
UCLA
UCLA Previously Published Works

Title
Optimizing graph algorithms for improved cache performance

Permalink
https://escholarship.org/uc/item/9v89p5wv

Journal
IEEE Transactions on Parallel and Distributed Systems, 15(9)

ISSN
1045-9219

Authors
Park, Joon-Sang
Penner, M
Prasanna, V K

Publication Date
2004-09-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9v89p5wv
https://escholarship.org
http://www.cdlib.org/

Optimizing Graph Algorithms for Improved
Cache Performance

Joon-Sang Park, Student Member, IEEE, Michael Penner, and Viktor K. Prasanna, Fellow, IEEE

Abstract—In this paper, we develop algorithmic optimizations to improve the cache performance of four fundamental graph

algorithms. We present a cache-oblivious implementation of the Floyd-Warshall Algorithm for the fundamental graph problem of all-

pairs shortest paths by relaxing some dependencies in the iterative version. We show that this implementation achieves the lower

bound on processor-memory traffic of �ðN3=
ffiffiffiffi
C

p
Þ, where N and C are the problem size and cache size, respectively. Experimental

results show that this cache-oblivious implementation shows more than six times the improvement in real execution time over that of

the iterative implementation with the usual row major data layout, on three state-of-the-art architectures. Second, we address Dijkstra’s

algorithm for the single-source shortest paths problem and Prim’s algorithm for minimum spanning tree problem. For these algorithms,

we demonstrate up to two times the improvement in real execution time by using a simple cache-friendly graph representation, namely

adjacency arrays. Finally, we address the matching algorithm for bipartite graphs. We show performance improvements of two to three

times in real execution time by using the technique of making the algorithm initially work on subproblems to generate a suboptimal

solution and, then, solving the whole problem using the suboptimal solution as a starting point. Experimental results are shown for the

Pentium III, UltraSPARC III, Alpha 21264, and MIPS R12000 machines.

Index Terms—Cache-friendly algorithms, cache-oblivious algorithms, graph algorithms, shortest path, minimum spanning trees,

graph matching, data layout optimizations, algorithm performance.

�

1 INTRODUCTION

THE motivation for this work is what is commonly
referred to as the processor-memory gap. While

memory density has been growing rapidly, the speed of
memory has been far outpaced by the speed of modern
processors [25]. This phenomenon has resulted in severe
application level performance degradation on high-end
systems and has been well studied for many dense linear
algebra problems like matrix multiplication and FFT [24],
[33], [36]. A number of groups are attempting to improve
performance by performing computations in memory [4],
[19]. Other groups are attacking the problem in software;
either in the compiler through reordering instructions and
prefetching [15], [16], [28], or through complex data layouts
to improve cache performance [6], [8], [13].

Optimizing cache performance to achieve better overall
performance is a difficult problem. Modern microprocessors
are including deeper and deeper memory hierarchies to hide
the cost of cache misses. The performance of these deep
memory hierarchies has been shown to differ significantly
from predictions based on a single level of cache [32].
Different miss penalties for each level of the memory
hierarchy as well as the TLB also play an important role in
the effectiveness of cache friendly optimizations. These miss

penalties vary from processor to processor and can cause
large variations in experimental results.

The graph algorithms considered in this paper are
fundamental and well-known. Their importance is compar-
able to that of FFT to the signal processing domain andmatrix
multiplication to the scientific computing domain. The FFT
and matrix multiplication have been isolated and studied
extensively in the literature, as they are the major building
blocks of solutions to problems in many areas. In a similar
spirit, we study the following graph algorithms: the Floyd-
Warshall algorithm, Dijkstra’s algorithm, Prim’s algorithm,
and the augmenting path matching algorithm. The Floyd-
Warshall algorithm solves the all-pairs shortest paths
problem also referred to as transitive closure problem. The
algorithm plays a significant role in many real-life applica-
tions: for example, in the analysis of correlated gene clusters
in bioinformatics [20]. In this problem, a graph represents the
relationship among genes and identifying a gene cluster is
finding a group of nodes (i.e., genes) located closely to each
other in a set of graphs.As a first stepof the solution, using the
Floyd-Warshall algorithm, the distances between pairs of
genes ingraphs are computed.TheFloyd-Warshall algorithm
is also used in database systems for query processing and
optimization [37], artificial intelligence for multiagent plan-
ning [2], and VLSI/CAD [12]. In the Open Shortest Path First
(OSPF) protocol [11], which is a widely adopted routing
protocol for computer networks, each router in a network
computes shortest paths to every other node using Dijsktra’s
algorithm based on a periodic exchange of link-states with
other peer routers. Bipartite matching is the key algorithm in
computing the cube operator in On-Line Analytic Processing
(OLAP) databases [31]. All these applications are constrained
due to massive amounts of data or real-time requirements
and, in many cases, the efficiency of the underlying graph
algorithm determines their overall performance.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004 769

. J.-S. Park is with the Computer Science Department, Univeristy of
California, Los Angeles, 4732 Boelter Hall, Los Angeles, CA 90095-1596.
E-mail: jspark@cs.ucla.edu.

. M. Penner is with the Department of Electrical Engineering, University of
Southern California, 3740 McClintock Ave. EEB 205, Los Angeles, CA
90089. E-mail: mipenner@alumni.usc.edu.

. V.K. Prasanna is with the Department of Electrical Engineering,
University of Southern California, 3740 McClintock Ave. EEB 200C,
Los Angeles, CA 90089. E-mail: prasanna@usc.edu.

Manuscript received 6 June 2002; revised 21 April 2003; accepted 18 Dec.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 116721.

1045-9219/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

Graph algorithms, in general, pose unique challenges to
improving cache performance due to their irregular data
access patterns. These challenges are significantly different
from the challenges to dense linear algebra problems that
are often easily handled using standard cache-friendly
optimizations such as tiling or blocking [16]. Optimizations
such as tiling and data layout can be applied to some of the
graph algorithms only after considering the specific details
of each algorithm individually. In the Floyd-Warshall
algorithm, we are faced with data dependencies that require
us to update an entire N �N array before moving on to the
next iteration of the outermost loop. This data dependency
from one iteration to the next makes automatic optimization
through a compiler significantly more difficult than an
algorithm like matrix multiplication. In Dijkstra’s algorithm
and Prim’s algorithm, the largest data structure is the graph
representation. An efficient representation, with respect to
space, would be the adjacency-list representation. However,
this involves pointer chasing when traversing the list. The
priority queue, also used in these algorithms, has been
highly optimized by various groups over the years [30].
However, in their optimizations, the update operation is
often excluded, as it is not necessary in such algorithms as
sorting. The augmenting path matching algorithm for
bipartite graphs (hereafter, referred to as the matching
algorithm) poses challenges that resemble challenges in
both the Floyd-Warshall algorithm and Dijkstra’s algorithm.
As in the Floyd-Warshall algorithm, each breadth first
search to find an augmenting path could examine any part
or the entire input graph. Unlike the Floyd-Warshall
algorithm, the technique of recursion cannot be applied,
even with clever reordering, since the search cannot be
limited to a small part of the graph. We also have the
situation as in Dijkstra’s algorithm where the size of the
graph representation can affect performance and, although
optimal with respect to size, the adjacency list representa-
tion could cause a degradation of cache performance due to
pointer chasing when traversing the list.

