our scheme remains high in these fast operation

regimes, the fidelity of adiabatic scheme drops appreciably as shown in Table. V.3. We illustrate

also in Fig. V.9 a comparison of design using the two schemes in this regime. The occupation of

the intermediate state |t〉 is found not negligible as can be seen from Fig. V.9(b). Since in the

adiabatic scheme, the three level system is assumed always in the dark state composed of only

|e〉 and |g〉, the scheme gives a poor design of the Rabi frequency Ω(t) in the active time period

as can be seen in Fig. V.9(c). As a consequence, the pulse generated from the adiabatic design

has an appreciable deviation from the target shape (see Fig. V.9(a)).

V.G Chapter summary

We have discussed a general and exact solution to the dynamics of a quantum inter-

face composed of a three level system coupled to a continuum through a cavity, which yields a

controlling scheme for arbitrary operations on the stationary qubit and the flying qubit. The

scheme enables an number of quantum network operations including sending, receiving, swap-

ping as well as a new way of deterministically entangling qubit between distant nodes. The

removal of the constraints of time symmetry can greatly save the cost of resource for physical

implementation of quantum network. The removal of adiabaticity allows ultra-fast operations.

The exact solution also allows learning studies on the system parameters by trial and error, while

the intrinsic robustness against unknown parameter errors paves the way for further exploration

of quantum feedback control [102, 103] for this system. The quantum interface with the sending

and receiving operation can also be considered, respectively, as single photon source and detector

for a wavepacket of arbitrary shape and might find its use in quantum computation and quantum

information with linear optics devices.

This control scheme is applicable to a wide range of physical implementation of the

quantum interface including atom-CQED and solid state systems. With the advances in fabrica-
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tion of coupled structures of solid state micro-cavities, waveguides and quantum dots [58, 66, 70],

solid state implementation can be of particular interest [93]. Apart from the stability and integra-

bility of the solid state structure, the strong coupling of quantum dot embedded in semiconductor

micro-cavity recently achieved in lab [70, 66, 71] makes them very desirable as components of

the quantum interface. The state of art dot-cavity coupling allows operations with bandwidth

of ∼ 0.1meV, about 2 orders faster than the major decoherence rate in this solid state system.

As shown in the numerical simulations, such a parameter regime make possible using resonant

Raman process for ultra-fast operations of ∼ 100ps while maintaining fidelity over 99%. The

absence of unwanted center of mass dynamics of the stationary qubit is another merit of solid

state system.
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VI

Ultra-fast Initialization and

Quantum Non-Demolition

Measurements of Single Spins

Initialization or cooling in ultrafast timescales is a prerequisite for coherent optical

control of single spins, especially for quantum computation which requires continuous reset of

qubits for quantum error correction [23]. On the other hand, the quantum measurement of single

electron spins is notoriously difficult. The existing schemes of single-spin measurement [104, 105,

106, 107, 108] are mostly based on electrical measurement via spin-charge conversion and thus is

incompatible with ultrafast optical control of spins.

Quantum non-demolition (QND) measurement is also a critical element for scalable

quantum computation. In quantum computation, the final state before measurement is in general

a superposition of the basis states, written as
∑

Cx|x〉, and a measurement in the basis gives

an output x from which the result is derived. In practice, to establish statistical confidence or

accumulate signal strength by imperfect detection, the measurement should be repeated to have a

certain x observed at least twice. In a destructive measurement, each cycle has to be started with

a fresh preparation of the final state and could result in any possible output x, which amounts

to measuring an ensemble of identical quantum states (similar to identical molecules used in

liquid NMR-based quantum computation [109, 110]). When the number of qubits (problem size)

increases, the number of basis states |x〉 in the superposition could increase exponentially, as in

the famous Shor algorithm for factorization [111], thus the physical resources, being the number

of repeated cycles or the ensemble size, would scale up exponentially. By contrast, in a QND

72
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measurement, a state collapses into a basis state and remains in it for the repeated cycles, thus

the signal strength can be accumulated with a limited number of repetitions, similar to cycling

transitions used for single ions [112, 113, 114].

In this chapter, we illustrate the idea of using single-shot coherent quantum evolution

to realize ultrafast cooling and QND measurement of single electron spins, in the coupled system

of a doped quantum dot, a microcavity, and a waveguide. The directed one-dimensional photon

continuum and coherent optical control of the cavity-QED provide the means of manipulating

irreversible photon-emission processes for the purpose of spin initialization and readout. The

study outlines a new direction for current research on cavity QED of single solid-state systems

such as quantum dots and impurities.

VI.A System configuration

The basic idea of controlling cavity QED is depicted in Fig. VI.1 which is of the same

configuration as the spin-photon interface described in the previous chapter for the quantum

network. A high-quality cavity coupled to a nanodot modifies the electromagnetic vacuum in

the vicinity of the n-doped dot via the coupling between the whispering-gallery-modes in the

cavity and the electronic transitions in the dot. A waveguide coupled to the cavity [78] acts as

a quantum channel into which the cavity photon can escape rapidly to a designated destination

such as a detector.

The qubit is represented by the electron spin states |±〉 split by a static magnetic field

in the x direction. The operations are mediated by the two degenerate trion states |T∓〉 with

the hole spin in ∓x direction respectively (see chapter II). Thus an X- or Y -polarized tipping

pulse will flip |±〉 to |T∓〉 or |T±〉, respectively (see the discussion of optical selection rules in

II.B.2). The trion states are, by design, off-resonant from the cavity modes to avoid cavity-

induced optical decoherence during quantum operations of the spin. When the nanodot-cavity

coupling is desired, the trion transitions and the cavity mode |C〉 may be driven by a laser pulse

into resonance via the AC Stark effect. The active cavity mode is chosen to have X-polarization

in the vicinity of the nanodot, so that when brought within resonance, the trion states |T±〉
and the cavity states |∓, C〉 are coupled into two split trion-polariton states, respectively. This

provides a fast decay of the trion to a spin state by emitting a photon into the quantum channel.

A choice of the polarization of the tipping pulse can either (1) use the quantum channel as an

entropy dump for the process of cooling the spin to the ground state, or (2) entangle the spin

qubit with a photon qubit in the quantum channel, thus enabling the QND measurement of the

spin qubit via photon detection.
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Figure VI.1 (a) Schematics of the dot-cavity-waveguide coupled structure. (b) Basic optical
processes for cooling and measuring a spin state. The dotted, solid, and wavy arrows represent
the AC Stark pulse, the tipping pulse, and the spontaneous emission, respectively. X and Y
polarizations are indicated by horizontal arrows and circled cross, respectively.

Error sources which cause the most concern in solid-state quantum computation, specif-

ically in optically controlled quantum-dot systems, are irreversible photon emission during qubit

operations, non-resonant excitation of unwanted levels, imperfect selection rules, and system pa-

rameter uncertainty. The idea of suppressing such errors by shaping the controlling laser pulse

will be demonstrated here through two examples: On-demand switch of dot-cavity coupling by

AC Stark effect can avoid spontaneous emission during qubit operations, and chirped pulses can

perform Rabi flops robust against parameter uncertainty.

VI.B Initialization cycle

The detailed optical processes of cooling a spin qubit are illustrated in Fig. VI.2 (a).

To be general, we assume that the doped electron spin is initially in an unpolarized state, i.e.,

ρ̂(−∞) = 0.5|−〉〈−|+0.5|+〉〈+|. A cooling cycle consists of four basic steps: (1) An X-polarized

AC Stark pulse is adiabatically switched on, bringing the states |T+〉 and |−, C〉 into resonance;

(2) A Y -polarized tipping pulse flips the spin up state |+〉 to the polariton states formed by

|T+〉 and |−, C〉; (3) The polariton states relax to the spin down state |−〉 rapidly by emitting

a photon into the waveguide, dumping the spin entropy to the environment; (4) The AC Stark

pulse is adiabatically switched off. No photon-generation or spin-flip would take place if the

initial spin state were |−〉. Thus ideally, after the cooling cycle, the spin is fully polarized with

the entropy mapped into the quantum channel, and the final density matrix becomes |−〉〈−| ⊗
(0.5|0〉〈0|+ 0.5|1〉〈1|) , where |n〉 is the n-photon waveguide state.

The cooling process has been simulated by numerically solving the master equation of



75

the dot-cavity system

∂tρ̂ = −i
[
Ĥ, ρ̂

]
− γ + γ′

2
Lâρ̂− Γ

2

∑

s,s′=±
L|s〉〈Ts′|ρ̂, (VI.1)

Ĥ ≡ ΩC â†â± ωL

2
|±〉〈±|+ ΩT |T±〉〈T ± |+ gcav|T±〉〈∓|â + H.c

+ [χt(t)εt + χp(t)εp] · εX

(|T±〉〈∓|+ rC â†
)

+ H.c

+ [χt(t)εt + χp(t)εp] · εY |T±〉〈±|+ H.c, (VI.2)

Lôρ̂ ≡ 2ôρ̂ô† − ô†ôρ̂− ρ̂ô†ô, (VI.3)

where γ is the cavity-waveguide escape rate, γ′ is the cavity-free-space loss rate, Γ is the trion

decay rate due to spontaneous emission into free-space, â annihilates a cavity photon, rC is the

ratio of pump strength of the cavity mode to that of the trions by control pulses, the subscripts t

and p denote the tipping and AC Stark pulses, respectively. εX(Y ) denote the polarization along

X(Y ) direction and εt(p) are the polarization of the tipping (ac Stark) pulse. Realistic parameters

have been chosen as follows: The Zeeman splitting ωL = 1 meV, γ = 0.2 meV, γ′ = 0.045 µeV

(corresponding to an intrinsic Q-factor ∼ 3 × 107), the dot-cavity coupling gcav = 0.1 meV, the

cavity-trion detuning ΩC − ΩT − ωL/2 = 0.5 meV, Γ = 1 µeV, and rC = 0.3.

The control of the nanodot-vacuum coupling is provided by shaping the pump and

tipping pulses. The AC Stark pulse has an almost-square profile as

χp(t) = χpe
−iΩpt [erf (σp(t− t1))− erf (σp(t− t2))] ,

(see Fig. VI.2 (b)) and is X-polarized (εp = εX). The spectral width (σp = 0.354 meV) is set

much smaller than the detuning (ΩT + ωL/2 − Ωp = 5.5 meV), so that the effect due to non-

adiabatic switch-on and off is negligible. For the parameters given above, the trion state |T+〉
and the cavity state |−, C〉 are brought into resonance when the pump strength (2χp) reaches the

value 1.21 meV. As the pump pulse maintains the resonant cavity-dot tunnelling which facilitates

the photon escape to the quantum channel, the trion state relaxes very fast (on the time-scale of

g−1
cav and γ−1, ∼ 10 ps). A duration of the pump pulse t2 − t1 = 70 ps is found sufficient for the

total dissipation of the photon. The tipping pulse ideally should be a π-pulse for Rabi-oscillation

between |+〉 and |T+〉. Due to the dynamical nature of the states (dressed by the AC Stark pulse)

and the rather small polariton splitting (∼ 0.1 meV), a perfect π-rotation requires an extremely

long pulse. The solution is to shape a chirped pulse as χt(t) = χte
−iφ(t)−iΩttsech (σt(t− tt)) with

the phase sweeping rate φ̇(t) = −σc tanh (σt(t− tt)) [115]. The frequency of the pulse now will

sweep from σc above Ωt to σc below. When the sweeping range [Ωt − σc, Ωt + σc] covers both of

the trion-polariton states, the initial spin state |+〉 will be left adiabatically in a superposition

of the two polariton states, which relaxes rapidly to the target spin state |−〉. In simulation,
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Figure VI.2 Ultrafast initialization of single electron spin in quantum dot. (a) Detailed optical
process for spin initialization. The grey curves are the energies of different states versus the Rabi
frequency of the AC Stark pulse, in the rotating frame. (b) The Rabi frequencies of the AC Stark
pulse and the tipping pulse (amplified by a factor 5), and the sweeping frequency of the tipping
pulse. (c) Probabilities of spin down and up. Different steps of the cooling cycle, indicated by
1©- 4©, are distinguished by shadowed areas in (b) and (c).
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the tipping pulse, with frequency sweeping range σc = 0.4 meV, strength χt = 0.2 meV, and

duration 1/σt = 6.58 ps, flips the spin state |+〉 to the polariton states with negligible error.

Such a geometrical flip is insensitive to transition frequency and strength [115], and thus can

tolerate to some degree laser fluctuations and uncertainty in dipole moment, transition energy,

and selection rules.

Figure VI.2 (c) shows that a single cooling cycle completed within 80 ps produces an

almost 100% polarized spin from a maximally mixed state. The multi-photon cavity states were

included in the numerical calculation, as they renormalize the AC Stark shift (the real excitation

of multi-photon states is negligible due to the off-resonance condition). Inclusion of up to 3-

photon states was found sufficient to obtain converged results. The density matrix at the end of

the cycle is ρ̂ = 0.9945|−〉〈−| + 0.0040|+〉〈+| + ρ̂err, where ρ̂err is the probability (≈0.15%) of

the system remaining in the trion states which results mainly from the non-adiabatic switching

of the AC Stark pulse. The decay of the trion and the cavity modes by emitting photons into

free-space constitute the main error source (≈ 0.4%), as the trion state relaxes to different spin

states depending on the polarization of the emitted free-space photon.

VI.C Measurement cycle

A mere switch of the polarizations of the tipping and pump pulses from (Y, X) to (X,Y ),

respectively, changes the “cooling” operation to a “measurement” one. The measurement cycle

includes four basic steps (see Fig. VI.3 (a)): (1) An X-polarized tipping pulse flips the spin state

|+〉 to the trion state |T−〉; (2) A Y -polarized AC Stark pulse adiabatically switched on drives

the trion state into resonance with the cavity state |+, C〉; (3) The trion state resonantly tunnels

into the cavity state and relaxes rapidly back to the spin state |+〉, leaving a photon emitted into

the quantum channel; (4) The AC Stark pulse is adiabatically switched off. Suppose that the

spin state to be measured is α|+〉+β|−〉 and the channel is initially in the vacuum state |0〉. The

measurement process will ideally transform the system into the entangled state α|+〉|1〉+β|−〉|0〉,
so that the detection of the photon projects the electron into a spin eigenstate, providing a QND

measurement of the spin.

Note that the pulse timing for measurement is different from that for cooling (cf.

Fig. VI.3 (b) and Fig. VI.2 (b)). The measurement sequence has been designed to minimize

the real excitation of the multi-photon states, while the cooling sequence has been designed to

minimize the emission of free-space photons by the trion states. In measurement, the Rabi flop

between the spin state and the trion is well separated in frequency from the cavity mode so that

chirping the pulse is unnecessary. Instead, a simple Gaussian π pulse χt(t) = χte
−σ2

t (t−tt)
2/2−iΩtt
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is used. The AC Stark pulse is chosen Y -polarized to avoid direct excitation of the cavity mode.

The measurement cycle has been numerically simulated for the same structure as in

Fig. VI.2. The number of photons emitted into the waveguide is calculated with ∂tn = γ〈â†â〉.
The tipping and the AC Stark pulses are set such that 1/σt = 2.19 ps, χt = 0.192 meV, Ωt =

ΩT − ωL/2, σp = 0.707 meV, 2χp = 2.08 meV, ΩT + ωL/2−Ωp = 5.5 meV, and the duration of

the pump pulse t2− t1 = 50 ps. After a single cycle of measurement, an initial state ρ̂0 = |+〉〈+|
results in the final state ρ̂1 = 0.0161|−〉〈−| + 0.9824|+〉〈+| + ρ̂err with the number of photon

emitted into the waveguide n = 0.9806 (see Fig. VI.3 (c)), while an initial state ρ̂0 = |−〉〈−|
results in the final state ρ̂1 = 0.9955|−〉〈−| + 0.0040|+〉〈+| + ρ̂err with n = 0.0015 (not shown).

