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Abstract

Exploiting Electron Magnetron Motion in a Penning-Malmberg Trap to Measure Patch

Potentials, Misalignment, and Magnetic Fields

by

Andrew Christensen

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joel Fajans, Chair

A sequence of electron clouds is extracted from an electron plasma reservoir. These clouds are
highly reproducible and their E×B drift motion is nearly identical to that of a single particle,
making them useful for measurements of electric and magnetic fields. First, by weakening the
trapping potential confining the clouds we observe that they move off-axis, and we use this to
measure the electric field due to patch potentials. Next, we measure the total charge of these
clouds using small shifts in their magnetron frequencies. The misalignment between the trap
electrodes and the external magnet is measured by imaging the clouds from different axial
locations in the trap. By combining electron cyclotron resonance with the patch potential
measurement procedure, we can measure the magnetic field strength up to a millimeter away
from the trap axis. Finally, a new magnetometry technique called electron magnetron phase
imaging (EMPI) is used to measure the rapidly changing magnetic field involved in observing
the effect of gravity on antihydrogen. In EMPI, the magnetron frequency is measured pre-
cisely, and then we observe small changes to the magnetron frequency as the magnetic field
decreases. In the process of analyzing the experimental data from each of these measure-
ments, subtleties in the motion of electron clouds are revealed. Some of these measurement
techniques help us to understand systematic errors in the ALPHA collaboration’s test of the
weak equivalence principle. Other techniques are used to inform experimental procedures
and help explain the behavior of ALPHA’s Penning-Malmberg traps. Most of these ideas
could be applied to many Penning-Malmberg traps, provided that they have the ability to
image charged particles. Unknown magnetic fields, patch potentials, and misalignment pose
difficulties for many experiments, so implementing these cloud-based measurements could
benefit other research groups.
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1 Introduction

This thesis describes a collection of measurement techniques using “electron clouds” con-
sisting of a few thousand electrons trapped in a Penning-Malmberg trap. These techniques
were developed to support the ALPHA experiment at CERN. During my time at CERN,
the ALPHA collaboration was working on measuring the effect of gravity on antihydrogen
[1], the so-called ALPHA-g experiment. From one perspective, the value of this work is
that it contributed to the ALPHA’s tests of fundamental physics—tests of the weak equiv-
alence principle and CPT symmetry. Another perspective is that I have introduced five
measurement tools that could be used in other Penning-Malmberg traps, possibly requiring
some modification depending on the particles and measurement devices available. I prefer
to think that this thesis shows that electron clouds are versatile tools, not limited to the
applications I envisioned.

This work is preceded by the discoveries of two of my advisor’s previous graduate students.
Dr. Celeste Torkzaban found a way to prepare highly reproducible electron plasmas [2, 3].
Dr. Eric Hunter then used these reproducible plasmas as a “reservoir,” extracting a sequence
of smaller electron clouds from that reservoir for magnetic field measurements and for studies
of cyclotron cooling in an electromagnetic cavity [4, 5]. In my time at ALPHA, I realized
that the E ×B drift motion of these clouds, also called the “magnetron motion,” is highly
reproducible. As this motion depends on the electric and magnetic field, it can be used to
measure these fields. The main results of this thesis are the following five new applications
for electron clouds:

1. Sec. 3 describes measurements of patch potentials, variations in the electrostatic poten-
tial along nominally conducting surfaces. These patch potentials seem to heat plasmas
trapped in ALPHA’s Penning-Malmberg traps, as shown in Sec. 4. This heating dis-
rupts antihydrogen production. To varying extents, patch potentials probably disrupt
all applications of Penning-Malmberg traps. Thus, this measurement tool might be
useful for understanding experimental difficulties and systematic errors in other re-
searchers’ traps.

2. In Sec. 5, I use the motion of the clouds to measure the total charge of the clouds.
These measurements help verify models of systematic errors on the other techniques.

3. Sec. 6 presents measurements of the misalignment between the electrodes and the
external magnet of the Penning-Malmberg trap. Similar ways of measuring this mis-
alignment have been used before at ALPHA and in other experiments, but the use of
electron clouds allows more rapid data collection. This facilitated more detailed align-
ment measurements and helped to reveal subtle sources of error. Like measurements of
patch potentials, this technique could be applied in any Penning-Malmberg trap with
the ability to image charged particles.

4. Dr. Eric Hunter measured magnetic fields along the symmetry axis of a Penning-
Malmberg trap using electron cyclotron resonance (ECR). ECR involves exciting the
cyclotron motion of electrons in a cloud with microwaves [5]. In Sec. 7, I explain how
ECR can be combined with the patch potential measurement technique to measure
magnetic fields a few millimeters away from the symmetry axis.
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5. In Sec. 8, I describe another technique, electron magnetron phase imaging (EMPI),
for measuring the magnetic field 30 times per second with an accuracy of roughly
1 part in 104. This magnetometer was particularly useful for measuring the rapidly
changing magnetic field necessary for observing the effect of gravity on antihydrogen
[1]. Although this precision and measurement frequency is not particularly impressive
among magnetometers used in experimental physics, the cryogenic, ultra-high vacuum,
and cylindrically symmetric environment of the ALPHA experiment made most other
solutions unviable.

These new measurement techniques give rise to observations that may be useful for the
ALPHA experiment moving forward. The following are the most important inferences we
can make from the results of the cloud-based measurements:

1. In Sec. 2, I show that there are three known sources of variability in the initial positions
of clouds extracted from a reservoir. One of those sources, the “intrinsic magnetron,”
has proven difficult to fix, and I can only provide an unproven hypothesis about the
underlying cause. Any improvement in this issue by future researchers will lead to
radical improvement of all the other measurement techniques.

2. In Sec. 3, I show that the 1S–2S laser for antihydrogen spectroscopy causes charging
on the trap walls, despite the fact that the walls are nominally conducting. I also show
that when ALPHA-g was first constructed, some other unknown procedural error led to
charging that prevented antihydrogen trapping when we first attempted the ALPHA-g
measurement.

3. In Sec. 4, I give tentative evidence that positron temperatures in ALPHA-g are limited
by the heat they gain from expanding, and that this expansion is caused by either mis-
alignment or patch potentials. Reducing these issues is likely to enhance antihydrogen
trapping in ALPHA-g.

4. In Sec. 6, I show that the misalignment between the Penning trap electrodes and the
external magnet cannot be characterized by a single “misalignment angle.” Rather,
both structures are not perfectly straight.

5. In Sec. 7, off-axis ECR is used to measure a small misalignment between the ALPHA-g
electrodes and one of the magnets used to trap antihydrogen. In the first observation of
the effect of gravity on antihydrogen, this leads to a negligible systematic error. How-
ever, similar off-axis magnetometry will be needed in future iterations of the ALPHA-g
measurement.

6. In Sec. 8, EMPI and ECR are used to investigate the behaviors of “persistent currents”:
long-lasting eddy currents that form when we change the magnetic flux through su-
perconducting wires. These persistent currents are small compared to the nominal
magnetic fields in the ALPHA-g experiment, but they are typically larger than the
effect of gravity. For the first ALPHA-g measurement, eddy currents were symmetric
enough that they did not pose a major issue, but any errors in this symmetry will need
to be carefully measured to improve the precision of the next ALPHA-g measurement.
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1.1 Frequency versus angular frequency convention

Before I proceed, it is necessary for me to explain the atypical convention I use to describe
frequencies. Nearly the entire thesis is concerned with circular motion, so this convention
is applied often. The system used in this thesis is unambiguously better than the standard
system taught to undergraduate students and asserted by the SI system. In SI, the unit of
frequency is Hz and the unit of angular frequency is rad/s [6]. However, it is asserted that
both of these units are equal to 1/s so that we can still write things like sin(ωt) rather than
sin[ωt/(rad)].

In my system, frequency and angular frequency are the same quantity, and I will call
them simply “frequency.” I will never define two different symbols, one being the frequency
and one being the angular frequency. My “frequency” corresponds more closely to what most
people call “angular frequency.” As such, I will typically use the symbol ω with a subscript
to prevent confusion for readers who have not read this note. For example, I might say “the
cyclotron frequency is ωc = q|B|/m.”

In my system the units of frequency are 1/s. However, frequency can also be reported in
terms of Hz, which is equal to 2π/s, or 1 cyc/s. It is uncommon that I will use the symbol
rad—this will only happen in the axis labels of plots to remind the reader that an angle
is being plotted. 1 rad is simply equal to 1, or 1 cyc/2π. If I want to report the number
one would type in a signal generator, what most people would call the ordinary frequency,
I will report the frequency in Hz. For example, I might say “the cyclotron frequency for an
electron at |B| = 1T is 28GHz = 1.8× 1011/s.” In this system, we do not need two different
symbols for Planck’s constant. Although this thesis never refers to Planck’s constant outside
of the introduction, in this system one could write ℏ = 1.055×10−34 Js = 6.626×10−34 J/Hz.

1.2 The Penning-Malmberg trap

There are two commonly used types of traps for charged particles: the Penning trap and
the Paul trap. The ALPHA experiment uses a variant of the Penning trap called a Penning-
Malmberg trap, or “annular Penning trap.” The original Penning trap consisted of an ex-
ternal magnetic field of magnitude B pointing in the ẑ direction and electrodes specifically
shaped to form an electrostatic potential given by:

V (z, r) = −k2

(
z2 − r2

2

)
, (1.1)

where k2 is the “trap depth constant.” I have chosen to write −k2 instead of k2 because
most of this thesis involves trapped electrons, and electrons are attracted to maxima of the
electrostatic potential. Unfortunately, it is not possible to achieve an electrostatic potential
maximum in all three spatial directions in free space. Instead, the electrons are prevented
from escaping in the r̂ direction by the magnetic field—if an electron has some r̂ velocity,
the ẑ magnetic field will curve the particle’s trajectory back toward the center of the trap.
Instead of shaping the electrodes to exactly achieve the potential given by Eq. 1.1, the
Penning-Malmberg variant of the trap uses a “stack” of cylindrical electrodes (36 electrodes
in ALPHA-g). In this geometry, charged particles can be transferred from one electrode
to the next. This way, the ALPHA experiment can simultaneously have positrons confined
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with a negative voltage on one electrode and electrons or antiprotons confined with a positive
voltage on another electrode.

1.2.1 Single particle motion

Figure 1.1: A cartoon of the motion of a single electron in a Penning-Malmberg trap. The
gold electrodes are shown in the background. The blue circle indicates the magnetron motion.
The red line shows the magnetron motion plus the axial bounce motion. The green line shows
the full motion of the particle including cyclotron motion.

Penning-Malmberg traps can be used to trap individual charged particles or they can
be used to trap larger plasmas consisting of up to hundreds of millions of particles. It is
elucidating to derive how a single charged particle moves in this trap. Despite abandoning
the original Penning trap designed specifically to create the electrostatic potential given by
Eq. 1.1, when a charged particle is trapped in a Penning-Malmberg trap, it still is confined
near an electrostatic potential maximum in z. Typically it is also close to the trap’s symmetry
axis (r ≪ Rw, where Rw is the radius of the electrodes). Thus the trapping potential can
still be approximated by Eq. 1.1. The equations of motion are then:

z̈ = −2
e

m
k2z, (1.2)

ẍ = − e

m
(−k2x+ ẏB) , (1.3)

ÿ = − e

m
(−k2y − ẋB) . (1.4)

The equation of motion for z can be solved immediately, giving harmonic motion with
a frequency ωz =

√
2ek2/m called the “bounce frequency.” The other two equations can be

solved by defining v = x+ iy, giving:

v̈ =
e

m
(k2v + iv̇B) . (1.5)
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Inserting v = a exp(iωt), we get:

ω2 − ωcω +
1

2
ω2
z = 0, (1.6)

where ωc = qB/m is the cyclotron frequency. This gives rise to two frequencies of transverse
motion (in the x, y plane), called the “modified cyclotron frequency” ω+ and the “magnetron
frequency/rotation frequency” ω−.

ω± =
ωc ±

√
ω2
c − 2ω2

z

2
. (1.7)

In all of the traps discussed in this thesis, the magnetic field is at least 1T, so the cyclotron
frequency for electrons is of order 1.8×1011/s = 28GHz. The electrodes have a radius of 2 cm
and they can be charged up to 150V. Thus the order of magnitude for k2 is (150V)/(2 cm)2 ∼
4× 105V/m2, and the order of magnitude for the bounce frequency is 4× 108/s. Thus it is
valid to approximate ωz ≪ ωc, giving

ω+ ≈ ωc − ω−, (1.8)

ω− ≈ ω2
z

2ωc

=
k2
B
. (1.9)

From here on, ω− will be replaced with ωr (r for “rotation”).
Another perspective on the motion of a single particle in the Penning-Malmberg trap

is that because ωc ≫ ωz ≫ ωr, the motion of our electrons is well-described by the guid-
ing center approximation. In this approximation, the electrons perform ordinary inertial
movement in the direction parallel to the magnetic field, and to zeroth order they execute a
circular motion of frequency ωc in the transverse plane. This circular motion “E×B drifts”
with a velocity E × B/|B|2. Inserting Eq. 1.1 for the electric field, we get the E × B drift
velocity θ̂rk2/B. This is circular motion with a frequency k2/B; the guiding center approx-
imation recovers the results of the exact solution to the equations of motion. The motion
with frequency ωr is reinterpreted as a circular E×B drift of the guiding center. The motion
of a single particle is depicted in Fig. 1.1. However in Fig. 1.1 the length and time scales
are completely wrong. Typically electrons in ALPHA’s traps have ωc ∼ 500ωz ∼ 500ωr.
The magnetron radius used in this thesis is up to about 2mm versus the trap wall radius
Rw = 2 cm. The electrons typically have energies of order (100K)kB, which gives them a
bounce motion length of order 100µm and a cyclotron radius of order 30 nm. Using these
numbers would not produce a very compelling picture.

1.2.2 Plasma equilibrium

In this thesis I will also discuss trapped “nonneutral plasmas,” usually composed of electrons,
but occasionally composed of positrons or antiprotons. Like ordinary plasmas, when there
is sufficient density, these nonneutral plasmas can “shield out” electric fields. However,
because the plasma is charged, the electric field cannot be zero throughout the plasma. In
the guiding center approximation, charges can move freely along the magnetic field, but their
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motion transverse to the magnetic field is governed by E × B drift. Thus, when there are
enough electrons to form a plasma, the electrons move such that they remove the electric field
pointing along the magnetic field, but the transverse component remains. More precisely,
when the Debye length (λD =

√
ϵ0kBT/ne, where n is the electron number density) exceeds

the length scale of the distribution of electrons, electric fields parallel to the magnetic field
are shielded out.

To find the equilibrium charge distribution of such a plasma, we begin with the fluid
equation of motion, defining u(r, θ, z) as the fluid velocity and n(r, θ, z) as the electron
number density [7]:

mn (u̇+ u · ∇u) = −en (−∇V + u×B)−∇p. (1.10)

In equilibrium u̇ = 0. Further, we assume that the number density and the fluid velocity are
only functions of r and z, reflecting the cylindrical symmetry of the trap. In equilibrium,
the fluid velocity should resemble that of a rigid rotor: u = ωrrθ̂. Our plasma will have a
finite extent in r and z, so in equilibrium the fluid velocity in those directions must be zero.
Then if different radial layers of plasma had different rotation rates, viscous effects would
damp these differences [7]. A cartoon of this expected solution is shown in Fig. 1.2. Finally
the pressure is taken to be that of an ideal gas p = nkBT With these assumptions, the z
component of Eq. 1.10 is:

0 = en∇V − ∂n

∂z
kBT, (1.11)

which is solved by:

n(r, z) = N(r) exp

[
eV (r, z)

kBT

]
. (1.12)

The radial component of the fluid equation is :

mn
(
−ω2

rr
)
= −en

(
−dV

dr
+ rωrB

)
− kBT

dn

dr
. (1.13)

Inserting Eq. 1.12 into Eq. 1.13, we get:

mω2
rrN = mωcωrrN + kBT

dN

dr
. (1.14)

This is solved by:

N(r) = n0 exp

[
−(ωcωr − ω2

r)m

2kBT
r2
]
, (1.15)

or the full equation for n is:

n(r, z) = n0 exp

[
eV (r, z)− (ωcωr − ω2

r)mr2/2

kBT

]
. (1.16)

To trap electrons, we choose a V which becomes more negative as we move away from the
axial trap center so n decreases with increasing |z|. This necessarily means the potential
becomes more positive as we move away from r = 0, but as long as (ωcωr − r2m)r2 > eV (r),
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Figure 1.2: A cartoon of a cold electron plasma equilibrium in a Penning-Malmberg trap.
An electric field points inward throughout the plasma, causing a uniform rotation. Only the
radius of the plasma is exaggerated here. Our plasmas typically have a radius of around
1mm versus a trap radius of 2.2 cm.

we will also have radial confinement.
Throughout this thesis, I investigate the charge distributions of plasmas using an “equi-

librium solver.” These equilibrium solvers find a self-consistent solution to Eq. 1.16—keep
in mind that for a plasma V (r, z) is affected by n through Poisson’s equation. These equi-
librium solvers discretize r and z into a grid, recording the plasma density n(ri, zj) at each
gridpoint (i, j). The solver begins by setting V (ri, zj) to the potential set by the electrodes.
It then applies Eq. 1.16 to find n0(ri, zj). Then we update our estimate of the potential,
treating each gridpoint as a uniformly charged cylindrical shell of charge density n(ri, zi)
(See the appendix for the analytic potential of such a shell). This process iterates until con-
vergence. In each step, we cannot just replace the old guess nk with the new guess given by
Eq. 1.16 n′

k+1. Rather, we must iterate n like nk+1 = nk(1− ϵ) + n′
k+1ϵ. The solver exhibits

a bifurcation if ϵ is too large, oscillating between two or more incorrect charge distributions.
A confinement theorem [8] states that if the cylindrical symmetry of the trap is not

broken, the mean-square charge radius of a plasma is conserved (∝
∑

i r
2
i , where ri is the

radial coordinate of particle i). Additionally, when we image our plasmas, we observe the z-
integrated charge distribution, giving a good measure of this conserved mean square radius.
Thus it is more convenient if the equilibrium solver takes as parameters the total charge and
the mean square charge radius of a plasma rather than the total charge and the rotation
frequency ωr. Therefore most of the equilibrium solvers used in this thesis iterate the above
process, adjusting a guess for ωr until the mean square charge radius matches the desired
value. An example of a solved plasma equilibrium is shown in Fig. 1.3

Much like an ordinary plasma, when the temperature of an electron plasma goes to zero,
the density becomes constant throughout the plasma. Of course, a purely electron plasma
cannot flatten the electrostatic potential like a neutral plasma could. Instead, by noticing
that Eq. 1.16 takes the form exp(eVeff), we realize that a cold electron plasma flattens the
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Figure 1.3: An example of the output of a plasma equilibrium solver. On the left, the
potential versus z is plotted for four different radial positions. The solid lines are the potential
created by the electrodes. The dashed lines are the potential including the influence of the
plasma. On the right, the plasma density is plotted versus r and z. The plasma is confined
by a 1T axial magnetic field and a 2 cm long, 2 cm radius electrode at 100V in an otherwise
grounded infinitely long cylinder. The plasma has a root mean square radius of 1.5mm,
a total charge of 100Me−, and a temperature of 6000K. The solved rotation frequency is
3.04× 106/s.

“effective potential,” given by:

Veff = V (r, z)− m

2e
(ωcωr − ω2

r)r
2. (1.17)

It is instructive then to discuss what happens when T → 0 when the effective potential
is fully flattened and the density is constant. The electrostatic potential is flattened in z,
and because ∇2V = en0/ϵ0, the electrostatic potential in r must be enr2/4ϵ0. Inserting this
into the effective potential, we get:

en

4ϵ0
=

m

2e
(ωcωr − ω2

r). (1.18)

This quadratic equation gives rise to a maximum possible charge density called the “Brillouin
limit” [7]. However, at ALPHA we always operate in the limit where ωr ≪ ωc, which gives
ωr = en/2ϵ0B. Like when we investigated single particle motion, we can arrive at the same
answer by considering the E×B drift of an electron within the plasma.

The flattened on-axis electrostatic potential created by a cold charged plasma is called
the “space charge potential,” which is an important observable parameter of the plasma.
For example, when we release a plasma from the trap, we lower the confining potential on
one side of the plasma. Electrons begin to escape the plasma when the difference between
the confining potential and the space charge potential is comparable to kBT . Thus it is
helpful to have a formula for the space charge potential. Such a formula can be derived in
the special case of a plasma which is very long compared to the trap wall radius l ≫ Rw.
This plasma is confined axially by applying a positive voltage to two electrodes on either
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side it, and the electrodes in between are grounded. If the plasma is very cold, it will simply
be a long cylinder of radius rp. Then the potential throughout space will be

V (r) =


nr2pe

2ϵ0

[
ln

(
rp
Rw

)
+

(r2 − r2p)

2r2p

]
r < rp

nr2pe

2ϵ0
ln

(
r

Rw

)
r > rp

(1.19)

Evaluating this equation at r = 0 gives a convenient formula for the space charge potential
of long plasmas. We often inappropriately apply this formula to plasmas whose length is
comparable to Rw for back of the envelope calculations.

1.3 The ALPHA experiment

The ALPHA collaboration forms trapped antihydrogen by mixing an antiproton plasma with
a positron plasma [9]. We then measure the properties of these antihydrogen atoms as a
test of fundamental symmetries of nature. Because of CPT symmetry, antihydrogen should
have the same mass, total charge (0), lifetime (infinite), and spectrum as ordinary hydrogen.
ALPHA’s most precise test of CPT symmetry is the measurement of the 1S–2S two-photon
transition [10, 11, 12]. Other spectroscopy results include the measurement of microwave
transitions between the Zeeman sublevels of the 1S state [13], and the 1S–2P transition
[14, 15], which was then used to laser cool the antiatoms [16]. The ALPHA collaboration
has also tested the charge neutrality of antihydrogen [17].

The patch potential measurements described in Sec. 3 were initially motivated by the
observation that the 1S–2S spectroscopy experiment would degrade over time. Most of the
other measurements described in this thesis were in service of a new measurement undertaken
by the ALPHA collaboration, the measurement of the effect of gravity on antihydrogen, which
will be described in the next section.

A diagram of the ALPHA experiment is shown in Fig. 1.4. The two ingredients of
antihydrogen are antiprotons and positrons. The only source of low energy antiprotons in
the world is CERN’s Antimatter Factory facility. A proton beam impacts a metal target,
producing a variety of particles. Antiprotons are collected from this collision point and slowed
to an energy of 5MeV in the antiproton decelerator (AD) [18]. Since 2021, the antiprotons
have been further slowed to 100 keV in the ELENA ring [19]. The ALPHA experiment traps
these antiprotons by sending them through a ∼ 1µm thick “degrader foil.” Many of the
∼ 107 antiprotons delivered to ALPHA annihilate against ordinary baryons in the degrader,
but about 5× 105 of them exit the other side with an energy under 5 keV. The degrader is
inside the solenoid for ALPHA’s first Penning-Malmberg trap, the “catching trap.” Thus,
the antiprotons that get through the degrader are confined radially by the magnetic field.
Axially, the antiprotons fly through the catching trap until they reach an electrode energized
to 5 kV. They bounce off the electrostatic potential created by this electrode, but before
they reach the degrader again, another electrode is quickly energized to 5 kV, blocking their
escape and trapping the antiprotons inside the catching trap.

There are four total Penning-Malmberg traps in the ALPHA experiment, which are listed
below:
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ALPHA-g

Figure 1.4: A rendering of the ALPHA experiment. This figure was created by Prof. S. A.
Jones, another member of the ALPHA collaboration (used with permission).

1. The catching trap is used to catch the antiproton beam and to prepare a cold plasma
of antiprotons to be sent to the two fundamental physics experiments, ALPHA-2 and
ALPHA-g. The antiprotons are initially caught between two 5 kV electrodes. An elec-
tron plasma is also present between those electrodes. The antiprotons collide with
the electrons and eventually cool into a mutual plasma consisting of electrons and an-
tiprotons. This process is facilitated by the phenomenon of cyclotron cooling, whereby
the acceleration associated with cyclotron motion causes Larmor radiation, allowing
the electrons to radiate away the energy they recieve from the antiprotons over a
timescale of a few seconds. Eventually, the electrons are removed, leaving a cold
O(100–1000K) antiproton plasma which can be launched into the beamline toward
ALPHA-2 or ALPHA-g.

2. The positron accumulator is a “Surko-style accumulator.” [20, 21] A radioactive source
is placed behind a solid Neon “moderator.” The moderator behaves similarly to the
degrader foil for antiprotons. It destroys some of the positrons, but others pass through
and emerge on the other side with a lower energy. The accumulator is filled with a
diffuse nitrogen gas. The positrons collide with the nitrogen, sometimes losing kinetic
energy in the process, allowing them to be collected in the trapping potential created by
a negatively biased Penning-Malmberg trap electrode. There is additional complexity
in how the electrode radius, gas density, and voltages vary with distance from the
moderator.

3. The ALPHA-2 experiment is the first of two fundamental physics experiments. The
general structure of these experiments will be explained below. The ALPHA-2 ex-
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periment has laser ports crossing diagonally through the Penning-Malmberg trap that
can be used to excite transitions in antihydrogen. It also has a Fabry-Pérot cavity to
enhance the circulating power of the 1S–2S laser.

4. ALPHA-g is the second fundamental physics experiment. It is oriented vertically—
the magnetic field points up and the Penning-Malmberg electrode symmetry axis is
vertical.

Positrons and antiprotons are delivered to the two antihydrogen experiments, ALPHA-g
and ALHPA-2, through “magnetized beamlines” [22]. These beamlines consist of several
normal conducting magnets whose current can be ramped to create a magnetic field line
connecting the Penning-Malmberg traps that we want to send particles between. Antiprotons
from the catching trap or positrons from the positron accumulator follow these field lines to
either ALPHA-2 or ALPHA-g.

In addition to antiprotons and positrons, the catching trap, ALPHA-2, and ALPHA-g
make extensive use of electron plasmas. These plasmas are prepared by energizing a hot
cathode electron gun which points toward the Penning-Malmberg trap from 1–2m away in
the magnetized beamline. The electrons from the hot cathode stream into the trap, and
a positive voltage is slowly applied to an electrode to gather the electrons into a trapping
potential. The electron guns are located on movable “sticks.” These sticks contain several
pieces of equipment, and they extend to place one of these pieces of equipment in front
of the entrance of a Penning-Malmberg trap. A cartoon of one of these sticks is shown
in Fig. 1.5. For this thesis, another piece of critical equipment on the movable sticks is
an microchannel plate (MCP)/phosphor screen/CCD camera detector. The MCP is an
electron multiplier which produces a cascade of electrons whenever a charged particle enters
one of its microscopic channels. This cascade of electrons collides with the phosphor screen,
which glows. A CCD camera located outside of the vacuum chamber takes a picture of the
phosphor screen. When a plasma is released from the Penning-Malmberg trap, the particles
follow magnetic field lines toward the MCP. Thus their positions on the MCP reflect the
transverse (x, y or r, θ) positions they had when they were inside the trap. In that sense, the
MCP pictures are simply pictures of the plasma from the perspective of an observer looking
through the trap from the outside, except that MCP imaging is destructive.

ALPHA-2 and ALPHA-g have the same basic structure. A diagram of the ALPHA-
g experiment is shown in Fig. 1.5. Both experiments contain a Penning-Malmberg trap
superimposed with a magnetic minimum trap for antihydrogen [23]. The “magnetic minimum
trap” is an arrangement of magnets which makes a local minimum in the magnetic field
magnitude located in the center of the trap [24]. If an antihydrogen atom is formed near
the center of the trap in a Zeeman sub-level which increases in energy with the strength of
the magnetic field, it will be attracted to the center of the trap. At ALPHA, these traps
only have a depth of about 0.5KkB ≈ 40µeV for a magnetic field difference of about 0.7T
between the center of the trap and the edge of the trap. The radial confinement is provided
by an octupole magnet—windings that produce a current density of the form ẑ cos(4θ) and
a magnetic field of the form r3(θ̂ cos 4θ + r̂ sin 4θ). When this magnetic field is added to
the nominal 1T magnetic field in the ẑ direction for the Penning-Malmberg trap, we find
that the magnetic field magnitude increases with r. The axial confinement is provided by
two short solenoids—also called “mirror coils,” which simply boost the z component of the
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magnetic field near their centers. In addition to the mirror coils and the octupole magnet,
both ALPHA-2 and ALPHA-g have “booster solenoids” in the same liquid helium cryostat,
which aid in plasma preparation by boosting the magnetic field from 1T to 2T (actually
3T in ALPHA-2).

Antihydrogen is formed by first holding a positron plasma near the center of one elec-
trode with a negative voltage and antiprotons near the center of the adjacent electrode with
a positive voltage. These electrode voltages are then brought closer togeter over the course
of 1 s, and at some point the antiprotons are injected into the positron plasma, where the
two particles combine to form antihydrogen [25]. We have hypothesized that the antiprotons
come into thermal equilibrium with the positrons more quickly than they form antihydro-
gen, and there are far more positrons than antiprotons. Thus the positron temperature sets
the typical energies of produced antihydrogen, despite the fact that a formed antihydro-
gen atom’s momentum is determined by the antiproton’s initial momentum. This plasma
temperature is roughly 20K in ALPHA-2 and 40K in ALPHA-g. As a consequence, in
ALPHA-2 twenty antihydrogen are trapped per “mixing” of about 3 million positrons and
100 thousand antiprotons. In ALPHA-g, this is about two antihydrogen trapped per mixing.

The outermost layer of ALPHA-2 and ALHPA-g is the external superconducting magnet
of the Penning-Malmberg trap, which provides the 1T axial magnetic field. This magnet is
in a separate cryostat from the magnets that form the magnetic minimum trap. Between the
external magnet and the inner cryostat is a particle detector which detects the charged pions
that are formed when an antiproton collides with the trap walls—in the end all of ALPHA’s
measurements of the properties of antihydrogen involve observing how many antiprotons
collide with the trap walls when we subject the trapped antihydrogen to a measurement
procedure. Inside of the detector, the superconducting magnets for the magnetic minimum
trap are immersed in liquid helium. The electrodes for the Penning-Malmberg trap are
inside those magnets. They are not immersed in liquid helium directly, but they are at 4K
because they are in thermal contact with the stainless steel cylinder which holds the helium.
These cold trap walls are critical for producing cold positron plasmas, and they help achieve
ultra-high vacuum conditions, which is necessary for having long lifetimes for the antimatter
particles.

1.4 The ALPHA-g measurement

The ALPHA-g experiment provided the most direct evidence to-date that antihydrogen is
gravitationally attracted to the Earth [1]. This measurement was performed by ramping
down the mirror coils and observing which direction the antihydrogen escaped the trap with
the particle detector. The mirror coil on the bottom of ALPHA-g is called “mirror A.” The
mirror coil on the top is called “mirror G.” There are five other mirror coils between mirrors
A and G that are intended for use in a future measurement. However, the experiment is
not as simple as shutting off the magnets in an instant and observing all the antihydrogen
hitting the bottom of the vacuum chamber. Despite its meager energy of 0.5KkB, the
antihydrogen velocity is of order 100m/s, and it bounces between the top and bottom of the
trap several hundred times per second. Thus, even if it was possible to shut off the mirror
coils quickly compared to this bounce frequency, this would only result in the antihydrogen
rapidly escaping through the top and bottom of the trap in equal numbers. Instead, we
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Figure 1.5: Left—a diagram of the ALPHA-g experiment with various components labelled.
The diagram is not to scale, and some details are left out. For example the outer solenoid
and the detector actually extend well beyond the top of the upper mirror coil, and the
movable stick is much further away than depicted here. Upper right—the magnetic field
magnitude is plotted versus transverse and axial position before the beginning of the mirror
coil rampdown used to release antihydrogen. Middle right—the on-axis magnetic field is
plotted versus axial position in black. The red dashed line is the on-axis potential perturbed
by the effect of gravity. In this case, the bias is zero—the magnetic field is precisely equal
on the top and the bottom of the ALPHA-g trap. Lower right—the same plot as the middle
right, but zoomed in to perceive the effect of gravity.

decrease the current in the mirror coils over the course of 20 s. An antihydrogen atom
escapes the trap whenever the potential barrier on either the top or the bottom is below
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its energy. The effect of gravity on the potential is given by mgh, and the effect of the
magnetic field on the potential is given by µB|B|, where µB is the Bohr magneton, a good
approximation for the magnetic moment of the groundstate antihydrogen atom. Thus with
h = 25.6 cm, the effect of gravity on antihydrogen is expected to be equivalent to a magnetic
field difference of 0.45mT. To do a detailed measurement, we vary the difference in on-axis
magnetic field between the bottom and the top of the trap. This quantity is called the “bias.”
We can find a “balance point,” where half the antiatoms escape up and half escape down,
which occurs when the effect of gravity is compensated by the magnetic field in the center of
mirror A being 0.45mT higher than that of mirror G. We can also keep the magnetic field
at the top and the bottom of the trap precisely equal, and we would expect to observe more
antihydrogen atoms falling down than up. Fig. 1.5 depicts a model of the magnetic field
used to perform the ALPHA-g measurement.

Consider the antihydrogen atoms to be classical particles bouncing between two “square”
potential barriers which are lowered over time while maintaining a small bias. In this simple
1–D model, it would seem that this measurement technique is extremely powerful. If an
antihydrogen atom traverses the length of the trap in the time that it takes for the potential
barrier to decrease by an amount equal to the difference in potential between the two barriers,
that antihydrogen atom is guaranteed to escape in the direction which has a lower barrier.
Ramping down the mirror coils in 20 s, and taking the orbit frequency to be 200Hz, we get
that all antihydrogen are guaranteed to escape down as long as the potential barrier is larger
than 0.088mT.

Unfortunately, the universe is not one dimensional. An antihydrogen atom can be on an
orbit where it is further off-axis when it approaches the bottom of the trap than when it
approaches top of the trap, and since the magnetic field of the mirror coils and the octupole
magnet increases further off axis, this atom is very likely to escape up not down regardless of
the bias. Alternatively, an antihydrogen atom could have a larger r velocity component than
z. It might have enough energy to escape the trap, but not enough energy directed in the ẑ
direction. Perhaps this antiatom suddenly hits some feature of the magnetic trap that deflects
it either upward or downward, and it escapes in a random direction rather than the direction
with the lower potential barrier [26]. Thus instead of observing all antihydrogen falling in
the direction with a lower total potential barrier, we observe a fraction the antiatoms going
in either direction which varies continuously with the bias. Fig. 1.6 shows the final result of
the ALPHA-g experiment, the fraction of antiatoms that escaped the trap downward versus
the bias.

The ALPHA-g experiment relied heavily on precise magnetometry. To release the an-
tihydrogen, the magnetic field produced by the mirror coils near their centers decreased
from 0.7T to 0.01T in 20 s. Thus, including the outer solenoid, the total magnetic field
decreased from 1.7T to 1.0T. Throughout this time, a magnetic field difference on the order
of 0.00045T needed to be maintained with high precision. A slightly different current was
applied to the two mirror coils, not only to produce a bias but also to compensate for con-
struction errors. In order to choose these currents and to verify that they had the intended
results, a variety of magnetometry measurements were performed.

The magnetic field measurements for ALPHA-g were performed with ECR and EMPI,
two techniques that make use of electron clouds. Precise determinations of the bias were
done with ECR measurements in static magnetic fields (unchanging magnet currents) [5].
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Figure 1.6: The fraction of antihydrogen atoms escaping the ALPHA-g trap downward is
plotted versus the magnetic bias. The experimental data is shown with blue dots. The
horizontal error bars convey systematic errors relating to the determination of the bias with
magnetometry. The vertical error bars are statistical errors. The experimental data is
compared to simulations assuming antihydrogen is affected by ordinary gravity, no gravity,
and gravity repelling the antihydrogen from Earth. The error bar on the ordinary gravity
simulation represents errors associated with modelling the magnetic field off-axis using only
direct measurements of the on-axis magnetic field. This figure is taken from Ref. [1]. More
detail is available in the original paper.

In this thesis, I will not describe these ECR bias measurements; this can be found in the
original paper [1] and likely in Ph.D. student Adam Powell’s upcoming thesis. I will describe
off-axis ECR measurements, but ultimately off-axis ECR was not necessary for analyzing
the ALPHA-g result because the systematic error it detected was negligibly small. EMPI
was used to verify that the magnetic field behaved as expected during dynamic magnet
ramps (see Sec. 8). EMPI was also useful for observing the qualitative behaviors of so-called
“persistent currents” because EMPI could be performed more quickly than ECR.

1.5 Electron clouds

In Sec. 1.2, I showed how a single particle moves in a Penning-Malberg trap and I discussed
the equilibrium state of a plasma consisting of many charged particles. These two situations
can be seen as two limits of charge distributions. If there are very few charged particles,
the electric field experienced by each particle will be dominated by the electric field created
by the electrodes. If there are many charged particles, the electric field created by the
charge distribution may dominate over the electrodes. The measurements described in this
thesis are preformed with “electron clouds,” typically containing 2 ke−—10ke− (in Sec. 5 I
will study larger clouds containing up to 150 ke−). These electron clouds typically have a
root mean square charge radius of around 150µm and a similar length, although the length
strongly depends on the trapping potential. With these parameters, electron clouds are
typically somewhere between the single particle regime and the plasma regime. Hence they
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Figure 1.7: Left—a cartoon showing the electric field generated by an electron cloud, with
the E × B drift generated by this electric field shown in green. Right—the electric field
generated by the trap electrodes.

are not called “small electron plasmas,” as their Debye length is typically comparable to
their length and radius. Typically these clouds flatten the trapping potential significantly,
but not completely. Sec. 5 will discuss the charge distributions of electron clouds in much
more detail.

The reason electron clouds are so useful as measurement tools is that the clouds respond
to the trapping field just like single electrons would. However it is easier to prepare and
image a cloud of electrons than it is to prepare and image a single electron. Curiously,
electron clouds exhibit this behavior even if their own electric field is not negligible. Fig. 1.7
shows a cartoon of the electric field produced by an electron cloud and the electric field
produced by the trap. Most of the measurement techniques described in this thesis involve
moving an electron cloud away from the symmetry axis of the trap. When an electron cloud
is off-center, it produces an electric field that points toward the center of the cloud. This
electric field generates an E×B drift that causes the electron cloud to rotate. The electric
field generated by the cloud is added to that of the trap, which generally points toward
the center of the trap. The E × B drift from the trapping field causes the cloud to rotate
around the center of the trap. We call this the “magnetron motion” of the cloud because
it is so similar to the magnetron motion of a single particle. Since the E×B drift velocity
is linear in E, the two motions are simply added together—the cloud is rotating around its
own axis and it is orbiting the trap center, just like Earth rotates and while orbiting the sun.
Typically the cloud’s rotation frequency is about ten times its magnetron frequency.

Actually, the rotation of the cloud is necessary for it to remain cohesive. If the cloud
did not rotate, and if the magnetron frequency depended slightly on the distance from the
trap center, the outermost electrons would separate from the innermost ones [27]. If the
cloud remains cohesive, then the cloud as a whole must E × B drift with a velocity given
by the average E × B drift velocity of all the particles in the cloud. Although the electric
field within the cloud is significantly perturbed the electrons, it is not possible for this to
influence the E × B drift velocity of the cloud. This would imply that the electric field of
the cloud averaged over the constituent electrons is not zero (assuming a constant magnetic
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field). This in turn is impossible because it would imply that the cloud is exerting a force on
itself, in violation of Newton’s laws. There are two small caveats to this statement. First,
when a cloud becomes big enough that its image charge is nonnegligible, the cloud’s E×B
drift velocity starts to depend on the total charge of the cloud. Second, a cloud with more
charge will also be longer in z (the direction perpendicular to the plane shown in Fig. 1.7).
The charge distribution length may change the average electric field experienced by particles
in the cloud. These two effects give the appearance of the cloud affecting its own E × B
drift.

Throughout this thesis, the E×B drift motion of electron clouds is used as a measurement
tool of either the electric or the magnetic field. In most cases, the axial motion of the
electrons is simply ignored. We assume the electron cloud sits at the top of an electrostatic
potential maximum in z and otherwise nothing interesting happens in z. In most of these
measurements, the electron cloud is moved off axis at some point. This is operation is
preformed by weakening the trapping potential. This allows the motion of the cloud to be
affected by patch potentials, unintended variations in the electrostatic potential along the
walls of the trap.

It may be surprising at first that patch potentials can be exploited to move clouds off-axis
in a predictable way. To explain this, we first approximate the trapping potential as:

VT (z, r) = −k2

(
z2 − 1

2
r2
)
. (1.20)

Because patch potentials lie along the walls of the trap (trap wall radius Rw = 2.2 cm),
but our electron cloud will remain localized to within a few millimeters of z = r = 0, the
electrostatic potential created by patches can be approximated as a power series where each
higher order term is suppressed by z/Rw or r/Rw. Of course, this potential must satisfy the
Laplace equation, so the lowest order relevant term is:

VP (z, r, θ) = εr cos θ. (1.21)

Because E × B is perpendicular to E, it traces out equipotential lines (assuming the z
equilibrium position does not depend on the r, θ position of the cloud). In the presence of
Vp and VT given above, equipotential lines are circles displaced from the true trap center
by a distance ε/k2. To move a cloud off-axis, we can decrease k2 and wait for the cloud to
preform some fraction of an orbit around the displaced center of magnetron motion.

All of the measurement techniques described in this thesis using electron clouds are some
sequence of the following operations:

1. The cloud can be moved along the trap axis. If this is done slowly, the magnetron
radius is conserved, as discussed in Sec. 2.3.3. This is used to deliver a cloud to an
axial position in the trap where we want to perform a measurement. This is depicted
in Fig. 1.8.

2. The cloud can be imaged on the MCP by releasing it from the trapping potential with
10’s of eV of kinetic energy. In this case, the electrons follow magnetic field lines. This
is depicted in Fig. 1.9
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3. The cloud can be moved off-axis slowly weakening the trapping potential slowly. The
cloud follows the displaced center of magnetron motion as it moves away from the true
trap center. This is described in Sec. 3.3.

4. The cloud can be moved off-axis more quickly by changing the center of magnetron
motion much more quickly than the magnetron motion then waiting for the cloud to
preform half an orbit around that displaced center. These two strategies for moving a
cloud off-axis are shown in Fig. 1.10.

5. We can heat the cloud using microwaves near the cyclotron frequency [5].

6. Once a cloud has been moved off-axis, we can quickly increase k2, moving the center
of magnetron motion back to the center of the trap, and we can wait for the cloud to
preform any number of magnetron orbits.

For example, the patch potential measurements described in Sec. 3 use the sequence 1 →
3 → 6 → 2. The off-axis ECR measurements described in Sec. 7 use the sequence 1 → 3 →
6 → 5 → 2.

electron cloud path
electrodes
solenoid

Figure 1.8: A cartoon of an electron cloud being moved along the trap axis. I exaggerate
the misalignment between the electrodes and the external solenoid to emphasize that if this
operation is done slowly compared to the magnetron frequency, the electron cloud follows
the electrodes, not the field lines of the solenoid. The blue line represents the motion of
the center of the electron cloud. Our electron clouds are always created slightly off-axis (see
Sec. 2.3), so they preform a small magnetron orbit as we move them from the reservoir to a
desired axial measurement location.

MCP

Figure 1.9: A cartoon of an electron cloud being imaged on the MCP. In this case, the
electrons follow the magnetic field lines, not the electrodes.
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electrode

voltage perturbation

electrode

voltage perturbation

Figure 1.10: On the left, I show the adiabatic scheme for moving a cloud off-axis. The
trapping potential is slowly weakened, and the cloud follows the center of magnetron motion
as it slowly moves off-axis. Then we make the cloud orbit the center of the trap by quickly
increasing the trapping potential. On the right, I show a quicker scheme for moving a cloud
off-axis. The center of magnetron motion is changed quickly, then we wait for the cloud to
preform half an orbit, then the center of magnetron motion is changed quickly again. The
blue line represents the trajectory of the center of the electron cloud. The red X’s are the
centers of magnetron motion. The red arrows show the change in the center of magnetron
motion; multiple arrows represent a slow change, and one arrow represents a fast change.

19



2 Electron plasma reservoir

An electron plasma “reservoir” is used to produce electron clouds, which are in turn used
to perform the measurements described in this thesis. Future improvements to these mea-
surement techniques are likely to begin with optimizing the extraction of electron clouds
from the reservoir. In this section I describe the basic principles underlying the reservoir.
I will also show some data which illustrates the challenges and optimizations required for
implementing a reservoir. Most of this data was collected incidentally while optimizing a
reservoir prior to using it for a specific purpose.

The electron plasma reservoir technique was first developed by Dr. Eric Hunter, one of
the previous students of my advisor, Prof. Joel Fajans. It is described in Ref. [5] and in
his thesis [4]. A similar idea was implemented by the BASE collaboration for extracting
single antiprotons from an antiproton reservoir [28]. The technique is also related to one
implemented at UCSD to extract positron beams from a positron plasma [29], but those
positrons were released from the trap, and here the ejected particles remain confined.

Dr. Hunter used the reservoir to dramatically improve electron cyclotron resonance
(ECR) magnetic field measurements at ALPHA. Before Dr. Hunter’s time, ALHPA used
a large electron plasma for ECR, and when injected microwaves were resonant with the
cyclotron frequency of the electrons in the plasma, the plasma would heat [30]. The heating
was then inferred by monitoring the frequency of an oscillation mode of the plasma, which
was weakly temperature dependent [31]. The introduction of the reservoir improved the
measurement in two critical ways. First, a new, nearly identical cloud of electrons was
prepared for each new frequency. This avoided the issue where the plasma would remain
hot from previous microwave injections, meaning that one could only clearly see the onset
of the cyclotron resonance, not the width of the peak. Second, the electron clouds from a
reservoir consisted of much fewer electrons confined in a much smaller physical space. This
significantly reduced the influence of plasma effects [32, 33], which complicate the resonance
by creating several resonant modes with plasma parameter dependent frequencies. Spatial
variation of the magnetic field also implies that physically smaller charge distributions are
subject to a more narrow distribution of magnetic field strengths. With electron clouds, the
resonance structure could be explained with single particle dynamics rather than plasma
physics. Additionally, the linewidth of the resonances was significantly reduced, and the
resulting measurement had ppm-level systematic effects. Indeed, all of the measurement
techniques introduced in this thesis also rely on the electron clouds being small.

2.1 SDREVC Reservoir Preparation

The first step in developing a reservoir is to make a highly reproducible electron plasma
using SDREVC. The SDREVC technique was discovered by Dr. Celeste Torkzaban [2, 3] in
the ALPHA collaboration, another one of my advisor’s previous students. The “SDR” in
SDREVC implies that the electron plasma is being compressed using a “rotating wall” [34],
and that the amplitude of the rotating wall is high enough to be in the “strong drive regime”
(SDR), where the plasma rotation frequency ωr matches the applied rotation frequency of
the electric field [35]. If the plasma is cold (Debye length≪plasma dimensions), then the
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rotation frequency is given by:

ωr =
en

2ϵ0B
, (2.1)

where n is the number density of the plasma, and B is the axial magnetic field magnitude in
the Penning-Malmberg trap. Thus, by enforcing a certain value of ωr, the SDR compression
enforces a certain plasma density. SDREVC combines SDR compression with evaporative
cooling (EVC), where the confining potential on one side of the plasma is slowly reduced,
allowing the most energetic electrons to escape [36]. In the cold plasma limit, this simply
means that the space charge voltage of the plasma remains just below the confining po-
tential. When we have chosen a particular space charge voltage and a particular density
for our plasma, most other parameters like radius and total charge are also fixed assuming
rotational and thermal equilibrium at a sufficiently low temperature that Debye shielding
occurs. SDREVC is then an ideal way to prepare a reservoir; I will show later that variability
in the reservoir ultimately leads to variability in the total charge of extracted clouds.

There are several steps involved in implementing SDREVC, and to some extent these
steps can be performed successfully in several different ways. However, in my time at AL-
PHA, I also witnessed many ways that one can think they established SDREVC, but they
did not. For example, I recall one situation where SDR was established, but once EVC was
added, the trapping potential changed so radically that SDR no longer worked. I have also
seen situations where the trapping potential was lowered, but not far enough to actually
evaporate any charge. The following steps are what I would consider a “careful” implemen-
tation of SDREVC which is very likely to produce a successful result.

The first step is to load an electron plasma with one of ALPHA’s hot cathode “electron
guns.” I will not go into further detail on this step because I did not put significant effort
into studying this process during my Ph.D. After giving that plasma tens of seconds to cool
to a stable temperature, we find a trapping potential where charge would be lost if the the
trapping potential was decreased by just a few volts on one side of the plasma. I will call
this the “SDR potential.” Such a potential is depicted in Fig. 2.1. Typically, I leave myself
a few volts of extra space, because I am often going to compress the plasma, which will
increase its space charge potential slightly, and the SDR rotating wall will almost certainly
heat the plasma significantly. The length and overall shape of this trapping potential can
often be stolen from previous implementations, but the depth will need to be tuned. This
potential can be found by imaging the plasma after morphing to an SDR potential with a
variable confining voltage on one side. Once the potential is no longer sufficient for confining
the plasma, the resulting imaged plasma will be less dense and it will have a bigger radius.
MCP images showing an implementation of this step are shown in Fig. 2.2.

Once the SDR potential has been established, we add the rotating wall and see if there is
a range of frequencies which exhibit SDR compression. The first guess for the voltage of the
rotating wall can be stolen from previous implementations (usually about 5V at ALPHA).
Experimentally, we vary the rotating wall frequency and we see if there is a linear relationship
between frequency and plasma density, or frequency and 1/radius squared. The data from
a successful SDR frequency scan is shown in Fig. 2.3

This analysis is simpler if the SDR potential is relatively “square,” meaning it has a flat
bottom and steep walls at the edges. This causes the plasma’s length to be independent
of the space charge voltage, and the density of the plasma can be inferred from the pixel
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Figure 2.1: The plasma sitting in the SDR potential which serves as our starting point for
establishing SDREVC. The upper plot shows the plasma density profile in thermal and rota-
tional equilibrium with 47.5Me−, a root mean square radius of 1.5mm, and a temperature
of 500K. The lower plot shows the on-axis potential produced by the electrodes in orange,
and the blue dashed line shows the on-axis potential including the influence of the plasma.
The potentials and plasma parameters are taken from a reservoir used in ALPHA-g.

brightness in the center of the MCP image of the plasma (which physically represents the
2–D z-integrated density of the plasma). However, previous authors have explained how such
square potentials can cause plasma expansion [37, 38]. The mechanism behind this expansion
seems to suggest that if we make the trapping potential less “square,” the expansion rate
should significantly decrease. Ref. [39] directly tested this and showed that confinement of
a nonneutral plasma in a Penning-Malmberg trap is radically improved by simply making
the confining potential harmonic instead of square. For us, these arguments simply mean
that we should try a square SDR potential, but if there is an unacceptable expansion rate
that cannot be overcome with the rotating wall, we should switch to a more harmonic SDR
potential and accept that it will be harder to prove that the SDR compression is working.

If a no linear relationship between frequency and density is observed, or if we aren’t
satisfied with the density of the plasma we achieve (i.e. SDR compression doesn’t extend
to high enough frequencies), the rotating wall voltage should be increased. If that doesn’t
work, the trapping potential is changed, often to make the plasma shorter or longer. It’s hard
to say whether the length of the plasma should be increased or decreased, but it’s easy to
explain why this is a relevant parameter. First, elongating the plasma changes the effective
strength of the rotating wall. Shortening the plasma causes a larger fraction of the charge
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Figure 2.2: Above each of the four images, we list the trapping potential used as a possible
SDR potential. The listed voltage is the difference between the lowest potential barrier con-
fining the plasma and the electrostatic potential maximum where the plasma is trapped. We
find that when the trapping potential is 50V or 57V volts, the resulting image is nearly iden-
tical. At 40V, the brightness is slightly diminished. At 32.5V, the brightness is significantly
diminished. This can be seen more clearly when inspecting the actual pixel intensities, which
are plotted below. In this case, the increasing radius of the plasma cannot be seen because
the edges of the plasma in this MCP image are actually apertures the plasma encounters
between the trap and the MCP. The “swirling” pattern visible in some of the plasmas likely
represents the development of a diocotron instability while dumping the plasma to the MCP.

to be exposed to the rotating electric field. Also, as mentioned before, when the plasma is
longer, it expands more quickly due to unintended asymmetries in the trap [40, 41, 42, 43,
44, 45]. This will, presumably, fight against the rotating wall compression. When ALPHA-g
had egregiously bad patch potentials (discussed in Sec. 3.7), this issue prevented us from
establishing SDR compression of positrons until the SDR potential length was significantly
reduced. Conversely, there is a compelling pattern in the data from the original SDR paper
[35] showing that elongating the plasma actually improves SDR compression. This probably
says something about the underlying explanation for SDR which I am not well-versed in.

Next, with the rotating wall active, one adds evaporative cooling by lowering the con-
fining potential on one of the two sides of the plasma. In my experience, the more the
plasma is evaporatively cooled, the more reproducible the resulting plasma is. However, in
some circumstances, a reasonably reproducible plasma with as many electrons as possible is
preferred. One must simply verify that the confining potential is lowered far enough that
charge actually escapes from the trap. One should observe that the central density doesn’t
change significantly, but the radius of the plasma decreases as the confining potential is
lowered. Note that earlier when we evaporated electrons from the trapping potential, the
radius increased because the mean square charge radius was conserved [8]. Now, with the
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Figure 2.3: The plasma radius and central density (the pixel brightness of the MCP image
in the center of the plasma) is plotted versus rotating wall frequency for one implementation
of SDREVC on electrons in ALPHA-g. In this data, it isn’t entirely clear whether the SDR
extends from 125–200 kHz, or if it goes to 300 kHz, and some error in the procedure for
finding the density and radius from an MCP image causes an offset. The SDR predictions
(intensity∝frequency and 1/r2 ∝ frequency), denoted by dashed lines, are chosen to make
it look like the SDR frequency range is 125–300 kHz. For each frequency, two plasmas were
prepared and imaged; the differences between trials were very small.

SDR rotating wall, the rotation frequency and density are conserved. It is uncommon for
this step to pose any difficulty if the previous steps were followed carefully. Fig. 2.4 shows a
successful implementation of this final step.

To prove that SDR is maintained despite changing the trapping potential, one should
verify that density remains proportional to frequency after adding EVC, but often this step
is skipped. This is more likely to be successful in a square potential, because the influence of
the trapping potential on the rotation rate is changing less quickly in a more square trapping
potential. Thus the changing trapping potential used to perform EVC is less likely to break
SDR compression.

If plasma preparation time needs to be minimized, as a final step I will decrease the time
for this process until the resulting plasma starts to change (indicating a failure of SDREVC).
Otherwise performing this operation in 20 s often suffices.

2.1.1 Scooping

Once a reproducible reservoir has been established, after waiting ten or twenty seconds for
the reservoir to cool via cyclotron cooling, we extract electron clouds from the reservoir. For
each cloud, we perform these steps:

1. The reservoir rests in a trapping potential.

2. Elongate the reservoir so that it is two electrodes longer than it normally is.

3. Cut an electron cloud from the reservoir, using the electrode farther from the reservoir
to trap the cloud (make its voltage more positive), and using electrode between the
cloud and the reservoir to separate the two (making its voltage more negative).
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Figure 2.4: Radial MCP image brightness curves are shown for six imaged plasmas. The
plasmas were prepared using three different final SDREVC potentials (three different degrees
of evaporative cooling), and two different rotating wall frequencies. For the 175 kHz rotating
wall, the radius of the plasma changes much more than the central intensity when we change
the EVC final depth. Any difference in the central intensity is likely explained by the
plasma’s length decreasing with decreasing space charge voltage. For the 250 kHz rotating
wall, the central intensity difference was more pronounced, possibly indicating that the
250 kHz rotating wall was not in the strong drive regime.

4-5. Move the cloud to a desired measurement location in the trap, and move the reservoir
back to its “resting position.”

An example of the electrode voltages used to perform these operations is shown in Table 1.
These voltages are taken from the reservoir most commonly used in ALPHA-g. We call this

step E2 potential (V) E3 E4 E5 E6 E7 E8
1 0 60 60 0 0 0 0
2 0 60 60 V0 + S × n V0 + S × n 0 0
3 0 60 60 −75 75 0 0
4 0 60 60 −75 75 75 0
5 0 60 60 0 0 75 0

Table 1: The sequences of voltages used to remove the n’th electron cloud from the reservoir.
The step numbers correspond to the steps listed in the text. The electrode voltages are
changed linearly between each step, with the 1–2 and the 2–3 transitions taking 1ms and
the later steps usually taking 5ms. V0 is typically about 45V, and S is usually 2.5–20mV.

operation “scooping,” and in fact the electron clouds are colloquially referred to as “scoops”
within the collaboration. In this thesis I retain the term “scooping,” but I will refer to the
things produced as electron clouds, not scoops. The potential applied to electrodes 5 and 6,
V0+s×n, is called the “scooping potential” of the n’th cloud extraction. So V0 is the “initial
scooping potential,” and S is the “scooping step size.” The potentials used in the other steps
are almost arbitrary. The potentials used in step 1 simply need to be sufficiently positive
for confining the reservoir. I have on one occasion chosen the potentials in step 3 so poorly
that it was impossible to choose any V0 such that there was any charge removed from the
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reservoir. There may be some benefits to tuning these potentials; perhaps expanding and
contracting the reservoir by a larger factor heats it more or drives expansion more. Frankly
most of the time I just chose these voltages arbitrarily and the reservoir works acceptably.

In Fig. 2.5, I use a plasma equilibrium solver to show how the electron density evolves as
the reservoir is cut between steps 2 and 3. It should be emphasized that the electron cloud
is not separated from the reservoir immediately after the potential starts moving from step
2 to 3. Rather, two collections of electrons are separated at some point in between when a
saddle-node bifurcation occurs in the on-axis electrostatic potential. After, the cloud and the
reservoir sit in two local on-axis potential maxima separated by a local minimum. Further,
between step 2 and 3, there is always a short time where the potential on electrode 5 is more
negative than electrodes 4 and 6, but there is no corresponding local minimum in the on-axis
potential. V0 should be tuned such that in the moment that this local maximum is created,
the potential of this local maximum is be very close to, or slightly above, the “space charge
potential” of the reservoir.

The space charge potential is somewhat loosely defined as the on-axis potential in the
center of the reservoir. It is not in any way a constant property of a reservoir. Rather, it
changes with the reservoir’s length and radius, which is clearly visible in Fig. 2.5. If the local
maximum is slightly above the space charge potential, then the cloud will consist of only
the most energetic electrons at the upper end of the Maxwell-Boltzmann distribution within
the plasma. Often we want our clouds to consist of as few electrons as possible while still
producing a clearly identifiable spot when they are imaged, so this is typically how scooping
is done.

The charge in the first cloud is set by V0 and the parameters of the reservoir (most
importantly its space charge potential). With each successive cloud extraction, the cloud
charge changes by a small fraction with the changing difference between V0 + S × n and the
space charge potential. After O(100) cloud extractions, the clouds converge to a constant
charge which is dependent on S but not V0. This is because in “equilibrium” the charge
extracted from the reservoir should be just enough to reduce the reservoir’s space charge
voltage by S per cloud. If the reservoir’s radius and length do not significantly change over
the course of our extractions, the amount of charge needed to reduce the reservoir’s space
charge voltage by S will not change from one cloud to the next. This argument is turned
into a calculation in Sec. 2.2.

If V0 is not chosen well, it may take many extractions to reach this equilibrium. If V0

is too positive, the local minimum meant to separate the cloud from the reservoir may be
created below the space charge potential of the reservoir, and the reservoir’s space charge
voltage will be reduced by more than S. The situation is somewhat more dire when V0 is far
too negative; one will simply not extract any electrons until the scooping voltage increases
sufficiently. Of course if V0 is just a bit too negative, then the reservoir’s space charge
voltage will be initially reduced by less than S per cloud, and we will still see the cloud
charges converge toward a constant value.

Once we have successfully implemented SDREVC, we tune V0 and find a value for S
which gives a constant and ideal cloud charge. The data collected in the process of tuning
a reservoir’s initial scooping voltage is shown in Fig. 2.6. A quick way of finding an ideal
value for V0 is to choose a V0 which is unreasonably negative and an S that is unreasonably
large (say 1V). The extracted clouds are moved a short distance from the reservoir then
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Figure 2.5: A plasma equilibrium solver is used to model the process of “scooping” an
electron cloud from a reservoir. Plasma density distributions are shown for four successive
times (a,b,c,d) during the voltage manipulation that cuts the reservoir. The potentials and
electrode geometry are taken from a reservoir implemented in ALPHA-g. These calculations
use a realistic mean square charge radius of 1.5mm, a magnetic field of 1T, and a total
charge of 47.5Me−. The reservoir is given an unrealistically high temperature of 1500K to
achieve a manageable computation time (100K is more likely to be the actual temperature).
For each step, the upper plot (i) shows the plasma density distribution. The lower plot (ii)
shows the on-axis potential due to the electrodes alone with an orange solid line; the full
on-axis potential including the influence of the plasma is indicated by the blue dashed line.
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imaged. At some point we will start to see charge in the clouds (with S = 1V these are
proper plasmas, not just clouds). Then we “zoom in,” setting V0 just below where we started
to see charge and reducing S significantly.

It should be noted that just because we saw the first charge appear at some scooping
voltage Vn = V0 + S × n does not mean that Vn is the ideal choice for V0. Over time, the
reservoir expands due to imperfections in the trap’s construction (See Sec. 4). This reduces
its space charge voltage with time. In a “well-behaving reservoir” in ALPHA’s traps, this
expansion rate is of order 1mV/s. Thus if n is large, Vn will be too high.

While still tuning V0, setting V0 conservatively below Vn is ideal because seeing no charge
in the first few clouds gives more information than seeing too much charge. If we see no
charge for the first n− 1 extractions, we know that we should increase V0 by approximately,
but not exactly, by nS. If we see too much charge in the first cloud, we have no idea how
far V0 should be decreased, except if we do some complicated analysis summing the excess
charge in the clouds. When we have “zoomed in” sufficiently far, and S is small enough
that the cloud sizes are ideal, V0 should be slowly increased until the first cloud is close to
the cloud sizes that we converge to with large n. However this tuning process should not
be done too carefully. Despite the use of SDREVC, the reservoirs will have some variation
in their space charge voltage. In my experience this amounts to tens of millivolts from one
reservoir to the next, and as much as a few hundred millivolts from one day to the next.
Thus I usually prefer to set V0 a bit too high and I just discard the first few clouds before the
cloud charges have converged (if my cloud-based measurement is sensitive to cloud charge
variations). Some evidence of reservoir space charge voltage variation is visible in Fig. 2.6.

SDREVC was originally used to prepare positron plasmas and electron/antiproton plas-
mas for antihydrogen formation. For this purpose, the reproducibility of the plasmas was
essentially perfect. These plasmas are routinely imaged, and an image analysis software fits
a function to their radial density profile. Often plasmas created using SDREVC are so re-
producible that the fit parameters for two identically prepared plasmas are exactly the same.
However, because scooping is sensitive to the plasma space charge voltage at the millivolt
level, it reveals some lingering variability left after SDREVC. Anecdotally, if we increase the
charge of the electron plasma before SDREVC, the result after SDREVC has slightly more
charge. I hypothesize the following mechanism for this effect:

1. If there is more charge in the beginning, electrons evaporate from the plasma at a
greater rate during EVC.

2. Thus the temperature of the plasma during SDREVC is lower.

3. The space charge potential of the plasma is typically going to be lower than the barrier
voltage during EVC by a few multiples of the plasma temperature, so that only a small
fraction of electrons are in the “loss cone” at a given moment in time.

4. Thus a colder plasma’s space charge potential will be closer to the EVC barrier poten-
tial, indicating that it will have more total charge.

SDREVC is nonetheless nearly essential for a reservoir. SDREVC can turn an O(1) variabil-
ity in the space charge potential and radius into a variability of order kB∆T/eΦ, where ∆T
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is the variability in the temperature and Φ is the space charge potential. Even kBT/eΦ ≪ 1
for the reservoirs used at ALPHA, so kB∆T/eΦ is even smaller.

2.2 Reservoir Theory

Here I present a simple model where one can predict the charge of the clouds from the plasma
parameters of the reservoir and the scooping voltage step size. The derivation is surprisingly
insightful given how many approximations are necessary to set up a situation where the
reservoir can be modelled without an equilibrium solver. Despite these approximations, we
will be able to explain the order of magnitude of electron cloud charges, and we will be
able to explain the qualitative observations that (1) electron cloud charge is proportional to
voltage step size, and (2) electron cloud charge converges to a value which only depends on
voltage step size regardless of small variations in the reservoir plasma parameters.