The focus of this paper is to develop methods for
meeting these challenges. In this paper, we present a
number of cache-friendly optimizations to the Floyd-
Warshall algorithm, Dijkstra’s algorithm, Prim’s algorithm,
and the matching algorithm. For the Floyd-Warshall
algorithm, we present a cache-oblivious recursive implemen-
tation that achieves more than a 6� improvement over the
baseline implementation on three different architectures.
The baseline considered is a well-known implementation of
the iterative Floyd-Warshall algorithm with the usual row
major data layout. We analytically show that our imple-
mentation achieves the optimal lower bound on processor
memory traffic of �ðN3=

ffiffiffiffi
C

p
Þ, where N and C are the

problem size and cache size, respectively. For Dijkstra’s
algorithm and Prim’s algorithm, to which tiling and
recursion are not directly applicable, we use a cache-
friendly graph representation. By using a data layout for the
graph representation that matches the access pattern, we
show up to a 2� improvement in real execution time.
Finally, we discuss optimizing cache performance for the
matching problem. We use the technique of making the
algorithm initially work on small sized subproblems to

generate a suboptimal solution and, then, solving the whole
problem using the suboptimal solution as a starting point.
We show performance improvements in real execution
time, in the range of two to three times depending on the
density of the graph. Along with the experimental results,
we also present SimpleScalar simulation results to support
our claim that the performance improvement we achieve in
real execution time comes mainly from improved cache
performance.

Although this paper discusses optimizations targeting
uniprocessor systems, many aspects of our optimizations
are relevant to parallelization. As recursion is commonly
used as a computation decomposition technique for
parallelization, our recursive implementation can be used
to decompose data and computation for a parallel version
of the Floyd-Warshall algorithm. Given that our implemen-
tations incur minimal processor-memory traffic, parallel
implementations based on our implementation will also
incur minimal communication and/or sharing. Further-
more, the optimization of computation on each node is also
important in achieving high performance. Our work can be
directly applied to this problem.

The remainder of this paper is organized as follows: In
Section 2, we briefly summarize some related work in the
area of cache optimization. In Section 3, we discuss our
optimizations of graph algorithms. We discuss the optimi-
zation of the Floyd-Warshall algorithm in Section 3.1, the
optimization of the single-source shortest paths problem
and the minimum spanning tree problem in Section 3.2, and
the optimization of the matching algorithm in Section 3.3. In
Section 4, we present our experimental results and, finally,
in Section 5, we draw conclusions.

2 RELATED WORK

A number of groups have done research in the area of cache
performance analysis and optimizations in recent years.
Detailed cache models have been developed by Weikle et al.
in [35] and Sen and Chatterjee in [32]. XOR-based data
layouts to eliminate cache misses have been explored by
Gonzalez et al. in [13]. Data layouts for improving cache
performance of embedded processor applications have been
explored in [8].

A number of papers have discussed the optimization of
specific dense linear algebra problems with respect to cache
performance. Whaley and Dongarra discuss optimizing the
widely usedBasic LinearAlgebra Subroutines (BLAS) in [36].
Chatterjee et al. discuss layout optimizations for a suite of
dense matrix kernels in [5]. Park et al. discuss dynamic data
remapping to improve cache performance for theDFT in [24].
One characteristic that all these problems share is a very
regular memory accesses that are known at compile time.
Another approach to improving the performance of the cache
is to design cache-oblivious algorithms. This is explored by
Frigo, et al. in [10], which discusses the cache performance of
cache oblivious algorithms for matrix transpose, FFT, and
sorting. In this article, the algorithms do not ignore the
presence of a cache, but rather they use recursion to improve
performance regardless of the size or organization of the
cache. Bydoing this, they can improve the performance of the
algorithm without tuning the application to the specifics of

770 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

the host machine. In our work, we develop a cache-oblivious
implementation of the Floyd-Warshall algorithm. One
difference between this work and ours is that they assume a
fully associative cache when developing and analyzing the
techniques. For this reason, they do not consider any data
layout optimizations to avoid cache conflicts. They assume
that, at some point in the recursion, the problem will fit into
the cache and all work done following this point will be of
optimal cost. In fact, we show between 20 percent and two
times the performance improvements by optimizing what is
done once we reach a problem size that fits into the cache.

Another area that has been studied is the area of
compiler optimizations [28]. Optimizing blocked algorithms
has been extensively studied [16]. The SUIF compiler
framework includes a large set of libraries including
libraries for performing data dependency analysis and loop
transformations such as tiling. Note that SUIF will not
perform the transformations discussed in Section 3.1 with-
out user intervention.

Althoughmuchof the focusof cacheoptimizationhasbeen
on dense linear algebra problems, there has been some work
that focuses on irregular data structures. Chilimbi et al.
discusses making pointer-based data structures cache-con-
scious in [6]. They focus on providing structure layouts to
make tree structures cache-conscious. LaMarca and Ladner
developed analytical models and showed simulation results
predicting the number of cache misses for the heap in [17].
However, the predictions they made were for an isolated
heap, and the model they used was the hold model, in which
the heap is static for the majority of operations. In our work,
we consider Dijkstra’s algorithm and Prim’s algorithm in
which the heap is very dynamic. In both Dijkstra’s algorithm
and Prim’s algorithm O(N) Extract-Mins are performed and
O(E) Updates are performed. Finally, in [30], Sanders
discusses a highly optimized heap with respect to cache
performance. He shows significant performance improve-
ment using his sequential heap. The sequential heap does
support Insert and Delete-min very efficiently; however, the
Update operation is not supported.

In the presence of the Update operation, the asympto-
tically optimal implementation of the priority queue, with
respect to time complexity, is the Fibonacci heap. This
implementation performs OðN � lgðNÞ þ EÞ operations in
both Dijkstra’s algorithm and Prim’s algorithm. In our
experiments, the large constant factors present in the
Fibonacci heap caused it to perform very poorly. For this
reason, we focus our work on the graph representation and
the interaction between the graph representation and the
priority queue.

In [34],Venkataramanet al. present a tiled implementation
of theFloyd-Warshall algorithm that is essentially the sameas
the tiled implementation shown in this paper. In this paper,
we consider a wider range of architectures and also analyze
the cache performance with respect to processor memory
traffic. We also consider data layouts to avoid conflict misses
in the cache,which is not discussed in [34].Due to the fact that
we use a blocked data layout, we are able to relax the
constraint that the blocking factor should be amultiple of the
number of elements that fit into a cache line. This allows us to
use a larger block size and showmore speedup. In [34], they
derive an upper bound on achievable speed-up of 2 for state-
of-the-art architectures. Our optimizations lead to more than

six times the improvement in performance on three different
state-of-the-art architectures.

3 OPTIMIZATIONS OF GRAPH ALGORITHMS

In order to improve cache performance, an algorithm or
application should increase data reuse, decrease cache
conflicts, and decrease pollution. Cache pollution occurs
when a cache line is brought into the cache and only a small
portion of it is used before it is pushed out of the cache. A
large amount of cache pollution will increase the bandwidth
requirement of the application, even though the application
is not utilizing more data. The techniques that we use to
achieve these ends can be categorized as data layout
optimizations and data access pattern optimizations. In
our data layout optimizations, we attempt to match the data
layout to an existing data access pattern. For example, we
use the Block Data Layout to match the access pattern of a
tiled algorithm (see Section 3.1.2). In our data access pattern
optimizations, we design both novel and trivial optimiza-
tions to the algorithm to improve the data access pattern.
For example, we implemented a novel recursive imple-
mentation of the Floyd-Warshall algorithm (see Section 3.1)
and an implementation for the matching algorithm (see
Section 3.3), reducing the working set size to improve data
access pattern.

In this section, we discuss our optimization techniques.
In Section 3.1, we address the challenges of the Floyd-
Warshall algorithm. We discuss Dijkstra’s and Prim’s
algorithms in Section 3.2. We then discuss applying the
techniques presented in these sections to the problem of the
matching algorithm in Section 3.3.

The model that we use in this section is that of a
uniprocessor, cache-based system. We refer to the cache
closest to the processor as L1 with size C1, and subsequent
levels as Li with size Ci. Throughout this section, we refer
to the amount of processor-memory traffic. This is defined as
the amount of traffic between the last level of the memory
hierarchy that is smaller than the problem size and the first
level of the memory hierarchy that is larger than or equal to
the problem size. In most cases, we refer to these as cache
and memory, respectively. Finally, we assume Ci < N2 for
some i where N is the problem size.