The photon emitted into the waveguide can be detected with high efficiency [116, 117]. If the

detector has zero dark-count rate and efficiency of 50%, the POVM (positive operator-valued

measures [6]) for the measurement process can be defined as P̂0 ≡ 0.9992|−〉〈−|+ 0.5097|+〉〈+|
and P̂1 ≡ 0.0008|−〉〈−| + 0.4903|+〉〈+|. Here operator P̂1 is associated with the outcome of a

photon detection event at the detector, and P̂0 ≡ 1− P̂1 is associated with non-detection of any

photons. The physical meaning is transparent by noting that the probability of outcome m = 0, 1

is given by p(m) = 〈ψ|P̂m|ψ〉. Within a 5-cycle measurement 1, the spin state can be measured

with accuracy higher than 97%, and the back-action noise to the spin is less than 10%, while the

time duration is less than 0.4 ns, much shorter than the spin decoherence time.

VI.D Chapter summary

In summary, the coupling between the electromagnetic fields and the nanodot can be

customized both by spatially assembling micro-resonators and quantum channels in the vicinity

of the dot and by temporal design of the control optical pulses. Such a control can speed up the

spontaneous decay of the excited state in the dot leading to ultrafast cooling and QND measure-

ment of a single electron spin. As the bandwidth of the desired quantum pathway from dot to

cavity to waveguide may be engineered much larger than those undesired ones, e.g., leakage into

free space, the initialization and measurement cycle may be realized in a timescale under which

those leakage errors are negligibly small. Therefore, the coupled system of dot-cavity-waveguide

considered as a whole evolves unitarily under the pulse control. The cooling and measurement, as

unitary quantum transformations, conserve the entropy or quantum information, which is essen-

tial for quantum error diagnosis and quantum feedback control. For example, in the initialization

1The distinct probability of the outcome m = 1 if |ψ〉 = |+〉 or |ψ〉 = |−〉 permits a simple
criterion for identifying the spin states in the multi-cycle measurement, with the detection of one
or more photons, we declare the electron as in ‘spin-up’ state, and, with non-detection of photon
in all cycles, we declare the electron as in ‘spin-down’ state.
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cycle, not only the spin is “refreshed” as desired, the original state of the spin qubit is mapped

onto the photon state of the photonic channel which may be analyzed for information.

Cooling and measurement via single-shot quantum evolution should be the ultimate

paradigm of controlling the interaction between macroscopic environments (or instruments) and

microscopic quantum systems, which is central to nanosciences, especially in molecular electronics

and quantum computation. The unitary transformation, involving the controllable ‘environment’

(photons in the waveguide), is significantly different from the quantum jumps proposed for spin-

qubit readout [118, 119].

The specific micro-ring-waveguide structure may be replaced by equivalent waveguide-

resonator systems such as microsphere-fiber structures [78] and line- and point-defects engineered

in photonic crystals [61, 62, 120]. In the numerical simulations, we attempted to take care of

the primary sources of errors, including the optical decoherence, unintended dynamics involving

states not desired, either by stating their estimated size if not negligible or by designing the pro-

cesses to limit their effect. The strong electron-cavity photon coupling assumed in the numerical

simulations of the initialization and measurement operations turns to be reasonable by the new

findings [70, 66]. Moreover, efficiency reduction as a consequence of lower Q values can be toler-

ated by recycling the operations a few times. The schemes proposed here may also be adapted

to monitor and control the spin state of a single molecule [121] adsorbed on a cavity-waveguide

structure.
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VII

Quantum Theory of Electron Spin

Decoherence by Interacting

Nuclear Spins in a Quantum Dot

In the previous chapters, we have discussed quantum logic operations on the spin and

photon qubits in the coupled dot-cavity-waveguide system. The efficiency of quantum operations

relies critically on the coherence property of the system. While the optical relaxation due to

spontaneous emission has been considered and the effect efficiently ameliorated in the design, we

have not yet included the decoherence of the electron spin qubit in the quantum dot. As the

operations need finite amount of time Top ∼ 10−100 ps, to be able to correct the errors generated

by various noises and systematic errors, the qubit coherence time has to be sufficiently long to

allow the informatics approach of quantum error correction to be implemented [24, 25, 26, 27,

28, 29]. The critical quantity here is the ratio of the qubit coherence time and the operation

time, Tcoh/Top. It has been shown in theory that when this quantity becomes larger than some

fault-tolerant threshold value, scalable quantum computation becomes possible with quantum

error correction schemes. The current threshold value for Tcoh/Top is ∼ 103 − 104 depending

on the physical systems and the details of operations [29]. People have been working hard to

seek for error correction scheme with lower fault-tolerant threshold. Meantime, theoretical and

experimental efforts are being made for characterization of the various error sources, in particular,

the inevitable decoherence processes in various physical systems. In addition to the informatics

approach of quantum error correction, physical methods for mitigation of these decoherence are

being steadily pursued.
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While the quantum dot electron spin possessed the advantages of stability and scalability

for quantum computation, a major concern is the spin decoherence time might be fast in the solid

state systems. At low temperature and in a strong external magnetic field, which are typical

experimental conditions for quantum logic controls in QD systems [45, 107], consensus holds that

the coupling to lattice nuclear spins is the dominant cause for the electron spin decoherence. In

this chapter, we will present a quantum theory to this nuclear induced decoherence of the electron

spin, which posts the ultimate limit on quantum applications with quantum dot electrons. We

demonstrate with numerical calculations performed on GaAs quantum dot.

VII.A Spin decoherence of localized electrons in semicon-

ductors

Understanding of the decoherence properties of a localized spin in a solid state envi-

ronment is of fundamental interest as well as practical significance for applications in quantum

information science and nanotechnology. Example of such systems include electron spin confined

in III-V quantum dot and around donor impurities in Silicon. Decoherence of the electron spin

results from the contact with its environments, e.g., phonons, lattice nuclear spins, or fluctuations

of external field.

We first recapitalize the concept of decoherence of a two level quantum system (i.e.,

spin 1/2) in contact with environment, and show how decoherence can arise out of the quantum

mechanical description [122, 123, 124]. We take the initial state of the electron spin to be

in a coherent superposition of the spin up and down states |±〉 in an external magnetic field

|φs(0)〉 = C+|+〉 + C−|−〉, which together with the environment state at that instant forms a

single-product, or unentangled state, |Ψ(0)〉 = |φs(0)〉 ⊗ |J〉. The state of the coupled system of

the spin plus environment evolves over time t to |Ψ(t)〉 = C+(t)|+〉⊗|J+(t)〉+C−(t)|−〉⊗|J−(t)〉
which is entangled, i.e., no longer a single-product state when the environment states |J±(t)〉 are

not the same. Any physical observable of the electron spin is determined by the reduced density

matrix which is obtained by tracing over the environment states ρs
σ,σ′(t) = C∗σ′Cσ〈Jσ′(t)|Jσ(t)〉.

The diagonal element of the reduced density matrix ρs
σ,σ gives the probability of finding the

spin in state |σ〉. Either off-diagonal element is a measure of the coherence of the electron

spin. The environment-driven shifting of the probability between the spin states is known as

longitudinal relaxation, the timescale of which is denoted as T1. The decay of off-diagonal

element ρs
+,− is known as spin decoherence. Longitudinal spin relaxation also results in the

lost of spin coherence. For the purpose of technological applications, the longitudinal relaxation

can be virtually suppressed by tuning the eigenenergy splitting of the spin to be much larger
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than the dominant excitation energies in the environment and the system-bath coupling strength

[125, 126, 127, 128, 129, 130]. Thus the key issue for quantum information processing is the

so-called pure dephasing, i.e., the decoherence in absence of longitudinal relaxation. When the

cause of spin flip is removed, the reduced Hamiltonian of the whole system is of the diagonal form

in spin, Ĥ = |+〉〈+| ⊗ Ĥ+ + |−〉〈−| ⊗ Ĥ−. The environment, depending on the spin in state |+〉
or |−〉, evolves under the Hamiltonian Ĥ± into separate pathways |J±(t)〉 ≡ e−iĤ±t|J〉 in the

Hilbert Space. Pure decoherence, also known as pure transverse decoherence, is then measured

by Ls
+,−(t) = |〈J |eiĤ−te−iĤ+t|J〉|. The timescale Ls

+,−(t) decays is referred as the single spin

pure dephasing time T2.

The physical observable of an ensemble of spins is described by the ensemble averaged

reduced density matrix
∑

i piρ
i
σ,σ′ where pi is the probability of having the ith member. Ensemble

spin decoherence is measured by the decay of
∑

i piρ
i
+,−, the timescale of which is denoted as

T ∗2 . In addition to the entanglement with environment illustrated in the previous paragraph,

ensemble spin dynamics is also subjected to the inhomogeneous broadening of the spin resonance

energy. As a consequence, T ∗2 is in general several orders shorter than T2. π/2− τ −π− τ − echo

spin echo sequence has been a standard techniques in NMR experiments [131, 132, 133, 134, 135]

and ESR experiments [136, 137, 138] to eliminate the dephasing due to ensemble inhomogeneous

broadening. Spin echo magnitude decreases with the increase of the echo delay time τ . This

timescale is usually referred as the spin echo decay time TH . It is generally believed that ensemble

spin echo decay time TH gives a measure of the single spin T2.

While electrons localized by donor impurities in silicon have been well studied in the past

decades in ESR experiments [136, 137, 138], the same experimental technique is not applicable to

III-V system 1. With the emerging potential in quantum applications, the decoherence processes

of the electron spin in III-V quantum dot are being intensively studied. For GaAs and InAs

quantum dot placed in strong magnetic field of ∼ 1 − 10 T, the experimentally measured value

T1 ∼ 10−4 − 10−2 s [107, 127, 130] is in good agreement with the theoretical estimation of the

phonon-induced longitudinal relaxation [125, 126, 139]. Theoretical studies also suggests that the

pure dephasing due to phonon is well suppressed at temperature . 1 k [140, 141]. However, recent

advances in measurements on GaAs quantum dots shows decoherence time that is much faster

than the spin relaxation time. Ensemble decoherence time T ∗2 ∼ 1 − 10 ns were experimentally

established either from measurement on a spatial ensemble of GaAs dots [45] or from time-

ensemble measurement of single GaAs dot [11, 142, 143]. Spin echo type of measurement was

also performed on the electric gate defined GaAs dot [144] which shows an echo decay time of

1Due to the large inhomogeneous broadening of the electron zeeman energy in the nuclear
Overhauser field in III-V material, a simultaneous π-rotation for all spins in the ensemble is very
difficult to implement.
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TH ∼ 1µs. Both T ∗2 and TH are orders faster than the longitudinal relaxation time T1. These

are strong evidences that some mechanism other than phonon leads to this faster transeverse

decoherence and the cause is believed to be the nuclear spins sitting on the lattice sites.

There has been a rich literature on the nuclear induced electron spin decoherence. The

effect of direct electron-nuclear flip-flops due to the hyperfine interactions have been studied in

[145, 146, 147, 148, 149, 150, 151]. While this process can dominate at low magnetic field, it

is well suppressed at magnetic field of several Tesla or higher which are typically required by

many current schemes of using localized electron spin for quantum information processing [9, 17,

93, 152, 153]. The electron spin decoherence under strong magnetic field was first formulated

in the semiclassical framework of spectral diffusion theory [154, 155, 156, 157]. The quantum

dot electron spin decoherence was interpreted as a consequence of the stochastic evolution of the

nuclear Overhauser field due to the nuclear spin flip-flops driven by dipolar interaction [150, 151].

Full quantum mechanical study of the problem is stimulated by the need of decoherence

characterization in quantum information science [158, 159, 160, 161]. Quantum solution to the

problem can provide the basis for efficient methods to ameliorate the decoherence. In what

follows, we will present a quantum theory to the electron spin transverse decoherence induced

by interacting nuclear spins in quantum dot. The decoherence is explained in terms of quantum

entanglement of the electron with the pair-flip excitations in the nuclear bath driven by the

various nuclear-nuclear interactions. The nuclear interaction mediated by the virtual spin-flip of

the electron, usually overlooked in the literature, is shown to play an important role in single

electron spin free-induction decay. The spin-echo pulse not only recovers the coherence lost by

inhomogeneous broadening but also eliminates the decoherence due to the electron-mediated

nuclear pair-flips. Therefore, single spin T2 time is significantly different from ensemble spin

echo decay TH , counter to the usual expectations. The observation that nuclear pair-correlation

plays the dominant role in determining the electron spin coherence is in agreement with the

parallel work of Witzel, deSousa and Das Sarma [158] in which the ensemble spin echo behavior

was calculated for the phosphors impurities in silicon based on a quantum cluster expansion

methods.
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Figure VII.1 Schematic illustration of a quantum dot containing one electron and many nuclear
spins. (a) A GaAs quantum dot with thickness d in growth direction [001] and lateral Fork-
Darwin radius r0, in an external magnetic field Bext. (b) Illustration of an electron confined
in the quantum dot containing many nuclear spins of a random configuration. The hyperfine
interaction between the electron spin and the nuclear spins is determined by the electron’s orbital
wavefunction.

VII.B Model

VII.B.1 First-principle Hamiltonian

Mesoscopic bath of nuclear spins for the electron

The GaAs material has the Zincblende lattice structure, with Ga and As ions located in

two interpenetrating face-centered cubic lattices. The natural abundance of the isotopes in GaAs

materials is 100%, 60.4% and 39.6% for 75As, 69Ga, and 71Ga, respectively. All the isotopes have

non-zero nuclear spin moments j = 3/2. The geometry of the QD and the electron-nuclear spin

system are schematically plotted in Fig. VII.1.

The electron spin has moment S = 1/2. The orbital motion of the electron is quantized

due to the confinement of the QD and we assume the electron in the ground orbital state with

the wavefunction Ψ (r). In general, the electron wavefunction depends critically on the shape and

size of the QD and on the external magnetic field. The large sizes of the QDs considered here

well justifies the envelope function approximation in which the wavefunction can factorized into

the band-edge Bloch wavefunction uc(r) and a slow-varying envelope function f(r) as discussed

in Chapter II. Without loss of generality, the fluctuation GaAs quantum dot under typical

growth condition is assumed under a hard-wall confinement along the growth direction [001] and

a parabolic in-pane confinement. Neglecting the field-dependence of the electron orbital states,
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the envelope wavefunction of the ground state can be written as

f (r) =

√
2
d

cos(
π

d
z)θ

(
d

2
− |z|

)
1√
πr0

exp(−x2 + y2

2r2
0

) (VII.1)

where d is the thickness in the growth direction [001] as schematically shown in Fig. VII.1(a) and

r0 is the Fock-Darwin radius in plane.