Suppose a reservoir is a cold electron plasma, consisting of Nr electrons with a length of
lp ≫ Rw ≫ rp and a radius rp (Rw is the trap wall radius). The space-charge voltage of the
reservoir is:

Vri =
eNr

2πϵ0lp

[
1

2
+ ln

(
Rw

rp

)]
. (2.2)

When we extract Nc electrons from the reservoir, the space charge voltage of the reservoir will
decrease for two reasons. Obviously, the total charge has decreased. However, one cannot
neglect the fact that rp will increase; the reservoir technique produces an electron cloud with
a radius much smaller than rp, and these electrons are extracted from near the center of the
reservoir. The confinement theorem for Penning-Malmberg traps [8] then says that the mean
square radius of particles before extraction must equal the mean square radius of particles
after extraction. Thus we have the following relationship between the initial radius rpi and
the final radius after one extraction rpf :∫ rpi

0

πr3
Nr

πlpr2pi
dr =

∫ rpf

0

πr3
Nr −Nc

πlpr2pf
dr. (2.3)

Assuming lp is not a function of r, integrating, and simplifying we get:

rpf = rpi

√
Nr

Nr −Nc

≈ ri

(
1 +

Nc

2Nr

)
. (2.4)

And therefore the new reservoir voltage is:

Vrf =
e(Nr −Nc)

2πϵ0lp

[
1

2
+ ln

(
Rw

rpi(1 +Nc/2Nr)

)]
≈ Vri −

eNc

2πϵ0lp

[
1 + ln

(
Rw

rp

)]
. (2.5)

Note that the final expression above comes from expanding to first order in Nc/Nr. As
we successively remove clouds from the reservoir, we approach a limit where the change in
reservoir space charge voltage Vrf − Vri equals the scooping voltage step size S. Thus the
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Figure 2.6: This is the data collected in the process of finding an initial scooping voltage V0.
Clouds are successively extracted from a reservoir then imaged with the MCP/phospohor
screen/CCD camera detector. In the plots above, I record the total integrated brightness
of the spot produced by the cloud, which is roughly proportional to the total charge of the
cloud. This is plotted against the scooping potential V0 +nS, and the order in which clouds
are extracted, the “cloud number,” is shown with color. First, I set V0 to 33V, which I
believed to be unreasonably low, and I set S to 1V. The results are shown in the top plot.
The actual MCP images from this trial are shown on the right, with the numbers indicating
the cloud numbers. They are cropped on the plasma, and the camera is grayscale, but I
applied a color mapping. Next, I adjusted V0 to roughly where charge first appeared, 46V,
and I reduced S by a factor of ten. In the third plot, S is again reduced by a factor of
ten. I wanted to perform measurements with clouds extracted with S = 2.5 and 5mV. So
I set V0 to 46.8V and S to 2.5mV (visible in the lower left of the bottom plot). In the 32
clouds imaged, the brightness was too variable, so I increased V0 to 47V to get more charge
in the first cloud, and I imaged 80 clouds to see if cloud charges would converge. Finally, I
imaged 80 clouds extracted with 5mV steps with two separate reservoirs. The variation in
the initial clouds between these two identical experiments indicates a variation in the space
charge voltage of the reservoir. The 5mV clouds converge to a charge that is slightly more
than double the converged charge of the 2.5mV clouds, because other sources of reservoir
expansion lower the reservoir’s space charge voltage with time.
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total charge of the clouds in this limit is:

Nc = S
2πϵ0lp

e

1

1 + ln
(

Rw

rp

) (2.6)

If the initial reservoir charge is too high (low) given the initial scooping voltage, the first
few clouds will have more (less) than this charge, and the reservoir space charge voltage will
decrease more (less) quickly. Experimentally, this means that although there may be a small
degree of variability in the total charge of the reservoir, after about 100 clouds, the reservoir
will settle to producing roughly the same cloud charge from one cloud to the next. Similarly,
when we don’t have time to carefully tune the initial scooping voltage, we can just wait for
the reservoir to converge to a consistent cloud size before using the clouds for measurements.

In Sec. 5, I discuss some evidence that cloud charges may be increasing over time, even
after the initial settling period. I will discuss whether that is a real phenomenon or if it
is an artefact of the imaging apparatus. In advance of this discussion, I should note that
there is a theoretical reason that cloud charges should grow over time. When the total
charge extracted from the reservoir is not small compared to the initial reservoir charge, the
reservoir’s length and radius can change, changing the predicted cloud charge. This effect
can be explained in the model above by simply noting that Eq. 2.4 can be applied iteratively,
forming a telescoping product, yielding the reservoir radius rp after n cloud extractions:

rpf = rpi

√
Nr

Nr −
∑n

j=1 Ncj

, (2.7)

where Ncj is the charge of the j’th extracted cloud. Otherwise, Eq. 2.6 remains valid as long
as one is aware that rp is increasing with each extraction. I have neglected any other sources
of reservoir expansion. Of course, one could trivially add a linear increase in reservoir radius
with time, but the data shown in Sec. 5 is consistent with cloud removal being the leading
cause of reservoir expansion. Counterintuitively, as the reservoir’s charge is depleted and it
expands radially, becoming less dense, more charge is delivered to the clouds. Conceptually,
this occurs because when the radius of the reservoir increases, more charge must be removed
to retain the same step size in the space charge voltage. Typically, our measurements are
optimally performed with a very small cloud charge of O(104e−), so we get an incidental
benefit having reproducible cloud charge because the total charge removed from the reservoir
is insignificant.

Some commentary may be necessary to explore which approximations in this section were
valid. First, typically clouds are extracted in a few milliseconds, which may be too quick
for rotational equilibrium to be maintained between the forming cloud and the reservoir.
However, this does not negate the validity of Eq. 2.4, because we only need to assume that
rotational equilibrium is established within the reservoir in the time between scoops, and
that the cloud’s radius is much smaller than the reservoir’s. Also, as depicted in Fig. 2.5,
our electron clouds are typically not plasmas; the Debye length implied by their maximum
density is longer than or comparable to the radius and length of the cloud, and that maximum
density is much lower than the “flat top” density of the reservoir. This also means that the

31



electrons which end up in the cloud came from the upper edge of the thermal distribution of
electrons in the reservoir. Although in some places we approximated the reservoir as a “cold
plasma,” the fact that electrons are removed because of their nonzero temperature does not
hurt the validity of these approximations. It doesn’t matter how electrons were removed,
just that the reservoir’s space charge voltage can be well approximated with the cold, infinite
length formula. The approximation of the reservoir as “infinitely long” is rarely accurate for
the reservoirs used at ALPHA. In reality, Eq. 2.2 does not accurately describe the space-
charge potential of the reservoir, and the length may change just as much as the radius.
This issue could be addressed by fully modelling the reservoir in a numerical equilibrium
solver—a project which would take an inordinate amount of time and would not be very
illuminating.

2.3 Initial cloud magnetron orbit

The main source of error for all the measurements presented in this thesis is the initial
magnetron radius of the clouds. When a cloud is displaced from the center of the trap
in the transverse direction (the direction perpendicular to the trap’s symmetry axis), it
orbits the trap center at the “magnetron frequency.” Many of the measurement techniques
described in this thesis involve intentionally exciting this magnetron motion and using it
as a measurement tool. Most of the measurement techniques also involve imaging a cloud
and inferring something about the electric or magnetic field in the trap from its position.
The “initial cloud magnetron” refers to the cloud’s displacement from the center of the trap
before using that cloud for a measurement. Thus any variability in the magnitude or phase
of this initial cloud magnetron constitutes an error on the initial position of the cloud, which
translates into an error on the final position of the cloud. In this section I will describe the
three causes for this phenomenon that I have found so far in my experiences making reservoirs
in ALPHA-2 and in ALPHA-g. All three causes have been observed in both experiments.

2.3.1 Intrinsic cloud magnetron

The most mysterious cause of cloud magnetron, and the one that has been historically
hardest to solve, I have taken to calling the “intrinsic cloud magnetron.” This phenomenon
occurs in both ALPHA-2 and ALPHA-g, but in ALPHA-g it has a smaller magnitude.
The intrinsic cloud magnetron is characterized by scoops being created off-axis immediately
after they are extracted from the reservoir. This displacement is the same magnitude and
in the same direction for all clouds extracted from the same reservoir—it is in no way
random. However, if we take hundreds of milliseconds to move the plasma through the trap
to a desired measurement location, the phases of the clouds’ magnetron orbits will spread
out because small variations in the charges or temperatures of clouds will result in small
variations of their magnetron frequencies. Given enough time, they will have seemingly
random magnetron phases.

This behavior is displayed in Fig. 2.7. Clouds are extracted from a reservoir with 2.5mV
steps. They are moved along the trap over the course of about 500ms, and then they are
imaged. The variability in cloud charge, and perhaps temperature, causes variability in the
magnetron frequency. Over the 500ms between a cloud’s creation and the moment it is
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imaged, this small difference in the magnetron frequency integrates to an O(1) difference
in the final magnetron phase. We find that clouds extracted from the reservoir first had
more charge, and they subtended a smaller total magnetron angle. Because of variation
in the reservoir’s space charge voltage, the change in cloud charge is different when the
experiment is performed twice. We see that the change in magnetron phase is smaller when
the cloud charge variability is smaller. If the clouds began a fixed distance off-axis, but that
displacement was in a random direction, the clouds would be randomly distributed around
a circle at all later times. Instead, their position around the circle varies with their charge,
and successively imaged clouds typically land in almost the same place.
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Figure 2.7: On top, the total charge of clouds successively extracted from a reservoir is
plotted. The experiment was performed twice with identically prepared reservoirs (plotted
in blue and orange). The total charge is inferred from the total brightness that the cloud
produced in the MCP image, and this total brightness is calibrated using techniques described
in Sec. 5. Below, the imaged positions of the clouds are plotted, with the colors indicating the
order that they were extracted from the reservoir. The bottom left scatter plot corresponds
to the blue curve above, and the bottom right corresponds to the orange curve. Note that
one pixel in the original camera images of the clouds corresponds to about 5µm of transverse
distance within the trap—the units used in this plot. Therefore the ∼ 5µm thickness of the
circle could be a numerical limitation in our ability to identify cloud centers, not a genuine
physical phenomenon.

In ALPHA-2, we see the same phenomenon, although it is much bigger (about 250µm
rather than 25µm). Thus more time has been spent trying to reduce the intrinsic cloud
magnetron in ALPHA-2. At this point, I am aware that Dr. Eric hunter [4], myself, and a
team of three after me have tried to solve this issue with little progress. However, nobody has
tried something as drastic as installing new equipment, for example, to recenter the clouds
using a segmented electrode. In Fig. 2.8, I show evidence of the intrinsic cloud magnetron in
ALPHA-2. Also in this figure, a new tool is introduced for diagnosing the source of a cloud’s
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magnetron motion. I began by introducing “random phase shifts” just before imaging the
plasma to prove that the clouds were in a magnetron orbit, but that magnetron orbit was
“phase locked,” meaning that the clouds were all at the same phase in the moment they were
dumped. This is implemented by estimating the magnetron frequency, then adding a random
pause to the sequence between 0 and 5 times the magnetron orbit period (5 times in case
there was any error in my estimation of the magnetron frequency). To determine the moment
where the magnetron orbit is initiated, I pushed the random phase shift earlier and earlier
in the sequence. Eventually, I determined that the magnetron phases were randomized even
if the phase shift was added immediately after the clouds are extracted from the reservoir.
Thus I say the clouds are “born with” the intrinsic magnetron.
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Figure 2.8: (left) Clouds are extracted from a plasma reservoir, then moved a short distance
along the trap in about 50ms then imaged. Because this is much quicker than in Fig. 2.8,
the variation in magnetron phases due to the variation in scoop charge is much smaller. On
the right, a randomized pause is added just after extracting the clouds from the reservoir.
The final magnetron phase is randomized because of this.

I tried many things to reduce innate magnetron. Because it begins when the cloud is
extracted from the reservoir, it seemed natural to vary the amount of time used to separate
a cloud from the reservoir. This had no effect on the magnitude of the innate magnetron.
The one thing that consistently affected the innate magnetron was moving the reservoir and
performing the cloud cutting procedure with a different pair of electrodes. For example, in
Fig. 2.9, I show a factor of two reduction in the innate magnetron after moving the reservoir
one electrode to the left.

This operation had a major downside though—the reservoir was expanding vigorously,
causing its space charge voltage to drop over time. With 10mV steps, the cloud charge
dropped to zero after about 30 extractions, meaning that the space charge voltage of the
reservoir was dropping by more than 10mV per extraction regardless of how much charge is
extracted from the reservoir. With 100mV we at least consistently extract clouds, but this
step size is unusually large. I also found that the initial reservoir diocotron, and how it grew
over time, depended on where the reservoir sat in the trap. This is discussed in more detail
in the next section. In the end, this reservoir behavior was determined to be worse than a
reservoir with larger innate magnetron but with more reproducible and smaller clouds. In

34



the end, we are unfortunately left with a procedure where we move the reservoir around and
pick our favorite behavior based on a variety of upsides and downsides.
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Figure 2.9: Two identically prepared reservoirs are used to sequentially extract clouds with
100mV and 10mV steps. Above, the integrated intensity is plotted for sequentially extracted
clouds. In the bottom left, the imaged positions of the clouds extracted with 100mV steps
is plotted, with their color indicating the cloud number. The drift to the upper right with
later extracted clouds is not a genuine phenomenon, but a systematic relating to the image
artefacts discussed in Sec. 9.1. On the right, the 10mV step clouds’ positions are shown, but
only about 30 clouds were extracted before their positions became impossible to determine.
On the right, just for fun, one of the last few visible clouds with 10mV steps is shown,
showing what is likely individual electrons. When we apply the calibration factor between
mcp total brightness and the number of electrons, we find that this imaged cloud should
consist of roughly 100 electrons. We don’t expect the electron detection efficiency to be
100%, but this image seems to suggest it also isn’t far below 100%.

Given the qualitative behaviors described so far, it is very likely that the intrinsic cloud
magnetron is caused by either patch potentials or misalignment between the trap electrodes
and the external solenoid. When a cloud is extracted from the reservoir, it is moved quickly
along the trap axis. In Sec. 2.3.3, I show that moving clouds quickly along the trap axis
can excite a magnetron orbit. Also, when clouds are extracted from the reservoir, they
are subjected to a “shallow trapping potential.” In Sec. 3, it is clearly shown that in these
shallow trapping potentials, clouds can be moved off-axis. However, here, the prediction of
this effect would be significantly complicated by the reservoir’s influence on the potential
experienced by the cloud. Given that the innate magnetron seems to depend on where in
the trap the extraction is performed, it is more likely that patch potentials are the dominant
cause of the innate cloud magnetron. Thus efforts to reduce patch potentials like applying
a colloidal graphite coating might be extremely beneficial in the vicinity of the reservoir.
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2.3.2 Reservoir diocotron

Before I can discuss the diocotron motion of the reservoir, I should do some disambiguation.
The story of the term begins with the “diocotron instability” [46], a well-studied phenomenon
in nonneutral plasma and in beam physics where a hollow cylinder (a cylinder with an inner
and an outer radius) of nonneutral plasma is unstable, and over time it chaotically folds
itself into bundles (just search online for images of the “diocotron instability”). The l = 1
diocotron mode [47, 46] occurs when a cylinder of nonneutral plasma, hollow or not, is
displaced from the center of a grounded conducting sphere. It then rotates around the
center of the conducting sphere, E ×B drifting from the electric field produced by its own
image charge. Indeed, this is the l = 1 case of the unstable modes we refer to when we
discuss the “diocotron instability.” However, our plasmas do not have a hollowed out center,
so they do not exhibit the “diocotron instability.” They can have their diocotron modes
excited; in fact these modes are even expected to grow over time [48, 49]. If the walls of
the trap are at all resistive, the movement of the image charge converts mechanical energy
into heat, and the diocotron modes are “negative energy waves”—when energy is lost the
amplitude increases. However, this is not an instability in the same way that we mean when
we talk about the “diocotron instability,” which occurs regardless of the resistance of the
trap walls. In my time at ALPHA, I observed plasmas performing an l = 1 diocotron motion
very many times, and I often saw that this motion grew over time; I never observed evidence
of any higher order modes. This l = 1 diocotron motion in nonneutral plasmas is discussed
in Refs. [50, 51, 52].

The reader may note that the l = 1 diocotron motion of an electron plasma sounds
a lot like what I call the “magnetron motion” of electron clouds. Indeed it is—these two
forms of motion are two limits of the same phenomenon. We typically call the motion
“diocotron motion” when the electric field causing the plasma to drift in circles is dominated
by the plasma’s image charge, and we call it magnetron motion when the electric field is due
mostly to the trap fields. This distinction comes largely from the fact that the trapped ion
community calls the E×B drift motion of single particles “magnetron motion.” The name
comes from the device used to produce microwaves—the motion of electrons resembles the
motion of electrons in a magnetron. The motion of electron clouds is more similar to the
motion of single particles.

With that aside, I’ll begin to explain my evidence that in both ALPHA-g and ALPHA-2,
a growing reservoir diocotron results in a growing cloud magnetron. I’ll begin with ALPHA-
2, where we have never successfully implemented a reservoir without a growing diocotron. To
produce Fig. 2.10, we extract clouds from a reservoir then image them, with a random phase
shift added so that the intrinsic magnetron is not phase-locked. Thus, the first few clouds’
imaged positions form a clear circle. With time, the reservoir’s diocotron grows. This seems
to add another component to each clouds’ initial magnetron motion in a random direction.
One should keep in mind that the scooping operation is typically very slow compared to the
reservoir diocotron frequency. A plausible model is that the cloud and the reservoir diocotron
together until some moment where they are sufficiently decoupled. We would expect this
to occur at a random diocotron phase unless there was a remarkable coincidence between
the frequency with which we extract clouds from the reservoir and the reservoir’s diocotron
frequency. In this model, the cloud’s displacement due to the intrinsic magnetron is a fixed
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transverse displacement, a 2–D vector. We then add the cloud’s displacement due to the
reservoir diocotron, which points in a random direction with a slowly increasing magnitude.
In Fig. 2.10, the direction of the resulting total vector is then randomized by the random
phase shift, and the result is a circle whose thickness increases over time.
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Figure 2.10: Each dot is the position of the center of a cloud imaged with the MCP. The
clouds are successively extracted from a reservoir in ALPHA-2, and the reservoir’s diocotron
amplitude increases with time. The color of each dot indicates the order in which the clouds
were extracted. We extract about one cloud per second for a total of two minutes.

The reservoir’s diocotron can also be diagnosed by simply imaging the reservoir—for
most plasmas, the diocotron frequency is much slower than the time it takes to release
the plasma toward the MCP. In Fig. 2.11, I show the imaged positions of nine reservoirs.
Each reservoir was used to extract and image 120 clouds. In fact, it is rather hard to
find a set of reservoirs which clearly all have similar sizes but different centers. This is
because the reservoir diocotron seems to facilitate reservoir expansion. Therefore, the most
obvious observation is that when the imaged positions of clouds start to strongly deviate,
the reservoir is also much larger. However, by finding a few reservoirs with very similar
radii, we do observe some small displacement in their imaged positions. For this reason, I
cannot rule out that the reservoir’s expansion is changing the intrinsic magnetron, which
may depend on the parameters of the reservoir (density, total charge, radius, etc.). This
obviously complicates our interpretation of the data.

Now I move on to some data from ALPHA-g. Like in ALPHA-2, I begin with imaged
cloud positions, shown in Fig. 2.12. This time, I have phase-locked the innate magnetron by
imaging clouds only 30ms after they are extracted from the reservoir (and I have not added
a random phase shift). Here we see clearer evidence that the increasing reservoir diocotron
acts like a vector of increasing magnitude and random direction—as opposed to a random
but generally increasing magnitude. Consider for example the yellow points, which form a
ring on the outside of Fig. 2.12.

On one particularly silly evening at ALPHA, I took the time to implement a positron
reservoir. I’m not sure exactly why I was given the time to work on this. I may have snuck
it into the schedule on a day that was allocated for measuring patch potentials or improving
reservoir behavior. There are, however, legitimate justifications for a positron reservoir.
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Figure 2.11: In each of the three pictures, three MCP images of reservoirs are shown (a total
of nine imaged reservoirs are depicted). The reservoirs were prepared identically, then used
for similar (but not identical) cloud-based measurements, then imaged. In each picture, one
reservoir is assigned to red, one to blue, and one to green. Thus the white region is the region
where all three reservoirs overlap, the red region only contains the red-assigned plasma, the
purple region contains the red and the blue plasmas, etc. On the left, we see three reservoirs
of different size; the blue reservoir is smaller than the red, but nonetheless there is a small
blue sliver in the upper right, clearly indicating that the blue and the red reservoirs did not
have the same center inside the trap. In the middle, we have three reservoirs of roughly
equal size that do not overlap, indicating a small diocotron. On the right, there are three
reservoirs with radically different size. They do seem to have different centers, but that is
made unclear by their differences in size and the apertures of the imaging system.
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Figure 2.12: The positions that clouds land on the MCP when successively extracted from a
reservoir in ALHPA-g which has an increasing diocotron amplitude. The color of each cloud
position indicates the order in which the clouds were extracted. Clouds are imaged 30ms
after extraction from the reservoir to preserve phase coherence of the intrinsic magnetron.
This isolates sources of magnetron motion which vary from one cloud to the next.

In this thesis I often suggest that certain effects are due to perturbations to the trapping
potential from patch potentials. If we could use positron clouds, we would reverse the sign of
the potential used to trap the clouds, and presumably we would flip the relative sign of the
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shift due to patch potentials, confirming this hypothesis. This reservoir was never actually
used for this purpose because the resulting clouds were much worse (bigger in radius and
less reproducible), possibly stemming from the fact that the positron plasma contains far
fewer particles than we can achieve with electrons.

However, the positron reservoir gives some additional experience on the phenomenon of
reservoir diocotron. In one instance, I just prepared a positron reservoir and imaged 128
clouds on the MCP followed by the reservoir. The reservoir landed roughly where I expected
if it were located in the trap center. The clouds landed somewhat randomly distributed
within a small circle similar in size to the innate magnetron of electron clouds extracted
using the same electrodes in ALPHA-2.

Next, I prepared a positron reservoir, then I turned on the solenoid which boosts the
magnetic field in the region of the reservoir from 1T to 3T. The resulting reservoir had a
rapidly increasing diocotron. This diocotron was so large that more than half of the clouds
simply missed the MCP. When I tried to image the reservoir, it was barely visible peeking
out of the right side of the MCP image. In a repeat trial, the reservoir was not visible at
all on the MCP (but I’m sure it still existed because the last few clouds were still visible
on the edge of the MCP). Unlike the prior electron examples, the positron diocotron grew
faster than the plasma expanded. It’s not clear whether the solenoid turning on initiated
a diocotron which grew, or if it just facilitated the growth of a preexisting diocotron. The
data from these trials is shown in Fig. 2.13.

Next I will comment on the phenomenon of “catastrophic reservoir diocotron failure,”
which occurs in both ALPHA-2 and ALPHA-g. In fact, all the reservoirs I have seen that
exhibited some reservoir diocotron also exhibited this catastrophic failure eventually if one
attempted to extract enough clouds. This phenomenon is characterized by a sudden rapid
increase in cloud position variability (over the course of about ten extractions and ten sec-
onds). The charge of the clouds decreases and their radius increases—a reflection of the
reservoir expanding and its space charge voltage dropping. After this no more clouds are
visible on the MCP, and if the reservoir is imaged it usually has expanded so much that
it simply fills the entire MCP. Unfortunately, this phenomenon is not reproducible. It oc-
curs after different amounts of time for identically prepared and utilized reservoirs, but this
rarely differs by more than a factor of two. It typically happens after 100–200 extractions
or 100–200 seconds.

Because this phenomenon happens nearly identically in ALPHA-g and in ALPHA-2, I
will just present the data from ALPHA-g in Fig. 2.14, where I could find a slightly clearer
dataset showing the phenomenon. The data from this figure was taken during misalignment
measurements, so the clouds are not expected to all fall in the same place on the MCP ; I
never took data exhibiting this phenomenon in isolation. Rather, we expect the clouds to fall
along a line. A short line is visible in the first row, and a longer line is visible in the first 100
or so clouds in the third row. Fig. 2.14 shows the results of three reservoirs prepared in the
course of a complete measurement of the misalignment of the trap with the external magnet.
In the first row, we see a reservoir where the desired measurement was completed before the
reservoir failed. In the second measurement, we see the onset of reservoir failure—the last
few clouds have a significantly larger spread, and the cloud parameters are starting to change
rapidly. In the third measurement, I tried to extract over 200 clouds from the reservoir, and
it failed catastrophically after about 210 clouds. The last 50 or so clouds are spread wildly
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Figure 2.13: The top row shows the result of implementing a positron reservoir without
an extra solenoid boosting the magnetic field from 1T to 3T. The left is the distribution
of cloud positions on the MCP, with their color indicating the order in which they were
extracted. On the right, the imaged positron reservoir at the end of 128 extractions. Below
are the same results when the solenoid is turned on after preparing the reservoir. Less than
half of the clouds were even visible on the MCP, and many of them are only visible because
a small fraction of the cloud hit the outer edges of the imageable region. Thus the structure
of the cloud positions apparent in the bottom left illustrates the MCP aperture shape.

around the MCP, rendering the measurement useless. The clouds’ imaged brightness, and
hence their charge, drops to zero, and their radius increases dramatically. Fig. 2.14 also
shows the imaged reservoirs. The first shows zero diocotron, the second shows a small but
clearly visible diocotron, and in the third, the reservoir has expanded so much that it fills
the entire imageable region of the MCP.

In the year after I stopped physically working on the ALPHA experiment, Ph.D. student
Jaspal Singh seems to have solved this problem. He discovered that when the “the scooping
period”—the time between cloud extractions from the reservoir—was a multiple of Tbad =
145µs, the reservoir diocotron grew quickly. Jaspal varied the scooping period in small
increments starting at 58ms, observing several “resonances” where the reservoir diocotron
grew rapidly. Depending on the parameters of the reservoir, Tbad is a plausible order of
magnitude for either the diocotron period or the plasma rotation period. It would seem
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Figure 2.14: Three reservoirs used to measure the misalignment of the Penning-Malmberg
trap electrodes with the external solenoid. Each row shows the results from one reservoir and
one attempted cloud-based measurement. The first column shows the clouds’ positions on
the MCP, with their color indicating the order of extraction. The second column shows the
clouds’ mean square radius visible in their MCP images, and the integrated total brightness
of the spot they produced in the image (roughly proportional to the total charge). Both
are plotted with normalized units where the first few clouds have a normalized brightness
and radius of 1. The last column shows the imaged reservoir at the end of the sequence.
In this last column, I have assigned a high-contrast picture of a “reference reservoir” which
was used for a successful measurement with no diocotron issues to the color green. I have
assigned red to the reservoir used to collect this data. Thus the red region shows where this
reservoir was on the MCP but not the reference reservoir, the yellow region is the overlap,
and the green region is where only the reference reservoir was seen.

then that removing clouds from the reservoir perturbs the reservoir in an asymmetric way,
and if the scooping period is a near-multiple of the diocotron period or the rotation period
(whichever one Tbad ends up being), these small displacements add up over time. This
reminds us of the intrinsic cloud magnetron—in fact we know that there is some transverse
asymmetry in the scooping process. The two phenomena may be related.

In hindsight, Jaspal’s observation is entirely consistent with my experiences. In most of
my experiments, the scooping period was varying as I varied the parameters of whatever
cloud-based measurement I was performing at the time. At some point, the scooping period
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would be a multiple of Tbad for a few clouds in a row and I would get a catastrophic diocotron.
My only experience reducing reservoir diocotron was in ALPHA-g. The first reservoir I

ever implemented had no evidence of any reservoir diocotron. The reservoir was developed
in, and sat in, a 2T magnetic field where the nominal 1T from the outer solenoid was
supplemented by an inner solenoid. I could extract a thousand clouds and they would only
exhibit innate magnetron. That innate magnetron was also much smaller than what we
find in ALPHA-2. This was cause for celebration—patch potential measurements and ECR
magnetometry measurements were going to be much easier in ALPHA-g. However, the
ALPHA-g gravity measurement required the extra solenoid to be off, because it introduced
an unacceptable asymmetry in the magnetic field. Therefore, we developed a reservoir in
the 1T field without the extra solenoid so we could measure the magnetic field used for the
ALPHA-g measurement. The data from this section is taken from that reservoir—as you
have seen, it exhibited a catastrophic reservoir diocotron failure. In the final two weeks of
operating ALPHA-g, when I was developing EMPI (see Sec. 8), I made a new reservoir in
1T which didn’t exhibit this behavior. I had noticed before that the 2T reservoir had a
lot more electrons—about 5× 107 instead of 2× 107, so I implemented a 1T reservoir with
the larger total charge. I also reduced the rotating wall used for SDREVC from 800 kHz to
300 kHz to match the frequency used in 2T, thinking that some electronic peculiarity of the
rotating wall might be initiating the diocotron. Increasing the charge would have increased
the diocotron frequency, probably making it less likely that I would hit this resonance. It
may also be that the width of this resonance depends on other parameters of the plasma.
Hopefully Jaspal will be able to conduct further experiments on this phenomenon to better
understand how to avoid it.

2.3.3 Moving clouds along the trap too quickly

This final source of cloud magnetron motion is much simpler than the previous two. It is also
better understood and essentially trivial to solve. If the clouds are moved along the trap axis
to a desired measurement location too quickly, they are thrown off-axis by trap construction
errors, the misalignment of the electrodes with the magnetic field, and patch potentials. This
sets a limit on how quickly we can move clouds along the trap axis. In EMPI, if we can move
clouds more quickly along the trap axis we can perform more frequent measurements of a
changing magnetic field, and in Sec. 8 I will show that more frequent measurements can also
be more precise. Thus this effect is actually critically important for at least one cloud-based
measurement, and it simply limits how quickly we can perform other measurements.

These three causes—construction errors, misalignment, and patch potentials—fall under
a common explanation. A cloud which is located off-axis by a distance r orbits the trap
center with a frequency ωr. The frequency ωr is set by the trapping potential, which can be
approximated by

V (x, y, z) = −k2

[
(z − z0)

2 − 1

2
(x− x0)

2 − 1

2
(y − y0)

2

]
, (2.8)

giving ωr = k2/B. The cloud is moved axially along the trap by changing z0 with time. If
any of these three issues are present, x0 and y0, the center of magnetron motion, also change
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with time. If this “effective trap center” moves slowly compared to rωr, then r is conserved
adiabatically. This is discussed in much more detail in Sec. 3.3.

If the trap is misaligned with the external magnet by an angle θ, then θvz needs to be
much smaller than rωr. In ALPHA-g, θ varies throughout the trap, but it generally is of
order 1mrad. Patch potentials cause the effective trap center to be displaced by ε⃗/k2, where
−ε⃗ is the transverse electric field (a 2–D vector) in the center of the trap produced by patch
potentials. Thus they produce an effect equivalent to a misalignment of θ = d(ε⃗/k2)/dz.
Throughout most of ALPHA-2 and ALPHA-g, ε⃗ is of order 5mV/cm, and it varies over a
length scale of roughly the trap wall radius, and we typically use k2 of order 5×104V/m2 while
moving clouds along the trap. Thus we find an effective misalignment of order 0.5mrad—a
similar order of magnitude as the true misalignment. It should be noted though that some
trap regions have much stronger patch potentials, and there the patch effect will dominate.
Finally, there is one particular region of the trap where one electrode is “non-concentric
with,” or displaced transversely from the next by about 60µm. This does not mean that
the effective trap center suddenly changes by this distance. Rather, the effective trap center
will smoothly change from the center of one electrode to the center of the next as we move
a cloud across the boundary. Thus an estimate of the effective misalignment due to this
feature is θ = 60µm/2 cm = 3mrad (the displacement divided by the length of an electrode).
This is probably an underestimate of the maximum θ, because it assumes as conservatively
as possible that the effective trap center changes linearly as we move the cloud linearly
from one electrode to the next. Indeed for this small portion of the trap this displacement
dominates the total effective misalignment. Finally, our typical initial displacement of the
electron clouds is r = 25µm, so to conserve this we must must move very slowly compared
to:

vz ≪
16µs

electrode

(
electrode length

2 cm

)(
25µm

r

)(
0.5× 105/s

ωr

)(
θ

1mrad

)
. (2.9)

Since we must move “very slowly,” and because there are many electrodes (about 30 in
ALPHA-g, about 15 in ALPHA-2) to move across and we don’t want an error to accumulate,
at least one factor of ten is probably going to be necessary.

Before I discuss the experimental tests of this effect, I should explain how clouds should
be moved along the trap axis. In my time at ALPHA, I have seen three common strategies
used when designing the electrode voltages that move clouds along the trap axis. These
three strategies are shown in Table 2. In light of the model I’m describing for how clouds
move off-axis, the optimal strategy is the one that maximizes ωr. This trivially establishes
that we should use the maximum voltage available to us. To see which strategy is best, we
have to model the electrode geometry at ALPHA to see what values of k2 are applied at
different times throughout each of these sequences. To answer this question, we only need
to compute k2 values in three different situations—a voltage applied to only one electrode,
the same voltage applied to two adjacent electrodes, and a voltage applied to one electrode
and half that voltage applied to the two adjacent electrodes. If it’s not clear when this third
situation is encountered, consider the potentials that would be applied halfway between steps
in the third strategy. The resulting k2 values are presented in Table 3.

The first strategy is the worst. Halfway between step 1 and 2, we have half the maximum
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step E(N-1) potential (V) E(N) E(N+1) E(N+2) E(N+3)
1 0 75 0 0 0
2 0 0 75 0 0
3 0 0 0 75 0

step E(N-1) potential (V) E(N) E(N+1) E(N+2) E(N+3)
1 0 75 0 0 0
2 0 75 75 0 0
3 0 0 75 0 0
4 0 0 75 75 0
5 0 0 0 75 0

step E(N-1) potential (V) E(N) E(N+1) E(N+2) E(N+3)
1 75 75 0 0 0
2 0 75 75 0 0
2 0 0 75 75 0

Table 2: Voltage instructions used to move a cloud (or plasma) along the trap axis a distance
of two electrode widths. In each of these three proposed strategies, the electrode potentials
are changed linearly between each step. It should be noted that the first two strategies move
the cloud from the center of electrode N to the center of electrode N+2. The third strategy
starts midway between electrode N-1 and electrode N and it ends between N+1 and N+2.
75V is the maximum voltage available on most of the electrodes in ALPHA-2 and ALPHA-g.
A few electrodes have 150V amplifiers, in which case we can trivially double ωr by using the
higher voltage.

voltage applied to two adjacent electrodes. Thus we find that strategy 1 is strictly worse
than strategy 2.

• Strategy 1 varies k2 between c1(75V)/R
2
w = 1.04 × 105V/m2 (75V applied to one

electrode) and c2(37.5V)/R
2
w = 2.88×104V/m2 (37.5V applied to adjacent electrodes).

• Strategy 2 varies between c1(75V)/R
2
w = 1.04 × 105V/m2 and c2(75V)/R

2
w = 5.76 ×

104V/m2.

• Strategy 3 is worse, but not so trivially. It goes between c2(75V)/R
2
w = 5.76×104V/m2

and c3(75V)/R
2
w = 6.24×104V/m2 (75V applied to one electrode, and 37.5V applied

to the two adjacent electrodes).

I have used strategy 3 instead of strategy 1 on some occasions because it saves some memory
in the FPGA used to control the electrode voltages—it needs half as many voltage states
per electrode movement.

Of course, there are more sophisticated analyses and more sophisticated strategies we
could use here. Technically, the conservation of r depends not only on k2, but the ratio of
k2 to the speed at which the axial potential maximum holding the electrons moves. With
this in mind, one could optimize a complicated sequence of linear voltage ramps that tries
to move the clouds at a constant rate while maximizing k2. Actually, in Sec. 3.3, I will show
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Situation E(N-1) potential (V) E(N) E(N+1) k2 (V/R2
w)

strategy 1, step 1 0 1 0 c1 =0.668
strategy 2, step 2 1 1 0 c2 =0.372

strategy 3, between step 1 and 2 0.5 1 0.5 c3 =0.403

Table 3: For each of three sequences of voltages applied to three adjacent electrodes, the k2
value is computed. In the left column, one example from Table 2 where such a sequence of
voltages arises is provided. The examples aren’t unique; there are many instances in Table 2
where three adjacent electrodes have voltages proportional to the values in this table. Note
that k2 changes linearly when the voltages are scaled linearly, so we only need to do the
computation with the maximum voltage set to 1V. k2 is presented in units of volts per wall
radius squared, so the values computed here only depend on the length to radius ratio for
our electrodes (about 0.9 in both ALPHA-2 and ALPHA-g).

step E(N-1) potential (V) E(N) E(N+1) E(N+2) E(N+3)
1 −75 +75 −75 −75 −75
2 −75 +75 +75 −75 −75
3 −75 −75 +75 −75 −75
4 −75 −75 +75 +75 −75
5 −75 −75 −75 +75 −75

Table 4: The best way to move clouds along the trap axis. This assumes a maximum
electrode voltage of ±75V.

that changing the effective trap center in a more differentiable way suppresses the change in
r more strongly. Thus if we wanted to put more effort into cloud movement, this would be
the avenue to pursue. Currently, the cloud’s axial position changes in a continuous, but not
differentiable way. Making it “smoother” (i.e. once or more differentiable) would suppress
changes in r with higher powers of vz/rωr. However, the “sequencer”—the piece of software
where we can design a sequence of electrode voltages to be applied in the experiment—has
limitations on how many states can be used. We provide a sequence of states, and it allows
us to choose the time taken to linearly interpolate between each of those states. For now, it
is not worth trying to improve our strategy for cloud movement, but this may change if the
sequencer’s memory is ever significantly upgraded.

Before I move on, I should note that ωr can be doubled in all three strategies simply
by changing all the zeros to the maximum negative voltage of −75V. If we redefine zero
potential to −75V, we see that this is equivalent to simply doubling the voltage used to
confine the electrons. This strategy was used in EMPI, where cloud movement speed was
most critical. This upgraded strategy is shown in Table 4.

My best experimental test of this effect comes from studying the magnetron motion
induced by crossing the aforementioned displacement. This construction error was first
discovered in the misalignment measurements. These measurements and their errors are
described in more detail in Sec. 6. Fig. 2.15 shows measurements of the positions of electro-
static potential minima created by the electrodes in a coordinate system where x = y = 0
corresponds to a single magnetic field line produced by the external magnet. In simpler
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terms, a misalignment between the trap electrodes and the external magnet is indicated by
deviations from x = y = 0. Although there are many notable features in this plot, I want
to particularly highlight that when the axial position goes from electrode 19 to electrode
20, the horizontal position jumps by about 0.1mm between two measurements. Because
this displacement is mostly horizontal, it is more easily visible when we plot the horizontal
displacement versus axial trap location; this is shown in Fig. 2.16. This axial trap location
is also where the electrode radius changes from 1.5 cm to 2.2 cm. It is easy to imagine that
this connection between different kinds of electrodes could result in an offset misalignment.
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Figure 2.15: The transverse displacement between the electrodes and the external magnet.
The color of each point shows where along the trap axis the measurement is performed, and
adjacent axial positions are connected with a black line.

Seeking confirmation of the existence of this displacement, I moved electron clouds along
this boundary at variable speeds. In this experiment, all other axial movement of clouds
was performed very slowly. Upon reaching the electrode that I would image the clouds
from, they were stored in eight different trapping potentials then imaged. This was done to
phase-unlock the magnetron motion. For each different trapping potential, four repeats were
performed. Thus phase-locked forms of magnetron motion like innate magnetron motion and
the magneton induced by moving past this boundary would be visible between clouds treated
to different trapping potentials. Within one trapping potential only incoherent sources of
magnetron motion would be visible, like magnetron motion due to reservoir diocotron. The
entire dataset was taken with one reservoir, and a reservoir diocotron is visible in the last
three movement times measured, 0.7ms, 0.1ms, and 5ms. Thus we see a bigger spread in
these points.

The raw data from this experiment is shown in Fig. 2.17, and the resulting magnetron
radius induced by the movement across the electrode misalignment is shown in Fig. 2.18. The
data isn’t sufficient for finding a real power law, but having vaguely plotted 1/T and 1/T 2

power laws, it seems that 1/T is more consistent with the data. As we will see in Sec. 3.3,
1/T is the expected result for changes to the magnetron center which are continuous but
not differentiable, which is exactly how movements between electrodes are performed. After
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Figure 2.16: In this plot, only the horizontal position from Fig. 2.15 is plotted versus the
axial position. The radius of each electrode is provided below the electrode numbers, in
particular to highlight where the radius changes.

I collected this data, I typically moved clouds at a speed of 2.5–5ms per electrode, and I
never encountered this kind of initial cloud magnetron again.

The technique described here might actually act as a useful tool for measuring trap
misalignment. Moving very quickly along the trap axis—as quickly as the electrodes can
change voltage, or about 10µs—could be used to measure the derivative of x0 and y0 with
respect to z0 in Eq. 2.8. This could be compared to, or used to supplement the measurements
described in Sec. 6, which can be interpreted as absolute measurements of x0 and y0.
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Figure 2.17: The data taken while measuring the magnetron motion induced by moving
quickly across the electrode 19/electrode 20 boundary. Each subplot lists a different amount
of time taken to move between the center of electrode 19 and the center of electrode 20. For
each color, the clouds are trapped with a different trapping potential (a different k2, and hence
a different ωr just before imaging). For each of these trapping potentials, the experiment is
repeated four times, and the clouds centers are recorded above. The horizontal and vertical
axes have been converted from pixels on an MCP image to microns of displacement inside
the trap. A circle is fit to the data from each subplot, and the center of the circle is marked
with a red X.
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Figure 2.18: The circle radii from Fig. 2.17 are plotted versus the movement time across
the construction error. An “eyeball fit” of a 1/T power law and a 1/T 2 power law (plus an
offset) is included to show that 1/T is more consistent with the data.
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3 Patch potential measurements

“Patch potentials” are variations in the electrostatic potential along the surface of a nomi-
nally conductive material. They have been shown to perturb the motion of free falling test
masses in satellites [53, 54, 55]. They also pose a challenge to measurements of the Casimir
mechanism, where the force between two metal plates separated by a very small distance is
measured [56, 57, 58, 59]. Patch potentials also make it nearly impossible to measure the
effect of gravity on free charged particles [60, 61, 62]. They have been shown to move charged
particles off-center in radio frequency traps, causing increased ion micromotion [63, 64]. I
should note that when ions are laser cooled in microfabricated ion traps, they are often more
sensitive to electric field noise, not DC offsets, emanating from conducting surfaces [65],
which I consider to be a separate phenomenon. In Ref. [66], patch potentials in a Penning
trap are blamed for degrading measurements of a trapped ion’s cyclotron frequency. Finally,
in Ref. [67], the authors observe a shift in the bounce frequency of charged particles in a a
Penning trap that they attribute to patch potentials.

My original technique for measuring patch potentials has been published in Ref. [68].
These results are also discussed in this thesis, but with some improvements to the quality of
the data. Additionally, I will discuss observations of patch potentials in ALPHA-g; for an
unknown reason, much larger patch potentials patch potentials were observed in ALPHA-g.

3.1 Motivation for measuring patch potentials

The first novel thing I ever measured with clouds extracted from a reservoir was electric fields
produced by patch potentials in the ALPHA-2 Penning-Malmberg trap. This measurement
was performed during the summer after I graduated from undergrad (the summer before
I started my PhD). The project I was assigned as an undergrad was to figure out why
antiprotons created by photoionization of antihydrogen escape the ALPHA-2 trap. I made
a simulation, and I included a number of errors in the magnetic field (misalignments, higher
order moments, etc.), as well as a model for the electrical noise from the electrode amplifiers.
No reasonable errors could cause the antiprotons to escape the trap—the axial solenoid
and the weak trapping field [O(10mV)] produced by the electrode voltages applied during
spectroscopy experiments was easily strong enough to confine antiprotons indefinitely.

At the time, the collaboration was measuring the 1S–2S two-photon transition in antihy-
drogen [10, 11, 12]. Another mystery the collaboration was contending with was that after
a few hours of laser exposure, the antihyrogen trapping rate would drop. Eventually the
collaboration figured out that this was due to positron temperatures increasing. After this
realization, the collaboration began routinely measuring “positron heating rates.” A positron
plasma is adiabatically expanded by transitioning from a deep trapping potential where the
plasma has reached an equilibrium temperature to a shallow trapping potential where the
plasma is much longer. Then the positron plasma temperature is measured 1, 2, 5, and 9 s
after that transition. The results of this study are shown in Fig. 3.1. We see that when
the 1S–2S laser is not actively being used, positron temperatures after 9 s remain roughly
constant. Then in the days where 1S–2S spectroscopy is being performed, the temperatures
steadily rise. The temperatures can also be restored to normal by warming the trap from
cryogenic temperatures to room temperature; thus the temperature of the walls of the trap
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is also plotted (and it is a somewhat humorous coincidence that the trap’s temperature can
be plotted with the same vertical scale as positron temperatures). When I asked around
for what people thought was causing the temperature increase, some people suggested patch
potentials were the culprit, and some suggested that the trap’s vacuum was worsening.
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Figure 3.1: Positron temperatures after adiabatic expansion followed by 9 s of heating are
reported from the 2017 1S–2S data taking campaign. Times when the 1S–2S was actively
being used for spectroscopy are highlighted in red. Positron temperatures are plotted with
green dots along with a statistical fitting errorbar. Trap temperatures are indicated with a
blue line, only for the purpose of seeing when the trap is warmed to 300K.

Around the same time, a postdoc was given a few hours of experimental time to perform
an experiment that would shed some light on my undergraduate project. He simply prepared
an antiproton plasma, then he put it in the same weak trapping field that is used during
antihydrogen spectroscopy. The detector confirmed that these antiprotons hit the walls of
the trap after about 20ms. The phenomenon was also dependent on which electrode the
antiprotons started in—in some locations it took several seconds to start seeing antiproton
annihilation events. In hindsight, presumably in some locations either electrode offsets or
patch fields themselves created traps for antiprotons.

I had the following idea: if very shallow trapping potentials cause antiprotons to hit the
trap wall, but in strong trapping potentials plasmas are quiescent for long periods of time,
then maybe intermediate strength trapping potentials will cause plasmas to move off-axis
by an observable distance. Dr. Eric Hunter [4] was also at ALPHA at the time, and he
had just implemented a reservoir for ECR. I decided to use Dr. Hunter’s electron clouds
for this experiment, mostly because it would allow me to image many clouds while varying
the strength of the trapping potential. I don’t think I understood at the time just how well
my experiment was designed. Had I used any other plasma available to me (antiproton,
electron, or positron plasmas nominally in use at ALPHA), the measurement wouldn’t have
worked; the space charge voltage would have been too high, and the plasma would simply
evaporate and expand when placed in a shallow trapping potential. My choice of using
0.3–2V trapping potentials to move the clouds off-axis was also absolutely perfect, and if I
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remember correctly it was chosen absolutely arbitrarily.
Such a choice can be justified post-hoc by saying that 20ms is the time needed for an

antiproton to E × B drift to the trap wall due to an electric field from patch potentials.
Thus 20ms = Rw/(|Ep|/B); Ep ∼ 10mV/cm. 0.3–2V trapping potentials are a good order
of magnitude for producing displacements that are significant compared to the nominal
variability of cloud positions, but this still leaves clouds within the imageable region of the
MCP.

For small displacements, the displacement of a cloud from the center of the trap due to
patch potentials can be explained with the following simple model. Near the center of the
trap, the potential due to the electrodes, the “trap potential,” can be approximated by (in
cylindrical coordinates):

ΦT (z, r, θ) ≈ −k2

(
z2 − 1

2
r2
)
, (3.1)

where k2 is the “trap constant.” As described in Sec. 1.2, in such a trapping field, an electron
cloud will E×B in circles, a with a frequency ωr = k2/B, where B is the magnitude of the ẑ
directed magnetic field. This is called the “magnetron motion.” Unlike the potential due to
the electrodes, a perturbing potential due to patch potentials on the surface of the electrodes
can generate terms which are not azimuthally symmetric (terms which are functions of the
azimuthal angle θ). However, we believe that these patch potentials physically lie on the
electrode surface, so just like higher order terms in the trap potential, higher order terms
generated by the patch potential are suppressed by r, z/Rw, where Rw is the trap wall radius.
The lowest order term generated by patch potentials is simply a constant electric field of
magnitude ε:

ΦP (z, r, θ) ≈ εr cos θ. (3.2)

I have neglected another term of nominally the same order which might be written εzz,
which has no physical consequence unless higher order terms are included in the trapping
or patch potentials. Because E × B drift is perpendicular to E, E × B drift orbits follow
electrostatic equipotentials. Given the leading order models for ΦP and ΦT , equipotentials
are circles which are displaced from the true trap center r = 0 by a distance δ = ε/k2. Under
this model, we can move clouds off axis by decreasing k2, then we can image how far off-axis
the clouds moved with the MCP. Because we cannot image plasmas that are displaced from
the trap center by more than a few millimeters, and the trap wall radius is Rw = 2.2 cm, this
leading order model is likely to be sufficient for explaining the results of such a measurement.

Fig. 3.2 illustrates the procedure performed on a single cloud to measure patch potentials.
The following sections contain more detail about how ε can be extracted from many imaged
clouds which have been subjected to the same procedure.

3.2 Antiproton loss due to patch potentials

Our order of magnitude estimate for the electric field due to patch potentials was ε ∼
10mV/cm, and the trapping field present during antihydrogen spectroscopy was of order
k2 ∼ 1mV/cm2. The linear estimate described above suggests δ ∼ 10 cm (well beyond the
trap wall). Of course this simply means that this leading order estimate is invalid, and
antiprotons are likely to move chaotically until they eventually collide with the trap wall.
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Figure 3.2: Five steps in the procedure for measuring patch potentials are shown. For each
step, the upper plot shows the on-axis potential created by the electrodes in blue and the
potential perturbed by the presence of the electrons in red. The lower plot shows the electron
charge density. The size of electron clouds is exaggerated.
(a) An electron cloud is extracted from an electron plasma reservoir.
(b) The cloud is moved axially to a desired measurement location.
(c) The cloud is moved off-axis by subjecting it to a weak trapping potential where k2 = k2m.
(d) The trapping potential is quickly returned to a “deep” trapping potential, and the cloud
orbits the trap center several thousand times.
(e) The cloud is released toward the MCP and imaged.

To investigate possible trajectories for antiprotons, I prepared a Boris algorithm [69, 70]
simulation of antiproton motion in the presence of patch potentials and a single confining elec-
trode of length 2 cm and radius 2.2 cm. Actually, to improve computation time, I increased
the mass of the antiproton to decrease its cyclotron frequency so larger simulation timesteps
could be used. This is unlikely to have any significant effect on the results; it remained true
in the simulation that ωc ≫ ωz ≫ ωr (the cyclotron frequency was much greater than the
bounce frequency which was much greater than the magnetron frequency). My model for
patch potentials was a 5×8 grid of square voltage perturbations. The squares are l = 2πRw/8
in length so that they entirely cover the cylinder from z = −5l/2 to z = +5l/2 = 4.3 cm,
long enough that including more patches would have a negligible effect on the electric field
near the center of the trap. Their voltages were sampled from a Gaussian, then for each
of the two shown simulations, the randomly generated voltages were scaled up so that the
transverse electric field near the center of the trap (ε) was the same between simulations.
The antiprotons were initialized near the center of the trap with e(1mV) of kinetic energy
in a random direction, the recoil energy they receive when a 2S antihydrogen atom is ionized
upon absorbing a third photon from the 1S–2S laser. The trapping potential is adiabatically
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decreased (as described in the next section) so that, at least according to the linear theory,
the magnetron radius should be conserved and δ should slowly increase.

Two examples of randomly generated potentials are shown in Fig. 3.3, and the results of
simulating antiprotons in these fields are shown in Fig. 3.4. A breadth of phenomena occur
in these simulations, only some of which are captured in these examples. The most obvious
fate for an antiproton is that of simulation (1). As the trap field weakens, the circular orbits
become elliptical. This occurs when the quadratic coefficients of the trapping potential in
the two transverse directions are not equal [Φ = kx(x−xc)

2+ky(y−yc)
2, where xc and yc are

the equilibrium point that the antiproton orbits in its magnetron motion]. Eventually, one of
these coefficients becomes negative, so the antiproton is now on a hyperbolic orbit which is
destined to hit the trap wall. In simulation (1), the antiproton’s displacement from the trap
center quickly deviates from the linear theory δ = ε/k2, because the electric field near the trap
center was much weaker than the electric field everywhere else. In simulation (2), the electric
field near the trap center guides the antiproton into a region where the patch-created electric
field was weaker, and the antiproton’s displacement fell under the linear theory. Eventually,
after surviving about 30 times longer than simulation (1), the antiproton finds the trap wall.
Some other, more rare phenomena also occur in other simulations. The antiproton can be
trapped forever in the potential created by the patch potentials alone. The antiproton can
be released from its confining potential in z into a much wider, but still confining potential in
z, suddenly changing its E×B drift orbit shape as it now averages over an entirely different
set of z values.

3.3 Adiabatic change to shallow well

In my first attempt to measure patch potentials at ALPHA, clouds were initially trapped by
applying 70V to two adjacent electrodes. In this deep trapping potential the well constant
is given by k2 = 70κ, where κ = 87mV/cm2 is the trap constant resulting from 1V applied
to two adjacent electrodes in ALPHA-2. I then linearly decreased the trapping potential
over the course of 100ms to a variable final “shallow” potential of 0.3–2V. The resulting
minimum k2 value I will denote as k2m. Next, I “snapped” the potential back to 70V as
quickly as the amplifiers can change potential. After waiting an additional 100ms, the clouds
were imaged by launching them toward the MCP/phosphor screen/CCD camera detector.
The results of this experiment are shown in Fig. 3.5. My logic at the time was crude. I simply
wanted to “jostle” the clouds off-axis. I hadn’t worked out the numbers on the timescale
of magnetron motion. So I was hoping that at least by doing one movement “slowly,” one
movement “quickly,” and waiting in-between, I maximized my chances of having some impact
on cloud locations that wouldn’t be cancelled out between the two operations. In this goal I
was successful. In hindsight, the linear ramp from 70V to the low voltage would have been
too fast for the cloud to retain its initial magnetron orbit. It would have been thrown out
to a higher radius magnetron orbit at a time which would be essentially random. Thus the
final imaging position of the cloud would be randomly distributed, although it would still
be true that the weakest k2m would, on average, result in clouds landing farther from the
center of the MCP.

When I called my advisor, Prof. Joel Fajans, he commended me, saying I had a great idea
to do the first movement slowly, because it might move the clouds to a well-defined initial
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Figure 3.3: The randomly generated patch potentials that antiprotons are subject to in
the simulation results shown in Fig. 3.4. The first row represents simulation (1), and the
second row is simulation (2). The first column shows the randomly generated potentials of
the square patches. The horizontal axis moves along the azimuthal angle (squares of length
2πRw/8), and the vertical axis moves axially. The second column shows the circular cross
section of the potential due to these patches at z = 0. The third column shows the resulting
electric field.

location, then after the fast movement the cloud might orbit the trap from a well-defined
starting location. I had not thought my measurement through that well, and Prof. Fajans’
idea, which he thought was my idea, would serve as the basis of many of the measurement
techniques presented in this thesis. However, the “slow” movement was not nearly sufficiently
slow; 100ms was plenty of time, but a linear voltage change moved far too quickly through
the last few volts, as I will explain in the following paragraphs.

When a Hamiltonian system has a periodic motion, and that Hamiltonian has a time
dependence which is slow compared to the periodic motion, a quantity called the adiabatic
invariant is conserved. This invariant is given by the action per cycle of the periodic motion:
S =

∫
pdq. It isn’t immediately obvious that our clouds’ magnetron motion is a Hamiltonian

system, because E × B drift is a velocity which is a function of time and space, unlike the
most typical Hamiltonian system which has a force which is a function of time and space
(then m times velocity is the canonical momentum of position). However, assume that
B = Bẑ, then vx = Ey/B, and vy = −Ex/B (where E is averaged over the even faster
bounce motion in z). Surprisingly, we have a Hamiltonian system where H = Φ(x, y)/B; x
and y are canonical conjugate pairs. Therefore, in the cloud magnetron orbit system, the
adiabatic invariant is simply the area of the orbit. Thus if we have a cloud which has some
small initial magnetron orbit of radius r, we can move the cloud away from the geometric
trap center without changing r by adiabatically decreasing the trapping voltage.
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Figure 3.4: The results of simulations of antiprotons moving in the patch potentials shown
in Fig. 3.3 and a slowly weakening electrode voltage. The first row represents simulation (1),
and the second row is simulation (2). The first column shows the motion of the antiprotons
in the transverse plane (the r, θ plane, or the x, y plane). A red X denotes the trap center.
The second column shows the resulting total radial displacement r of the antiprotons as a
function of time. A dashed line represents the linear theory ε/k2(t). The final column shows
the axial position of the antiprotons as a function of time. The colorbar on the right applies
to all three columns.

It is well known that the change in the adiabatically conserved quantity is suppressed
by changing the controlled parameter in a more differentiable way. This has been shown in
other nonneutral plasma systems[71, 72, 73], but there is also a significant body of litera-
ture [74] discussing this phenomenon for the quantum adiabatic theorem, because adiabatic
quantum computers use adiabatic changes of a Hamiltonian to perform computations [75].
One commonly used strategy is to set the derivative of one’s control variable to a polynomial
which has an n–degree zero at the start and finish of the “adiabatic ramp:”

Pn(x) = 22nxn(1− x)n, (3.3)
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Figure 3.5: The results of the initial patch potential measurement. Each dot represents
the center of a cloud seen on the MCP. The colors indicate the value of k2m used for each
cloud: 2.0κ (blue), 1.2κ (red), 1.0κ (green), 0.7κ (cyan), 0.5κ (orange), and 0.3κ (fuchsia);
κ = 87mV/cm2. All of the clouds subjected to 0.3κ missed the MCP or were otherwise lost.
The black outline is edge of the imageable region of the MCP—a combination of the bottom
of the camera, a metal bar occluding the MCP, and a circular aperture that clouds have to
pass through before hitting the MCP. This data is also presented in Ref. [68].

where x = t/T ranges from 0 to 1, and T is the total time taken to change the Hamiltonian
from an initial value to a final value. This strategy typically yields a change of the conserved
quantity which is suppressed like (1/Tω)n+1, where ω is the frequency of the periodic motion.

This is not quite as trivial for us as it is for most systems. Our control variable is the trap
constant k2, which is proportional to voltage through the linearity of the Laplace equation.
The displacement of the effective trap center is a function of k2: δ = ε/k2, but so is the
magnetron frequency: ωr = k2/B. To suppress adiabatic error, we can change k2 according
to:

dδ

dt
= ωrrmPn

(
t

T

)
, (3.4)

where rm is our adiabatic “small parameter.” If we have some initial magnetron radius r,
and rm is much smaller than r, then the initial magnetron radius will be conserved (with the
error begin proportional to some power of rm). Later with a simulation I will also discuss
the consequences of having a cloud initially at r = 0. After inserting the above equations
for δ and ωr, we get the separable differential equation:

−dk2
dt

ε

k3
2

=
1

B
rmP

(
t

T

)
, (3.5)

which is solved by: (
1

k2(t)2
− 1

k2(0)2

)
εB

2rm
=

∫ t

0

P

(
t′

T

)
dt′, (3.6)

k2(t) =

[
2rm
εB

∫ t

0

P

(
t′

T

)
dt′ +

1

k2(0)2

]−1/2

. (3.7)

Usually I have an initial k2(0) given by the the potential used to trap a cloud and a I have
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a desired final k2(T ) which is about two orders of magnitude smaller. The above equations
then tell us how long the adiabatic ramp needs to take:

T =
εB

2rm

Γ(2n+ 2)

22nΓ(n+ 1)2

[
1

k2(T )2
− 1

k2(0)2

]
. (3.8)

To test this theory, I set up a simulation of idealized E×B drift motion of electron clouds
in the transverse plane in the presence of a patch potential V = ϵ cos θ with ϵ = 10mV/cm
and a purely quadratic trapping potential where k2 is lowered from 10 to 0.05V/cm2 as
described above. Clouds are initialized at a distance 10µm from the trap center (all realistic
values), and rm is varied from 0.1µm (small compared to the initial radius) to 1mm (half the
entire distance that δ changes). Instead of directly implementing ∆x = Ey/B, ∆y = −Ex/B,
the E×B drift is implemented as a rotation about the current trap center, given by ϵ/k2(t).
I believe this technically forms a “symplectic integrator,” as it will never change a cloud’s
action (the area of the magnetron orbit) because of numerical errors. Additionally, to improve
computation time in the presence of drastically changing timescales, each timestep evolves
the angle by 0.005, rather than a fixed ∆t. The results of the simulation are shown in
Fig. 3.6.
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Figure 3.6: The results of the simulation of adiabatic changes to the the trapping potential
in the presence of a patch potential. Four different n values are simulated (see Eq. 3.3). The
red curve shows the final magnetron radius as a function of rm (see Eq. 3.7), with the cloud’s
initial magnetron radius set to 10−5m. The black dashed line shows a power law fit to the
local maxima. In order to get a good fit to the n = 0 data, several local maxima had to
be ignored. This is because the adiabatic error is clearly acting in the opposite direction to
the initial magnetron radius, so the fit function would only fit the maxima to the right of a
crossing point and the local minima to the left. Similar issues in the other datasets probably
explain why the fit power law is not exactly rn+1

m .

For me, there were several surprises in these simulation results. First, for higher n values,
rm can clearly be much bigger than the initial magnetron radius before the final magnetron
radius significantly differs from the initial. Next, the scaling of the final radius with rm does
not just apply when the change in magnetron radius is small; most analyses of adiabatic
theorem only consider a small change in the adiabatic invariant. All of this seems to indicate
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that, speaking very informally, the adiabatic error behaves like a vector whose length scales
like [ε/k2(T )]

−nrn+1
m (rn+1

m made dimensionally correct by multiply by powers of the total
change in magnetron displacement δ = ε/k2, not the initial magnetron radius). At first this
statement seems preposterous, because it implies that if n > 0, the adiabatic error decreases
with increasing total change of δ. However recall that T is also proportional to ε/k2

2(T ), so
the result is not so astonishing. Then the initial magnetron radius is another vector, and
the two are added together. It seems that for the n = 0 simulation, the adiabatic error is
always subtracted from the initial radius—the fit parameter A is negative. This is probably
just a coincidence of the chosen initial conditions.

The implementation of this adiabatic change in the voltage confining a cloud was the
initial justification for designing software that could programatically write voltage sequences
to be applied to the electrodes. The software which we use to set the voltage sequence applied
to the electrodes allows for linear changes of voltages versus time. The linear changes are also
implemented as a certain number of discrete voltage steps. Thus, the programmatic sequence
editor was made to approximate Eq. 3.7 as ten linear changes of the trap voltage. I could
have made one or two such sequences by hand, but I wanted to use 6 different k2m = k2(T )
values in many different axial trap locations.

I never really experimentally verified these power laws, nor did I experimentally vary the
number of linear ramps used as an approximation or the number of discrete steps in each
linear ramp. Usually I used n = 1 and I set rm to a value that that was smaller than any
reasonable initial magnetron radius. My choices were simply much better than necessary,
and I rarely saw any effect from adiabatic error. On the one or two instances where I saw
some adiabatic error, I simply made all three parameters better by a significant factor and
the issue went away (rm, number of linear ramps, and number of steps per linear ramp).
When I implemented EMPI (see Sec. 8), even if I optimized adiabatic ramps to be as fast as
possible with minimal error, they would take too long and they required too much FPGA
memory, so I simply had to use an entirely different strategy to move clouds off-axis.

Upon implementing the proper adiabatic k2 change, the data looks like Fig. 3.7, with
the spiral shape depending on where in the trap the measurement is performed. After
adiabatically decreasing k2 to a final minimum value k2m, the trapping potential was quickly
changed back to the maximum value of 70V. After the clouds spent 100ms in this deep
trapping potential executing a magnetron orbit, the potential was morphed to a “pre-dump”
potential over the course of 20ms, where the electrons were still trapped, but with the
surrounding electrodes set to a negative voltage (e.g. using voltages of −65, −65, 70,70,
−20,−20 on adjacent electrodes). At the end of the morph, the electrons were released
toward the MCP with about 20 eV of kinetic energy by changing the potential quickly to
−50V on the electrodes that were previously confining the electrons with 70V. At the time,
I was expecting that clouds would be at a well-defined radius (plus or minus the clouds’
initial variability in position), but with a random phase—a circle with some thickness. Until
that point, ALPHA had no evidence that electrode amplifier voltages and timings were
sufficiently reproducible to image clouds at a well-defined magnetron phase. In hindsight,
although electrode voltages often differ from intended voltages by tens of millivolts, they are
remarkably reproducible (at least at the 10−5 level). Although the timings of voltages are
affected by amplifier slew rates and bandwidths and low pass filters between the amplifiers
and the electrodes, the timings are reproducible at the nanosecond level. The results shown
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in Fig. 3.7 are evidence that the clouds are subjected to the same exact sequence of potentials
after snapping back to a deep potential, but that the magnetron frequency depends weakly
on the displacement from the trap center.

Figure 3.7: The results of the improved patch potential measurement with an adiabatic
change of k2 to k2m. Each dot represents the center of a cloud seen on the MCP. The colors
indicate the value of k2m used for each cloud: 2.0κ (blue), 1.2κ (red), 1.0κ (green), 0.7κ
(cyan), 0.5κ (orange), and 0.3κ (fuchsia); κ = 87mV/cm2. This data is also presented in
Ref. [68].

3.4 Patch potential measurement analysis

A single patch potential measurement, shown for example in Fig. 3.7, involves imaging 360
clouds. Six different k2m values are used, and for each k2m value, 60 clouds are imaged after
being subjected to identical electrode potentials. In the images, the center of each cloud is
identified, and we aim to measure the strength of the patch potential from the distribution
of cloud centers. The caption of Fig. 3.8 shows the process of identifying the center of a
plasma from MCP images.

In principle, we could identify the trap center using a collection of clouds imaged without
being moved off axis, then find just one k2m value where the clouds are displaced from the
trap center by much more than their initial position variability. The average displacement
of the unmoved clouds from the moved clouds would be a measure of δ = ε/k2m. However, I
designed a more elaborate analysis scheme, which certainly makes more efficient use of the
data, especially when none of the k2m values exhibit the perfect degree of displacement for
the simpler analysis. It also allows for identification of the spiral shape evident in Fig. 3.7
simultaneously with measuring ε. In the following paragraphs, in the process of describing
how electron clouds move during a patch potential measurement, I will construct a proba-
bility distribution that will later be fit to their positions on the MCP to measure the electric
field created by patch potentials ε.

Even before being put in a shallow trapping potential, the clouds have some initial mag-
netron radius. In the original patch potential measurement technique, this initial magnetron
motion had a random phase and radius. The reasons for this initial distribution were not
known at the time of the first patch potential measurements, but they are now (see Sec. 2.3).
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Figure 3.8: The image on the left is an example of a picture produced by imaging an electron
cloud on the MCP (zoomed in by about a factor of two). The cause of the fainter bright spots
to the right is ultimately unknown—further discussion of these spots is in Sec. 9.1. However
we have reason to believe that only the bright central spot reflects the position of the charges
inside the trap. Therefore to select the central spot alone I find the largest region of pixels
with a brightness above some threshold. The binary image of pixels above the threshold is
the second image. In some cases I simply find the center of mass of this selected region. In
other cases I fit a “power Gaussian” I(x, y) = exp{−[(x − x0)

2 + (y − y0)]
n/2/σn} to the

pixels in and near the selected region. In this case, the center of mass is used, which is shown
with a red dot in the third image along with only the larger of the two regions in the second
image. This data is also presented in the supplementary material of Ref. [68].

In the analysis of this data, I assume that the initial distribution is Gaussian:

P1(x, y;x0, y0, σ) =
1

2πσ2
exp

[
−(x− x0)

2 + (y − y0)
2

2σ2

]
. (3.9)

The above equation describes the differential probability of a cloud being located at location
x, y. The rest of the parameters of P1 are fit parameters. x0 and y0 need to be fit parameters
because we do not know a priori what position on the MCP corresponds to the center of the
trap.