3.1 Optimizing FW

In this section, we address the challenges of the Floyd-
Warshall algorithm. We start with introducing and proving
the correctness of a recursive implementation for the Floyd-
Warshall algorithm. We then analyze the cache perfor-
mance. We discuss that, by tuning the recursive algorithm
to the cache size, we can improve its performance. We
perform some analysis and discuss the impact of data
layout on cache performance in the context of a tiled
implementation of the Floyd-Warshall algorithm. Finally,
we address the issue of data layout for both the tiled
implementation and the recursive implementation.

Suppose we have a directed graph G with N vertices
labeled 1 toN andE edges. The Floyd-Warshall algorithm is a
dynamic programming algorithm, which computes a series
of NN �N matrices, Dk, defined as follows: Dk ¼ ðdkijÞ,
where dkij is the weight of the shortest path from vertex i to
vertex j composed of the subset of vertices labeled 1 to k. The
matrixD0 is initializedwith the original cost matrixW for the

PARK ET AL.: OPTIMIZING GRAPH ALGORITHMS FOR IMPROVED CACHE PERFORMANCE 771

given graphG. We can think of the algorithm as composed of
N steps. At each kth step, we computeDk using the data from
the previous stepDk�1. Pseudocode is given in Fig. 1.

3.1.1 A Recursive Implementation of FW

Before presenting the recursive implementation, we intro-
duce FWI, essentially, the iterative Floyd-Warshall algo-
rithm with three arguments which are adjacency matrices.
The operations on the elements of three input arguments
are as shown in Fig. 2. This is used as the base case for the
recursive implementation. The pseudocode for the recur-
sive implementation of the Floyd-Warshall algorithm is
given in Fig. 3. The initial call to the recursive algorithm
passes the entire input matrix as each argument. Subse-
quent recursive calls pass quadrants of the input arguments
as shown in Fig. 3. At the first level of recursion, A, B, and C
all point to the given input adjacency matrix stored in the
memory. At further levels of recursion, A, B, and C can each
point to the same subset or different subsets of the given
input adjacency matrix. Note that, in the first level of
recursion, A11, computed and updated in the first call, is the
input argument B11 to the second call.

Compared to ordinary matrix multiplication, the Floyd-
Warshall algorithm contains additional dependencies that
cannot be satisfied by a simple recursive implementation
similar to that of matrix multiply. These additional
dependencies are satisfied by considering the characteristic
of the min operation (see Claim 1 below) and by ordering
the first four recursive calls to operate on the matrix from
the top left quadrant to the bottom right quadrant and the
last four calls in a reverse order of the first four calls. This
ordering of the recursive calls is crucial to the correctness of
the final result.

In order to complete the proof of correctness of the
recursive implementation of the Floyd-Warshall algorithm,
we need the following claim.

Claim 1. Suppose dkij is computed as

dkij ¼ minðdk�1
ij ; dk

0

ik þ dk
00

kjÞ ð1Þ

for k� 1 � k0; k00 � N , then upon termination, the Floyd-
Warshall algorithm correctly computes the all-pairs shortest
paths.

Proof. In the traditional Floyd-Warshall algorithm, by
which we mean the algorithm shown in Fig. 1, dkij is
computed as

dkij ¼ minðdk�1
ij ; dk�1

ik þ dk�1
kj Þ:

To distinguish from the traditional Floyd-Warshall
algorithm, we use tkij to denote the results calculated
using (1), i.e.,

tkij ¼ minðtk�1
ij ; tk

0

ik þ tk
00

kjÞ ð2Þ

for k� 1 � k0; k00 � N assuming that t0ij ¼ d0ij and that
there is a sequence of computations (we will show that
the algorithm in Fig. 3 is such a sequence) that generates
tk

0

ik and tk
00

kj prior to the computation of tkij.
Now, we show that for 1 � k � N , the following
inequality holds:

tkij � dkij: ð3Þ

We prove this by induction.
Base case: By definition, we have

t0ij ¼ d0ij:

Induction step: Suppose tkij � dkij for k ¼ m� 1.
Then,

tmij ¼ minðtm�1
ij ; tm

0

im þ tm
00

mjÞ
� minðdm�1

ij ; tm
0

im þ tm400

mj Þ
� minðdm�1

ij ; tm�1
im þ tm�1

mj Þ
� minðdm�1

ij ; dm�1
im þ dm�1

mj Þ
¼ dmij :

This completes the induction step, which shows that tkij �
dkij for 1 � k � N .

772 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

Fig. 1. Pseudocode for the Floyd-Warshall algorithm.

Fig. 2. Pseudocode for Floyd-Warshall algorithm with three arguments.

Fig. 3. Pseudocode for the recursive implementation of the Floyd-

Warshall algorithm.

On the other hand, since the traditional algorithm
computes the shortest paths at termination and (2)
computes the length of some path, we have

dNij � tNij : ð4Þ

From (3) and (4), we have dNij ¼ tNij , which completes the
proof. tu

Theorem 1. The recursive implementation of the Floyd-Warshall
algorithm shown in Fig. 3 correctly computes the shortest
paths between allpairs of vertices of the input graph.

Proof sketch. Due to space limitation, we give a proof
sketch. The details of the proof are given in Appendix A
(available at http://computer.org/tpds/archives.htm)
and also in [21]. The proof is by induction. For the sake
of simplicity, we assume that the problem size N ¼ 2n.
We use FWRðA;B;CÞ to denote both the code segment
shown in Fig. 3 and the resulting matrix A after
executing the code. Also FWIðA;B;CÞ represents both
the code segment in Fig. 2 and resulting matrix A of the
code. Dk denotes the cost matrix containing the weights
of the shortest paths in which the highest-numbered
intermediate vertex is k. The initial call is FWRðD;D;DÞ,
where D is the input N �N adjacency matrix.

Base case: When the number of vertices is equal to 2,
that is n ¼ 1, the recursive implementation is identical to
the original implementation of the Floyd-Warshall
algorithm.

Induction Step: Assuming that the recursive imple-
mentation correctly computes the all-pairs shortest paths
for n ¼ m� 1, we need to prove it is true for the case of
problem size N ¼ 2m. In the initial call, eight recursive
calls are made as shown in Fig. 3.

The first call is interpreted as FWRðD0
11; D

0
11; D

0
11Þ,

where D11 is the northwest quadrant of D. D11 is
essentially an adjacency matrix of N=2 vertices. By
induction hypothesis, this call correctly computes and
updates D11 to D

N=2
11 . In other words, the shortest path

will be found from i to j with all intermediate vertices in
the set 1 to k, where i, j, and k are in the set 1 to N=2.

The second call is FWRðD0
12, D

N=2
11 , D0

12Þ, where D0
12 is

the northeast quadrant of D, and like D11, is also an
adjacencymatrix ofN=2 vertices. Notice that, at this point,
D11 has been updated toD

N=2
11 after the first recursive call,

whereasD12 still contains original values. This call is in the
form of FWRðA;B;AÞ. It can be shown (see Appendix A
located at http://computer.org/tpds/archives.htm) that,
for every operation akij ¼ minðak�1

ij ; bk�1
ik þ ak�1

ij Þ in FWI
ðA;B;AÞ, there is a corresponding operation akij ¼ min
ðak�1

ij ; bk�1
ik þ ak0ijÞ in FWRðA;B;AÞ, where k0 � k� 1.

Using Claim 1, it can be proven that the result of
FWRðD0

12; D
N=2
11 ; D0

12Þ is the same as FWIðD0
12; D

N=2
11 ; D0

12Þ.
On the other hand, it is easy to show that FWIðD0

12,
D

N=2
11 ; D0

12Þ correctly computes and generatesD
N=2
12 . This is

to say FWRðD0
12; D

N=2
11 ; D0

12Þ finds the shortest path from i
to j with all intermediate vertices in the set 1 to k, where i
and k are in the set 1 toN=2 and j is in the setN=2þ 1 toN.