The relevant nuclear bath for the electron spin decoherence consists of all lattice nuclei

that is in direct contact with the electron 2. For typical GaAs fluctuation dot, the total number

of relevant nuclei is N ∼ 105− 106, of a mesoscopic size. These nuclei inside the dot also couples

to the outside nuclei, e.g., through the dipole interactions, but the coupling is weak. Within

timescale of interest, the electron spin decoherence solely arises from the coupled dynamics with

the mesoscopic number of nuclei inside the dot. We will approach the decoherence problem by

solving the coupled dynamics of one electron spin and N (∼ 105− 106) nuclear spins. Such iden-

tification of the mesoscopic bath is further justified by numerical test which shows no noticeable

modification of the electron spin decoherence when the bath is made larger by including nuclei

out of the QD.

The total Hamiltonian of the electron and nuclear spins consists of the Zeeman energy

Ĥ0 under the strong external magnetic field, the hyperfine interaction between the electron and

the nuclear spins ĤeN, and the nuclear-nuclear spin interaction ĤNN, which are to be discussed

term by term below.

Zeeman energy

Unless specified otherwise, the magnetic field is assumed to be along the [110] direction.

With the magnetic field direction designated to be the z-axis, the Zeeman energy is given by

Ĥe = −γ∗eBextŜ
z
e ≡ ΩeŜ

z
e , (VII.2a)

ĤN = −
∑
n,α

γαBextĴ
z
n,α ≡

∑
n,α

ωαĴz
n,α, (VII.2b)

where Ŝe denotes electron spin operator and Ĵn,α denotes the operator for the nuclear spin at

position n of the isotopic type α (75As, 69Ga, or 71Ga). γ∗e is the effective gyromagnetic ratio of

the electron which is determined by the quantum dot effective Landé g-factor, γ∗e ≡ −µBg∗/~.

In GaAs fluctuation dot, g∗ has been measured to be ∼ 0.13 [45]. We note that in reality,

the electron effective g-factor depends dramatically on the size, shape, element composite, and

environment of the dot, and also varies with the external magnetic field. For very large dot in

cases of the gate confined dot in GaAs, we may expect that the g-factor will approach its bulk
2These include all nuclei in the effective volume of the quantum dot, i.e., all lattice sites covered

by the electron envelope wavefunction.



87

value of 0.44 (a value of 0.34 has been reported from preliminary experiments in the electric

gate defined GaAs dot [143]). γα are the gyromagnetic ratios of the nuclear spins available from

standard NMR handbooks. Typically, γα is 2 orders smaller than γ∗e .

Hyperfine interaction

The hyperfine interaction between the electron and the nuclear spins consists of the

isotropic Fermi contact interaction ĤeN,i, and the anisotropic dipole-dipole interaction ĤeN,a.

The isotropic part can be written as

ĤeN,i =
∑
n,α

an,αŜe · Ĵn,α, (VII.3a)

an,α =
µ0

4π
γeγα

8π

3
|Ψ(Rn,α)|2 , (VII.3b)

where µ0 is the vacuum magnetic permeability, γe is the electron gyromagnetic ratio (note that

here the free electron g-factor g0 = 2.0023 should be used, γe ≡ −µBg0/~), and Rn,α denotes the

coordinates of the nth α-type ion. Thus the coefficient of the contact Fermi hyperfine interaction

can be expressed as

an,α =
2µ0

3
γeγαdα

a3
0

4
|f (Rn,α)|2 ≡ Aα

a3
0

4
|f (Rn,α)|2 , (VII.4)

where a0 is the lattice constant, and dα ≡ |uc (Rn,α)|2 is the charge density of conduction band

electron at the α-type nuclei. The electron densities at Ga and As ions is taken from Ref. [162].

There is also dipolar hyperfine interaction between the electron and nuclei spins, which

has the anisotropic form as

ĤeN,a = −
∑
n,α

µ0

4π
γeγα

∫
|Ψ (r)|2

{
Ŝ · Ĵn,α

|r−Rn,α|3
− 3Ŝe · (r−Rn,α) (r−Rn,α) · Ĵn,α

|r−Rn,α|5
}

dr.

(VII.5)

It can be shown that for s-type Bloch states and slow-varying envelope functions, the dipolar

hyperfine interaction is much weaker than the contact Fermi interaction. The dipolar coupling

becomes important only when the electron Bloch state is of the p-type (and thus the Fermi

contact interaction vanishes). Considering the fact that the electron wavefunction is dominated

by the s-orbit states for large III-V quantum dots, the dipolar hyperfine coupling will not be

included at present study, while our theory can readily include its contribution where necessary.

Intrinsic nuclear spin interactions

The interaction between nuclear spins have been intensively studied in sophisticated

NMR experiments and in theories. Various mechanisms have been established to account for the
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width and shape of the NMR resonances, including the direct dipole-dipole interaction Ĥd
NN, the

indirect pseudo-exchange interaction Ĥex
NN, the indirect pseudo-dipolar interaction Ĥps

NN, and the

intra-nuclear quadrupole interaction Ĥq
NN.

The direct interaction between the nuclei is due to the dipole-dipole interaction and has

the form as

Ĥd
NN =

∑

n,α<m,β

µ0

4π

γαγβ

R3
nα;m,β

(
Ĵn,α · Ĵm,β − 3Ĵn,α ·Rnα;m,βRnα;m,β · Ĵm,β

R2
nα;m,β

)
, (VII.6)

with Rn,α;m,β ≡ Rn,α −Rm,β .

The indirect nuclear interaction is mediated by the virtual excitation of the electron-

hole pairs by the electron-nuclear hyperfine interaction [163, 164, 165, 166]. When the virtual

excitation is caused by the Fermi-contact hyperfine interaction, a group-theory analysis can show

that the indirect coupling has the form of isotropic exchange interaction as

Ĥex
NN = −

∑

n,α<m,β

Bex
n,α;m,βĴn,α · Ĵm,β , (VII.7)

which is thus named pseudo-exchange interaction in literature [163, 165]. The specific expression

of the exchange coefficient Bex
n,α;m,β is determined by the band structure of the material and

generally is very complicated. The leading contribution of the pseudo-exchange interaction for

near neighbors, however, can be expressed as

Bex
n,α;m,β =

µ0

4π

γex
α γex

β

R3
nα;m,β

a0

Rnα;m,β
, (VII.8)

where γex
α is the effective gyromagnetic ratio determined by the renormalized charge density of

the s-orbit electron [165]. The experimental characterization of the pseudo-exchange interaction

is still incomplete and the only available data for the GaAs material are the coupling coefficients

Bex
n,α;m,β between Ga and As ions at shortest bonds, with the absolute sign undetermined. To

proceed without the exact form of the exchange interaction, we will just use the formula in

Eq. (VII.8) and derive the effective gyromagnetic ratios from Ref. [166].

When the virtual excitation of electron-hole pairs involves both the Fermi-contact and

the dipolar hyperfine interactions, the indirect nuclear spin coupling due to the second order

process has been shown by Bloembergen and Rowland to have the form of classical dipolar

interaction, and is named as pseudo-dipolar coupling [164]. The pseudo-dipolar coupling can be

written as

Ĥps
NN = −

∑

n,α<m,β

bps
n,α;m,β

µ0

4π

γαγβ

R3
n,α;m,β

(
Ĵn,α · Ĵm,β − 3Ĵn,α ·Rnα;m,βRnα;m,β · Ĵm,β

R2
nα;m,β

)
, (VII.9)

where bps
n,α;m,β is a dimensionless function of the distance between the nuclei. The experimental

characterization of the pseudo-dipolar coupling is, however, rather limited. Considering the
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pseudo-dipolar coupling has the same form as the direct dipolar coupling and the numerical

evaluations are still subjected to uncertainty in other parameters such as the indirect exchange

coupling, the pseudo-dipolar interaction will not be included in our numerical calculations.

Bloembergen and Rowland have also shown that the dipolar hyperfine interaction alone

can induce the indirect coupling via the virtual excitation of electron-hole pairs, which, according

to the group-theory analysis, has the form as a sum of a pseudo-exchange and a pseudo-dipolar

contribution, and thus can be absorbed into the indirect interactions discussed above.

Lattice distortion can also result in local electric field gradient near quantum dot, in-

ducing intra-nuclear quadrupole interaction for nuclear spins with moment greater than 1/2. The

quadrupolar interaction can be written as

Ĥq
NN =

∑
n,α

eQα

2Jα(2Jα − 1)
Ĵn,α · ←→V (n, α) · Ĵn,α

≡
∑
n,α

∑

i,j=x,y,z

Ĵ i
n,αΘij(n, α)Ĵj

n,α, (VII.10)

where Qα is the quadrupole moment of the α-type nuclear spin, and
←→
V (n, α) is the symmetric and

traceless gradient tensor of the local electric field at position Rn,α. The quadrupole interaction

contributes only to the energy cost of the nuclear spin flips. The field gradient depends critically

on the specific growth condition of the QD. Since we are not aware of any reliable characterization

of the quadrupole interaction in the QD systems in question, this interaction will not be included

in the numerical calculation in this work.

Summary of the microscopic model

In summary, the quantum dynamics of the electron-nuclear spin system in the QD is

determined by the Hamiltonian

Ĥ = Ĥe + ĤN + ĤeN,i + ĤeN,a + Ĥd
NN + Ĥex

NN + Ĥps
NN + Ĥq

NN. (VII.11)

In typical III-V compound semiconductors such as InAs, GaAs, and InP, it has been demon-

strated that the four different types of the nuclear spin interaction are of the same order of

magnitude. While there is no difficulty to include all these interactions in the theoretical frame-

work to be presented here, we will neglect the dipolar hyperfine interaction ĤeN,a since it is much

weaker than the contact hyperfine interaction ĤeN,i, and omit the pseudo-dipolar coupling and

the quadrupole interaction due to the lack of characterization of these two interactions in litera-

ture. The indirect exchange interaction is assumed a simplified form, without loss of generality.

These approximations in modelling the spin interactions, the simplified assumptions on the QD

shape, the electron wavefunction, and the g-factor, and the inadequacy in characterization of ma-

terial parameters (especially those for the nuclear spin interactions), all these limitations, while
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immaterial to our theoretical formalism, will render the numerical evaluations presented here a

semi-quantitative nature. The calculation, however, can be easily performed to quantitatively

predict experimental results once the relevant parameters are determined.

VII.B.2 Reduced Hamiltonian in strong magnetic field

Following the discussion in VII.B.1, the first principle Hamiltonian we consider for the

electron nuclear spin system is,

Ĥ = Ĥ0 + Ĥ1 + Ĥ2 (VII.12)

Ĥ0 = ~ΩeŜ
z
e +

∑
n,α

~ωαĴz
n,α

Ĥ1 =
∑
n,α

An,α
1
2

(
Ĵ+

n,αŜ−e + Ĵ−n,αŜ+
e

)

Ĥ2 =
∑

(n,α) 6=(m,β)

bn,α;m,β(Ĵ+
n,αĴ−m,β + Ĵ−n,αĴ+

m,β)−
∑

(n,α)6=(m,β)

4bn,α;m,β Ĵz
n,αĴz

m,β

+
∑

(n,α)6=(m,β)

dn,α;m,β(Ĵ+
n,αĴ−m,β + Ĵ−n,αĴ+

m,β) +
∑

(n,α) 6=(m,β)

2dn,α;m,β Ĵz
n,αĴz

m,β

+
∑

n

ĀnĴz
nŜz

e

We have grouped the full Hamiltonian Ĥ into three parts: (1) Ĥ0 with Ωe and ωα being the

zeeman frequency of the electron spin and nuclear spin of isotope α respectively in the external

magnetic field; (2) Ĥ1, which is the off diagonal part of the electron-nuclear hyperfine coupling

(with coefficient An ∼ 0.1−1MHz); (3) Ĥ2, which contains the nuclear-nuclear dipolar couplings

(with coefficient bn,α;m,β ∼ 0.1kHz), the nuclear-nuclear indirect exchange interaction (with

coefficient dn,α;m,β ∼ 0.1kHz), and the diagonal part of the electron-nuclear hyperfine coupling

(with coefficient Ān, and Ān = An if we only keep the dominant isotropic Fermi contact hyperfine

part). With the effect of Ĥ1 overlooked in the literature, Ĥ0 + Ĥ2 is the model Hamiltonian

typically used for the study of nuclear induced electron spin decoherence [150, 158]. Pair-wise

nuclear spin flip-flops resulted from dipolar couplings are known to be responsible for the electron

spin decoherence. In a magnetic field of several Tesla or higher, the real process of electron spin

flip induced by Ĥ1 is forbidden due to the large energy cost. However, it can be problematic

to simply neglect Ĥ1 since it can still affect the electron nuclear spin dynamics through higher

order processes, e.g., in the form of flip-flop of nuclear spin pair (n,m) realized by two successive

virtual transitions of Ĵ+
n,αŜ− and Ĵ−m,βŜ+, an effect similar to that induced by direct nuclear
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dipolar coupling. Thus, it is favorable to remove Ĥ1 to first order by a canonical transform [167],

e−iŝĤeiŝ = Ĥ0 + Ĥ2 − 1
2
i
[
ŝ, Ĥ1

]
− i[ŝ, Ĥ2]− (VII.13)

(
1
2!
− 1

3!

) [
ŝ,

[
ŝ, Ĥ1

]]
− 1

2!

[
ŝ,

[
ŝ, Ĥ2

]]
+ · · ·

where the Hermitian operator ŝ is determined by the condition Ĥ1 = [iŝ, Ĥ0] and cancellation in

consequence has been performed on right hand side of Eqn. (VII.13). The omitted terms are of

order ŝ3 or more. The leading correction in the expansion is of interest,

[iŝ, Ĥ1] =
∑

n6=m

AnAm

2 (~ωn − Ωe)
(Ĵ−n Ĵ+

m + Ĵ+
n Ĵ−m)Ŝz (VII.14)

+
∑

n

AnAn

Ωe − ωn

(
Ĵz

n

(
S2 − Ŝ2

z

)
−

(
j2 − Ĵz2

n

)
Ŝz

)

The first term is the electron mediated 3 nuclear spin flip-flop and the last terms are just the stark

shift to the second order of the electron and nuclear spin zeeman frequency. The next correction

[iŝ, Ĥ2] contains electron spin flip terms, in a similar form to Ĥ1, however with the magnitude

reduced by the factor Γ/~Ωe (Γ being the inhomogeneous broadened linewidth of electron zeeman

frequency due to the nuclear Overhauser field) which ranges from 10−2 to 10−3 for GaAs dot in a

magnetic field of 1−10 T. Since the effect must come in squared, this term in the Hamiltonian is

negligible. The next term in the expansion is found [ŝ, [ŝ, Ĥ2]] ∼ Γ/~Ωe[ŝ, Ĥ1]. Again, its effect

on electron spin coherence is reduced by (Γ/~Ωe)2 as compared to [ŝ, Ĥ1], as it is the spectral

weight of the flip-flop excitations that comes in. The rest terms in the expansion of Eqn. (VII.13)

can be found to be either [ŝ, Ĥ1] like or Ĥ1 like but with magnitude reduced by higher powers of

Γ/~Ωe. Thus, the effect of Ĥ1 on the electron spin coherence is well incorporated in the effective

Hamiltonian expressed in the rotating frame,

Ĥeff ≡ eiĤ0t

(
Ĥ2 − 1

2
i[ŝ, Ĥ1]

)
e−iĤ0t (VII.15)

=
∑
n,α

Ān,αĴz
n,αŜz

e −
∑

(n,α)6=(m,β)

4bn,α;m,β Ĵz
n,αĴz

m,β +
∑

(n,α)6=(m,β)

2dn,α;m,β Ĵz
n,αĴz

m,β

+
∑
n,α

An,αAn,α

2~(Ωe − ωn,α)

(
Ĵz

n,α/2−
(
15/4− Ĵz2

n,α

)
Ŝz

)

+
∑

n6=m)

bn,α;m,α(Ĵ+
n,αĴ−m,α + Ĵ−n,αĴ+

m,α) +
∑

n6=m)

dn,α;m,α(Ĵ+
n,αĴ−m,α + Ĵ−n,αĴ+

m,α)

+
∑

n6=m

An,αAm,α

4~ (Ωe − ωn,α)
(Ĵ−n,αĴ+

m,α + Ĵ+
n,αĴ−m,α)Ŝz

where we have further neglected the flip-flop terms between nuclei of different isotope type due

to the large difference in the gyromagnetic ratio. Ĥeff is diagonal in terms of the electron spin
3As the origin of this electron mediated nuclear interaction is the off-diagonal electron-nuclear

hyperfine interaction, we sometimes also refer it as hyperfine mediated nuclear interaction.
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operator and can be formally expressed as Ĥeff ≡ |+〉〈+|Ĥ+ + |−〉〈−|Ĥ− where Ĥ± drives the

nuclear spin dynamics conditioned on the electron spin state.