Next, when the trapping potential is adiabatically weakened, this distribution is shifted
by a distance ϵ/k2m. Because the current measurement is not sensitive to the direction of
this patch field, we can define this to be the x̂ direction:

P2(x, y; k2m;x0, y0, σ, ε) =
1

2πσ2
exp

−
(
x− x0 − ε

k2m

)2
+ (y − y0)

2

2σ2

 . (3.10)

Note that I have introduced another semicolon in the parameters of P2, this time for k2m,
which is an experimental knob—I will fit the same probability distribution to the landing
positions of several imaged clouds subjected to several different k2m values. During the
120ms that the clouds sit in a deep trapping potential, they orbit the trap center roughly
7000 times, but the orbit frequency depends weakly on the distance from the trap center
r =

√
x2 + y2 because of higher order terms in the trapping potential. The small change in

the magnetron phase with r after 120ms is evident as a spiral in Fig. 3.7. Consider a leading
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order model of the deep trapping potential:

ΦT = −k2

(
z2 − 1

2
r2
)
+ k3

(
z3 − 3

2
zr2
)
+ k4

(
z4 − 3z2r2 +

3

8
r4
)
+ · · · . (3.11)

For several years I was not aware that the k3 term would have an effect on the spiral shape.
It does because it gives rise to an r dependent z equilibrium ⟨z⟩ = −3k3r

2/(4k2). To leading
order the angular frequency is given by:

ωr(r) =
k2
B

− 6
k4⟨z2⟩
B

+

(
9

4

k2
3

k2B
+

3

2

k4
B

)
r2 + · · · , (3.12)

Therefore we add an r-dependent rotation (rotation angle θ0 + kθr
2) to the probability

distribution:

P3(x, y; k2m;x0, y0, σ, ε, θ0, kθ) = P2

([
cos(θ0 + kθr

2) − sin(θ0 + kθr
2)

sin(θ0 + kθr
2) cos(θ0 + kθr

2)

] [
x
y

])
. (3.13)

This function often performs poorly because the spiral arms become very thin; for large r
the spiral thickness is σ/rkθ. When this becomes small compared to errors in our ability to
identify cloud centers, clouds that are obviously along a spiral arm are assigned an astro-
nomically small probability density. Thus a simple smoothing procedure is implemented in
the final probability distribution that will be fit to the data:

P =


1

(5 pixels)2kθr

∫ (5 pixels)kθr

−(5 pixels)kθr
P3

([
cos θ − sin θ

sin θ cos θ

][
x

y

])
dθ (5 pixels)2kθr < 2π

1
2π

∫ 2π

0
P3

([
cos θ − sin θ

sin θ cos θ

][
x

y

])
dθ (5 pixels)2kθr ≥ 2π

(3.14)

The first case sets a minimum spiral arm width of roughly 5 pixels. The second case covers
the situation where the spiral can no longer be resolved and so we simply average over the
entire circle. Curiously, the second integral can be completed analytically with the Jacobi-
Anger expansion.

This probability distribution is then fit to a dataset, usually consisting of 360 cloud cen-
ter positions spread across 6 k2m values. This fit is done by maximizing the log likelihood
function: the sum of the log of P (x, y; k2m;x0, y0, σ, ε, θ0, kθ) for each datapoint. The maxi-
mization was performed using a kind of modified Levenberg-Marquardt algorithm. Frankly
the algorithm became more complicated over time and I implemented a wide variety of strate-
gies to find the optimal fit parameters. The entire algorithm is not worth discussing here.
The result of this fitting procedure is shown in Fig. 3.9 for four patch potential measurements
performed in different axial locations in the ALPHA-2 trap.

In most patch potential measurements, some clouds are too far from the center of the
trap and they do not reach the MCP. These clouds are assigned a proper probability (as
opposed to a probability density), defined as one minus the integral of P over the region of
the MCP that clouds could be imaged on—i.e. the probability of clouds missing the MCP
altogether. There are several reasons that a cloud might not be visible in an MCP image. In
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both ALPHA-2 and ALPHA-g, the clouds have to pass through a circular aperture between
the MCP and the trap. In Sec. 3.5, I will explain that clouds follow magnetic field lines
between the trap and the MCP. Therefore, if the cloud is released from the trap and it is on
a magnetic field line that does not pass through this aperture, the cloud will be blocked from
reaching the MCP. In ALPHA-g, this is the only reason that clouds are not seen in MCP
images. In ALPHA-2, there are three other relevant obstructions: (1) there is a metal bar
partially occluding the MCP; (2) the camera is not perfectly positioned, and some clouds
simply land “out of frame;” (3) some clouds pass through the aperture, but miss the MCP,
which is also circular. Because of imperfect alignments, when a cloud is sent from the center
of the trap to the MCP, it does not pass through the center of the aperture, and it does not
land in the center of the MCP. In both ALPHA-2 and ALPHA-g, when a cloud inside the
trap is further off-axis than about 1–2mm, it might not be successfully imaged.

(a)i (a)ii (a)iii

(a)iv (a)v (a)vi

(b)i (b)ii (b)iii

(b)iv (b)v (b)vi

(c)i (c)ii (c)iii
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Figure 3.9: Four datasets used to measure patch potentials at four trap locations in ALPHA-
2. Unlike in Fig. 3.7, each subplot of each dataset shows clouds’ imaged positions after being
subjected to a single k2m value. The k2m values and the colors are the same as in Fig. 3.7.
The grey blobs with colored outlines are the 90% confidence interval of the probability
distribution fit to the data from all six k2m values. This data is also presented in the
supplementary material of Ref. [68].
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3.5 MCP imaging and distance calibration

In the previous section, three physically relevant quantities are extracted from distributions
of imaged electron cloud positions: kθ, ε, and σ. However, they are fit to the positions of the
clouds in camera images, and at the moment, their units are rad/pixel2, pixel V/m2, and pixel
respectively. Thus to measure the physical strength of patch potentials, we must estimate
the relationship between pixels on the camera images and transverse distance inside the trap.
A first obvious step is to find a feature in the images whose size is known. For us this is a
circular face of the back of the phosphor screen, shown in Fig. 3.10. This can convert between
pixels and mm outside of the trap. However, when electrons are imaged on the MCP, they
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Figure 3.10: The MCP for ALPHA-g. The highlighted circular face is 44.45mm in diameter.
The horizontal and vertical axes are pixels.

follow magnetic field lines. Because the MCP is outside of the main Btrap = 1T magnet for
the Penning-Malmberg trap, the magnetic field at the MCP BMCP ∼ 0.01T is much lower,
and magnetic field lines expand by a factor of

√
Btrap/BMCP ∼ 10. This argument assumes

that the guiding center approximation is good for describing the motion of the electrons.
This relies on the magnetic field changing slowly compared to the cyclotron frequency:

1

B

dB

dt
≪ ωc → a =

dB

dx

√
2mE

qB2
≪ 1, (3.15)

where E is the dump energy of the electron, and dB/dx is the change of the magnetic field
along the electron’s path, and a will be referred to as the “adiabatic parameter.” At a typical
dump energy of 20 eV, the electrons cover the 2m distance to the MCP in about 700 ns, and
the maximum value of a is about 0.01. This explains why antiprotons separate from electrons
when a mutual plasma of electrons and antiprotons is imaged, as well as why the electron
plasmas image as perfect circles but the antiprotons become ovals or even more complex
shapes. For antiprotons, a approaches 0.5 near the MCP because of the scaling with m. An
example of electrons and antiprotons imaged together on the MCP is shown in Fig. 3.11.

Even if the guiding center approximation is valid, there are “guiding center drifts” that
might effect electrons’ trajectories. First I’ll consider curvature drift. Because the magnetic
field doesn’t have any significant turns, the curvature comes from field lines expanding and
contracting with the changing magnetic field magnitude. For an electron which was initially
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Figure 3.11: An MCP image from the ALPHA catching trap of a mutual plasma of electrons
and antiprotons. The brighter ring are antiprotons, and the dimmer circle is the electron
plasma. Inside the trap, both species form a circular plasma, and antiprotons have centrifu-
gally separated from the electrons [76, 77, 78]. On the MCP, the two have separated, and
because the guiding center approximation is much better for electrons, their shape on the
MCP remains representative of their shape inside the trap.

displaced from the trap center by 2mm, the minimum radius of curvature for our magnetic
field lines is about 7m. When I integrate the curvature drift using a model of the magnetic
field in ALPHA-2, I get a total curvature drift of 26µm.

E×B drift is harder to estimate exactly, but probably much more significant. An electric
field of 1.3V/cm along 20 cm near the end of the electron’s trajectory where the magnetic
field is about 0.01T deflects the electron by 1mm. It is entirely plausible for such an electric
field to come from some charged-up piece of equipment, and the electric fields from the MCP
itself are likely this big (it is charged to 100V in the front and the phosphor screen in the
back is at 5000V). In both cases—E×B drift and curvature drift—the real concern would
be gradients in the drifts imposing a different drift velocity on electrons which will land in
different places on the MCP. We know these gradients are small not only from imaged cloud
distributions but also from the nice circular shape of large electron plasmas imaged with the
MCP.

To test these assertions about electron dumps to the MCP, I prepared a Boris algorithm
simulation [69] of electrons being sent from the trap to the MCP. ALPHA had a preexisting
magnetic field model of the entire beamline that electrons are dumped along, but that model
could only be evaluated on-axis. Therefore, I approximated the on-axis potential with a
series of well-placed solenoids. To improve the agreement, I performed gradient descent,
allowing the lengths, radii, and positions of the solenoids to change in order to reduce the
difference between my model’s on-axis magnetic field and ALPHA’s standard model. The
final agreement between my multi-solenoid model and the on-axis magnetic field model was
excellent. Then I sent electrons with 20 eV of axial energy and 2 eV of energy perpendicular
to the magnetic field from the interior of the trap to the MCP. The MCP was approximated
with a point charge located 5mm behind the nominal location of the MCP. The magnitude
of the point charge was scaled so that electrons are accelerated by 100 eV by the time they
reach the MCP (this is the voltage actually applied to the front of the MCP). This model
for the MCP is crude, but it should give the correct order of magnitude for the gradients in
the MCP’s electric field. The results of this simulation are shown in Fig. 3.12. To see how
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distances inside the trap translate to distances outside the trap, I simulated two electrons
displaced from the trap center by 1mm in opposite directions, and I tracked how their
distance evolved over the length of the beamline. The same simulation was performed on
antiprotons dumped at a typical energy of 50V to show how their trajectories follow field
lines less precisely, and their magnetic moment isn’t as precisely conserved. The results of
the simulation are shown in Fig. 3.13.
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Figure 3.12: On the left, the distance between two electrons released from the trap simul-
taneously is plotted in blue. The electrons are initialized 2mm apart. The theoretical
prediction that this distance scales like

√
1/B(z) is plotted with an orange dashed line. On

the right, the blue line shows the magnetic moment µ of one of the electrons, which should
be conserved as long as changes in the electric and magnetic field in one cyclotron orbit
are small. The kinetic energy directed perpendicular to the magnetic field is also plotted in
orange. The green line is the adiabatic parameter given in Eq. 3.15; the right vertical axis
corresponds to the adiabatic parameter only. The clearly visible fluctuations in µ are the
result of a component of the electric field perpendicular to the magnetic field, so the electron
gains and loses energy as it moves up and down in that electric field. This does not strictly
represent non-conservation of µ, which should be averaged over a cyclotron orbit. In fact,
this gain and loss of perpendicular energy is exactly the mechanism underlying E×B drift,
which the text suggested was the most likely cause of any deviations from field lines. Thus
this is likely why a tiny deviation from the orange dashed line is visible at the very end on
the left.

The aforementioned magnetic field model is not generally considered to be reliable. It
relies on modelling the magnetic field produced by several magnets very far from their
centers, and those magnets may be slightly misaligned. It has never been experimentally
verified in any way—which would require moving an accurate magnetic probe along the
enclosed vacuum region which hasn’t been opened or disassembled for many years. We
believe that the magnetic field is plenty strong that electron positions inside the trap are
scaled up by exactly

√
Btrap/BMCP, and Btrap is measured precisely with ECR, but we don’t

believe that magnetic field models give a precise prediction for BMCP. Luckily the patch
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Figure 3.13: The same plots as Fig. 3.12, but this time antiprotons with 50 eV are simulated
instead of electrons with 20 eV. As a result of the scaling with m, the adiabatic parameter
is much higher, and the magnetic moment µ is less precisely conserved. At the end of the
simulation, µ climbs to 1000 times its original value (showing this would make everything
else too small to see).

potential measurements themselves provide a way of calibrating this.
The spirals shown in Fig. 3.9 were already explained as resulting from a small variation

in ωr with r in the form ∆ωr ∝ r2. The fit parameter kθ from the previous section can be
related to the electrostatic field used to trap the electron clouds through Eq. 3.12. Given
that we measure the final magnetron phase of the clouds, not their frequency, we find that
kθ is given by:

kθ =

∫ TD

T0

dt

(
9

4

k3(t)
2

k2(t)B
+

3

2

k4(t)

B

)
(3.16)

where T0 is the moment when the trapping potential snaps from k2m to a deep trapping
potential, and TD is the moment when the cloud is imaged on the MCP. Therefore, by con-
structing an electrostatic model of the on-axis potential due to the electrodes, we can come
up with a predicted value for kθ, this time in units of rad/mm2

trap (radians per millimeter of
transverse distance inside the trap squared). The spiral constant kθ extracted from distribu-
tions of cloud positions on the MCP comes in units of rad/mm2

MCP (radians per millimeter
of transverse distance on the MCP squared). Thus we can divide the prediction by the
measurement to find the magnetic field ratio between the inside of the trap and the MCP:
kθ predicted/kθmeasured = mm2

MCP/mm2
trap = Btrap/BMCP.

In ALPHA-2 this data was collected incidentally. I simply integrated k3 and k4 as a
function of time for the procedure shown in Fig. 3.2. Some, but not all, of the data had
“moderate spirals” which were large enough to be measured with small statistical errors
but small enough that they could still be resolved. However, in ALPHA-g I found a much
better way of doing this measurement. I will go into more detail on the ALPHA-g magnetic
field calibration, because this is how anybody else should do it going forward. In ALPHA-g,
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instead of finding a predicted spiral constant for an entire sequence of potentials, I varied
the time that clouds spent in two fixed trapping potentials. Then instead of comparing a
full predicted spiral constant to an observed spiral constant, I found the difference in spiral
constant that was accumulated by clouds spending extra time in a static trapping potential.
Trying to predict k3 and k4 for changing trapping potentials invites systematic errors.

The entire sequence of potentials that clouds were subjected to is shown in Fig. 5.16.
For the present discussion, suffice to say that after transitioning from a shallow potential to
a deep one, the trapping potential was morphed to one with a negative k4 then to another
trapping potential with positive k4. Both potentials had zero k3 due to symmetry. A variable
amount of time was spent in those deep wells: a time tpos was spent with positive k4, and tneg
was spent with negative k4. Unlike in ALPHA-2 these potentials were modelled before being
used, so the amounts of time were chosen specifically to make moderate spirals that would
be easy to measure. Because the “positive well” had k4 = 1.28×108V/m2, but the “negative
well” only had k4 = −1.99×107V/m2, tneg was changed in larger steps than tpos—this is just
a consequence of the geometry of the electrodes. The data collected in this experiment is
shown in Fig. 3.14. It is visually obvious that the spread in cloud positions is much smaller
than in the ALPHA-2 data. This is explained in Sec. 3.8. One beneficial outcome of this
was that in ALPHA-g, I did not have to use the complicated probability distribution fit
described in the the previous section. Rather, I could simply measure the magnetron phase
of each cloud, plot it against their distance from the trap center, and fit θ = kθr

2 +mr to
the resulting data. This fit is also shown in Fig. 3.14. Until now, no justification has been
given for the linear term mr. This phenomenon is somewhat complicated to explain, but a
somewhat speculative explanation is provided in Sec. 5.4.3.

Next, Fig. 3.15 shows the magnetic field magnification measured using the data shown
in Fig. 3.14. Additionally, some of the same measurements were performed with a different
magnetic field at the MCP. In ALPHA-g, three controllable magnets are near the MCP
which affect its total magnetic field. Two wider short solenoids, about 60 cm in diameter are
located just above and below the MCP. One smaller short solenoid, about 30 cm in diameter,
is located further below the MCP. Fig. 3.15 shows the measured magnetic field at the MCP
with and without this smaller magnet. The datapoints in Fig. 3.15 come with vertical error
bars given by the statistical fitting error from the fits shown in Fig. 3.14. These statistical
fitting errors are then propagated into the measured rate of change of kθ in each trapping
potential. When measured spiral constants are plotted versus predicted spiral constants
(3/2)k4t, the magnetic field ratio is simply the reciprocal of the slope of the data.

In this final step, an additional 1% error is included because this is roughly how reliable
I think my numerical methods for predicting k4 are. This comes from two effects—first, I
compared a COMSOL model to an analytic model of the electrodes and found roughly an
0.5% difference. Second, the COMSOL model outputs a discrete grid of voltages along the
trap axis. The fourth derivative of a discretized function is highly numerically unstable, and
one needs to plot the fourth derivative as a function of how many points are used to estimate
it to find a value that has converged, but hasn’t yet become sensitive to small numerical errors
in the individual points. I get an additional 0.5% error from this process—the difference I
get from using different extrapolation methods. The COMSOL model has a more complete
description of the electrode geometry, but the analytic model has no such numerical issues;
this is why they are both useful. The field ratios extracted from the positive and negative k4
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Figure 3.14: In the upper plots, the positions of electron clouds on the MCP is shown for
the voltage sequence designed for calibrating the magnetic field at the MCP. Above each
plot, the time spent in the trapping potentials with positive and negative quartic constant
is shown. Below, the magnetron phase of each cloud is plotted versus their distance from
the effective trap center on the MCP. A black line shows the result of fitting a function
θ = kθr

2 +mr to the data.

potentials are nearly in agreement, but there is clearly a systematic error. The difference is
a reasonable order of magnitude for it to be due to patch potentials shifting k4. This would
shift k4 by a fixed amount in both trapping potentials, and it is likely to be a much more
significant effect in the negative quartic potential, where |k4| is smaller by about a factor of
6.

3.6 Patch potential measurement results in ALPHA-2

Finally I can describe the results of the patch potential measurements. We begin in the
ALPHA-2 experiment. As described in the beginning of this section, observations of de-
creasing antihydrogen trapping rates and increasing positron heating rates generated the
hypothesis that the laser used to stimulate the 1S–2S transition in antihydrogen was also
generating patch potentials on the trap electrodes, and warming the trap from liquid helium
temperature (4K) to room temperature (300K) could remove those patch potentials. A
depiction of the ALPHA-2 electrodes is shown in Fig. 3.16.

Our first patch potential measurements confirmed this hypothesis, as shown in Fig. 3.17.
Patch potentials were measured in a somewhat random handful of trap locations before any
laser exposure, after some laser exposure, and after warming and re-cooling the trap. A few
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Figure 3.15: The magnetic field at the MCP is calibrated using the fit parameter kθ from
the data shown in Fig. 3.14. For each point, the abscissa is calculated by modelling the
electrostatic potential, and the ordinate is calculated by fitting a quadratic function to
clouds’ angular positions on the MCP. The circular points show the measured kθ values for
the data shown in Fig. 3.14. The square points shown measured kθ values using an additional
magnet to boost the magnetic field at the MCP. The errorbars are statistical fitting error.
Along each line, the rate of change of measured kθ values with predicted kθ values is shown,
and the root magnetic field ratio (the MCP magnification factor) is extracted from that
slope. On the left tpos is varied, and on the right tneg is varied. Rather than directly listing
tpos and tneg, the horizontal axis is the predicted spiral constant given by (3/2)k4t/B. A
model of the magnetic field suggests MCP magnetic field magnification factors of 6.4 and 7.6
with and without the additional magnet. This is in good enough agreement with the values
measured here, although these measurements are probably more reliable.
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Figure 3.16: A depiction of the ALPHA-2 Penning-Malmberg trap electrodes. A cartoon of
the electron plasma reservoir and an electron cloud used for patch potential measurements
is included, but the reservoir’s radial extent is exaggerated, and the length and radius of the
electron cloud are exaggerated (else it would be little more than a pixel). A cartoon image
of the MCP is shown on the right. In reality, the MCP is much further to the right (about
2m away). The azimuthally segmented electrode, which will be used to create an artificial
patch potential is labelled. This picture is also presented in Ref. [68].
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additional observations beyond the laser induced patch potentials are evident here. First,
warming the trap to 300K and cooling back down to liquid helium temperatures does not
remove patch potentials. It restores them to a nominal value. Second, although there is
only one measurement shared between all three datasets in the smaller radius region of the
trap, it seems that patch potentials are not significantly changed by the laser in this region.
Finally, the nominal patch field is much stronger where the trap radius is smaller, which is
perhaps to be expected (the electrodes are closer to the center of the trap). It should be
noted that in ALPHA-2, there are two sets of “shorted electrodes,” where some construction
error has made it impossible to set these adjacent electrodes to a different voltage. This,
along with the desire to measure patch potentials between electrodes, required designing
shallow trapping potentials in several different electrode geometries—1V on a single electrode
provides a different k2m value than 1V applied to two adjacent electrodes. The fact that
the measurements in the center of electrode 13 and between electrodes 12 and 13 are similar
seems to confirm that this k2m calibration was successful. Indeed the patch electric field
should be a continuous function of axial position z, and it should vary significantly only
when z has changed by a significant fraction of the trap wall radius.
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Figure 3.17: The results of the initial measurements of the patch potential induced electric
field in the trap center (ε). The green + symbols are the measurements before any laser
exposure. The blue circles are the measurements after some laser exposure, and the red X
after warming the trap to 300K then cooling back to liquid helium temperatures. It was
difficult for me to find the power and total laser exposure time, as this data is very old. The
horizontal axis shows the electrode numbers. This data is also presented in Ref. [68].

These measurements were dramatically improved in 2022. During a brief interlude in
the ALPHA-g measurement campaign (due to some experimental issues with ALPHA-g),
we operated the ALPHA-2 trap, and I was given the chance to measure patch potentials
between periods of laser exposure. I should point out that the 1S–2S laser power is enhanced
by a Fabry-Pérot cavity. The first few measurements took place while the 1S–2S team
operated the laser, but without the cavity enhancement. Additionally, another ALPHA-2
team was working on laser cooling a plasma of Beryllium ions—one might wonder if their
laser, or ion loss, influences patch potentials. As shown in Fig.3.18, none of these actions
measurably increase patch potentials. A reasonable hypothesis is that patch potentials are
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generated by laser light which is “scattered” (diffusely reflected) by the mirrors. A casual
measurement by Prof. Steven Armstrong Jones at ALPHA suggests that the cavity mirrors
scatter 0.1% of the incident light. Without locking the cavity, the incident beam has an
intensity of tens of mW of power. With the cavity, this is hundreds of mW up to 1W. The
lasers operated by the Beryllium team are simply much lower power, and they are not an
ultraviolet wavelength—although we have no data proving this is a necessary condition.
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Figure 3.18: Patch potential measurements performed with the 1S–2S passing through the
trap, but not locked to the cavity. Some of the measurements from Fig. 3.17 are also shown
(refereed to as the “2017 results”), proving that the “nominal patch potentials” are stable
for years.

Next, we introduce laser exposure at about 0.6W of circulating power in the cavity.
Measurements of patch potentials were performed after 36 minutes, and multiples of two
hours beyond that. These results are shown in Fig. 3.19. We see patch potential strengths
throughout the trap that seem to scale with exposure time. Additionally, a measurement
was performed in 2023 after performing 1S–2S measurements with only 0.28W of circulating
power for about 6 hours. There is a small caveat in this data—there was a total of 18 hours
of laser exposure before the most recent warmup to 300K, but there was a trap warmup
to 150K after the first 12 hours. Altogether, this seems to suggest that a 150K warmup is
sufficient for removing patch potentials, and patch potentials are proportional to laser power
(as opposed to laser power squared for example). The measurements after 36 minutes of
exposure suggest that the patch field introduced by lasers is in a random direction that can
either add to or subtract from the nominal patch potentials. With enough laser exposure
patch potentials just grow over time, suggesting that the lasers create patch potentials in a
reproducible direction with a magnitude that grows over time.

A few other observations in Fig. 3.19 are notable. From left to right, we begin by noticing
that the patch field created by lasers at electrode 20 is much greater than elsewhere. This
makes sense because electrode 20 is the last electrode before the change in radius. There
is a metal plate facing straight toward the laser beam just to the right of electrode 20—a
lot of solid angle for the scattered laser light to hit. Next, the patch field in the center of
electrode 21, the first electrode with a smaller radius, is reduced by the laser. This is not
a measurement error, I have carefully inspected the data by eye. I have no explanation for
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this. Finally, lasers only seem to increase patch fields in the center of the trap, not the edges
where the trap radius is smaller. It may be that the laser light does not scatter at an extreme
enough angle to hit these regions.
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Figure 3.19: Patch potential measurements after varying amounts of laser exposure. The
brown points are a separate measurement campaign a year later with lower laser power. The
rest of the measurements are taken with varying amounts of time with about 0.6W of laser
power.

3.7 Patch potential measurement results in ALPHA-g

The ALPHA-g experiment, when I was working on it, did not involve lasers. Nonetheless
when we were trying to perform the first ALPHA-g measurement, we encountered a novel
issue with patch potentials.

The story begins with a general observation that working with positrons in ALPHA-g was
hard in 2021. First, it was hard to recapture positrons sent from the positron accumulator
to ALPHA-g. The potentials used do this in ALPHA-2 did not work. Eventually we found
success giving the positrons much less time to cool down, pushing them quickly into a shorter,
deeper trapping potential. Next, SDREVC compression on positrons was much harder—
the same SDREVC potentials and frequencies that worked in ALPHA-2 did not compress
positrons in ALPHA-g. Rather, these potentials rapidly expanded the positrons, and we
did not manage to compress them until we confined the positrons in a much shorter, deeper
trapping potential and we used a much higher rotating wall frequency. After that, positron
temperatures were much higher in ALPHA-g than in ALPHA-2: 500K versus 20K. Finally,
we were not able to produce any antihydrogen when combining positrons with antiprotons.

In hindsight, all of these observations are consistent with positrons rapidly expanding,
and thereby heating as their electrostatic potential energy is turned into heat. A collec-
tive obsession throughout the collaboration with positron temperatures, rather than imaged
positron plasmas, meant that there is poor data characterizing the expansion rate of these
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plasmas, although this was the underlying cause of all the issues. This was compounded by
collaboration-wide (including me of course) poor data-taking habits. Nobody was collecting
datasets that told a clear story about what was happening. People were desperate to try as
many new things as possible in the hopes that something would make the positron temper-
ature diagnostic report 20K so the plasma could be used to make antihydrogen. Everybody
was convinced that, or otherwise acting under the assumption that there was actually noth-
ing wrong with ALPHA-g that was preventing us from making cold positrons; we just hadn’t
yet found the one trick that would make it work. The best data I find that illustrates these
issues is shown in Fig. 3.20. These images show not only that positrons expand significantly
when left still for long periods of time, they show that when the positrons are confined
in weaker trapping potentials, that expansion rate is faster. For reference, in ALPHA-2,
positrons can be confined in any of these potentials for many seconds without any visibly
obvious expansion.

positrons after
rotating wall compression

40s in 70V
trapping potential

5s in 10V
trapping potential

1s in 2V
trapping potential

Figure 3.20: Positrons are imaged on the MCP after being subjected to a variety of trapping
potentials. First, we show the positron plasma resulting from rotating wall compression.
Next, these positrons spend 40 s in a “deep” trapping potential: −70V applied to one
electrode. Next positrons which spent only 5 s confined with roughly −10V. Finally, 1 S
trapped in a very shallow trapping potential. We also measured temperatures of identically
prepared positron plasmas. The initial temperature was about 400K. After waiting 40 s in
the deep trapping potential, they cooled to about 80K. Both of the final two plasmas had
temperatures around 700K.

Positron heating naturally led to the hypothesis that patch potentials were bad in ALPHA-
g. However, the hypothesis at first seemed a bit outlandish because the positron heating
issue was astronomically worse in ALPHA-g than it ever was in ALPHA-2. At CERN, the
delivery of liquid helium Dewars ends a few weeks after the accelerator beams stop operating.
This means that ALPHA can operate for a few weeks after the beam ends. I was given some
of this time to measure patch potentials, and we immediately found that patch potentials
were astronomically worse in ALPHA-g than they were in ALPHA-2. These initial patch
potential measurements are shown in blue in Fig. 3.21. We haven’t yet explained this issue or
seen it again. I hypothesize that either the electron gun or an MCP was “commissioned” (i.e.
tested with slowly increasing voltages) when the external magnet for the Penning-Malmberg
trap was deactivated but the electrodes were cold. Both of these pieces of equipment emit
charged particles, the MCP because it sparks while being first tested, and the electron gun
for more obvious reasons. When the external magnet is on, because of the trajectories of
magnetic field lines, it is nearly impossible for charged particles initialized outside of the

73



trap to find their way to the trap walls. With the magnet off, there is no such restriction,
and the trap walls may have been painted with electrons.
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Figure 3.21: Initial patch potential measurements after the 2021 experimental run are shown
with blue dots. Measurements taken after an 80K warmup are shown with orange X’s.
Measurements after electron stimulated desorption near electrode 35 are shown with green
triangles. The final patch potential strength is shown with red squares, and the results of a
crude measurement two months later are shown with black X’s. These crude measurements
have larger errors (not shown), so we should pay no attention to small disagreements with
the red squares. Note the nonlinear vertical axis, which was necessary to make all the
measurements visible in the same plot.

While this patch potential issue was unfortunate, it was a boon for my status at ALPHA.
It was my first year as a Ph.D. student, and I had diagnosed an issue that puzzled the
collaboration for an entire beam season. The political capital from this success is the only
reason I was allowed to perform any of the other measurements described in this thesis.
Without this, other cloud based measurements would have been considered too fanciful to
be worth experimental time.

Before the Christmas break at CERN, we tried two methods of reducing patch potentials.
First, we heated the trap from liquid helium temperatures to 80K (we didn’t have time to
go to 300K as we typically do in ALPHA-2). The patch potential measurements after this
operation are shown in orange in Fig. 3.21. Indeed, there was a significant improvement.
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Next, we tried hitting the trap wall with the electron gun on purpose. The results of this
experiment were somewhat odd, so they are discussed separately in Sec. 3.10.

Finally, after the Christmas break, we baked the entire ALPHA-g apparatus, warming
the trap electrodes to 350K. This reduced patch potentials to roughly the same order of
magnitude that they are in ALPHA-2. On this fourth measurement, I realized that I could
significantly reduce the number of clouds used to measure patch potentials in each axial
location because of the excellent cloud position reproducibility in ALPHA-g. Thus many
more axial trap locations were measured. Like in ALPHA-2, we find that this final patch
potential strength never changes. Fig. 3.21 shows the results of this fourth patch potential
measurement in red, and it shows a more crude measurement taken two months later in
black. After this traumatic experience with patch potentials, we periodically measured
patch potentials for a few months. For this purpose, I prepared a measurement that took
only two minutes of experimental time (one reservoir), where patch potentials were measured
crudely in 13 trap locations with 8 clouds each. However we eventually stopped this practice
out of boredom as the patch potentials never changed after many months, several warm-ups
to 80K and to 300K, and at least one additional bakeout. Unlike ALPHA-2, there are no
lasers in ALPHA-g to induce patch potentials.

3.8 Improved measurements in ALPHA-g

The patch potential measurements in ALPHA-g were much more precise than in ALPHA-2
because (1) the innate magnetron was much smaller, only about 5 pixels, and (2) the reservoir
showed no signs of any diocotron. This was not the result of any particular effort on my
part—it was just luck. This enabled a simpler form of analysis, where I would simply have a
predicted position for each cloud on the MCP given the fit parameter ε and the parameters of
the spiral, and I would minimize the distance from each point to its predicted position. This
is not strictly valid because it treats radial distance as equivalent to angular distance. In
the probability distribution from the ALPHA-2 fits, a cloud can freely move along the spiral
without radically changing its assigned probability density, but moving a small distance off
of the spiral does radically change its assigned probability density. Although the probability
distribution fit is technically more accurate, when the data is so high quality, this simpler
(and vastly less computationally costly) method suffices. Also, in ALPHA-g, clouds that
miss the MCP can simply be ignored. We have plenty of data for finding ε using only the
positions of clouds that do hit the MCP.

Also, several corrections were clearly visible in this data that we would never be able to
resolve with the initial cloud magnetron in ALHPA-2. First, when we go from a shallow well
where k2 = k2m to a deep trapping potential with k2 = k2i, the displacement is not exactly
ε/k2m. Rather, it should be δ = ε(1/k2m − 1/k2f ). This effect is visible in an offset of the
data to the right in the linear plot, and that offset is easily fixed by including this correction.
Next, in some datasets, a nonlinear correction to the displacement is visible. There are many
ways to include a nonlinear term in the fitting procedure, but because of my experience from
the artificial patch in ALPHA-2 (see Sec. 3.12), I decided that the best approach would be
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to allow for a pole in δ by using the fit parameter ε2 in:

δ = ε

[
1

1
k2m

− 1
k2f

+ ε2

]−1

(3.17)

This parameter can physically be interpreted as a k2 value imposed by patch potentials which
depending on its sign can either confine clouds without any applied trapping potential or
can eject clouds from the trap when k2m = −ε2. Finally, in a few datasets some higher order
deviation from the spiral shape θ = kθr

2 is visible. This is handled by simply including a
higher order term θ = kθr

2 + kθ4r
4. I will leave it as a somewhat obnoxious exercise for the

reader to derive how kθ4 depends on parameters of the trapping potential. The most obvious
term, but not the only term, comes from a perturbation to the trapping potential in the
form:

ΦT = · · ·+ k6

(
z6 − 15

2
z4r2 +

45

8
z2r4 − 5

16
r6
)
+ · · · . (3.18)

The effect was visible, but not so clearly visible that the measurements of kθ4 were reliable
enough to compare to a theoretical prediction. In Fig. 3.22, I show six examples of resulting
fits from some of the measurements shown in Fig. 3.21 along the orange line. Consider also
the fit shown in Fig. 3.23 from the first day of patch measurements, shown in blue in Fig. 3.21.
This example illustrates several things. First, I was trying to measure patch potentials in
more axial locations—four per electrode. Thus this location is named “E23/E24 right,” as
in the location between the center of E24 and the point between E23 and E24. Of course,
within my code, all of these locations simply have an index value. Second, the spread of
points is clearly larger than in Fig. 3.21. At the time, I wasn’t specifically studying the
phenomenon of scoop magnetron motion (see Sec. 2.3), so I didn’t look into potential causes
of this. I have two hypotheses for this difference:

1. My leading hypothesis for intrinsic scoop magnetron is that it is caused by patch po-
tentials near the reservoir. Since patch potentials were dramatically weakened between
these two measurements, this may be the cause of the larger spread in Fig. 3.23.

2. I may have used clouds with larger charge variability on the first day of measurements.
It is possible then that the clouds had the same intrinsic magnetron on both days, but
that it was phase locked in the later measurements.

The final difference between Fig. 3.22 and Fig. 3.23 is in the spacing of the cloud positions
on the left in Fig. 3.23. On this day I was trying a scheme where the clouds would be roughly
equally spaced along the spiral. To derive the sequence of k2m values needed to accomplish
this, consider that the difference between two clouds positions on the MCP is given by√
[∆r]2 + [∆(θr)]2. Now assume that when the spiral becomes strong, the second term

dominates. Since θ = kθr
2, we have ∆(θr) = ∆(kθr

3) ∝ r2∆r. Since r ∝ 1/k2m, we want
1/k2

2m∆(1/k2m) = const, or 1/k4
2m∆k2m = const. If we interpret ∆ as d/dn, where n is

the index of the k2m values (as in k2mn is the k2m value applied to the n’th cloud), we see
that k2mn = const/n3. While this produced a fairly beautiful result, it wasn’t ultimately
very useful. This is because with 128 clouds, we can only span a factor of about 5 in k2m
values. If we apply this, to get a decent measurement of ε, we need to know what values
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Figure 3.22: Six patch potential measurements are shown. For each of the six measurements,
the electrode number (the axial position of the measurement) is shown above. On the left,
the positions of the cloud centers in the MCP images are plotted with blue dots. The black
circle is the aperture outside of which no clouds can be imaged. The red line is the result of
fitting a spiral θ = kθr

2 + kθ4r
4, and the blue dashed line is that spiral without the quartic

term. On the right, the displacement of each cloud from the origin of the spiral is plotted
versus 1/k2m − 1/k2f , which should be proportional to displacement in the leading order
model. Blue dots at displacement 0 on the right plot represent clouds which missed the
MCP. In this right plot, the red line is the nonlinear fit presented in the text, and the blue
dashed line is the result of setting ε2 to zero.

we expect. This required a preliminary measurement followed by an improved measurement
where the range of k2m values was adjusted based on the initial measurement. Practically,
it is more beneficial to space our k2m values exponentially to cover the widest range of ε
values possible, but I maintain that this equal spacing scheme could be useful if we ever find
ourselves prioritizing measuring the spiral parameters.

The “cover picture” of this thesis (or rather, the picture at the beginning of the table
of contents because of UC Berkeley’s atrocious required title page) comes from one of these
“equal spaced patch potential measurements.” In this picture, the images of many differ-
ent clouds are added together. I frequently used such summed images to quickly diagnose
whether or not a measurement was working, because a lot of the analysis presented here
was either computationally intensive or it wasn’t prepared in advance of the data-taking. A
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Figure 3.23: A measurement of patch potentials using the “equal spacing” scheme described
in the text. The plot elements are described in the caption of Fig. 3.22.

background image, collected by averaging several MCP images without clouds, is subtracted
to reduce the effect of some imaging artefacts like banding and hot pixels. 640 MCP images
were taken for this particular measurement—several repeats of the same patch potential
measurement. They are shuffled into a random order, and then added one at a time un-
less the cloud center was within 50 pixels of another cloud center already included in the
summed image. The first few clouds of each reservoir, with higher total brightness, were
also rejected. The picture is plotted in the proper greyscale, with black being the highest
pixel intensity. Usually I apply a colormapping, but for the front cover I thought this was
too dishonest. Of course, most of these edits are aesthetic decisions and not legitimate data
analysis techniques.

3.9 Patch field scaling laws

To see how the electric field magnitude in the center of the trap scales with the physical
size and magnitude of voltage variations along the trap wall, I propose a toy model where I
attempt to calculate the electric field due to patch potentials at z = r = 0. When we inspect
the general solution to the Laplace equation in cylindrical coordinates (see appendix), we
find that the effect at z = 0 of a voltage perturbation originating at some axial position z is
exponentially suppressed like exp(−|z|α0

1/Rw), where α0
1 ≈ 2.4 is the first zero of the zeroth

Bessel function. Thus I will sum the electric field produced by patches between z = −Rw/2
and z = Rw/2, asserting that all these patches generate an electric field at r = z = 0 of
the same order of magnitude (

√
z2 +R2

w ∼ Rw). If the patches have a length scale l, then
we are summing over Rw × 2πRw/l

2 = 2πR2/l2 patches. One needs to be a bit careful
when calculating how the electric field of a patch of voltage V0 and length scale l scales with
Rw. Consider the patches to be surface-charged squares of surface charge density σ sitting
a distance d above an ideal conductor. Then σ scales like V0/d (it does not vary with l), the
total charge of the patch scales like V0l

2/d. Now to calculate the electric field near r = 0,
we need to notice that as d → 0, a patch and its image charge will form a dipole with dipole
moment D ∼ V0l

2. A dipole’s electric field scales like D/R3
w, so the electric field near the

trap center should be V0l
2/R3

w.

78



In case the above argument was too handwavy, we can consult the exact expression for
a square patch of voltage perturbation on a grounded conducting cylinder. The following
equations, taken from the appendix, give the potential in cylindrical coordinates of a patch
of angular extent θ0 = l/Rw centered at θ = z = 0.

Vp(r, z) =



V0

∞∑
m=0

dm cos(mθ)

∞∑
n=1

exp
(
αm
n

l/2+z
Rw

)
− exp

(
−αm

n
l/2−z
Rw

)
αm
n Jm+1(αm

n )
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r

Rw
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− exp
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(
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αm
n Jm+1(αm
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(
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Rw

) −l/2 > z > l/2

(3.19)

d0 =
θ0
2π

; dn̸=0 =
2

mπ
sin(mθ0/2). (3.20)

In the above equations Jm is the m’th Bessel function of the first kind, and αm
n is the n’th

zero of the m’th Bessel function—excuse some notation abuse [Jm(α
m
n ) = 0]. The m = 1

term gives the only contribution to the transverse electric field at r = 0. To evaluate the
electric field due to a small patch near z = r = 0, you might expect me to use the central
case, but once we take the l → 0 limit the region of validity of the expression also goes to
zero. We have to be a little careful with the order of limits and sums here, because if we
casually swap some of them, we arrive at an expression that no longer converges. To evaluate
the electric field, we set θ = 0 and we take the derivative with respect to r of the z > l/2
case. After finding the electric field we make the patch small, and only then do we take the
limit as z goes to zero:

Ex = lim
z→0+

l2 lim
l′→0

d

dr

∣∣∣∣
r=0

V0

∞∑
m=0

dm

∞∑
n=1

− exp
(
−αm

n
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Rw

)
+ exp

(
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n

l′/2−z
Rw

)
l′αm

n Jm+1(αm
n )

Jm

(
αm
n

r

Rw

)
(3.21)

= lim
z→0+

V0l
2

2πR2
w

lim
l′→0

∞∑
n=1

− exp
(
−α1

n
l′/2+z
Rw

)
+ exp

(
α1
n
l′/2−z
Rw

)
l′J2(α1

n)
(3.22)

= lim
z→0+

V0l
2

2πR3
w

∞∑
n=1

α1
n exp

(
−α1

n
z

Rw

)
J2(α1

n)
. (3.23)

This final limit cannot be brought into the sum, because the sum no longer converges when
we take z → 0, but it can be evaluated numerically giving (0.28262)V0l

2/R3
w. It’s somewhat

surprising that it converges at all, as α1
n/J2(α

1
n) for large n behaves like (−1)nn3/2. However,

the exponential provides “exponential regularization.” Actually, in mathematicians’ preferred
notation, any summand in the form (−1)nnse−ϵn converges as ϵ → 0. When summed from
n = 0 to ∞, it has the value −(1− 21−s)ζ(s), where ζ is the famous Riemann zeta function
[79].

Having confirmed the electric field of small square patches, we can sum over the number
of patches, letting the electric field scale with the square root of the number of patches. We
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find an electric field strength of order:

|ε| = O

[
V0l

2

R3
w

(
2πR2

w

l2p

)1/2
]
= O

[
V0l

R2
w

.

]
(3.24)

To verify this power law, as in Sec. 3.2, I prepared a grid of square patches with voltages
sampled from a Gaussian distribution with standard deviation 1V. I used patch sizes where
between 10 and 50 patches would fit around the circumference of the cylindrical electrode.
The patches were all square, and enough patches were added so that they extended from
z = −2.5Rw to z = +2.5Rw, far enough that patches farther out in z would have a minimal
effect. For each patch size, I generated 4 × 104 random distributions and evaluated the
transverse electric field at z = r = 0. The results of this computation are shown in Fig. 3.24,
and we find agreement with the hypothesis that ε scales with l.

Curiously, in both ALHPA-g and ALPHA-2, when we compare typical patch fields in the
“thin trap” with Rw = 2.2 cm to typical patch fields in the “normal trap” with Rw = 1.5 cm,
I don’t see verification of this power law. It appears that patch fields in the smaller radius
region are more than (2.2/1.5)2 ∼ 2 times patch fields in the larger radius region. We
can upgrade our power law by one factor of l/Rw by removing the summation of random
patches—i.e. assuming that patch potentials are comparable in size to Rw or that they are
relatively rare, so a particular place in the trap can only see the effect of a few patches.
Another way to upgrade the power law by a factor of l/RW is to assume that instead
of voltage perturbations, we have patches of some material with an electric polarization
oriented parallel to the electrode surface, or patches with positive and negative sign located
close to one another. Once we include the image charge of these patches, their effect on
the center of the trap is that of a quadrupole, which will produce an electric field of order
V0l

3/R4
w.
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Figure 3.24: For each patch size, 4×104 random grids of square shaped voltage perturbations
are simulated. A histogram of transverse electric fields at r = z = 0 is plotted, with the
color of each bin being the number of counts in that bin. The average transverse electric
field magnitude for each patch size is shown with the black line, and a power law scaling
with the patch size is shown with a red dashed line.

Another interesting outcome of this computation is that the electric field in the axial
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direction (z) is weaker than the electric field in the azimuthal directions (x, y, or r, θ). For
a patch size of 2πRw/50, a histogram of electric field strengths for the 4 × 104 generated
samples is shown in Fig. 3.25. This is intuitive because the patches along a ring closest to
the center of the trap cannot generate a z-directed electric field; they can only contribute to
the x and y components. We have to move a significant distance from the axial trap center
(a distance in z) before patches start contributing to Ez.
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Figure 3.25: A 2–D histogram of the x and z components of the electric field. For each of
4× 104 iterations, a random distribution of voltages has its electric field in the center of the
trap evaluated.

Since I have prepared this computational tool, we can use it to verify an assertion used
throughout these patch potential measurements—that the characteristic length scale for
higher order terms in the electrostatic potential is Rw, regardless of the size of patch po-
tentials. On one hand this might seem obvious. On another hand, it is certainly possible
to make any on-axis potential (provided that it still solves the Laplace equation) using suf-
ficiently small patches with sufficiently chosen voltages. In other words, the coefficient in
front of higher order terms can be arbitrarily large.

This assertion leads to the conclusion that δ = ε/k2m is approximately valid as long
as δ ≪ Rw. It is this conclusion that I directly tested with a simulation. As before, I
generated random voltage distributions, and this time I added the potential generated by
an electrode. I calculated the magnetron center displacement δ as a function of k2 applied
by the electrode. The magnetron center is the potential minimum in z and the potential
maximum in r, θ. Next, I found the value of δ where δ exceeded the linear estimate by 10%.
I defined the “nonlinearity scale” as ten times that δ value. The results of this calculation
for patch sizes between 2πRw/4 to 2πRw/32 is shown in Fig. 3.26. This calculation confirms
that the nonlinearity scale does not depend on the size of patches.

3.10 Electron stimulated desorption attempt

In case warming the trap would not remove patch potentials, we tried ablating away whatever
contained the patch potentials using the electron gun, which is nominally used to create an
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Figure 3.26: For each patch size between 2πRw/4 (left edge) and 2πRw/32 (right edge),
the “nonlinearity scale” of 400 randomly generated grids of square voltage perturbations is
recorded in a histogram. The color of each cell is the number of simulations that fell within
that bin. The black line indicates the average nonlinearity scale for a each patch size. This
data is also presented in the supplementary material of Ref. [68].

electron plasma in ALPHA-g. To do this, one of the ALPHA-g magnetic minimum trap
magnets was reversed so that it would counteract the external solenoid. This meant that
when the magnetic field produced by this magnet in its center was equal and opposite to
the field produced by the external solenoid, the field lines would diverge and presumably
intersect with the trap wall. The magnet was centered on the center of electrode 35, but
it is likely that magnetic field lines would hit the wall somewhat “in front” of the magnet
(electrons come from the left, or from beyond electrode 1, in Fig. 3.21).

This idea was inspired by “electron stimulated desorption,” (ESD) a process commonly
studied in accelerators or to benefit accelerators [80, 81, 82]. My hypothesis for the cause of
these patch potentials is explained in more detail in a later section, but suffice to say for now
that I believed that charges were resting on layers of cryopumped gas. The people in CERN’s
vacuum group told me that such gasses can be removed by bombarding them with electrons.
The results of this third measurement of patch potentials is shown in Fig. 3.21 in green. At
first glance, it looked like the electron bombardment was a success. However, upon closer
inspection of the fits, it became apparent that the cloud displacement had become strongly
nonlinear.

Experimentally, this operation was performed by turning on the electron gun with the
magnet off, and a spike in the vacuum pressure above ALPHA-g was observed as gasses were
produced where the beam struck. Next, the magnet current was increased and at some point
the vacuum pressure above ALPHA-g returned to normal, indicating that the beam was now
striking the ALPHA-g electrode surface and that the beam was no longer passing through
the entire experiment. An electron beam energy of about 50 eV was used, which is generally
somewhat low for ESD, and a current of about 100µA was applied for several seconds. These
are typical parameters used for loading an electron plasma into the Penning-Malmberg traps,
and it was probably a mistake to not confer with the literature on ESD before trying it.

In Fig. 3.27, I zoom in on the data shown in Fig. 3.21. We see that except in one trap
location, the transverse electric field due to patch potentials was reduced by a factor of 2–3.
However, when we look at the actual datasets used to measure ε in these trap locations, we
find that the cloud displacement is no longer well-approximated by the linear approximation
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δ = ε/k2.
The data used to infer the starred points in Fig. 3.27 is shown in Fig. 3.28. Starting

from the left, the first three measurements have an odd wiggle in cloud displacement versus
1/k2m, which I had never been seen before. Then the measurement between E34 and E35 and
the measurement in the center of E35 are consistent with an unusually strong nonlinearity,
or an unusually large ϵ2. The measurement between those two (called “E34/E35 right”)
is particularly odd. As k2m is decreased, the cloud displacement reaches a maximum then
turns back over. In case there was any doubt that this was real, it is also evident in the
spiral, where the last few clouds with the lowest k2m start to traverse the spiral backwards.
Of course, this made the fit function do all kinds of weird things to try to accommodate this
absolutely forbidden behavior, so I adjusted this one fit by hand in Fig. 3.28 to best reflect
my understanding of the situation.
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Figure 3.27: I zoom in on the difference between patch potentials before and after ESD, also
shown in Fig. 3.21. The starred points are the measurements which are shown in Fig. 3.28.
The green triangles are measurements after ESD, and the orange X’s are before.

It does seem though that ε values were legitimately decreased by ESD—between the
centers of electrodes 33 and 34, the fits are not so odd and they provide good measurements
of a significantly decreased ε. My favorite hypothesis is that the electron spraying decreased ε
but increased the on-axis potential due to patch potentials. This idea is depicted in Fig. 3.29.
We cannot explain the behavior shown in Fig. 3.28 by simply including higher order terms in
the small r, z expansion for the potential perturbation due to patch potentials. By including
terms up to third order, I could explain things like a higher order term in δ or a small
deviation from the spiral shape (if the electrostatic minima do not lie along a line as we vary
k2m), but I could not get anything close to the behaviour seen in the E34/E35 right dataset.
Actually the lack of any deviation from the spiral indicates that terms like r2 cos 2θ are
not present. This makes some sense—if this process suppressed the transverse electric field,
created by a term in the potential of the form εr cos θ, it probably also suppressed higher
order azimuthally asymmetric terms. Then the fact that an ordinary spiral still develops
probably suggests that in a deep trapping potential the potential created by patches is still
small compared to the trapping potential.

Thus these observations can only be explained by an on-axis potential which cannot
be approximated as a polynomial where higher order terms are suppressed by powers of
r, z/Rw. Recall in the study of antiproton loss due to patch potentials, Sec. 3.2, that a
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Figure 3.28: For six axial trap locations, the data collected during patch potential mea-
surements after ESD is shown. The elements of this figure are described in the caption of
Fig. 3.22. I have added colors to the points to indicate which point on the left subplot
corresponds to a point on the right subplot.

plethora of strange behaviors can happen when we lower k2 and the displacement is no
longer small compared to Rw. We are seeing this behavior here, but very close to the trap
axis (about 0.5mm, compared to Rw = 2.2 cm). It may be that in the E34/E35 right dataset
we see the electron clouds leave the trapping potential created by the electrodes and enter a
nearby electrostatic trap created solely by patch potentials. My only regret is not taking the
trapping potential to zero or even negative electron-repelling voltages to conclusively prove
this hypothesis. Of course, this experiment was designed before I knew this was a possibility.

It’s not entirely clear how the electrons from the electron gun would distribute themselves
around the electrode. In Sec. 3.4, I explained that when we send an electron cloud from the
trap to the MCP, if the cloud is further off-axis than about 1–2mm, it will be blocked by
a circular aperture. The electron gun is on the same movable stick as the MCP, so when
we use the electron gun, it is in the same location that we place the MCP when imaging
electron clouds. Therefore, the same argument about electrons following magnetic field lines
applies, and the same aperture can obstruct those field lines. When electrons are sent from
the electron gun they end up no more than 1–2mm from the center of the trap. The only
caveat is that the electron gun likely produces a plasma of electrons with complex dynamics;
the electron beam cannot be accurately modelled as individual electrons following field lines.
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trap potential
"patch" potential

Figure 3.29: A cartoon of my hypothesis for what electron spraying did to the on-axis
electrostatic potential in the trap. The blue line shows the ordinary trapping potential, and
the orange line proposes that there is an on-axis perturbation to the electrostatic potential
which which can do things like trap electrons, or eject them from the trap despite the presence
of the trap potential (depending on axial position).

Nobody at ALPHA has put significant effort into modelling this beam, so it isn’t clear if this
is a uniform density beam of radius 1–2mm, or if it is a narrower beam located a maximum
distance 1–2mm off-axis. In either case, the center of the beam will not be the center of the
trap; in fact the trap is not perfectly aligned with the magnet (see Sec. 6). Even if the beam
was centered in one axial trap location, it would not be centered further along the trap.
Thus when the beam reached the magnetic zero created by the opposing magnet, we might
have expected the beam to deviate in one particular direction and only hit one side of the
electrode. This would be unlikely to significantly reduce ε. Thus the results seem to suggest
that somehow the electrons reached the entire surface of the electrode. From there it’s not
clear what they did... did they ionize atoms in the outer layer of the cryopumped gas?... did
they stick to the surface and create negative ions? Given the experimental results, it seems
unlikely that the electrons simply performed their intended task of desorbing cryopumped
gas from the electrode surface.

3.11 What are the patch potentials at ALPHA

Until this point I have done little speculation on what causes patch potentials at ALPHA,
what causes them to change, and what could be implemented to reduce patch potentials.
Patch potentials, or variations in the electrostatic potential just outside the surface of nom-
inally conducting materials, have been studied extensively using “Kelvin probe force mi-
croscopy” [83, 84, 85, 86, 87, 88]. This effect is usually explained by noting that metals
form “grain boundaries,” where the metal is only a cohesive crystal within a grain boundary.
Depending on the relative orientation of the crystal structure and the surface of the metal,
a small perturbation to the potential of the metal just above the surface is generated. The
electrostatic potential just above the surface of the conductor sets the boundary conditions
for the trapping potential, not the potential within the conductor. Ref. [85] measures vari-
ations of tens of millivolts varying over length scales of a few microns for polished copper,
Ref. [88] shows that the length scale is much smaller for a gold-plated surface, and Ref. [89]
shows potential variations of O(100mV) with length scales of 100 nm for their “incremen-
tally sputtered electroplated gold electrodes.” The electrodes used at ALPHA are gold-plated
aluminum. I am measuring the electric field produced by patch potentials 2 cm from the elec-
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trode surface, so we would expect the effect of such tiny patches to “average out.” This is
derived properly in Sec. 3.9, where we find that the electric field should scale like V0l/R

2
w,

where l is the length scale of the patch potentials and V0 is size of the electrostatic potential
variations. Thus it is not likely that this grain boundary effect explains the magnitude of
patch fields observed at ALPHA. Of course, we would never be able to explain laser induced
patch potentials with grain boundaries.

Ref. [90] discusses a probe which can measure potentials along larger length scales, and
the authors find centimeter-scale, 20mV scale potential variations which are affected by
baking to 700K and exposure to air. This is despite the fact that their surface, like ours, is
gold-plated, and therefore nominally does not oxidize. Ref. [62] confirms these observations
and shows that the effect varies over time, something we do not observe at ALPHA, perhaps
because our vacuum is too good, or perhaps because we measure our patch fields long
after this effect has settled. Ref. [91] also finds potential variations with centimeter length
scales and 250mV voltage scale on stainless steel cleaned with acid followed by alcohol.
They find that glow discharge cleaning and colloidal graphite coating weaken these potential
variations to 15mV. Our electrodes are cleaned in an acetone ultrasonic bath followed by
an ethanol ultrasonic bath. This reminds us that there may be “grime” on the surface of our
electrodes which has a much more significant effect over large distance scales than crystal
grain boundaries. It seems that most of the Kelvin force microscopy studies are insensitive
to, or even disinterested in, such large-scale potential variations.

As for the effect of lasers in a cryogenic environment, Ref. [66] reports that measurements
of the cyclotron frequency of an ion are degraded by laser exposure in a cryogenic Penning
trap, and the author attributes this to patch potentials. Ref. [92] describes spikes in vacuum
pressure which the authors attribute to an electrical breakdown that occurs when too much
charge has been deposited on layers of cryopumped gas. The breakdown phenomenon isn’t
so useful to me. However the simple idea that the cryopumped gas is not conductive, and
therefore charged particles can sit on it, is perfectly consistent with what we observe in
ALPHA-g and ALPHA-2. It may be that I just haven’t found the right search terms yet,
but I cant find other published mentions of this. It seems to me that a wide variety of
experiments would have electrodes in cryogenic environments, and that they might be able
to observe that significant voltage perturbations can build up on their cryopumped gas.

Consider a square grid of ions with 20 Å between charges [a surface charge with σ =
e/(20 Å)2] resting on top of 5 Å of cryopumped gas on the surface of an electrode. In that
5 Å, there is an electric field given by σ/ϵ0, and the potential on the surface of the charged
layer differs from the voltage applied to the electrode by (5 Å)σ/ϵ0 = 2.3V. This perturbed
potential is the boundary condition for the potential within the Penning-Malmberg trap, not
the voltage applied to the conductor. Note that electrons start to tunnel out of atoms if the
electric field exceeds roughly 1V/Å. The electric field in the example above remains below
this limit, so there will not be an electrical breakdown in the cryopumped gas. This is why
the electric field in 2021 in ALHPA-g was possible—an electric field of 200mV/cm implies
that opposite sides of the electrode had a different potential by roughly 1V. In fact, whatever
caused the patch potentials in ALPHA-g may have been prevented from creating even worse
patch potentials by electrical breakdowns. Further, ALPHA-2’s 1S–2S laser provides more
than enough photons to ionize enough atoms to change the surface potentials as much as it
seems to (assuming that one photon is capable of removing one electron from at least some of
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the molecules present). Also, given our vacuum pressures it is plausible, but not guaranteed,
that one or more “monolayers” (layers one atom thick) of cryopumped gas are present on our
electrode surfaces. Finally, most cryopumped gasses would be removed by warming to 300K,
or even 100K, and we observe that warmups to these temperatures restores patch potentials
to their nominal strength. This nominal strength is probably due to “grime”—large patches
of contaminants left from cleaning or producing the electrodes which cannot be removed by
heating.

Refs. [93, 91] report dramatic improvements in surface potential variations by coating
the surface in colloidal graphite. This has become common in Penning-Malmberg trap
construction. To my knowledge, many traps at UCSD, my advisor’s trap at UC Berkeley,
and the ASACUSA trap have this surface coating. This was done to reduce patch potentials,
but I don’t find papers from these groups reporting specific improvements—it seems to be
more of a preventative measure. In the past, ALPHA was resistant to colloidal graphite
because of fears that it would degrade the vacuum necessary for storing antimatter. In
reality, the CERN vacuum scientists assure me that colloidal graphite significantly improves
cryopumped vacuum systems, because it creates more surface area for gas to adhere.

Today, ALPHA is considering treating a small fraction of the electrodes in an upcoming
trap as a trial. I would recommend that ALPHA adopt colloidal graphite in both ALPHA-
g and ALPHA-2 to reduce the persistent patch potentials, but it isn’t clear that colloidal
graphite will have a beneficial effect on laser-induced patch potentials.

3.12 Artificial patch potential measurements

In ALPHA-2 we took the time to attempt to measure an “artificial patch potential.” This
topic is well covered in the published paper on patch potential measurements [68]. All of
the Penning-Malmberg traps at ALPHA have at least one “rotating wall electrode” [34].
This electrode is actually six electrodes—six azimuthal segments which can which can be
independently controlled. Its location in the trap is shown in Fig. 3.16. Typically it is used to
apply a torque to a plasma by applying a sinusoidal signal to each segment, with each segment
being out of phase from the next one by π/3. This creates a rotating electrostatic dipole,
an electric field near the center of the trap that rotates at the frequency of the sinusoidal
signals. Here we simply applied a nominal voltage VE to five of the six segments and a
perturbed voltage VS + VE to one of the segments to act as an “artificial patch potential.”
Then we perform a patch potential measurement to see if we can verify the predicted patch
potential strength.

The artificial patch is in a trap location which is far from any radial steps, and the gaps
between electrodes at ALPHA are very small O(100µm). It can be very well approximated
by the electrostatic models presented in the appendix, where we assume that electrodes are
surrounded on either side by an infinitely long grounded conducting cylinder. The potential
due to the electrode is given by:

ΦE(r, z) = VE − VE

∞∑
m=1
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(3.25)
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We can evaluate k2 by expanding to second order in z, then substituting the length of our
electrode: l = 1.322 cm

ΦE(r, z) ≈ VE − VE
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And the potential due to the patch is given by:

ΦS(r, θ, z) = VS
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where d0 = θ0/2π and dn̸=0 = (2/nπ) sin(nθ0/2), and θ0 = π/3 is the angular extent of
the patch. The transverse electric field at r = z = 0 is only due to the n = 1 term—it is
everything attached to r cos θ once we expand J1(x) ≈ x/2:
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Our expected displacement is ε/k2 = CRwVS/VE, where C = 0.3109.
The patch potential measurement in the presence of this artificial patch clearly exhibited

greater cloud displacements when VS was negative than when it was positive. This indicates
the presence of nonlinear effects—that δ = ε/k2 was no longer accurate enough.

Rather than showing more spiral fits, this effect is shown in Fig. 3.30, where the average
displacement of 40 clouds is reported while varying VS and VE. In this experiment, we also
tried applying VS to a diametrically opposed segment to observe the effect of natural patch
potentials. Assuming the “patch field” ε from the artificial patch is generally much stronger
than the natural patch field, only the component of the natural patch field pointing toward
or away from the two segments used would matter. The natural patch field would boost ε
in one direction and reduce it in the other.

In Fig. 3.30, we clearly see that nonlinear effects and a natural patch field together do
not satisfactorily explain the discrepancy between expected and measured displacements.
When we average the results of the measurements with diametrically opposed segments, we
find that the nonlinear prediction is about 23% above the measurements. The data is very
consistent with VS being less than what we believe was applied by 23% or the magnetic
field expansion ratio being lower by 23%. The latter hypothesis was somewhat exhaustively
studied, and it is probably incorrect. The reduced VS hypothesis is also very unlikely—I
did not personally conduct these measurements, but VS was predicted carefully by analyzing
the circuit used then it was precisely confirmed with measurements performed outside of the
trap.

The measurements could also be consistent with an offset of k2 (equivalently, a constant
shift of VE). This idea led to my current favorite hypothesis—that the natural patch po-
tentials in this trap location are strongly nonlinear. This is reminiscent of the patch field
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Figure 3.30: Average cloud displacements for 40 clouds subjected to the patch potential
measurement procedure in the presence of an artificial patch potential. The horizontal axis
is the linear prediction for the displacement of the clouds. The black line also represents
the linear prediction (y = x, but the horizontal scale is stretched). For the blue circles,
VS = −476mV was applied to one segment of a segmented electrode. For the green +,
VS = +476mV was applied to the same segment. For the red X’s, VS = +476mV was applied
to the diametrically opposed segment, in theory flipping the sign of the effect of natural patch
potentials. The blue dashed line is the nonlinear theoretical prediction δ = f(VS/VE) for
VS/VE < 0. The dotted green and red line is the nonlinear prediction for VS/VE > 0, which
should have fallen between the green + and the red X. For all values of VS, VE was varied
in 12 somewhat arbitrary steps between 0.2V and 2V, but points are only plotted if the
average displacement is much greater than the spread in cloud positions and none of the
clouds miss the MCP. This figure is published in Ref. [68].

measurements after electron stimulated desorption in ALPHA-g. We found that when we
purposefully directed charged particles to the trap wall, ε was reduced, but patch fields pro-
duced a strong on-axis potential that could shift k2. Charged particles are likely often lost
near this rotating wall electrode. Sometimes when trying to compress a plasma, the wrong
rotation direction is chosen and the plasma expands significantly. Probably in these events
some charge even collides with the electrode. Also, when we compress a plasma, we often
observe “halos” of charged particles that were “left behind” by the compression. We have
seen some evidence in the catching trap that halos can be very large—too far from the trap
center to ever be imaged on an MCP. Perhaps we regularly allow some electrons or positrons
to hit the trap wall when we compress the bulk of the plasma. When we look at the patch
potential measurement for Vs = 0, we do indeed see that ε is unusually small and that the
displacements may not be following the linear estimate. However, I don’t show this data
here because it is quite poor quality—the k2 values used were not well-chosen and most of
the clouds have not been significantly displaced from the trap center.

In the supplementary material of Ref. [68], a number of other sources of error are analyzed,
but these errors together did not explain the discrepancy. The most interesting sources of
error are discussed elsewhere in this thesis. For example the largest error, finite length effects,
are clearly observed and studied in more detail in Sec. 5.4.5. However, this error had the
wrong sign for explaining the discrepancy.
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3.13 Nonlinear cloud displacement

In the previous section, the function f(VS/VE) was calculated numerically. However it’s
worth noting that the displacement can be nonlinear in the presence of natural patch fields.
This is observed in Sec. 3.8. Here I will calculate the next to leading order term in δ coming
from higher order Laplace-equation-solving terms in the potential. We expect this analysis
to result in an equation in the form:

δ =
ε

k2

(
1 + C

ε

k2Rw

)
, (3.30)

Where C is a constant dependent on coefficients from the trapping potential. This form is
useful because it clearly shows that displacements are linear unless δ is comparable to Rw.
The next to leading order effect comes from considering terms of higher order in both the
trapping field and the patch field:

ΦE = −k2

(
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2
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)
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. (3.31)
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I admit that my choice of parameterization is somewhat odd here. At this point I have
discussed k2 and ε so much that they should stay and they should remain unitful. It should
be noted though that k2 is of order VE/R

2
w, where VE is the voltage applied to the electrode

to confine the plasma. ε is of order VP/Rw, where VP is the order of magnitude of potential
variations across the surface of the electrode. Because we only image plasmas when the
displacement δ is much smaller than Rw, the measurements are always performed with
VP/VE ≪ 1. In order to arrive at the expected result shown in Eq. 3.30, I need unitless
constants for the rest of the terms in the Laplace expansion for the patch field. Thus all the
terms in ΦP obtain their voltage units from ε, and if they need additional length units, I use
Rw, the natural length scale for variations in the potential caused by patches located on the
trap wall. Also note that I have chosen coordinates where θ = 0 is the direction the patch
field at r = z = 0 is pointed, and z = 0 is the position of the “center of the trap” imposed
by the electrodes.