In the same fashion, the third call computes D
N=2
21

using D0
21 and D

N=2
11 , and the fourth call computes D

N=2
22

using D0
22, D

N=2
12 , and D

N=2
21 completing the computation

of DN=2. After the first four recursive calls, the shortest

path with intermediate vertices in the set 1 to N=2 for all

pairs of vertices has been computed.
The second set of four recursive calls works in the

same way as the first set, although in the reverse order,
and completes the computation of DN . The Proof for the
second set of calls is similar to that of the first set. In this
way, the recursive implementation of the Floyd-Warshall
algorithm correctly computes the all-pairs shortest paths
and by induction it is correct for all N. tu

Theorem 2. The recursive implementation reduces the processor-
memory traffic by a factor of B, where B ¼ Oð

ffiffiffiffi
C

p
Þ.

Proof.Note that the running timeof this algorithm isgivenby

T ðNÞ ¼ 8�T
N

2

� �
¼ �ðN3Þ: ð5Þ

Define the amount of processor memory traffic by the
function DðxÞ. Without considering cache, the function
behaves exactly as the running time.

DðNÞ ¼ 8�D
N

2

� �
¼ �ðN3Þ: ð6Þ

Consider the problem after k recursive calls. At this
point, the problem size is N=2k. There exists some k such
that N=2k ¼ Oð

ffiffiffiffi
C

p
Þ, where C = cache size. For simplicity,

set B ¼ N=2k. At this point, all data will fit in the cache
and no further traffic will occur for recursive calls below
this point. Therefore:

DðBÞ ¼ OðB2Þ: ð7Þ

By combining (10) and (11), it can be shown that:

DðNÞ ¼ N3

B3
�DðBÞ ¼ O

N3

B

� �
: ð8Þ

Therefore, the processor-memory traffic is reduced by
a factor of B. tu

Theorem 3. The recursive implementation reduces the traffic
between the ith and the ði� 1Þth level of cache by a factor of
Bi at each level of the memory hierarchy, where Bi ¼ Oð

ffiffiffiffiffi
Ci

p
Þ.

Proof. Note, first of all, that no tuning was assumed when
calculating the amount of processor-memory traffic in
the proof of Theorem 2. Namely, (12) holds for anyN and
any B, where B ¼ Oð

ffiffiffiffi
C

p
Þ.

In order to prove Theorem 3, first consider the entire
problem and the traffic between main memory and the
mth level of cache (size Cm). By Theorem 2, the traffic
will be reduced by Bm, where Bm ¼ Oð

ffiffiffiffiffiffiffi
Cm

p
Þ. Next,

consider each problem of size Bm and the traffic between
the mth level of cache and the ðm� 1Þth level of cache
(size Cm�1). By replacing N in Theorem 2 by Bm, it can be
shown that this traffic is reduced by a factor of Bm�1,
where Bm�1 ¼ Oð

ffiffiffiffiffiffiffiffiffiffiffi
Cm�1

p
Þ.

This simple extensionofTheorem2canbedone for each
level of the memory hierarchy and, therefore, the proces-
sor-memory traffic between the ith and the ði� 1Þth level
of cache will be reduced by a factor of Bi, where
Bi ¼ Oð

ffiffiffiffiffi
Ci

p
Þ. tu

PARK ET AL.: OPTIMIZING GRAPH ALGORITHMS FOR IMPROVED CACHE PERFORMANCE 773

In [14], it was shown that the lower bound on processor-

memory traffic was �ðN3=
ffiffiffiffi
C

p
Þ for the usual implementa-

tion of matrix multiply. By examining the data dependency

graphs for both matrix multiplication and the Floyd-

Warshall algorithm, it can be shown that matrix multi-

plication reduces to the Floyd-Warshall algorithm with

respect to processor-memory traffic. Therefore, the follow-

ing can be shown.

Lemma 1. The lower bound on processor-memory traffic for the

Floyd-Warshall algorithm, given a fixed cache size C, is

�ðN3=
ffiffiffiffi
C

p
Þ, where N is the number of vertices in the input

graph.

From Lemma 1 and Theorem 2, showing the upper

bound on processor-memory traffic of the recursive im-

plementation to be OðN3=BÞ, where B2 ¼ OðCÞ, we have

the following theorem.

Theorem 4. Our recursive implementation is asymptotically

optimal among all implementations of the Floyd-Warshall

algorithm with respect to processor-memory traffic.

As a final note in the recursive implementation, we show

up to 2� improvement when we set the base case in FWR

such that the base case would utilize more of the cache

closest to the processor. Set the base case in FWR to be B,

where B2 is on the order of the cache size. This improve-

ment varied from one machine to the other (see Section 4)

and is due to the decrease in the overhead of recursion. It

can be shown that the number of recursive calls in the

recursive algorithm is reduced by a factor of B3 when we

stop the recursion at a problem of size B. A comparison of

full recursion and recursion stopped at a larger block size

showed a 30 percent improvement on the Pentium III and a

2� improvement on the UltraSPARC III.
In order to improve performance, B2 must be chosen to

be on the order of the L1 cache size. The simplest and

possibly the most accurate method of choosing B is to

experiment with various tile sizes. This is the method that

the Automatically Tuned Linear Algebra Subroutines

(ATLAS) project employs [36]. However, it is beneficial to

find an estimate of the optimal tile size. A block size

selection heuristic for finding this estimate is discussed in

[26], and outlined here.

. Use the 2:1 rule of thumb from [25] to adjust the
cache size to that of an equivalent 4-way set
associative cache. This minimizes conflict misses
since our working set consists of three tiles of data.
Self-interference misses are eliminated by the data
being in contiguous locations within each tile and
cross interference misses are eliminated by the
associativity.

. Choose B by (13), where d is the size of one element
and C is the adjusted cache size. This minimizes
capacity misses.

3�B2�d ¼ C: ð9Þ

3.1.2 A Tiled Implementation for FW

Recall that Claim 1 stated that, when computing (1), it was
sufficient that k0 � k. Consider a special case of Claim 1
when we restrict k0 such that k� 1 � k0 � kþB� 1, where
B is the blocking factor. This special case leads to the
following tiled implementation of the Floyd-Warshall
algorithm. This tiled implementation has also been derived
in [34] using an alternate analysis. A brief description of the
algorithm is as follows. Tile the problem into B�B tiles.
During the bth block iteration, first update the ðb; bÞth tile,
then the remainder of the bth row and bth column, then the
rest of the matrix. Fig. 4 shows an example matrix tiled into
a 4� 4 matrix of blocks. Each block is of size B�B. During
each outermost loop, we would update first the black tile
representing the ðb; bÞth tile, then the gray tiles, then the
white tiles. In this way, we satisfy all dependencies from
each bth loop to the next as well as all dependencies within
each bth loop.

Analysis. In [34], an upper bound for any cache optimized
Floyd-Warshall algorithm was shown, however, no formal
analysis with respect to traffic was shown for their tiled
implementation. In fact, our results show speed-ups sig-
nificantly larger than the upper bound shown in [34]. The
following analysis is performed for the tiled implementation
in the context of the model discussed in Section 1.

Theorem 5. The proposed tiled implementation of the Floyd-
Warshall algorithm reduces the processor-memory traffic by a
factor of B, where B2 is on the order of the cache size.

Proof. At each block, we perform B3 operations. There are
N=B�N=B blocks in the array andwe pass through each
blockN=B times. This gives us a total ofN3 operations. In
order toprocess eachblock,we requireonly3�B2 elements.
This gives us a total of N3=B total processor-memory
traffic. tu

Given this upper bound on traffic for the tiled
implementation and the lower bound shown in Lemma 1,
we have the following.

Theorem 6. The proposed tiled implementation is asymptotically
optimal among all implementations of the Floyd-Warshall
algorithm with respect to processor-memory traffic.