The transformation eis also rotates the state vector by the amount of Γ/~Ωe in angle.

This rotation of the wavefunction is responsible for the visibility loss in the measurement of

electron spin coherence, which comes in square of the rotation angle. In what follows, we will

neglect this visibility loss of ∼ ( Γ
~Ωe

)2 as well.

Since the effective Hamiltonian is diagonal in the electron spin states, the evolution of

the reduced electron density matrix for the electron spin and the nuclear environment starting

from a separable state ρe(0)⊗ ρN can be expressed as ρe
µ,ν(t) = Lµ,ν(t)ρe

µ,ν(0) (µ, ν = ±), where

the correlation matrix is given by

Lµ,ν(t) = e−i(µ−ν)Ωet/2TrN{ρNeiĤνte−iĤµt}. (VII.16)

The diagonal correlation Lµ,µ(t) = 1 since no longitudinal spin relaxation is present. The spin

decoherence is governed by L+,−(t). A natural basis set for the nuclear bath is the product

states |J〉 ≡ ⊗
n |jn〉 which are eigenstates of all the spin components along the magnetic field

[145]. As the temperature that can be practically reached ranges from ∼ 10 mk to ∼ K which

is high temperature for nuclear spins, the nuclear bath is of high entropy. Two scenarios for

the initial state of the nuclear bath will be considered here. First, the decoherence due to

the quantum fluctuation from a pure nuclear state |J〉 of the typical configuration could be of

ultimate interest for quantum application [145]. The typical nuclear bath state |J〉 will be of

a random configuration. This ensure a sufficiently large number of decoherence channels in the

bath for the quantum evolution to be a real irreversible dynamics (the period of a Poincáre cycle

virtually goes to infinity). The electron spin decoherence due to the quantum fluctuation from

the pure bath state |J〉 corresponds to the single spin T2 time. Second, we shall also consider the

effect of the thermal fluctuation in an ensemble of bath states. This corresponds to the ensemble

experiments capable by current technologies, performed either on a spatial dot ensemble or with

repeated measurements on single dot. Ensemble spin echo decay time TH will be discussed under

this second scenario. Under both scenarios, we may approach formally with the initial density

matrix of the nuclear bath ρN =
∑′

J p′J |J ′〉〈J ′|, with p′J = δJ,J ′ for the first case and p′J being

nearly identical for all J ′ in the second case. Lµ,ν(t) then becomes,

Lµ,ν(t) =
∑

J

pJe−iφJ (t)
∣∣〈J−(t)|J+(t)〉

∣∣ (VII.17)

where |J±(t)〉 ≡ e−iĤ±t|J〉. In the above expression, we have separated, in the contribution

from each ensemble member J , the amplitude |〈J−(t)|J+(t)〉| and the phase factor e−iφJ (t). The

phase factor turns out to be a trivial one which is due to the free evolution of the electron spin
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in the external magnetic field plus a nuclear Overhauser field, EJ =
∑

n jnan, related to the

initial configuration |J〉. And φJ(t) = (Ωe + EJ)t for free induction decay. Different nuclear

configurations will correspond to vary different EJ =
∑

n jnan. The inhomogeneous broadening

of the electron spin zeeman frequency in the local Overhauser field (i.e., the hyperfine energy

EJ) will dominate the FID in ensemble dynamics as
∑

J pJe−iφJ (t) = e−iΩet−(t/T∗2 )2 , with the

dephasing time T ∗2 ∼
√

N (
∑

n an)−1 ∼ 10 ns [11, 45]. In case of spin echo, the electron is flipped

at time τ so φJ(t) = (Ωe + EJ) [τ1 − (t− τ1)]. If the spin coherence is observed at time 2τ ,

φJ (2τ) = 0 and we then have,

Lµ,ν(2τ) =
∑

J

pJ

∣∣〈J−(2τ)|J+(2τ)〉∣∣ (VII.18)

Therefore, the nontrivial part is to solve for |〈J−(t)|J+(t)〉| for all possible nuclear configurations,

which determines electron spin decoherence behavior when inhomogeneous broadening is not

present, i.e., either in case of ensemble spin echo or the single spin dynamics . As we will establish

in the rest of this chapter, this magnitude, within relevant timescale of interest, is determined by

the spectrum of excitations (in the form of nuclear pair-wise flip-flops) that is associated with the

initial configuration |J〉. By the central limit theorem, for a quantum dot with N nuclear spins,

the excitation spectrum is identical up to a relative error ∼ 1/
√

N for almost all possible state

|J〉 in the ensemble. As number of nuclei is large, N ∼ 106, the difference is negligibly small.

Thus the correlation function can be factorized into a pure state dynamics part associated with

the typical nuclear configuration |J〉, which is of a random configuration, and an ensemble factor

as

L+,−(t) = Ls
+,−(t)× L(0)

+,−(t), (VII.19a)

Ls
+,−(t) ≡

∣∣〈J−(t)|J+(t)〉
∣∣ , (VII.19b)

L(0)
+,−(t) ≡

∑

J

P
−iφJ (t)
J , (VII.19c)

φJ(t) = EJ [τ1 − (τ2 − τ1) + · · ·+ (−1)n(t− τn)] (VII.19d)

Above, we have assumed a general scenario where electron spin is flipped at time τ1, τ2, . . . ,

and τn respectively.

VII.C Theory

VII.C.1 Pseudo-spin model

The solution to the pure state evolution |J±(t)〉 ≡ e−iĤ±t relies on the pair-correlation

approximation as explained below. From Eqn. (VII.15), the nuclear Hamiltonian Ĥ±, conditioned
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Figure VII.2 Hierarchy of the nuclear spin dynamics.

on the electron spin states |±〉, can be grouped into four terms Ĥ± = ±ĤA + ĤB + ĤD ± ĤE

ĤA =
∑

n6=m

′ anam

4Ω
Ĵ+

n Ĵ−m ≡
∑

n 6=m

′
An,mĴ+

n Ĵ−m, (VII.20a)

ĤB =
∑

n6=m

′
Bn,mĴ+

n Ĵ−m (VII.20b)

ĤD =
∑
n<m

Dn,mĴz
nĴz

m (VII.20c)

ĤE =
∑

n

(an/2) Ĵz
n ≡

∑
n

EnĴz
n, (VII.20d)

where the summation with a prime runs over only the homo-nuclear pairs, the subscript A

denotes the hyperfine mediated nuclear-nuclear interaction, B the off-diagonal part of the direct

nuclear-nuclear interaction, D the diagonal part of the direct nuclear-nuclear interaction, and

E the diagonal part of the contact electron-nuclear hyperfine interaction. The hyperfine energy,

determined by the electron orbital wavefunction, has a typical energy scale En ∼ an ∼ A
N ∼

106 s−1 for a dot with about 106 nuclei [162], where A is the hyperfine constant depending only on

the element type. The direct nuclear-nuclear interaction, which is “short-ranged” (referred here

as decaying no slower than dipolar), has the near-neighbor coupling Bn,m ∼ Dn,m ∼ b ∼ 102 s−1.

The hyperfine mediated interaction, which couples any two nuclear spins that are in contact with

the electron and is associated with opposite signs for opposite electron spin states, has an energy

scale dependent on the field strength, An,m ∼ A2

N2Ω1–10 s−1 for field ∼ 40–1 T. This hyperfine

mediate interaction is differentiated from the “short-range” direct nuclear-nuclear interaction by

the qualifier “infinite-range”. We work in the interaction picture defined by Ĥe and ĤN in which

the dynamics are determined by Ĥ±.

We take the basis set of the bath as eigenstates of ĤN =
∑

n,α ~ωnĴz
n:

⊗
n |jn〉. In

Eqn. (VII.20), ĤD and ĤE are diagonal in this basis. The off-diagonal terms ĤA, ĤB are weak

perturbations that will excite the bath initially on an arbitrary configuration |J〉 ≡ |j1〉 · · · |jN 〉.
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1,↓

6, 2,↓ ↑ 7, 3,↓ ↑ 8, 7,↓ ↑ 9, 4,↓ ↑

2,↓ 3,↓ 4,↓ 5,↓

1,↑ 6,↑ 8,↑ 9,↑ 5,↑

(a)

(b)

(c)

Figure VII.3 Illustration of mapping from pair states to pseudo-spin states for nuclei of spin 3/2.
The green dots show state |jm〉|jn〉. The state vector show the mapped state |k, σ〉. The blue
solid arrows between lines show to which state the operator Ĵ+

mĴ−n would lead and the red dotted
arrows show to which state Ĵ−mĴ+

n would lead. (a)Monogamy states with pseudo-spin down.
(b)Bigamy states which are mapped to two pseudo-spins with one up and one down respectively.
(c) Monogamy states with pseudo-spins up.

The elementary excitations in the nuclear spin bath are pair-flip excitations created by operators

Ĵ+
mĴ−n in the reduced Hamiltonian. Starting from any initial nuclear configuration, the evolution

of the nuclear spin states by these elementary excitations is of the hierarchy as shown in the

left side of Fig. VII.2. We can regard the zeroth layer of this hierarchy, the initial state, as the

‘vacuum’ of the pair-flip excitations and layer n corresponds to n pair-flip excitations have been

created. The state at time t is a linear superposition of all possibilities:

|J(t)〉 = CJ(t)|J〉+
∑
m,n

Cm,n(t)Ĵ+
mĴ−n |J〉+

∑

l,p,m,n

Cl,p,m,n(t)Ĵ+
l Ĵ−p Ĵ+

mĴ−n |J〉+ · · · . (VII.21)

where the summation over the indexes m,n, l, p, . . . are defined such that |J〉, Ĵ+
mĴ−n |J〉,

Ĵ+
l Ĵ−p Ĵ+

mĴ−n |J〉, . . . denote different eigenstates of ĤN orthogonal to each other.

We solve this dynamics in the nuclear spin bath based on a pseudo-spin model as

described below. We have on sites labelled n = 1, . . . , N the nuclear spin states |jn〉 with

−j ≤ jn ≤ j for nuclei of spin j. As the elementary excitations are pair dynamics driven

by Ĵ+
mĴ−n , we first sort out the pair states |jn〉|jm〉. These pair states are divided into three
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categories:

1. Down States: A down state |jn〉|jm〉 has a partner |jn + 1〉|jm − 1〉 created by

Ĵ+
n Ĵ−m|jn〉|jm〉 =

√
(j + jn + 1)(j − jn)

√
(j − jm + 1)(j + jm)|jn + 1〉|jm − 1〉

A down state must have (jn < j, jm > −j). There are (2j)2 down states for each bond.

2. Up States: An up state |jn〉|jm〉 has a partner |jn−1〉|jm+1〉 created by Ĵ−n Ĵ+
m|jn〉|jm〉.

The up state must have (jn > −j, jm < j). There are (2j)2 up states for each bond.

3. Single States: A single pair state has no partners connected by Ĵ−n Ĵ+
m|jn〉|jm〉 or its

Hermitian conjugate, i.e., jn = jm = j or jn = jm = −j.

The single states may be mapped to pseudo-spin 0 states. Since they are scalar states,

their Hamiltonian terms will commute with every other operators, they can only contribute to the

phase factor in the electron spin coherence through the Overhauser field, causing inhomogeneous

broadening.

We shall find by an explicit construction that the up and down states can be paired to

provide states of (2j)2 spin 1/2 - the pseudo-spin states. These states are divided into:

1. Monogamy States: Each state belongs to only one pseudo-spin although its partner

may be a bigamist. These states are edge states in that at least one of the two spin quantum

numbers (jn or jm) equal to ±j but they cannot both be equal to j or to −j. Half of them

(4j − 1 states) are down states, |jn = −j〉|jm > −j〉 or |jn < j〉|jm = j〉, see Fig. VII.3(a). The

other 4j − 1 states, |jn > −j〉|jm = −j〉 or |jn = j〉|jm < j〉, see Fig. VII.3(c).

2. Bigamy States: Each belongs to two different pseudo-spins. They are interior states:

−j < jn < j and −j < jm < j. There are (2j − 1)2 of them, see Fig. VII.3(b).

The mapping to pseudo-spins is carried out by labelling the set of down monogamy and

bigamy states, p(jn, jm) = 1, . . . , (2j)2. Note that p depends only on the spin quantum numbers.

The state mapping for the down states is,

|jn〉|jm〉 → |p(jn, jm) ↓〉.

Next, we match from each |jn〉|jm〉 of the above set, the partner state |jn + 1〉|jm − 1〉, which

will be a member of either the up monogamy or the bigamy set. Thus,

|jn + 1〉|jm − 1〉 → |p(jn, jm) ↑〉.

These two steps are illustrated for j = 3/2 in Fig. VII.3. Notice that by the above mapping

to the pseudo-spins, each bigamy state has been mapped to the product of an up state of one

pseudo-spin and a down state of another,

|jn〉|jm〉 → |p(jn, jm) ↑〉 ⊗ |p′(jn, jm) ↓〉.
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as shown in Fig. VII.3(b)

For any initial configuration |J〉, the relevant set of pseudo-spins GJ is determined by

examining every possible nuclear spin pair (m,n). Each pair will contribute 0, 1 or 2 pseudo-spins

if |jm〉|jn〉 is in the single state, Monogamy state or Bigamy state configuration (see Fig. VII.3).

The many nuclear spin initial state |J〉 is then mapped to,

|J〉 ≡ |j1〉 · · · |jN 〉 ⇒ |J 〉 ≡
⊗

k∈GJ

|kσ〉 (VII.22)

where k labels both the nuclear pair (m,n) and the pseudo-spin type p(jn, jm). σ =↑ or ↓
depending on whether k is mapped from up or down Monogamy or Bigamy state. Different

initial nuclear configurations will result in different sets of pseudo-spins. For a randomly chosen

initial configuration |J〉, the number of pseudo-spins is given by M ∼ ( 2j
2j+1 )2ZN where N is the

total number of nuclear spins and Z the number of neighboring nuclei coupled to a particular

nuclear spin by the nuclear-nuclear interaction. For short ranged direct interaction, Z ∼ O(10)

and for the infinite-ranged hyperfine mediated interaction Z = N . The factor ( 2j
2j+1 )2 arises as

the single state, Monogamy state and Bigamy state are contributing 0, 1 and 2 pseudo-spins

respectively. For convenience, when the set GJ is determined from the |J〉, we redefine the

pseudo-spin up and down states, i.e. |k, σ〉 → |k,−σ〉, for those pseudo-spins in set GJ so that

the initial state |J 〉 in this new definition corresponds to all pseudo-spins pointing ’up’:
⊗

k | ↑〉k.