We begin by noting that the new equilibrium position in z is εcz/2k2 (to sufficient order
in ε/k2Rw). The only effect of the k3 term then is to shift k2 by −3k3(εcz/2k2), which is
of order VP/R

2
w. Usually when I move clouds off axis, I use symmetric trapping potentials

where k3 is zero. A notable exception is the patch direction measurements, explained in
Sec. 6, where k3 is exceptionally large. From here it is most convenient to find the zero in
the electric field in Cartesian coordinates:[
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Ey

]
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−ε
0

]
+
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(3.33)

Of course to find the zero in the transverse electric field we multiply the vector by the inverse
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of the matrix, giving:[
x
y
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(3.34)

The first nonlinear effect we see is an angle which depends on a cloud’s distance from the
trap center. To leading order that angle is:

θ ≈ 2κθ
ε

k2Rw

. (3.35)

This angle increases linearly with δ to linear order. However, it cannot be used to explain
the linear term in the magnetron angle in Sec. 5.4.3, because that linear term increased
linearly with time, indicating that it is a frequency shift, not an initial offset. In principle,
this should have been visible in the ALPHA-g patch potential measurements. However, in
those fits, the starting position of the spiral is a free parameter. It is likely that in those fits
the starting position was coerced to remove the linear term in the spiral shape.

Next, we calculate the distance from the trap center:
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For the artificial patch measurements, θ0 = 0, κ2 = 0.536, k3 = 0 and κθ = 0.976. Setting θ0
to zero gives a dramatic simplification:

δ =
ε

k2 +
εκ2

Rw
− 2εκθ

Rw

. (3.37)

Of course, this formula is only valid to first order, but I leave it in this form for now
to illustrate an important point—higher order terms in the trapping and patch field can
introduce a pole in δ(k2) at nonzero k2. Therefore leading order estimates of δ do not have
a radius of convergence of Rw. Rather they typically have a radius of convergence smaller
than Rw, limiting the accuracy of leading order expressions. For the artificial patch, the pole
in f(VS/VE) occurs at VS/VE = −0.54, where the leading order estimate only predicts that
clouds should be displaced from the trap center by about 0.16Rw, just beyond the imageable
region. This is why the linear prediction fails so spectacularly for the artificial patch. When
we look at randomly generated arrays of patches in Sec. 3.9, however, we see that this is a
particularly nonlinear patch field. Finally, to leading order δ is:

δ =
ε

k2

[
1 +

(
−κ2 +

3cz
2

k3Rw

k2
+ 2κθ cos(2θ0)

)
ε

k2Rw

]
(3.38)

.
Another nonlinear effect that one should be aware of is that cloud orbits become elliptical,

rather than circular. To see why, consider a coordinate system where x = y = 0 is the
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magnetron orbit center, and potential has been redefined so V = 0 occurs at x = y = 0. The
potential near that point can be approximated by:

V (x, y) =
1

2
kxxx

2 + kxyxy +
1

2
kyyy

2. (3.39)

Further, we can eliminate the xy term by rotating the coordinate system. The κθ term
from the expansion around the trap center causes kxx to differ from kyy in this expansion
around the “effective trap center.” Since magnetron orbits are along equipotentials, they are
ellipses which are longer in x than in y by a factor

√
kyy/kxx. For patch field measurements

in ALPHA-2, the most significant effect that this has is to increase the spread in clouds’
distances from the trap center. Thus, we care most if this ellipse is stretched in the direction
of the displacement from the true trap center. It should be noted, however, that when we
move clouds off-axis we are adiabatically conserving the area of the magnetron orbits. This
means the length of the orbit in the x direction is elongated by a factor (kyy/kxx)

1/4 and the
length in the y direction is elongated by (kyy/kxx)

−1/4. Although this effect is in some sense
“the same order of magnitude” as nonlinear displacement, it has no effect on the average
cloud displacement shown in Fig. 3.30. The 1/4 power also helps make this effect too small
to clearly observe in the data.
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4 Positron expansion heating

In early 2022, we had just successfully fixed the catastrophic patch potential issue which ru-
ined the 2021 experimental run, and we were hoping this would allow us to trap antihydrogen
atoms. We prepared a positron plasma with SDREVC containing about 6 million electrons,
but the plasma’s temperature was about 50K, about 2.5 times positron temperatures in
ALPHA-2. Concerned that this would either prevent antihydrogen trapping or significantly
reduce the trapping rate, I went to Dr. Eric Hunter, my advisor’s previous student, for
advice. He said he was aware of three mechanisms for plasma heating (most of these ideas
are discussed in Ref. [94]):

1. The plasma can be heated by radiation from the surrounding environment. Although
the trap walls are nominally 4K, it has openings on both ends toward parts of the
experiment at ∼ 70–300K. Note that the plasma only interacts strongly with radiation
near the cyclotron frequency, a frequency where our trap walls are highly reflective.
Thus it is not entirely obvious what temperature a plasma would reach in equilibrium
in the absence of other heating sources. However, this was not likely our issue. Our
trap has much smaller openings than the trap discussed in Ref. [94], and the openings
are similar in size and much farther from the plasma than in ALPHA-2.

2. The plasma expands. The plasma has several eV per positron of electrostatic potential
energy. If it were to expand radially by just one percent, order one percent of that
potential energy would turn into heat. This would increase the plasma temperature
by a few hundred Kelvin. O’Neil’s confinement theorem forbids plasma expansion
if the trap is perfectly cylindrically symmetric, so plasma expansion relies on some
trap error which breaks the cylindrical symmetry. In some cases, the equilibrium
plasma temperature is more relevant than the heating rate. Cyclotron cooling causes
the plasma to lose energy at a rate proportional to temperature. The equilibrium
temperature occurs when sources of plasma heating are balanced by sources of plasma
cooling. Thus, if we consider the only cooling source to be cyclotron cooling, the
equilibrium temperature is proportional to the heating power per particle.

3. Electrode noise can heat the plasma by heating the axial motion of particles. Lower
frequencies of noise which interact strongly with diocotron modes or Trivelpiece-Gould
modes [95] can also cause expansion, which again heats the plasma. This mechanism
seemed unlikely because we tried to reduce electrode noise by using amplifiers with
lower bandwidths and RC filters, and this had no measurable effect on plasma tem-
peratures.

The most likely explanation seemed to be that our positron plasmas were expanding, and
the expansion was caused by either patch potentials or the misalignment between the trap
electrodes and the external magnet. The train of thought here is a bit complicated, so I will
review the basic steps in the argument:

1. Patch potentials or misalignment break the azimuthal symmetry of the trap, allowing
the positron plasma to expand.
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2. Expansion turns electrostatic potential energy into heat, increasing the temperature of
the positron plasma.

3. When an antihydrogen atom is formed, the resulting atom’s momentum mainly comes
from the antiproton’s momentum, but the antiprotons are likely thermalizing with
the positrons, which are more numerous by about a factor of 20, before they form an
antihydrogen atom.

4. The trap depth for antihydrogen atoms in both ALPHA-2 and ALPHA-g is about
0.5KkB. Positron temperatures are 20–50K. Thus only a small fraction of antiprotons
are converted into trappable antihydrogen, and that fraction becomes smaller if the
positron temperatures are higher.

As you will see in the following paragraph, nonneutral plasma expansion has been extensively
studied for about 50 years. However, as far as I can tell, none of this work is directly usable
to explain the patch potential induced expansion of positron plasmas at ALPHA.

It was originally thought that the expansion of a nonneutral plasma would be due to
collisions with background gas. However, Malmberg and Driscoll observed that their electron
plasmas were expanding much faster than they should have due to background gas [96].
These authors later posited that this expansion was due to “small azimuthal asymmetries
in the applied magnetic or electric fields,” and they found that the expansion rate scaled
like (L/B)2, where L is the length of the plasma and B is the magnetic field magnitude
[40]. This phenomenon persisted in a newly built apparatus, but was reduced by a factor of
20 [91], again suggesting that construction errors were the cause. Subsequent experiments
intentionally applied asymmetry and confirmed that this could cause a plasma column to
expand [43, 44]. This phenomenon was explained theoretically in Refs. [41], [37]; both papers
confirm that asymmetries can cause plasma expansion. The UCSD group’s theory [37]
depends on particles confined to a smaller region within the plasma by the asymmetry. This
theory was confirmed in Ref. [38], which also provides a usable equation for the expansion
rate. In our positron plasmas, this mechanism is essentially impossible. Our positrons are
typically held in a harmonic potential, and the plasma length is short compared to the trap
wall radius—the characteristic length scale of any voltage or magnetic field perturbations.
Thus it is essentially unimaginable that patch potentials or magnetic field errors would create
regions within the plasma where particles could be trapped. Ref. [39] has actually compared
the expansion rate of plasmas confined with a harmonic trapping potential to the expansion
rate when plasmas are confined with the “square” trapping potentials typically used in the
UCSD experiments. They observed that indeed the expansion rate was drastically lower
with the harmonic trapping potential, but not zero. This may or may not be related to
UCSD’s observation that as the plasma length goes to zero, the expansion rate enters a new
regime where the expansion rate no longer depends on length, but still scales with an applied
asymmetry [45]. Thus it seems like the mechanism causing our positrons to expand is not
currently well understood. Note that all of these experiments intend to study the expansion
rate or confinement time of a plasma. Here our primary interest is the heating induced by
expansion.

As I clearly established throughout Sec. 3, a harmonic trapping potential with the ad-
dition of a constant electric field due to patch potentials is equivalent to a normal trapping
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potential displaced by a distance ε/k2. Thus a transverse electric field alone does not violate
the premises of the confinement theorem and cannot facilitate plasma expansion. If the
transverse electric field varies with distance along the trap, this is then equivalent to the
trap being rotated by an angle (dε⃗/dz)/k2 relative to the external magnetic field, which does
allow plasma expansion. It’s worth noting here that the trap can also be genuinely rotated
relative to the external magnetic field, as measured in Sec. 6. Of course, higher order terms,
such as r2 cos(2θ), in the potential due to patches can also contribute to expansion. Given
that our plasma’s length is much greater than its radius, it seems likely that misalignment
and effective misalignment are the leading causes of expansion.

In ALPHA-g, we measured the misalignment of the trap with the external magnet to
be about 1mrad. In ALPHA-2, measurements are less reliable, but the misalignment has
an upper bound of about 0.5mrad. In both traps, without laser exposure, patch potential
strengths are of order 5mV/cm, and the patch field direction and magnitude vary over a
characteristic length scale set by the trap wall radius. In the “pre-mix well” (explained in
the next section, where we typically measure positron expansion and heating rates) the trap
constant k2 is 2 × 104V/m2. Thus the effective misalignment due to patch potentials is
of order 1.25mrad. Since patch fields are random, it is entirely possible for either patch
potentials or the true misalignment to dominate in this well. However, positrons also cool
in deeper trapping potentials with k2 ∼ 5 × 105V/m2, where it is more likely that the
misalignment is dominated by the actual misalignment, which is not suppressed by k2.

4.1 Evidence of expansion heating

In this section I will discuss evidence that positron expansion heating is the primary limita-
tion to positron temperatures, and by extension antihydrogen trapping rates at ALPHA. To
do this, I will use MCP imaging to find the positron expansion rate. With an equilibrium
solver, I will find the theoretical heating rate due to that expansion. I will show that in
the positron plasmas most often used for forming antihydrogen, the heating rate of positron
plasmas is consistent with the theoretical heating rate due to only expansion. In a plasma
containing about 2.5 times as many positrons, the heating rate is observed to be greater
than the theoretical rate for an unknown reason.

Before I begin showing the experimental results, I need to walk through the electrode
voltage sequence used to form antihydrogen and for positron diagnostics. The relevant
potentials in this sequence are shown in Fig. 4.1 and they are explained in the list below:

(a) After a positron plasma is formed using SDREVC [3], it is moved to the top of the
ALPHA-g trap, where it cools for 40 s in the deepest potential we can create—one
electrode with the maximum negative voltage of −150V surrounded by two electrodes
with the maximum positive voltage. This step was originally developed in 2021 when
patch potentials were very bad and the positron plasma was expanding rapidly. We
found that this was the only way to confine positrons for tens of seconds without them
expanding so much that the plasma is simply lost. Today, the idea is that this still
might minimize expansion rate, presumably leading to the lowest possible equilibrium
temperature. This step also takes place at upper end of the magnetic minimum trap
for antihydrogen, where the magnetic field is boosted to 2T, which should also boost
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cyclotron cooling by a factor of 4. Finally, cooling to equilibrium with the shortest
possible plasma means the plasma will be colder when we expand it before mixing with
antiprotons.

(b) Once the antiprotons are ready for mixing with positrons, the positrons are moved
to this “pre-mix potential.” The antiprotons are stored to the right of the positrons
in Fig. 4.1(b). This potential is tuned so that if the antiprotons and positrons were
brought any closer together, they would start to form antihydrogen. In this trapping
potential, the positrons are significantly longer than in (a). Thus they benefit from
adiabatic expansion cooling. The transition from (a) to (b) is done in tens of mil-
liseconds, very long compared to the perp/parallel mixing time. Thus this adiabatic
expansion is three dimensional, and the temperature scales as l−2/3.

(c) To mix positrons and antiprotons together, we move the positron trapping potential up
and the antiproton potential down. We linearly change from potential (b) to (c) over
the course of a second. The minima and maxima of the on-axis potential are arranged
so that positrons are ejected out of the experiment to the left while antiprotons (the
more scarce species) are retained and can bounce through the positron plasma multiple
times. Typically this process is stopped before all the positrons are lost and their
temperature is measured as a diagnostic. We have observed correlations where more
trapped antihydrogen is formed when positron temperatures are lower for identically
prepared positron and antiproton plasmas.

(d/e) These potentials are used to perform the axial temperature measurement described
in Ref. [97]. By linearly changing the potential from (d) to (e) over the course of
20ms, the positron plasma is released. When charge first starts escaping the trap, an
exponential increase in the signal versus time is observed, which is reflective of the
Maxwell-Boltzmann distribution of positron velocities within the plasma.

(f) This is the “pre-dump” potential. To measure the positron expansion rate in a partic-
ular trapping potential, for example the pre-mix potential (b), we will hold the plasma
in that potential for a variable time. Then we will morph in a few milliseconds to
this pre-dump potential, then send the plasma flying toward the MCP imaging detec-
tor by increasing the negative potential to form a ramp pointing in the direction of
the MCP. This dump is done as quickly as the electrode amplifiers can change (a few
microseconds).

In this section, I will measure the positron expansion rate and the heating rate in the static
pre-mix potential (b). The positrons heat in this potential because they have just been
cooled by adiabatic expansion to below their equilibrium temperature. At this point I should
explain that if the positrons expand axially (along magnetic field lines), they cool, but if they
expand radially (transverse to magnetic field lines), they heat. Positrons can move freely
along magnetic field lines, and they only exhibit Debye shielding in this direction. Thus if
they expand axially they cool just like a monatomic ideal gas. Radially, there is an electric
field of magnitude ren0/2ϵ0 pointing outward that the positrons usual cannot move along
(r is the radial coordinate, e is the positron charge, and n0 is the density of the plasma). If
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some asymmetry allows them to move outward in r, the electric field will do work on them,
increasing their kinetic energy.

It should be emphasized that the heating rate in the pre-mix potential does not directly
determine the temperature of the positrons when they are forming antihydrogen. Rather,
the mixing process [the (b) to (c) transition] involves several processes that heat or cool the
plasma, including cooling from positron evaporation from the trap, heating from incoming
hotter antiprotons, cyclotron cooling, and expansion heating. Our goal in this study is to
understand just the heating sources, and we assume that a higher heating rate in the pre-mix
potential will cause the plasma to be hotter during mixing.
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Figure 4.1: The six trapping potentials used to study positron expansion heating are shown.
The purpose of each of these six confining potentials for positrons is described in the text.
In each subplot, the black line shows the electrode voltages. The blue line shows the on-axis
trapping potential created by the electrodes. With the exception of (e) where positrons
have been ejected from the trap, an orange dashed line shows the axial potential well that
positrons are confined in, and a quadratic fit to that trapping potential is provided in the
legend.

So finally I can explain the experimental results. Because the plasma expansion is very
slow, and expansion by a very small fraction will lead to a significant temperature increase, we
image the plasma after 0, 10, 20, and 40 s in the pre-mix potential, even though temperatures
will be measured after much smaller amounts of time. After spending this variable time in
the pre-mix potential (b), we go to the pre-dump potential (f) then image the plasma. The
resulting image intensity versus distance from the center of the plasma is shown in Fig. 4.2,
and a small expansion is clearly observed over the course of the 40 s. I use these profile
curves to calculate the root mean square charge radius, which increases from 0.462mm to
0.516mm after 40 s of expansion.

Next, we measure positron temperatures after 0 to 3 seconds, but before I discuss the
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Figure 4.2: Average pixel brightness is recorded versus distance from the center of the plasma
in MCP images. The positions of pixels is converted to a transverse distance scale inside the
trap using the distance calibration described in an earlier section.

results of this study, I need to explain how I will infer absolute positron temperatures in the
pre-mix well from the rate at which positrons escape the plasma when being released using
a linear ramp from potential (d) to (e). Usually at ALPHA we denote the “escape energy”
as the difference between the voltage at the bottom (Vb) of the trapping potential versus the
voltage barrier that positrons would need to cross to escape toward the MCP (Vt). Then,
as explained in Sec. 5.3 in more detail, the number of positrons with an axial energy above
some threshold E0 = e(Vt − Vb) is given by their Maxwell-Boltzmann distribution:

Ne+ ∝ erfc

(√
E0

kBT

)
(4.1)

If we are observing only a handful of escaping positrons out of a plasma consisting of millions,
then we are considering situations where the argument of the complementary error function is
large. For large arguments, the complementary error function limits to erfc(

√
x) ∼ e−x/

√
x.

We plot the log of the signal versus time, and assuming the
√
x part changes very little over

the course of our measurement, the log of the signal should linearly increase, and the slope
of that linear increase can be identified as (dE0/dt)/kBT . dE0/dt is found using electrostatic
modelling. This signal is obtained by sending the positrons toward the MCP, and a silicon
photomultiplier records the light produced on the phosphor screen versus time [98]. An
example of a temperature measurement is shown in Fig. 4.3.

ALPHA has always been aware of a major flaw in this measurement technique as it applies
to our positron plasmas. The use of the bottom of the trapping potential is completely
arbitrary. In reality, the plasma flattens the on-axis potential, and Vb should be identified
as the on-axis potential produced by the plasma, the “space charge potential.” The space
charge potential will change with time, and there is absolutely no reason to think it will
change with time the same way the bottom of the unperturbed trapping potential will.
Originally this temperature diagnostic tool was intended for use on plasmas which were
very long, and their space charge potential would change very little over the course of a
measurement. Thus Vb could be ignored altogether and an accurate temperature could be
measured using only dVt/dt. This does not suffice for our application. To regain accurate

98



0.0038 0.0039 0.0040 0.0041 0.0042
time since ramp start (s)

2

4

6

8

lo
g 

sig
na

l (
ar

b)

S0 + exp [E0(t)/(34.9K)kB]

Figure 4.3: An example of the signal and fit function used to measure the temperature of
a positron plasma in ALPHA-g. The horizontal axis is the time since the beginning of the
linear potential change from (d) to (e). The vertical axis is the log of the signal from the
SiPM. The orange line shows the fit function used to determine the temperature, which was
measured to be 34.9K in this dataset. The extent of the orange line shows the region of the
data used for the fit.

temperature measurements, I used a plasma equilibrium solver to find how the space charge
potential changes over the course of a temperature measurement.

As a first step, I used a plasma solver to find the charge of our positron plasmas using
the moment where charge first started to escape the trap. I found the electrode voltages in
the moment that charge first arrived at the MCP (roughly 0.00402ms in Fig. 4.3). Those
electrode voltages were used as an input to a plasma equilibrium solver, and I varied the
total charge of the positron plasma until the solver said that 10 positrons had enough axial
energy to escape the trap in that moment. The temperature was casually assumed to be
50K, and because the the Debye length was short compared to the plasma length and radius,
the charge measurement was fairly insensitive to the arbitrary choices of “10 positrons” and
50K. In Sec. 5.3, this same method will be used to measure cloud charges. There, the charge
estimate is very sensitive to these arbitrary choices, and so in that section the details of the
calculation will be explained in more detail. Here, the charge estimate is mostly determined
by the electrostatics of how many positrons can fit in a given trapping potential. The result
was that our positron plasma consisted of 5.8Me+.

Next, for each of three plasma temperatures, 100, 70, and 50K, I varied the trapping
potential in small steps around that moment where charge was just barely escaping. For each
small variation in the trapping potential, I found how many positrons should have enough
energy to escape. The trapping potentials used for the 70K plasmas are shown in Fig. 4.4 as
an example. I find that the absolute number of escaping positrons is extremely sensitive to
the computational parameters, including the number of gridpoints, the region of the plasma
that I sum over when I count the number of escaping positrons, and the left bound of the
computation region. However, leaving these computational parameters fixed and varying the
trapping potential, I nonetheless observe the expected exponential increase in the number of
positrons with escape energy versus time. This slope of the log of this exponential increase is
also consistent with the expected rate given by the theory presented above. This is illustrated
in Fig. 4.4. This study took a lot of my own time and a lot more computation time. Therefore
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it is not practical to redo this study for every plasma. Rather, I find that the actual positron
temperatures are lower than the measured positron temperatures by a factor of about 1.6.
Interestingly, this factor depends a bit on the temperature of the plasma. This is not because
the rate of change of the space charge potential depends on the temperature. Rather the rate
of change of the barrier holding in the plasma depends on the temperature, because higher
temperatures have a longer region over which the plasma density falls to zero. They “reach
out farther” toward the barrier, influencing its height. This mechanism is probably real,
but it may not be accurately predicted here because the equilibrium solver assumes that the
positron plasma is perfectly in thermal equilibrium, even where the density becomes very
low at the edge of the plasma.
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Figure 4.4: The on-axis potential due to the elecrodes is shown with a dashed line, and the
on-axis potential including a 5.8Me+, 70K positron plasma is shown with solid lines. The
positrons are released by progressing from the red potential to the blue potential. On the
right, I zoom in on the barrier holding the positrons (Vt) and the flattened space charge
potential (Vb).

Before I can infer changes in the temperature of the positron plasma in the premix
potential, I must include the effect of the adiabatic expansion between the premix potential
and the moment where the temperature is measured. In the pre-mix potential, the RMS
length

√
⟨(z − z0)2⟩ is 5.78mm. In the moment before positrons are released, the RMS

length is 6.26mm. In a 3–D monatomic gas, TV 2/3 is constant, so the temperature scales
like length to the −2/3 power. This predicts only a 5% correction. Part of the reason
this factor is so small is that the pre-mix potential is actually tuned to barely contain the
plasma—the whole point is to have mixing begin just after leaving the pre-mix potential.

Fig. 4.6 shows measured expansion rates and positron temperatures including both cor-
rection factors. I found that both the expansion rate and the heating rate varied as I
varied the current in the octuple magnet. The octupole magnet, necessary for radial con-
finement of antihydrogen atoms, produces a magnetic field near the trap center of the form
r3(r̂ cos 4θ + θ̂ sin 4θ). Obviously, this is a source of asymmetry that can allow positrons to
expand [23, 99], especially if it is slightly offset or imperfectly constructed so it produces
a larger transverse field at r = 0. Of course I should note here that all this discussion
of misalignment or patch potentials causing expansion heating only matters if the effect is
significant compared to the expansion induced by the octupole. Thus Fig. 4.6 shows the
expansion and heating of positron plasmas at four different octupole current values.

100



2.90 2.95 3.00 3.05
barrier height

from electrodes (V)

0

2

4

6
ln

(N
es

ca
pi

ng
)

T=150.2
T=112.3
T=89.0
T=143.7
T=107.3
T=84.9

0.025 0.050 0.075 0.100
barrier height

including plasma (V)

T=99.1
T=69.0
T=51.0
T=95.4
T=66.6
T=45.9

50 70 100
actual temperature (K)

1.50

1.55

1.60

1.65

1.70

1.75

m
ea

su
re

dt
em

pe
ra

tu
re

ac
tu

al
tem

pe
ra

tu
re

Figure 4.5: The number of positrons with sufficient energy to escape the plasma is plotted
against the barrier height. On the left, the barrier height is calculated from the on-axis
potential produced by the electrodes. In the middle, it is calculated from the difference
between the plasma’s space charge potential and the barrier potential to the left. In the
legend, the inferred temperatures are listed using dE0/dt calculated using these two different
estimates of E0. The green lines and dots come from an actual temperature of 100K. The
orange lines come from a temperature of 70K, and the blue from 50K. On the right, the
correction factor to the nominal temperature diagnostic is listed. That is—the horizontal
axis is the actual temperature of the plasma, and the vertical axis is the factor by which
ALPHA’s nominal temperature analysis would overestimate the temperature. The square
dots versus circular dots are the result of varying the computational parameters described in
the text. The absolute number of escaping positrons changes by nearly a factor of 2, but the
slope of the log does not, and thus the measured temperatures do not significantly depend
on the computational parameters.

Finally we have measured the expansion rate and the heating rate of positron plasmas
in the pre-mix potential. The final step is to find a predicted heating rate from loss of elet-
rostatic potential energy. Our positron plasmas are well approximated by spheroids. The
electric field throughout most of the plasma is en0r/2ϵ0. If the entire plasma expands by a
fraction f , a positron originally at a position r will move by a distance fr, and the electric
field will do work fen0r

2/2ϵ0. Thus the average positron will gain energy fe2n0⟨r2⟩/2ϵ0.
Since the internal energy of a monoatomic ideal gas is 3kBT/2, the change in tempera-
ture will be fe2n0⟨r2⟩/3kBϵ0. Alternatively, we can consider an expansion rate given by
(d
√

⟨r2⟩/dt)/
√

⟨r2⟩, then we expect a heating rate due to expansion given by:

dT

dt
=

d
√
⟨r2⟩
dt

e2n0

√
⟨r2⟩

3kBϵ0
. (4.2)

I was tempted at first to account for the fact that the plasma expansion might not
be perfect uniform expansion by a constant factor. At the very least, the plasma is not
strictly 0K, and therefore it does not have a perfectly constant density and its electric field
is not exactly en0r/2ϵ0. Thus I used a plasma solver which took as an input the imaged
radial charge distribution provided by the MCP images rather than assuming rotational
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Figure 4.6: On the left, positron plasma temperatures are plotted versus time for a positron
plasma consisting of about 5.8Me+ initially at about 30K. On the right, the positron RMS
charge radius versus time measured using MCP images is plotted. In both pictures, a linear
rate is fit to the data, shown with solid lines. The different colors represent different currents
in the octupole magnet. The initial radii are presumably different because the plasmas
expand a different amount after cooling for 40 s in the deep potential (a). The similar
initial temperatures suggest that the plasma nonetheless comes to the same equilibrium
temperature in potential (a) regardless of its expansion.

equilibrium. An interesting caveat on this technique is that the plasma’s potential energy is
neither

∑
i eV (xi) nor

∑
i eV (xi)/2. We have to consider the electrostatic potential created

by the electrodes Ve separately from the electrostatic potential created by the plasma Vp.
A system of point charges has potential energy

∑
i eV (xi)/2, but point charges subjected

to an external fixed electrostatic potential have potential energy
∑

i eV (xi) [100]. Thus the
total potential energy that should be used to find the change in thermal kinetic energy is∑

i e[Vp(xi)/2+Ve], although the Vp term ends up causing most of the change in temperature.
Unfortunately, this took a lot of time but the results were not very good. As shown in
Fig. 4.7, the plasma equilibrium solver with a fixed radial charge distribution suggested that
the plasma was less dense in the center than it was farther out. This is a clear sign of
MCP nonlinearity. The center of the plasma probably had the same density as the outer
layers, but more charge per area hit the MCP in the center, and it produces a “saturated”
response, not a total brightness that was linear with the charge per area in the plasma. This
technique suggested that the positrons should heat by 10% more than expected from the
assumptions outlined in the previous paragraph, but this is almost certainly largely due to
the MCP nonlinearity issue, and this result should be thrown out. One interesting outcome
of this study is that the plasma seems to have a longer radial “tail” than it would in full
thermal/rotational equilibrium. This is probably a real observation, and it is reasonable that
equilibrium conditions break down at low densities.

In Fig. 4.8, I plot the heating rate versus the expansion rate for this plasma. For the data
taken with the octupole magnet off, the measured heating rate is about 50% higher than the
theoretical rate from loss of electrostatic potential energy. As the octuple magnet current is
increased, the heating rate grows faster than it should, rising to almost triple the theoretical
rate. Although there are several sources of error on the level of 10%, this discrepancy is too
large. With the octupole at full current, the plasma heating is probably not entirely due to
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Figure 4.7: The plasma density versus transverse and axial position in the pre-mix potential.
On the left, a plasma solver is used which takes its radial charge distribution from an MCP
image, as shown in Fig. 4.2. On the right, a plasma solver is used which assumes the plasma
is in perfect thermal and rotational equilibrium. The solver finds a rotation frequency which
is consistent with a given mean square charge radius.
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Figure 4.8: The heating rate is plotted versus the expansion rate for the plasma in ALPHA-
g consisting of 5.8 million positrons. The two variables are varied by varying the current
in the octupole magnet. Each datapoint has horizontal and vertical error bars from the
statistical fitting error shown in Fig. 4.6. The red line shows the theoretical heating rate due
to expansion for this plasma.

After this study was first conducted, I realized that the ALPHA-g plasma contained
about twice as many positrons as the plasmas used in ALPHA-2. Initially, I thought that
fixing this issue might lead to positron temperatures identical to those in ALPHA-2. This
hope did not come to fruition, but in characterizing this new plasma, we obtain further
results in the study of heating rate and expansion. Thus I prepared a positron plasma for
mixing in ALPHA-g, trying to match the parameters of ALPHA-2’s mixing positrons as
closely as possible. All of the above analysis was repeated for this new plasma. The plasma
now contains 2.3 million electrons. The temperature diagnostic calibration factor due to
space charge potential is 1.5. The adiabatic expansion cooling is again 5%.

The temperatures and radii versus time are shown in Fig. 4.9. The heating rate is plotted
against the expansion rate in Fig. 4.10. The results for this ALPHA-2-like plasma are quite
different than the results with 5.8 million positrons. First, in ALPHA-g the expansion and
heating rates did not change when the octupole was turned on. In ALPHA-2, both the
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heating rate and the expansion rate are much lower than in ALPHA-g, and the octupole
does affect the expansion rate. This probably explains why positron temperatures are about
2.5 times higher in ALPHA-g, and why the antihydrogen trapping rate was much lower
(at least 5 times lower, but hard to estimate exactly). Something is causing the positrons
to expand and heat more quickly in ALPHA-g, and the effect is big enough to outweigh
the influence of the octupole. Amazingly, with this new plasma, in Fig. 4.10, we see clear
evidence that the positron heating is entirely due to expansion. Of course, there have been
several sources of error on the order of 10%, so the agreement is not perfect. I conclude that
it is likely that improving asymmetry, either due to patch potentials or due to misalignment,
is very likely to improve the antihydrogen trapping rate in ALPHA-g.
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Figure 4.9: This plot is identical to Fig. 4.6, this time with a positron plasma consisting of
2.3 million particles. Rather than varying the octupole current in four steps, the expansion
and heating rates are shown with the octupole fully off and fully on in ALPHA-g and in
ALPHA-2.

0 1 2 3 4
expansion rate ( m/s)

0

5

10

15

20

he
ati

ng
 ra

te 
(K

/s)

Figure 4.10: This figure is identical to Fig. 4.8 but with the 2.3 million particle plasma in
ALPHA-g and ALPHA-2. Again, the red curve shows the theoretical heating rate due to
plasma expansion. The two datapoints in the upper right are from ALPHA-g, and the result
in the middle is from ALPHA-2 with the octupole on.
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4.2 Positron heating in ALPHA-2 from laser-induced patch po-
tentials

In this section I will abandon the study of positron expansion rates and I will focus on
positron heating rates alone. I have already shown that the 1S–2S laser in ALPHA-2 increases
the electric field due to patch potentials. Now I will show that it also increases positron
heating rates. Fig. 4.11 shows positron heating rates in the pre-mix well after the trap
was exposed to the 1S–2S laser with 0.6W of circulating power for a variable amount of
time. Heating rates are shown with and without the octupole at full current. The correction
factors discussed in the previous section are not applied here—we really only care about
relative temperatures in this discussion. There are several interesting observations here.
First, equilibrium temperatures after long times (16 s) do not seem to depend on whether or
not the octupole is energized. However, positron temperatures at early times strongly depend
on the state of the octupole. These early time (0–4 s) heating rates without the octupole do
not seem to increase significantly with laser exposure. They do increase with laser exposure
when the octupole is energized. This seems to suggest that early-time positron expansion
heating results from a kind of “cross-term” between patch potentials and the octupole. It
may be that patch potentials are moving the positron plasma off-axis in the somewhat-
shallow pre-mix potential, and when the positron plasma is moved off-axis it is exposed to
a larger magnetic field perturbation from the octupole.
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Figure 4.11: Positron temperatures are shown after a variable time in the pre-mix well. On
the left, the positron heating rate is shown without the octupole. On the right, the octupole
is energized.

Next, Fig. 4.12 shows positron heating rates in different trap locations before laser ex-
posure, but with the octupole energized. To measure this, I attempted to reproduce the
pre-mix potential in several different trap locations. We find that before laser exposure,
positron temperatures are fairly independent of the plasma’s location in the trap. Earlier I
remarked that the misalignment due to patch potentials in the pre-mix well was expected
to be the same order of magnitude as the true misalignment. However I noted that the
random nature of patch potentials meant that either effect could be dominant, or they could
be similar orders of magnitude. This seems to suggest that before laser exposure, positron
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heating is dominated by a mechanism other than patch potentials. The strength of patch
potentials should vary significantly with trap position. Thus heating may be dominated by
either expansion due to the octupole alone or a cross term between the octupole and the
actual misalignment of the electrodes with the external magnet. One notable exception is
that the positron equilibrium temperature is higher in electrode 12. This may suggest either
that the initial patch fields in that region are stronger or that I was not able to successfully
reproduce the pre-mix potential near electrode 12 (this was done by hand).
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Figure 4.12: Positron temperatures are shown after a variable time in a pre-mix-like well
centered on five different trap locations. The names of the five electrodes are listed in the
legend.

On the other hand, we expect that patch potentials do eventually have a significant
influence on positron heating, because we know that after long periods of laser exposure
the antihydrogen trapping rate decreases. Fig. 4.13 shows positron temperatures 16 s after
adiabatic expansion to the pre-mix well after 0 hours, about 3 hours, and about 6 hours
of laser exposure. Indeed we find that after laser exposure positron temperatures become
highly position dependent, reflective of the random nature of patch potentials.

In conclusion, it seems that when patch potentials are enhanced by laser exposure in
ALPHA-2, patch potentials are the primary cause of positron heating. Before laser ex-
posure, this may not be the case. In both ALPHA-2 and ALPHA-g, a positron plasma
consisting of 2.3 million particles is used to form antihydrogen, and there is evidence that
the temperature of this plasma is determined primarily by expansion-induced heating. With
a plasma consisting of 5.7 million particles, another heating mechanism seems to be domi-
nant. Altogether, it is likely that improving alignment and reducing patch potentials would
reduce positron plasma temperatures. By extension, such efforts would increase the anti-
hydrogen trapping rate. With the evidence presented in this chapter, these conclusions are
tentative. I have attempted to outline a collection of techniques that could be used to study
positron temperatures in more detail. Perhaps future researchers can generate more data
and arrive at more concrete conclusions about how to enhance the antihydrogen trapping
rate.
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Figure 4.13: Positron temperatures 16 s after adiabatic expansion (roughly the equilibrium
temperature of positrons in the pre-mix well) in various trap locations are plotted versus the
accumulated laser exposure in the trap. In cases where an error bar is shown, the width of
the error bar is the result of performing the same measurement twice.
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5 Cloud charge determination

In this section I present three different methods for determining the total charge of clouds ex-
tracted from a reservoir. Together these three measurement techniques provide a convincing
measurement of total cloud charge at the 20% level. However, each measurement technique
by itself has major limitations, necessitating verification from multiple techniques.

The most important effect that cloud total charge has on the cloud-based measurements
is a relatively small correction to the magnetron frequency. Even then, another effect at the
same order of magnitude, the “finite-length effect,” cannot be precisely predicted even with
a good measurement of cloud charge. Even in the most precise magnetron frequency based
measurement technique, EMPI, it is more useful to remove these two effects with calibration
than to predict it and subtract it from measured magnetron frequencies. However, I believe
that knowledge of the total charge of these clouds is important for understanding what they
are and why they can be used for measurements. I am also open to the possibility that
someday someone else will come up with a cloud-based measurement technique that does
demand good knowledge of total cloud charge. For example, increasing the precision of ECR
measurements of the magnetic field beyond the PPM level will probably demand a proper
understanding of how the cloud’s charge affects its rotation rate. So for these reasons I
include this in my thesis, despite the fact that none of the measurements I preformed with
these clouds really requires the results from this section.

5.1 Averaged Faraday cup signals

ALPHA has long used Faraday cups to measure the total charge of electron plasmas. Typi-
cally, the total charge of a reproducibly prepared plasma (often created using SDREVC) is
measured several times. Then the plasma is imaged several times on the MCP. By assuming
that the MCP brightness is linear with total charge, the MCP has then been calibrated
and the total charge of other plasmas is inferred. In some of ALPHA’s Penning-Malmberg
traps, there is a dedicated piece of equipment on the stick for this purpose. In ALPHA-g,
we disconnect the MCP from its power supply and we connect the front of the MCP to an
NI card which measures voltage versus time.

However, usually these measurements are only possible when the plasma has over a
million particles, at least 100 times the charge in most of the clouds. For any MCP voltage
where our clouds are visible, a plasma with a million particles will “saturate” the MCP; we
reach a maximum total brightness, not a total brightness which is linear with total charge.
This means that calibrating the MCP with a large plasma will not work. So our first step
is to use the the Faraday cup technique, but we average many signals to reduce electrical
noise. Fig. 5.1 shows how the signal is improved with averaging. In addition to averaging,
I did a fast Fourier transform (FFT) of the averaged signal, and I removed two obvious
noise peaks before plotting the inverse FFT. Frankly, I was a bit surprised at how well this
worked. Signal averaging removes uncorrelated electrical noise—were there any correlated
noise sources, like noise generated by the reproducible voltages applied to the electrodes,
averaging would not help. If I had known how well this would work, I would have averaged
more signals, and I would have tried to measure smaller clouds. But I never got the chance
to repeat this measurement after seeing the results.
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Fig. 5.2 shows the result of this measurement. For each of three scooping voltage step
sizes used to extract clouds from a reservoir, 380 signals are averaged. The first 30 signals
are ignored; we assume the cloud charges have converged to a constant value after the first
30 extractions. The average cloud charge is inferred by fitting a linear function to the signal
before clouds arrive, and an exponential decay plus a linear function after the clouds arrive.
About 5µs of the signal is not used for either fit, as the signal is clearly increasing due to
the arrival of charge over this time. The fit functions are then extrapolated to the center of
this ignored region, and the difference between the two fit functions is used to infer the total
charge. Changing the fit functions, the amount of ignored signal, and the way the signal is
extrapolated in the ignored region changes the measured total charge by about 15 ke−. Of
course, the choices described here are simply what looks best to my eye. The capacitance of
the front of the MCP is measured with a handheld multimeter, and I found that changing the
frequency used for the capacitance measurement changed the result by about 10% (another
source of error), indicating that the load is not purely capacitive.
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Figure 5.1: The Faraday cup signal is shown versus time. The orange signal is a single trace
with a single cloud arriving on the MCP, showing the amount of noise in these signals. The
blue curve shows the result of averaging 380 such signals, and the small bump due to charges
arriving on the Faraday cup. In the vertical axis, the measured voltage is calibrated with
the measured capacitance of the front of the MCP.

5.2 MCP image integrated brightness

Usually at ALPHA, the charge of a plasma is inferred from the total light collected by the
camera imaging the phosphor screen. As mentioned before, this technique must be calibrated
once using a Faraday cup measurement. Then future plasmas charge can be measured as
long as the MCP/phosphor screen/CCD camera imaging detector produces a response which
is linear in the total charge arriving at the MCP. In this subsection I attempt to use this
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Figure 5.2: The total charge is determined using 380 Faraday cup signals averaged for three
different scooping voltage step sizes used to extract clouds from a reservoir. Three different
scooping voltage step sizes are used to extract clouds from the reservoir. The overlaid black
curves show the fits used to infer the cloud charges.

idea to infer the total charge of some of the smallest clouds used in this thesis. I also present
evidence that MCP nonlinearity poses a challenge to inferring the total charge of these small
clouds.

Fig. 5.3 shows the integrated brightness of clouds imaged with the maximum voltage
applied across the MCP: 1150V. The total brightness is multiplied by a factor to enforce
that the clouds made with 80mV steps have an average charge of 139 ke− to agree with
the Faraday cup measurement (ignoring the first 30 as we did when averaging Faraday cup
signals). Rather than simply adding up the pixel intensities in each image, I usually fit a
function to the brightest spot in the image and integrate that fit function. This provides a
more robust way of removing the background brightness of the image near where the plasma
is located and other artefacts that might be in the image. This MCP voltage is the one I
use most often when imaging clouds. Usually my clouds are very small (made with 2.5 or
5mV steps), and the MCP gain is maximized, making them as bright as possible so that
their centers can be reliably identified. One might contend that if this MCP gain is good for
seeing clouds with 7000 electrons, it might produce a nonlinear response for clouds with 20
times the charge.

It is generally well known at ALPHA that lowering the MCP voltage restores linearity.
This suggests that the actual MCP, not the phosphor screen or the camera, is what causes
the nonlinearity. For example, it may be that the MCP has a limit to how many electrons
it can produce in a single channel in a given period of time. Therefore, I imaged identically
prepared clouds with an MCP potential of 1050V. In Fig. 5.4, the total brightness of clouds
extracted with 5–80mV is compared between MCP potentials of 1150V and 1050V. To
more directly compare nonlinearity, each cloud’s total brightness is divided by the voltage
step size. The reservoir’s initial scooping voltage is different for the 1050V dataset, causing
a difference in the initial scoop charge; therefore we should only compare the brightness that
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Figure 5.3: The total brightness of clouds successively extracted from a reservoir is recorded
with an MCP potential of 1150V. The total brightness is multiplied by a constant factor
so that the total charge of clouds extracted with 80mV steps agrees with the Faraday cup
based measurement of cloud charge. Five different voltage step sizes are used with five
identically prepared reservoirs, and we observe that cloud charge/total brightness is roughly
proportional to voltage step size. The same initial scooping voltage is used for all reservoirs,
so cloud charge rapidly increases in the first 20 clouds as we approach the regime where the
reservoir space charge voltage has the same step size as the scooping voltage. The average
total brightness of the clouds after the 30th is given on the right.

the clouds settle to after many extractions. Next, we note that for step sizes 10–80mV, when
the MCP potential is 1150V, the predicted relation Nc ∝ S is observed. However, the 5mV
scoops fall short. When the MCP potential is 1050V, each time we double the voltage step,
the resulting brightness is more than doubled. Despite the theoretical prediction Nc ∝ S,
the 1050V result is more reasonable. It is consistent with the reservoir losing 1mV of space
charge potential between cloud extractions for reasons other than the removal of charge for
clouds. For example, the reservoir may be expanding radially with time. In the past, with
worse behaving (faster expanding) reservoirs, I have observed that the reservoir does not
deliver any charge to the clouds unless the step size is greater than 5mV. So in reality, it is
likely that doubling ∆V is more than doubling cloud charge, but when the MCP potential
is 1150S, MCP nonlinearity restores the proportionality between brightness and ∆V .

Another notable difference between 1050V and 1150V is that the difference between the
50th cloud and the 127th cloud with 80mV steps is much bigger with the higher MCP voltage
(the purple line has a bigger slope with 1150V). For an unknown reason, with 80mV steps,
later clouds have a larger radius (although note that I have made no attempt to predict
how cloud radius evolves with reservoir radius). This may imply that the same amount of
charge spread out over a larger area will produce a greater total brightness when the MCP is
“saturated.” This is intuitively expected if the saturation mechanism is a limit on how many
electrons a single MCP channel can produce. We can also compare both growth rates to the
theory presented in Sec. 2.2 to determine which is more likely to be correct. To accomplish
this, I simply used a reservoir of 50Me−, and I adjusted the “effective length” of the reservoir
to get an average cloud charge of 139 ke−. I then found the reservoir radial expansion rate
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Figure 5.4: The total brightness of successively imaged clouds is recorded for two different
MCP potentials. For each of the five different scooping voltage step sizes, we divide the total
brightness by the voltage step to make the effect of nonlinearity more apparent.

due to charge removal and I plot how this causes cloud charge increase. With these numbers,
36% of the reservoir charge is extracted, but still a very small increase in cloud charge is
predicted, because cloud charge only depends logarithmically on reservoir radius.

In Fig. 5.5, we see that the theory actually predicts a lower growth rate than we see
with either MCP potential. This is probably due to lingering nonlinearity even with 1050V.
One might have thought it could also be the aforementioned 1mV of reservoir space charge
potential loss due to expansion. However, when the step size is 80mV, the potential drop in
the reservoir due to charge loss is (80mV)(0.5 + ln(Rw/rp))/(1 + ln(Rw/rp)) ≈ 66mV, and
the potential drop due to the reservoir expanding because of losing charge near the center
is the remaining 14mV (reservoir radius 2mm and wall radius of 14.8mm). Thus 1mV
of additional expansion would be a very small correction to the reservoir expansion rate.
Conversely, with 5mV steps, if we ever saw the cloud charge growing, it would probably be
mostly because of the reservoir’s 1mV expansion due to factors other than cloud extraction.

At this point, the reader probably doesn’t need to be further convinced that we are
seeing MCP nonlinearity. However, I will describe one final experiment, because I think
it was a nice idea. I extracted two clouds from a reservoir, then combined them into one
before imaging. I simply combined them by holding the two clouds in two positively biased
electrodes separated by a negatively biased one. Then the separating center electrode’s
potential was slowly increased to match the other two, allowing the two clouds to meet in
the middle. The result should be a cloud with roughly double the charge but a similar radius,
and if the total brightness in the resulting image isn’t doubled we will know it is because of
nonlinearity. In Fig. 5.6, the total brightness (MCP potential 1150V) of clouds extracted
with variable voltage step is compared to half the total brightness of these “doubled clouds.”
We find that for 80mV scoops, the doubled clouds have 33% lower total brightness than
double the ordinary clouds. This difference becomes 29%, 17%, 13%, and roughly 0% for
40mV, 20mV, 10mV, and 5mV respectively. One might be tempted to actually use these
numbers as a quantitative measurement of the effect of nonlinearity, and apply them as a
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Figure 5.5: The total brightness of clouds successively extracted from identically prepared
reservoirs is compared between MCP potentials of 1050V and 1150V. The total brightnesses
are scaled to agree with the Faraday cup based measurement. The theoretical prediction
for the growth rate of cloud charge is also plotted in green, with the reservoir’s total charge
set to 50Me− (found by matching the initial scooping potential with a plasma equilibrium
solver) and its radius set to 2mm (found by imaging the reservoir on the MCP).

multiplicative factor to remove nonlinearity. However, it should be noted that these clouds
all have different radii, and we expect from data presented earlier that MCP nonlinearity
actually depends on brightness per area, not total brightness. There is also no doubt that
the degree of nonlinearity depends on how quickly charge arrives on the MCP. Therefore,
any attempt to remove MCP nonlinearity will require a lot more sophistication. Consider
also Fig. 5.7, where actual MCP images of normal clouds and “doubled clouds” are shown
for an 80mV step size. We find that the doubled cloud’s maximum pixel intensity is not so
different from the normal cloud, but that the doubled cloud is wider, a clear sign that the
pixel intensity is saturated.
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Figure 5.6: The imaged brightness of successively extracted and imaged clouds is plotted
for the five different voltage step sizes. Half the imaged brightness of “doubled clouds” is
shown with X’s (with their abscissa being halfway between the two clouds that were added
together). Nonlinearity is evident from the X’s not falling along the solid lines.
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Figure 5.7: Left - the raw picture of the 40th extracted cloud with 80mV steps. Right - the
picure of the “doubled cloud,” the result of combining the 40th and 41st extracted clouds.
The colorbar on the right applies to both images. Of course, in both images I have zoomed
in on a roughly 150 pixel by 150 pixel square centered on the cloud.

It should be noted that this is not a very “kosher” thing to do with plasmas. If one
of the two confining electrodes had a slightly more negative potential, the electrons in that
cloud would escape into the other with an elevated kinetic energy; thus this operation is
expected to result in a drastically hotter cloud. Also, Ref. [101] points out that these kinds
of potentials facilitate plasma radial expansion (although I haven’t checked the numbers on
whether or not this is a relevant effect here). It may be more relevant that the two clouds
could be slightly displaced from the trap center. When combined their magnetron motions
would be out of phase, and the resulting radius would be roughly the initial radii plus the
magnetron motion radius times a random factor accounting for the phase difference. Thus
in Fig. 5.8, I plot the RMS charge radius of ordinary clouds and of “doubled” clouds. It may
also be interesting to see how scoop radius changes with extractions and with voltage step
size, even if I’ve made no predictions to compare this data to.

5.3 Silicon Multiplier charge arrival timing

Our next method for determining the total charge is by inferring the space charge potential
of the cloud by slowly releasing it toward an MCP with maximum gain, and we measure
when charge starts to escape from the cloud. Fig. 5.9 shows the on-axis potential created by
the electrodes used to perform this operation.

Between the camera and the MCP there is a Silicon photomultiplier (SiPM), a single-
photon sensitive light detector. This piece of equipment was first installed at ALPHA to
increase the precision of plasma temperature measurements, as described in Ref. [98]. Essen-
tially it allows us to use the MCP as a timing-sensitive detector instead of a position sensitive
detector. The procedure here is the same as what we would do to measure a plasma temper-
ature, but instead I am primarily focused on a component of the temperature signal that is
often ignored at ALPHA—when the signal first arrives. Some sample signals are shown in
Fig. 5.10. In these signals, the output of the SiPM circuit is sent through a short cable to an
SRS preamp, which applies a low pass filter [O(100Hz)] and a high pass filter [O(1MHz)].
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Figure 5.8: The mean square radius of successively extracted clouds is plotted for the five
different voltage step sizes. The radius of “doubled clouds” is denoted with X’s (with their
abscissa being halfway between the two clouds that were added together). Like total bright-
ness, the mean square radius is found by numerically integrating a function fit to the bright
spot produced by imaging a cloud. We then multiply by the MCP B-field expansion ratio
to infer the radius of the clouds when they were inside the trap (see Sec. 3.5).
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Figure 5.9: The electrode potential manipulation that releases the plasma toward the MCP
to determine the temperature and space charge voltage of a cloud. Initially, the cloud is
confined in the center of the blue potential, and in about 20ms, electrode voltages are
linearly changed to arrive at the red potential (where there is no longer a confining potential
for electrons).

We later realized that the filters just make the signal harder to interpret without removing
any noise that could just as well be removed with digital filters after the fact.

These signals clearly show an oscillation. The cause of this oscillation can be determined
by noticing that the frequency is exactly equal to the frequency with which the electrode
voltages are updated—the voltage instructions say that the electrode voltages should change
between an initial value and a final value in 1000 steps in 20ms. I have two hypotheses for
how this ultimately causes a 50 kHz oscillation in the resulting SiPM signal. The first is
that that the charge is released in spikes when the voltage step happens, and the low pass
filter (or any other component of the circuit with a nonzero response timescale) turns that
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Figure 5.10: SiPM signals are shown for clouds extracted with 80mV steps. The increase
in cloud charge with extraction number can be inferred from the signal beginning earlier for
later-extracted clouds. Solid lines show the raw signal; the dashed lines show the result of a
rolling average periods of 20µs = 20ms/1000.

into a sinusoidal oscillation. The second proposal is that the stepped voltage change is seen
by the clouds as a 50 kHz drive. A system driven at 50 kHz will oscillate at 50 kHz even if
this isn’t necessarily a resonant mode. A simulation could resolve which proposal is correct,
and making such a simulation wouldn’t be worth anybody’s time. In a later experiment, I
confirmed that I could remove the oscillation by doing more voltage steps (104 instead of
103), but a less complete dataset was taken with this improvement, and the oscillation isn’t
very detrimental to this measurement. To more easily infer the cloud’s temperature and
space charge potential, I removed the oscillation by applying a rolling-average filter with
the averaging time set to the period of the oscillation; the result of this is also shown in
Fig. 5.10. Actually, the oscillation was rather helpful—it allowed me to see clearly when the
signal ends (around 0.0107 s in Fig. 5.10). Of course, this can be predicted by modelling the
on-axis potential produced by the electrodes, but the prediction differs from reality by about
0.1ms, which is to be expected from small amplifier offsets and patch potentials.

Before estimating charge, I will use these signals to measure cloud temperatures. This
technique is first introduced in Ref. [97]. In the beginning of each signal, an exponential in-
crease is observed. This is related to the Boltzmann distribution of axial energies of electrons
in the cloud, as discussed in more detail in Sec. 4.1. The “escape energy” for electrons is
defined as the difference between the electrostatic potential maximum that the cloud sits in
and the electrostatic potential minimum that electrons would need to pass in order to escape
the confining potential and be released toward the MCP (times e of course). This potential
difference is inferred using electrostatic modelling of the electrode voltages used to perform
this operation. To infer temperatures, we naiively assume that the cloud’s charge does not
significantly perturb the trapping potential, and that the electrons can be modelled as hav-
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ing a Maxwell-Boltzmann distribution, and that all electrons are located on the potential
maximum. Under these bold assumptions, we find that this signal should be proportional to
exp(−escape energy/kBT ), but only for the early-time/high exponential suppression part of
the signal. The escape energy is decreasing linearly during this exponential increase in the
signal, so the parallel energy needed to escape is Eescape = e(V0−Ct). Then the temperature
of the plasma is found by fitting an exponential (signal = exp(t/τ)) to the early part of the
signal; then T = τeC/kB. The temperatures of the clouds discussed throughout this section
are shown in Fig. 5.11. The result is not very illuminating. Smaller clouds give less reliable
temperature measurements (because the exponential increase lasts for a shorter time). And
within the large, seemingly random measurement error, all clouds have roughly the same
temperature of 60–85K regardless of when they are extracted from the reservoir and what
voltage step size is used, which is probably just the temperature of the reservoir.

The inaccuracies of the assumptions in the previous paragraph are related to the issue
described in Sec. 4.1 with measuring temperatures of positron plasmas, but in that case
the positrons formed a plasma, and that plasma had a well-defined “space charge voltage”
which could replace the aforementioned electrode-produced electrostatic potential maximum.
Most of these clouds are not plasmas, so a similar, but not identical analysis would be
needed to infer absolute temperatures, and we would expect a reduction in measured cloud
temperatures of order 30–50% as we observed in positrons. It required a lot of computational
time and a lot of my own time to calculate this correction accurately for a single positron
plasma, and it would need to be done independently for each different cloud size to account
for this effect accurately here, so I have chosen not to repeat this analysis for electron clouds,
and my temperatures will be wrong by 30–50%.
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Figure 5.11: The temperatures of clouds extracted from SiPM signals. As usual, six voltage
step sizes are used to extract the clouds from the reservoir, and 128 clouds are sequentially
extracted from the reservoir then sent to the MCP.

Next, as a first step to inferring the charge of the resulting cloud, the “escape time” is
identified as the first moment where the signal clearly exceeds the background. To do this,
I found the standard deviation of the early-time signal well before any charges have hit the
MCP, and I set a threshold as a somewhat arbitrary multiple of that standard deviation.
Then I found the electrode voltages that were present in that moment, and I used those
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voltages as the input of a plasma equilibrium solver. The result of this analysis is shown
in Fig. 5.12. In that figure, the escape time is converted into a space charge potential—
defined as the voltage difference between the barrier charges are escaping over and the
voltage maximum where electrons are confined. To rule out systematics relating to the the
speed with which the plasma is ejected, this analysis was performed with two different dump
speeds. Although the charges first arrived at radically different times and the duration of
the signals were radically different, both datasets show roughly equal space charge voltages
for identically prepared clouds. It is notable that for the biggest scooping voltage step size,
the space charge voltage of the clouds actually drifts down with later extractions. Later, we
will see that this is largely, and perhaps entirely because clouds have a bigger radius, so with
the same total charge there is a lower space charge potential.
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Figure 5.12: The space charge potential is shown for successively extracted electron clouds
for the typical six different scooping voltage step sizes. The solid lines show the result of
dumping the plasma to the MCP with the potential shown in Fig. 5.9. The dashed lines
show the result of dumping the plasma at roughly twice the speed by starting in a confining
potential which is roughly twice as deep.

The equilibrium solver used here was purpose-made for the task of estimating these clouds
charge. Typically my equilibrium solvers have assumed “rotational equilibrium”—that the
cloud’s fluid velocity resembles a rigid rotor. However, when a low-density cloud is being re-
leased from the trap relatively quickly, the cloud might not remain in rotational equilibrium.
It should be noted that the relevant timescale isn’t 20ms, the full timescale of the voltage
change. Rather, for most of that 20ms, the cloud is still in a roughly harmonic trapping
potential (with a changing harmonic constant). Thus if it remains a cold plasma, it remains
as a spheroid; if it is a hot cloud the whole time, it remains a Gaussian distribution (see
Sec. 5.4.1). No movement of electrons across magnetic field lines is needed to maintain rota-
tional equilibrium—the charge distribution simply elongates, barring a very minimal change
due to the Debye length to cloud size ratio changing. It is only moments before charge is lost
and while charge is being lost that the cloud significantly deviates from being a rigid rotor—a
few tenths of a millisecond. So instead of assuming rotational equilibrium, I assumed that
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the cloud’s radial charge distribution remains fixed, and I extracted that charge distribution
from pictures taken in separate experiments where the clouds are imaged normally on the
MCP. I never really checked this guess—that a tenth of a millisecond was much faster than
the rotational equilibration time. But the plasma solver was faster computationally, it was
worth developing for other projects, and it gave predictions that differed by only about 10%
for the total charge. So allow me this one unsubstantiated guess.

For each cloud, a plasma solver is given an image-extracted r distribution of charge, the
time that charge first arrived at the MCP, and a temperature (a uniform guess of 70K is
used for all clouds). Then we vary the total charge, trying to find a value which suggests
that 10 electrons have enough energy to escape the cloud at the identified moment where
SiPM signals are above background. This number, 10, is obviously somewhat arbitrary. We
know that the MCP/phosphor screen/SiPM can detect single electrons, but the efficiency is
probably not 100%. So 10 is chosen, as it is the smallest number which is much bigger than
1. The following algorithm is used to solve for the total charge:

1. A heuristic guess is used as a starting point—150 ke− for the biggest clouds, scaled
linearly with space charge voltage for the smaller clouds.

2. If the initial guess is too big (small), I repeatedly divide (multiply) that guess by two
until the resulting charge is too small (big).

3. From here, we have a number which we know is too small, and a number which we
know is too big, and 10 steps of binary search are used to find a total charge where
exactly 10 electrons would be escaping the confining potential.

The most difficult part of the above algorithm is computing the number of electrons with
enough energy to escape for a given equilibrium solution. For each radial position, an escape
voltage Vesc(r) is computed—the most negative potential along that row. Then for each
axial gridpoint in that radial grid location, the axial escape velocity is determined to be
|vesc| =

√
2e[V (r, z)− Vesc(r)]/m. The fraction of electrons with this escape energy is:

fesc =

∫∞
vesc

dv exp
(
− mv2

2kBT

)
∫∞
0

dv exp
(
− mv2

2kBT

) = erfc

(√
m

2kBT
vesc

)
= erfc

√e[V (r, z)− Vesc(r)]

kBT

 (5.1)

Electrons that are already on or beyond the escape voltage already are not counted; they are
considered to be unphysical computational artefacts. Three examples of equilibrium solver
results are shown in Fig. 5.13. They show guesses for the total charge which have too many
escaping electrons, just enough, and too few electrons.

The charges of each cloud predicted by this equilibrium modelling is shown in Fig. 5.14.
The quality of the results of this study is disappointing. The charge of the clouds predicted
by this analysis is dramatically sensitive to the arbitrarily chosen threshold of “ten escaping
electrons.” For example, changing this number to 100 shifts the 80mV voltage step clouds
total charge by 14 ke−. Likewise, the prediction is dramatically sensitive to temperature, and
I have already discussed the issues with these temperature measurements. For the smallest
clouds, these issues are much worse, and essentially this method of charge estimation is
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Figure 5.13: Three guesses for the total charge of the 128th cloud extracted from the reservoir
with 80mV steps. In the middle column, the actual solved charge 122 ke− is shown. On
the left and right, the plasma equilibrium with 20% less and more charge respectively. On
the top row, the plasma density throughout space is shown. In the second row, the on-axis
potential created by the electrodes is shown in blue, and the on-axis potential corrected by
presence of the electrons is shown in orange. In the third row, the number of electrons per
computational gridpoint is computed—that is, the data in the first row times the volume of
each computational gridpoint. The final row shows the number of electrons in each gridpoint
which have enough energy to escape the trap. The total number of electrons with escape
energy is given on top of each column.

completely useless. However, as discussed earlier, there is good reason to expect that our
temperature measurement of 70K was overestimated by a factor of 1.5 to 1.8. Thus, I redid
this calculation with a temperature of 40K. These results are shown in Fig. 5.15, and the
estimated cloud charges are much closer to what we find using other methods. This seems
to be tentative confirmation that the same kind of temperature correction factor discussed
in the context of positron plasmas in Sec. 4.1 also applies to non-plasma electron clouds.

Unlike the MCP total brightness estimations of cloud charges, the total charge of clouds
extracted with 80mV drops with later extractions regardless of temperature. This isn’t as
dramatic as the drop in space charge voltage shown in Fig. 5.12 because the radii of these
clouds also increased. Probably this technique didn’t go far enough and we will see in the
next section that the charge of these scoops is more constant. Despite these issues, it is
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Figure 5.14: The cloud charge estimated using signal arrival timing combined with equilib-
rium modelling is shown for the six scooping voltage step sizes. The dashed lines and the
numbers on the right show the result of averaging all the clouds after the 30th, as was done
for other charge determination methods.
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Figure 5.15: This plot is the same as Fig. 5.14, but with a plasma temperature of 40K
instead of 70K.

also good to have an approximate independent verification of the results of the Faraday cup
measurement—which was until this point the only absolute measurement of cloud charges.

5.4 Magnetron phase shift due to cloud charge

This final method of charge determination utilizes the same techniques developed throughout
this thesis to measure magnetic fields and patch potentials. Clouds will be displaced from the
trap center using patch potentials, and then they will orbit the trap several thousand times.
I will take care to preserve phase coherence by eliminating the variability in magnetron
frequency with radial distance from the trap center. We will observe a small phase difference
between clouds with different charges. By theoretically predicting the relationship between
charge and phase, we will extract a measurement of the total charge. There will also be an
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interlude where it is shown how the total charge affects how far a cloud is displaced from the
trap center by patch potentials (a systematic in the patch field measurements). In a sense,
the systematic effect that charge has other cloud-based measurements is isolated and used to
determine the charge of the cloud. Indeed, anything that affects your measurement device
can be reinterpreted more positively as something your measurement device is sensitive
to. There are many ways to interpret the importance of this chapter. The preceeding
sections could be seen as a double check that this new measurement tool is accurate (or vice
versa). Alternatively, this section could serve as proof that the systematic effects of cloud
temperature and charge on other cloud-based measurements are well-understood.

In Fig. 5.16, the potentials used to perform this measurement are shown. Essentially
I wanted to use the technique presented in the patch potential section to move the clouds
off-axis. Then I wanted them to stay in the trap in a magnetron orbit for a long enough
time that a significant perturbation due to the image charge could accumulate. However, in
a nominal trapping potential this would mean that the variability of magnetron frequency
with radius would completely randomize the cloud’s final magnetron phase. Therefore, the
trapping potentials are chosen to to have zero total variability with radius (at least in theory).
Then when they are imaged, there will still be enough phase coherence that we can observe a
small phase shift due to the effect of each cloud’s total charge. Fig. 5.17 shows the resulting
data for five different amounts of total time that the clouds spent in a magnetron orbit.
Before discussing the analysis of this data I will derive the charge-dependent correction to
the magnetron frequency.

(a) After being moved axially from the reservoir to the measurement location (roughly in
the middle of the ALPHA-g trap), the trapping potential is weakened adiabatically,
and patch potentials move the cloud off-axis (see Sec. 3.3).

(b) Once the cloud has been moved off-axis a desired distance, the trapping potential
is instantaneously (well, as fast as the amplifiers can change voltage) changed to a
deep trapping potential, and the cloud orbits the trap center. The cloud rests in this
potential for about a millisecond. The logic of this step is that the analysis of how
far the cloud moves off axis is simpler when the instantaneous change is just a single
electrode changing voltage from low to high. Then the on-axis potentials just differ by
a constant factor.

(c) The trapping potential is changed linearly from the previous one to a trapping potential
with a negative quartic term. Then we rest here for a variable amount of time up
to about a second. In this trapping potential, longer plasmas orbit the trap center
faster, and plasmas that are displaced radially farther from the trap center orbit slower,
making the phases develop a spiral in the shape of θ ∝ r2.

(d) The trapping potential is changed linearly to a trapping potential with a positive
quartic term. We rest here for a variable amount of time up to about a fifth of a
second. Generally, the time spent in this positive quartic potential is chosen to cancel
out the effect of the negative quartic potential so that there is very little spiral in the
final data, making small phase shifts easier to observe.
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Figure 5.16: The sequence of electrode potentials used to measure the effect of cloud charges
on their magnetron frequency. In each subplot, the blue line is the on-axis potential created
by the electrodes as found by an electrostatic model. The orange dashed line is the result of
a quartic fit to that potential. The black line shows the electrode voltages that create this
on-axis potential. The purpose of each step is listed in the text.