Optimizing the Tiled Implementation. It has been shown by
a number of groups that data layouts tuned to the access
pattern can significantly impact cache performance and

774 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

Fig. 4. Tiled implementation of FW.

improve overall execution time. In order to match the access
pattern of the tiled implementation, we use the Block Data
Layout (BDL). The BDL is a two level mapping that maps a
tile of data, instead of a row, into contiguous memory (see
Fig. 6). By setting the block size equal to the tile size in the
tiled computation, the data layout will exactly match the
data access pattern. By using this data layout, we can also
relax the restriction on block size stated in [34] that the
block size should be a multiple of the number of elements in
a cache block.

As mentioned in Section 3.1, the best block size should be
found experimentally, and the block size selection heuristic
discussed in Section 3.1 can be used to give a rough bound
on the best block size. However, when implementing the
tiled implementation, it is also important to note that the
search space must take into account each level of cache as
well as the size of the TLB. Given these various solutions for
B, the search space should be expanded accordingly. In [34],
only the level-1 cache is considered, however, with an on-
chip level-2 cache, often the best block size is larger than the
level-1 cache. In the experiment result section, a comparison
between row-wise and block layout is given.

3.1.3 Data Layout Issues

It is important to consider data layout when implementing
any algorithm. It has been shown by a number of groups
that data layouts tuned to the data access pattern of the
algorithm can reduce both TLB and cache misses [5], [24],
[26]. In the case of the recursive algorithm, the access
pattern is matched by a Z-Morton data layout. The Z-
Morton ordering is a recursive layout defined as follows:
Divide the original matrix into four quadrants and lay these
tiles in memory in the order NW, NE, SW, SE. Recursively
divide each quadrant until a limiting condition is reach.
This smallest tile is typically laid out in either row or
column major fashion (see Fig. 5). See [5] for a more formal
definition of the Morton ordering.

In the case of the tiled implementation, the Block Data
Layout (BDL) matches the access pattern. Recall from the
section Optimizing the Tiled Implementation that the BDL is a
two level mapping that maps a tile of data, instead of a row,
into contiguous memory. These blocks are laid out row-
wise in the matrix and data is laid out row-wise within the
block (see Fig. 6). By setting the block size equal to the tile
size in the tiled computation, the data layout will exactly
match the data access pattern.

3.2 Optimizing the Single-Source Shortest Paths
Problem and the Minimum Spanning
Tree Problem

Dijkstra’s algorithm solves the single-source shortest paths
problem by repeatedly extracting from a priority queue Q

the nearest vertex u to the source, given the distances
known thus far in the computation (Extract-Min operation).
Once this nearest vertex is selected, all vertices v that
neighbor u are updated with a new distance from the source
(Update operation). The pseudocode for the algorithm is
given in Fig. 7. The asymptotically optimal implementation
of Dijkstra’s algorithm utilizes the Fibonacci heap and has
complexity OðN lgðNÞ þ EÞ, although the Fibonacci heap
may only be interesting in theory due to large constant
factors.

Prim’s algorithm for the minimum spanning tree pro-
blem is very similar to Dijkstra’s algorithm. In both cases, a
root node or source node is chosen and all other nodes
reside in the priority queue. Nodes are extracted using an
Extract-min operation and all neighbors of the extracted
vertex are updated. The difference in Prim’s algorithm is
that nodes are updated with the weight of the edge from the
extracted node instead of the weight from the source or root
node. Due to the structure of Dijkstra’s and Prim’s
algorithm, neither tiling nor recursion can be directly
applied.

As mentioned in Section 1, the largest data structure in
both Dijkstra’s and Prim’s algorithms is the graph repre-
sentation. This structure will be of size OðN þ EÞ, where E
can be as large as N2 for dense graphs. In contrast, the
priority queue, the other data structure involved, will be of
size OðNÞ. Also note that each element in the graph
representation will be accessed exactly once. For each node
extracted from the priority queue, the corresponding
adjacent nodes are read and updated. All nodes will be
extracted from the priority queue and no node can be
extracted more than once. Therefore, the traffic as a result of
the graph representation will be proportional to its size and

PARK ET AL.: OPTIMIZING GRAPH ALGORITHMS FOR IMPROVED CACHE PERFORMANCE 775

Fig. 5. Z-Morton layout.

Fig. 6. The block data layout.

Fig. 7. Pseudocode for Dijkstra’s algorithm.

the amount of prefetching possible. For these reasons, we
focus on providing an optimization to the graph represen-
tation based on the data access pattern.

In the context of the graph representation, we can take
advantage of two things. The first is prefetching. Modern
processors perform aggressive prefetching in order to hide
memory latencies. The second is to optimize at the cache
line level. In this case, a single miss would bring in multiple
elements that would subsequently be accessed and result in
cache hits.

There are two commonly used graph representations.
The adjacency matrix is an N �N matrix, where the ði; jÞth
element of the matrix is the cost from the ith node to the jth
node of the graph. This representation is of size OðN2Þ. It
has the nice property that elements are accessed in a
contiguous fashion and, therefore, cache pollution will be
minimized and prefetching will be maximized. However,
for sparse graphs, the size of this representation is
inefficient. The adjacency list representation is a pointer-
based representation where a list of adjacent nodes is stored
for each node in the graph. Each node in the list includes the
cost of the edge from the given node to the adjacent node.
This representation has the property of being of optimal
size for all graphs, namely, OðN þ EÞ. However, the fact
that it is pointer based, leads to cache pollution and
difficulties in prefetching. See [7] for more details regarding
these common graph representations.

Consider a simple combination of these two representa-
tions [29]. For each node in the graph, there exists an array of
adjacent nodes. The size of each array is exactly the out-
degree of the corresponding node. There are simple methods
to construct this representation when the out-degree is not
known until runtime. For this representation, the elements at
each point in the array look similar to the elements stored in
the adjacency list. Each elementmust store both the cost of the
path and the index of the adjacent node. Since the size of each
array is exactly the out-degree of the corresponding node, the
size of this representation isOðN þ EÞ. Thismakes it optimal
with respect to size. Also, since the elements are stored in
arrays and therefore in contiguous memory locations, the
cache pollution will be minimized and prefetching will be
maximized. Subsequently, this representation will be re-
ferred to as the adjacency array representation. This graph
representation is essentially the same as a graph representa-
tion discussed in [29].

As mentioned above, Prim’s algorithm is very similar to
Dijkstra’s algorithm. In fact, they are identical with respect
to the access pattern, the difference being only in how the
update operation is performed. In Dijkstra’s algorithm,
nodes in the priority queue are updated with their distance
from the source node. In Prim’s algorithm, nodes are
updated with the shortest distance from any node already
removed from the priority queue. For this reason, the
optimizations applicable to Dijkstra’s algorithm are also
applicable to Prim’s algorithm. Recall that this optimization
replaces the adjacency list graph representation with the
adjacency array graph representation. This representation
matches the streaming access that is made to the graph and,
in this way, minimizes cache pollution and maximizes the
prefetching ability of the processor.

3.3 Optimizing Matching Algorithm for
Bipartite Graph

In this section, the ideas and techniques developed in the
previous sections are utilized to optimize another funda-
mental graph algorithm, namely, matching algorithm for
bipartite graphs. As discussed earlier, this algorithm shows
similarities to Dijkstra’s algorithm with respect to memory
access in each iteration and, therefore, tiling and recursion
cannot be easily applied. We start with a brief description of
the matching algorithm.

For the sake of graph matching a subset M of E is
considered a matching if no vertex is incident on more than
one edge inM. A matching is considered maximal if it is not
a subset of any other matching. A vertex is considered free
if no edge inM is incident upon it. Using these definitions, a
primitive matching algorithm can be defined as follows:
Beginning at a free vertex use a breadth first search to find a
path P from that free vertex to another free vertex
alternating between edges in M and edges not in M. This
is considered an augmenting path. Update the matching M
by taking the symmetric difference of the edge sets of M
and P. The algorithm is complete when no augmenting path
can be found. The running time of this algorithm has been
shown to be OðN�EÞ. Pseudocode is given in Fig. 8. A more
detailed explanation of this primitive matching algorithm is
given in [18].