The redefinition is conditioned on the initial nuclear configuration |J〉.
The original Hamiltonian Ĥ± is mapped to the pseudo-spin Hamiltonian of the from,

Ĥ±
sp =

∑

k

Ĥ±k ≡
∑

k

h±k,α · σ̂k/2 (VII.23)

The effective magnetic field h±k on the pseudo-spins, conditioned on the electron spin state, are

to be determined by reproducing the matrix elements, 〈J |Ĵ+
mĴ−n Ĥ±Ĵ+

n Ĵ−m|J〉 − 〈J |Ĥ±|J〉 and

〈J |Ĥ±Ĵ+
n Ĵ−m|J〉, namely the energy cost and transition amplitude for nuclear pair-flips.

The pseudo-spin model for characterizing the nuclear spin bath dynamics is to approx-

imate the exact evolution of Eqn. (VII.21) by the independent evolution of all pseudo-spins in

GJ ,

|J (t)〉 =
⊗

k∈GJ

|ψ±k (t)〉 = CJ (t)|J 〉+
∑

k1

Ck1(t)σ̂
+
k1
|J 〉+

∑

k1,k2

Ck1,k2(t)σ̂
+
k1

σ̂+
k2
|J 〉+ · · · . (VII.24)

This pseudo-spin dynamics can be put into a similar hierarchy as shown in the right part of

Fig. VII.2 which we will refer to as model hierarchy in contrast to the exact hierarchy.

With the mapping established for the state and the Hamiltonian, the first two layers of

the exact hierarchy will be reproduced exactly by the model hierarchy, i.e., there is a one to one
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Figure VII.4 Illustration of multi pair-flip excitations in the nuclear bath. We use hollow ar-
rowheads to indicate the first pair-flip and solid arrowheads to indicate the second pair-flip. Red
dotted arrows denote the pseudo-spin flip from ’down’ state to ’up’ state and blue solid arrows for
the inverse process (see text). (a) Independent pair flips; (b-e) Various situations of overlapping
pair-flips; (f-h) Approximations in the independent pseudo-spin model.

correspondence between Ĵ+
mĴ−n |J〉 and σ̂+

k |J 〉 with the energy and coupling to the initial state

|J〉 (|J 〉) exactly reproduced.

Error arises when more than one excitations have been created in the system. In

Fig. VII.4, we illustrate with the case when two pair-flip excitations have been created. If the

two pair-flips do not overlap as shown in Fig. VII.4(a), their dynamics are then independent of

each other and well described by the pseudo-spin model. Fig.VII.4(b-e) illustrate the various

situations that the two pair-flips overlap, by sharing one or two nuclei. The flip-flop of the first

nuclear pair (l, m) changes the spin configuration of both nuclear l and m and if a second flip-flop

is to take place on pair (l,m) or (n,m) or (l, n), it is no longer described by the dynamics of

the original pseudo-spins assigned to it. Instead, in the model hierarchy by the independent

pseudo-spin model, two successive flip-flops on pair (l, m) or two successive flip-flops on pair

(l, m) and (m,n) respectively are shown in Fig.VII.4(f-h). Fig. VII.4(g) can be considered as

the approximate form of Fig. VII.4(c) and Fig. VII.4(h) as that of Fig. VII.4(d). The model

hierarchy contains events like Fig. VII.4(f) which is absent in the exact hierarchy and events like

Fig. VII.4(e) in the exact hierarchy is not contained in the model hierarchy. Therefore, on layer

2, the model hierarchy coincides with the exact hierarchy in events described by Fig. VII.4(a)
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and differ by replacing the events of Fig.VII.4(b-e) with events of Fig.VII.4(f-h). The difference

in a general layer can be analyzed in the same way.

By the pseudo-spin model, we are using Eqn. (VII.24) as the bath state for calculating

physical properties instead of Eqn. (VII.21) at time t. The ratio of the states that differ in the ex-

act and model hierarchies is estimated below which serves as an upper bound for error estimation

(notice that the physical properties of interest are not necessarily changed by replacing events

of Fig.VII.4(b-e) with events of Fig.VII.4(f-h), therefore, this error-estimation is not necessarily

a tight bound). If n − 1 pair-flip excitations have already been generated, to create the next

excitation, we have M pseudo-spin to choose from and ∼ 2(n − 1)Z of them overlap with the

previous excitations. Therefore, the probability of having a new excitation without overlapping

with the previous excitations is given by: ∼ M−2(n−1)Z
M . By induction, the probability of creating

n non-overlapping pair-flip excitations is then given by,

p(n) ' 1× M − 2Z

M
· · · × M − 2(n− 1)Z

M
(VII.25)

' exp
[
−2Z

M
− · · · − 2(n− 1)Z

M

]

= exp
[
−n(n− 1)

N
(
2j + 1

2j
)2

]

The second ' holds if 2nZ ¿ M which is always true in the timescale relevant in our study.

Comparing the model hierarchy and the exact hierarchy, we find from the above analysis

that they differ in layer n with the relative amount of 1−p(n). This difference is negligible in the

timescale relevant for our interest and therefore, the pair-correlation approximation and hence

the pseudo spin model provides an excellent approximation to the exact dynamics. A detailed

estimation of the error bound will be presented in section VII.E of this chapter.

VII.C.2 Single spin free induction decay and ensemble spin echo

Within the pair correlation approximation, and using the tool of the pseudo spin model,

we can calculate the single spin free induction decay as well as the ensemble spin echo profile.

Given a randomly chosen initial configuration of the nuclear spin bath, the pseudo spin

Hamiltonian of Eqn. (VII.23) maybe determined by brute forth counting. The pair-flip dynamics

from the initial state |J〉 can be viewed as the independent rotation of the pseudo-spins initially

along +z axis under the effective pseudo-magnetic field h±k ≡ (±2Ak + 2Bk, 0, Dk ±Ek), where,

for the electron spin state |±〉, ±Ak and Bk are the pair-flip transition amplitudes contributed

by the hyperfine mediated coupling ĤA and the intrinsic coupling ĤB , respectively, and Dk and

±Ek are the energy cost of the pair-flip contributed by the diagonal nuclear coupling ĤD and
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the hyperfine interaction ĤE , respectively. Ls
+,−(t) can be factorized as

Ls
+,−(t) =

∏

k

∣∣∣〈↑ |eiH−k te−iH+
k t| ↑〉

∣∣∣ , (VII.26)

where H±k is the pseudo-spin Hamiltonian if the electron spin is in state |±〉. Here it is convenient

to introduce the quantity

δ2
k ≡ 1−

∣∣∣〈↑ |eiH−k te−iH+
k t| ↑〉

∣∣∣
2

(VII.27)

and we will see in the next chapter that δk possesses a simple geometrical interpretation as the

distance between the two pseudo-spin states e−iH+
k t| ↑〉 and e−iH−k t| ↑〉 on the Bloch sphere. As

in the timescale of our interest, t ¿ A−1
k , B−1

k for all pseudo spins, we always have δk ¿ 1 and

therefore,

Ls
+,−(t) =

∏

k

√
1− δ2

k ≈
∏

k

e−δ2
k/2, (VII.28)

A couple of justified simplifications can provide an understanding of the effects of various

mechanisms on the spin decoherence. First, the energy cost by the diagonal nuclear coupling (Dk)

can be neglected as it is by three orders of magnitude smaller than that by hyperfine interaction

(Ek). Second, for near-neighbor pair-flips, the intrinsic nuclear interaction is much stronger than

the hyperfine mediated one for the field strength under consideration. Third, for non-local pair-

flips, the intrinsic interaction is negligible due to its short-range characteristic. Thus we can

separate the flip-pairs into one subset, k ∈ KA, which contains O(N2) non-local flip-pairs, driven

by the effective pseudo-magnetic field h±k ≈ (±2Ak, 0,±Ek) and a second subset, k ∈ KB , which

contains O(N) near-neighbor flip-pairs, driven by h±k ≈ (2Bk, 0,±Ek). The conjugate pseudo-

spins will precess along opposite directions in the non-local subset KA, and symmetrically with

respect to the y-z plane in the near-neighbor subset KB . The decoherence can be readily grouped

by the two different mechanisms as

Ls
+,− ∼=

∏

k∈KB

e−
t4
2 E2

kB2
ksinc4

hkt

2

∏

k∈KA

e−2t2A2
ksinc2(hkt), (VII.29)

where hk = |h±k |. We can see that the hyperfine-mediated and the intrinsic couplings lead to

the e−(t/T2,A)2 and the e−(t/T2,B)4 behavior in time shorter than the inverse pair-flip energy cost

(which corresponds to the width of the excitation spectrum),

T2,B ≈ b−1/2A−1/2N1/4; T2,A ≈ ΩeA−2N (VII.30)

where b is the typical value of near neighbor intrinsic nuclear coupling strength Bk andA ≡ ∑
n an

is the hyperfine constant.

In ensemble dynamics, FID will be dominated by the inhomogeneous broadening. To

single out the real decoherence time from the T ∗2 , spin echo pulses can be applied to eliminate the
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dephasing due to the distribution of the local nuclear Overhauser field. After a π-pulse applied at

τ , the inhomogeneous broadening part of the correlation L(0)
+,−(t) = 1 for t = 2τ . Therefore, the

solution to ensemble echo decay also amounts to solving the quantum dynamics Ls
+,−(t) which

can be obtained as well with the pseudo spin model.

Under the spin echo setup where a π flip of the electron is applied at time τ , the pseudo

spin evolution is given by,

|ψ±k (t)〉 = e−
i
2h∓k ·σ̂k(t−τ)e−

i
2h±k ·σ̂kτ | ↑〉. (VII.31)

and therefore the electron spin coherence at 2τ is,

Ls
+,−(2τ) =

∏

k

∣∣∣〈↑ |eiH−k τeiH+
k τe−iH−k τe−iH+

k τ | ↑〉
∣∣∣ , (VII.32)

We now show that the echo pulse will also modify the electron spin decoherence induced

by the quantum pair-flip dynamics. As the electron spin is reversed by the π-pulse, the hyperfine-

mediated transition amplitude Ak and the hyperfine energy cost Ek for each pair-flip will change

the sign after the pulse. Thus, the pseudo-spins driven by the hyperfine-mediated coupling (in

subset KA) will reverse their precession after the pulse and return to the origin at t = 2τ ,

disentangling the electron spin and the pseudo-spins. So the decoherence driven by hyperfine-

mediated coupling is largely eliminated in the spin-echo configuration (see Fig. VII.6). For the

pseudo-spin driven by the intrinsic coupling (subset KB), the conjugate pseudo-spins will switch

their precession axis which also reverse the entanglement to some extent but no full recover can

be obtained at the echo time. Finally, the electron spin coherence at the echo time can be derived

as

L+,−(2τ) ∼=
∏

k∈KB

e−2τ4E2
kB2

ksinc4(hB
k τ/2). (VII.33)

Similar to the analysis for single system FID, the spin echo signal begins with e−(2τ/TH)4 short-

time behavior and could crossover towards the Markovian-type exponential decay at long-time

limit. There is a simple relation between the short time decoherence times TH =
√

2T2,B , showing

that the decoherence due to the intrinsic nuclear interaction is only partially suppressed in spin

echo setup.

VII.D Numerical results

In this section, we present some calculation results for GaAs fluctuation dot.
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Figure VII.5 Single electron spin FID for a dot with d = 2.8 nm and r0 = 15 nm under various
field strengths. The spin echo profile as a function of t = 2τ for Bext = 10 T is also plotted for
comparison. The insets shows the field dependence of the FID decoherence time.

VII.D.1 Single spin free induction decay

We first discuss the free induction decay of single spin where the nuclear bath begins

on a pure product state of random configuration.

In numerical evaluations, we assume the external magnetic field is applied along the

[110] direction. For the indirect intrinsic nuclear interaction, we consider only the exchange

part [164, 163, 165]. The quantum dot effective g-factor of the electron is taken as 0.13 from

the experimental data for GaAs fluctuation dot [45]. The initial state |J〉 is generated by

randomly setting each nuclear spin according to a “high-temperature” Boltzmann distribution

(PJ = constant).

Figure VII.5 shows the single spin FID for a typical dot under various field strengths

Bext. The inset of Fig. VII.5 shows the field dependence of decoherence time T
1/e
2 which is

defined as the time when the FID signal is 1/e of its initial value. The first important message

is the strong field dependence of T
1/e
2 . This shows the significance of the hyperfine mediated

nuclear coupling for single spin free induction decay. The hyperfine mediate nuclear coupling is

suppressed only under an extremely strong field (∼ 20 T for the dot in question).

For comparison, we also show in Fig. VII.5 the ensemble spin echo signal calculated for

the same dot under a field of 10 Tesla (the brown dotted line). The second important message is

that the single spin FID signals have significantly different decoherence times from the spin echo

signals. This counteracts the general intuition that ensemble echo decay time TH give a measure
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Figure VII.6 Separated contributions to the single-system FID by the hyperfine-mediated nuclear
coupling, the intrinsic nuclear interaction, and both, for a dot with d = 6.2 nm and r0 = 25 nm
at Bext = 12 T. The spin echo profile with both mechanisms is shown in comparison. The inset
shows the FID decoherence times resulting from only the hyperfine-mediated interaction (square
symbol) or only the intrinsic interaction (triangle symbol) as functions of r0.

of the single spin T2 time.

In Fig. VII.6, we looked separately at the contributions to electron spin decoherence

from the hyperfine-mediated nuclear couplings and the intrinsic nuclear interactions. The results

in shown in double log plot where the slope of the curve gives a direct measure of the power

on the exponents. We can see the that the expected short time behavior of the e−(2τ/T2,B)4

and e−(2τ/T2,A)2 for the two mechanisms are indeed confirmed from this calculation. When both

mechanism are comparable, the single spin FID begins with the e−(2τ/T2,A)2 decay and may cross

over to the e−(2τ/T2,B)4 decay at longer time as shown for this quantum dot 4.

In the insets of Fig. VII.6, we also show the dot size dependence of the decoherence

timescales due to the two different nuclear coupling mechanisms. We can see that for very small

quantum dot, single spin FID is dominated by the hyperfine mediated nuclear coupling and for

very large quantum dot, it is dominated by the intrinsic nuclear coupling. The quantum dot

in the plot of main body of Fig. VII.6 actually corresponds to an intermediate size where both

mechanisms are comparable and therefore, the crossover effect may be observable.
4The shaded area in Fig. VII.6 corresponds to the observable window in experiments, beyond

which the coherence is either too close to unity to be distinguished or completely lost.
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VII.D.2 Ensemble spin echo decay

The ensemble spin echo profile is also calculated for quantum dot of various size Fig. VII.7.

Here the dot thickness is fixed to be 3 nm and the external field in 10 Tesla. The double log plot

of the spin echo profile for dot of various Fock-Darwin radius shows that the initial decay of the

spin echo profile is universally described by e−(2τ/TH)4 .