95 ms 211 ms 384 ms 674 ms 1252 ms

Figure 5.17: The entire dataset used in this section is shown. Above each circle, the time
that the electron clouds spent in a magnetron orbit around the trap center is listed. The
black circles represent the aperture, which is not the edge of the MCP, but nonetheless clouds
that fall outside of this aperture are not imaged. Each dot is the center of a plasma which
was imaged with the MCP. As usual, blue, orange, green, red, purple, and brown points
correspond to clouds prepared with scooping step sizes of 2.5, 5, 10, 20, 40, and 80mV
respectively.

(e) In another millisecond, the trapping potential is linearly changed to this “pre-dump”
potential, where we can release the electrons at a negative potential so they will fly
toward the MCP.

(f) The cloud is sent toward the MCP to be imaged. This voltage change is instantaneous
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like the (a)-(b) transition.

This describes the procedure performed on a single cloud, but of course the final mea-
surement requires many clouds. For each reservoir, we first image 28 clouds with a small
displacement and varied magnetron phases. This helps identify the effective trap center as
seen on the MCP. The remaining 100 clouds are sent different distances off-axis using an
adiabatic change to a varied shallow trapping potential (see Sec. 3.3). The shallow potentials
are chosen so that, at least in theory, the clouds are evenly spaced radially. Therefore 1/k2m
for the shallow potentials is spaced linearly. However the order of these distances off axis
is randomly shuffled so that we can still measure the variability of charge with extraction
number without incurring a systematic effect from the variability of the magnetron frequency
with radial position.

Next, the same procedure is performed for six identically prepared reservoirs with different
scooping voltage step sizes. Finally, the entire sequence of six reservoirs is repeated for
different amounts of time spent in potentials (c) and (d). The increasing time in those two
potentials is chosen so that the total spiral accumulated remains zero. Using the numbers
listed in Fig. 5.16, the time spent in potential (c) is 4.9 times the time spent in potential
(d). The entire measurement took about four hours—about half a shift.

Once the clouds are in a “deep” trapping potential performing a magnetron orbit around
the trap center, their radius is up to rc = 0.3mm for the biggest clouds considered, and their
length is up to about l = 1mm. The clouds are also displaced a relatively small distance from
the center of the trap: up to about r = 2mm, because beyond that point the clouds miss the
MCP and cannot be imaged. Because all of these length scales are very small compared to
the trap wall radius, we can expand the trapping potential in powers of (r or l)/Rw, where
Rw is the trap wall radius. Also, for the effect of the cloud’s image charge on its magnetron
frequency, the cloud can be approximated as a point charge in an infinite grounded cylinder.
Thus we write the trapping potential near the trap center as:

ΦT = −k2

(
z2 − 1

2
r2
)
+ k3

(
z3 − 3

2
zr2
)
+ k4

(
z4 − 3z2r2 +

3

8
r4
)
+ · · · . (5.2)

The third order term gives rise to an r dependent z equilibrium ⟨z⟩ = −3k3r
2/(4k2). Taking

a negative derivative with respect to r to find Er, then dividing by Br to find the frequency
of E×B drift we get:

ωr(r) =
k2
B

− 3
k3⟨z⟩
B

− 6
k4⟨z2⟩
B

+
3

2

k4
B
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+

(
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4

k2
3

k2B
+

3

2

k4
B

)
r2 + · · · , (5.3)

Note that after the first equality, any lingering z’s are turned into expectation values over
the cloud’s charge distribution. This is justified by realizing that an electron bounces in
z much faster than it orbits the trap due to magnetron motion. The E × B drift of an
electron, and indeed of the cloud as a whole, should be averaged over this fast z motion.
This is summarized by the commonly stated order of scales in Penning traps: ωc ≫ ωz ≫ ωr

(the cyclotron frequency is much greater than the z bounce frequency which is much greater
than the magnetron frequency).

In this measurement k3 is zero except in potential (e), and
∫
k4dt is made to be zero by
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adjusting the time spent in potentials with negative versus positive k4. Thus, except due
to error in the models, there should be no r dependence in θ =

∫
ωr(r, t)dt, meaning that

small phase shifts will be more easily observable. Also, to eliminate systemics relating to
modelling the trapping potential changing over time, I will only measure “differences in phase
differences.” That is—the first word “differences” is differences due to spending different
amounts of time sitting in the static potentials (c) and (d). The second “differences” refers
to differences in phase between clouds with different total charge.

Unfortunately, this experiment was designed before I fully understood some corrections
to the magnetron frequency. I thought this would be a perfect measurement of the image
charge effect alone, which is linear with a cloud’s total charge and thus an unambiguous
measurement of its charge. However, I didn’t realize that the finite length effect 6k4⟨z2⟩/B
was the same order of magnitude (and actually twice as big). Had I realized this, I would
have simply used one trapping potential with zero quartic coefficient to eliminate the finite-
length effect. As it stands, the mean quartic coefficient is zero, but the mean k4⟨z2⟩ is
not zero, because the negative quartic potential has a lower k2, so the plasma is longer
there. Nonetheless, by properly studying how cloud lengths depend on k2, with a bit more
complexity, we can still extract a fairly reliable measurement of cloud charges. Note I also
hadn’t realized that k3 contributes to the r2 term in ωr at this point, but here this doesn’t
really matter—a very short time is spent in asymmetric wells anyway.

5.4.1 Cloud lengths

There are two limits where the shape of the cloud can be calculated exactly—the cold
spheroid plasma limit and the hot Gaussian cloud limit. If the Debye length is short compared
to the length and the radius of the cloud, then the cloud will approximately have a spheroid
shape. Its mean square radius is conserved by the confinement theorem [8], so only its length
will vary so that the total electrostatic potential is constant with z inside of the plasma. If
the Debye length is long compared to either the length or the radius of the cloud, then the
cloud’s charge will not significantly affect the trapping potential, and its charge distribution
will be Gaussian. The radial extent of the Gaussian will be determined by the conserved
mean square radius, and the axial extent will be given by n0(r) exp(−ek2z

2/kBT ). In both
cases, the shape of the cloud will be calculated assuming the trapping potential is given by
VT ≈ −k2z

2. Then from the resulting shape I will calculate ⟨z2⟩ and substitute the result
into 6k4⟨z2⟩/B to find the perturbation to ωr. This is valid because the k4 term gives rise
to a very small perturbation to the shape of the plasma, and therefore a small perturbation
to ⟨z2⟩, and then a small×small contribution to ωr.

In the Gaussian limit, the mean square length is a very simple calculation: ⟨z2⟩ =
kBT/2ek2. For a cold plasma, the calculation is somewhat more complex. The first step
is to simply be aware of a mathematical fun fact: the electrostatic potential generated by
a spheroidal uniform charge distribution is exactly quadratic in z and r. That is, as a
function of distance from the center, the potential is exactly given by VP = −en0/ϵ0(Azz

2 +
Arr

2), where n0 is the plasma density, and Az and Ar are coefficients. The oldest citation
I can find for this is a 1929 book [102]. So we’re in luck, this is exactly what we need
from our plasma equilibrium solution. When the plasma is cold (Debye length is small
compared to the plasma), it forms a uniform charge distribution, and it should shield out z-
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directed electric field, so it should generate a potential in z which exactly cancels the trapping
potential. These spheroidal plasmas were studied by the UCSD group experimentally [103]
and theoretically [104] in the 90’s.

Now I will outline the calculation of the coefficients Az and Ar. Let the full length of
the plasma in z be 2a, and its radial width I will call

√
Ca for some constant C. Then the

equation describing the plasma interior is:

z2 +
r2

C
< a2. (5.4)

Using only elementary electrostatics, we can find the on-axis potential by integrating disks
of uniform surface charge density to arrive at:

VP (z, r = 0) =

∫ a

−a

en0dz
′

2ε0

(√
(z′ − z)2 + C(a2 − z′2)− |z′ − z|

)
dz′. (5.5)

This equation can be solved with shifts of variables and trig substitutions to arrive at the
following result:

VP (z, r = 0) = −en0
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2 +Ba2
)
. (5.6)
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(5.8)

Note that Az and B are indeed continuous and infinitely differentiable at the boundary
C = 1; the two cases are simply analytic continuations of one another. Then the Poisson
equation determines how the potential varies in r:

VP = −en0

ϵ0

(
Arr

2 + Azz
2
)
. (5.9)

∇2VP = −en0

ϵ0
(4Ar + 2Az) =

qn0

ϵ0
. (5.10)

Ar = −1

4
− Az

2
. (5.11)

Finally we will want to relate this to our conserved quantities—the total number of electrons
N and the mean square radius ⟨r2⟩. So using:

N =
4

3
πCa3n0. (5.12)
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⟨r2⟩ = 2

5
Ca2. (5.13)

The latter can be inferred from the moment of inertia of a solid sphere. We have the condition
that the trap constant k2 be cancelled by the potential made by the plasma giving:

k2 =
−en0

ε0
Az(C). (5.14)

Note that I have highlighted that Az is a function of C. In terms of the conserved and
measurable properties of the cloud, we have:

−4k2ε0π

3eN

(
5⟨r2⟩
2

)3/2

= Az(C)C1/2. (5.15)

a =

√
5⟨r2⟩
2C

. (5.16)

⟨z2⟩ = a2

5
. (5.17)

The last equation, again, simply comes from the moment of inertia of a sphere (after noting
that ⟨x2⟩ = ⟨r2⟩/2). So finally we have a procedure for finding ⟨z2⟩ for spheroidal plamas: we
numerically solve Eq. 5.15 for the radial scale factor C, then we put the result into Eq. 5.16
and in turn insert that into Eq. 5.17.

I compared these two limits to the results of a plasma equilibrium solver. This was done
not only to check my algebra, but also because I wanted to see if I could guess an equation
for ⟨z2⟩ that would be approximately valid in both limits to help extract the total charge
from plasmas with Debye lengths comparable to their dimensions. Some examples of solved
plasmas are shown in Fig. 5.18. A special plasma equilibrium solver was prepared for this
calculation. This solver found whether the plasma was in the Gaussian limit or the spheroid
limit, and in either case it would use the applicable theory to calculate the expected length
and rotation frequency, and an appropriate initial guess for the shape of the plasma was used.
This meant the rotation frequency was solved faster and the equilibrium charge distribution
was found faster. Also, I didn’t need to set the length or radial extent of the grid by hand.
In the Gaussian limit, the solver was actually also aware of the leading order correction to
the trapping potential from the charge being not-entirely negligible, but this theory is not
very illuminating and quite a lengthy calculation, so I will not describe it in this thesis.

The ⟨z2⟩ values found by the equilibrium solver are compared to the Gaussian hot cloud
theory and the cold spheroid plasma theory in Fig. 5.19. Of course, the theories agree
with the solver in either limit. Also, a heuristic guess is plotted in Fig. 5.19, which shows
the result of guessing that ⟨z2⟩ for any cloud is simply the sum of the theories in the two
limits. This guess comes from acknowledging that if the cloud is mostly Gaussian but slightly
perturbs the trapping potential, the repulsion between electrons will slightly elongate the
cloud. Likewise, if the cloud is mostly spheroidal, its temperature will slightly elongate the
cloud, making some charge extend into regions of higher potential energy than the flattened
center. Therefore the full length is always greater than the length implied by either limit.
Of course just guessing an equation (that is not justified by any formal approximation) is
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Figure 5.18: Three plasma equilibrium solutions found while calculating the blue curve in
Fig. 5.19. Each column shows a different number of electrons (listed on top of the column)
with the same temperature in the same purely quadratic trapping potential. The realistic
trapping potential k2 = 106V/m2 was used, the root mean square radius was set to 0.3mm,
and the temperature was set to 100K. The upper plots show a cross section of the charge
distribution. The lower plots show the trapping potential in blue (which was chosen to
be purely quadratic, not an approximately quadratic trapping potential from realistic elec-
trodes), and the potential perturbed by the charge is shown in orange.

not generally appropriate in physics, but I was satisfied that the simplest possible guess for
a general equation was remarkably accurate, and in the rest of this section I will use this
equation for analysis.

5.4.2 Image charge effects

As stated earlier, my primary intention for this experiment was to measure only the effect of
a cloud’s image charge on its magnetron frequency. To calculate this, we can approximate
the clouds as point charges, because they are much smaller in radius and length than the size
of the trap. Then the question is just what force does a grounded conducting cylinder exert
on a point charge which is displaced from the trap center. I first obtained the formula for
this effect from Ref. [105], and in turn they cite Ref. [106]. It was previously experimentally
observed to have an effect on precision measurements of highly charged ions in Ref. [107].
Ref. [105] defines the “image potential” as:

Φimage
0 (r) = − q2

4πϵ0Rw

∞∑
l=−∞

2

π

∫ ∞

0

dxI2l

(
x

r

Rw

)
Kl(x)

Il(x)
, (5.18)
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Figure 5.19: An electron cloud’s root mean squared length is plotted as a function of the total
charge for the parameters (trapping potential, temperature, and RMS radius) described in
the caption of Fig. 5.18. The blue line is the result of numerically finding plasma equilibria
for 60 different cloud charges between 3×102 e− and 106 e−. The green line is the theoretical
result for hot gaussian clouds. The orange line is the theoretical result assuming the cloud
temperature is zero (the cold spheroidal plasma limit). The orange dashed line is the square
root of the sum of squares of the two theories.

where I and K are the modified Bessel function of the first and second kind respectively.
The integrand is exponentially suppressed for large x whenever r/Rw < 1 (which it always
is). It’s hard to complete the integral with complex analysis when it isn’t going from −∞
to ∞, and it isn’t symmetric with respect to x → −x. However, we only want to calculate
this for small r/Rw, so I expand the I2l (xr/Rw) inside the integral for small r/Rw [108]:

Il(z) =

(
1

2
z

)l ∞∑
k=0

(
1
2
z2
)l

l!Γ(l + k + 1)
. (5.19)

When we expand in powers of r/Rw, in Eq. 5.18, any contributions to some power n only
come from |l| < n/2. Then I set up a numerical integrator for integrals of the form:∫ ∞

0

x2nKl(x)

Il(x)
, (5.20)

and for the first few powers of r/Rw I summed up all the coefficients from the contributing
l values and the expansion of I2l . The result is (up to the precision of my calculations):

Φimage
0 (r) = − q2

4πϵ0Rw

[
0.8707 + 1.00273

(
r

Rw

)2

+ 1.00094

(
r

Rw

)4

+ 1.00031

(
r

Rw

)6

+ · · ·

]
(5.21)

The electric field seen by the point charge is actually half the negative derivative of this image
potential divided by q. It seems the image potential is defined more like the potential energy
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between a point charge and its image charge (not that there’s an “image charge solution” to
this problem), and we know that the actual potential energy is half the potential defined in
this way [100]. So then the contribution to the magnetron frequency is:

ωimage
r (r) = − 1

2NeBr

d

dr
ΦImage

0 ≈
(
1.00273 +O

(
r2

R2
w

))
Ne

4πε0BR3
w

. (5.22)

As a bit of an aside, Prof. Dan Dubin from UCSD pointed me to Eq. 5.18 in one of
his papers at a conference. I was trying to use elaborate and computationally intensive
numerical methods to evaluate this contribution to the magnetron frequency, and to within
the precision I could achieve, I hadn’t found any difference between the force on a charged
particle from a grounded cylinder of radius r versus a grounded sphere of radius r. At the
time I was convinced that there was some mathematical trick I hadn’t figured out yet which
proved they were exactly the same, and I had this hypothesis written in a small box on
my poster at the conference. Prof. Dubin came along and said he wasn’t sure if this was
true, but he doubted it, and he said he had a paper which had an exact equation which
would be easier to evaluate than my scheme. In the end, the force is very close, but not
the same. The image potential for the grounded sphere can be solved by placing an image
charge of magnitude qRw/r a distance R2

w/r away from the center of the sphere [100]; then
the potential is:

Φimage
0 = − q2

4πϵ0Rw

1

1−
(

r
Rw

)2 (5.23)

Then using the commonly known sum for 1/(1− x), we get

Φimage
0 = − q2

4πϵ0Rw

∞∑
n=0

(
r

Rw

)2n

(5.24)

Indeed, when we compare the coefficients here to the coefficients in Eq. 5.21, we find that
the force between a point charge and a grounded cylinder is very similar to the force between
a point charge and a grounded sphere.

5.4.3 Linear phase correction

Now that I’ve explained the two effects that will contribute to the measured phase differences
in this experiment, I can explain the analysis. However, in the very first step of this analysis
we encounter a mystery. That first step is to plot the phase of each imaged plasma versus
radial distance. Nominally, the phase is arctan2(y−yc, x−xc), where x and y are the position
of the center of the cloud on the MCP, xc and yc are the trap center, and arctan2 is the inverse
tangent function with two inputs. However, this doesn’t capture phase differences greater
than 2π, which are obviously present in Fig. 5.17. Thus, a simple algorithm was used to find
the total phase including full rotations—some 2π errors were fixed by hand, and most were
identified by extrapolating from the results from shorter trap times. The results are shown in
Fig. 5.20. The mystery comes from noticing that the phases aren’t quadratic with distance
from the trap center—they are linear. To make this more clear, consider Fig. 5.21, where I
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Figure 5.20: The final magnetron phases of the imaged clouds versus radial position from
the trap center. The colors represent different sizes of clouds: the usual choices of scooping
voltage step sizes (2.5, 5, 10, 20, 40, and 80mV). Each subplot shows a different amount
of time spent in a magnetron orbit, with the total time listed on top of each subplot. The
plots look very similar to one another simply because the vertical axis is scaled and offset
to fit the data, and at least in theory everything should be proportional to time. Gaps and
missing r values can be explained by looking at Fig. 5.17: many clouds miss the MCP. The
lines are fit quadratic functions. The 1252ms data shown in Fig. 5.17 is not included in
further analysis because something went wrong with the reservoir with 2.5mV steps (notice
the lack of blue points).

zoom in on some of the lower charge data. It is clear that a line is a good fit to the data,
but a quadratic function (without a slope at r = 0) is not a good fit. Also, the coefficient
on the linear term clearly increases with increasing time spent in the deep wells. This rules
out a number of simple hypotheses, like errors relating to error in (xc, yc), or the transition
from potential (a) to (b) not being sufficiently quick, or the effect of nonlinear patch fields
discussed in Sec. 3.13. Such effects would only ever introduce phase offset proportional to r
which is independent of the time spent in the magnetron orbit.

At first, this was extremely perplexing. The theoretical variation with r scales like r2

(up to the order I calculated). But the reader may note that I only included azimuthally
symmetric terms in my expression for the potential. In other words, I neglected perturbations
to the potential due to patch potentials and electrode construction errors. Such terms
initially seem hopeful, because this linear term is indeed small—only observable when the
quadratic term is tuned to be small. However, regardless of the form of the perturbation,
the magnetron frequency should respect the symmetry r → −r. To test this argument, I set
up a Boris algorithm integrator to see how different perturbations affected the magnetron
frequency. I have gone up to third order in r and z [terms like r cos θ(z2−1/4r2)], and every

131



0 100 200 300 400
distance from trap center (pixels)

2

3

ph
as

e

95 ms

0.33r/100+1.69

0 100 200 300 400
distance from trap center (pixels)

2

4

6

ph
as

e

211 ms

0.51r/100+2.27

0 100 200 300 400
distance from trap center (pixels)

0

5

ph
as

e

384 ms

0.84r/100+0.47

0 100 200 300 400
distance from trap center (pixels)

0

5

10

ph
as

e

674 ms

1.29r/100+-0.89

Figure 5.21: The same data and explanation as Fig. 5.20. Now the span of the vertical axis
is zoomed in on the lower charge clouds. Also, the the fit parameters of a linear fit to the
smallest clouds is shown.

term I have tried only contributes a constant shift and/or a correction which is proportional
to r2.

Before proposing a hypothesis that is consistent with all the observations, I will discuss
and refute some other proposals that probably come to mind for the reader. First, there may
be some kind of electrode amplifier hysteresis due to the shallow trapping potentials being
different for clouds moved a different distance off-axis. In other words, having a different
potential (a) might mean that potentials (b) and (c) are slightly different. However, this
seems unlikely given that only in potentials (c) and (d) do these clouds spend a variable
amount of time. It seems odd that any kind of hysteresis would persist after two voltage
changes. My advisor, Prof. Joel Fajans, points out that he is aware of a theoretical reason
for hysteresis: there is a resistor forming a feedback loop for an op-amp in the amplifiers that
drive the electrodes. The resistor will have a resistance that depends on temperature, and
the temperature of the resistor will depend on the history of voltages across it. This seems
unreasonable though, because the only potential that varies here is the shallow trapping
potential—roughly 0.1–1V. If this significantly heats the resistor and causes hysteresis, then
such effects should be plainly obvious in situations where 150V is going to the electrode.
The efficacy of EMPI (see Sec. 8) rules this out.

Next, consider a toy model which reproduces the ∝ r behavior and serves as the inspi-
ration for my favorite hypothesis. The clouds may be heated by the instantaneous voltage
change (a) to (b). Consider a Gaussian cloud in potential (a). Its length is l ∝ 1/

√
k2i where

k2i is the trap constant of potential (a). Then naively assume that the electrode voltage
changes much faster than electrons can move. Electrons a distance l from axial the trap cen-
ter will gain an energy from the changing potential of k2f l

2 ∝ k2f/k2i ∝ k2fr. Then the finite
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length phase change is proportional to temperature, and hence energy gained. Of course,
this exact calculation is completely wrong: the electrodes do not move fast compared to the
axial motion of the electrons (a few microseconds vs a few nanoseconds per cycle). Also, the
effect described here clearly should depend on the cloud’s charge, which significantly affects
its length in the shallow and deep trapping potentials—the slopes in Fig. 5.21 do not really
appear to vary with cloud charge.

Because this linear term doesn’t seem to vary significantly with cloud charge, we can
learn about its behavior using only the smallest clouds, varying the time spent in both wells
(c) and (d). This is shown in Fig. 5.22. In that figure, I include data that was specifically
taken to measure the charge of clouds, but also data mentioned in Sec. 3.5 to calibrate the
MCP magnetic field, where I vary the time spent in wells (c) and (d) one at a time. We see
weak evidence that the linear term decreases when the clouds are in potential (d), and that
it increases when they are in potential (c). We also see clearly here that when the total time
increases in both potentials, the linear coefficient increases roughly linearly with time. This
is all consistent with the guess that clouds that are displaced further from the trap axis are
longer, perhaps because their temperature has been increased.
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Figure 5.22: A quadratic function θ = θ0 +mr + kθr
2 is fit to measured magnetron phases

versus distance from the MCP. These plots show how the linear coefficient m (orange points,
right vertical axis) and the quadratic coefficient kθ (blue points, left vertical axis) change
as we vary the time spent in potentials (c) and (d). These potentials are referred to as the
negative quartic well and the positive quartic well respectively. In the left plot, the time
spent in both wells is increased so that the total kθ should remain constant in theory. When
kθ is small, we can perform more reliable measurements of m, and we see that it increases
linearly with time. All of this data was collected with 2.5mV clouds.

So finally I will describe a plausible model. The adiabatic transition from a deep trapping
potential to the shallow one where the clouds are off-axis can take up to 400ms. As the cloud
lengthens, it should lose heat due to adiabatic expansion. In the Gaussian cloud limit, this is
because of single particle classical mechanics in a weakening harmonic potential: conservation
of the adiabatic invariant says that the length of a particle’s orbit times its maximum velocity
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is conserved. In the spheroid plasma limit, this can be seen as the adiabatic increase of the
volume of an ideal gas.

In both cases, if there is sufficient mixing of the motional degrees of freedom perpendicular
and parallel to the magnetic field [109, 110, 111], the temperature should scale like l−2/3, and
if there is not sufficient mixing the “axial temperature” (the temperature associated with
particles’ motions along the magnetic field) should scale like l−2. This timescale is calculated
in Ref. [109] and experimentally verified in Ref. [111]. I will describe a simple argument that
arrives at roughly the same timescale as the values given in these papers.

When two electrons encounter one another with a nonneutral plasma, if their impact
parameter is much bigger than their Larmor radius, the “collision” is mainly described by
the two particles E × B drifiting around one another [112, 113]. There is little perpendic-
ular/parallel energy exchange in such a collision [114]. The typical Larmor radius of our
electrons is

√
2kBT/m/ωc = 260 nm. For 104 electrons in a cloud of radius 0.2mm, the total

area of all the electrons’ cyclotron orbits accounts for about 2% of the cross sectional area
of the cloud. Thus an electron needs to traverse the full length of the cloud 50 times before
it comes within a Larmor radius of another electron. In the shallowest trapping potentials,
our clouds may have lengths up to about lp = 0.5 cm, thus they will have close encoun-

ters with other electrons roughly once every 50l/
√
kBT/m = 7.5µs. Additionally, we must

consider whether the distance of closest approach for these collisions is small enough that
the two electrons scatter by a large angle—whether they come within the Landau length
2e2/4πϵ0kBT = 470 nm [115]. Because the Landau length and the Larmor radius are co-
incidentally similar, most collisions within a Larmor radius are also large angle deflections
which will significantly mix perpendicular and parallel velocities.

The timescale for perp/parallel mixing is very slow compared to the time taken to move
the clouds off-axis, but it is comparable to the time taken to quickly deepen the potential
afterward (about 10µs, but the details of fast electrode voltage changes are discussed in
Sec. 6.4). When a cloud is adiabatically expanded with perp/parallel mixing, but then
contracted without mixing, and then over the following few microseconds the two degrees of
freedom come back into equilibrium, the final temperature of the cloud is increased. This
heating mechanism was used in Refs. [116, 117] to measure the perp/parallel mixing rate
in electron plasmas. This net temperature increase occurs because the first and second
operations do not increase the entropy of the cloud, but the third one—where two systems
of different temperatures come into equilibrium—does increase the entropy of the cloud.
This effect is expected to increase with how far the cloud is moved off axis, because clouds
moved farther off axis are expanded to a greater length. The argument so far ignores the
fact that the cloud lengths are changing quickly during this deepening, and apparently the
clouds are heating, so the equilibration timescale also decreases over this time. Suffice to
say that when we are snapping to a deep trapping potential, there is some time where the
cloud is experiencing 1-D adiabatic compression, then some time when the perpendicular
and parallel degrees of freedom recombine, and the total heating is somewhere between zero
and what I will calculate below.

To simplify the discussion allow me to assume that the entire movement back to a deep
well is fast compared to the perp/parallel mixing time. To calculate the expected magnitude
of this effect, I first assumed that measured cloud temperatures of T1 = 70K is actually
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the cloud temperature in the shallowest trapping potential used. Both this measured tem-
perature and this model are imprecise, so we only expect to confirm the observed order of
magnitude. Note that in the moment when we measure measure cloud temperatures, they
are about as long as possible (so long that they are escaping the trapping potential).

Next, I calculate the cloud’s temperature in each shallow trapping potential used to move
a cloud off-axis. All the operations preceding the shallow well, and all the operations before
measuring a cloud’s temperature are very slow compared to the perp/parallel mixing time.
Therefore, the temperature of the cloud should be T2 = T1(lref/lshallow)

2/3. That is, it should
be the original temperature times the length of the cloud in the shallowest trapping potential
used, i.e. the “reference well,” divided by its length in the shallow well it was subjected to,
consistent with adiabatic compression from that reference well with three degrees of freedom.
This requires finding a self-consistent temperature, because the length of the cloud depends
on its temperature. This is less of a significant effect in the spheroid plasma limit, where the
length is mostly set by electrostatics.

Next I apply the one dimensional adiabatic compression from the shallow well to the
deep well. Again this requires finding a self-consistent parallel temperature, but this time
the temperature is T3 = T2(lshallow/ldeep)

2. Only the parallel temperature is T3, the other
two degrees of freedom retain their temperature of T2, so after a few microseconds, the
temperatures should mix, making the final cloud temperature T4 = (2T2 + T3)/3. From
there I calculated the frequency shift due to the cloud’s temperature, given by:

ωT = 6
k4⟨z2⟩thermal

B
= 6

k4kBT4

2ek2B
. (5.25)

Recall that it is approximately valid to just add the thermal and charge contributions to
⟨z2⟩, so here only the thermal contribution is necessary. ωT must also be averaged over the
time spent in the two trapping potentials (c) and (d), which each have their own values of
k4 and k2. I also accounted for the fact that the clouds are adiabatically expanded (with full
mixing) in potential (d), and their temperature is expected to be lower by about a factor
of 0.81. The final result is shown in Fig. 5.21. We find that the measured frequency shift
is about 5 rad/s between clouds with the highest displacement (300 pixels) and clouds with
the lowest displacement (30 pixels). The k2m values plotted in Fig. 5.23 are the same as the
ones used to displace the clouds between 300 pixels and 30 pixels.

The idea that clouds are heated in the process of moving them off-axis is tentatively
confirmed by measurements of off-axis cloud temperatures presented in Sec. 7.2. In that
section, temperatures of off-axis clouds are measured for the purpose of observing heating
due to microwaves, but we can also see that clouds which were off-axis but not yet heated
by microwaves had temperatures of about 400K. The analysis here suggests the clouds
heated most by adiabatic contraction have temperatures of about 800K. Once we account
for the fact that clouds are necessarily re-expanded when we measure their temperature
(slowly compared to perp/parallel mixing), we would expect this temperature to reduce to
about 250K—good enough agreement given the imprecision of this discussion. Of course, as
mentioned in Sec. 5.3, cloud temperatures, both the 70K used in this section and the 400K
of the off-axis clouds, are subject to an unknown correction factor, expected to be between
1/1.8 and 1/1.5. Nonetheless, these correction factors apply equally to both temperature

135



measurements, so cloud temperatures were indeed increased by a factor of roughly 6 by
moving them off-axis in this manner. An increasing temperature with clouds farther off axis
is not observed, but this could easily be because of insufficient precision in the temperature
measurement or a systematic effect relating to the temperature measurement not being
designed for off-axis clouds.

I conclude that this mechanism is very likely to be either correct or at least on the right
track for explaining the linear frequency shift with radial distance. However, it is clear in
Fig. 5.23 that the expected shape is not exactly linear. One can easily imagine though how,
with limited data, a linear fit might look appropriate. Also, there is a significant difference
between the effect on clouds with different charge. This is because the smallest clouds are
somewhat in-between the spheroid and Gaussian limits, but the biggest clouds are fully in
the spheroid plasma limit. This means that the way their lengths will will change with k2
will not be identical. However, this effect should be overestimated here for the following
reasons:

1. Because the clouds with more charge also have faster equilibration times, their heating
will be overestimated more than for the smaller clouds.

2. Because of a cloud’s charge and length effect on its displacement (see the next section),
clouds with more charge are displaced farther, and we compare clouds at equal radius,
not clouds subjected to equal k2. This has the effect of stretching out the curves in
Fig. 5.23 horizontally.

Nonetheless, if this explanation is correct, at least a few radians per second of phase difference
between the smallest and the biggest clouds is due to the bigger clouds being adiabatically
compressed by a bigger factor. This will nonetheless be ignored going forward, because the
model described so far is not in any way accurate.

If I had known about this effect before finishing my experimental work, I would have
invested significant effort into investigating this phenomenon. For example, if I had extended
the measurement times by about a factor of four, I should have been able to observe an
exponential decay in cloud temperatures due to cyclotron cooling—the timescale is about
4 s in this 1T magnetic field. Of course, I would have collected more data and tried to
show more thoroughly how this effect depends on k2 and k4. This phenomenon also presents
opportunities for measurements of properties of the clouds, including their perp/parallel
mixing timescales and their absolute temperatures in deep trapping potentials. We have no
other way of accessing this temperature—we only measure cloud temperatures after they
have significantly adiabatically expanded.

5.4.4 Charge determination

Regardless of the issue posed in the earlier section, my intention in this measurement was
to observe phase differences between clouds with different amounts of charge, and there’s no
reason not to continue with this analysis. Despite a poorly understood variability with r,
this phase difference is clearly visible.

First, I find the phase difference between a cloud at radius r and and the phase predicted
by a linear fit to the 2.5mV clouds. Next, as to not ignore the charge-caused phase shift of
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Figure 5.23: The predicted frequency shift of clouds is shown as a function of the reciprocal
of the trap constant used to move the clouds off axis. The values of 1/k2m used here are the
same values used to move the clouds off axis by distances of 30–300 pixels. The calculation
is performed with the six cloud sizes considered throughout the rest of this section. The
approximate root mean square radii and average charge of the six cloud sizes is given on the
right.

the 2.5mV clouds themselves, I plot the average phase shift of the 2.5, 5, and 10mV clouds
versus their average brightness on the MCP (which is close enough to linear with charge for
these small clouds). I extrapolate this average phase shift to 0mV with a quadratic fit and
apply this offset to all the clouds. Obviously, this procedure introduces error in the form
of a constant offset. That error is most significant for the smallest clouds, and probably
ultimately small compared to even the charge of the 2.5 scoops, but we should keep in mind
that the charge measurement for the 2.5 and 5mV scoops might be inaccurate now.

Next, for the n’th extracted cloud with a particular step size, I find the slope of how that
phase difference increases with time. Of course, this is only possible when that cloud was
successfully imaged on the MCP in at least two of the four datasets. The results of this are
plotted in Fig. 5.24 on the left. Next, this frequency difference is related to the total charge
of the cloud through the equation:

∆ωr = 1.00273
Nq

4πϵ0BR3
w

− 6
k4⟨z2⟩
B

(5.26)

The value k4⟨z2⟩ is averaged over the two trapping potentials (c) and (d) where a variable
time is spent. In each of these potentials k4 is found with electrostatic modelling, and ⟨z2⟩
is found for a given charge using the theory in Sec. 5.4.1. As described in that section, the
contributions from temperature and spheroid theory are simply added, and since a constant
temperature is assumed (and weakly measured), it actually does not contribute any phase
shift between clouds. The spheroid theory requires the mean square radius as an input, so
the clouds’ imaged mean square radius is used. The spheroid theory gives rise to a nonlinear
relationship between phase and charge, so Eq. 5.26 is inverted numerically. Ultimately the
two terms in Eq. 5.26 act in the same direction (because the length was greater for the well
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with negative k4), and the length effect is about twice as big. Finally, the extracted charge
is listed in Fig. 5.24 on the right.
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Figure 5.24: On the left, the phase growth rate is plotted for clouds sequentially extracted
from a reservoir. On the right, the total charge of these clouds is inferred from the phase
shift growth rate. As with other methods of charge determination, the average is denoted
with a dashed line and the value of that average is written on the right in thousands of
electrons. As stated in the text, the first 28 clouds are used to determine the position of the
trap center so their charge was not measured.

The results in Fig. 5.24 are in remarkable agreement with the Faraday cup measurement
shown in Fig. 5.2. Also, the clouds extracted with 80mV steps exhibit a mostly constant total
charge, indicating that their falling phase shift growth rate was entirely due to their radius
increasing and their length thus decreasing. This is in good agreement with the the very slow
charge growth rate predicted in Sec. 2.2. The charge ratios are also reasonably consistent
with the lower, more linear MCP gain of 1050V, but this measurement suggests that some
MCP nonlinearity persists with this lower gain. In conclusion, I believe this to be the most
reliable charge measurement—except for the smallest clouds where one should still assume
MCP linearity to extrapolate from larger clouds. However, because of its complexity and
novelty of this measurement technique I certainly needed the other measurement techniques
as verification. Each of those techniques had their own issues, so I’m glad to have several
forms of independent verification.

5.4.5 Charge and length effects on cloud displacement

Finite length and image charge effects can also be seen in the displacements of the clouds
from the trap center in Fig. 5.17. As somewhat of a review of an earlier section, when a cloud
is adiabatically lowered to a shallow trapping potential, it orbits a position displaced from
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the true trap center by a distance δ = ϵ/k2i, where k2i is the shallow trap’s well constant and
ϵ is the magnitude of the transverse electric field due to patch potentials. We then quickly
return to a deep trapping potential with well constant k2f , and the cloud begins to execute a
magnetron orbit of magnitude r = ϵ(1/k2i−/k2f ). Thus in Fig. 5.25 I plot the displacements
of the clouds from the trap center to observe a roughly relationship with (1/k2i− 1/k2f ). To
avoid having any gaps, all of the data shown in Fig. 5.17 is combined into one plot in Fig. 5.25.
Then in Fig. 5.27, after fitting a quadratic function to the 2.5mV data, the linear part of that
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Figure 5.25: The distance between the trap center on the MCP and the position on the MCP
that a cloud’s center lands is plotted against 1/k2i − 1/k2f , and we expect to find a roughly
linear relationship. The 1/k2i values used in this experiment were linearly spaced, and all
clouds are subjected to the same k2f .

quadratic function is subtracted. The first thing I’d like to highlight is the obvious presence
of a quadratic term in the displacement. In Sec. 3.13 I discussed nonlinear corrections—that
with higher order terms in the patch potential one could find δ = ϵ/k2i(1 + κϵ/k2iRw) for
some O(1) constant κ. Unfortunately, because κ is a linear combination of two different
terms in the Laplace equation, it isn’t so interesting to measure. Next I will explain the
clear increase in the displacement with charge. In a shallow trapping potential, the cloud is
in equilibrium (at the center of the magnetron orbit) when the z−averaged electric field due
to the trap electrodes is equal and opposite to the z−averaged electric field due to patch
potentials. Luckily, because of directional patch potential measurements (see Sec. 6), we
can actually analyze both cases. However, the directional patch potential measurements in
the vicinity of this measurement are actual remarkably linear with axial position, and so
any z-averaged electric fields should be roughly equal to unaveraged electric fields. This
is demonstrated in Fig. 5.26, and this is compared to the effect of averaging the trapping
potential over z, which has a very significant effect for some of the longest clouds considered.
For this reason, z-averaged patch fields are neglected in the rest of this analysis.

The effect of cloud length is readily seen in Eq. 5.2; the z-averaged transverse electric field
is (−k2r+ 6k4⟨z2⟩)rr̂. Thus a cloud’s length shifts the effective k2 value by k2L = −6k4⟨z2⟩.
Similarly, a cloud’s image charge shifts its effective k2 value by k2Q = 1.00273Nq/4πϵ0BR3

w.
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Figure 5.26: In blue (with the left vertical axis), half the second derivative of the on-axis
trapping potential is plotted. That is—the trap constant k2 as a function of z. This trap
constant is then averaged over a length of 2 cm, about the length of the longest clouds
considered here. The z−averaged trap constant is plotted with a dashed blue line, and it
differs from the maximum of the blue curve by about 27%. Next, the red X symbols denote
the x component of the transverse electric field due to patch potentials and the green X are
the y component. The total magnitude of the transverse electric field is plotted with black
X’s. The z-averaged εx and εy values are also plotted with dashed lines, and they barely
differ from the central values.

In other words, the effect of charge and length on displacement is essentially the same as its
effect on ωr. When determining a theoretical value for this perturbed displacement, there
is some freedom with how one deals with the “cross terms” between nonlinearity and the
perturbed k2 value. Such terms are higher order than the validity of any of these arguments,
but they are not insignificant, because nonlinearity, charge, and length together seem to
increase the displacement for some clouds by up to 40%. My choice was to say that the
unperturbed displacement was given by:

δ0 =
ϵ

k2i

(
1 +

κϵ

k2iRw

)
. (5.27)

I also ignored k2f in this analysis, which is a very small contribution relative to the other
sources of nonlinearity. Then the theoretical value for the charge and length perturbed
displacement is:

δ =
ϵ

k2i + k2L + k2Q

(
1 +

κϵ

k2iRw

)
. (5.28)

In more detail, I fit κ and ϵ to the 2.5mV dataset, then I plot δ − ϵ/k2i − (δ[2.5mV] − δ0)
in Fig. 5.27. That is, the difference between the charge-corrected prediction and the linear
prediction minus that difference for the 2.5mV. Despite it’s complexity, this is the right
theoretical prediction to plot with this data. As a reminder, the data has the linear part
of a quadratic fit to the 2.5mV data subtracted from it to make small differences due to
charge more visible. Then the fact that we fit κ to the 2.5mV dataset meant that the length
corrections present in the 2.5mV data are already included in δ even with k2L + k2Q set to
zero. However this code can also report in the end how much nonlinearity would be expected
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in the 2.5mV data if κ were zero. The result is that about 40% of the nonlinearity in the
2.5mV is due to finite length effects, and the rest is presumably due to nonlinear terms in
the patch potential (nonzero κ). This length effect for the 2.5mV data is largely due to its
temperature, so smaller clouds would not eliminate this nonlinearity. Also, the experimental
confirmation of this effect is nonexistent, and temperature cannot be determined from this
data. The clouds all experience the same effect from temperature, so changing what we
believe temperature to be would just change our estimate of the coefficient κ. As in the
section describing the frequency perturbation due to length and charge, the length of the
plasmas is calculated with their measured temperature of roughly 70K and the spheroid
cloud theory, and their charge is taken from the average values in Sec. 5.4.4. The theoretical
values are compared to the experimental measurements in Fig. 5.27, and the agreement is
very good given the crudeness of this analysis—the neglect of patch field averaging and an
arbitrary choice of how higher order nonlinear terms are treated. Given these uncertainties
and the spread in the data, this will never be a method of accurately measuring the charge
of clouds. However, it is good to have data that verifies this theory for how image charges
and cloud length affects displacement due to patch potentials.
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Figure 5.27: Each point is the average displacement from the trap center of 2–4 clouds moved
off-axis with identical weak traps (k2i). The linear component of this displacement ϵ/k2i is
subtracted so that the nonlinear part and the effect of charge is easier to see. The lines are
the theoretical prediction for the effect of image charges and finite cloud length presented in
this section.

141



6 Misalignment and patch potential direction measure-

ments

The misalignment of a Penning trap’s external magnet with its electrodes is known to cause
plasma expansion [38, 118, 119]. As such it is common practice in the field to put some
effort into aligning the two at the milliradian or sub-milliradian level. However, this critical
step is often only mentioned as a throwaway sentence in a paper that is otherwise focused
on something else. I am aware of four different methods for aligning the external magnet
with the trap:

1. Dr. Eric Hunter in his Ph.D. studies at Berkeley quickly moved plasmas along the
trap axis and he measured if this operation excited a diocotron. If the external magnet
is misaligned with the electrodes, the fast axial motion will move the plasma along
a magnetic field line which will cause it to no longer be centered with respect to the
electrodes. In some sense I used the same technique in Sec. 2.3.3 to measure the
presence of an offset between two electrodes.

2. Some groups will rotate the external magnet until the plasma expansion rate is min-
imized. In Ref. [120], the expansion rate of an electron plasma is measured versus
tilt angle (with a special trapping potential applied which facilitates expansion). The
quality of the data indicates that the technique could be used to align the magnet at
the 0.1mrad level. The authors of Ref. [118] also mention adjusting their misalignment
angle to minimize expansion-induced heating. On one hand, this assumes that nothing
else like patch potentials is causing an effective misalignment. On the other hand, if
one’s ultimate goal is to minimize expansion, this is probably the best approach. Also,
Ref. [120] discusses a plasma which is 0.5m long. As I will show in this section, in
ALPHA-g, either the magnetic field or the electrodes is not straight at the 0.1mrad
level, so it wouldn’t really be possible to achieve this level of alignment.

3. In Ref. [121], the author excites a diocotron in a 0.6m long electron plasma. When the
trap is misaligned, the distance between the plasma and the trap wall changes along
the diocotron orbit, yielding an oscillating voltage on an electrode. The magnet can be
tilted to minimize this signal, and the authors claim to achieve a misalignment angle
of order 0.01mrad. A 0.01mrad tilt across 0.6m yields a displacement of 6µm. This
is near the limit of machining precision for a single part, and the Penning-Malmberg
trap is an assembly of multiple parts, which probably yields even larger construction
errors. This author may be actually minimizing an average misalignment along the
plasma or the misalignment near the detection electrode.

4. The ALPHA experiment has historically imaged plasmas from different axial locations
in the trap. The misalignment is judged by seeing the plasmas land in different places
on the MCP depending on where they were located in the trap axially. I will use this
technique throughout this section.

5. The authors of Ref. [122] excite a diocotron orbit and image a plasma at different
phases along that orbit in different axial trap locations. The misalignment is judged
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by finding a different orbit center as a function of axial distance. I first heard about
this from talking to someone from the APEX collaboration who used this to align their
multi-cell positron trap [123]. It occurs to me though that there is not much advantage
to doing this over just imaging a single plasma without a diocotron.

In this section, I will begin by discussing how I used technique (3) to align the ALPHA-g
external magnet with the electrodes in the hopes that it would minimize positron tempera-
tures. Because of experimental timing, no data could be collected on positron temperatures
or expansion rates while varying the alignment. Of course, unlike in the usual ALPHA
procedure, I will be using electron clouds from a reservoir. This means I can image many
plasmas from many axial locations in a much shorter period of time. This enhanced data
collection rate will allow me to investigate systematic errors due to patch potentials, and
it will allow me to reveal that the misalignment between the electrodes and the external
magnet cannot simply be characterized by a single angle.

6.1 Aligning the ALPHA-g magnet

If an electron cloud is moved slowly along the electrodes, its magnetron radius will be con-
served adiabatically (see Sec. 2.3.3). The cloud will be confined in an electrostatic maximum
in the axial direction (z), but the magnetron motion will be around an electrostatic minimum
in the transverse direction (x, y or r, θ). Thus if the cloud is moved slowly, it will follow the
electrostatic minima created by the electrodes. When the cloud is imaged, it moves toward
the MCP along a magnetic field line quickly enought that E×B drift can be neglected (see
Sec. 3.5). Assume for now that the magnetic field strength within the trap is a constant
magnitude B and that it is misaligned with the electrodes by an angle θ ≪ 1. The center
of magnetron motion created by the electrodes at axial position z = 0 and the center of
magnetron motion created by the electrodes at z = h will fall along different magnetic field
lines. Within the trap, those field lines will be separated by a distance hθ. If we follow these
magnetic field lines to the MCP, they will be separated by a distance hθ

√
B/BMCP, where

BMCP is the magnetic field strength at the MCP (see Sec. 3.5). This concept is depicted in
Fig. 6.1.

In ALPHA-g, clouds were drawn from a reservoir then moved a variable distance along
the trap axis. When a cloud reached its desired measurement position, we waited a random
time so that clouds imaged from the same axial location would not have identical magnetron
phases in case of any phase-locked sources of magnetron motion like the intrinsic magnetron
(see Sec. 2.3). Then the cloud is sent toward the MCP to be imaged. The potentials each
cloud is confined in before imaging are shown in Fig. 6.2. Fig. 6.3 shows imaged cloud center
positions as a function of their distance along the trap axis.

Once the alignment was measured, the external magnet could be tilted to try to decrease
the spread in cloud positions on the MCP. The external magnet, usually called the “Babcock
magnet” weighs several tons and is 2.7 meters tall. It can be tilted by turning large screws
holding it from below. Since the desired tilts were on the order of a few millimeters, four
dial indicators were used to judge how far the top and bottom of the magnet moved when
we turned the screws (two possible directions of displacement on the top and bottom, for a
total of 2× 2 = 4).
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Figure 6.1: A cartoon explaining the basic idea behind aligning the ALPHA-g magnet. On
the left is a depiction of the external magnet’s cryocooler-cooled cyrostat (gray), the ALPHA-
g detector (green), the internal liquid helium cryostat (brown), the ALPHA-g electrodes
(yellow), and the bottom solenoid (red). On the top and bottom dial indicators are shown,
which allow us to gauge how far the magnet has moved. The magnet cryostat is about 2.7m
tall, and the electrodes are about 0.6m tall. On the right, I have zoomed in on the electrodes.
Additionally, trajectories of electron clouds are shown after being dumped toward the MCP
from two different axial locations in the trap. An initial distance of a few millimeters is
magnified to several centimeters by the expanding magnetic field lines. The MCP/phosphor
screen imaging detector is shown, along with the mirror that allows us to image the back of
the phosphor screen. Three additional coils (only two are shown in red, the third is farther
below the MCP) boost the magnetic field at the MCP to about 0.027T. Neither image is
to scale, but they are reasonably close. The most inaccurate part is that the MCP is about
twice as far away from the bottom of the electrodes.

Fig. 6.4 shows the measurements of the alignment taken in the process of moving the
Babcock magnet. The entire story of each measurement is as follows:

(a) This is the first measurement, performed in November of 2021 to see if the alignment
was the cause of the positron expansion issue (discussed in Sec. 3.7). The misalignment
angle was indeed about 6 times what it is in ALPHA-2, but ultimately patch potentials
were the underlying cause of the issue. This first measurement revealed something
surprising: the magnet and the electrodes weren’t simply misaligned by an angle; the
angle changed around electrode 21. However, this first measurement was performed
with the “bottom solenoid” energized, the magnet which boosts the magnetic field from
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Figure 6.3: The imaged cloud positions on the MCP are shown for 13 axial locations through-
out the trap. The horizontal and vertical positions on the MCP are converted to transverse
distance in the trap using the MCP magnetic field expansion ratio.

1T to 2T for the lower electrodes (roughly electrodes 1 to 19). Thus it seemed logical
that the Babcock and the lower solenoid might have different misalignment directions,
and so the misalignment with the magnetic field lines would change angle where the
lower solenoid started having a significant effect. It should be noted that the bottom
solenoid is in the same cryostat as the electrodes and the relative positions of the two
are fixed—the electrodes are inserted into a stainless steel cylinder with extremely
tight tolerances. The bobbin that the bottom solenoid is wound around is attached
to the same cylinder. Therefore, it was thought that the bottom solenoid would be
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better aligned than the Babcock, which can freely move by several millimeters relative
to the electrodes. It seems from the deviation imposed by the solenoid, though, that
the bottom solenoid is misaligned by about 0.5mrad. The only difference between
measurements (e) and (f) is the activation of the bottom solenoid.

(b) This is a repeat measurement taken just before moving the magnet to see if the align-
ment had drifted. It should be noted that these first two measurements were taken with
a worse performing reservoir than the rest. My best hypothesis is that the reservoir
had higher initial scoop magnetron because patch potentials were very strong—these
measurements were performed when ALPHA-g had the “egregious patch potentials”
that prevented successful antihydrogen formation in 2021. This in turn leads to a big-
ger spread in measured imaged cloud positions, even after averaging 8 clouds per axial
location.

(c) Before this measurement, the Babcock magnet was moved to try to reduce the misalign-
ment angle. According to the dial indicators, the Babcock was rotated by 1.33mrad
horizontally and 1.56mrad vertically (obviously the physical vertical direction, as in
“away from the Earth,” is actually the axial direction, and all rotations are perpendic-
ular to this, I mean horizontally/vertically with respect to the MCP images, and the
positions of imaged clouds shown in Fig. 6.4). Unfortunately, I was incorrect about
which horizontal direction the trap should be rotated, so while the vertical misalign-
ment was improved, the horizontal misalignment was nearly doubled. There are many
minus signs involved in figuring out which way to rotate the magnet. We have a camera
pointing at a mirror which shows the back of the phosphor screen, and our plasmas
hit the front of this phosphor screen. The resulting image reflects the positions of the
electrode within the magnet, but it is the magnet that we can freely rotate.

(d) I wanted to fix my mistake, but there were not sufficient personnel around to do
a proper magnet move. I think I was desperate because no further time had been
allocated toward aligning the magnet in the near future. There are screws holding
the Babcock magnet in place, which are not ordinarily for moving the magnet. I
pushed one of these screws further into the magnet and backed off the screw on the
other side. At the time the indicators had been removed from the bottom of the
magnet, so I don’t have a definite measurement of the expected tilt. Judging only
from the indicators on the top, where most of the motion should have happened with
this particular movement, this resulted in a predicted tilt of 0.11mrad vertically and
1.48mrad horizontally. Again this is roughly consistent with the change measured.

(e) Later in that shift, a more senior member of the collaboration said they thought the
previous action might put a strain on the outer wall of the Babcock magnet, so I was
told to undo it. Moving the screws back into position didn’t fully move the indicators
back to their initial positions. This action resulted in a predicted tilt of 0.07mrad
vertically and 0.48mrad horizontally in the opposite direction as step (d).

(f) This measurement was performed with the bottom solenoid energized. The magnet
was not moved from (e) to (f). I include this measurement to show the influence of
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the bottom solenoid on the alignment of the lower electrodes. The bottom solenoid
extends from electrode 1 to 16. I also include this measurement because measurement
(g) also occurs with the bottom solenoid energized.

(g) One final alignment movement was performed before the successful ALPHA-g exper-
imental run in 2022. We achieved a predicted movement of 0.12mrad vertically and
1.89mrad horizontally. We were not able to tilt horizontally any further because the
Babcock magnet collided with the frame it was held in. The variance of the measure-
ments and the difference between predicted and measured tilts suggests an error of
roughly 0.2mrad on all the measurements. The rest of this section will describe more
precise measurements of the alignment in this state.

6.2 Improved misalignment and patch potential direction mea-
surements

In 2022, after we had successfully trapped antihydrogen in ALPHA-g, there was a brief win-
dow where we were considering improvements to the experiment before trying to actually
measure gravity. At the time, I was arguing that the reservoir diocotron, the initial cloud
magnetron, and the the higher positron temperatures in ALPHA-g versus ALPHA-2 might
be improved by further movements of the Babcock magnet. I no longer believe that the
misalignment is a significant factor in the reservoir’s diocotron and the cloud magnetron.
I blame these on complicated plasma physics and patch potentials respectively. But I still
think that ALPHA-g’s lower trapping rate is primarily caused by its alignment being worse
than in ALPHA-2 (see Sec. 4). To better investigate this hypothesis, I requested and was
granted one shift to do a more thorough measurement of the alignment. My stated purpose
was to measure the alignment all the way down to electrode 2, where the reservoir nor-
mally sits. I was also proposing a new technique that could eliminate the influence of patch
potentials on the misalignment measurements. The collaboration didn’t know that I had
come up with a way to measure the direction, not just the magnitude of patch potentials.
I had wanted to perform this measurement for a long time, but I couldn’t justify spending
experimental time on the idea, because the results wouldn’t change experimental procedures
or modelling of experimental results. When I realized this patch potential direction mea-
surement could also be an alignment measurement, and that I had good reason to believe
alignment was causing significant problems for the ALPHA-g measurement, the whole thing
suddenly became politically viable.

The idea for these measurements is this—in the patch potential measurements explained
in Sec. 3, we create a shallow trapping potential to move clouds off axis by applying a
small voltage (0.1–1V) to a single electrode or a pair of adjacent electrodes. Then to image
the cloud, we need to morph to a “pre-dump” potential where the cloud is confined at a
negative absolute voltage, so that when we release the cloud it has some kinetic energy
that allows it to reach the MCP. Now I will make the shallow well also a pre-dump well.
These potentials are shown for one axial trap location in Fig. 6.5. These trapping potentials
require a lot more algorithmic sophistication to produce. First, I find a sequence of voltages
on six adjacent electrodes that will allow me to vary the trap depth constant and the axial
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Figure 6.4: The collection of alignment measurements performed after various changes to
the position of the external magnet. On the left, the averaged positions of cloud centers is
shown. On the right, the horizontal positions are plotted in red, and the vertical positions are
plotted in blue versus axial position, with the electrode numbers labelled (the entire axial
distance shown is 48.3 cm). A line is fit to the horizontal and vertical positions between
electrodes 21 and 35. The inferred horizontal and vertical misalignment angles, and the
total misalignment angle are shown in the legend.

position of the electrostatic potential maximum in the vicinity of two electrodes. For the
on-axis potentials shown in Fig. 6.5, the voltages [-18, -18, V3, V4, -20, -20] are applied to six
adjacent electrodes, and varying V3 and V4 allows me to change the axial position and depth
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of the well. I have come up with two equally usable methods for finding values of V3 and V4.
The first method is gradient descent—I set a desired k2m value and a desired axial location
(z) of the electrostatic potential maximum. I give a gradient descent solver the ability to
adjust V3 and V4, and it finds voltages on those two electrodes which provides the desired
k2 and z. In a second method, I simply scan a 2–D grid of V3 and V4, and for each pair of
voltages I compute k2 and z. Then for each desired pair of k2 and z values, I identify the
four pairs of V3 and V4 values that come closest to these k2 and z values and I use linear
interpolation to get the desired values.
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Figure 6.5: The 8 shallow pre-dump wells used to measure the alignment and patch field
direction in one axial trap location. The plot on the right is simply a zoomed-in version of
the plot on the left.

Experimentally, clouds are drawn from a reservoir then moved to a desired axial measure-
ment location. Then the trapping potential is adiabatically changed to the shallow pre-dump
well (see Sec. 3.3 for a description of the adiabatic movement). To image the clouds, V3 and
V4 are changed quickly to −19V and −19.5V, and the two electrodes to the left are changed
to −15V, releasing the clouds toward the MCP with about 15–18 eV of kinetic energy. In my
first attempt to conduct this experiment, the clouds were only released with 3 eV of kinetic
energy, and they did not reach the MCP (MCP images simply did not show a cloud). This is
not entirely surprising—the ALPHA collaboration has always known that plasmas dumped
with insufficient kinetic energy do not reach the MCP. This is likely because of stray voltages
between the trap and the MCP that reflect the particles. This occurs for both positrons and
electrons, indicating that there are positive and negative stray voltages between the trap
and the MCP. Preparing this measurement takes several hours of my own time and several
more hours of computation time, so it was not feasible to scan between 3 eV and 18 eV. I
simply observed that 3 eV didn’t work, and I increased the energy to a value that I had seen
work in the past.

Before discussing results, because I am now measuring the direction of patch poten-
tials, I should introduce some new notation. The electrostatic potential produced by patch
potentials is now:

Φp(z, r, θ) = εxr cos θ + εyr sin θ, (6.1)
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where θ is now defined relative to the +x axis in MCP images. The cloud is displaced from
the trap center by δ⃗ = ε⃗/k2, where ε⃗ = [εx, εy]. It should be noted that the transverse electric
field is actually E⊥ = −ε⃗.

The data—positions of cloud centers on the MCP converted to transverse distance inside
the trap—for six patch potential direction and alignment measurements is shown in Fig. 6.6.
Fig. 6.6 shows the measurement results in six axial trap locations spanning the length of
one and a half electrodes. The gradual change of the patch field is visible in the change of
the spread of the points, and the gradual change in the trap center is visible in the change
of the positions of the red X. For each axial trap location, clouds were imaged after being
subjected to 8 different shallow pre-dump potentials (the ones shown in Fig. 6.5 come from
one axial trap location). For each shallow pre-dump potential, four clouds were imaged. At
the time, it came as somewhat of a surprise that the clouds did not simply fall along a line.
Rather, the data is consistent with clouds falling in a random location along a circle, with the
center of the circle being displaced from the trap center by a distance ε⃗/k2. This indicates
that the clouds have a phase-locked magnetron motion (probably the intrinsic magnetron,
see Sec. 2.3.1). As clouds are adiabatically moved off axis in different shallow wells, they
end up in different final magnetron phases. But clouds that were subjected to the same
shallow wells have the same phase. The difference between imaged cloud positions subjected
to identical trapping potentials is on the order of one pixel in the camera images—which is
probably just image analysis error. Had I been aware of this issue in advance, I would have
randomized the magnetron phases and I would have used more clouds per axial location.
Of course, other models are also possible. For example, the clouds could have been thrown
off axis by adiabatic invariant breaking (see Sec. 3.3). More data would be necessary to
differentiate between these hypotheses.

For the analysis, I used five fit parameters for each dataset. First, the x and y position of
the true trap center (a red X in Fig. 6.6). Next, the radius of the initial magnetron motion
of the clouds (the radius of the black circles in Fig. 6.6). Finally, the two components of
the patch field εx and εy. The fitting procedure begins by averaging the four imaged cloud
positions for each trap depth k2m (the blue X’s in Fig. 6.6). Then for each k2m, a trap
center is computed as ε⃗/k2, and the error is the squared distance between the averaged
cloud position and the circle. I used gradient descent to minimize the total error across the
8 k2m values.

In addition to accounting for patch potentials in the alignment measurements and per-
forming far more axial measurements, I wanted to extend the measurements to lower elec-
trode numbers. The following discussion will be irrelevant and uninteresting to readers from
outside of ALPHA, and readers from ALPHA will be amazed I went through all this trouble.
At this point I need to explain that electrodes 1–9 are controlled with a separate electrode
voltage controller than electrodes 10–36. The controller for electrodes 1–9 is called the “re-
catching sequencer,” and electrodes 1–9 are referred to as the “recatching trap” because they
are responsible for “catching” the antiprotons and positrons from the catching trap and the
positron accumulator. The controller for electrodes 10–36 is called the “atom sequencer,”
and those electrodes are called the “atom trap” because in these electrodes the antiproton
and positron plasmas are combined to form antihydrogen. This setup is extremely conve-
nient for cloud-based measurements. Cloud extraction can be done in the recatching trap,
and cloud-based measurements are performed in the atom trap. When the cloud-based mea-
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Figure 6.6: Imaged cloud center positions are shown with dots; they are converted to trans-
verse distance inside the trap. The colors of the dots correspond to the shallow pre-dump
potentials shown in Fig. 6.5. The blue and orange points were subjected to the deepest
pre-dump potentials; the gray and pink points correspond to the shallowest pre-dump po-
tentials. The blue X’s are the averaged positions of the four cloud positions for a single
shallow pre-dump potential. The black circles represent the magnetron orbit of the clouds,
which the blue X’s should fall along. The red X is the inferred trap center extrapolating
the centers of the circles to infinite k2m. These six measurements occurred in six axial trap
locations separated by a quarter of an electrode length, or about 5mm. The measurements
in the centers of electrode 29 and 30, and the measurement between electrode 29 and 30 are
labelled.

surement wants a new cloud, it triggers the recatching sequence to perform a new extraction.
When that new cloud has reached electrode 9, the recatching sequence triggers the the atom
sequencer to take that cloud. Thus the reservoir and cloud extraction can be changed with-
out rewriting the entire measurement procedure, and one reservoir can be plugged into a
different cloud-based measurement.

With this in mind, I implemented two improvements so that misalignment measurements
could be performed in more axial locations. First, I made a sequence where the reservoir was
transferred to the atom trap and clouds were extracted in the downward direction and sent
to the recatching trap for a measurement. This reservoir appeared to have a much larger
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diocotron, so the clouds extracted from it traced out a circle (see Sec. 2.3). This data is
shown in Fig. 6.7. Because of the poorer quality data, only the deepest two shallow pre-dump
potentials were used, with more clouds imaged per potential. The difference in the effective
trap centers was not statistically significant, so the results from the two shallow pre-dump
potentials are simply averaged for a somewhat rougher estimate of the true trap center than
in the atom trap. In Fig. 6.9, I plot the alignment results from both the recatching trap and
the atom trap.

Next, in order to perform measurements in the vicinity of electrodes 8-12, I made se-
quences where the recatching trap supplied the leftmost voltages confining the electrons (the
voltages [-18, -18] on the left two of six electrodes confining the clouds), and sequences where
the atom trap supplied the rightmost voltages (the [-20, -20]). There was only a one electrode
wide gap between electrodes 9 and 10 where measurements were impossible, because V3 and
V4 would fall on electrodes 9 and 10 respectively, massively increasing the complication of
the sequences—it’s not so hard for the sequencer handling the reservoir to supply a fixed
voltage to hold in the electron clouds, it’s very hard to make the sequencer handling the
reservoir to vary that voltage.
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Figure 6.7: Imaged cloud center positions for measurements of the misalignment in four axial
locations within the recatching trap. Two shallow pre-dump potentials are used, and the
resulting cloud positions are shown in blue and orange. The blue circles are fit to the data
from each of the shallow pre-dump potentials, and the centers are indicated with red X’s.
The two red X’s are averaged to infer the trap center, the black X.

The directional patch field measurements are shown in Fig. 6.8. The results are es-
sentially consistent with the directionless patch potential measurements in Sec. 3.7. These
measurements are now about six months later than the ones described in Sec. 3.7, further
confirmation that patch potentials are static over long timescales. Small differences are
probably due to the neglect of nonlinear effects here. As expected, patch field directions are
random and vary over roughly the length scale of the trap wall radius (essentially the same
as the length of electrodes).

The alignment measurement results are shown in Fig. 6.9. Several features of this graph
are highlighted and numbered, and they are discussed below. The list below is organized
pedagogically. The paragraph numbers refer to the numbers in Fig. 6.9 where the salient
features of the results are indicated.

2. The large patch potential, also visible in Fig. 6.8, clearly has some effect on the align-
ment measurements, which is exactly what I was trying to avoid with this new mea-

152



E1
0

E1
1

E1
2

E1
3

E1
4

E1
5

E1
6

E1
7

E1
8

E1
9

E2
0

E2
1

E2
2

E2
3

E2
4

E2
5

E2
6

E2
7

E2
8

E2
9

E3
0

E3
1

E3
2

E3
3

E3
4

axial trap location (electrodes labelled)

40

20

0

20

40

60

pa
tch

 st
en

gt
h 

(m
V/

cm
)

| |
x

y

Figure 6.8: Directional patch field measurements from the ALPHA-g atom trap.

surement technique. One can easily imagine that if the points are more spread out
in Fig. 6.6, there would be a bigger error in the extrapolated trap center. This is
especially true if the displacements deviate at all from the linear model δ⃗ = ε⃗/k2m. In
Sec. 6.4, another theoretical cause for this effect is discussed, and the effect is more
clearly visible in a second round of measurements described in Sec. 6.3.

3. A jump between electrode 19 and 20 is clearly visible. The existence of this jump was
entirely believable because it occurs where the electrode radius changes (see Fig. 6.1).
This jump was independently verified by showing that we can excite a cloud mag-
netron by quickly moving clouds across this junction. This measurement is explained
in Sec. 2.3.3.

5. These “wiggles” are probably real construction errors in the electrodes. The patch field
is so much smaller here that error due to patch potentials is too small to account for
this ∼ 50µm deviation.

6. Likewise, this gap, and some others like it, are probably real. Similar to item (3), they
occur on electrode boundaries, but the deviation is closer to 10µm, and the junction is
simpler because it is the meeting point of two electrodes constructed in the same way.