The first optimization that is applied is touse the adjacency
arrays instead of the adjacency list. In order to find an
augmenting path, a breadth first search is performed. The
access pattern will then be to access all adjacent nodes to the
current node. This is the sameaccesspattern aswasdisplayed
in both Dijkstra’s and Prim’s algorithm.

The second optimization that is applied is intended to
reduce the working set size as in tiling or recursion. The
augmenting path matching algorithm iteratively improves
the cardinality of amatching, usually starting from an empty
set, until it reaches the maximum cardinality. Our cache-
friendly implementation of the matching algorithm is as
follows: First, divide the input graph into subgraphs using a
certain graph-partitioning scheme and solve maximum
matching problem locally for each subgraph using the
matching algorithm. Next, Union all the obtained matchings
for subgraphs to get a good matching for the complete input
graph. Finally, run the algorithmon the complete input graph
using the good matching as starting point. Pseudocode for
this implementation is presented in Fig. 9.

The main performance advantage of our implementation
comes from the highly cache efficient first stage. The cache
efficiency at the first stage is due to reduced working set

776 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

Fig. 8. Pseudocode for augmenting path matching algorithm.

size implying increased temporal locality. If the sizes of
subgraphs are chosen appropriately, each of which fits into
the cache, it generates minimal processor-memory traffic of
OðN þ EÞ because a single loading of each data element to
cache is necessary. In the best case, that is a maximum
matching is found at the first stage, our implementation
only causes overall OðN þ EÞ processor-memory traffic as
the program ends at the first stage. It is OðNÞ times
improvement over OðN�EÞ, the processor-memory traffic
for the straight forward implementations. The size of
subgraph can be one of the tuning factors in our
implementation and the heuristic used to select block size
presented in the previous section can be used.

Mainly, for experimental purposes, we develop and
employ a simple linear time two-way partitioning algo-
rithm. A basic description of this algorithm is as follows:
Given a bipartite graph, the goal is to partition the edges
into two groups such that the best matching possible is
found within each group. In order to accomplish this, as
many edges as possible should have both end points in the
same partition. These edges are referred to as internal
edges. Arbitrarily partition the vertices into four equal
partitions, count the number of edges between each pair of
partitions, and combine partitions into two partitions such
that as many internal edges are created as possible.

4 EXPERIMENTAL AND SIMULATION RESULTS

We use four different architectures for our experiments. The
Pentium III Xeon running Windows 2000 is a 700 MHz, four
processor shared memory machine with 4 GB of main
memory. Each processor has 32 KB of level-1 data cache
and 1MB of level-2 cache on-chip. The level-1 cache is 4-way
set associative with 32 B lines and the level-2 cache is 8-way
set associativewith 32 B lines. TheUltraSPARC IIImachine is
a 750MHzSUNBlade 1000 sharedmemorymachine running
Solaris 8. It has two processors and 1 GB of main memory.
Each processor has 64 KB of level-1 data cache and 8 MB of
level-2 cache. The level-1 cache is 4-way set associative with
32 B lines and the level-2 cache is direct mapped with 64 B
lines. The MIPS machine is a 300 MHz R12000, 64 processor,
shared memory machine with 16 GB of main memory. Each
processor has 32 KB of level-1 data cache and 8MB of level-2
cache.The level-1 cache is 2-wayset associativewith32B lines
and the level-2 cache is direct mapped with 64 B lines. The
Alpha 21264 is a 500MHzuniprocessormachinewith 512MB
ofmainmemory. It has 64KBof level-1data cacheand4MBof

level-2 cache. The level-1 cache is 2-way set associative with
64 B lines and the level-2 cache is direct mapped with 64 B
lines. It also has an 8-element fully associative victim cache.
All experiments are run on a uniprocessor or on a single node
of a multiprocessor system. Unless otherwise specified
simulations are performed using the SimpleScalar simulator
with a 16 KB, 4-way set associative level-1 data cache and a
256 KB, 8-way set associative level-2 cache.

4.1 Results for Floyd-Warshall Algorithm
Optimizations

The baseline used for our experiments is an implementation
of the iterative Floyd-Warshall algorithm with the usual
row major data layout. The simulation results in Table 1 for
the recursive implementation show a 30 percent decrease in
level-1 cache misses and a 2� decrease in level-2 cache
misses for problem sizes of 1,024 and 2,048. In order to
verify the improvements on real machines, the recursive
implementation of the Floyd-Warshall algorithm was
compared with the baseline. For these experiments, the
best block size was found experimentally. The results show
more than 10� improvement in overall execution time on
the MIPS, roughly than 7� improvement on the Pentium
III and the Alpha, and more than 2� improvement on the
UltraSPARC III. These results are shown in Fig. 10.
Differences in performance gains between machines are
expected, due to the wide variance in cache parameters and
miss penalties.

Table 2 shows the result of comparing the tiled
implementation using a row-wise layout and the block size
selection used in [34] with the tiled implementation using
the block data layout and our block size selection.
Simulation results show that the block size selection used
in [34] optimizes the level-1 cache misses, but incurs a level-
2 cache miss ratio of almost 30 percent. The Block Data
Layout with a larger block size has roughly equal level-1
cache performance and far better level-2 cache performance.
The execution times for these implementations show a
20 percent to 30 percent improvement by the Block Data
Layout over the row-wise data layout.

A comparison for the tiled implementation using the
Block Data Layout with the baseline implementation was
also performed. Simulation results for this are shown in
Table 3. These results show a 2� improvement in level-2
cache misses and a 30 percent improvement in level-1 cache
misses. Experimental results show a 10� improvement in

PARK ET AL.: OPTIMIZING GRAPH ALGORITHMS FOR IMPROVED CACHE PERFORMANCE 777

Fig. 9. Pseudocode for cache friendly implementation of the matching

algorithm.

TABLE 1
FWR Implementation Simulation Results

execution time for the Alpha, better than 7� improvement
for the Pentium III and the MIPS and roughly a 3�
improvement for the UltraSPARC III (Fig. 11).

Experiments were also performed with both Z-Morton
and BDL data layouts for each of the implementations. The
results are shown in Tables 4 and 5. All of the execution
times were within 15 percent of each other with the Z-
Morton data layout winning slightly for the recursive
implementation and the BDL winning slightly for the tiled
implementation. The fact that the Z-Morton was slightly
better for the recursive implementation and likewise the
BDL for the tiled implementation was exactly as expected,
since they match the data access pattern most closely. The
closeness of the results is most likely due to the fact that the
majority of the data reuse is within the final block. Since
both of these data layouts have the final block laid out in
contiguous memory locations, they perform equally well.

Our experimental results show that the recursive imple-
mentation is slightly slower than the tiled implementation.
This is due to inefficient coding of the recursive implementa-
tion. Both the recursive and the tiled implementations require
the input matrix to be padded with infinities to meet certain
criteria. The recursive implementationmandates theproblem
sizeN to be a product of the block size and apower of 2 so that
the input matrix can be recursively divided into half sized

subproblems until it reaches the base case while the input
problem size only has to be amultiple of the block size for the
tiled implementation. Thus, in some cases, more padding is
required for the recursive implementation, resulting in
unnecessary computations which efficient code should
avoid. We believe that if both implementations are suffi-
ciently efficient, then the recursive implementation will run
faster. Note that the recursive implementation isusually
preferred for an important reason: its auto blocking nature. It
automatically adapts itself and is thus less sensitive to the
underlying cache architecture. Whereas the process of block
size selection according to the underlying cache architecture
is crucial to the tiled implementation.

4.2 Results for Dijkstra’s Algorithm Optimization

In order to demonstrate the performance improvements
using our graph representation, simulations as well as

778 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

Fig. 10. Speedup results for the recursive implementation of the Floyd-
Warshall algorithm.