An interesting feature in the spin echo profile is the cross over of the decay from e−t4

to lower powers on the exponent for small quantum dot (see the solid black curve in Fig. VII.7

for dot with r0 = 7 nm). Such cross over behaviors can be understood by the slowly set up

of the energy-conservation from the sinc function in Eqn. (VII.33). The range of the pair-

excitation spectrum that is contributing to the electron spin decoherence is inverse proportional

to the evolution time t due to the energy time uncertainty relation. For short time, almost all

pair-excitations are contributing and electron spin sees all the non-markovian features of the

environment. As the time grows beyond the inverse excitation spectrum width, the quantum

kinetics becomes a stochastic Markovian process by building up the energy-conserving Fermi-

Golden rule as indicated by the sinc function in Eq. (VII.33). As a consequence, the decoherence

will eventually cross to exponential decay in the very long time limit. For smaller dot, the

inhomogenerity of the electron wavefunction is large, so the excitation spectrum for the nuclear
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spin fluctuations have a broader feature and the crossover to the Markovian regimes occurs earlier

and could be observable in the proper time window. When the crossover behavior is present,

two parameters are needed to characterize the spin echo profile. One is the short time parameter

TH defined in section VII.C.2. The second is the over-all decoherence time T
1/e
H defined as the

echo delay time at which the spin echo magnitude drops to 1/e of its zero delay value. If we plot

the dot size dependence of these spin echo decay time, we find that the short time parameter

TH increase monotonically with the dot size, but the 1/e decay time T
1/e
H displays a minimum

due to the cross over effect. This shall be expected since T
1/e
H is an over-all characterization

of the decoherence timescale. For extremely large dot, the electron wavefunction is almost a

uniform one so that the electron can not feel the fluctuation of the nuclear spin pair-flips. And

for extremely small dot, very few nuclear spins are contributing to the decoherence and T
1/e
H

shall tends to infinity as the size of the dot tends to 0.

VII.D.3 Summary of results

In summary, with the pair-correlation method for the quantum dynamics of the electron-

nuclear spin systems under strong magnetic field and at finite temperature, we have demonstrated

the significance of the indirect nuclear coupling mediated by the virtual electron spin flips, which

manifests itself in the strong field dependence of the FID in single-system dynamics. The calcu-

lated electron spin decoherence time in single-system FID varies from ∼ 0.1 µs to ∼ 10 µs for

field strength from 1 T to 20 T, and saturates as the hyperfine mediated coupling is suppressed

by stronger field. The spin-echo pulse not only recovers the coherence lost by inhomogeneous

broadening but also eliminates the decoherence due to the electron-mediated nuclear pair-flips

and reduces the decoherence by the intrinsic nuclear interaction, leading to an decoherence time

∼ 10 µs independent of field strength in ensemble dynamics.

VII.E Error estimation

We perform a self-consistent analysis on validity of the pseudo-spin model. Here the

relevant timescale plays the crucial role in determine the validity of the model. From the discus-

sion in section VII.C.1, if only the first n layers of the hierarchy (the exact one and the model

one) are involved, the error in the calculated physical properties is bounded by 1 − p(n) ¿ 1 if

n2 ¿ N . Therefore, in the very short time limit, only the first several layers of the hierarchy

can be involved and the pseudo-spin model gives an almost exact account of the dynamics. To

estimate error upper bound for the longer time limit, we will calculate the number of layers in-

volved (denoted as n) based on the model hierarchy of the pseudo-spin model. If n2/N obtained
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is small, we conclude that n also faithfully reflects the number of layers involved in the exact

hierarchy. Therefore, the error estimation based on the pseudo-spin model is faithful and any

physical properties calculated based on pseudo-spin model is a good approximation. Otherwise,

the approximation is not self-consistent. It is established below that the condition n2 ¿ N is the

origin of an upper bound and a lower bound on the quantum dot size N for which our theory is

able to deal with. The validity of the pair-correlation approach (pseudo-spin model) is indeed in

the mesoscopic regime.

At any given time t, an average excitation number Nflip(t) can be defined as follows

based on the model hierarchy,

Nflip(t) = 1×
∑

k1

|Ck1(t)|2 + 2×
∑

k1,k2

|Ck1,k2(t)|2 + 3×
∑

k1,k2,k3

(t) |Ck1,k2,k3 |2 + · · · (VII.34)

and our analysis [168] shows that the layer-distribution of population in the hierarchy is of a

normal distribution centered at Nflip, i.e. the population is distributed in layers from layer

Nflip −
√

Nflip to Nflip +
√

Nflip. Therefore, the quantity for characterizing the error upper

bound is of a very simple form: Perr(t) ≡ 1− exp(−N2
flip(t)/N).

In the pseudo-spin model, Nflip(t) defined in Eqn. (VII.34) has an equivalent expression

which is more convenient for evaluation:

Nflip(t) =
∑

k

|〈↓ |U±
k (t)| ↑〉|2 (VII.35)

where U±
k (t) ≡ e−iĤ±k t is the evolution operator for pseudo-spin k. The contribution can be

divide into two parts:Nflip (t) = NA
flip (t) + NB

flip (t). NA
flip is the number of non-local pair-flip

excitations and NB
flip is the number of local pair-flip excitations that have been created. NA

flip (t)

and NB
flip (t) have very different behavior and we analyze them separately. We will discuss below

both the scenarios of free-induction evolution and the evolution under the control of sequences

of short π-pulses applied on the electron spin. The latter scenario includes the spin echo setup

and the various coherence control schemes which is the topic of the next chapter.

In free-induction evolution, the number of non-local pair-flips is given by,

NA
flip (t) =

∑

k

(
2Ak

hA
k

)2

sin2 hA
k t

2
≤

∑

k

A2
kt2 ' A4

N2Ω2
t2

where hA
k ≡

√
E2

k + 4A2
k. Since the evolution of the non-local pair-correlation is completely

reversed by the π pulses, the evolution of NA
flip (t) is also reversed and NA

flip = 0 at each coherence

echo time. Therefore, NA
flip (t) does not accumulate in the pulse controlled dynamics and we just

need to look at the maximum value of NA
flip (t) between echoes. In all scenarios of the pulse

controls discussed, in order to have the coherence well preserved or restored, the delay time τ
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between echoes is limited by the order of magnitude of the single spin decoherence time induced

by the intrinsic n-n coupling [159], T2,B ' b−1/2A−1/2N1/4 ∼ 10µs. Therefore, NA
flip at any time

is bounded by NA
flip (O(T2,B)) in all scenarios of our interest. A universal estimate of the bound

on N imposed by NA
flip for the validity of our approach is therefore possible,

( A4

N2Ω2
T 2

2,B

)2 1
N
∼ A6

N4Ω4b2
¿ 1 (VII.36)

For GaAs fluctuation dot in a 10T, the above condition is well satisfied for N & 104.

For number of local pair-flip excitations, we have a similar expression in the free evolu-

tion,

NB
flip (t) =

∑

k

(
2Bk

hB
k

)2

sin2 hB
k t

2
≤

∑

k

B2
kt2 ' αNb2t2

where hB
k ≡

√
E2

k + 4B2
k and α ∼ 10 is determined by number of local neighbors and the nuclear

spin quantum number j. In contrast to the non-local pair dynamics, the local pair dynamics is

not reversed under the influence of the electron spin flip and NB
flip(t) accumulates all through

the time. Nonetheless, it turns out that NB
flip(t) ≤

∑
k B2

kt2 ' αNb2t2 holds for all scenarios

of pulse controls being discussed. Unlike the lower bound on N set by NA
flip, the condition

(NB
flip)

2/N ¿ 1 sets an upper bound on N : Nα2 (bt)4 ¿ 1, which depends on the time range

t we wish to explore. Alternatively speaking, (NB
flip)

2/N ¿ 1 sets an upper bound on the time

range t we can explore for some fixed N using the pseudo-spin model. We illustrate this bound

using the following two examples.

1. If we wish to calculate the Hahn echo signal using the pseudo-spin model, we shall

have (αNb2T 2
H)2/N ¿ 1 where the Hahn echo decay time TH ≈ b−1/2A−1/2N1/4 [159]. There-

fore, the upper bound on N is given by N2α2b2A−2 ¿ 1. For GaAs quantum dot, this condition

is well satisfied for N . 108.

2. For bath of an intermediate size in the allowed region of min[
√

N, N4b2Ω4A−6] À
1 À N2b2A−2, e.g., a quantum dot of typical size N ∼ 105−106 in our problem, (αNb2t2)2/N ¿
1 is satisfied for a much longer time range t ∼ 10TH ∼ 100µs.

As a summary of this error estimation, for the pair-correlation approximation (or

pseudo-spin model) to be valid, nuclear spin dynamics of local pair-flips imposes an upper bound

on N while nuclear spin dynamics of non-local pair-flips imposes a lower bound. Within this

mesoscopic regime, the pair-correlation approximation is well justified. The mesoscopic regime

of 104 . N . 108 covers quantum dots of all practical size. The error estimation is based on

characterizing the difference in the Hilbert space structure of the exact dynamics and that of the

pseudo-spin model and assuming this difference has a full influence on the electron spin coherence

calculation. Therefore, the bound is not necessarily tight and it is possible that the pulse control
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methodology developed using the pseudo-spin model have actually a much larger validity regime.

Investigation is underway.
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VIII

Coherence Control of the Electron

Spin in a Nuclear Spin Bath

In the previous chapter, we have presented the quantum solution to the electron-nuclear

spin dynamics in a quantum dot. The evolution of the mesoscopic nuclear bath is well described

by a simple pseudo-spin model for the particle pair interaction in the bath. The electron spin

decoherence is the consequence of the entanglement with the nuclear spin pair-flip excitations.

This quantum picture forms the basis of a theory of coherence recovery of the electron spin

by disentanglement. If at some time t, the electron spin can be disentangled from the bath,

its coherence is restored. We demonstrate here how to disentangle the electron spin and the

mesoscopic nuclear spin bath by maneuvering the bath evolution through simple controls of the

electron spin only. This coherence protection via disentanglement is to be contrasted with the

informatics approach of quantum error correction [24, 25, 26, 27, 28, 29] and with the methods of

decoupling the quantum system from the environment either by limiting the quantum system to a

decoherence-free subspace [169, 170, 171], or by dynamically averaging the system-bath coupling

[172, 173, 174, 175, 176].

VIII.A Geometric picture for the nuclear induced electron

spin decoherence

We describe first a geometric picture for the nuclear spin dynamics useful for the un-

derstanding of the decoherence behavior and the design of coherence control.

In section VII.C.2 of the chapter VII, we have discussed the various decoherence be-

109
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Figure VIII.1 A geometric picture for understanding the free induction decay. (a)Illustration
of of the Bloch vector rotation and the projected trajectory on the x-y plane. Direction of the
effective field h±k are indicated respectively for sets A and B. (b) The projection of the Bloch
vector trajectories to the x-y plane for pseudo-spins for non-local bath pairs. The solid (dashed)
line denotes the pseudo spin evolution |ψ+

k (t)〉 (|ψ−k (t)〉) conditioned on the electron spin state
|+〉 (|−〉). As the rotation angle θ ∝ t, the distance between the conjugated vectors δk ∝ t at
short time. (c) The projection of the Bloch vector trajectories to the x-y plane for pseudo-spins
for local bath pairs. The distance between the conjugated vectors δk ∝ t2 at short time.

havior of the electron induced by the interacting nuclear spins. One pronounced feature is the

universal short time behavior of exp(−(t/T2,A)2) by hyperfine mediated nuclear interactions

and exp(−(t/T2,B)4) by direct nuclear interactions in single spin free induction decay and the

exp(−(t/TH)4) short time behavior of ensemble spin echo decay.

Since we have mapped the pair-wise flip-flop excitations in the nuclear bath to pseudo-

spins of spin 1/2, the geometric picture of Bloch sphere may be used for a pictorial understanding

of these pair dynamics. The pseudo-spin states are represented by Bloch vectors, defined as

〈↑ |U±†
k (t)σ̂k/2U±

k (t)| ↑〉 depending on the electron spin state |±〉. The two Bloch vectors for the

same pseudo spin k will be referred below as conjugation of each other. The evolution of these

Bloch vectors are simply precessions about the effective magnetic field h±k ≡ (0, Bk±Ak, Dk±Ek)

which is conditioned on the electron spin state. As we have discussed in VII.C.2, the dynamics

of the pseudo-spins for non-local nuclear pairs is mostly determined by the dominant part of

this effective field h±k ≡ (0,±2Ak,±Ek), while the dominant part of the effective field for local

nuclear pairs is h±k ≡ (0, 2Bk,±Ek) (see Fig. VIII.1). Under free involution, the trajectories of

the two conjugated Bloch vectors for non-local bath paris are just inverse of each other as shown

in Fig. VIII.1(b), while those for local bath pairs are simply mirror symmetry of each other along

the pseudo x-z plane (see Fig. VIII.1(c)).

The quantity δk defined in Eqn. (VII.27) of the previous chapter is just the distance
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between the conjugate Bloch vectors, δ2
k = 1 − |〈↑ |U−†

k (t)U+
k (t)| ↑〉|2, which provide a visual

measure of the electron spin decoherence contributed by the kth pseudo-spin (see Eqn. (VII.28)).

Based on this geometric analysis, it is straightforward to show that non-local nuclear pair dy-

namics contribute to the exp(−t2) short time behavior (see Fig. VIII.1(b)) and local nuclear pair

dynamics contribute to the exp(−t4) short time behavior (see Fig. VIII.1(c)) in electron spin

FID with the nuclear bath begins on a pure state |J〉 ≡ ⊗
n |jn〉.

The spin echo profile can also be understood with this geometric picture. Under the

influence of the π-flip of the electron spin at t = τ , the conjugate pseudo-spin Bloch vectors

exchange their effective magnetic fields (h+
k ↔ h−k ). For non-local bath pairs, the subsequent

evolution from τ to 2τ just reverses the previous evolution from 0 to τ and, as a consequence, at

the spin echo time 2τ , non-local bath pairs are not contributing to the electron spin decoherence

at all. For local bath pairs, the evolution of the Bloch vectors are also affected by the electron

spin flip at τ but they take different trajectories as shown in Fig. VIII.2. The two trajectories for

the conjugated pseudo-spin Bloch vectors does meet some time after the electron spin flip but

separate again. At the spin-echo time 2τ , their distance is of the same magnitude as in the free

induction decay case, hence the spin echo decay has a similar behavior as to the free induction

decay induced by the local bath pairs only and there is a universal relation between the two short

time behaviors TH =
√

2T2,B .

VIII.B Coherence control by disentanglement in pure state

dynamics

In the above analysis of spin-echo, we have seen that the flip of the electron spin can

influence the evolution of the bath pairs, making possible an effective control on the nuclear spin

bath dynamics. This control may lead to the restoration of the coherence of the electron spin if

it can be disentangled from the bath. In this section, we consider first the scenario of pure-state

dynamics where the nuclear bath begins on the pure product state |J〉 ≡ ⊗
n |jn〉 of a random

configuration.

The spin-echo setup with the single π-pulse on the electron maybe considered as the

prototype of such coherence control. Disentanglement of a pseudo-spin from the electron oc-

curs when the trajectories of the two conjugated Bloch vectors meet on the Bloch sphere. For

those non-local bath pairs, the dynamics are reversed under the influence of the π-pulse and are

obviously disentangled from the electron spin at the spin echo time 2τ .