4. This is the most mysterious feature. The alignment between the electrodes and the
magnet seems to deviate around electrode 22. The people involved in the electrode
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construction assure me that this absolutely cannot be because of a kink in the elec-
trodes. They say if there was a deviation this big, the electrodes simply would not
fit in the cylinder they get inserted into. My first hypothesis for this was that the
electrodes might not be centered in the magnet. If B0 is the homogeneous magnetic
field in the center of the trap (roughly E23 to E35), then magnetic field lines expand
by a factor

√
B0/[B0 − δB(z)]. If the trap is off-center by a distance d, we would see

deviations in this plot given by d(δB(z)/2B0) assuming δB(z)/B0 is small (it reaches
a maximum value of 0.2 at electrode 1). Unfortunately, for this to explain what we see
here, the magnet would need to be off-center by a centimeter—an entirely unreason-
able distance, and it would need to be elevated (shifted vertically) from its designed
position by about 5 cm, because the magnetic field actually doesn’t start appreciably
decreasing in magnitude until around electrode 19. Measurements of the Babcock’s
magnetic field using ECR [5] have verified that it is elevated by only about 2 cm. We
are left with the conclusion that the Babcock magnet’s field lines are the thing that
deviates around electrode 22. This seems believable to me. Originally, the Babcock’s
cryostat’s bore was aligned very carefully with the trap (at the sub-millimeter, sub
milliradian level), but the field was misaligned by over 3mrad. It was not physically
possible to rotate the Babcock’s cryostat enough that it would be aligned perfectly
with the trap (see the previous section); eventually it collided with other parts of the
experiment. This may indicate that the designers focused more on the homogeneity
of the field magnitude than the direction. It may also be possible that the field lines
are not perfectly straight. However, such direction changes would naturally occur over
length scales comparable to the radius of the Babcock magnet (30 cm). This kink oc-
curs over a much shorter length scale: one or two electrodes, or about 2–4 cm. Thus
we are left with no convincing explanation for why this feature exists.

1. The magnetic field seems to “straighten out” and align very well with the electrodes
around electrode 5. This is probably a similar effect to item (4). For this reason, I
did not recommend further movements of the Babcock magnet. At the time, I was
wondering if we could improve positron temperatures (for which the alignment in the
vicinity of E23 to E35 would be most important) and reservoir behavior (for which the
alignment in the vicinity of E2 to E5 would be most important) at the same time by
adjusting the Babcock. This result suggested that any improvement to the positron
temperatures might damage reservoir behavior. These operations take a few days, and
they are somewhat risky (moving a multi-ton object can damage things). Further, the
movements are difficult to do precisely, so returning to the previous position might not
be possible.

6.3 Second alignment measurement

Because there were so many interesting features and some unknowns in the misalignment
measurements described in Sec. 6.2, I was granted a second day to try to improve my
measurement technique. We will find that this “improved measurement technique” was not
strictly an improvement. Measurements of patch small fields will be significantly improved,
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Figure 6.9: The horizontal (x) and vertical (y) deviations of the electrodes from a single
magnetic field line are shown versus axial position in the trap. The blue points are the
horizontal deviations and the red points are the vertical deviations. Slightly darker points
indicate the measurements taken in the recatching trap. Several features are highlighted and
discussed in the text.

and the misalignment measurement will be significantly worse. However, this result will
reveal the most important systematic error in misalignment measurements.

The most significant change in this second round of measurements was a different choice
of shallow pre-dump potentials. My idea was to use six shallower pre-dump potentials to
obtain more cloud displacement to better measure the patch field when the patch field
was weak. Then two of the eight potentials would be much deeper—nearly the maximum
possible trap depth constant k2m. These potentials are shown for one example axial trap
location in Fig. 6.10. The shallowest trapping potential here confined the clouds by only
0.1V, whereas in the previous section the shallowest trapping potential was 0.25V. As a
result, in a few axial trap locations, these weakest trapping potentials were actually not
sufficient for confining the electron clouds. The effect this had on imaged clouds is shown
in Fig. 6.11. The clouds subjected to the shallowest pre-dump potentials were less bright in
MCP images and more spread out. The latter effect occurs because electrons are released
from the center of the cloud, and the cloud has to expand to regain equilibrium while
conserving its RMS charge radius [8]. This phenomenon only occurred in the vicinity of
electrode 19, where we have the strongest measured patch field. Thus it isn’t that 0.1V is
insufficient for confining the electron cloud, but that the on-axis potential perturbation due to
patch potentials is also of order 0.1V in that one location, and in this case this perturbation
reduced the trapping potential to something that could not confine the electron clouds. This
phenomenon is somewhat worrying for patch field measurements in this area—if electrons are
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escaping, they are also experiencing a trapping potential that cannot be well-approximated
by Φ(z) = −k2z

2. Thus their positions are expected to deviate from the linear estimate
δ = ε/k2m.
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Figure 6.10: This figure is equivalent to Fig. 6.5, but the potentials shown here are those
used in the second round of measurements described in this section.

Figure 6.11: The entire set of 32 MCP images used to measure the trap center and patch
field in one axial trap location. From left to right, clouds are subjected to stronger trapping
potentials, or larger k2m values. The four images in each column are four repeats—differences
between repeats are not really perceptible with this image size. The effect of electrons
evaporating out of the weak confining potential is evident from the clouds being less bright
and bigger on the left. One can also observe the patch field pulling electron clouds to the
upper left with lower k2m values.

Another change was that I randomized the magnetron phases by inserting a random wait
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just before releasing the clouds toward the MCP. This eliminates a lot of the complication
in the fitting procedure described in the previous section—averaged cloud centers no longer
fall along the edge of a circle, and instead they should simply fall along a line. So now the fit
has one less parameter, and the error for a choice of fit parameters, which is again minimized
by gradient descent, is simply the sum of squared distances between each cloud center and
its predicted position on the MCP. The data for this measurement and the resulting fits are
shown in Fig. 6.12
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Figure 6.12: Imaged cloud positions are shown for the same six axial locations in the panels
of Fig. 6.6. As in Fig. 6.6, the colors correspond to the shallow pre-dump potentials shown in
Fig. 6.10. The black X’s are the centers of magnetron motion predicted by the fit parameters
for each shallow pre-dump potential. The red + is the extrapolated trap center. Unlike in
Fig. 6.6, the extrapolated trap center should be very close to the blue and orange points.
The absolute positions are different from Fig. 6.6 because another magnet at ALPHA was
energized, tilting the magnetic field lines between the ALPHA-g trap and the MCP. Only
the relative positions are physically meaningful here.

This new measurement procedure was extremely successful for measuring weak trapping
potentials. These results are shown in Fig. 6.13. In fact the measurements are so good that
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we could start to infer derivatives of the patch field: dε⃗/dz, which are discussed in Sec. 4 as a
potential cause of positron expansion and heating. Unfortunately, the positron heating rate
is only measured in a variety of trap locations in ALPHA-2, and these measurements are
from ALPHA-g. On the other hand, despite using deeper trapping potentials where clouds
should have been closer to the trap axis, the misalignment measurements are much worse,
shown in Fig. 6.14. In this new misalignment measurement, a large bump is clearly visible
in the vicinity of electrode 19, which is clearly caused by the large patch potential in that
area. Looking at the fits which produced this data, there is absolutely no way this error is
due to statistical error in the fitting procedure. In the next section, this issue is giving a
convincing explanation.
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Figure 6.13: The patch field measurements extrapolated from the fits in Fig. 6.12. Unlike in
Fig. 6.8, I have zoomed in on the weaker patch fields in the trap region with larger-radius
electrodes, because the biggest improvement in the measurement quality is evident there.

6.4 Cloud release dynamics

Despite attempting to extrapolate to infinite trapping potential, patch potentials clearly
influence the alignment measurements, especially in Fig. 6.14. This can be explained by
investigating the process of imaging clouds in more detail.

When the amplifiers driving the electrodes are asked to change potential as quickly as
possible, they are limited by their “slew rate.” That is, looking at the amplifier output with
an oscilloscope, we observe a roughly linear 40V/µs change in the voltage. The response
is not precisely linear because the amplifier also has a finite output bandwidth, but this
approximation will suffice for this discussion.
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Figure 6.14: The horizontal (x) and vertical (y) deviations of the electrodes from a single
magnetic field line are shown versus axial position in the trap. The blue points are the
horizontal deviations and the red points are the vertical deviations.

This amplifier output is fed into a passive filter shown in Fig. 6.15. This circuit can be
understood conceptually by first removing the 30 pF capacitor, whose impedance is much
higher than the other circuit elements at a characteristic timescale of 1µs. Then we have
three low pass filters with increasing resistances, 50Ω, 1 kΩ, and 3 kΩ. Thus they are some-
what well approximated as three low pass filters multiplied together.

50Ω 1kΩ 1.5kΩ 1.5kΩ

3.3nF 470pF 30pF electrode

amplifier

 ---  C:\Users\andre\Documents\LTspice\Draft1.asc  --- 

Figure 6.15: A circuit diagram showing the filters between the electrode amplifiers and the
electrode.

Different electrodes have different capacitances to ground, and in fact their capacitance
may be dominated by the cables between the filters and the actual electrodes. All of the elec-
trode capacitances fall in the range of 650–1000 pF. The larger radius electrodes are around
800 pF, the smaller electrodes are around 650 pF, and electrode 20, having a somewhat unique
geometry, is about 1000 pF. Thus the third filter (the one formed by the electrode) has a
cutoff frequency around 80–50 kHz, and the other two have cutoff frequencies of 1MHz and
350 kHz. The electrodes also have mutual capacitances with their neighbors of order 300 pF,
which I will ignore in the rest of this discussion because it would significantly complicate the
analysis. This will be the biggest inaccuracy in my discussion—it is of order 50%.

159



Moving forward, I will inspect the voltages use to perform the measurement in the trap
location with the biggest patch potential—the center of E19, and I will discuss the deepest
shallow pre-dump potential, where it takes the longest time to release the plasma toward
the MCP. In the first set of misalignment measurements (Sec. 6.2), clouds are confined by
applying the following voltages electrodes 17 to 22: [-18, -18, 17.089, 18.692, -20, -20]. They
are released by switching to [-15, -15, −18.5, −19, -20, -20]. In the second set of alignment
measurements (Sec. 6.3), we switch from [-19, -19, 128.307, 133.438, -20, -20] to [-19, -19,
-19.75, -19.5, -20, -20]. Notice that the voltages -19.75 and -19.5 are in the wrong order for
creating a left-facing ramp—an experimental mistake. The clouds are nonetheless released
because the on-axis potential does not exhibit this local maximum, but the clouds are only
barely released. In Fig. 6.16, the amplifier and the filtering is simulated to find how long
it took to release the clouds for each of these two measurements. In the first round of
measurements, it took 5.7µs, and in the second round it took 16.1µs.
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Figure 6.16: The voltages applied to electrodes 17 through 20 in the process of releasing
an electron cloud toward the MCP. The first row illustrates the voltages applied during
the first round of misalignment measurements (Sec. 6.2). The second row illustrates the
voltages from the second round of measurements (Sec. 6.3). The first three columns show
the amplifier voltage in blue and the voltage on the electrode in red. The fourth column
shows the confining potential for the electron clouds, and the simulation ends when this
reaches zero. Note that the horizontal axis differs between the two rows.

In both cases, the time to image the plasma is dominated by an exponential decay of
the RC low pass filter formed by a 3 kΩ resistor and the electrode, not by the amplifier slew
rate or the other filters. Because of this, this time is relatively independent of the shallow
pre-dump potential, so it is nearly the same for all clouds within a measurement at one axial
trap location. In the second round of measurements, this took much longer because the
electrodes had to come much closer to the amplifier voltage before the cloud was released. In
16.1µs, a cloud performs a small fraction of a magnetron orbit [O(0.5 rad)], and the center
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of magnetron orbit has moved far away from the cloud’s initial position. Another way of
looking at this situation is that the cloud is E × B drifting in the electric field solely from
the patch potential, which we have otherwise measured to be about 60mV/cm. Thus the
strongest patch potential should have produced a deviation of 34µm in the first round of
measurements and 97µm in the second round of measurements. This is very close to what
is observed; by eye, the deviation looks like 150µm in the second round of measurements.
As mentioned before, the largest source of error in this approximation is the ignorance of
cross-capacitance between electrodes, which is an error of about 30–50%. Note that this
effect causes clouds to drift in the direction perpendicular to the displacement due to patch
fields visible in Fig. 6.6. In this strongest patch field, ε⃗ points in the −x̂, −ŷ direction, so
we expect to see a bump in the −x̂, +ŷ direction, which is what we observe (although the
−x̂ part is more clearly visible).

With this agreement between theory and experiment, it is tempting to try to apply this
known correction to the misalignment measurements. However, the effect is quite small for
the measurements in Sec. 6.2—at most 34µm in the center of electrode 19, and much less
everywhere else. Adding this correction produces a barely perceptible offset throughout most
of the trap. The small bump near electrode 19 in that plot is actually probably mostly due
to the strong patch potential simply making it harder to extrapolate to infinite k2m, and not
the E×B drift during dump. On the other hand, the effect is clearly visible in Sec. 6.3. At
this point, we can just say we understand why the measurements are better in Sec. 6.2, and
we can declare Fig. 6.9 to be the final result.

6.5 ALPHA-2 misalignment and patch direction measurements

As I have discussed in Sec. 3.8, patch potential measurements in ALPHA-2 are always
significantly worse because of the larger initial cloud magnetron. However, I did get a
chance to attempt to measure patch field directions and alignment in ALPHA-2. The results
are passable.

Fig. 6.17 shows the cloud positions when I perform this measurement. The measurement
procedure is most similar to the second procedure presented in Sec. 6.3—the magnetron
phase is randomized. However, the data is clearly marred not only by a large intrinsic
magnetron (see Sec. 2.3.1), but also by an increasing cloud magnetron due to a reservoir
diocotron that grows over time. For analysis, I went with a kind of hybrid scheme between
the analyses discussed in Secs. 6.2 and 6.3. Because circles were so clearly visible in some
of the data taken with deep trapping potentials (the blue points in Fig. 6.17), I made a fit
function which predicted that clouds should land along a circle which is displaced by ε⃗/k2.
The error for each cloud was its distance from the circle squared, and this was minimized by
gradient descent.

These measurements were performed after about 2Wh of integrated circulating power
in the 1S–2S laser, so laser-induced patch fields were present. The directional patch field
measurements are shown in Fig. 6.18. It is very interesting to see that the patch fields
produced by the 1S–2S laser are not random in direction. They all seem to be in the +ŷ, −x̂
direction. This would seem to imply that one side of the trap is exposed to more scattered
laser light, and that an electric field is produced which points away from or toward that side
of the trap. Recall from Sec. 3.6 that laser-induced patch fields only are produced between
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Figure 6.17: Imaged cloud center positions during measurements of the patch field direction
and trap alignment in ALPHA-2. The positions on the MCP have been converted to trans-
verse distance inside the trap. These measurements are from six adjacent axial locations,
with some of the locations labelled above the plots. The different colors correspond to dif-
ferent shallow pre-dump potentials (different k2m values). The circles are the positions of
the cloud centers as predicted by the fitting procedure.

electrodes 9 and 19 in ALPHA-2.
The results of the misalignment measurements are shown in Fig. 6.19. The quality of

these measurements is predictably much worse than in ALPHA-g. Essentially, no features
can be discerned above the noise. We can kind of casually upper bound the misalignment of
the electrodes to about 1mrad. Note that the measurements in the vicinity of electrodes 14
and 15 are not reliable. The reservoirs used for those measurements developed a catastrophic
diocotron (see Sec. 2.3.2) early in the measurement process and very few successful cloud
images were used to produce these measurements. The patch field extraction from those
cloud positions were more acceptable. As discussed in Sec. 2.3.2, Ph.D. student Jaspal Singh
has recently discovered an explanation for the catastrophic diocotron, and this explanation
yields an easy way to eliminate the issue. Thus this alignment measurement could be redone
more quickly and more precisely with a diocotron-free reservoir.
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7 Off-axis electron cyclotron resonance (ECR)

In this section, I will discuss a technique where I combine the technique described in Sec. 3
to move clouds off-axis with electron cyclotron resonance to measure magnetic fields beyond
the trap symmetry axis. The basic steps involved in this measurement are shown in Fig. 7.1
and described as follows:

(a) A cloud is extracted from a reservoir.

(b) It is moved to a desired axial measurement location.

(c) It is moved off-axis adiabatically as described in Sec. 3.3 by decreasing the trap constant
k2.

(d) The trapping potential is quickly increased again, and the cloud orbits the trap center
for about 100µs.

(e) After 100µs, we wait an additional few microseconds for the cloud to reach a desired
magnetron phase, and then the cloud is exposed to microwaves for 3µs (about 1/5
of a magnetron period). If the microwaves are resonant with the cyclotron frequency
ωc = q|B|/m, the electrons are heated. Because the cyclotron frequency is proportional
to the magnetic field through fundamental constants, a precision measurement of the
cyclotron frequency translates directly to a precision measurement of the magnetic
field. The on-axis version of this technique has been used at ALPHA for several years
[5].

(f) We measure the cloud’s temperature by slowly (over the course of 20ms) releasing it
toward the MCP and observing the exponential increase in the signal reflective of the
Maxwell-Boltzmann distribution in the cloud, as described in Sec. 4.

In the ALPHA-g experiment, an octupole magnet is used to radially confine antihydrogen.
Two “short solenoids,” also referred to as “mirror coils” are used to confine antihydrogen
axially; the axial direction is also the vertical direction. A diagram of this setup is shown
in Fig. 7.2. These mirror coils are slowly turned off while maintaining a well-measured dif-
ference in their on-axis magnetic field to release the antihydrogen. Any uncertainty in the
magnetic field difference between these two coils translates directly into a systematic error
on the measurement of antihydrogen’s acceleration due to gravity. Off-axis ECR was used
to measure how much mirror A—the mirror coil on the bottom of the ALPHA-g magnetic
minimum trap—was displaced from the center of the electrodes, where the magnetic field
is typically measured. A displaced of about 150µm is observed. I should emphasize that
this is not the same thing as “misalignment” by an angle, as discussed in Sec. 6. Here I
am measuring the transverse displacement between the symmetry axes of mirror A and the
electrodes. Although the ALPHA-g experiment was very sensitive to magnetic fields, this
effect ends up being well below the ∼ 0.1mT level of precision needed for the first measure-
ment of the effect of gravity on antihydrogen [1]. Unfortunately, due to time constraints the
measurement was not repeated in mirror G.

This chapter also serves a useful pedagogical role in this thesis. In the next section, I
will use ECR to calibrate a new magnetometry technique called electron magnetron phase
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Figure 7.1: The measurement procedure for off-axis ECR is shown in six steps. For each
step, the upper plot shows the on-axis potential produced by the electrodes in blue and the
on-axis potential perturbed by the charge of the reservoir with a red dashed line. The lower
plot shows the charge density of electrons. The red arrows indicate the motion of the electron
cloud. The size (radius, length, and total charge) of the electron clouds is exaggerated to
make them visible.

imaging (EMPI), so it is useful to explain ECR ahead of time here. In this chapter, I will
also introduce a simple new tool in our manipulations of the positions of electron clouds—we
change the amount of time they spend in a magnetron orbit by only a few microseconds and
we observe a small phase difference in their magnetron motion. This is essentially the main
tool in EMPI, where it is used to precisely measure the magnetron frequency.

Unfortunately, I was given about 24 hours of notice that I would have the chance to
implement this technique. I spent one shift (about 8 hours) implementing off-axis ECR after
not sleeping for 24 hours. Two subsequent shifts conducted by my colleagues were spent
using this technique to perform a useful measurement. As such, much of the data is not
“publication quality.” If just a little more time was spent on this, it could be extremely useful
for the ALPHA experiment. Alternatively, Ph.D. student Jaspal Singh, advised by Prof.
William Bertsche, is currently working on proof-of-concept experiments to move electron
clouds off-axis with intentionally applied potentials on an azimuthally segmented electrode
rather than patch potentials. They hope to install azimuthally segmented electrodes in
critical measurement locations in ALPHA-g. This is, frankly, a much better way of measuring
magnetic fields off-axis. Therefore my version of off-axis ECR may be irrelevant in the future,
but it does have the advantage of being available in the absence of segmented electrodes.

One particular flaw in this measurement was that we should have varied the depth of the
“deep trapping potential” where electrons were performing a magnetron motion and where
they were exposed to microwaves—steps (d) and (e) above. The deep trapping potential
used throughout this section is shown in Fig. 7.3. The well constant k2 is 3.963× 105V/m2,
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Figure 7.2: A diagram of the ALPHA-g Penning-Malmberg trap electrodes and four liquid
helium cooled superconducting magnets that were most relevant for the first ALPHA-g mea-
surement. The booster solenoid, shown on the left, is not very important for the discussion
of off-axis ECR, but it was energized for some of the measurements shown in Sec. 6 and
Sec. 8. The octupole magnet, shown in red, causes the magnetic field magnitude to increase
with r. The two ”short solenoids,” also known as “mirror A” on the left and “mirror G” on
the right, generate local maxima in the on-axis magnetic field near their centers. Together
the octupole and the mirror coils form a magnetic minimum trap for antihydrogen. Note
that this diagram is rotated 90 degrees. Mirror G is the top of the vertically oriented trap.

giving a magnetron period of 15.85µs/cycle (B/1T). The cubic term is small, and the
quartic term is 4.886× 105V/m2, which provides a variation in the magnetron period with
radial displacement of 8.57ms/cycle (r2/1mm2)(B/1T) (see Sec. 3.4 for the derivation of
this effect). Typically for on-axis ECR, we use the deepest possible trapping potential. This
provides three benefits as follows (all discussed in Ref. [5]):

1. The ECR resonance has sidebands separated by the axial bounce frequency of electrons
in this trapping potential

√
2k2q/m. By maximizing k2, we move these sidebands

farther from the central peak, making the central peak clearer.

2. Maximizing k2 minimizes the axial length of the electron cloud. If there is any axial
gradient in the magnetic field, this minimizes the variation in magnetic field strengths
that different electrons are exposed to. We have never conclusively established the
effect of a magnetic field gradient on the ECR resonance, but there is little doubt that
a gradient would contribute to the ECR linewidth.

3. The ECR resonance also has sidebands separated by the rotation frequency of the cloud,
as shown in Ref. [5] (much smaller than the bounce frequency). These sidebands were
never observed in ALPHA-g, because we never evaporatively cooled the electron clouds
as in Ref. [5], which results in an extremely diffuse cloud whose rotation frequency is
k2/B, unperturbed by the cloud’s charge. Resolving these sidebands by maximizing
the rotation rate enables an improved measurement technique that can be accurate at
the parts per million level.

On the other hand, with a magnetron period of 16µs, the microwave pulse needed to be
microsecond-scale (we used 3µs) in order for the pulse to occur when the cloud is at a well-
defined magnetron phase. This imposes a spectral linewidth of order 0.3MHz, which is 10−5
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times the frequency of the resonance, limiting the precision of the measurement. Thus, if
we decreased the magnetron frequency by a factor of ten we could decrease the linewidth
by a factor of ten. Alternatively, we could split the benefits and have the clouds subtend a
smaller magnetron arc by a factor of three and decrease the linewidth by a factor of three.
In the past, there was no reason to do anything other than maximize k2.

On the other hand, the concern that decreasing k2 would elongate clouds is valid. The
measurements described here were performed near the center of mirror A, or at least within
a millimeter axially of the center of mirror A. With this upper bound of one millimeter, the
axial magnetic field gradient would have been at most 0.1T/m. The length of the clouds
is given by

√
⟨z2⟩ =

√
kBT/2ek2 ≈ 70µm (derived in Sec. 5.4.1), giving a variation in the

magnetic field of at most 10−5. These back of the envelope estimates show that the k2
value used here wasn’t ridiculous—the variation in the magnetic field is a similar order of
magnitude to the spectral linewidth—but the appropriate thing would have been to vary k2
and the microwave pulse length to find the configuration that minimizes the ECR linewidth.
In addition, it would have been beneficial to more precisely find the position of the axial
magnetic field maximum to minimize this gradient.
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Figure 7.3: The electrode voltages applied while performing off-axis ECR are shown in black.
This is the “deepest,” i.e. highest well constant k2 trapping potential that is possible which
has the same axial position as the center of mirror A (also the center of electrode 23). The
orange line is a quartic fit to the bottom of the trapping potential.

One final optimization that would improve these measurements is to vary the current
in mirror A to find a configuration which is optimal for resolving how far off-axis mirror A
is. Here the only current used is 10A, which creates a 0.11T perturbation to the nominal
1T field in the center of mirror A. Two other values were attempted, 70A and 40A, but
we were unable to observe any measurable heating of off-axis clouds with microsecond-scale
microwave pulses at these higher magnetic fields. This is not really astonishing—we have
very little understanding of how much microwave power propagates into the trap and the
structure of microwave intensities throughout the trap. We have also never modelled the
heating rate of the electron cloud subject to microwaves of a certain intensity. We have in the
past observed that certain combinations of axial trap locations and microwave frequencies
result in dramatically less heating, presumably indicating that there is a minimum in the
oscillating electric field at that trap location. So far we have adopted an approach of “take
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what you get” when it comes to whether or not a temperature peak can be resolved for a
certain microwave power, pulse length, trap location, and cyclotron frequency.

7.1 Moving electron clouds to well-defined positions

The goal of off-axis ECR will be to measure how the magnetic field magnitude in a Penning-
Malmberg trap varies with r and θ at a fixed axial position z. Thus, I need to begin by
proving that I can deliver electron clouds to a well-defined transverse position.

First, clouds were moved off axis a variable distance adiabatically just as in Sec. 3.3.
Then once they have reached the intended off-axis distance, the trapping potential is quickly
changed to the one shown in Fig. 7.3. In this first experiment, I only intended to prove
that clouds could be delivered to a well-determined magnetron phase, so after after orbiting
the trap center for a variable time, they are released toward the MCP to be imaged. Later,
of course, they will be exposed to microwaves for 3µs, a short time compared to their
magnetron period, before being released slowly to measure their temperature. In my first
attempt, the clouds performed a magnetron orbit for tens of milliseconds (I cannot recover
the exact amount of time because the sequences were deleted) plus a variable extra “phase
shift time” between 0 and 12µs; the resulting cloud positions on the MCP are shown in
Fig. 7.4. In Fig. 7.4, clouds are delivered to two different radial positions, and seven different
phase shift times were used. Each combination was repeated four times. Clouds that were
intended to arrive at the same r and θ on the MCP did not. In hindsight, this can be
easily predicted from the quartic coefficient. As discussed in the previous section, this
trapping potential creates a radial variation in the magnetron frequency given by ωr(r) =
2π/15.85µs + (2π/8.57ms)(r2/1mm2). In this case, there was a small variation in the
initial positions of the clouds, and because the time spent in the deep well was not short
compared to 8ms, the magnetron phases spread out for clouds subjected to identical electrode
manipulations.
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Figure 7.4: Clouds imaged on the MCP after spending several milliseconds in the deep well
used for off-axis ECR. Two different magnetron radii are used (two different k2m values, one
being double the other, resulting in magnetron radii of about 1mm and 2mm). The clouds
spend a time T0 + dt in a deep well, where T0 is tens of milliseconds, and dt is indicated by
each cloud’s color.

This issue would be unacceptable for off-axis ECR, but luckily the resolution is very
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simple—we need to spend less time in the deep well. Fig. 7.5 shows the result of clouds
spending 100µs and 200µs in the deep well. In Fig. 7.5, clouds are delivered to two different
radial positions; the clouds that are displaced by about 2mm spend 100µs in the deep well,
and the clouds that are displaced by about 1mm spend 200µs in the deep well. Of course,
this odd choice of varying two parameters at once was not intentional. I took a barely
sufficient dataset for convincing myself at the time that off-axis ECR would work; I did not
prioritize taking data to make plots for my thesis.
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Figure 7.5: In this plot, clouds are subjected to the same procedure as in Fig. 7.4, but this
time T0 is 200µs for the clouds with a magnetron radius of 1mm and 100µs for the clouds
with a magnetron radius of 2mm.

Before moving on to off-axis ECR, I doubled the time taken to adiabatically move the
clouds off axis in the hopes that this would result in a smaller distribution of cloud positions.
This was successful, as shown in Fig. 7.6. For the clouds shown in Figs. 7.4 and 7.5, I used
an atypically fast adiabatic movement because I was hoping I could increase the repetition
rate to perform off-axis ECR more quickly. It seems that adiabatic movement was too fast.
Next, the issue where clouds moved to different radii are subjected to a different amount of
time in the deep well has been fixed. Thus in Fig. 7.4 on the right, clouds moved to different
radii have the same magnetron phase for the same amount of extra time in the deep well.
Another modification in Figs. 7.6 is that mirror A is energized with 10A on the left and 70A
on the right, corresponding to a magnetic field increase from about 1T to 1.1T and 1.7T
respectively.

This magnetic field increase has two impacts on the cloud positions. First, the magnetron
frequency is decreased; to sufficient precision, with this short hold time, the magnetron fre-
quency is k2/B. This effect is clearly visible in the data and it is consistent with predictions.
Second, the increasing magnetic field changes the radius of cloud positions on the MCP.
It is extremely convenient that when we decrease the well constant to k2m, the position of
the magnetron center of motion inside the trap is not dependent on the magnetic field. It is
located at the point in space which is an electrostatic potential maximum along the magnetic
field and an electrostatic potential minimum in the two directions transverse to the magnetic
field. This position can change slightly when the angle of the magnetic field relative to the
symmetry axis of the electrodes changes, but near the center of the trap this angle is very
small, and this effect is entirely negligible. Thus the radius of magnetron motion inside
the trap is the same regardless of the current in mirror A. However, the ratio of magnetic

169



field strength between this axial measurement location and the MCP has changed—it has
increased. Thus the radius of cloud center positions on the MCP changes. For this reason,
the clouds that were given a magnetron radius of 2mm inside the trap were all visible on the
MCP in Fig. 7.5, but with mirror A energized to 70A, many of these clouds fall outside the
imageable region on the MCP. This is why clouds with the largest radius are only visible on
the upper left and lower right in Fig. 7.6 on the right. Note that I have not taken the time
to account for this effect in the calibration of the horizontal and vertical axis in Fig. 7.6, so
the cloud positions are reported as actually having a larger radius inside the trap, although
they actually do not.
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Figure 7.6: Positions of cloud centers are reported when clouds are displaced from the trap
axis by about 0.41mm with mirror A energized with 10A and three different radii (0.41,
1.50, and 2.05mm) with 70A in mirror A. Note that positions reported in the horizontal and
vertical axis are based on a calibration of positions inside the trap versus positions on the
MCP that assumes, erroneously, that mirror A is not energized and that the magnetic field
inside the trap is 1T. This plotting choice illustrates that the radius on the MCP increases
when the magnetic field inside the trap increases.

7.2 Observing a cyclotron resonance

Having used MCP imaging to confirm that clouds are reproducibly sent to a particular
magnetron radius and phase, we inject microwaves into the trap near the cyclotron frequency
for 3µs when the clouds are at a particular magnetron phase. All of the experiments going
forward were performed with a current of 10A in mirror A, and the axial position is the
designed axial center of mirror A, which is also the center of electrode 23.

To measure the magnetic field at a particular trap location, a sequence of clouds are
delivered to the same trap location, and each cloud is exposed to a different microwave
frequency. Then the clouds’ temperatures are measured by releasing them towards the MCP
over the course of 3ms to observe an exponential increase in the signal versus time, reflective
of the Maxwell-Boltzmann distribution within the cloud. This signal is taken from a silicon
photomultiplier (SiPM) which can observe single photons from the phosphor screen behind
the MCP [98]. Unlike the camera, this SiPM measures the light produced on the phosphor
screen versus time, so it measures the rate at which electrons are striking the MCP. This
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technique is described in Sec. 4.1, and there I also discuss that a correction factor is needed
to infer actual temperatures. These measurements are nonetheless a valid way to measure
changes in temperature, which is all we need to observe a resonance.

Measurements of cloud temperatures versus applied microwave frequency are shown in
Fig. 7.7. Instead of plotting the SiPM signal versus time, I plot the SiPM signal versus
the “escape energy.” This is defined as the difference between the electrostatic potential
maximum that the cloud sits in and the electrostatic potential minimum that electrons would
need to pass in order to escape the confining potential and be released toward the MCP.
This potential difference is inferred using electrostatic modelling of the electrode voltages
used to perform this operation. As explained in Sec. 4.1, because of the electrons’ Maxwell-
Boltzmann distribution, we expect an exponential increase in the signal as the escape energy
decreases linearly, and thus an exponential function is fit to the early-time/high escape
energy part of the signal in Fig. 7.7. With this manner of plotting, the fit function is
S0 + exp(−E/kBT ), where T is the temperature, S0 is the background signal, and E/kB is
the horizontal axis of the plots.
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Figure 7.7: In black, the SiPM signal is shown versus the “escape energy” needed for elec-
trons to escape their confining potential (plotted in temperature units). The red line is an
exponential fit to the SiPM signal, with the fit region chosen using simple, somewhat arbi-
trary heuristics. In each plot, the microwave frequency applied to the electron cloud is listed
above, and the deduced temperature is listed inside the plot region. A resonance is observed,
with the maximum heating occurring somewhere between 31.07721 and 31.07727GHz.

The cyclotron resonance can also be observed in the positions of electrons on the MCP.
In Fig. 7.8, in addition to measuring the temperature of a cloud with the SiPM, I triggered
the camera with a shutter speed that covered the entire 3ms of the temperature dump. In
fact, the reason I performed the temperature dump in 3ms rather than the typical 20ms
was that I wanted to be able to image these clouds. Some of the observations were expected.
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I expected that clouds would be “smeared” along their magnetron orbit—some electrons
are still trapped and executing E × B drift while others have already escaped, causing the
electron positions to form a streak rather than a dot. I expected that this streak would be
longer when the cloud temperature increased due to resonant microwaves. I also expected
that the magnetron phase of the clouds would change as the plasma temperature increased.
As the clouds heat, they become longer, and this affects the magnetron frequency in the
few milliseconds between the microwave pulse and releasing the cloud toward the MCP, as
shown in Sec. 5.4.1. I did not expect that the clouds that were heated most would have
a smaller magnetron radius—notice that cloud 29 in Fig. 7.8 is imaged near the center of
the magnetron orbit indicated by the streaks of clouds 27 and 28. It’s not clear to me
whether this is due to complications in the process of dumping the clouds or if is the result
of motion toward the trap center induced by the microwaves. This unexpected phenomenon
can probably be avoided by using sufficiently weak microwaves.

cloud 20 cloud 21 cloud 22 cloud 23 cloud 24 cloud 25

cloud 26 cloud 27 cloud 28 cloud 29 cloud 30 cloud 31

cloud 32 cloud 33 cloud 34 cloud 35 cloud 36 cloud 37

Figure 7.8: Clouds are successively imaged after being moved off-axis then exposed to mi-
crowaves of linearly increasing frequency. Unlike in Fig. 7.7, the cloud number is listed
instead of the microwave frequency that the clouds were exposed to. This is also not the
same dataset as was used in Fig. 7.7—in both cases the dataset shown was the one that most
clearly illustrates the point I want to make.

7.3 Off-axis ECR results

Before showing the temperature versus frequency for various magnetron radii and phases,
I should explain that with many preicsion ECR measurements, we need to account for the
magnetic field drifting with time. We attribute this to the decay of persistent currents,
which will be discussed in Sec. 8. During the course of these measurements, the magnetic
field decreased at a rate of about 0.009mT/h, and the measurement took about four hours.
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This was observed by occasionally measuring the magnetic field on axis between off-axis
measurements. Without correcting for this drift, the effect of mirror A’s displacement would
not be apparent.

Fig. 7.9 shows the cyclotron resonance at three different magnetron radii and four different
magnetron phases. Each measurement was repeated 2–4 times, but only one temperature
versus frequency curve is shown per radius and phase here. In Fig. 7.9, a correction of
((q/m)(0.009mT/h) is applied to the microwave frequencies. This is a peculiar way to
account for the drift, but it allows me to illustrate the effect of mirror A’s displacement in
the resonance curves themselves. At all radii, the heating peak for the clouds at magnetron
phase 2.85 radians is slightly shifted right relative to the heating peak for the clouds at
magnetron phase 0. Also, as expected, the magnetic field is stronger at higher radii. In each
of these curves, a Gaussian is fit to a few of the temperature values near the highest measured
temperature. There are many reasonable choices for the fit function—Gaussian, Lorentzian,
Gaussian with Lorentzian tail, the Fourier transform of the microwave pulse, etc. The most
reasonable thing to do is to admit we don’t have a full accounting of the collection of effects
that leads to the ECR lineshape. Therefore I choose to fit a generic function only to the
center of the visually apparent peak. It is notable that the width and height of the ECR peak
depends on location in the trap. To some extent, this may be due to the cloud’s magnetron
motion changing the magnetic field experienced by the electrons throughout the microwave
pulse. As the cloud moves, it may be brought in or out of resonance with the microwaves.
The difference in heights is likely explained by variations in the microwave amplitude with
position. This effect is unfortunate, as it probably also “pulls” the heating peaks—keep in
mind that these clouds are executing 1/5 of a magnetron orbit in the 3µs that microwaves
are active. As stated in the introduction to this section, it is likely that this measurement
can be improved by decreasing the magnetron frequency. Note however that the power of
microwaves at various magnetron positions is not clearly visible in these plots, because the
microwave power was adjusted in some cases to restore a clearly visible peak.

To explain why the magnetic field is expected to vary with magnetron phase, consider
that near the center of the axial magnetic field maximum created by mirror A, the magnetic
field can be approximated by:

Bz(z) = B0 +B′z + cz2. (7.1)

The magnetic scalar potential as a function of r and z is then:

−ΦB(r, z) = B0 +
B′

2

(
z2 − 1

2
r2
)
+

c

3

(
z3 − 3

2
r2z

)
. (7.2)

So the off-axis magnetic field is:

B(r, z) =

(
B0 +B′z + cz2 − 1

2
cr2
)
ẑ −

(
1

2
B′r + crz

)
r̂, (7.3)
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Figure 7.9: For each of four magnetron phases and three magnetron radii, cloud temperatures
are measured after exposing 100 clouds to different microwave frequencies. A Gaussian is fit
to each heating curve, with the resulting fit shown with a red dashed line.

and the magnitude is:

|B(r, z = 0)| = B0 +

(
−1

2
c+

1

4

B′2

B0

)
r2 (7.4)

If the center of magnetron motion—the center of the electrode confining the clouds—is
displaced in the x̂ direction by a distance ∆, then when the clouds’ magnetron radius is δ
and its phase is θ, the cloud’s radial distance from the transverse magnetic field magnitude
minimum is: r =

√
(∆ + δ cos θ)2 + (δ sin θ)2. Using a model of the as-designed magnets

of the ALPHA-g trap, I determined that c = −57.73T/m2 in Eq. 7.1, and that B′ would
have a negligible effect because the measurement was performed close to the axial magnetic
field maximum. However, this model predicted that the increase in magnetic field due to
the 10A in mirror A would be about 10% less than what is observed, so there is clearly
a roughly 10% error in my magnetic field model. This model was then fit to the observed
heating peaks. This theory suggests there should be three free parameters: the angle of
mirror A’s displacement (we cannot assume that mirror A is displaced in the same direction
as “magnetron phase zero” in Fig. 7.9), the displacement of mirror A ∆, and the magnetic
field in the center of mirror A. However, a fourth parameter was necessary to achieve a
reasonably good fit—a “fudge factor” on c. This is reasonable because as mentioned before,
there seems to be a 10% error in the magnetic field model used to predict c. This fudge
factor is also equivalent to scaling all the magnetron radii—so it can account for any error
in our calibration of positions inside the trap versus positions on the MCP (discussed in
Sec. 3.5).
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The fit to all of the resonance measurements is shown in Fig. 7.10. The fit is not great, but
in the course of describing this measurement I have given plenty of sources of error—frequency
pulling from gradients in the microwave power, any nonlinearity in the drift of the magnetic
field due to persistent current decay, the changing magnetic field throughout the magnetron
motion of the clouds, etc. The fit suggests that the fudge factor is 0.76, and the displacement
of mirror A’s transverse magnetic field minimum from the electrostatic trap center is 196±
15µm (the error bar is statistical fitting error only). Of course, given the large fudge factor,
the quality of the fit, and all the known sources of error, the displacement is probably farther
from 196µm than the statistical error bar suggests. However, the telltale sign of an existing
displacement, a sinusoidal variation in the magnetic field with magnetron angle, is clearly
visible in the data. It seems clear that this effect is real, even if it isn’t precisely measured
here. This displacement means that when we measure the on-axis magnetic field, the actual
magnetic field minimum is lower by 1.5 × 10−6T. This translates directly to an error of
0.003g on the measured acceleration of antihydrogen due to gravity. The first measurement
of gravity on antihydrogen had a total error bar of roughly 0.25g, so we are a factor of 100
away from this being a dominant error, and probably a factor of 10 away from having to
include this effect in the list of known errors [1].

0 /2 3 /2 2
magnetron phase

1.11021
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Figure 7.10: The dots show measurements of the magnetic field magnitude inferred from
ECR heating peaks. The solid blue lines show the ±1 standard deviation bounds of the
measurements of the on-axis magnetic field taken throughout this measurement campaign.
Four dashed lines show the fit function to all the data at once—the expected magnetic field
variation due to mirror A being displaced by 196µm.
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8 Electron magnetron phase imaging (EMPI)

This section describes a new technique for magnetic field measurements which takes advan-
tage of the magnetron motion of electron clouds. The basic idea is that magnetron frequency
is given by ωr ≈ k2/B, where B is the axial magnetic field and k2 is the “trap constant,”
where the electrostatic trapping potential created by the electrodes is approximated by
Φt = −k2(z

2 − r2/2) near the trap center. Thus if k2 is sufficiently stable—if the electrodes
create the same trapping potential from one cloud to the next—precision measurements of
the magnetron frequency can serve as precision measurements of the magnetic field. We
know from Sec. 5.4 that clouds can orbit the trap for an entire second, tens of thousands of
magnetron orbits, and they will arrive at the same magnetron phase, forming a coherent line
as we move clouds to different radii then image them after a second of magnetron motion.
Therefore k2 values seem to be static at the 10−6 level or better, at least over the few hours
in which those measurements were performed. This also proves that our electron clouds are
sufficiently reproducible, so that fluctuations in their charge, radius, or temperature don’t
cause fluctuations in the magnetron frequency above the 10−6 level.

I have also shown in Sec. 7 that we can image clouds at different magnetron phases
by changing the total time in a magnetron orbit in small increments—which we can use
to measure the magnetron frequency—hence this technique is called electron magnetron
phase imaging (EMPI). This works despite the fact that it takes O(10µs), or roughly one
magnetron orbit, to release clouds toward the MCP and to initiate their magnetron orbits
(the so-called “instantaneous” electrode voltage changes). During these voltage changes, k2
is changing in ways that are hard to predict (described in Sec. 6.4). The important thing is
that these operations occur the same way from one cloud to the next.

Of course, our predictions of k2 are nowhere near the 10
−6 level. Patch potentials should

affect k2 at the 10
−4 level (10mV/100V). The electrode amplifiers have voltage offsets at the

10−5 level—but these offsets are not observed to change with time. The electrodes thermally
contract by from 300K to 4K by about 0.4%, causing k2 values to deviate from predictions
by twice this fraction. It is also likely that the COMSOL model of the electrostatic potential
in the trap also has numerical errors at this level. However, all of these effects are unchanging
with time. In ALPHA-2, the changing patch fields with laser exposure would presumably
cause an issue at the 10−4 level, but in ALPHA-g patch fields have been measured to be
unchanging over many months. To account for these issues, we will need to calibrate EMPI
using ECR.

My first application of this method was to verify which version of one of the supercon-
ducting magnets was actually built and installed in ALPHA-g. The “booster solenoid,”
which increases the magnetic field from 1T to 2T for plasma preparation, underwent several
changes in its design. It also would quench before reaching the current it was designed to
reach. As such, there was some question whether this magnet was actually a different num-
ber of coils than we thought it was. Without calibration of the k2 values, I was able to verify
that this magnet did produce the magnetic field we expected it to at the 1% level. This
measurement had an advantage over ECR because EMPI can be performed at any magnetic
field strength. ECR has a lower field limit from the cutoff frequency of the waveguide, and
it has an upper limit from the output of the microwave generator. EMPI has been vastly
improved since this first measurement, so it will not be presented here. This measurement
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also wasn’t really of any consequence—the person who actually designed the magnets, Dr.
Chukman So, knew with certainty what was installed; other members of the collaboration
were confused because they were looking at out-of-date design documents.

For a long time after that first measurement, EMPI was “a solution seeking a problem.”
It was clear to me that I could perform magnetometry measurements more quickly than
ECR, which would be useful for making on-axis magnetic field maps throughout ALPHA-g.
However this wasn’t enough to convince the collaboration to give me time on the experiment
to work on EMPI. The aforementioned first measurement was snuck into a day where I
was nominally meant to be measuring patch potentials. What did eventually convince the
collaboration was that I figured out a way to measure the magnetic field during the 20 s where
the magnetic field is decreasing to release antihydrogen during the gravity measurements.

The idea for measuring a changing magnetic field was to successively image clouds per-
forming a magnetron orbit for a fixed period of time. As the magnetic field changes from one
cloud to the next, a difference in the final magnetron phase would be observed. We could
sum up the phase shifts to find the total change in the magnetron angle, and by relating
ωr ∝ 1/B, we could find how the magnetic field magnitude varied with time. However a
measurement idea isn’t useful until one has checked that there will be sufficient precision.
At the time I was able to image clouds once every ∼ 100ms. The ALPHA-g measurement
involved decreasing the magnetic field strength from 1.7T to 1.0T over 20 s, so the mag-
netic field would change by 3.5 × 10−3T per cloud. If the clouds did a magnetron orbit
of 600 radians, their phase would change by less than π per cloud, meaning we could eas-
ily track the changes in magnetron phase. The highest magnetron frequency achievable is
4 × 105 radians per second, so this would take 1.5ms, which is negligible compared to the
100ms it took to transport clouds from the reservoir to the axial measurement location (see
Sec. 2.3.3). Because of the intrinsic magnetron of clouds prepared in ALPHA-g, there would
be a variability in the magnetron phase of 0.1 radians (see sec. 2.3.1), and when dividing by
the total angle of 600 radians, we find that the precision of the magnetic field measurements
is roughly 1.7× 10−4T. The effect of gravity on antihydrogen is equivalent to 4.5× 10−4T,
so measurements would need to be comparable to this precision to be useful, and they are.
Many of the numbers presented in this paragraph will change by factors of two or three;
ultimately, the precision will improve by a small factor, and the measurement frequency will
improve by about a factor of 2–3.

This back of the envelope argument convinced the collaboration to allocate experimen-
tal time for developing EMPI. This time took the form of two weeks after the end of the
antiproton run during which the first ALPHA-g gravity measurement was performed. On
one hand, this is roughly double the time allocated to all of the measurements described in
the other chapters of this thesis. On the other hand, I had been advocating for a long time
that I be given significantly less total experimental time spaced out more widely so that I
could analyze the results and think about what to do next. Because these measurements
were performed in a short period of time, there are mistakes that weren’t noticed until long
after ALPHA-g was disassembled, and these mistakes cannot be fixed with further analysis.

So-called “phase imaging” has been implemented before in Penning traps for precision
measurements of the masses of short-lived isotopes [124, 125, 126]. In these measurements,
the isotopes are moved off-axis using a segmented electrode; here I will use patch potentials,
which allows me to measure the magnetron frequency at more than one axial trap location.
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Also, these experiments can convert between cyclotron motion and magnetron motion, be-
cause the cyclotron frequency for ions is slow enough that it can be addressed with ordinary
electronics (in our case, microwaves are necessary for interacting with the cyclotron motion).
This means they can excite a large cyclotron orbit, then convert the cyclotron phase into a
magnetron phase, then image the particle. In this way, both the cyclotron frequency and the
magnetron frequency can be measured using phase imaging. These experiments typically
measure the ratio of the masses of two different isotopes by measuring the ratio of their
cyclotron frequencies. With a known particle mass, the measurements could be interpreted
as precise measurements of the magnetic field.

8.1 Sequence improvements for EMPI

In principle the operations we perform on a single cloud during EMPI measurements could
be identical to the operations performed during many of the other measurements presented
in this thesis. Like in the patch potential measurements (Sec. 3), the clouds are moved
off axis using patch potentials. Like in the off-axis ECR measurements (Sec. 7), after the
cloud is moved off axis, it orbits the trap center in a deep trapping potential for a variable
amount of time, then we image the cloud on the MCP to determine its magnetron phase.
However a number of improvements were implemented that drastically improved the efficacy
of these phase measurements for the purpose of measuring magnetic fields. Most of these
improvements facilitate imaging clouds more quickly than in previous cloud-based measure-
ment techniques. For most EMPI measurements, we image 20–40 clouds per second and a
total of 1000–2000 clouds are extracted from a reservoir.

Fig. 8.1 shows the electrode potentials used to image one cloud during EMPI measure-
ments. Similar figures were produced to explain other cloud-based measurements, for exam-
ple Fig. 7.1 from Sec. 7 and Fig. 3.2 from Sec. 3.1. This figure is different in that it shows
the entire sequence of voltages taken from an actual EMPI measurement—there are no sim-
plifications and no skipped steps. I will describe each step shown in Fig. 8.1 at the end of
this section. Before I can do that, I will describe each sequence improvement over previous
cloud-based measurements. The following 8 sections are in increasing order of “physical
significance.” Readers who are interested in understanding the underlying physics of EMPI
should read only Secs.8.1.9 and 8.1.10, and skip the next paragraph. Readers from other
collaborations hoping to implement EMPI should probably skip only Secs.8.1.1 and 8.1.2.
Only readers from the ALPHA collaboration who want to implement EMPI should read the
entirety of this section.

Many of these sequence improvements rely on some understanding of the systems involved
in applying voltages to the electrodes. “The sequencer,” is the name given at ALPHA to the
collection of LabVIEW software and National Instruments hardware that applies a sequence
of voltages to the electrodes. In the software, we can design a sequence of voltages called
“states” to be applied to the electrodes, and between each state we can linearly change the
electrode voltages in a certain number of “ramp steps.” Some states also do not change
the electrode voltages, but instead trigger digital bits, for example to trigger the camera
to take a picture. When we prepare to run a sequence on the actual experiment, part of
the sequencer called the “analog sequencer” loads our voltage sequence onto an FPGA. The
“digital sequencer” loads our sequence of digital bits onto another FPGA, and when we
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Figure 8.1: Sixteen steps are shown in the potential manipulations used to perform an EMPI
measurement with one electron cloud. Each step is described in Sec. 8.1. For each step, the
plot above shows the electrostatic potential, and the plot below shows the electron plasma
reservoir and the electron clouds. Above, the dashed line shows the electrode potentials. The
solid black line shows the on-axis potential created by the electrodes. The orange line shows
the on-axis potential perturbed by the reservoir’s space charge. If the potential manipulation
between two steps is a linear change, grey lines show how the potential changes from the
previous step to the current one. If the potential manipulation is “instantaneous” i.e. as fast
as the electrode potentials can change (∼ 10µs), only one grey line shows the potential of
the previous step. Note that the vertical scale changes in step (j) to show the much smaller
shallow potential used to move a cloud off-axis. Below, the electron density is plotted along
a cross section of the trap. The reservoir’s plasma parameters are roughly accurate, but the
electron cloud charge, temperature, and radius are exaggerated to make them larger than
a single pixel. In steps (j) and (k), a white arrow indicates the electron cloud’s magnetron
orbit and the electron cloud is shown off axis.

“execute” the sequence, an 80MHz clock (1/12.5 ns) on the digital sequencer maintains the
timing of the sequence. In addition to outputting the digital triggers for various pieces of
equipment, the digital sequencer sends a trigger to the analog sequencer when a new voltage
is to be applied to the electrodes. The NI hardware has analog outputs between −10 and
10V, which change to the next value in the sequence when triggered, and these voltages
are amplified by amplifiers purpose-build for the ALPHA collaboration which come in either
±75V or ±150V variants. Both the analog and the digital sequencer have memory limits
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on their respective FPGAs. A single sequence can have about 205,000 ramp steps and
about 3400 states (including both endings of linear voltage ramps and digital output bits).
The bottom 9 electrodes in ALPHA-g and the top 27 electrodes have separate sequencers,
called the “recatching sequencer” and the “atom sequencer” respectively (this was already
described in Sec. 6.2). During EMPI measurements, the recatching sequencer is in control
of the reservoir, and the atom sequencer controls the clouds for measurements. Some digital
bits need to be sent between the two sequencers to make sure that they stay synchronized
(i.e. the recatching sequencer shouldn’t attempt to transfer a cloud to the atom sequencer
when the atom sequencer doesn’t have a trapping potential ready to contain the cloud).

8.1.1 Sequence bridging

It takes about 15 states in the atom sequencer to perform the EMPI measurement pro-
cedure for a single electron cloud. This is dramatically less than the ∼ 50–100 states in
previous cloud based measurements. Thus with the 3400 state limit, only about 200 clouds
can be imaged before we need to load a new sequence. A limit of 200 magnetic field measure-
ments is not really acceptable. Thus while maintaining the reservoir in place, new voltage
instructions are loaded into the FPGA then executed. This process takes about a second. To
retain well-defined timing, I always ensure that either the recatching or the atom sequence is
running. If a new atom sequence needs needs to be loaded in, the recatching sequence first
waits for a digital bit signalling the end of the previous atom sequence. When it receives that
signal it waits for 1 second, during which time the new atom sequence should be loaded in,
then the recatching sequence sends a digital bit to the new atom sequence to start. Thus the
loading of a new atom sequence takes exactly 1 second, rather than some random amount
of time less than a second. Luckily, when a sequence has ended the voltages applied to the
electrodes at the end of that sequence remain in place until a new sequence is executed.
Typically, a single recatching sequence handles 400 cloud extractions from the reservoir, and
an atom sequence handles 200 clouds performing an EMPI measurement, so the atom se-
quence has to be reloaded twice as often. The recatching sequencer’s responsibility in this
process requires fewer states per cloud. The end result of this is that every 200 clouds there
is a pause in EMPI measurements of one or two seconds.

Unfortunately, the one second wait was a mistake—the most consequential mistake I made
in the EMPI measurements. Some of the sequences, particularly the EMPI measurements
higher in the trap, took a bit longer than one second to load. The way I implemented
sequence bridging, this meant that the new sequence would start after some undefined time
greater than one second. If I had designed the sequences to fail if they took longer than a
second to load, this issue would have been immediately noticed and fixed, but I did not. If
I had designed any external measurement of the sequence timing, this issue could have been
fixed with post-hoc analysis, but I did not. All of the EMPI measurements took place in
the final two weeks of the 2022 ALPHA-g experimental run. Most of the analysis was done
long after it became impossible to perform further measurements. Of course, performing a
complicated novel measurement in such a short time on extremely limited sleep is bound to
result in a few errors; I’m pleasantly surprised that there is any usable data from that time.
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8.1.2 One-sided syncs

Throughout the ALPHA experiment, “syncs” are used to make one sequencer wait for
another. A sync involves sequencer A waiting for a digital bit from sequencer B, then
sequencer A sends a digital bit back to sequencer B. Meanwhile sequencer B leaves a digital
bit on until it receives the response bit from sequencer A. Thus when either sequencer reaches
the point in the sequence with the sync, it waits for the other one to reach the sync as well,
and then they both proceed.

Typically when we perform a cloud-based measurement, the atom sequencer “syncs” with
the recatching sequencer when it has just finished with one cloud to signal that it wants a
new one, and when the recatching sequencer has the next cloud ready to transfer to the
atom sequencer, the two sync again. Each sync uses 3 states, for a total of 6 states per
cloud. This is an unacceptable waste. Thus I reduced this to 1 state per cloud by only
having the recatching sequencer wait for a bit to come from the atom sequencer, and the
atom sequencer receives nothing in response. This requires some care—now that the atom
sequencer isn’t told when a cloud is coming, the atom sequence needs to be aware of how
much time passes from when it sends the trigger to when a cloud is delivered. This is not
difficult, but previously we could change the amount of time it takes to extract a cloud from
the reservoir without changing the atom sequence, and this no longer works. Also, if the
recatching sequencer isn’t ready to receive the trigger when it comes, the trigger is simply
missed and the atom sequence will perform a cloud-based measurement without any cloud
present. The telltale sign of this failure is that the recatching sequence doesn’t complete
when the atom sequence does, and it continues to wait for an additional trigger that will
never come.
8.1.3 Negative voltages during cloud movement

This upgrade was previously discussed in Sec. 2.3.3 when I discussed optimal ways to
move clouds along the trap. There, I explained that when a cloud is moved along the
trap axis by transferring it from one electrode to the next, the cloud can be moved off-axis
if it is moved too quickly. Here “too quickly” is specifically defined as the speed of the
“effective trap center” being comparable to (as opposed to much smaller than) the speed
of magnetron motion—this is called the “adiabatic condition.” The effective trap center is
the center of magnetron motion, which can differ from one electrode to the next because of
patch potentials or misalignment between the electrodes and the external magnet.

The goal of these axial cloud movements is to go as quickly as possible without exciting
the magnetron motion. The clouds used for EMPI were initialized with a small magnetron
orbit of about 25µm due to the so-called “intrinsic magnetron” (see Sec. 2.3.1). My goal
was to not increase that initial magnetron orbit. By increasing the trapping voltage used to
confine electrons as they are moved along the trap axis, the magnetron frequency increases,
meaning we can move the clouds more quickly without violating the adiabatic condition.
Of course, this meant the maximum positive voltages allowed on each electrode were always
used. Additionally, when clouds were being moved along the trap axis, all the other electrodes
not containing a cloud were set to the maximum negative voltages. This is equivalent to
simply doubling the voltages used to confine the electrons.
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8.1.4 Bad amplifiers

When I first attempted EMPI measurements, I found that under some electrodes the
measurements would fail. An example of this failure is shown in Fig. 8.2. In the top row,
electrons are moved to electrode 35, then they are moved off axis, then they orbit the trap for
about 100ms, then they are imaged. On the bottom row, electrons are moved to electrode
23 instead. In each of the four images, I am slightly changing the trapping potential that the
clouds perform a magnetron orbit in, but this doesn’t really matter (I did not take any data
specifically to illustrate this issue). What matters is that in each subplot, if the electrodes
are behaving properly, the cloud positions should form a coherent spiral. Not only does this
not occur in electrode 35, the effect seems to be intermittent. In the second plot, most of the
cloud positions fall along a spiral, but a few do not. In the fourth plot, almost no pattern is
visible. Sometimes, in other repeats of this experiment, no issue is observed at all.

These observations are explained by the voltage on at least one electrode not being
consistent from one cloud to the next. It seems that an amplifier will apply a desired voltage
during one cloud’s magnetron orbit, but the amplifier’s performance can drift for a few
seconds, or become noisy for a few seconds, then return a few seconds later. The magnetron
frequency, and by extension the electrode voltage, only needs to drift by about 1 part in 104

to explain this effect. Each cloud arrives at the correct magnetron radius, but sometimes not
at the correct magnetron phase, which is how we know the electrode is not grossly changing
voltage—the shallow well used to move clouds off axis still seems to work. The amplifiers
were not designed with precision stability in mind, although it seems most of the amplifiers
achieve precision stability anyway. The problem was solved by simply swapping electrode
amplifiers one at a time until the offending amplifier was identified. The bad amplifier is
now assigned to control electrode 9 because there are no spare 150V amplifiers; I cannot
imagine wanting to perform a precision measurement with electrode 9, and the stability of a
plasma confined there is unlikely to be affected by this kind of low frequency (O(1–100Hz)),
low amplitude (O(0.1–1mV)) noise. Later I found that another electrode somewhere in the
vicinity of 27–30 was also problematic, but this is much less important because the ALPHA-g
measurement was only precisely sensitive to the magnetic field near mirror coils A and G,
centered on electrodes 23 and 35 respectively.

It still isn’t entirely clear to me why these measurements were affected by this issue
but previous cloud-based measurements, specifically patch potential measurements, were
not. During patch potential measurements, there were certainly times when clouds would
perform a magnetron orbit for tens of milliseconds under the affected electrode and still
image as a coherent spiral. It could be that the amplifier degraded over time. Alternatively,
EMPI measurements demand more power from the amplifiers. The amplifiers switch between
+150 and −150V several hundred times per second in EMPI measurements, and about 2
per second for patch potential measurements. It could be that the resulting strain causes
the electronics to behave differently.
8.1.5 Cloud pipelining

The clouds are moved at a speed of 2.5–5ms per electrode along the trap depending on
the trap location. With 30 electrodes to move across, if every new cloud was transported
from the reservoir to the measurement location, it would take about 150ms. To reduce
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Figure 8.2: Imaged cloud positions on the MCP after after being moved off axis then per-
forming a magnetron orbit for about 100ms in electrode 35 (top) and electrode 23 (bottom).
Each cloud is moved a different distance off axis, with the first clouds in each dataset being
moved the shortest distance off axis. In each column, a different trapping potential is applied
during the magnetron motion, explaining the different positions of the spirals in the bottom
row, but this difference is not important for the current discussion.

this time and to reduce the number of voltage states needed to move the clouds, instead of
extracting a cloud from the reservoir and moving it to the measurement location, several
clouds are stored between the reservoir and the measurement location. When one cloud is
imaged, every existing cloud is moved one step to the right, and a new cloud is placed in
the beginning of the “line.” This is shown in Fig. 8.1. Pipelining is a term from computer
science, where a similar idea is used to make more efficient CPU’s by having multiple CPU
instructions execute during the same clock cycle.

Typically clouds are stored in one in three or one in four electrodes. Note that it is not
possible to store clouds in every other electrode (consider what would happen when you
tried to transfer each cloud to the next electrode). For some electrodes with large patch
potentials or electrodes which are poorly aligned (electrodes 18–20, see Sec. 6), clouds are
only allowed to be moved at a speed of one electrode per 5ms with 150V used to confine
the electrons and the adjacent electrodes being set to −150V. In other electrodes without
such issues, clouds are allowed to be moved at a speed of one electrode per 2.5ms, and some
electrodes are only connected to ±75V amplifiers. Thus the algorithm for designing these
cloud movements was very complicated (and frankly not very elegant).

I never fully tested if these precautions were necessary, or if clouds could be moved
more quickly in some trap locations. I based these numbers on a somewhat conservative
interpretation of the data from Sec. 2.3.3. It is observed that the clouds have only an
intrinsic magnetron when they arrive at the measurement location, indicating that these
speeds were sufficiently slow.

The final cloud in the “pipeline,” or the next cloud to be used for a measurement,
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needs to be a bit further from the cloud currently being used for a measurement. This is
mostly because the shallow well used to move the current cloud off axis is very sensitive to
the perturbation from the confining potential of the next cloud. Thus this cloud is stored
typically 5–6 electrodes away from the measurement location, and this is really what sets a
minimum time between EMPI measurements.
8.1.6 Shielding voltages

When a voltage V0 is applied to an electrode centered at z = z0 in an otherwise infinitely
long grounded cylinder, the on-axis potential far from that electrode (z − z0 ≫ Rw) takes
the approximate form A exp[−(z− z0)α

0
1/Rw], where α

0
1 is the first zero of the zeroth Bessel

function of the first kind, Rw is the trap wall radius, and A is a constant which is proportional
to the voltage applied. If we apply a voltage −V0 exp(−lα0

1/Rw) to the adjacent electrode a
distance l to the right of the first electrode (assuming identical electrodes), the potential far
from these two electrodes is now:

A exp

[
−(z − z0)α

0
1

Rw

]
− A exp

(
− lα0

1

Rw

)
exp

[
−(z − z0 − l)α0

1

Rw

]
= 0. (8.1)

Of course further terms with stronger exponential suppression like A1 exp[−(z − z0)a
0
2/Rw]

take over, but the point remains that the the on-axis potential far away is much smaller.
Thus these “shielding voltages” are used to reduce the impact of cloud pipelining on parts of
the EMPI sequence which sensitively depend on the trapping potential. This occurs in two
circumstances—the first cloud in the pipeline has a shielding voltage on its left to prevent it
from perturbing the potentials used to extract a new cloud from the reservoir, and the last
cloud in the pipeline has a shielding voltage on its right to prevent it from perturbing the
potentials used to move a cloud off-axis. These potentials are barely visible in Fig. 8.1 [in
steps (b), (c), and (j) it is possible to perceive them], because −V0 exp(−lα0

1/Rw) is fairly
small, but they do make it quite a bit easier to design EMPI measurements.
8.1.7 Deep pre-dump potentials

In Sec. 3, the clouds were moved off-axis using a “shallow” trapping potential, then they
performed a magnetron orbit in a “deep” trapping potential, then they were transferred to
a “pre-dump” potential. The pre-dump potenital held the electrons at a negative absolute
potential so that they could be released toward the MCP with a few eV of kinetic energy.
In Sec. 6, this procedure was upgraded by having the shallow potential and the pre-dump
potential be identical. Similarly, here, the electon clouds only perform a magnetron orbit in
one trapping potential—a deep pre-dump potential. The clouds go from a shallow potential
to a deep potential with an “instantaneous” voltage change. The deep potential confines the
electrons with a positive voltage surrounded by negative ones, for example [−150, 150,−150]
applied to three adjacent electrodes. Then to release the electrons toward the MCP, the
barrier on the side of the MCP is lowered, and the potential in the center is raised, all in
a single instantaneous voltage change, so we might go to [−80,−100,−150] to image the
clouds. This ensures that, with the exception of the O(10µs) that it takes for the electrode
voltages to change in these instantaneous voltage changes, the clouds perform a magnetron
orbit in only one trapping potential. This makes the calibration of the magnetron frequency
versus magnetic field simpler—there is only one magnetron frequency to keep track of.
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8.1.8 Axially offset shallow potentials

As measured in Secs. 3 and 6, the patch potential created transverse electric field ε varies
randomly throughout the trap. In some axial trap locations, it is nearly zero. Here we
rely on significant patch fields to quickly move the electron clouds off-axis. In the past, the
axial position of the shallow trapping potential used to move clouds off axis was the same as
the axial position of the deep trapping potential. In fact, the deep trapping potential was
the shallow one times a large constant. Here, in order to achieve comparable measurement
frequencies in all trap locations, in many cases, the axial position of the shallow trapping
potential is offset from the deep one by up to 3/4 of an electrode length (1.5 cm).