TABLE 2
Performance Comparison

TABLE 3
Simulation Result

Fig. 11. Speedup results for the tiled implementation of the Floyd-

Warshall algorithm.

TABLE 4
Execution Time on Pentium III

experiments on two different machines, the Pentium III and
UltraSPARC III, were performed for Dijkstra’s algorithm.
The simulation results show approximately 20 percent
reduction in level-1 cache misses and a 2� reduction in the
number of level-2 cache misses (see Table 6). This is due to
the reduction in cache pollution and increase in prefetching
that was predicted. Due to memory limitations, experi-
ments for all graph densities were only performed at small
problem sizes, namely, 2K nodes and 4K nodes. These
results demonstrate improved performance using the
adjacency array for all graph densities and are shown in
Fig. 12. Experiments on larger problem sizes (16K nodes up
to 64K nodes) at a graph density of 10 percent are shown in
Fig. 13 and again are limited by the size of main memory.
All of the results show a 2� improvement for Dijkstra’s
algorithm on the Pentium III and a 20 percent improvement
on the UltraSPARC III. This significant difference in
performance is due primarily to the difference in the
memory hierarchy of these two architectures.

4.3 Results for Prim’s Algorithm Optimization

As mentioned in Section 3.2, the optimizations applicable to
Dijkstra’s algorithm are also applicable to Prim’s algorithm.
Figs. 14 and 15 show the result of applying the optimization
to the graph representation discussed in Section 3.2 to
Prim’s algorithm. Recall that this optimization replaces the
adjacency list graph representation with the adjacency array
graph representation. This representation matches the
streaming access that is made to the graph and in this
way minimizes cache pollution and maximizes the pre-
fetching ability of the processor.

The results show a 2� improvement on the Pentium III
and 20 percent for the UltraSPARC III. This performance
improvement was shown in the smaller problem sizes of 2K
and 4K nodes where experiments were done for densities

ranging from 10 percent to 90 percent as well as the large
problem sizes of 16K nodes up to 64K nodes with densities
of 10 percent. Simulations were also performed to verify
improved cache performance. These results are shown in
Table 7. They show approximately a 20 percent reduction in
the number of level-1 cache misses and a 2� reduction in
the number of level-2 cache misses.

4.4 Results for Matching Algorithm Optimization

The performance of this optimization is largely dependant
on the structure and density of the graph and the
partitioning chosen. Assuming a good partition, the local
maximal matches will be close to a global maximal match
for dense graphs due to the large number of edges present

PARK ET AL.: OPTIMIZING GRAPH ALGORITHMS FOR IMPROVED CACHE PERFORMANCE 779

TABLE 5
Execution Time on UltraSPARC III

TABLE 6
Simulation Results for Dijkstra’s Algorithm

Fig. 12. Speedup results for Dijkstra’s algorithm.

Fig. 13. Speedup results for Dijkstra’s algorithm.

Fig. 14. Speedup results for Prim’s algorithm.

in each subgraph. For sparse graphs, it is difficult to find a
good local match and more work will be required at the
global level.

In order to support the quality of the optimization,
experiments were also performed for a graph in which a
worst possible graph partitioning was chosen, i.e., no
matches were found at the local level. For this case, the
optimized implementation showed only 10 percent perfor-
mance degradation. The majority of experimentation was
performed using randomly generated graphs in order to
average out the dependency on graph partitioning. The
random graphs were constructed by randomly choosing
half of the vertices to be in one partition of the bipartite
graph. Edges were then created from each vertex in the
partition to randomly chosen vertices not in the partition.

As expected, the performance improvement is highly
dependent on the density of the graph. This dependency can
be seen inFig. 16,which shows the speedupvs. graphdensity.
Results ranged from just over 2� for graphs of 10 percent
density to over 4� for graphs of 30 percent density. In this
case, the problem size was fixed at 8,192 nodes and density
was limited to 30 percent by main memory. More interesting
results are those shown in Fig. 17. The input graph in this case
was a randomly generated graph and the basic graph
partitioning algorithmwas used to improve thematch found
at the local level. The results shown are the average over
10 different random input graphs. The speedup shown is
roughly 2� for all problem sizes. Simulations were done to
demonstrate cache performance for this case and the results
are shown in Table 8. Based on the number of access to the
level 1 cache, the optimized implementation is performing
somewhat less work. This contributes somewhat to the
decrease in the number of misses shown. However, the miss
rate is also reduced by almost 3� , which indicates that the

optimized implementation does improve cache performance
beyond the amount reduced by the decrease in work.

5 CONCLUSION

In this work, we targeted four fundamental algorithms as
they are of major interest to the community in terms of their
applicability to a broad set of applications. Our techniques
can also be beneficial to improve the performance of other
graph algorithms. For example, the Bellman-Ford algorithm
[7] for the shortest-paths problem visits every neighbor of a
node once thenode is labeled. Performance improvement can
be achieved by applying our data layout optimization
discussed in Section 3.2 to the Bellman-Ford algorithm, as
the layout will match the data access pattern. For the same
reason as the Bellman-Ford algorithm, graph traversals such
as depth and breadth first search [7] and algorithms built on
top of those, such as finding strongly connected components
[7], can also benefit fromour data layout optimization.
Another example is the Ford-Fulkerson algorithm [7] for the
maximum-flow problem. This algorithm shares the same
structure with the matching algorithm. It iteratively finds an
augmenting path; thus, the optimization for the matching
algorithmdiscussed inSection3.3 canbedirectly applied to it.

As pointed out in the Introduction, our pursuit of data
locality also benefits parallelization. Our sequential FW
implementations and matching implementation can easily
be transformed into parallel code. Since computation and
data are already decomposed, what needs to be added is
computation and data distribution, synchronization, and
communication primitives. One of our future directions will

780 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

Fig. 15. Speedup results for Prim’s algorithm.

TABLE 7
Simulation Results for Prim’s Algorithm

Fig. 16. Speedup versus density results for matching algorithm.

Fig. 17. Average sppedup results for matching algorithm.

be to implement parallel versions of the Floyd-Warshall

algorithm and matching algorithm based on the work

presented in this paper.

ACKNOWLEDGMENTS

This work is part of the Algorithms for Data IntensiVe

Applications on Intelligent and Smart MemORies (ADVI-

SOR) Project [1] supported by the US Defense Advanced

Research Projects Agency (DARPA) Data Intensive Systems

Program under contract F33615-99-1-1483 monitored by

Wright Patterson Airforce Base, in part by the US National

Science Foundation under contract no. ACI-0305763, and in

part by an equipment grant from Intel Corporation. The

authors would like to thank Bo Hong and Gokul Govindu

for helpful discussions and for their editorial assistance.

This work was done while J.-S. Park was at the University of

Southern California. A previous version of this paper

appeared in the Proceedings of the International Parallel and

Distributed Processing Symposium, April 2002.

REFERENCES

[1] ADVISOR Project, http://advisor.usc.edu/, 2001.
[2] M. Brenner, “Multiagent Planning with Partially Ordered Tem-

poral Plans,” Proc Int’l Joint Conf. Artificial Intelligence, 2003.
[3] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0,”

Univ. of Wisconsin-Madison Computer Sciences Dept. Technical
Report #1342, 1997.

[4] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, and S.
McKee, “Impulse: Memory System Support for Scientific Applica-
tions,” J. Scientific Programming, vol. 7, nos. 3-4, 1999.

[5] S. Chatterjee, V. Jain, A. Lebeck, S. Mundhra, and M. Thottethodi,
“Nonlinear Array Layouts for Hierarchical Memory Systems,”
Proc. ACM Symp. Parallel Algorithms and Architectures, 1999.

[6] T. Chilimbi, M. Hill, and J. Larus, “Cache-Conscious Structure
Layout,” Proc. ACM SIGPLAN Conf. Programming Language Design
and Implementation, 1999.

[7] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms.
MIT Press, 1990.