For local bath pairs, under the influence of the electron spin flip, the pseudo-spin can

also be disentangled from the electron but at a different time. Even though different pseudo spins
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Figure VIII.2 (a) The evolution of the conjugated pseudo-spin Bloch vectors under the single-
pulse control. (b) The projection of the Bloch vector trajectories to the x-y plane. Red solid
(blue dashed) trajectory denotes the pseudo spin evolution |ψ+

k (t)〉 (|ψ−k (t)〉).

can have very different precession frequency hk ≡
√

E2
k + 4B2

k, the entanglement distance δk is

eliminated for all pseudo spins k in the leading order of Bkt at t =
√

2τ as

δ2
k = E2

kB2
k

(
t2 − 2τ2

)
+ O

(
E2

kB2
kD2

kτ6
)
. (VIII.1)

Compared to the free-induction decay where δ2
k ∼ E2

kB2
kt4 for local pair-flips (see Eqn. (VII.29)),

the decoherence is reduced at the disentanglement point by a factor of ∼ D2
kτ2 (∼ 10−4 for

τ ∼ 10µs). This leads to a recovery of the electron spin coherence as is illustrated by a numerical

evaluation for the electron spin in a dot of 106 nuclear spins which reveals the coherence revival

after a π-flip of the electron spin at various τ , even when the coherence has visibly vanished (see

Fig. VIII.3). In the numerical evaluation, we have chosen a large quantum dot with d = 8.5

nm and r0 = 25 nm for which the local bath pair dynamics dominate the decoherence. For

large delay times τ ≥ T2, the restoration of the coherence is well pronounced at
√

2τ whereas no

coherence is visible at the conventional echo time 2τ . Remarkably, even when the electron spin

is flipped after the coherence has completely vanished, the coherence may be well recovered at

time
√

2τ .

In this pure state dynamics, the electron spin decoherence results solely from the quan-

tum evolution induced system-bath entanglement and the coherence restoration is a consequence

of the disentanglement of the electron spin and the nuclear spin bath. The disentanglement is in

stark contrast to the classical phase refocus (spin echo) of an ensemble of spins with inhomoge-

neous broadening [131], as unambiguously evidenced by the fact that the spin echo will occur at

2τ for a π-flip applied at τ .

It should be emphasized that the dynamics of local pairs of nuclear spins is not reversed
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Figure VIII.3 Electron spin coherence under the single-pulse control with the nuclear bath
initially on a randomly chosen unpolarized product state |J〉 ≡ ⊗

n |jn〉. (a) Electron spin
coherence Ls

+,− under the control of a single flip pulse applied at τ = 17µs. (b) The contour
plot of the electron spin coherence Ls

+,− as a function of the real time t and the pulse delay time
τ . The pulse time the electron spin is flipped is indicated by the left tilted dashed line. The
restoration of the coherence is pronounced at

√
2τ whereas no coherence peak is visible at the

conventional echo time 2τ (indicated by the right tilted dashed line). The horizontal dashed line
corresponds to the cut for the curve in the top plot. The quantum dot under consideration is of
the arrangement as in Fig. VII.1 of previous chapter with d = 8.5 nm and r0 = 25 nm. Bext = 10
T and is along the [100] direction.
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Figure VIII.4 Electron spin coherence Ls
+,−(t) with the control of a sequence of π-rotations

(indicated by blue vertical lines) evenly space by τ = 10µs. The quantum dot under consideration
and the experimental conditions are the same as in Fig. VIII.3. The nuclear bath is initially on
a randomly chosen unpolarized product state |J〉 ≡ ⊗

n |jn〉.

in this disentanglement process, as evidenced by the fact that the trajectory on the Bloch sphere

does not return to its starting point in Fig. VIII.2.

Similar to the single-pulse control, the coherence can also be preserved by a sequence

of π-rotation short pulses. It is straightforward to show that under a sequence of evenly spaced

pulses with spacing time τ , the disentanglement and hence the coherence restoration will occur

at
√

n(n + 1)τ between the nth and the (n + 1)th pulses. The residual decoherence, again

reduced from the free-induction value by a factor ∼ D2
kτ2, is the order of E2

kB2
kD2

kτ6 at the

disentanglement points. The coherence recovery under the control of a pulse sequence is clearly

seen in the numerical evaluations presented in Fig. VIII.4.

VIII.C Coherence control in ensemble measurements with

inhomogeneous broadening

The coherence restoration at the unusual time, e.g., at
√

n(n + 1)τ by the control of

an equally spaced pulse sequence, is observable in principle in single spin measurement with

pre-determination or post-selection of bath Overhauser field through projective measurement

[145], but it could be concealed by inhomogeneous broadening in ensemble measurements. In

measurements performed on an ensemble of electron spins [45, 137] or the time-ensemble-averaged

measurements performed on single dot electron [11, 142, 143, 144], the initial system-bath state

is described by a density matrix as (C+|+〉+ C−|−〉)
(
C∗+〈+|+ C∗−〈−|

) ⊗ ρN , where the bath

ensemble ρN =
∑

J pJ |J〉〈J | is in thermal equilibrium at the experimental temperature 1. The

ensemble electron spin dynamics is simply the statistical average of the pure state dynamics with
1The typical experiment temperature ranges from ∼ 10 mk to ∼K, low for the electron spin

but appreciable for the bath nuclear spins.
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Figure VIII.5 Rotations of pseudo spin Bloch vectors under the two-pulse control. (a)Illustration
of the Bloch vector rotation and the projected trajectory on the x-y plane. (b) Projected trajec-
tory on the x-y plane for the evolution of pseudo-spin Bloch vector of local bath pairs under the
influence of two π-rotations of the electron spin at time τ and 3τ respectively. (c) The same plot
as (b) but for pseudo spin of non-local bath pairs. In part (b) and (c), red solid (blue dashed)
trajectory denotes the pseudo spin evolution |ψ+

k (t)〉 (|ψ−k (t)〉).

all possible initial nuclear bath configurations. In the pure state dynamics C+|+〉 ⊗ |J+(t)〉 +

C−|−〉⊗|J−(t)〉 starting with any initial state |J〉 in the thermal ensemble, the system dynamics

is affected by, in addition to the system-bath entanglement, a bath-configuration dependent

local field resulting from the longitudinal electron-nuclear hyperfine coupling, i.e., the nuclear

Overhauser field (see also the discussion in section VII.B.2). Denoting the electron spin splitting

due to the Overhauser field as EJ , we obtain the ensemble electron spin coherence as ρ+,−(t) =

C∗−C+

∑
J pJe−iφJ (t)Ls

+,−(t) where φJ(t) = EJ [τ1 − (τ2 − τ1) + · · ·+ (−1)n(t− τn)] under the

control of a sequence of pulses applied at τ1, τ2, · · · , and τn. The decoherence profile due to

the quantum fluctuation (i.e., the Ls
+,− part) is insensitive, up to a factor of 1/

√
N ¿ 1, to

the selection of initial bath state |J〉 [159]. This behavior is verified by numerical simulations on

bath states associated with different Overhauser fields [168]. Thus, the ensemble dynamics can be

factorized into a pure quantum entanglement part and a static inhomogeneous broadening part as

ρ+,−(t) = C∗−C+Ls
+,−(t)×L0

+,−(t) with the inhomogeneous dephasing L0
+,−(t) ≡ ∑

J pJe−iφJ (t).

In free-induction decay, L0
+,−(t) reduces to the well-known Gaussian decay with dephasing time

T ∗2 [146, 147], which is usually shorter than T2 by orders of magnitude [11, 45, 142, 143, 144]. With

a sequence of flips applied on the single spin, the dephasing by inhomogeneous broadening can
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be stroboscopically removed to zero at the spin-echo time t fulfilling the phase refocus condition

τ1 − (τ2 − τ1) + · · ·+ (−1)n(t− τn) = 0, and the width of each echo is given by T ∗2 .

Since the ensemble dephasing time T ∗2 (∼ 1 − 10 ns in GaAs dots) is much shorter

than the decoherence time determined by the quantum entanglement in the single-system pure

state dynamics (∼ 10 µs from Fig. VIII.3), the inhomogeneous dephasing L0
+,−(t) will virtually

conceal the rich behaviors of single-system dynamics Ls
+,−(t), except for those coinciding with

spin-echoes. In particular, the disentanglement at
√

n(n + 1)τ under the control of n τ -spaced

pulses is virtually invisible in an ensemble measurement.

To make the coherence restoration observable in these ensemble experiments, a pulse

sequence can be designed to make the quantum disentanglement coincide with the spin echo.

Since the disentanglement of non-local pairs always coincides with the classical phase refocus,

the non-trivial job is to design a pulse sequence to disentangle the local pairs at spin-echo times.

The simplest solution is a two-pulse sequence. The geometrical picture of the local pair-state

evolution (see Fig. VIII.5(b)) shows that a second π-rotation pulse makes the conjugate vectors of

a pseudo-spin meet again. This secondary disentanglement time in quantum evolution can indeed

coincide with the secondary spin-echo time if the timing of the two flips satisfies τ2/3 = τ1 ≡ τ

(see Fig. VIII.5(b)), amounting to the famous Carr-Purcell pulse sequence in NMR spectroscopies

[177]. The leading contribution to the residue entanglement distance at t = 4τ under the Carr-

Purcell control is

δ2
k(4τ) ≈ 16 (EkBk −AkDk)2 D2

kτ6, (VIII.2)

in which the leading order contribution to the entanglement has been successfully eliminated. The

restoration of coherence in ensemble dynamics by the two-pulse control is clearly demonstrated

by numerical evaluation as shown in Fig. VIII.6. Remarkably, in ensemble experiments, the

electron spin coherence can be largely recovered at 4τ by the two-pulse sequence even when the

spin-echo signal at 2τ after the first pulse has completely vanished. This counteracts the intuition

that the absence of spin echo means the irreversible loss of coherence. Similar phenomena have

been reported in NMR experiments [178, 179].

VIII.D Concatenated design of control pulse sequence for

disentanglement

Note that the pseudo-spin rotation with the Carr-Purcell control of the electron spin can

be constructed recursively from the free-induction evolution as Û±
0 = e−ih±k ·σ̂kτ/2, Û±

1 = Û∓
0 Û±

0 ,

and Û±
2 = Û∓

1 Û±
1 . This observation indicates a more general pulse sequence design, i.e., the

concatenated pulse sequence, which was recently developed for dynamical decoupling in quantum
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Figure VIII.6 Ensemble-averaged electron spin coherence under the two-pulse control. (a) Elec-
tron spin coherence under the control of two π-pulses applied at τ and 3τ with τ = 5µs. The
dashed blue line is the pure state dynamics part Ls

+,−(t) and the solid red line is with the inhomo-
geneous broadening factor included Ls

+,−(t)× L0
+,−(t). The blue arrows indicate the time when

the electron spin are flipped. (b) Contour plot of the ensemble-averaged electron spin coherence
as a function of the real time t and the pulse delay time τ . The tilted dashed lines indicated the
pulse time and horizontal dashed line corresponds to the cut for the curve in the top plot. For
τ ≥ T ∗2 , the first spin echo at 2τ becomes invisible, while the coherence restoration related to the
disentanglement is well pronounced at the second spin-echo time 4τ . The quantum dot under
consideration is of the arrangement as in Fig. VII.1 with d = 2.8 nm and r0 = 15 nm. Bext = 10
T and is along the [100] direction. The nuclear bath is initially assumed in thermal equilibrium
at T = 1 K. In the plot, we have artificially set T ∗2 in L0

+,− to 0.5µs, about 100 times greater
than its realistic value, to make the echo visible in the plot.
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Figure VIII.7 Concatenation design of control pulse sequences. (a) Schematic illustrations of the
concatenated control pulse sequences. The green spikes indicate the π-rotation pulses. Blue solid
(red dashed) horizontal lines denote pseudo-spin evolution Û±

0 (Û∓
0 ) respectively. The (l + 1)the

order sequence is constructed by two subsequent lth order sequences with an additional π-rotation
pulse inserted only if l is even. (b) Recursive relation between the vector rotation angle θ±l for
a pictorial understanding of the concatenation control (see text).

computation [175]. In concatenated disentanglement, the (l + 1)th order sequence is constructed

by two subsequent lth order sequences with an additional π-rotation pulse inserted if l is even.

The pseudo-spin rotation under the concatenated control can be constructed by the iteration

Û±
l = Û∓

l−1Û
±
l−1 ≡ e−iθ±l−1·σ̂k/2. (VIII.3)

Here we have introduced the vector rotation angle θ±l for a pictorial understanding of the con-

catenation control. When the rotation angle θ±l is small, its recursion has a simple geometrical

representation

θ±l+1 = θ+
l + θ−l ∓ θ+

l × θ−l . (VIII.4)

Thus by each level of iteration, the vector rotation angles for the conjugate pseudo-spins has the

common part
(
θ+

l + θ−l
)
/2 increased by a factor of 2 and the difference

(
θ+

l − θ−l
)

reduced by

a factor of θ±l which is in the order of 2lBkτ . For τ ¿ B−1
k , the distance δk under the lth order

concatenation control at the spin-echo time τl ≡ 2lτ can be derived to be

δ2
k(τl) ∼= 4r2

l τ2l+22l(l−1) (EkBk −AkDk)2
[
4B2

ksinc2 (Ekτ) + D2
k

]l−1
sinc4 Ekτ

2
, (VIII.5)

where r2
l = 1 for odd l and r2

l = D2
k/

[
4B2

ksinc2 (Ekτ) + D2
k

]
for even l. Thus the decoherence is

reduced by an order of
(
2lτb

)2 for each additional level of concatenation, until the decoherence

suppression is saturated at the level l0 = − log2(bτ). The decoherence profile under concatenation

control is plotted in logarithm scales in Fig. VIII.8.
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Figure VIII.8 The scaling of echo magnitude with the echo delay time τl = 2lτ by the control of
concatenated pulse sequences in ensemble measurement. The quantum dot under consideration
and the experimental conditions are the same as in Fig. VIII.6.

In decades of research with NMR spectroscopies, sophisticated pulse sequences have

been designed to explore the coherence in complex nuclear spin systems [132, 177, 178, 180, 181].

And very recently, the concatenated pulse sequences have been proposed to protect coherence for

quantum computation via dynamically decoupling the quantum system from the environment

[175, 182]. In the dynamical decoupling scheme, the pulse sequences are employed to reduce the

interaction Hamiltonian. Here, the disentanglement method aims directly at the mesoscopic bath

dynamics. It does not seek to cancel the system-bath interaction by dynamical averaging, but

instead, with the solution of bath dynamics, implements coherence control by maneuvering the

bath evolution. In general, elimination of system-bath coupling is not a necessary condition for

their disentanglement. For instance, at disentanglement time
√

2τ by the single pulse control,

the effective system-bath interaction Ŝz ⊗ Ĥeff , defined by e−iĤ±
eff

√
2τ ≡ e−iĤ∓(

√
2−1)τe−iĤ±τ

where Ĥeff ≡ Ĥ+
eff − Ĥ−

eff , does not vanish even in the first order of the object-bath coupling

(∼ A/N). As demonstrated in in Fig. VIII.4, the disentanglement times are not equally times

are not equally spaced even though the controlling pulses are. In the concatenated design of

control pulse sequence, under the lth order concatenated disentanglement, the effective coupling

strength between the electron spin and a pseudo-spin (nuclear-spin pair-state) can be evaluated

to be

||Ĥ(l)
eff || ∼= τ l2l(l−3)/2 |EkBk −AkDk|

[
4B2

ksinc2 (Ekτ) + D2
k

] l−1
2 sinc2 Ekτ

2
, (VIII.6)
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the order of which is determined by the bath internal interaction instead of the system-bath

interaction. And we have seen from Eq. (VIII.5) that the bath internal coupling strength b,

rather than the system-bath coupling strength A/N as in dynamical decoupling [183], acts as the

controlling parameter in determining the leftover decoherence. Since b−1 ∼ ms À (A/N)−1 ∼
µs in the nuclear spin bath, the restriction on the interpulse interval τ of control pulses is

substantially relaxed. Our calculation shows that the electron spin coherence is well protected

by pulse sequences with interpulse interval up to ∼ 10 µs .