This shouldn’t have any negative effect on the measurements. The (10µs) that it takes
for the electrode voltages to change between the shallow and the deep well is still adiabatic
with respect to the axial bounce motion of electrons. Therefore the clouds simply move
axially, following the moving minimum of the trapping potential without heating. The only
exception to this is if the electrons are “dropped off a cliff,” as illustrated in Fig. 8.3. If
the confining potential for electrons is changed by too much in one of these operations, it
is possible for there to be a moment between the shallow and the deep wells where there
are two local maxima, and the electrons are eventually released from one local maximum
into the other one, causing them to gain several eV of kinetic energy, which equates to tens
of thousands of Kelvin of temperature after the system comes to equilibrium. This can be
avoided by carefully modelling the electrode potentials versus time as described in Sec. 6.4.
Alternatively, I chose to conservatively set a maximum axial distance of 1.5 cm, where it is
impossible for this to occur regardless of how the electrode voltages change from their initial
to their final values. This gives me enough freedom to avoid having to use exceptionally
weak patch fields to move clouds off-axis.
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Figure 8.3: The trapping potential on three adjacent electrodes is changed from [40, 0, 0] to
[0, 40, 75], moving the axial trap center by over 1.5 electrode lengths. On the left, the on-axis
trapping potential is shown over time, with the beginning of the process being the blue curve
and the end being the red curve. On the right, I zoom in on the point in time where the
issue occurs. I assume that the trapping potential is changed linearly from the start to the
end, which is not really accurate as described in Sec. 6.4, but this is just a toy model meant
to illustrate a possible issue.
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8.1.9 Purely quadratic trapping potentials

In my first attempt at performing EMPI measurements, when the clouds were performing
a magnetron orbit, I used the highest magnetron frequency possible by applying confining
voltages of [−150, 150,−150] on three adjacent electrodes. With these potentials, we achieve
a magnetron frequency of about 4 × 105/s in B = 1T. Most of the EMPI measurements
required about 2000 radians of magnetron motion, which takes only 5ms. However, in this
trapping potential k4 ≈ 5 × 108V/m2, and the resulting variation in magnetron frequency
with radial position causes a significant variation in magnetron phase through the variations
in the clouds’ initial positions. I realized that in our specific application, it would be better
to use a trapping potential which was optimized to have k4 ≈ 0. This would significantly
reduce the magnetron frequency (by about a factor of 2), but because it already takes about
10ms to move the clouds to the measurement location and about 5–10ms to move the clouds
off-axis, this would not actually significantly reduce the measurement frequency.

I made software which would find trapping potentials with k4 ≈ 0 at each axial location
where I wanted to perform EMPI measurements. However, in this software there were two
mistakes. First, at the time, I was not aware that a k3 term in the trapping potential would
also cause a variation in the magnetron frequency with r (although this effect is generally
smaller than the spiraling from a k4 term). Second, finding the fourth derivative of the
trapping potential is quite numerically unstable, and I wasn’t sufficiently careful about how
I was evaluating the k4 term. As a result, when I measured the spiraling in each axial trap
position, I found that there was still a significant remaining k4 in the trapping potentials.
Despite these mistakes, the trapping potentials I designed had significantly less spiraling
than if I had made no attempt to do this optimization.

In one particularly critical trap location, the center of mirror A, I ameliorated this mistake
by tuning the trapping potential to exhibit less spiraling. In this trap location, the software
described above found that there should be zero spiral coefficient when the following voltages
were applied to electrodes 18–26: [150.0, −0.335, −150.0, −150.0, 142.809, 150.0, 128.801,
−75.0, −75.0]. The positive voltage on electrode 18 holds the next cloud in the pipeline, and
the small negative voltage on electrode 19 is a shielding voltage. The software found that
this potential provided the maximum magnetron frequency while having the cloud centered
in the center of electrode 23 with k4 = 0. To adjust the spiral constant while changing
the axial position of the well very little, I changed the voltages on electrodes 22–24 to
[142.809 + ∆V , 150.0, 128.801 + ∆V ]. For several different values of ∆V , clouds were moved
off axis a variable distance, then they orbited the trap center for about 100ms, and then
they were imaged.

In Fig. 8.4, I show the result of this experiment. The entire dataset was taken with 1200
clouds extracted from a single reservoir (the first 200 clouds are discarded as the reservoir
settles), and each set of 200 clouds is handled with one sequence. Thus, between each set of
200 clouds, there is either a 1 or 2 second pause. The clouds only have precisely identical
charge if they are extracted at a constant rate. Thus after the pause between sequences, the
first 40 or so clouds have a different charge or temperature. This is why, in each dataset in
Fig. 8.4, the clouds closest to r = 0, which are extracted first, deviate from the predicted
spiral shape θ ∝ r2. Thus I ignore the first 50 clouds when I fit a spiral constant to the
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Figure 8.4: Top row: the positions of clouds on the MCP are shown for five different ∆V

values, with the center of the trap indicated by a black X. Bottom row: the cloud angular
positions are plotted versus distance from the trap center, and a spiral θ ∝ r2 is fit to this
data.

clouds’ angular positions versus distance from the trap center.
In Fig. 8.5, I show a proper way of predicting the spiral constant with an electrostatic

model of the trap. Two different electrostatic models are used. The first is an analytic model
which makes an inaccurate assumption about the shape of the radial step between electrodes
19 and 20, and which assumes that there is an infinitely long grounded cylinder beyond the
ends of the first and last electrode. The second model is generated with COMSOL by Dr.
Chukman So. For each model, I fit a quartic polynomial to a variable length of the on-axis
potential. We expect to find that when the fitting length is too short, numerical instability
will take over, and that we will be able to see the reliable fits approach a constant value
as the length goes to zero. We find that when the fitting range reaches about 2 cm, the
COMSOL model starts to deviate from the analytic model (which should be very accurate
in this trap region), and at about 1 cm the COMSOL model clearly suffers from numerical
instability. The analytic model gives a reliable value for k4 even when the fitting length is
a few millimeters. It appears that for estimating fourth derivatives, the analytic model is
simply much better. It’s hard to recover exactly what I used when originally designing these
trapping potentials, but if I remember correctly the COMSOL model was used—so it’s clear
why the resulting trapping potentials still exhibited spiraling. Similar plots were produced to
estimate k2 and k3, but these lower order constants are subject to less numerical instability.

With these carefully estimated trapping potential coefficients, the predicted versus ob-
served spiral coefficients are in reasonable agreement, as shown in Fig. 8.6. In the end,

187



0 1 2 3 4
polynomial fitting range (cm)

0.0

0.5

1.0

1.5

2.0
k 4

 (1
07

V/
m

4 ) V = 15
V = 14
V = 13
V = 12
V = 11

Figure 8.5: k4 values are plotted versus the length of the trapping potential used to fit a
quartic function. The dashed lines come from fitting to the on-axis potential predicted by
COMSOL. The solid lines are the result of fitting a quartic function to the on-axis potential
predicted by the analytic model. The X’s are the result of extrapolating the reliable values
from the analytic model to fitting range 0. This was what I considered to be the best
estimate of k4. The analysis is performed on five different trapping potentials with five
different electrode voltage perturbations ∆V .

∆V = −16 was used for further experiments. Although this wasn’t tested here, it is clear
from a simple extrapolation that this will produce minimal spiraling. This dataset is also
the first direct evidence that the term (9/4)k2

3/k2 contributes to the spiraling.
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Figure 8.6: The spiral constant extracted from the data in Fig. 8.4 is plotted versus ∆V .
The red dashed line is an incomplete prediction of the spiral constant including only k4, and
the blue solid line is the full prediction.

8.1.10 Instantaneous shallow wells and initial magnetron phase randomization

In all the previous cloud-based measurements, when I wanted to move clouds off axis, I
used the adiabatic procedure described in Sec. 3.3. In a typical patch field, it takes about
100ms to move a cloud off-axis by about a millimeter in this way. This is not strictly unac-
ceptable. I could move clouds off axis a bit less than a millimeter and accept a measurement
repetition rate of about 10Hz. However, I realized that we could move clouds off-axis a lot
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more quickly if we “instantaneously” switched to a shallow trapping potential, having the
clouds orbit an effective trap center displaced by ε⃗/k2. The clouds will start at the true

trap center, and after half an orbit they will be displaced by δ⃗ = 2ε⃗/k2. The time taken for
this process will be πB/k2, or in terms of the distance off axis, πBδ/ε. This is dramatically
faster than the adiabatic procedure, which needs to go to half the k2 value for the same
displacement, and which requires many magnetron orbits instead of half a magnetron orbit.

Unfortunately, this manner of moving clouds off-axis relies on knowledge of the magnetic
field, which is exactly what we hope to measure with EMPI. However, with a simple model
of the magnets present in the experiment, we can achieve a prediction of the magnetic
field which is accurate at the 1% level. With this 1% error, there will be an error in the
initial positions of clouds of about 10µm (assuming a typical δ ∼ 1mm). The error in the
radial positions of the clouds will be significantly smaller because we finish this operation at
the radial position maximum of the orbit. With the cloud’s initial magnetron diameter of
50µm, the variability in initial cloud positions is much bigger than this error. Our resulting
measurements of the magnetic field will be much more precise than the 1% prediction needed
to set up the measurement.

In future applications of EMPI, we should keep in mind that the adiabatic procedure
has its own advantages. The adiabatic procedure is only sensitive to the magnetic field in
that when the magnetic field increases, the magnetron frequency decreases. Therefore the
adiabatic movement must be sufficiently slow that it remains adiabatic if the magnetic field
increases by a factor of two. If this condition is satisfied, the adiabatic procedure essentially
delivers clouds to the same position independent of the magnetic field—an electrostatic
potential maximum along the magnetic field and a minimum in the direction transverse to
the magnetic field. One further caveat is that the angle of the magnetic field relative to
the electrodes can be changed by energizing magnets, and this can shift the position of the
electrostatic trap center, but this really is an absolutely negligible effect for the current level
of precision.

In a bit more detail, when I have finished moving an electron cloud to a desired axial
measurement location, it sits in a trapping potential formed by applying 75V or 150V to
one or two electrodes. I begin by adiabatically reducing that potential to 10–20V to reduce
the magnetron frequency. The well constant k2 in this medium-depth well will be called k2a.
From there, the trapping potential is instantaneously lowered to the weak trapping potential
used to move the clouds off-axis (typically of order 0.5V), where the well constant will be
called k2i. The purpose of the well with k2 = k2a is to reduce the E×B drift velocity of the
electron cloud so that when we go to k2i in a few microseconds, the electrode potential change
can be better approximated as instantaneous. I never really checked if this precaution was
necessary. When the cloud has reached its desired position, we snap to the trapping potential
discussed in the previous section where the cloud will perform many magnetron orbits for an
EMPI measurement. The trap constant in this final well will be labelled k2f . In the first well
with k2 = k2a, the cloud will be located a distance ε/k2a from the true trap center. Then
when we go to k2 = k2i, the cloud will be in a magnetron orbit of radius ε(1/k2i − 1/k2a). It
will perform half an orbit, arriving at a distance ε(2/k2i − 1/k2a) from the trap center. In
the end, the cloud will be in a magnetron orbit of radius ε(2/k2i − 1/k2a − 1/k2f ), of course
plus or minus the initial magnetron radius due to the intrinsic magnetron of the cloud.
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Another use of the intermediate trapping potential with k2 = k2a is that I pause in this
trapping potential for a variable time to phase-unlock the initial magnetron motion. For all
EMPI measurements, the movement time along the trap axis and the reservoir have been
tuned so that the clouds’ initial magnetron motion is due to the intrinsic magnetron. As
discussed in Sec. 2.3.1, the intrinsic magnetron can be phase locked if the clouds are suffi-
ciently reproducible. To avoid this resulting in a systematic error on EMPI measurements,
for the n’th cloud, I wait in this trapping potential for a time given by (nmod 4)πBk2a/2
so that each successive cloud has a different initial magnetron phase by π/2. I neglected to
realize that when the cloud currently being used for a measurement is sitting in this trapping
potential, the next few clouds in the pipeline are also accumulating magnetron phase, and
there is really no reason to think that the initial magnetron phase difference will really be
π/2—it could be anything. When the magnetic field is changing rapidly during the most
important EMPI measurements, the end result is that the initial magnetron phase is essen-
tially random. In fact, it would have been much better to produce random phase shifts on
purpose than to proceed in steps of π/2.

In Fig. 8.7, this procedure is performed, then clouds do a large magnetron orbit for a
very short time before being imaged. However, instead of the cloud spending a time πB/k2
in this trapping potential, I vary this time between 2πB/k2 and πB/2k2 to illustrate the
circular motion of the clouds. The cloud positions are as expected. Note that in Fig. 8.7, the
influence of k2a and k2f is ignored. In Fig.8.8, instead of varying the time in the shallow well,
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Figure 8.7: Imaged cloud center positions after spending a variable time in the shallow
trapping potential with k2 = k2i. The green arrow indicates the direction of the magnetron
orbit. The red arrow indicates the inferred direction of the displacement between the true
trap center, marked with a black X, and the displaced trap center due to patch potentials.

I use the nominal time of πB/k2i and I vary k2i to vary the clouds’ displacement from the
trap center. As expected, the clouds form a line. I also plot the clouds’ radial displacements
from the trap center versus k2i and fit a line. A small offset in this line is the right order of
magnitude to be due to patch potentials perturbing the trap constant in the shallow well.
Note that k2f is ignored in this analysis—the offset is about 8 times the effect of k2f , so it
wouldn’t make sense to include this contribution if another source of error had a much more
significant effect.
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Figure 8.8: On the left, cloud positions are shown for a variable k2i used to move clouds
off-axis. Dashed lines show the presumed magnetron orbit of the clouds used to move
them off-axis, with boxes indicating their initial magnetron position at the beginning of this
operation. The red plus is the effective trap center when the clouds are in the trapping
potential with k2 = k2a, and the blue X is the true trap center. On the right, the same
clouds’ radial displacement from the trap center is plotted versus 2/k2i − 1/k2a, and the red
line is a linear fit to the data.

8.1.11 Breakdown of the EMPI voltage sequence

At this point I have finished describing the underlying concepts for the design of EMPI
sequences, and I can breakdown the sequence of voltages used to image a single cloud during
EMPI. The steps below correspond to the steps shown in Fig. 8.1. The amount of time for
each step is listed as well, but these numbers are specific to the measurement shown here,
the one in the center of mirror A. In some axial measurement locations, a different number
of steps is needed to move the clouds axially, and there is a different number of clouds in
the pipeline. The amount of time needed to move the clouds off-axis also varies with the
strength of nearby available patch fields and with the desired distance off-axis. The amount
of time in the magnetron orbit also varies with what electrode voltages are available (75 or
150V) in a given trap region, and of course it varies with the number of magnetron orbits
used in a specific EMPI measurement:
(a) 0.1–6.3ms—This is the state that the potentials are left in from the release of the

previous cloud toward the MCP. We wait here for a moment to ensure that clouds are
extracted from the reservoir at regular intervals (which is not strictly necessary, but it
simplifies some parts of the analysis). This wait is used to account for variability in
the timing of other steps.

(b) 2.4ms—The negative voltages are applied to increase the magnetron frequency of the
pipeline clouds, and some clouds are moved by half an electrode.

(c) 1.0ms—The reservoir is elongated in preparation for extracting a cloud in the elec-
trodes controlled by the recatching sequencer, and clouds are moved by about a quarter
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of an electrode in the atom sequencer.

(d) 1.0ms—A new cloud is cut from the reservoir by the recatching sequencer, and clouds
are moved by about a quarter of an electrode in the atom sequencer.

(e) 2.4ms—Clouds are moved along the trap.

(f) 2.4ms—Clouds are moved along the trap.

(g) 2.4ms—Clouds are moved along the trap.

(h) 2.4ms—The negative voltages are removed, and some of the clouds are moved a final
half an electrode to their final position.

(i) 2.9–3.5ms—The “target cloud” which will be used for an EMPI measurement is adi-
abatically put in the shallower trapping potential with k2 = k2a. We also pause here
for 0.1–0.6ms to vary the initial magnetron phase.

(j) 6.6–11.4ms—We quickly change the trapping potential to the shallow one used to
move the cloud off-axis, and we wait for the cloud to execute half a magnetron orbit.
The times listed here are for the best measurements of the magnetic field during the
20 s rampdown used to release antihydrogen in the ALPHA-g measurement. In those
measurements, it took 11.4ms to move the cloud off-axis in |B| = 1.7T and 6.6ms in
|B| = 1.0T

(k) 22.5ms—The cloud is put in the deep, purely quartic trapping potential used for EMPI.
Again the time listed here is for one axial trap location and for the measurements during
the 20 s magnet rampdown, which used a total magnetron phase of 2000 radians.

(l) The cloud is released toward the MCP to be imaged. This is the same step as (a).

8.2 Corrections to the magnetron frequency

8.2.1 Spiraling in the presence of an inhomogeneous magnetic field

In Sec. 3.4 it was shown that a trapping potential approximated by:

ΦT = −k2

(
z2 − 1

2
r2
)
+ k3

(
z3 − 3

2
zr2
)
+ k4

(
z4 − 3z2r2 +

3

8
r4
)
+ · · · (8.2)

results in an r dependent z equilibrium position: ⟨z⟩ = −3r2k3/4k2 and a magnetron fre-
quency given by:

ωr(r) =
k2
B

− 6
k4⟨z2⟩
B

+

(
9

4

k2
3

k2B
+

3

2

k4
B

)
r2 + · · · . (8.3)

Now, I want to additionally introduce a spatial variation in the magnetic field, taken from
Sec. 7.3.

B(r, z) =

(
B0 +B′z + cz2 − 1

2
cr2
)
ẑ −

(
1

2
B′r + crz

)
r̂. (8.4)
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The electric field is:

E =

(
2k2z − 3k3z

2 +
3

2
k3r

2 − 4k4z
3 + 6k4zr

2

)
ẑ +

(
−k2r + 3k3zr + 6k4z

2r − 3

2
k4r

3

)
r̂. (8.5)

The first step is to determine the z equilibrium position as a function of r, which can be
found by solving for z in E · B = 0. We only need to calculate this dot product to second
order in r and first order in z, giving:

2k2zB0 +
3

2
k3B0r

2 +
1

2
B′k2r

2 = 0, (8.6)

z = −
(
3

4

k3
k2

+
1

4

B′

B0

)
r2. (8.7)

The magnetron frequency is given by (E×B) · θ̂/r|B|2, and I will start with finding |B|2:

|B|2 =
(
B2

0 + 2B′zB0 + 2cB0z
2 − cB0r

2
)
+ (B′z)2 +

1

4
B′2r2. (8.8)
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. (8.9)

Later we will need 1/|B|2 to second order in r and z, which is:

1
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≈ 1
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. (8.10)

And now we calculate E×B, going to third order in r and z, because all of the terms will
include a factor of r, which will be eliminated when we find the magnetron frequency:

E×B = −θ̂

[
B0

(
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. (8.11)

So if we ignored the off-center corrections to |B|2, then the magnetron frequency would be:
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The final magnetron frequency is:
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And when we realize that zn should be replaced with ⟨zn⟩, we obtain:
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The coefficient attached to ⟨z2⟩ is the frequency shift depending on the length of the cloud,
assuming that ⟨z⟩2 ≪ ⟨z2⟩, which is generally true for all the clouds we consider here (the
cloud is displaced in z much less than its length). This correction will be generally ignored
going forward. The important thing is the coefficient attached to r2, the “spiral coefficient.”
The k4 and k2

3/k2 terms were already calculated in Sec. 3.4, and the k2c term is an obvious
consequence of the magnetic field decreasing with r (assuming c is positive). The other
terms are a combination of z varying with r, the magnetic field changing with r, and the
electric field varying with r through k3. Notice that every possible term with the correct
units appears in the coefficient in front of r2.

8.2.2 Higher order E×B drift of electron clouds

In the introduction, I showed that the motion of a single electron in a trapping potential
−k2(z

2 − r2/2) and a constant magnetic field B = B0ẑ is exactly solvable. It has an axial
“bounce frequency” along the magnetic field of ωZ =

√
2ek2/m, and the motion perpen-

dicular to the magnetic field is a linear combination of two circular motions, one with a
“modified cyclotron frequency” (ω+), which differs slightly from the free space cyclotron
frequency ωC = qB0/m, and one with a “modified rotation frequency” (ω−), both given by:

ω± =
ωc

2

[
1±

(
1− 2ω2

z

ω2
c
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]
≈ ωc

2

[
1±

(
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z
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z

2ω4
c

)]
. (8.15)

It is notable that the modified rotation frequency has a correction which is not proportional
to 1/|B|, and which is not linear with the trapping field:

ω− ≈ ω2
z

2ωc

+
ω4
z

4ω3
c

=
k2
B

+
k2
2m

eB3
= ωr0 +

ω2
r0

ωc

. (8.16)

This correction is roughly 1/s, or a fractional correction of 2.5×10−6, with k2 = 4×105V/m2,
the highest achievable k2 in ALPHA-g, and B = 1T. Note, however, that lower values of k2
around 1× 105V/m2 were used for most of the EMPI measurements for ALPHA-g.

Because this correction is not linear with E, one might be concerned that we can no
longer use the assumption that the cloud’s own electric field does not modify its magnetron
frequency. Throughout this thesis, it was previously assumed that because E × B drift is
linear with E, the cloud’s own electric field causes it to rotate around its own axis at a
frequency of order 106/s, generally significantly higher than the magnetron frequency. But
this does not otherwise modify the magnetron frequency. The cloud’s self rotation is critical
for keeping the cloud together—otherwise variation in the magnetron frequency with radial
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position would cause electrons at higher radii to separate from electrons at lower radii [27].
Thus when we consider normal, linear E×B drift, the E×B drift of the cloud as a whole
is caused by the electric field from the trap only averaged over the electrons in the cloud.
With this description in mind, we find a stronger reason that the cloud cannot influence
it’s own magnetron frequency—a cloud’s electric field averaged over all the electrons in the
cloud must always be zero because an object cannot exert a force on itself. Note that two
caveats on this statement are provided in Sec. 1.5. Because of image charges and finite length
effects, varying the charge of an electron cloud does change the magnetron frequency, but
not because of forces between electrons in the cloud.

To address how this higher order term in the magnetron frequency affects electron clouds,
we consider another method of deriving it which does not rely on the equations of motion
for a single particle being explicitly solvable in a special case. Ref. [127] gives a higher order
version of E × B drift (slightly modified to apply to the case of a constant magnetic field
and an electron with q = −e):

v =
E×B

B2
0

−
[
d

dt

(
E×B

B2
0

)]
× mB

eB2
0

(8.17)

In this light, the higher order term in Eq. 8.16 takes the form of an F×B drift, where the
force comes from the time derivative of ordinary E×B drift. We can re-derive Eq. 8.16 by
noting that the nominal E×B drift is rωrθ̂, so the time derivative is −rω2

r r̂. When we cross
this with b̂, we get rω2

r θ̂, and we find a correction to the velocity rω2
r/ωc, as expected.

A single electron is subject to the electric field of the rest of the electrons in the cloud,
imposing a circular E × B drift around the center of the cloud. It is also subject to the
electric field of the trap, imposing a circular E × B drift around the center of the trap.
When we consider the time derivatives of these drifts, we find that the time derivative of the
electron’s motion around the center of the cloud (trap) looks like an acceleration pointing
toward the center of the cloud (trap). Thus this higher order term imposes a slightly higher
velocity in the rotation of the electron around the center of the cloud (trap). Just like the
cloud’s self-field averaged over all the electrons was zero, this higher order term averaged
over all the electrons is zero. In conclusion, the correction ω2

r0/ωc which applied to a single
electron also applies to the collective motion of an electron cloud, and despite the fact that
this correction is nonlinear in the electric field, it does not allow the cloud’s own electric field
to influence its magnetron frequency. Because this effect is O(10−6), it can be ignored. But
this may become important for future higher precision EMPI measurements.

8.2.3 Confirmation with simulation

To confirm the theory of the previous two sections, I simulated charged particles using the
Boris algorithm in the presence of a realistic trapping potential and a realistic magnetic
field gradient. The magnetic field comes from a model of the mirror coils providing axial
antihydrogen confinement in ALPHA-g energized to 70A, the highest current used in the first
ALPHA-g measurement. The trapping potential came from three adjacent electrodes, 2 cm
in length and 2.2 cm in radius, with potentials of 30, 75, and −30V. These are reasonable
voltages in ALPHA-g, but I have intentionally made the trapping potential asymmetric so
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none of the terms derived in Sec. 8.2 are zero. Also, single antiprotons are simulated instead
of electrons. This makes the system dramatically more computationally tractable, and it
makes the correction from Sec. 8.2.2 larger and easier to resolve.

For each of seven radial positions between 0.5mm and 2mm, the z equilibrium po-
sition is calculated, and the antiproton is initialized there with about (1K)kB of kinetic
energy. The simulation proceeds for about half a magnetron orbit, then the function
[x, y] = [r cosωt, r sinωt] is fit to the antiproton’s position versus time to find the mag-
netron frequency. This is also done for seven different positions of the trapping potential
(achieved by simply shifting the three electrodes by 1mm). The trapping potentials and
the magnetic field are shown in Fig. 8.9. The measured magnetron frequency is shown in
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Figure 8.9: The on-axis trapping potential and the on-axis magnetic field magnitude are
plotted versus axial position. The blue/purple/red curves are the seven trapping potentials
used in the simulations, corresponding to the vertical axis on the left. The green curve is
the on-axis magnetic field produced by the mirror coil, which was identical for all seven
simulations, corresponding to the vertical axis on the right.

Fig. 8.10, and it is compared to the theoretical prediction including corrections derived in
Sec. 8.2 and Sec. 8.2.2. At this level of analysis, the agreement is essentially perfect. How-
ever, with this trapping potential, k4/B is by far the largest contribution to the variation in
magnetron frequency with r, and this is identical for all axial positions of the trapping poten-
tial. In Fig. 8.11, I confirm the theory with higher precision by fitting a quadratic function
to ωr(r) ≈ ω0 + kθr

2 for each axial position. On the left, the frequency at r = 0 is plotted
versus axial position. This is compared to k2/B and to k2/B + k2

2m/eB3, and the latter is
found to agree much better with the measured values. On the right, the quadratic coeffi-
cient is plotted versus axial position. To illustrate the role of each term found in Sec. 8.2,
I plotted three different “theoretical values,” where in each curve I exclude a different set
of terms. Of course, the best agreement comes from including all known terms, but there
remains an offset. The offset can be reduced by including a fourth order term in the fit
function ωr(r) ≈ ω0 + kθr

2 + kθ4r
4. The fourth order term is then disregarded, because I

don’t have a theoretical prediction to compare it to, but adding this term to the fit function
brings predicted and measured kθ terms much closer together. Evidently, the quartic term
in ωr(r) was “pulling” the fit value of the quadratic term when the fit function neglected
the quartic term. The remaining error is the right order of magnitude for numerical error
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in my estimation of k4. It should be noted that “precision simulation” is often difficult.
The computational parameters need to be carefully checked one at a time to ensure that
unacceptable errors are not introduced by imprecise calculations of the electric and magnetic
field, an insufficiently small timestep (1/60ωc was used here), an insufficient total simulation
time, and error in the fitting procedure for finding ωr. With the precision achieved here, we
can verify all of the terms in the r2 coefficient in Eq. 8.14 except (1/4)B′2k2/B

3
0 . The ⟨z2⟩

coefficient was not investigated with this simulation, because this coefficient is not needed
for analyzing EMPI measurements. We can also verify the correction described in Sec. 8.2.2.

0.0 0.5 1.0 1.5 2.0
r (mm)

53800

54000

54200

54400

r(r
) (

1/
s)

axial distance between
electrostatic trap and
magnetic field maximum

-1.972 mm
-0.972 mm
0.028 mm
1.028 mm
2.028 mm
3.028 mm
4.028 mm

Figure 8.10: The magnetron frequency determined by simulation is shown with X’s for seven
radial positions and seven axial positions (indicated by color). For each axial position, the
theoretical ωr(r) prediction is plotted with the same color as the X’s.

8.3 Calibration and static field map measurements

As you will soon see, our predictions of the magnetron frequency from electrostatic modelling
of the trap are only good to a few parts in 103. As a result, if we only compare the magnetron
frequency to an expected magnetron frequency at 1T, we achieve a measurement of the
magnetic field which is not sufficiently accurate to inform the ALPHA-g measurement. This
motivated calibrating EMPI by measuring the magnetron frequency in the presence of a
known magnetic field measured more accurately using ECR. Additionally, the precision of
EMPI increases dramatically with the magnetron radius, but the magnetron frequency shifts
with radial position according to Eq. 8.14. The initial magnetron motion of the clouds can
be seen as a random variation in the initial position of the clouds at the start of the larger,
intentionally excited magnetron orbit. Thus the variation in the initial magnetron phase
of the clouds is that initial position variation divided by the distance the clouds are moved
off-axis. Thus the most accurate and precise measurements are achieved when we move the
clouds reasonably far off-axis, but we also find the relationship between off-axis magnetron
frequencies and the magnetron frequency in the limit where the displacement goes to zero.
That distance off-axis is, of course, limited by the restrictions imposed by the time it takes
to move the clouds off-axis and the need to keep them within the imageable region of the
MCP.
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Figure 8.11: On the left, the magnetron frequency at r = 0 is plotted versus axial posi-
tion. The blue X’s are the simulation results. The red dashed line is k2/B, and the black
solid line is k2/B + k2

2m/eB3. On the right, the “spiral constant” is plotted versus axial
position. The blue dotted line includes only the contributions from the trapping potential
[(3/2)k4/B + (9/4)k2

3/k2B0], the red dashed line additionally includes the “purely magnetic
terms” [(1/2)k2c/B

2
0 + (1/4)B′2k2/B

3
0 ], and the black solid line is the entire prediction from

Eq. 8.14. The red + symbols are the result of fitting a quadratic function to ωr(r) as found
in the simulation. The blue X’s are the result of fitting a quartic function to the simulation
results, but plotting only the resulting quadratic coefficient here.

In this section, I will describe the EMPI measurements that were used to find the radial
variation in the magnetron frequency and to calibrate EMPI. Similar measurements will also
be used to measure static magnetic fields. Of course, static fields can also be measured
using ECR at a somewhat higher precision, especially where the magnetic field gradient is
small. There may actually be an avenue for EMPI to be more accurate in large gradients;
my colleagues have observed that the ECR resonance structure becomes complicated and
hard to interpret in a strong gradient, and in contrast I will show that the effect of a
gradient on the magnetron frequency is observable and well-understood, but this benefit
has not been conclusively established yet. The most comprehensive measurements of the
magnetic field across several different magnet currents and axial positions were performed
using EMPI. The EMPI measurements are significantly faster—this is largely due to the
sequence improvements described in Sec. 8.1, which allowed us to image one cloud every
30–50ms. In contrast, the ECR measurements took about 300ms per cloud, but it is likely
that if we apply similar improvements to ECR measurements the same repetition rate would
be achievable.

A more fundamental reason that EMPI can be performed more quickly is that it requires
less work from the person operating the experiment. When an operator is performing ECR
measurements, they need to adjust the range of microwave frequencies to ensure that ECR
resonance heating is observed at several different frequencies so a clear heating peak can be
resolved—this range of frequencies is usually about 50MHz wide versus an absolute frequency
of about 30GHz at 1T, so the magnetic field needs to be known in advance to about 2 parts
in 103. Usually modelling the magnetic field does not provide sufficient accuracy, and the
operator needs to search for the right range of frequencies or interpolate earlier measurements
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to infer the correct range for the next measurement. They also need to be careful not to
mistake a bounce frequency sideband with the central cyclotron frequency resonance and
they need to occasionally adjust the microwave power depending on the strength of the
microwave electric field at a particular trap location. As I described in Sec. 8.1.11, moving
the clouds off-axis the same distance requires knowing the magnetic field in advance at a few
parts in 102, but even this requirement can be relaxed by either moving the clouds off-axis
adiabatically or simply accounting for the changing magnetron radius with magnetic field
(note I did not attempt either of these methods, so I cannot verify with certainty they would
work). As a result, maps of the magnetic field versus axial position can be performed with
little input from the experimenter.

Additionally, in this section I will introduce the effect of persistent currents on the
ALPHA-g measurement, which are small current loops induced within superconducting wires
produced when one attempts to change the magnetic flux through those wires. Although the
persistent current effect was first observed in the dynamic EMPI measurements described in
Sec. 8.4, these static measurements yield a clearer measurement of the effect.

8.3.1 ECR measurements

In order to calibrate EMPI, I first did ECR measurements of the magnetic field in every
axial trap location where I wanted to perform EMPI, then I did precise measurements of
the magnetron frequency, and then I repeated the ECR measurements to see if the magnetic
field drifted. In Sec. 7, I sufficiently explained how ECR measurements are performed—the
only difference being that here the clouds are not moved off axis. I am only measuring the
on-axis magnetic field here. I performed EMPI calibration measurements twice; in the first
calibration measurement, the reservoir was stored in a 2T magnetic field boosted by the
bottom solenoid. Later I managed to develop a reservoir in 1T without the bottom solenoid
that I could also extract thousands of clouds from without exciting a reservoir diocotron
(see Sec. 2.3.2). This was preferable for EMPI measurements because the actual ALPHA-g
measurement did not include the bottom solenoid; better to not have the bottom solenoid
energized than to try to carefully measure and remove its effect on the magnetic field. The
different reservoir was likely to produce clouds with a different charge, although the scooping
voltage step size was the same for both reservoirs, and the cloud charge affects the magnetron
frequency as described in Sec. 5.4.

The ECR measurements of the on-axis magnetic field from the first calibration measure-
ment are shown in Fig. 8.12. The bump on the right side of the plot was at first unexpected.
Today we have a better qualitative understanding of persistent currents. This bump exists
because the most recent change in magnet currents was that mirrors A and G were ramped
from 70A to 0A. This generates persistent currents that oppose this change in the magnetic
field, leaving a small bump resembling the field that used to be produced by mirror G. A
similar bump is not clearly visible near mirror A because the field produced by the bottom
solenoid obscures it. Persistent currents also decay over time—although this certainly isn’t
as simple as an exponential decay. In some of the axial locations, the magnetic field was
measured after measuring magnetron frequencies, and the inferred decay rate is shown in
Fig. 8.13. Naively it would seem that the bump near mirror A is decaying more quickly than
the bump near mirror G, but in reality this is because there was more time between the
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initial and final measurements near mirror A. The decay was not precisely linear; it slowed
over time (like an exponential decay would, but again, the decay is not well-modeled by an
exponential), so the inferred decay rate near mirror G was lower. Also, between the two
mirrors, the magnetic field increased over time. It seems the persistent currents produced by
ramping down mirrors A and G actually makes a small negative perturbation far from the
centers of the two magnets. To infer the magnetic field that was present during measure-
ments of the magnetron frequency, I took the initial ECR measurements shown in Fig. 8.12,
and I added the effect of the drift. To estimate the drift, I linearly interpolated the drift rate
measurements and multiplied by the time between the initial ECR measurements and the
magnetron frequency measurements. I estimate an error of roughly 1 part in 105 to account
for the inaccuracy in these linear approximations.
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Figure 8.12: The ECR magnetic field magnitude measurements are shown versus axial posi-
tion in the trap.
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Figure 8.13: The magnetic field rate of change is plotted versus axial position in the trap.

The second set of ECR measurements for the second EMPI calibration are shown in
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Fig. 8.14. There the bottom solenoid was off, yielding a more homogeneous magnetic field.
Also, the most recent magnet rampdown was the octupole magnet. The octupole magnet
produces very little magnetic field at the center of the trap [B ∝ r3(r̂ cos 4θ+ θ̂ sin 4θ)], and
persistent currents “resemble” the field produced by the original magnet—because persistent
currents oppose a change in magnetic field (more precise statements about persistent currents
can be found in Secs. 8.3.4 and 8.5). Therefore, the persistent currents induced by ramping
down the octupole are expected to be much smaller on-axis, and the field should not be
observed to decay over time. This is indeed what we find. With the exception of two axial
trap locations, the initial and final ECR measurements agreed to within one part in 105,
and these disagreements didn’t show any clear trend when plotted versus axial position,
indicating that they were simply measurement errors. The two ECR measurements that
showed disagreement were found to be potentially erroneous because they weren’t performed
with a sufficiently narrow frequency range and the peak was very narrow and not clearly
resolved.
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Figure 8.14: Two sets of ECR measurements of the on-axis magnetic field versus axial
position are shown for the second EMPI calibration measurement. The measurements taken
before measuring the magnetron frequency are shown in blue, and the measurements after
are shown in orange.

The point of developing a reservoir that could be used for EMPI without the bottom
solenoid was to have the same magnets energized for EMPI measurements that were present
during the actual ALPHA-g measurement. However, one set of magnets, the so-called “bot-
tom extraction magnets” had to be energized for EMPI which were not energized during
ALPHA-g. Near the MCP (about a meter below the bottom electrode), there are three
normal conducting magnets which boost the magnetic field near the MCP. This reduces the
expansion of magnetic field lines and allows us to image clouds which are much further off-
axis. ECR measurements on-axis can still be performed without these magnets energized,
which is why they were not used during the ALPHA-g measurement. Thus in order to com-
pare EMPI measurements to the ECR measurements that were most relevant for ALPHA-g,
I needed to measure the effect of these magnets and subtract it from the final EMPI re-
sults. In Fig. 8.15, I show the result of ECR measurements from Fig. 8.14 in addition to
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ECR measurements taken after turning off these three additional magnets. The difference
between the two measurements is shown in Fig. 8.16. Because we are discussing magnets
which are much further away than their radii, they are well approximated as dipoles. Thus
I fit the parameters m and z0 in the equation m/(z − z0)

3 to this data. The differences
between the measurements and the fit are less than one part in 105, typical errors for ECR
measurements. This fit function was used to approximate the bottom extraction magnets in
future measurements.
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Figure 8.15: ECR measurements of the magnetic field are shown with and without the
“bottom extraction magnets” which boost the magnetic field near the MCP to facilitate
imaging off-axis electron clouds. The blue and orange X’s are the same data as in Fig. 8.14.
The green X’s are the ECR measurements without the bottom extraction magnets.
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Figure 8.16: The difference between the blue X’s in Fig. 8.15 and the green X’s in Fig. 8.15
is plotted versus axial position in the trap. The blue line is a dipole fit to the data.
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8.3.2 Exponential magnetron phase increase procedure

The first step in the calibration is to accurately measure the magnetron frequency at one
magnetron radius. The most naive scheme is to image clouds subjected to a varying total
time spent performing the magnetron motion, with the n’th cloud performing a magnetron
motion for a time Tn = T0 + n∆t. The nominal magnetron time T0 is necessary because
over the timescale of tens of microseconds, the voltages on the electrodes are still settling to
their final values (see Sec. 6.4). Frankly, there’s not any reason we should try to observe this
effect; our goal is to measure the magnetron frequency in the unchanging potential created
by the electrodes once the voltages have settled; a small correction to EMPI measurements
due to this effect will be discussed later. If ∆t is somewhat less than the magnetron period:
∆t = ϵ2π/ωr (ϵ of about 0.5 is reasonable), we can track the total phase difference between
the N ’th cloud and the 0’th cloud by adding the phase difference between each cloud and the
previous one. With an initial magnetron radius of about 25µm, if the clouds are displaced
from the trap center by 1mm, we would achieve a measurement precision limited by the
random phase variations divided by the total phase: (25µm/1mm)/(Nϵ2π). Of course, if
the initial magnetron phase was randomized, we would benefit from this error averaging out,
reducing it by roughly 1/

√
N . In all of these measurements the initial magnetron phase was

intentionally varied in steps of π/4 for successively imaged clouds as described in Sec. 8.1,
but the measurements were performed in a random order, so essentially the initial magnetron
phase was randomized. That is, to avoid certain systematic errors, I did image clouds after
several different total magnetron times, but the order of the measurements was shuffled.

Instead of using this naive method, the magnetron phase was increased exponentially.
First I image two clouds which performed a magnetron orbit for times T0 and T1 = T0 +∆t,
and we observe a phase difference θ1; ∆t is chosen so that θ1 < 2π. We find that the
magnetron frequency is θ1/∆t with a maximum error of 2∆r/r, where ∆r is the variability
in the initial magnetron position and r is the large magnetron orbit radius. Note that for
all of the EMPI measurements, the initial magnetron position was due to the intrinsic cloud
magnetron (see Sec. 2.3.1), so the positions were distributed around a circle, not according
to a Gaussian distribution or any other distribution that might yield errors greater than 2π
with a low probability. Now that we know the magnetron frequency is θ1/∆t ± 2∆r/r, we
can predict the phase of the next cloud with an error of π/4 if the next cloud performs a
magnetron orbit for a time T2 = T1 + rπ/8∆r. When we perform this measurement and
observe the actual phase of the next cloud, we can refine our estimate of the magnetron
frequency and again increase the timestep for the next cloud. We find that if we assume a
variability in measurements of the magnetron phase given by 2∆r/r, we can exponentially
increase the time each cloud spends in a magnetron orbit. Therefore, after performing a few
measurements with phase differences < 2π, I imaged a sequence of clouds, with the n’th
cloud performing a magnetron orbit for a time Tn = T0 + (∆t)cn, where c was typically
between 1.2 and 1.5. In reality, since the initial magnetron orbit causes the radial positions
of the clouds to vary, and the magnetron frequency varies with r as ωr = ω0+kθr

2, eventually
the constant error in the magnetron phase is overcome by variability that increases linearly
with time. This could justify a slightly more complicated schemes like decreasing c with
n or imaging multiple clouds to average down the error in the magnetron phase. For all
the measurements I describe in this thesis it sufficed to just choose a conservative value for
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c then abort the measurements when the variability in the magnetron phase exceeded π/2
radians.

Fig. 8.17 shows two examples of these measurements. For these static field/calibration
measurements, I used c = 1.2, and I tried to choose parameters that would yield a mea-
surement of the magnetron frequency with a statistical error of about one part in 105. In
Fig. 8.17 on top I show the result of performing this exponential angle increase procedure in
the axial trap location where I tuned the trapping potential to minimize the variation in ωr

with r. Below, I show an example from another trap location with significant “spiraling,” or
variation in ωr with r, and the difference between predicted magnetron phase and observed
magnetron phase clearly increases with the orbit time.

The magnetron frequency calibrations found throughout the trap are shown in Fig. 8.18.
Magnetron frequencies vary from 3.5×104/s to 2×105/s, depending on whether the measure-
ment occurs in the center of an electrode or between two electrodes, whether the surrounding
electrodes have 150V amplifiers or 75V amplifiers, and what trapping potential was found in
my attempt to reduce spiraling (discussed in Sec. 8.1). The measurement failed in one trap
location between electrodes 24 and 25, where the spiraling was too strong and the magnetron
phase could not be tracked. It also failed for many measurements in the vicinity of electrodes
31 and 32; the failure looked exactly like the issue described in Sec. 8.1—it seems one of
these two amplifiers was bad, but this is not a critically important measurement location,
and the issue was only identified after the experiment was disassembled.

In Fig. 8.19, I show the ratio of measured magnetron frequencies to predicted magnetron
frequencies using an electrostatic model of the trap. It wasn’t originally my intention to try
to find agreement between these two quantities; the whole point of calibrating EMPI was to
remove any need to accurately predict the magnetron frequency, but there are actually some
interesting observations here. At first, all of the measured magnetron frequencies exceeded
the predictions by about 1%. This is explained by the fact that the electrostatic model was
based on the dimensions of the trap at room temperature. The mostly-aluminum electrodes
will contract by 0.41% when they are cooled to 4K, and if this contraction is uniform for the
entire electrode stack, this will simply scale up all k2 coefficients by a factor of 1.00412. Once
we account for this effect, the agreement improves—I actually find it remarkable that we
can resolve the effect of thermal expansion in this data. Now, in many axial trap locations
the agreement is much better than 0.1%, and in about a third of the locations it is between
0.1% and 0.4%, and the measured frequency is usually greater than the predicted frequency.
There could be several different explanations for these discrepancies:

1. Patch potentials create an electric field in the center of the trap of order 5mV/cm.
Thus they should be generated by potentials of order 20mV, which may be a correction
of order 2×10−4, about a factor of ten smaller than the largest errors seen here. Really,
if we wanted to observe the effect of patch potentials, we should vary the intentionally
applied voltages and observe that the magnetron frequency does not scale with the
applied voltages. One would have to be careful to avoid any unexpected voltage offsets
in such an experiment. First, the voltage on the electrode should be measured using
a precise multimeter, not just the voltage we intended to apply with an imperfectly
calibrated amplifier. The only thing between the multimeter and the electrode should
be a wire. One would also need to monitor the voltages on nearby electrodes or actually
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Figure 8.17: Top row: the data from the exponential magnetron phase increase procedure
is shown for EMPI measurements in the center of mirror A. Bottom row: a less optimized
trapping potential is used to do EMPI measurements a few millimeters below mirror A.
In the first column, the measured magnetron phase is plotted versus the magnetron orbit
time. Of course, at this level of precision, no deviation from a linear relationship can be
observed. For each magnetron orbit time, before we observe the cloud’s position on the
MCP, we predict what final magnetron phase it will have using a linear fit to all the previous
measurements. In the middle column, each cloud’s deviation from its predicted magnetron
phase is plotted; if this deviation approaches π, there is a chance we could miscount the
total number of revolutions, or in other words we would “lose a 2π” in the total accumulated
magnetron phase. In the right column, in orange, I plot the statistical fitting error of the
measured slope of magnetron phase versus orbit time when we track the magnetron phase
over an increasing total time. The blue +’s indicate the difference between the final extracted
magnetron frequency and the magnetron frequency estimate having only included the data
up to a certain total orbit time, which are expected to be just above or anywhere below the
orange points.

ground them, not just set their applied voltage to zero on an amplifier. Curiously, if
the materials of the wires between the electrodes and the amplifiers differed, or if
the temperatures of the electrodes differed, the Seebeck effect would also produce
static voltage differences between electrodes. If one were to successfully avoid voltage
offsets, they could observe a frequency shift due to patch potentials which should be
a continuous function of axial position. This could be used to measure the on-axis
voltage perturbation due to patch potentials. In Ref. [128], the authors attribute an
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Figure 8.18: The magnetron frequency is plotted versus axial position in the trap.

offset in the bounce frequency of a charged particle to patch potentials in one axial
trap location. The measurement is only described in an appendix, so there is little
detail about the precautions taken to avoid other kinds of voltage offsets.

2. There are voltage offsets in the amplifiers; in ALPHA-2, these can be as large as 10mV.
In ALPHA-g, I never carefully measured the amplifier voltages, but I observed offsets
of 1–2mV with a handheld multimeter, a 10−5 effect.

3. The analytic electrostatic model used to predict k2 is not entirely accurate, as I have
already described to some extent. This model neglects the gaps between electrodes of
order 100µm. The predictions near electrode 23 are affected by an inaccurate model
of the radial step three electrodes to the left. The predictions near electrode 35 are
affected by inaccurately modelling the space beyond electrode 35 as an infinitely long
grounded cylinder of radius 2.2 cm.

4. Probably the biggest source of error is numerical error in our estimation of k2.

As stated in the previous section, the calibration procedure was performed twice, with
the second calibration being done one day later and with a slightly different magnetic field
(up to a 3% difference). The difference between the two calibration factors is plotted in
Fig. 8.20. In more detail, this calibration procedure finds the coefficient C (units of Tesla
per second) between magnetron frequency and magnetic field: ωr = C/B. Fig. 8.20 shows
the difference between the two estimates of C divided by their average. Fig. 8.20 also has
purely statistical error bars—statistical fitting errors from the linear fit to magnetron phase
versus time plus the statistical fitting error of the extrapolated magnetron frequency at r = 0
described in the next section. It is also reasonable for magnetic field measurements to have
errors of about 1 part in 105. When we consider both of these errors, in most trap locations
the two calibration measurements are in good agreement. There are a few outliers, but in
those axial trap locations there is a large statistical error bar, which actually is a sign that
there was significant spiraling in that trapping potential, making the measurement harder
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Figure 8.19: The ratio of the measured magnetron frequency to the predicted magnetron
frequency is plotted versus axial position in the trap. The orange X’s are the result of
predicting k2 with the analytic electrostatic model, and the blue X’s are the result of adjusting
this model to account for thermal contraction.

and likely leading to systematic errors. I had originally hoped we might see the effect of
the clouds being different as they had different radii, temperatures, and total charge, but it
seems we cannot resolve this effect.
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Figure 8.20: The fractional difference in the two calibration measurements is plotted versus
axial position. The error bars are purely statistical errors on the magnetron frequency
measurements.
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8.3.3 Variation of ωr with r

In order to achieve the desired precision for EMPI of a few parts in 105, we needed to not
only calibrate with ECR, but also find the relationship between the magnetron frequency
at r = 0 and the magnetron frequency at the radial position we will typically use. Further,
my original pitch to the collaboration for EMPI was that it could measure magnetic fields
off-axis. In this section, we will find that this is indeed true, but that the interpretation of
these results is complicated. Also, at least in the data presented here, the measurement of
off-axis magnetic fields is no better than what we can achieve with an off-axis expansion of
the measured on-axis field. This is in contrast to off-axis ECR, discussed in Sec. 7, where an
asymmetric contribution to the magnetic field is observed which cannot be predicted using
off-axis expansion.

Interspersed in the measurements of the magnetron phase with varying total time, I
measured the magnetron phase versus r for three different total times. The total times
differed by factors of two—typically these spirals would be observed after about 50ms,
100ms, and 200ms, but the exact numbers would vary based on the magnetron frequency in
that axial trap location. In total, 200 clouds were imaged to calibrate EMPI and find the r
variation for each axial location. With one reservoir, I extracted 1200 clouds, and I discarded
the first 200 clouds (waiting for the reservoir to settle) and performed measurements in five
axial locations with the remaining 1000.

The data from one axial trap location is shown in Fig. 8.21. Fig. 8.22 also shows two
more extreme examples, one with very significant spiraling, and one with almost no spiraling.
The first step in the analysis is to fit a circle to the data described in the previous section
(not shown). Imaging clouds after a variable time performing magnetron motion results
in a lot of cloud positions distributed somewhat randomly around a circle. This gives us
a great measure of the effective trap center. Next, a line is fit to the radial displacement
of clouds versus axial distance from the trap center; essentially this is a measure of patch
fields. Finally, we need to find the magnetron phase versus radial position. Of course, I have
performed similar analyses throughout this thesis, but here I designed a somewhat different
algorithm which was more robust in this situation of having wildly varying spiral constants.
First, we identify the magnetron phase and radial position we would expect from the linear
fit of magnetron phase versus time described in the previous section. This is marked with
a red X in Fig. 8.21 in all three subplots. Next, in the spiral with the shortest magnetron
orbit, we find the angle difference between each cloud and this expected angle. For the
clouds whose angle difference is less than π/2, we fit a quadratic function to angle deviations
versus radial distance. At first, this discards a significant fraction of the data. However, we
repeat this process, now using the angle deviations from the quadratic fit. This process is
iterated until as much of the data as possible is used. In some cases, some data points never
conform to the quadratic fit, and they are indeed discarded. Next, this process is repeated
for the two stronger spirals formed by clouds subjected to twice and four times the total
orbit time. In those cases, we start with a known spiral constant—double and quadruple the
spiral constant found in the first fit.

Later, this data is used to subtract out the effect of measuring the magnetron frequency
at a nonzero radial displacement. Because r = 0 falls outside of the measured data, we will
need to carefully assess the statistical errorbars on the fit function. Standard curve fitting
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Figure 8.21: The data and fits used to find the variation in the magnetron frequency with
r in one axial trap location. On the left, I show the positions of the cloud on the MCP in
units of the pixels on the camera image. The black X is the center of the trap, and the
black spiral line is the resulting fit of the angular deviation versus radial position. The red
X indicates the radial position and phase predicted by the data from the exponential angle
increase procedure. In the middle plot, I show the radial position versus 1/k2m − 1/k2a,
which theory predicts should be proportional to displacement. The blue line is a linear fit.
On the right, I plot the angular deviation versus radial distance, only including the points
which ultimately were within π/4 of the fit function (although in this dataset none of the
data was excluded). The black line is the result of fitting θ = θ0 + kθr

2 to the data, and the
green highlighted region is the statistical errorbar on the fit function.

software packages typically return a covariance matrix Cmn in addition to the found fit
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Figure 8.22: This figure shows the positions of clouds on the MCP at two different axial
locations with the maximum time performing magnetron motion. The elements of this plot
are described in the caption of Fig. 8.21.

parameters Pn. When known errorbars for the datapoints are not provided, this covariance
matrix can be described as follows:

1. Assume that the data is drawn from the fit function F (x, Pn) plus a Gaussian error.

2. Assume that the standard deviation σ of that Gaussian distribution is the deviation
of the points from the fit function.

3. Define the “probability of a dataset” given a set of fit parameters as the product of
the probability densities of each datapoint, i.e. pi ∝ exp(−[F (xi, Pn)− yi]

2/2σ2).

4. The returned fit parameters maximize the probability of the dataset, and the covariance
matrix tells us how the “loss function,” defined as twice the log of the probability of
the dataset, increases as we change the fit parameters.

It is well known that, given these assumptions, the statistical error in the n’th fit parameter
is
√
Cnn. That is, if we resampled the data from this Gaussian distribution many times, that

fit parameter would have a standard deviation given by
√
Cnn. However, it is absolutely not

valid to assume that the statistical error in the fit function is given by F (x, Pn +
√
Cnn) −

F (x, Pn). This neglects the off-diagonal elements of the covariance matrix. For example, in
my quadratic fits, the fit function is θ(r) = θ0+kθr

2. My covariance matrix may suggest that
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θ0 could be lower by −0.1, but only if kθ increases to compensate, bringing the fit function
back in reasonable agreement with the data. Note also that if I replaced my fit function
with θ(r) = −θ0 + kθr

2, I would get the same exact fit (but the fit value for θ0 would change
sign), but F (x, Pn +

√
Cnn)− F (x, Pn) would be different, which is not acceptable.

The correct way to estimate the errors of the fit function is given in Refs. [129] and [130].
Both authors lament how few people are aware of this method. First we take the derivative
of the fit function with respect to the fit parameters: ∇PmF (x, Pm). Then the variance of the
fit function is (in Einstein notation) ∇PnF (x, Pn)Cnm∇PmF (x, Pm). The standard deviation
is the square root of the variance. Critically, this error is not constant—it is a function of x
through ∇PnF (x, Pn). Typically this gives rise to the intuitive behavior that the fit function
has larger errors outside of the domain of the data. These proper standard errors are plotted
in green in Figs. 8.21 and 8.22.

In Fig. 8.23, I show how the measured spiral constants compare to those predicted
Eq. 8.14—although note that this calibration was performed with a very homogeneous mag-
netic field, and the B′ and c terms will be absolutely negligible. With the exception of the
two most extreme spirals, there is excellent agreement. The datapoint in the upper right
was identified to be erroneous because of a numerical issue in estimating the predicted spiral
constant. The datapoint in the lower left did not suffer from the same numerical issue, but it
is generally true that stronger spirals are harder to measure. Similar measurements are used
to calibrate the difference in magnetic field between the MCP and the trap (see Sec. 3.5), so
in some sense this is confirmation that field ratio is well-estimated.
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Figure 8.23: The measured spiral constants are plotted against the predicted spiral constants
for the measurements used to calibrate EMPI without any current in the mirror coils. The
red line is y = x.

As you will see in the next section, in addition to precisely measuring the magnetron
frequency at one known magnetic field, I used the same experimental procedure to do precise
measurements of the magnetic field while varying the current in mirrors A and G. This data
also allows us to see how the spiral constant varies with magnetic field, allowing us to
observe the effect of the magnetic terms in Eq. 8.14. In Fig. 8.24, I plot measured spiral
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constants in 15 axial trap locations versus the current in mirrors A and G. Note that one
needs to account for the changing magnetic field ratio between the MCP and the trap in
order to find the spiral constant in units of 1/mm2s rather than 1/pixel2s. Luckily, we
are also measuring the changing magnetic field inside the trap here (in fact that was the
main purpose of the measurements), and the magnetic field at the MCP does not change.
Therefore, we can account for the changing relationship between transverse distance inside
the trap and transverse distance on the MCP by multiplying the spiral constants on the
MCP by B(I, z)/B(0), where B(I, z) is the magnetic field magnitude with mirror current
I and axial position z. When I = 0, the magnetic field is constant enough with z that the
variations can be neglected for this analysis.

In Fig. 8.24, there is conclusive evidence that the measured spiral constants are affected
by the variation in the magnetic field with r. The measured spiral constants are compared to
the full Eq. 8.14, with B0, B

′, and c estimated by fitting a quadratic to the on-axis magnetic
field measurements, and k3 and k4 estimated as described in Sec. 8.1.10. I also plot the
result of only including the trapping potential terms, and the agreement is very poor. The
data is also compared to Eq. 8.14 neglecting the “cross term” proportional to k3B

′. This
term generally has a very small effect, so there is less conclusive evidence that this term is
needed for good agreement. The agreement is especially excellent in the center of mirror A
where the spiral constant was tuned to be small. In some datasets, there is an offset between
the data and the theory, suggesting either numerical error in estimating k4 or higher order
terms in the spiral “pulling” the fit value of the quadratic term, just as we observe in the
simulation described in Sec. 8.2.3. Also, in some cases when the spiraling is strong, it is
also hard to measure, and there are some random-looking deviations of the data from the
theory curves. It is clear that if we intentionally varied k3, and if the spiraling was more
effectively minimized as it was in the center of mirror A, we expect we would be able to
resolve the effect of the k3B

′ term. This would provide a potentially useful measure of the
magnetic field and its first and second derivatives. One application of such a measurement
would be to identify error in our predicted axial trap locations. Until now, the axial location
of each measurement is based on an electrostatic model; errors in that electrostatic model
and the influence of patch potentials are assumed to be negligible. This could be confirmed
by finding B′ and c at one axial trap location, then finding how different B0 is at the next
axial trap location. Also, if a deviation from Eq. 8.14 is ever observed, it could indicate
the presence of azimuthally asymmetric terms in either the magnetic field or the trapping
potential. It is not clear in this dataset that the precision could be increased enough for
these ideas to be useful.

8.3.4 EMPI field maps

In addition to measuring the magnetron frequency precisely at a known magnetic field
through the procedure described in the previous two sections, I repeated the same EMPI
procedure in “unknown” magnetic fields. After the first calibration measurement, I increased
the current in mirrors A and G to 70A in five steps. After reaching 70A, the current was
again decreased to 14A—the first of five steps, then to 0A. The magnetic field was inferred
by extrapolating the magnetron frequency at r = 0 and scaling the calibrated on-axis mag-
netic field like 1/ωr. The resulting maps of the magnetic field are shown in Fig. 8.25. To
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Figure 8.24: The measured spiral constant is plotted versus current in the mirror coils for
15 axial trap locations where I successfully performed the static field EMPI measurement
for six different currents in the mirror coils. The red X’s are the measurement results. The
black solid line is the theoretical prediction from Eq. 8.14. The blue dotted line is the result
of only including the trapping potential terms in Eq. 8.14. The green dashed line is the
result of neglecting the “cross term” proportional to k3B

′. The center of mirror A is denoted
zA, and the center of mirror G is denoted zG. For the other axial trap locations, I give the
vertical displacement from either mirror A or G.

save time, not all measurements were performed at all currents.
Because a fairly comprehensive field map was performed after ramping up to 14A then

down from 70A to 14A, we can get an excellent measurement of the effect of persistent
currents induced by these field changes by subtracting the two measurements. When the
current is increased from 0 to 14A, negative persistent currents are generated that oppose
the nominal effect of the mirrors. When it is decreased from 70 to 14A, positive persistent
currents are generated that oppose the reduction of the field produced by the mirrors. By
subtracting the latter dataset from the former, we get a map of roughly double the on-axis
persistent current effect we get from changing the mirror currents. This is shown in Fig. 8.26.
As expected, there are bumps centered on mirrors A and G. It is a bit surprising, but in
hindsight reasonable, that there is a negative effect between the two mirrors. Persistent
currents do not flow all the way through the wire to the power supplies, so they cannot
produce a field which is simply proportional to the original field. Rather, they typically flow
in one direction on one side of a wire and in the opposite direction on the other side of the
wire. We can generate a crude model of the field we expect persistent currents to produce
with the current distribution shown in Fig. 8.26. The individual wire filaments in a mirror
coil can roughly preserve the magnetic flux through the superconducting material by having
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Figure 8.25: The magnetic field is measured for different axial positions using EMPI at vary-
ing current in the mirror coils. The order of the measurements is indicated in the legend—the
current was ramped up then back down. Note also that a few of the measurements failed,
which can be seen from missing datapoints.

a current running in one direction on the outer side of the wire (the side farther from the
trap center) and in the opposite direction on the inner side of the wire. In turn, this can
be approximated as a current running in one direction on the outermost layer of windings
and a current running in the opposite direction on the innermost layer—the current density
in the layers between will cancel out. Near the center, there would be a positive bump
where the current on the inside has a larger effect. Farther from the center, there would be
a negative perturbation because the outer current has a larger dipole moment. Alongside
the measurements, I have plotted the result of this model for the distribution of persistent
currents. The current in this model is chosen to agree with the data, which occurs when we
assume about 45A is running through the superconducting wires in this way. It is interesting
that the current scale is similar to the absolute currents that were initially in the magnets.
This is likely because the current value of 70A was chosen to be near the limit that would
cause the magnets to quench. The production of persistent currents is limited by the same
mechanism, but with a more complicated distribution of current density within the wires.
We find then that the effect of persistent currents is only small because when the coil is
energized normally, there is current running through all 8 layers of windings in the same
direction. When persistent currents run through the coils, there is a similar amount of
current, but it runs in one direction only on the innermost coils and in the other direction
only on the outermost coils (or rather, the persistent currents on the layers between largely
cancel with the adjacent layers). It is also interesting that the agreement is so good between
the data and this handwavy model. Obviously, there are many superconducting magnets
nearby mirrors A and G, so it would take significant effort to properly model this. Luckily
(or rather, by design) all of these magnets are roughly symmetric about the center of the
trap, so there is no perceptible asymmetry, except a tiny difference that is likely due to
having performed measurements near mirror G later, so the persistent currents had some
extra time to decay.
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Figure 8.26: The effect of persistent currents versus axial position is shown with blue X’s.
The red line is a theoretical prediction based on the model shown on the right. The cartoon
on the right shows a cross-section of a mirror coil, with red representing current running out
of the page and blue representing current running into the page. Three electrodes are shown
inside to clarify the orientation of the cross-section. The cartoon is not to scale, and there
are 8 layers of 90 windings in the mirror coils, not 4 layers of 8 windings.

In Fig. 8.25, and even in Fig. 8.26, the measurement errors are too small to be perceptible.
However, they are perceptible if we subtract the initial measurement at 0A from the final
measurement at 0A. Both of these measurements were performed after ramping the mirror
coils down from full current to 0A, so even persistent currents should be identical. Fig. 8.27
shows the result of this subtraction, this time with statistical error bars. Note that the
statistical errorbars come from a total of four fits—the spiral fit to the magnetron phase
versus r and the linear fit to the magnetron phase versus magnetron orbit time for both of
the two measurements (2 × 2 = 4). Ordinarily, this kind of plot would additionally suffer
from the statistical error from the calibration measurements, but in this case one of the two
measurements is the calibration. There is an unexpected tiny perturbation near mirror G,
but there is not one near mirror A. I suppose that in one of the two measurements, there
was actually some nonzero current flowing through mirror G. This phenomenon has occurred
many times at ALPHA; if we want the mirror coils to have no current, the power supplies
need to be on and they need to be using a PID to apply 0A of current. Otherwise external
circuits like the quench detection system put a tiny current through the coils. It seems in
one of these two measurements, I wasn’t careful about having the power supplies in the right
state. Otherwise, the difference between the measurements is consistent with zero.

In addition to studying persistent currents versus z, we can study how persistent currents
grow as we increase the magnet current. To do this, in Fig. 8.28, I have plotted the deviation
of the magnetic field from a linear fit to the field versus mirror current in six axial locations.
The resulting data strongly resembles an exponential decrease plus a linear increase. This
indicates that persistent currents are well-described by an “exponential saturation.” There
is some field strength A(z) that the persistent currents are approaching according to the
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Figure 8.27: The initial and final measurements of the magnetic field versus axial position
are subtracted from eachother. The error bars are the statistical errors from four fits involved
in producing this plot.

equation A[1 − exp(−∆I/I0)], where ∆I is how much the current has been changed (it is
always positive), and I0 is the “current change scale” of the exponential saturation. To
quantify this, I have fit a linear function plus an exponential saturation function to the data
from each axial location. We find I0 values between 19A and 23A, so by the end of the
magnet ramp persistent currents are changing very little. This “exponential saturation”
model is not well-motivated. We do understand that persistent currents should approach
a constant value, which occurs when the current through the superconductor is saturated
(i.e. the maximum current density before the superconductor quenches). We do not have
a model that suggests this process should be exponential. The remaining linear increase
needed for the fit function is just the ordinary effect of putting a current through coils,
which the original linear fit subtracted from the data was not allowed to capture because
it needed to also account for the nonlinear changing persistent currents. In Fig. 8.29, the
magnitude of persistent currents, found from the A parameter of the fit described above, is
plotted for axial positions near mirrors A and G. At this point, fitting errors have a clearly
visible affect on the data.

Unfortunately, while this is a much more complete dataset than we ever obtained with
ECR, and while it was taken at least a factor of 10 more quickly than any of the ECR field
maps, it was not useful for the analysis of the ALPHA-g measurement. The bottom solenoid
was energized, but it was not in the ALPHA-g measurement, and it would be difficult to
precisely remove the effect of this magnet. By the time I managed to make a reservoir without
the bottom solenoid, there wasn’t enough experimental time to repeat the procedure.

8.3.5 Cloud charge variability

A subtle correction to EMPI comes from the variability of the properties of the clouds—
their total charge, temperature, and mean square radius. In particular, if the clouds used
to perform the calibration measurements differed from the clouds used to perform an actual
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Figure 8.28: For six axial trap locations, the deviation of the magnetic field from a linear
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exponential decay plus a linear function to the data.
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Figure 8.29: The amplitude of the exponentially saturating persistent currents is plotted
versus axial position. There are only measurements of the magnetic field for all six mirror
currents in a few axial locations near mirrors A and G.

measurement, and if the magnetron frequency depended on those cloud properties, there
would be a systematic error in the EMPI measurements. My original motivation for studying
this effect was the observation that when we pause scooping for 1–2 s for sequence bridging
(see Sec. 8.1), the first 30 or so clouds after the pause have a different magnetron phase.
This effect is visible in Fig. 8.4. Additionally, the first few hundred clouds extracted from
the reservoir have a different magnetron phase, which will be more clearly visible in Sec. 8.4.

Often, we measure cloud charge variability by seeing how bright of an image it produces
on the MCP. There are two issues with this technique. First, for very small clouds, this
metric is very noisy (a variability of about 30% is typical for clouds that land in the same
place on the MCP). Second, the MCP itself responds differently in different places. To map
out the MCP’s response I took all the data collected in EMPI measurements (about 100,000
pictures), and I found the average integrated cloud brightness as a function of position on
the MCP. The results are shown in Fig. 8.30. The dark feature on the right side of Fig. 8.30
is a metal bar, which is out of focus, but partially obstructs the camera’s view of the MCP.
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The other features visible in Fig. 8.30 could be caused by the MCP, the phosphor screen,
the mirror behind the phosphor screen, or the window between the mirror and the camera.
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Figure 8.30: The normalized brightness of clouds is shown as a function of position on the
MCP. For each pixel in this image, we collect all the clouds that were observed in that
position on the MCP, and we average their brightness.