[8] N. Dutt, P. Panda, and A. Nicolau, “Data Organization for
Improved Performance in Embedded Processor Applications,”
ACM Trans. Design Automation of Electronic Systems, vol. 2, no. 4,
Oct. 1997.

[9] J. Frens and D. Wise, “Auto-Blocking Matrix-Multiplication or
Tracking BLAS3 Performance from Source Code,” Proc. Sixth ACM
SIGPLAN Symp. Principles and Practice of Parallel Programming,
June 1997.

[10] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran,
“Cache-Oblivious Algorithms,” Proc. 40th Ann. Symp. Foundations
of Computer Science, pp. 17-18, Oct. 1999.

[11] R. Gallagher and D. Bertsekas, Data Networks. Prentice Hall, 1987.
[12] S. Gerez, Algorithms for VLSI Design Automation. Wiley, 1998.
[13] A. Gonzalez, M. Valero, N. Topham, and J.M. Parcerisa,

“Eliminating Cache Conflict Misses through XOR-Based Place-
ment Functions,” Proc. 1997 Int’l Conf. Supercomputing, July 1997.

[14] J. Hong and H. Kung, “I/O Complexity: The Red Blue Pebble
Game,” Proc. ACM Symp. Theory of Computing, 1981.

[15] M. Kallahalla and P.J. Varman, “Optimal Prefetching and Caching
for Parallel I/O Systems,” Proc. 13th ACM Symp. Parallel
Algorithms and Architectures, 2001.

[16] M. Lam, E. Rothberg, and M. Wolf, “The Cache Performance and
Optimizations of Blocked Algorithms,” Proc. Fourth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, Apr. 1991.

[17] A. LaMarca and R. Ladner, “The Influence of Caches on the
Performance of Heaps,” ACM J. Experimental Algorithmics, vol. 1,
1996.

[18] E. Lawler, Combinatorial Optimization: Networks and Matroids. New
York: Holt, Rhinehart, and Winston, 1976.

[19] R. Murphy and P.M. Kogge, “The Characterization of Data
Intensive Memory Workloads on Distributed PIM Systems,” Proc.
Intelligent Memory Systems Workshop, ASPLOS-IX 2000, Nov. 2000.

[20] A. Nakaya, S. Goto, and M. Kanehisa, “Extraction of Correlated
Gene Clusters by Multiple Graph Comparison,” Genome Infor-
matics, vol. 12, 2001.

[21] J. Park, M. Penner, and V.K. Prasanna, “Optimizing Graph
Algorithms for Improved Cache Performance,” Technical Report
USC-CENG 03-03, Dept. of Electrical Eng., Univ. of Southern
California, Nov. 2003.

[22] N. Park, B. Hong, and V. Prasanna, “Tiling, Block Data Layout,
and Memory Hierarchy Performance,” IEEE Trans. Parallel and
Distributed Systems, vol. 14, no. 7, July 2003.

[23] N. Park, B. Hong, and V. Prasanna, “Analysis of Memory
Hierarchy Performance of Block Data Layout,” Proc. Int’l Conf.
Parallel Processing (ICPP), Aug. 2002.

[24] N. Park, D. Kang, K. Bondalapati, and V. Prasanna, “Dynamic
Data Layouts for Cache-Conscious Factorization of the DFT,” Proc.
Int’l Parallel and Distributed Processing Symp., May 2000.

[25] D. Patterson and J. Hennessy, Computer Architecture: A Quantitative
Approach, second ed. San Francisco, Calif.: Morgan Kaufmann,
1996.

[26] M. Penner and V. Prasanna, “Cache-Friendly Implementations of
Transitive Closure,” Proc. Int’l Conf. Parallel Architectures and
Compiler Techniques, Sept. 2001.

[27] G. Rivera and C. Tseng, “Data Transformations for Eliminating
Conflict Misses,” Proc. 1998 ACM SIGPLAN Conf. Programming
Language Design and Implementation, June 1998.

[28] F. Rastello and Y. Robert, “Loop Partitioning Versus Tiling for
Cache-Based Multiprocessor,” Proc. Int’l Conf. Parallel and Dis-
tributed Computing and Systems, 1998.

[29] S. Sahni, Data Structures, Algorithms, and Applications in Java. New
York: McGraw Hill, 2000.

[30] P. Sanders, “Fast Priority Queues for Cached Memory,” ACM J.
Experimental Algorithmics, vol. 5, 2000.

[31] S. Sarawagi, R. Agrawal, and A. Gupta, “On Computing the Data
Cube,” Research Report 10026, IBM Almaden Research Center,
San Jose, Calif., 1996.

[32] S. Sen and S. Chatterjee, “Towards a Theory of Cache-Efficient
Algorithms,” Proc. Symp. Discrete Algorithms, 2000.

[33] SPIRAL Project, http://www.ece.cmu.edu/~spiral/, 2004.
[34] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya, “A Blocked

All-Pairs Shortest-Paths Algorithm,” Proc. Scandinavian Workshop
Algorithms and Theory, 2000.

[35] D. Weikle, S. McKee, and W. Wulf, “Caches as Filters: A New
Approach to Cache Analysis,” Proc. Grace Murray Hopper Conf.,
Sept. 2000.

[36] R. Whaley and J. Dongarra, “Automatically Tuned Linear Algebra
Software,” High Performance Computing and Networking, Nov. 1998.

[37] M. Yannakakis, “Graph Theoretic Methods in Database Theory,”
Proc. ACM Conf. Principles of Database Systems, 1990.

PARK ET AL.: OPTIMIZING GRAPH ALGORITHMS FOR IMPROVED CACHE PERFORMANCE 781

TABLE 8
Simulation Results for Matching Algorithm

Joon-Sang Park received the MS degree in
computer science from theUniversity of Southern
California in 2001. Currently, he is pursuing the
PhD degree in computer science at theUniversity
of California, Los Angeles. His research interests
include parallel and distributed systems and
algorithms, mobile ad hoc networks focusing on
routing and MAC protocols, and wireless com-
munication systems, especially MIMO systems.
He is a student member of the IEEE.

Michael Penner received the bachelor’s degree
in computer engineering/computer science from
the University of Southern California in 2000. He
received the master’s degree in computer
engineering with an emphasis on computer
architecture in 2002, also from the University of
Southern California. While pursuing the master’s
degree, he performed research on improving
cache performance through algorithm transfor-
mations under Professor Viktor Prasanna. Fol-

lowing graduation in 2002, he joined the microprocessor design group at
Intel Corp. in Hillsboro, Oregon.

Viktor K. Prasanna received the BS degree in
electronics engineering from the Bangalore
University and the MS degree from the School
of Automation, Indian Institute of Science. He
received the PhD degree in computer science
from the Pennsylvania State University in 1983.
Currently, he is a professor in the Department of
Electrical Engineering as well as in the Depart-
ment of Computer Science at the University of
Southern California, Los Angeles. He is also an

associate member of the Center for Applied Mathematical Sciences
(CAMS) at the University of Southern California. He served as the
division director for the Computer Engineering Division from 1994-1998.
His research interests include parallel and distributed systems,
embedded systems, configurable architectures, and high-performance
computing. Dr. Prasanna has published extensively and consulted for
industries in the above areas. He has served on the organizing
committees of several international meetings in VLSI computations,
parallel computation, and high-performance computing. He is the
steering cochair of the Proceedings of the International Parallel and
Distributed Processing Symposium (merged IEEE International Parallel
Processing Symposium (IPPS) and the Symposium on Parallel and
Distributed Processing (SPDP)) and is the steering chair of the
International Conference on High Performance Computing (HiPC). He
serves on the editorial boards of the Journal of Parallel and Distributed
Computing and the Proceedings of the IEEE. He is the editor-in-chief of
the IEEE Transactions on Computers. He was the founding chair of the
IEEE Computer Society Technical Committee on Parallel Processing.
He is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

782 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004