VIII.E Chapter summary

In summary, we have demonstrated, with a realistic system of a quantum dot containing

one electron and many nuclear spins interacting with one another, the general idea of disentan-

gling the quantum object and the mesoscopic bath and thus restoring the system coherence

after it has been totally lost by the system-bath entanglement. The coherence restoration is not

the reversal of the system-bath dynamics but an effective disentanglement which requires the

simple control over only the quantum system instead of the enormous degree of freedom of the

mesoscopic bath. The disentanglement is distinguished from the classical spin echo in inhomo-

geneously broadened ensemble by the coherence recovering at t =
√

2τ for a single pulse control

applied at t = τ . This magic time coherence restoration at t =
√

2τ is observable in principle

in single-dot measurement with pre-determination or post-selection of the nuclear Overhauser

field but is in general concealed by the inhomogeneous broadening in conventional ensemble ex-

periments. To observe the coherence restoration by disentanglement in ensemble measurements,

pulse sequences can be employed to control the disentanglement coincide with the spin echo. The

disentanglement, realized by maneuvering the quantum evolution of mesoscopic baths, opens up

an approach to coherence protection in mesoscopic systems, complementary to the dynamical

decoupling scheme [175, 176, 183, 182], the quantum error correction [24, 25, 26, 27, 28], and the

decoherence-free subspace method [169, 170, 171].
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IX

Conclusions and Future Work

In this chapter, we recapitulate the main results of this dissertation. Some relevant

future directions will be mentioned along the way.

IX.A Solid-state gate for photon pairs

In Chapter IV, we have proposed a solid-state controlled phase gate for two photons.

The flying qubits are conducted through fibers coupled to scattering centers composed of micro-

cavities connected by a doped semiconductor quantum dot. This allows a fiber implementation of

quantum information processor. The phase gate is operated under the two-photon transmission

in fibers. Electromagnetical induced transparency and laser cooling effect have been incorporated

in the control design to minimize the photon reflections. Pulse shape selections of single photons

are discussed for optimized gate operation. Single phase gate operation allows a nonlinear phase-

shift of O(π/10) at the single photon level. Controlled structures for accumulation of nonlinear

phaseshift by multi-operations are proposed. Calculated results also show that the system is

flexible for producing strong two-photon polarization entanglement as well.

The present design implements the energy level structures of a charged quantum dot.

The trion levels in charged quantum dot used for nonlinear interaction could be replaced by

other electronic systems, such as biexcitons in an undoped quantum dot, states in nanoclusters,

or even some strong transitions in rare-earth impurities, e.g., the 4d-5f transition in Er2+. Design

of control and pulse shape selection shall be individually investigated for these alternatives.

In the present study, we have assumed the point like coupling between the cavity and

the fiber. In practice, this coupling depends on the details of the structures to be used. Phase-

matching condition could be present if the couplings length is comparable with the photon
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wavelength. The phase-matching condition could be utilized to further maximize the desired two-

photon transmission. Our preliminary calculation also shows that moderate cavity-dot coupling

is sufficient to offer the nonlinearity needed for single photon conditional dynamics. The strong

coupling requirement may be relaxed. The present treatment should be generalized to deal with

the photon scattering processes under the moderate cavity-dot coupling. In addition, the dot-

cavity-fiber coupled structure may function as a novel nonlinear device working in the classical

limit. Design of control in connection with the practical needs, e.g., in optical communication,

could be another future direction.

IX.B Spin-photon interface

In Chapter V, we have investigated the coupled dot-cavity-waveguide structure as the

spin-photon interface. The cavity assisted Raman process can be coherently controlled to estab-

lish efficient quantum pathways connecting in sequence an electron spin, a charged exciton, a

cavity photon, and finally a flying photon in a quantum channel, i.e., the waveguide. Through

this Raman process, the qubit initially encoded in the quantum dot electron spin can be mapped

onto the photon number subspace of a single photon wavepacket with an arbitrarily designated

shape. This process, together with its time reversal process at a different nodes, enables the

quantum state transfer and swap between the electron spins at the two distant nodes. If the

Raman process at the sending node is controlled to be a partial cycle, non-local entanglement

between the two distant nodes can be created. The quantum node may also function as determin-

istic source and efficient detector of a single-photon wavepakcet with arbitrarily specified shape

and average photon number. Numerical simulation with the inclusion of various decoherence pro-

cesses shows a fidelity of 99% with parameters taken from state of art experiments. The control

is also shown to be robust against various systematic errors including the mis-characterization

of system parameters, phase and amplitude fluctuation of the controlling lasers.

The robustness against the systematic errors form the basis of the close-loop learning

studies [103] and real-time feedback controls [102] of the spin-photon interface. Learning algo-

rithms can be used to find the optimized manipulation of the dynamics of a complex system,

through the close-loop adaptive feedback controls, without initially knowing all relevant system

parameters. There has already been a great deal of success in the adaptive feedback control of

quantum phenomena in atomic and molecular systems [103, 184, 185]. The implementation of

learning algorithms in the quantum network operations could be an indispensable step towards

efficient control of this complex system. Real-time feedback controls also share the same un-

derlying control principles but poses more challenges since it requires the latency period of the
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control loop to match the intrinsic timescale of the system. Preliminary experiments are already

showing the viability of real-time feedback control in non-classical state preparation [186]. Of

more interest is to look into the feasibility of tailoring the quantum dynamics of open quantum

systems. Real-time quantum feedback controls of a single quantum systems is also of fundamental

interest in revealing basic issues about observational back action upon the quantum dynamics.

The dot-cavity-waveguide coupled structure could be an ideal platform for such studies.

In chapter VI, we have shown that the cavity assisted Raman process may also be con-

trolled for the ultra-fast initialization and quantum non-demolition measurement of the quantum

dot spin. A choice of the polarization of the control pulse can either (1) use the quantum chan-

nel as an entropy dump for the process of cooling the spin to the ground state, or (2) entangle

the spin qubit with a photon qubit in the quantum channel, thus enabling the readout of the

spin qubit via the photon detection. To be compatible also with the single spin rotation or the

controlled two spin interaction [17, 18], the cavity can be designed off resonance from the QD

transition so that cavity does not induce extra decoherence of the trion state. AC stark pulse

are used to switch on the cavity-dot coupling on demand for initialization and readout purpose.

Numerical simulation with the inclusion of various decoherence processes shows high efficiencies

for both the initialization and measurement processes. A single cooling cycle completed within

80 ps results in 99.45% spin polarization from the originally maximally mixed state of zero spin

polarization. Assuming the single photon detector of 50% efficiency and zero dark count rate,

within five measurement cycles, the spin state can be measured with accuracy higher than 97%,

and the back-action noise to the spin is less than 10%, while the time duration is less than 0.4

ns, much shorter than the spin decoherence time.

Monitoring of photons out coupled to optical waveguides may also provides a powerful

method for continuous observation of the intracavity spin dynamics. A number of quantum

measurement related studies may be performed on this structure. Interesting questions may

arise when the coherently driven quantum evolutions are combined with weak and continuous

quantum measurement. Future work may include the state and quantum process tomography,

conditional quantum evolution of continuously and weakly observed intra-cavity spin systems.

IX.C Electron spin decoherence and coherence control in

quantum dot

In Chapter VII, we present a quantum theory to the electron spin transverse decoherence

induced by interacting nuclear spins in quantum dot. The decoherence is explained in terms of

quantum entanglement of the electron with the pair-flip excitations in the nuclear bath driven by
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the various nuclear-nuclear interactions. The nuclear interaction mediated by the virtual spin-

flip of the electron, usually overlooked in the literature, is shown to play an important role in

single electron spin free-induction decay. The calculated electron spin decoherence time in single-

system FID varies from ∼ 0.1 µs to ∼ 10 µs for field strength from 1 T to 20 T, and saturates

as the electron mediated coupling is suppressed by stronger field. The spin-echo pulse not only

recovers the coherence lost by inhomogeneous broadening but also eliminates the decoherence due

to the electron-mediated nuclear pair-flips and reduces the decoherence by the intrinsic nuclear

interaction, leading to an decoherence time ∼ 10 µs independent of field strength in ensemble

dynamics.

In Chapter VIII, we present a coherence protection scheme to ameliorate the electron

spin transverse decoherence induced by the interacting lattice nuclear spins. As the decoherence

of electron spin results from the entanglement with the nuclear bath established by the cou-

pled evolution, the disentanglement leads to the restoration of the lost electron spin coherence.

Disentanglement may be realized through the implementation of sequences of short π-pulses to

maneuver the nuclear bath evolution through control of the electron spin-flip. The pulse se-

quence design can be borrowed from the dynamical decoupling schemes in NMR spectroscopies

[132] and in quantum computation [172, 173, 174, 176, 175], but the disentanglement method

aims directly at the bath dynamics. It does not seek to cancel the system-bath interaction by

dynamical averaging, but instead, with the solution of mesoscopic bath dynamics, implements

coherence control by maneuvering the bath evolution. In general, elimination of system-bath

coupling is not a necessary condition for their disentanglement. Disentanglement method leads

to unique coherence recovery times, e.g.,
√

2τ by the single pulse control, in the pure state

dynamics which are in stark contrast to the spin echo times generally expected. The effective

system-bath coupling does not vanish even in leading order at these disentanglement times. The

coherence recovery at these unique times is observable in principle in single spin measurement

with pre-determination or post selection of the nuclear Overhauser field, but it could be con-

cealed by inhomogeneous broadening in ensemble measurements [11]. Complex pulse sequence

control has been investigated to make the coherence recovery by disentanglement coinciding with

ensemble spin echo, therefore, observable in ensemble measurements. Prediction are made for

GaAs quantum dot of practical size. As the disentanglement is essentially a control of the bath

dynamics rather than a control of the system-bath coupling, the controlling small parameter is

the internal coupling strength within the bath rather than the system-bath coupling strength as

in dynamical decoupling schemes [176]. Since the coupling between nuclear bath spins is much

weaker than the electron-nuclear coupling, the restriction on the interpulse interval τ of control

pulses is substantially relaxed.
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The quantum theory of electron spin decoherence and the coherence control by disen-

tanglement is based on the pair-correlation approximation. The validity of the approach depends

critically on the mesoscopic size of the quantum dot and the timescale of interest. Error anal-

ysis shows that the pair-correlation method is well justified for the calculation of single spin

free-induction decay and ensemble spin echo for quantum dots of all practical size. However,

multi-spin correlations in the nuclear bath will gradually build up in the longer time limit, e.g.,

when t & 100 µs for a quantum dot of typical size N ∼ 105 − 106. Therefore, the present dis-

cussion of electron spin coherence control has been limited within this timescale, i.e., t . 100 µs,

where the pair-correlation approximation remains valid. As the ultimate aim of the coherence

control approach is to protect the electron spin coherence up to the spin T1 timescale1, inves-

tigation of the multi-spin correlations is of relevance. If the pulse sequence designed for the

pair-correlations fails to deal with the multi-spin correlations, the search for more complex pulse

sequences is needed and the ultimate limit of this coherence protect scheme by disentanglement

is also of interest. In addition, the current pulse sequence design aims at the protection of spin

quantum memory. Universal control of the coherence protected system will be an interesting

topic [174].

The present study of the electron spin decoherence and coherence control is a time

domain approach, i.e., the evolution of the initially prepared coherence is traced as a function of

time. Various time domain measurements [11, 127, 130, 143] may be performed for the test of

the theory. Complimentarily, optical frequency domain measurement offers a unique approach

to probe the various decoherence processes in the optically controllable dots. Measurement of

optical resonances with linewidth narrower than that of the laser is possible in carefully designed

experiments. For example, the measurement of ultra-slow ground-state relaxation rates of ∼ 10

Hz −kHz in various solids have been performed using the backward nearly degenerate four-wave

mixing spectrum [187, 188, 189, 190]. The optical frequency domain probe of the entanglement

induced electron spin decoherence process could be an interesting topic. The extension of the

above mentioned techniques on the measurement of relaxation to the transverse decoherence is

highly nontrivial. The observation of this slower process depends critically on the elimination of

the inhomogeneous broadening of the spin resonance in the spectrum.

IX.D Distributed quantum computation on chip

The requirements for the physical implementation of quantum computation have been

summarized by DiVincenzo [23]: (1) A scalable physical system with well-characterized qubits;

1In GaAs, the spin relaxation time T1 ∼ ms has been measured for the gate defined dot [107].
For InAs self-assembled dot, spin relaxation time as long as ∼ 20 ms has been observed [130].
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Low loss photon 
Transmission
– Transmission time ~ 1 ns

Optical control of local spins
Initialization 
& Readout
– Op time ~ 1ns

Spin-photon interface

microcavity

quantum dotcontrol laser
waveguide

(a)

(b)

– ORKKY for 2-spin interactions
– Raman scheme for single spin rotations
– Op time ~ 10 ps

– Op time ~ 100 ps

Figure IX.1 Distributed quantum information processing on chip. (a) Schematics of distributed
quantum computer where communications between computation modulus are mediated by single
photons in optical waveguides/fibers. (b) The spin based computation modulus on chip controlled
by ultrafast optics.
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(2) The ability to initialize the state of the qubits to a simple fiducial state; (3) Long relevant

decoherence times, much longer than the gate operation time; (4) A “universal” set of quantum

gates; (5) A qubit-specific measurement capability; (6) The ability to interconvert stationary and

flying qubits; (7) The ability to faithfully transmit flying qubits between specified locations.

Our studies in this dissertation aims at realizing these criterias in the mesoscopic system

of quantum dot. Together with the spin control established by previous work [8, 17, 18], now we

are able to outline the construction of a solid-state quantum network for scalable and distributed

processing of quantum information (see Fig. IX.1). In this network structure, a local node is

formed by a cluster of charged quantum dots and quantum information is encoded on the spin of

the single electron in each dot. These stationary qubits form basis for the quantum memory and

quantum logic modulus. Under a strong magnetic field of 10 T and temperature of . 1 K, single

electron spin has a free-induction decoherence time of ∼ 1 − 10 µs by our investigation. This

allows a sufficient large number of single-qubit and two-qubit operations (Top ∼ 10 ps). Spin

coherence may be further protected by the disentanglement method through implementation of

sequences of π-rotations of electron spin.

Computation capacities could be greatly enhanced by connecting modulus via optical

fibers or waveguides which act as lossless and directional quantum channels for flying photon

qubit. Since it takes less than 1 ns for a photon to travel 10 cm, the quantum network can be

easily scaled from nano-devices to centimeter-sized chips. The loss of photons in fibers is negligible

in such a short distance. The quantum interface between stationary spin qubits and flying

photon qubits are provided by the dot-cavity-waveguide coupled structure controlled by pulse

shaped laser. The dot-cavity-waveguide structure also allows the ultra-fast initialization and non-

destructive readout, essential for quantum error correction and scalable quantum computation.

We believe this system will be of unique potential for the realization of a scalable

quantum computer.
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