In Fig. 8.31, I show how the cloud charge evolves over the course of one reservoir. The data
comes from averaging the cloud brightnesses across the entire dataset used for calibration
measurements. We find a somewhat atypical reservoir behavior—the cloud charge drops
in the first 300 extractions, then it increases and reaches a stable level after about 600
extractions. Most of the studies of reservoir behavior described in Sec. 2 extracted larger
clouds from reservoirs, and only up to 200 clouds. I believe this behavior is due to the
reservoir cooling after its initial preparation. I likely didn’t wait sufficiently long to start
extracting clouds after SDREVC (see Sec. 2.1). Extracting smaller clouds makes us more
sensitive to small changes in the reservoir’s temperature and space charge voltage.

Another source of cloud charge variability is that the cloud charge changes with the rate
at which extract clouds from the reservoir. To some extent this mechanism was described in
Sec. 2—the reservoir expands over time for reasons other than cloud extraction, decreasing
its space charge voltage. This means that if we extract clouds from the reservoir more slowly,
the clouds will have lower charge; we need to extract less charge from the reservoir to reduce
its space charge voltage by the scooping voltage step size.

An accidental measurement of this effect occurred during the EMPI calibration measure-
ments. Because different trap locations had different patch potential strengths and different
magnetron frequencies, when calibration measurements were performed in different axial trap
locations, the rate at which clouds were extracted from the reservoir changed. In Fig. 8.32,
I show how cloud charges decreased when the time between extractions increased.

Ultimately, charge variability alone has a very small effect on EMPI measurements. With
clouds consisting of 2000 electrons, the cloud’s image charge will boost its magnetron fre-
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Figure 8.31: The charges of clouds successively removed from the reservoir for EMPI are
reported. The blue line represents the integrated brightness of clouds extracted from one
reservoir. For the red line, I divide by the average cloud brightness for that cloud’s position
on the MCP to remove the effect of variability in the MCP’s response. The black line is
the average brightness of 10 consecutive clouds additionally averaged over many reservoirs.
The brightness of the clouds on the MCP is converted to a total charge by multiplying by a
calibration factor described in Sec. 5.
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Figure 8.32: Average cloud charge is plotted versus the scooping repetition rate. The black
line is a linear fit to the data. The red X shows the result from the calibration measurement
at the center of mirror A, which is the most important location for EMPI measurements
because it was the only location where EMPI measurements were enhanced by tuning the
trapping potential to remove spiraling (see Sec. 8.1.10).

quency by 1.3/s (see Sec. 5.4.2). For a typical magnetron frequency of 105/s, this is a
correction of only 1 part in 105. Additionally, this contribution scales as 1/B (just like the
magnetron frequency induced by the trapping potential), so calibrating EMPI removes this
effect entirely. It is only the variability in cloud charges that could produce a systematic
error. In Sec. 8.4, I will attempt to validate the absolute accuracy of EMPI by looking at
the agreement between ECR and EMPI at a magnetic field strength far from the field used
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to calibrate. Those measurements were performed in the center of mirror A with a much
shorter time between cloud extractions than was used for the calibration measurements. The
linear fit shown in Fig. 8.32 suggests that this should increase cloud charges by 6%, yielding
an absolutely negligible change to the magnetron frequency.

However, in Sec. 5.4, I showed that the magnetron frequency is also affected by a cloud’s
length if the quartic constant of the trapping potential is not zero. In turn, the cloud length
is affected by its charge and its temperature. The length effect and the image charge effect
on the magnetron frequency are typically comparable. Note that even in the center of mirror
A, because I tuned the trapping potential to reduce the spiraling, k4 will be smaller than in
most trapping potentials. However, it will not be zero because spiraling is caused by k4 and
the cubic term k3, so k4 alone was not specifically tuned to be zero. In Sec. 5.4.3, I provided
tenuous evidence that cloud temperatures were causing O(5/s) variations in magnetron fre-
quencies. Therefore, I think it is most likely that the variations described in the beginning of
this section are primarily due to variations in the cloud temperature, not the cloud charge.
Unfortunately, I never measured the temperatures of the clouds used for EMPI, and when
cloud temperatures were measured in the past, they were measured with larger clouds ex-
tracted at a maximum frequency of 1 cloud per second. Even if I tried to measure cloud
temperatures, the temperature measurement technique is very imprecise and it may not have
been enlightening. I propose that the first few hundred clouds extracted from the reservoir
have a different magnetron phase because the reservoir is either cooling down after its initial
preparation or it is being heated by cloud extraction. I also think the reservoir cools when
we pause cloud extraction for sequence bridging, thereby changing the temperatures of ex-
tracted clouds, and less significantly, changing their total charge. The data shown in this
section only proves that clouds’ total charge is varying, but I take this data as a suggestion
that the clouds’ other properties might also be varying.

8.4 EMPI measurements in a rapidly changing magnetic field

The most important contribution to the ALPHA-g measurement from the EMPI studies
were measurements of the magnetic field during the mirror coil rampdowns that were used to
release antihydrogen. To be clear, these measurements were not performed during the actual
ALPHA-g measurement, but rather during identical magnet ramps after the completion of
the ALPHA-g measurement. It was only after the conclusion ALPHA-g that time was
allocated for EMPI. However, there has been no evidence that the magnetic field varies from
one magnet ramp to the next, so it is safe to infer that the measurements I describe in this
section are a good description of what occurred during ALPHA-g.

In principle, dynamic EMPI measurements can be performed by first doing an exponential
angle increase operation to find the total magnetron angle subtended by one cloud after some
maximum time T . From there, we repeatedly image clouds after they perform a magnetron
orbit for the same amount of time. At some point, we start ramping down the mirror coils,
and as the magnetic field decreases, the magnetron frequency increases. In order to be
able to track the changes in the magnetron frequency, T should be chosen such that the
phase difference from one cloud to the next is less than π. Note that the time between
measurements Tm is not equal to T , because a significant fraction of Tm is used to move the
clouds along the trap axis and to move the clouds off-axis. Thus the condition for dynamic
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EMPI is Tm|dωr/dt|T < π, or in terms of the magnetic field Tm|k2(dB/dt)/B2|T < π. If this
condition is not satisfied, it may be ambiguous whether the magnetic field has increased or
decreased. In extreme cases, it might be ambiguous whether, for example, the magnetron
phase has changed by 3π/2 or 7π/2. I refer to such errors as “losing a 2π.” Obviously,
this condition can be relaxed when the rate and direction of change of the magnetic field is
roughly known, but keeping the magnetron phase change less than π also means that the
analysis software is much easier to design. I considered more complicated designs, such as
alternating between measurements with a higher T for higher precision and measurements
with a lower T that are easier to track. Such designs may be useful in the future, but for
this first set of measurements I decided to stick with the simpler scheme. It is also likely
that future ALPHA-g measurements will be performed with slower changes in the magnetic
field, which is probably the easiest way to quickly boost the precision of dynamic EMPI
measurements.

The gaps in the measurements due to sequence bridging (see Sec. 8.1.1) slightly complicate
these measurements—it is necessary to pause measurements for 1–2 s after every 200 phase
measurements. I took some care to make sure that these gaps did not occur precisely at the
beginning or end of the mirror ramp. After these gaps, I first imaged 20 clouds normally,
then I performed a new exponential angle increase operation in case the total number of
magnetron orbits was ambiguous. The total magnetron phase of each cloud in a standard
dynamic EMPI measurement for a 130 s rampdown of the mirror coils is shown in Fig. 8.33.
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Figure 8.33: The total magnetron angle is shown for each EMPI measurement in the center
of mirror A performed during a 130 s rampdown of the mirror coils. The blue dots indicate
EMPI measurements taken with a constant magnetron time T . The red dots indicate EMPI
measurements done with an exponentially increasing angle to find the total number of orbits.
On the right, I zoom in on one such exponential angle increase operation. Despite the lack
of noise, this is indeed experimental data. Noise is imperceptible at this scale.

Ultimately, these exponential increase operations were not strictly necessary. By fitting
a line to a few EMPI measurements before the sequence bridge, we can predict the phase
of the cloud after the sequence bridge with an error significantly less than π. However,
these exponential increase operations were still useful for two reasons. First, when I was
still tuning the analysis software, these absolute measurements of the total magnetron angle
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helped me identify if I had lost a 2π or if there was any other issue in the analysis. Second,
these measurements revealed a small correction to EMPI that I hadn’t previously considered.
When I analyze an exponential angle increase, I fit a line to the magnetron phase versus
time to find the magnetron frequency. Of course, a line comes with a slope and an intercept.
This intercept can be interpreted as the direction of the patch potential used to move the
cloud off axis. It was at first unexpected that this “reference angle”—the base angle that we
measure all other magnetron phases relative to—changes over the course of the measurement,
as shown in Fig. 8.34. The reference angle always increases, and it always increases by about
0.1 radians. This observation could be explained by T being less than expected by about
1–2µs. In Sec. 6.4, I showed that it takes about 10µs for the electrode potentials to settle
after quickly changing them. For example, it takes about this time to dump the electron
clouds and to go from the shallow well used to move them off-axis to the deep well where the
magnetron orbit is performed. Thus this 1–2µs correction is due to the time taken for the
dump being slightly shorter than the time taken to move to the deep well. This asymmetry is
expected because these two operations involve different voltage changes. When the electrode
voltages are still changing, the magnetron frequency is changing as well. In some sense, we are
really measuring

∫
k2(t)/B(t)dt. Note this means technically we are measuring the average

magnetic field over a total time of 10ms. Since the change in k2 is localized to the first and
last 10µs of the EMPI measurement, we can account for this issue by simply adjusting T by
1–2µs—whatever is consistent with the change in reference angle. Another outcome is that
we are actually measuring the magnetic field about 10µs later in time than we thought we
were. This latter issue turns out to be insignificant, because the magnetic field changes by a
few parts in 107 in 10µs. In the analysis, the reference angle was coerced to linearly change
between the reference angle at the beginning and the reference angle at the end of the ramp.
This is equivalent to adjusting T . Otherwise, if we measure each magnetron phase relative
to the most recently measured reference angle, statistical error in the reference angle leads
to unphysical jumps in the measured magnetic field. This also allows us to benefit from
averaging multiple measurements of the reference angle to reduce statistical uncertainty.
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Figure 8.34: The measured reference angle is reported for 11 exponential angle increase
operations during a 130 s rampdown of the mirror coils. The error bars are the statistical
error from the linear fit that is used to infer the reference angle.

Nominally, the magnetron frequency is the magnetron angle of each cloud divided by
T , and the magnetic field is the calibration factor found in Sec. 8.3 divided by the mag-
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netron frequency. However, before we can report the magnetic field during the ALPHA-g
measurement sequence, we need to include quite a few corrections. In Fig. 8.35, I show the
measured magnetic field using EMPI in the center of mirror A for a 130 s rampdown of the
mirror coils. I also show the deviation from the expected magnetic field if we assume the
magnetic field changes linearly from the ECR measurements done before the ramp to the
ECR measurements after the ramp. The following corrections are applied sequentially in
Fig. 8.35:

1. The first plot simply shows the nominal measured magnetic field.

2. The second plot shows this measured magnetic field minus the linear expectation from
ECR.

3. In the third plot, I have subtracted the effect of the bottom extraction magnets (see
Sec. 8.3.1).

4. In the fourth plot, I have accounted for the fact that we are measuring the magnetron
frequency off-axis. To do this correction, I first find k4 from the spiraling found in the
calibration measurements in a roughly constant magnetic field versus z. Next, a model
of the magnetic field is used to find the predicted first and second derivatives of the
magnetic field. The error in this model is roughly 1%. Eq. 8.14 is used to relate these
off-axis magnetron frequency measurements to the near-axis magnetron frequency, and
this corrected magnetron frequency is used to get a more accurate measurement of the
on-axis magnetic field. This fourth plot is the final measured magnetic field.

5. In the fifth plot, I have fit an exponential saturation plus linear function to the mea-
sured magnetic field, and I have subtracted the exponential saturation part of that fit
function. This allows us to see smaller unexpected deviations—given that at this point
we understand and expect persistent currents.

I first want to discuss the remaining deviation between the magnetic field measured with
EMPI and the magnetic field measured with ECR before the magnet ramp starts and after
it ends. The deviation is about 0.05mT after the ramp ends and about 0.08mT before it
starts. The known sources of error on the absolute accuracy of these EMPI measurements
are as follows:

1. The error in our subtraction of the bottom extraction field is 0.008mT, the typical
deviation between the ECR measurements of the bottom extraction field and the fit
function used to approximate it. These deviations are likely errors in the ECR mea-
surement; the fit function is expected to be accurate.

2. The statistical error of the calibration factor is 1.47 parts in 106; in other axial trap
locations with more spiraling this error is usually larger (up to a factor of 10 larger).

3. The error in the ECR measurement used for calibration is about 0.01mT—this directly
translates to the same error in these measurements. Actually at 1.7T the error grows
to 0.017T. This estimate is somewhat crude—it comes from noticing that there is
nonlinear persistent current decay between the first and last measurements in the first
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Figure 8.35: The measured magnetic field is plotted versus time since the mirror coils start
ramping down. The sequence of plots is explained in the text. In each subplot, the blue dots
are the magnetic field measured using EMPI. The red X’s are the results of the exponential
angle increase measurements. The black line is the correction which will be subtracted from
the blue dots for the next subplot.

calibration measurement which I cannot account for by assuming the magnetic field
changes linearly between these measurements. In the second calibration measurement,
there was no persistent current decay, but in some axial trap locations there was still a
disagreement between the initial and final ECR measurements of up to 0.01mT. This
simply reveals that this is the typical variation in the fit ECR peak center with the
ECR frequency scan ranges I was using at the time. This estimate for ECR error is
backed up by the fact that the two calibration measurements disagreed by 2 parts in
105

4. The statistical error in the spiral constant from the calibration measurement is 2.4%.
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Further, the error in the magnetic field model used to infer the off-axis correction with
the mirrors energized is about 1%. This correction is at most 0.5mT, so we arrive at
a total error of 0.017mT. This error is larger with the mirror coils energized in this
axial trap location, but not in all of them.

5. The trapping potentials used for ECR were not identical to those used for EMPI. This
could mean that the magnetron frequency and the magnetic field were not measured in
identical axial trap locations for the calibration measurements. This is a particularly
significant issue in this axial trap location, where the trapping potential was tuned,
slightly altering the position of the trap center. An electrostatic model of the trap finds
that there was a displacement of 300µm. This leads to a negligible error at the end of
the ramp, where the magnetic field does not significantly vary with axial position, but
there is an error of roughly 0.027mT at the maximum field.

6. The statistical error on the reference angle is 0.01 radians, leading to an error in the
measured magnetic field of 0.006mT.

7. There PPM level errors discussed in other sections, like the higher order E × B drift
correction discussed in Sec. 8.16, and the effect of relying on an imperfect magnetic
field model to move the clouds off-axis discussed in Sec. 8.1.11

For the maximum magnetic field, when I add these errors in quadrature, I get a total error
of 0.035mT. When I add them linearly, I get a total of 0.070mT. At the minimum magnetic
field, the totals are 0.019mT and 0.038mT. In both cases, the observed deviations are
slightly larger than even the results of summing the known errors linearly. My leading
hypothesis for this is the issue discussed in Sec. 8.3.5—the temperatures and the charges of
the clouds is varying over the course of the measurement, and there may also be a difference
between these cloud parameters used for a dynamic measurement and these cloud parameters
used for the calibration measurements. Further study will be needed on this effect to break
the 0.1mT accuracy barrier. Alternatively, if we just do an ECR measurement just before
and just after these dynamic EMPI measurements, we can coerce the EMPI measurements
to agree with the ECR measurements, essentially eliminating all of the systematic errors
listed above. Here, I preferred to include the disagreement so I could point out potential
flaws in my understanding of the magnetron frequency.

Before I move on to discuss other dynamic EMPI results, I want to highlight a few features
visible in Fig. 8.35 which will also be visible in many other dynamic EMPI measurements.

1. The magnetic field drifts over the course of the first 200 measurements before magnet
starts ramping. This is not a real drift in the magnetic field; it is the 9reservoir settling,
as discussed in Sec. 8.3.5. It is unfortunate that I didn’t wait longer for the reservoir
to settle before starting the magnet ramp.

2. After each 1–2 s gap in measurements due to sequence bridging, there is a deviation in
the measured magnetic field. Again, this is because of cloud properties changing after
a 1–2 s pause in extractions from the reservoir.
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3. The spread of the measurements is greater at the beginning of the ramp than at the
end. This is because in this axial trap location, there is stronger spiraling at 1.7T than
at 1.0T, causing the initial magnetron motion of the clouds to yield a larger magnetron
phase variability (see Sec. 2.3).

4. There is a rapid increase in the deviation visible in the bottom subplot of Fig. 8.35 at
the beginning of the magnet ramp. This is because the freeze-in of persistent currents
is not perfectly modeled as an exponential saturation curve.

8.4.1 Dynamic EMPI results

In this section I will simply present a few measurement results from dynamic EMPI. First,
in Fig. 8.36, I show the measured magnetic field in the 12 axial trap locations where the
measurements were successful. The issue preventing successful measurements in other axial
locations is described in the next section. At this level of precision, nothing remarkable is
really perceptible. In Fig. 8.37, I show the same data, this time plotted versus axial position.
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Figure 8.36: The magnetic field measured with dynamic EMPI for 130 s magnet ramps
is plotted versus time since triggering the mirror coil ramps. The axial positions of each
measurement are provided in the legend on the right, with zA being the center of mirror A
and zG being the center of mirror G.

More interesting features are visible in the data when I plot only the nonlinear component.
In Fig. 8.38, I plot the same data as the previous two figures. This time I have subtracted
a linear approximation from each measurement. This linear approximation comes from
averaging a few datapoints before the start of the ramp and a few datapoints after the end
of the ramp. This is also the only possible linear approximation, since ECR does not provide
us with expected start and finish magnetic fields in more than two axial trap locations.
Like we observed in Sec. 8.3.4, near mirrors A and G the persistent currents are a positive
contribution the magnetic field. Between the two magnets, persistent currents are a negative
contribution to the magnetic field. We also clearly see that in different axial locations the
spread of the measurements is different. This is because the different axial locations have
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Figure 8.37: The same data as in Fig. 8.36 is plotted in the form of magnetic field versus
axial position, with the color of each datapoint indicating the time since the start of the
magnet ramp.

different degrees of spiraling. When the spiraling is more significant, the measurements are
more spread out.

Most of the ALPHA-g data came from 20 s rampdowns of the mirror coils. Until now,
I have presented data from 130 s rampdowns, first because the data is more beautiful, and
second because I am quite sure that future implementations of ALPHA-g will involve longer
magnet ramps or they will involve a smaller change in the magnetic field. Fig. 8.39 shows
dynamic EMPI measurements from the center of mirror A during a 20 s rampdown.

Here we observe two effects that were much smaller in the 130 s rampdowns. First,
notice in the last subplot of Fig. 8.39 that there are two erroneous measurements in the very
beginning and end of the magnet ramp. This is a real effect; during the magnet rampdown,
the currents are controlled by a PID, and that PID does not perfectly produce a linear change
of the current. This effect is more significant when we attempt to change the magnetic field
more quickly. Fig. 8.40 shows the measured currents during the magnet rampdown. EMPI
magnetic field measurements are overlaid on these measured currents to show that these
deviations at the start and end of the ramp are marginally perceptible in the EMPI data.

The second effect that is more clearly visible in the 20 s data is an offset between the
field just before the end of the ramp and just after the end of the ramp. In theory this
offset should also be present at the start of the ramp, but it is harder to observe because the
non-exponential part of the persistent current freeze-in is also clearly visible there as a short
linear increase. This offset comes from two effects. First, the aforementioned PID does not
only have errors at the start and end of the ramp. Also, the PID generates more current
than intended throughout the ramp by about 6mA, essentially causing the entire ramp to
be offset forward in time. Second, there are five other mirror coils between mirrors A and G
(called mirrors B, C, D, E, and F). These mirror coils are intended for future measurements.
The rampdown of mirrors A and G creates inductive currents in these mirrors, which are
measured externally. About 8mA is generated in mirrors B and F, about 3mA in mirrors C
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Figure 8.38: The deviation of EMPI-measured magnetic fields from linearity is plotted versus
time since the magnet ramp starts. Each subplot is data from a different axial location in
the trap.

and E, and about 2mA in mirror D. Altogether these current errors are expected to create an
offset of about 0.07mT during the rampdown, which is roughly what we observe. Fig. 8.41
shows the expected effect on the trap’s magnetic field from these current errors.

In the ALPHA-g measurement, we varied the magnetic field difference between mirrors A
and G in steps of 0.45mT to create a so-called “bias” [1]. A bias of “−1g” indicated that the
expected effect of gravity was being compensated by boosting the magnetic field at mirror A
by 0.45mT. Thus I performed dynamic EMPI measurements at several different biases with
20 s rampdowns. Unfortunately, because most of the data from the center of mirror G had to
be thrown out due to the issue described in the next section, I don’t have a great variety of
data to present here. In Fig. 8.42, I show measurements from the center of mirror A for four
biases, 2g, 1g, 0g, and −2g. The −2g measurement was repeated accidentally; I intended to
measure at −1g, which would have made the plot a lot more interesting, but I apparently
entered the wrong setting. Further, the 2g, 1g, and 0g measurements are identical because
these biases are created by changing the magnetic field in mirror G, not in mirror A. An
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Figure 8.39: EMPI measurements from the center of mirror A during a 20 s rampdown.
The fist subplot shows the raw magnetic field measurements. The second subplot shows
the magnetic field after I have subtracted a linear approximation assuming the magnetic
field changes linearly from the initial and final ECR-measured field strength. I have also
subtracted the effect of of the bottom extraction magnets. The black line in this second
subplot is the exponential saturation of persistent currents taken from the 130 s rampdown
(because an exponential plus linear fit to this data would not be very effective because
there is far less data). In the third subplot, this exponential persistent current saturation is
subtracted out.

interesting observation in this data is that the magnetic field is 0.9mT higher at the end of
the ramp for the −2g bias. This was expected given the currents used to achieve the bias.
For a reason I don’t recall, we chose to implement −2g by removing some current in mirror
G at the start of the ramp and adding some current in mirror A and the end of the ramp.

8.4.2 EMPI sequence timing error

The result that members of the ALPHA collaboration were most interested in from EMPI
was a comparison of the magnetic field in the center of mirror A and the center of mirror
G during the rampdown that released antihydrogen. Such a measurement could be used
to bound errors in the ALPHA-g gravity measurement that could not be characterized by
ECR performed in static magnetic fields. Unfortunately, there was a mistake in the EMPI
sequences that was not noticed until after the experiment was disassembled, and this essen-
tially ruined all of the dynamic EMPI measurements from the center of mirror G.

As discussed in Sec. 8.1, sequence bridging is only effective if the time taken to load
a new sequence onto the FPGA controlling the electrode voltages is less than a second.
Otherwise, the time between subsequences is unknown, and from that moment forward,
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Figure 8.40: The intended linear current ramp is shown with a black dashed line. A blue
line shows the measured current through the mirror coils during the rampdown. In the first
subplot, red X’s show the EMPI measurements (only one in 20 measurements are shown)—
the magnetic field measurements are scaled to lie on top of the current measurements. In
the second and third subplots, I zoom in on the start and end of the ramps. The horizontal
bars are not error bars; they indicate the time over which EMPI measures a time-averaged
magnetic field.
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Figure 8.41: The magnetic field created by the current errors described in the text is plotted
versus axial position in the trap. The colored curves show the magnetic field created by the
current error in each individual magnet. The black curve shows the total.

while the magnetic field measurements will remain accurate, it will not be known what
time those measurements correspond to. Of course, if this issue was anticipated, it could
have been fixed in any number of ways. Fig. 8.43 shows a very clear example of this effect.
The analysis software proceeds normally assuming that the sequence bridging functioned as
planned. Instead of seeing a smooth variation of the magnetic field versus time, between
subsequences the deviation of the magnetic field from linearity jumps downward. This is
because the magnetic field is being measured up to 100ms later than the analysis software
believes it is. In this example, it seems that every subsequence took about 25–100ms longer to
load than the 1 s they were allotted by sequence bridging. The issue seems to be dependent
on axial trap location—perhaps some sequences are more complicated and take slightly
longer to load. Alternatively, we have noticed that the sequencer software slows down with
continued use. It may be that data taken later in the day was more likely to exhibit this
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Figure 8.42: The deviation of EMPI measurements from a linear approximation is reported
for five trials with different “biases.” The measurements are from a 20 s rampdown in the
center of mirror A. For all five datasets, the “linear approximation” subtracted from the
data comes from ECR measurements before and after the ramp with 0g bias. This way the
difference between −2g bias and the other datasets is visible in the plot.

issue. Occasionally, this issue can be hard to differentiate from losses of 2π in the phase
tracking algorithm, which also manifests as an unexpected jump in the magnetic field, and
is more likely to occur during sequence bridging. However, the telltale sign of this particular
failure is the four dots located near 130 s in Fig. 8.43. These dots show that the magnetic
field is increasing when the linear approximation believes it should no longer be changing—a
clear sign that we are mistaken about what time the data was taken.
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Figure 8.43: The deviation of the magnetic field from linearity measured by EMPI is reported
versus time since the mirror rampdown began. This dataset exhibits the failure of sequence
bridging. The linear approximation which is subtracted from the data is found by averaging
the measurements before the ramp starts and after the ramp completes.

Fig. 8.44 shows the EMPI measurements of the 20 s rampdown of mirror G, clearly
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exhibiting the same issue. However, I wanted to at least attempt to fix the data. In this data,
there are two sets of 200 measurements separated by sequence bridges which are affected by
the sequence bridging failure. There is one sequence which triggers the magnet rampdown,
so the timing of that sequence cannot be wrong. Then there is a second sequence which
performs most of the measurements during the rampdown, and then there is a third sequence
which is used to observe the ending of the rampdown. First, in the analysis, I adjusted the
measurement times for this third sequence so that the analysis agreed with the measurements
in the center of mirror A about when the ramp ended. In more detail, in both the mirror A
and the mirror G measurements, I fit lines to a few measurements before and after the ramp
ends, and I found what time those lines intersected, which was 20.0025 s. The timing of the
mirror G data was adjusted to agree on this “inferred ramp end timing.” Next, the timing
of the middle sequence was adjusted so that a linear fit to the last few measurements of
that sequence agreed with a linear fit to the first few measurements of the next sequence. Of
course, both of these methods introduce a tremendous amount of bias that the measurements
at mirror G should agree with the measurements at mirror A, and that is exactly what I was
attempting to measure. Therefore, one should not take these measurements too seriously. It
is worth pointing out however that by fixing this error we can get good agreement between
the dynamic EMPI measurements in mirrors A and G, as shown in Fig. 8.45. Barring
a particularly coincidental magnetic field error—a bump in the magnetic field that spans
exactly 4–15 s after the ramp starts, or the ramp ending at a different time in mirrors A
and G—this measurement is useful for ruling out errors in the ALPHA-g measurement that
cannot be measured in static fields. Note that the offset between the two measurements
before the ramp starts is not physical; it is ruled out by ECR measurements in these static
magnetic fields. This must be the result of a measurement error; some sources of error are
discussed in the beginning of Sec. 8.4. In fact, because the spiraling was not tuned near the
center of mirror G as it was near the center of mirror A, most of these systematic errors are
much larger in the mirror G measurements. This is also why the spread of the measurements
is much larger for mirror G.
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Figure 8.44: Measurements of the magnetic field using dynamic EMPI in the center of mirror
G during a 20 s rampdown of the mirror coils.
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Figure 8.45: The EMPI magnetic field measurements are compared between the center of
mirror G (orange) and the center of mirror A (blue). These measurements were performed
during a 20 s rampdown of the mirror coils with 0g bias—the magnetic field in both axial
locations was meant to be the same. I have subtracted the same linear approximation from
both measurements—the ECR measured magnetic field in the center of mirror A during
identical magnet ramps.

8.4.3 Octupole deviations

The ALPHA collaboration has long known that when plasmas are dumped from a combined
Penning-Malmberg and magnetic minimum trap with the octupole for the magnetic mini-
mum trap energized, the plasmas do not image as circles. An example of a positron plasma
dumped toward the MCP in ALPHA-2 is shown in Fig. 8.46.

Figure 8.46: An MCP image of a positron plasma dumped in the presence of an octupole
field.

The effect of the octupole is very weak in the center of the trap—far too weak to actually
perturb the shape of the plasma to this extent. Rather, this effect occurs because the
positrons follow magnetic field lines as they move toward the MCP; the octupole magnet
distorts the magnetic field lines. We expect circular plasmas to appear on the MCP as more
of a square shape due to this effect. The magnetic field of the octupole is proportional to
r3[r̂ cos 4θ + θ̂ cos 4θ]. Therefore every 90 degrees there should be a magnetic field pointing
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outward, deviating magnetic field lines outward, and between those angles there should be a
magnetic field pointing inward. The effect we observe is clearly asymmetric though, which
probably indicates some misalignment between the octupole, the electrodes, the external
solenoid for the Penning-Malmberg trap, the magnets that boost the magnetic field at the
MCP, or any combination of these elements. Of course some of these components are known
to have imperfect alignment (see Sec. 6), but I have not checked if these known misalignments
can explain the magnitude of the effect seen here.

I was initially concerned that this would be a significant disruption to EMPI measure-
ments. Instead of the clouds landing along a circle, that circle would be distorted, leading
to some error in the measured magnetron phase versus time. I was even resistant to trying
EMPI measurements in the presence of the octupole magnet, but other members of the col-
laboration insisted that EMPI measurements would be much more interesting if they were
performed in a magnetic field that was as similar as possible to the fields used for the actual
ALPHA-g measurement. Ultimately, I tried dynamic EMPI with the octupole energized,
and the issue was not bad at all—in fact all of the measurements presented in this section
were performed with the octupole energized.

In Fig. 8.47, I show the position that clouds land on the MCP for a very large number of
clouds observed at various magnetron phases during EMPI measurements. As expected, we
find that the deviation from a circular shape is worse the further the clouds move through
the octupole on the way to the MCP. Near the center of mirror A, the bottom of the
antihydrogen trap, and very close to the bottom of the octupole, the deviation from a circle
is nearly imperceptible. Near the center of mirror G, the effect is clearly visible. However,
when we fit a circle to the mirror G data, the maximum deviation of the shape from the
circle is less than the spread of the cloud positions due to their initial magnetron motion.
This data does not illustrate the angular deviation of the cloud positions from the nominal
angular position, but we can infer that these angular deviations will be roughly the same
size as the radial deviations divided by the radius. Thus, for measurements closer to mirror
A, this issue is essentially negligible. For measurements closer to mirror G, the maximum
possible error is a bit less than half the nominal spread of measurements.

I wonder if this effect could be used in any way to measure the magnetic field of the
octupole, or even to measure errors in the magnetic field of the octupole. It would be a very
significant research project to figure out how to interpret these results.

8.5 Persistent Currents

Originally, the term “persistent current” referred to a current running through a closed loop
of superconducting wire. Such a situation can be achieved by cooling a superconducting
loop below the phase transition temperature in the presence of an external magnetic field,
then turning off the externally applied magnetic field. Like in an ordinary conducting loop,
a current will be generated which preserves the magnetic flux through the superconducting
loop. Unlike in an ordinary conducting magnet, this current will not decay over time.

In this section I discuss persistent currents that are unintentionally generated by at-
tempting to change the current in a superconducting magnet. The ALPHA-g magnets are
not closed superconducting loops; they are driven by power supplies at 300K. However,
superconducting loops still exist within the wires. Current can run in one direction on the
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Figure 8.47: The position of the centers of clouds imaged on the MCP during EMPI mea-
surements is shown with blue dots. The black circle is fit to the data, and the red X indicates
the center of that fit circle.

top of a single superconducting filament and in the opposite direction on the bottom. The
loop could be closed at the end of the superconducting wire. When we change the externally
applied current in one of the magnets, we attempt to change the magnetic flux through
such superconducting loops in nearby magnets (and especially in the magnet whose current
we change). This effect is limited by the “saturation current”—at a certain magnetic field
strength and temperature, there is a maximum current that a superconductor can support
before it reverts to a normal-conducting phase.

This was first discovered as an experimental difficulty in the Tevatron, where it was
observed that the behavior of the beam depended on the history of the magnets and that
the magnetic field changed with time [131, 132]. Since then, the effect has been studied at
DESY [133], RHIC [134, 135], the LHC [136, 137], and as part of a design study for the
FCC [138]. These studies show effects that are qualitatively similar to what we observe at
ALPHA, and they are a similar order of magnitude.

In ALPHA-g, we first observed slow decreases in the magnetic field (O(0.1mT) over
several hours), which we measured with ECR. We attributed this to persistent currents, and
we assumed the size of this decay reflected the size of the persistent currents. However, EMPI
provided the first observation that changing the currents in any of our magnets would induce
persistent currents which would perturb the magnetic field by O(1mT). These changing
persistent currents also caused the magnetic field to change nonlinearly with the current
change in a magnet. Only some small fraction of that effect was observed to decay. However,
I did not immediately assume the effect was real—at the time I had not read any papers
about the effect. The effect is large enough that it could have been easily measured with
ECR, so I assumed that the nonlinearity I observed in EMPI measurements of the magnetic
field during magnet ramps was instead a correction to the magnetron frequency that I hadn’t
considered. In hindsight, many earlier ECR measurements did show bumps in the magnetic
field near the mirror coils that were undoubtedly due to persistent currents. At the time, we
blamed these bumps on small currents that might have been running through the coils due
to small errors in the power supplies.
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EMPI was able to show this effect of persistent currents before ECR simply because it
could measure the magnetic field at several hundred current values between 70A and 0A
in 20 s, the time it takes to ramp down the current. Later we confirmed with ECR that
if we change the current in the magnets in steps, we also observe a nonlinear change in
the magnetic field from the creation of persistent currents. Because of the amount of input
needed from the operator, these measurements took several hours. This is also why such a
measurement was never done prior with ECR—the ALPHA collaboration is often operating
with extremely limited time, and these measurements were not deemed to be important
enough.

8.6 ECR measurements of persistent currents

In Sec. 8.3, I showed several qualitative features of persistent currents in ALPHA-g. I
showed that persistent currents resist a change in the magnetic flux through superconducting
material, and I showed the on-axis effect of persistent currents generated while ramping down
a mirror coil. I also showed that the creation of persistent currents resembles an “exponential
saturation.” In this section, I will describe ECR measurements of persistent currents that
will introduce a few more qualitative features.

First, we observe that after a magnet’s current is changed, the persistent currents that
were created by that change decay over time. Ph.D. student Adam Powell designed an
ECR measurement procedure where one reservoir was used to measure the magnetic field 8
times in quick succession. He extracted 200 clouds from a reservoir; for the first 25 clouds,
the microwave frequency was swept and a cyclotron resonance was observed. For the next
25 clouds, the microwave frequency sweep was reset so that a second resonance could be
observed at a later time. This data, shown in Fig. 8.48, shows that after the mirror coils were
ramped down for the ALPHA-g measurement, the magnetic field decayed by about 0.05mT
in 100 s. This effect is hard to observe with EMPI because it lacks sufficient precision; in
some measurements, it is arguably observable, but not very clearly. Fig. 8.49 further shows
how the magnetic field decays over the course of hundreds of seconds after the mirror coil
rampdown.

The “exponential saturation” behavior of persistent currents was confirmed with ECR
measurements after being observed with EMPI. As a reminder, in Sec. 8.3, I showed that
when we changed the current in the mirror coils, the magnetic field change in a particular
axial trap location z had a nonlinear component that is well-approximated by A(z)[1 −
exp(−∆I/I0)], where ∆I is the (strictly positive) change in the current, I0 is an “exponential
current scale,” and A(z) is the maximum effect that persistent currents will have for a very
large change in the current. Further, with ECR, we found that persistent currents depend
on which other magnets are energized in the moment that one magnet’s current is changed.
In Fig. 8.50, I show the exponentially saturating part of the change in the magnetic field in
five different situations where the mirror coil currents are changed in 10 steps between 0A
and 70A. First, we observe that when the mirror coils are ramped down with the octupole
magnet energized, the persistent current effect is about half as big. Although the octupole
provides very little magnetic field on-axis, it significantly increases the magnetic field where
the superconducting material is located. Thus we expect that the octupole reduces the
critical current and will reduce the effect of persistent currents—the critical current is lower
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Figure 8.48: Cloud temperatures are plotted versus microwave frequency for the 8 microwave
frequency sweeps used to measure the decay of the magnetic field shortly after ramping
down the mirror coils. This data was collected by Dr. Chris Rasmussen, and the original
measurement technique was designed by Ph.D. student Adam Powell.
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Figure 8.49: The magnetic field, measured with ECR, is reported versus time after ramping
down the mirror coils. Four reservoirs are used, and with each reservoir, the magnetic field
is measured 8 times in the manner shown in Fig. 8.48. On the right, I zoom in on the first
8 measurements. The orange data comes from the center of mirror G, and the blue data
comes from the center of mirror A. This data was collected by Dr. Chris Rasmussen, and
the original measurement technique was designed by Ph.D. student Adam Powell.

when the magnetic field in a superconductor is higher. Interestingly, with the octupole
energized, we find that A(z) is roughly halved, and I0 is also halved, likely indicating a
relationship between the two variables. Next, we observe that when the mirror coils are
ramped down after just having been ramped up, we get twice the exponential saturation
than if the most recent magnet operation were something else. In the experimental protocol
for the ALPHA-g measurement, the last magnet operation before ramping down the mirror
coils was to ramp down the “long octupole.” This magnet was intended to boost the field
of the “short octupole,” enhancing antihydrogen trapping, but it was not symmetric about
the center of the trap, so we needed to ramp it down before performing the ALPHA-g
measurement. We believe that this operation “deleted” the persistent currents that were
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induced by ramping the mirror coils up. Without this long octupole rampdown, when we
ramp down the mirror coils, we are both creating persistent currents from ramping down
and removing the persistent currents from previously ramping up.
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Figure 8.50: The exponential saturation of persistent currents is plotted as we change the
current in the mirror coils. In the legend, the relevant context for each measurement is
provided. The exponentially saturating part of the magnetic field is calculated by fitting a
linear function plus an exponential saturation function to the magnetic field versus mirror
current. Then the linear component of that fit is subtracted from the data.

In hindsight, we had evidence of a nonlinear change in the magnetic field long before I
developed EMPI. At one point, we were concerned that the on-axis magnetic field produced
by the octupole magnet would be a significant issue in the ALPHA-g measurement. To
investigate this field, we first measured the magnetic field versus octupole current in two
on-axis trap locations. This data is shown in Fig. 8.51. In one trap location, we find that
the exponential saturation is nearly as big as the nominal effect of the octupole. At the time,
we thought this might be explained by the octupole field pointing in a different direction
than the nominal on-axis field, but this model is not a good fit to the data, and the octupole
should not be creating such a large on-axis transverse magnetic field. In hindsight, this is
clearly a change in persistent currents from changing the current in the octupole. This does
not necessarily mean persistent currents have a significant effect on the on-axis magnetic field
when the octupole has saturated persistent currents (∆I ≫ I0). It is possible (likely, even),
that Fig. 8.51 is showing how the octupole ramp removes the persistent currents generated
by whatever magnet was ramped prior.

After this measurement, we attempted to measure the on-axis effect of the octupole
magnet by measuring the magnetic field versus z with and without the octupole energized.
The results are shown in Fig. 8.52. Qualitatively, we observe the expected result—that the
“end turns” of the octupole produce an easily measurable on-axis magnetic field. This end
turn field was at most about 6mT, a similar order of magnitude to the persistent currents
generated by ramping the mirror coils. However, the shape of this effect was not in good
agreement with a model of the octupole, and we also did not expect to find that the magnetic
field in the center of the trap was significantly perturbed.

Earlier, in Sec. 8.3.1, I argued that the on-axis effect of persistent currents generated
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Figure 8.51: The on-axis magnetic field is measured in two axial trap locations versus current
in the octupole. The black lines are exponential saturation plus linear fits.

by ramping the octupole should be very small (smaller than the ordinary on-axis effect of
persistent currents). This is because most of the magnetic field produced by the octupole
near the superconducting material is proportional to cos 4θ. Thus it seems natural that most
of the magnetic field produced by persistent currents generated when ramping the octupole
would have the same azimuthal variation. By extension, the on-axis effect would be very
small; any magnetic field that varies azimuthally like cos 4θ must also be proportional to r3

for small r. This assertion was experimentally confirmed in Sec. 8.3.1 by the observation that
the on-axis magnetic field does not measurably change over time after ramping the octupole
down. However, this is a very imprecise way of measuring persistent currents because only
a small fraction of the total effect decays over time. That observation probably cannot rule
out persistent currents that are five or ten times weaker on-axis than those produced by
ramping the mirror coils. Such a correction would still be perceptible in Fig. 8.52. Also,
this cos 4θ argument might break down when we consider the persistent currents generated
in mirror coils by the octupole ramp, or when we consider the end turns of the octupole. In
conclusion, the persistent currents produced by ramping the octupole are simply not well-
measured, and field maps like Fig. 8.52 may be affected by these persistent currents. In
the future, to resolve this debate, one should simply measure the magnetic field versus z
for several different octupole currents to separate the linear effect from the exponentially
saturating effect. Then we will know with greater certainty how much on-axis magnetic field
is produced by octupole construction errors.

Because the on-axis effect of octupole ramp persistent currents is at least significantly
smaller than those induced by mirror ramps, octupole ramps can be used to “reset” per-
sistent currents and to create a highly reproducible on-axis magnetic field. This technique
relies on the fact that octupole ramps were observed to “saturate” persistent currents—in
Fig. 8.51, the fit value of I0 was much smaller than the change in current ∆I = 800A. In
Fig. 8.53, I begin by measuring the on-axis magnetic field after having just ramped down
the octupole. Next, I ramp the mirror coils up and down, producing bumps of about 3mT
from persistent currents. Finally, I ramp the octupole back up and down, and the bumps
have been removed. Actually, it is very beneficial for the ALPHA-g measurement that most
of our magnet operations seem to saturate persistent currents. Otherwise, the magnetic field
would not have been reproducible from one trial to the next.

239



0.8 0.7 0.6 0.5 0.4
axial position (m)

0.996

0.998

1.000

1.002

1.004

1.006

|B
| (

T)

Figure 8.52: The magnetic field is plotted versus axial position with the octupole energized
(blue +) and after ramping down the octupole (orange +). Also, the measurements of the
magnetic field at full octupole current shown in Fig. 8.51 are shown with a red X, and
the result of subtracting the exponentially saturating persistent currents is shown with a
black X. This is meant only to illustrate the order of magnitude of the persistent currents.
The measurements with the octupole energized were performed first, and the only magnet
operation between the two datasets was a rampdown of the octupole.
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Figure 8.53: The initial magnetic field magnitude versus axial position is shown with blue
X’s. The magnetic field after ramping the mirror coils up and down is shown with orange
+’s. The magnetic field after “resetting” persistent currents by ramping the octupole current
up and down is shown with green O’s.
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9 Unsolved mysteries

9.1 Imaged cloud “reflections”

This last chapter describes a caveat that applies to the analyses of all the other chapters
in this thesis. Occasionally, when we image an electron cloud on the MCP, we see multiple
spots, as seen in Fig. 9.1. We initially assumed that this was just a reflection of light—for
example light could be bouncing off the front of the camera lens then again off the vacuum
window between the MCP and the camera, similar to a “lens flare.” This phenomenon occurs
in both ALPHA-2 and in ALPHA-g. In both cases, there are certain regions of the MCP
where it is more prevalent. In ALPHA-g, it is the right side of the imageable region of the
MCP. Another proposed explanation for this was that electron clouds were bouncing axially
in the trapping potential, and when they are being dumped, a spurt of electrons is released a
few times when this bounce motion approaches the escaping edge of the trapping potential.
However, this explanation is not consistent with the fact that the “reflections” are always
displaced in the same direction (to the lower left in ALPHA-g). This explanation would
require the reflections to trace out the magnetron orbit of the cloud.

Figure 9.1: An example of an MCP image of an electron cloud where multiple spots appear.

One day while doing patch potential measurements, I saw conclusive evidence that these
were not optical reflections. The magnet that boosts the magnetic field near the MCP shut
off unexpectedly in the middle of my measurement, and I noticed that these “reflections” got
further apart as the magnet ramped down. Thus I set up an experiment where I tested this
effect intentionally. Clouds were repeatedly moved to a test location in the trap, moved off
axis, then imaged when they were at a particular magnetron phase where this effect could
be clearly observed. I imaged about one cloud per second, and I ramped down the magnets
near the MCP over the course of 100 s. Some MCP images from this experiment are shown
in Fig. 9.2. We clearly observe these reflections moving farther apart as the magnet ramps
down.

In case there was any remaining doubt that these secondary spots are the effect of real
electrons hitting the MCP, consider that when the magnetic field at the MCP is low enough,
with the clouds becoming larger from the magnification and the secondary spots becoming
further apart, we see individual electrons. Second, the “reflections” still are visible when
the magnetic field at the MCP has gotten so low that the primary cloud misses the MCP
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Figure 9.2: MCP images of clouds over the course of the experiment where the magnetic
field at the MCP was ramped down. Unlike in Fig. 9.1, I have zoomed in on the interesting
part of the picture.

altogether and is not successfully imaged at all. Examples of these phenomena are shown in
Fig. 9.3.

Figure 9.3: Two examples of MCP images of electron clouds with a very weak magnetic
field at the MCP. The brightness is increased dramatically relative to the other MCP images
shown in this section.

Dr. Chris Ørum Rasmussen, the technical coordinator of the ALPHA collaboration,
suggested that these so-called reflections may be electrons that bounce off the front of the
MCP, and by the time they return to the MCP they land in a slightly different place.
Previous authors have studied the phenomenon of electrons bouncing off metal surfaces for
the purpose of optimizing accelerator performance. These so-called “secondary electrons”
can disrupt the beam in an accelerator. In Refs. [139] and [140], electrons are directed
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toward a metal surface, and the energy distribution of electrons ejected from that surface
is measured. Not only are electrons observed coming off the metal surface, some electrons
“bounce,” coming off the metal surface with nearly the same energy they had initially. This
“elastic peak” decreases in magnitude as the electron energy increases, but it is still clearly
visible at the energies of our electrons (about 150 eV). I highlight this elastic peak because
the front of the MCP is charged to 100V. If secondary electrons are generated with less than
100 eV, they will not stray far from the MCP surface. If they are elastically reflected, they
may even follow magnetic field lines all the way back to the interior of the trap and bounce
off the potential inside the trap that was initially used to eject them toward the MCP.

If the electrons are perfectly following magnetic field lines, they should simply return to
the same location on the MCP that they came from. However, in Sec. 3.5, I showed that it
was plausible that electrons dumped toward the MCP are slightly affected by E × B drift
from the electric field of the MCP. This could explain why this phenomenon is more visible
closer to the edge of the MCP; the electric field should have a larger component perpendicular
to the magnetic field there. Thus I propose that secondary electrons are generated all across
the MCP, but only in some locations do they land in a visibly different location on the MCP
when they return.

To further study this phenomenon, I analyzed how the distance between the dots on the
MCP varies with the magnetic field. For each picture in the experiment described above, I
fit a “Gaussian peak series” to the dots visible on the MCP. In more detail, the fit function
was a sum of Gaussians of standard deviation σ (in units of pixels) and maximum value
A. Each successive Gaussian was displaced from the previous one by (∆x,∆y), and each
successive Gaussian had a smaller maximum value by a factor of f . An example of one such
fit function and the image it fits to is shown in Fig. 9.4
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Figure 9.4: The left plot is an MCP image of a cloud. The middle plot is the resulting
Gaussian peak series fit. The third plot is the difference between the two.

The resulting cloud radii and distances between spots is shown in Fig. 9.5. Using a model
of the magnetic field, we can find the power law relationship between these distances and the
magnetic field at the MCP. The cloud radii are expected to scale like

√
Btrap/BMCP, and we

find a power law of 1/B0.39
MCP. The cloud radii are much harder to precisely determine than the

distance between clouds because the radius is much smaller. The power law for the distance
between dots is found to be 1/B1.27

MCP. Given the error on the radius power law, we don’t
expect this power law to be extremely accurate. This measurement could be consistent with
either 1/BMCP or 1/B1.5

MCP. It is certainly not consistent with 1/B0.5
MCP, further proving that

these dots are not simply electrons that were dumped from a different transverse position
within the trap.
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Whether the electrons return all the way to the trap or if they only reach a short distance
above the MCP, the expected power law is 1/BMCP. If we assume the E×B drift occurs near
the surface of the MCP, the electrons E×B drift with a velocity proportional to 1/BMCP for
a fixed amount of time (not a function of BMCP). Some complication may occur because in
this experiment, the clouds were drifting further toward the edge of the MCP as the magnetic
field decreased. This may enhance the observed power law. We know that the phenomenon
is more clearly visible further toward the right edge of the MCP, but I have not managed to
study the dependence on MCP position in detail.
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Figure 9.5: The normalized distance between dots in the MCP images (left) and the nor-
malized radius of the dots (right) is plotted versus time since triggering the MCP magnet
rampdown. Note that after about 75 s, the clouds are no longer visible on the MCP, although
the magnets are continuing to ramp down. A power law fit function is shown with a black
line.

This phenomenon is concerning for the analyses presented throughout this thesis for
several reasons. First, when the secondary spots overlap with the primary spots, they drag
the identified cloud center slightly toward the bottom left of the MCP. Second, the model
I have described for these secondary spots implies that there is some non-negligible E × B
drift experienced by the electrons on their way to the MCP, and that this drift is not uniform
across the face of the MCP. This may mean that circles inside the trap are distorted by this
drift. So far, this effect has not been clearly visible in any data, but if we ever want to rely
on the position of a cloud center on the MCP for precision measurements, we may need to
study this phenomenon in detail. In the most precise measurement in this thesis, EMPI, the
precision of the measurement does not so much rely on the precision of one identified cloud
center; it relies on the cloud performing many magnetron orbits. Thus I don’t believe that
this effect is a significant source of error for any of the cloud-based measurements in this
thesis. However it is somewhat embarrassing that I don’t have a conclusive explanation for
one of the most obvious features of the data used throughout this thesis.
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Figure 9.6: The cloud charge and radius is plotted for clouds successively drawn from a
reservoir. The charge is found using the calibrated brightness of the cloud in its MPC
image. The radius is calibrated using the technique described in Sec. 3.5. On the right, I
have zoomed in on the peaks using arbitrary horizontal and vertical offsets.

9.2 Cloud charge spike

When fairly large scoops are removed from the reservoir, we occasionally see “spikes” where
2–5 clouds will suddenly have greater charge and radius than the others. These spikes are
visible in Fig. 9.6. When we vary the charge in each cloud by varying the scooping voltage
step size, we find that this spike occurs later in the scooping process if the clouds are smaller.
This suggests that the phenomenon occurs either when a fixed amount of total charge is
removed from the reservoir or when the electrode voltages used to extract clouds from the
reservoir have reached a certain value. Thus understanding the spike probably would require
delving into the plasma physics of the reservoir. It certainly cannot be explained within the
simple electrostatic model of the reservoir described in Sec. 2.2.

Of course, I cannot be completely sure that this is “real physics,” and not some quirk
of the electronics controlling the experiment. One piece of evidence that it is a real phe-
nomenon is that when I slightly reduced the cloud charge by roughly doubling the extraction
frequency, the spike occurred slightly later. This phenomenon may depend on any number
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of parameters, for example the exact potentials used to extract clouds from the reservoir; I
have not performed any dedicated experiments to study it.

This spike may be an issue for EMPI measurements at high precision, or at least it should
be avoided. The changing cloud properties affect the cloud’s magnetron frequency, possibly
leading to an erroneous measurement showing that the magnetic field has “spiked.”
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10 Conclusions

In this thesis, I have introduced a collection of measurement techniques using electron clouds.
The techniques fall into two categories: precision magnetic field measurements and measure-
ments of experimental issues that plague all Penning-Malmberg traps. With each measure-
ment technique, systematic errors are investigated, revealing subtleties in the motion of
electron clouds or the behavior of the trapping apparatus. The end result is a comprehen-
sive description of electron cloud dynamics in a Penning-Malmberg trap. Electron clouds
can be used as versatile measurement tools—they can be used to directly measure sources
of error in precision measurements, and they can be used to deduce the underlying causes
of unexpected experimental phenomena.

I hope that future researchers implement plasma reservoirs and find new applications for
the clouds extracted from those reservoirs. To that end, in Sec. 2, I have written a complete
guide on how to implement a reservoir and I have pointed out issues with reservoirs observed
at ALPHA. In Sec. 5, I have described how to measure the properties of the electron clouds
extracted from a reservoir.

The first two things I measured with electron clouds were patch potentials and mis-
alignment. These two construction errors have long been blamed for plasma expansion and
heating in Penning-Malmberg traps. With electron clouds, we now have a way of measur-
ing patch potentials and misalignment independent of plasma expansion. Perhaps future
authors will use these techniques to study the relationship between asymmetry and plasma
heating. In Sec. 4, I provide a number of hypotheses about what effects limit our ability
to cool positrons, and I give tentative evidence to support those hypotheses. If this work
continues, it may lead to concrete suggestions for how the ALPHA experiment can achieve
lower positron temperatures and increase antihydrogen trapping rates.

Electron clouds have been used for two kinds of magnetometry: ECR and EMPI. Sec. 7
described a novel extension of ECR where the clouds are moved off-axis. This thesis also
provides a complete explanation of EMPI and the sources of error present in EMPI mea-
surements. Although EMPI is much more complicated then ECR in implementation and
analysis, it complements ECR by performing measurements more quickly and with less day
to day tuning. EMPI can ultimately achieve a sufficient measurement precision for informing
measurements of gravity on antihydrogen—1 part in 104 for dynamic measurements and 1
part in 105 for measurements of unchanging magnetic fields.

These new measurement techniques have revealed several observations that affect the
way ALPHA is operated today.

1. We know from the misalignment measurements that there is a ∼ 70µm offset between
two electrodes in the ALPHA-g Penning-Malmberg trap, so now electron clouds are
moved more slowly through that region to prevent this misalignment from exciting a
magnetron orbit. We have also learned that the external magnet may not be perfectly
straight, so further attempts to align may result in a trade-off involving plasma behavior
improving in some trap locations and worsening in others.

2. Using the patch potential measurements, we were able to understand why the 1S–2S
laser degrades antihydrogen trapping, and we were able to understand why warming the
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trap restores nominal behavior. We also were able to identify the issue that prevented
antihydrogen trapping entirely in the 2021 ALPHA-g experimental run.

3. Off-axis ECR revealed a misalignment of about 100µm between one of the ALPHA-
g magnets and the trap electrodes. This kind of misalignment produces a systematic
error on the measurement of the effect of gravity on antihydrogen. The systematic error
was not significant enough to be listed in the sources of error for the first ALPHA-g
measurement, but the ALPHA collaboration hopes to improve their measurement in
the future. They should keep in mind that this kind of magnetic error is possible, and
these misalignments should be measured carefully.

4. EMPI revealed several qualitative features of persistent currents that were not seen
in ECR measurements. EMPI was used to measure how persistent currents increase
with time when we change the magnetic flux through superconducting wires, and it
was used to map the effect of persistent currents versus axial position in the trap.
The magnitude of these persistent currents is well above the required magnetometry
precision needed for ALPHA-g measurements. Thus it should not be assumed that the
magnetic field changes linearly with magnet current in ALPHA-g.

Throughout this thesis I have identified many sources of error that, to varying extents,
apply to all cloud-based measurements. Below I list some systematic effects that one should
be aware of if they intend to use electron clouds for precision measurements:

1. A critical conclusion of Sec. 5.4 is that a cloud’s length and its image charge affect its
magnetron frequency and how far it is moved off axis by patch potentials.

2. In Sec. 5.4.3, I show an unexpected linear variation in the magnetron frequency versus
distance from the trap axis. I proposed that this is due to the clouds being significantly
heated by the process used to move them off-axis.

3. Using an “artificial patch potential,” I showed that there can be nonlinear corrections
in the method used to move clouds off-axis (see Sec. 3.13).

4. In order to investigate systematic errors for EMPI, I derived higher order corrections to
the magnetron frequency of electron clouds, and I derived how the magnetron frequency
varies with radial displacement in the presence of imperfect trapping potentials and a
non-constant magnetic field (Sec. 8.2). I later verified those equations with simulations
and experimental data.

5. In Sec. 6.4, I showed that a cloud’s position on the MCP can be significantly affected
by the rate at which electrode voltages change.

6. In Sec. 9.1, I explained our observations of as-of-yet unexplained secondary spots in
MCP images, which pose challenges for our analysis of cloud positions on the MCP.

There is the potential for radical improvement in every measurement technique described
in this thesis. If the variability of the initial positions of clouds is reduced, all of the cloud
based measurements will become more precise or they could be performed more quickly.
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Two sources of cloud position variability—cloud movement speed and reservoir diocotron—
are essentially well understood and can be avoided. However, the intrinsic magnetron is still
only explained by a tentative hypothesis. This hypothesis suggests that if patch potentials
or misalignment near the reservoir are reduced, the intrinsic magnetron will probably be
reduced. Alternatively, if intrinsic magnetron cannot be fixed, the clouds could be forced
back to the center of the trap. Other members of the ALPHA collaboration have considered
using a segmented electrode to move clouds on-axis. They have proposed using a backwards
autoresonant drive [141] or simply implementing a reversed version of the technique used to
move clouds off-axis.

EMPI was implemented under significant time pressure, and as such many mistakes are
visible in the final data. Just by fixing the following four mistakes the measurements will be
much more precise and thorough:

1. There was an issue with the “sequence bridging” which ruined EMPI measurements
in many axial trap locations. Alternatively, one could remove the need for sequence
bridging by improving the hardware controlling the electrode voltages.

2. Trapping potentials with zero spiraling should be used. This was implemented in one
axial trap location, and as a result the EMPI measurements from that location are
vastly improved.

3. One badly behaving electrode amplifier was fixed, but another was not identified early
enough, so EMPI measurements near that electrode failed.

4. The reservoirs were not given sufficient time to settle to stable behavior before per-
forming EMPI measurements.

Moreover, there is a lingering disagreement between ECR measurements and EMPI measure-
ments at the 10−4 level, as described in Sec. 8.4. This disagreement is only about a factor of
2–3 bigger than known errors, so perhaps general improvements to the measurement proce-
dure will resolve the issue. Alternatively, in Sec. 8.3.5, I suggested that that this discrepancy
could be due to variability in cloud temperatures, but this hypothesis is yet to be tested
in any way. The EMPI/ECR disagreement may or may not be related to the mystery pre-
sented in Sec. 5.4.3—the observation of a magnetron frequency shift which was linear with
magnetron radius, which was also explained with cloud temperatures. This linear frequency
shift was ignored in the EMPI analysis because it wasn’t visible in the EMPI calibration
data. In general we can say that more research will be needed to understand how cloud
temperatures are affected by different measurement procedures (and how the measurements
are affected by cloud temperatures).

I did not have enough time to sufficiently explore the parameter space for off-axis ECR.
It is likely that significant improvements in the precision of off-axis ECR could be achieved
by tuning the microwave pulses and varying the magnetron frequency of the clouds. Sim-
ilarly, the data from the misalignment measurements revealed a discrepancy that I hadn’t
anticipated. I provided a well-justified hypothesis that might explain the issue. If someone
were to validate this hypothesis, they may be able to confidently claim ∼ 10µm precision in
their misalignment measurements.
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I will not personally be implementing these improvements; I will start a postdoc doing
precision measurements of the fine structure constant with atom interferometry [142]. How-
ever, I will happily support anyone else who wants to develop properly optimized versions
of these cloud-based measurements.
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P. Grandemange, P. Granum, J. S. Hangst, M. E. Hayden, D. Hodgkinson, E. D.
Hunter, C. A. Isaac, A. J. U. Jimenez, M. A. Johnson, J. M. Jones, S. A. Jones,
S. Jonsell, A. Khramov, N. Madsen, L. Martin, N. Massacret, D. Maxwell, J. T. K.
McKenna, S. Menary, T. Momose, M. Mostamand, P. S. Mullan, J. Nauta, K. Olchan-
ski, A. N. Oliveira, J. Peszka, A. Powell, C. Ø Rasmussen, F. Robicheaux, R. L. Sacra-
mento, M. Sameed, E. Sarid, J. Schoonwater, D. M. Silveira, J. Singh, G. Smith,
C. So, S. Stracka, G. Stutter, T. D. Tharp, K. A. Thompson, R. I. Thompson,
E. Thorpe-Woods, C. Torkzaban, M. Urioni, P. Woosaree, and J. S. Wurtele. Ob-
servation of the effect of gravity on the motion of antimatter. Nature, 621(7980):
716–722, Sep 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06527-1. URL
https://doi.org/10.1038/s41586-023-06527-1.

[2] Celeste Carruth. Methods for plasma stabilization and control to improve antihydrogen
production. PhD thesis, University of California: Berkeley, 2018.

[3] M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, A. Capra, C. Carruth,
C. L. Cesar, M. Charlton, S. Cohen, R. Collister, S. Eriksson, A. Evans, N. Evetts,
J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, J. S. Hangst, W. N. Hardy,
M. E. Hayden, C. A. Isaac, M. A. Johnson, S. A. Jones, S. Jonsell, L. Kurchani-
nov, N. Madsen, M. Mathers, D. Maxwell, J. T. K. McKenna, S. Menary, T. Mo-
mose, J. J. Munich, K. Olchanski, A. Olin, P. Pusa, C. Ø. Rasmussen, F. Ro-
bicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M. Silveira, C. So, G. Stut-
ter, T. D. Tharp, J. E. Thompson, R. I. Thompson, D. P. van der Werf, and
J. S. Wurtele. Enhanced control and reproducibility of non-neutral plasmas. Phys.
Rev. Lett., 120:025001, Jan 2018. doi: 10.1103/PhysRevLett.120.025001. URL
https://link.aps.org/doi/10.1103/PhysRevLett.120.025001.

[4] Eric Hunter. Cavity and Microwave Experiments on Electron Plasma. PhD thesis,
University of California: Berkeley, 2019.

[5] E. D. Hunter, A. Christensen, J. Fajans, T. Friesen, E. Kur, and J. S. Wurtele. Electron
cyclotron resonance (ECR) magnetometry with a plasma reservoir. Physics of Plasmas,
27(3):032106, 03 2020. ISSN 1070-664X. doi: 10.1063/1.5141999. URL https://doi.

org/10.1063/1.5141999.

[6] D. B. Newell and E. Tiesinga. The international system of units (si). NIST Special
Publication, 330:1–138, 2019. URL https://doi.org/10.6028/NIST.SP.330-2019.

[7] M. Knoop, N. Madsen, and R. C. Thompson. Trapped Charged Particles.
WORLD SCIENTIFIC (EUROPE), 2016. doi: 10.1142/q0004. URL https://www.

worldscientific.com/doi/abs/10.1142/q0004.

251

https://doi.org/10.1038/s41586-023-06527-1
https://link.aps.org/doi/10.1103/PhysRevLett.120.025001
https://doi.org/10.1063/1.5141999
https://doi.org/10.1063/1.5141999
https://doi.org/10.6028/NIST.SP.330-2019
https://www.worldscientific.com/doi/abs/10.1142/q0004
https://www.worldscientific.com/doi/abs/10.1142/q0004


[8] T. M. O’Neil. A confinement theorem for nonneutral plasmas. The Physics of Fluids,
23(11):2216–2218, 11 1980. ISSN 0031-9171. doi: 10.1063/1.862904. URL https:

//doi.org/10.1063/1.862904.

[9] G. B. Andresen, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P. D. Bowe, E. But-
ler, C. L. Cesar, S. Chapman, M. Charlton, A. Deller, S. Eriksson, J. Fajans, T. Friesen,
M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, M. E. Hayden,
A. J. Humphries, R. Hydomako, M. J. Jenkins, S. Jonsell, L. V. Jørgensen, L. Kur-
chaninov, N. Madsen, S. Menary, P. Nolan, K. Olchanski, A. Olin, A. Povilus, P. Pusa,
F. Robicheaux, E. Sarid, S. Seif el Nasr, D. M. Silveira, C. So, J. W. Storey, R. I.
Thompson, D. P. van der Werf, J. S. Wurtele, and Y. Yamazaki. Trapped antihydro-
gen. Nature, 468(7324):673–676, Dec 2010. ISSN 1476-4687. doi: 10.1038/nature09610.
URL https://doi.org/10.1038/nature09610.

[10] M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, E. Butler, A. Capra, C. Carruth,
C. L. Cesar, M. Charlton, S. Cohen, R. Collister, S. Eriksson, A. Evans, N. Evetts,
J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N.
Hardy, M. E. Hayden, C. A. Isaac, A. Ishida, M. A. Johnson, S. A. Jones, S. Jonsell,
L. Kurchaninov, N. Madsen, M. Mathers, D. Maxwell, J. T. K. McKenna, S. Menary,
J. M. Michan, T. Momose, J. J. Munich, P. Nolan, K. Olchanski, A. Olin, P. Pusa,
C. Ø Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M.
Silveira, S. Stracka, G. Stutter, C. So, T. D. Tharp, J. E. Thompson, R. I. Thompson,
D. P. van der Werf, and J. S. Wurtele. Observation of the 1s–2s transition in trapped
antihydrogen. Nature, 541(7638):506–510, Jan 2017. ISSN 1476-4687. doi: 10.1038/
nature21040. URL https://doi.org/10.1038/nature21040.

[11] M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, A. Capra, C. Carruth, C. L.
Cesar, M. Charlton, S. Cohen, R. Collister, S. Eriksson, A. Evans, N. Evetts, J. Fajans,
T. Friesen, M. C. Fujiwara, D. R. Gill, J. S. Hangst, W. N. Hardy, M. E. Hayden, C. A.
Isaac, M. A. Johnson, J. M. Jones, S. A. Jones, S. Jonsell, A. Khramov, P. Knapp,
L. Kurchaninov, N. Madsen, D. Maxwell, J. T. K. McKenna, S. Menary, T. Momose,
J. J. Munich, K. Olchanski, A. Olin, P. Pusa, C. Ø Rasmussen, F. Robicheaux, R. L.
Sacramento, M. Sameed, E. Sarid, D. M. Silveira, G. Stutter, C. So, T. D. Tharp,
R. I. Thompson, D. P. van der Werf, and J. S. Wurtele. Characterization of the 1s–2s
transition in antihydrogen. Nature, 557(7703):71–75, May 2018. ISSN 1476-4687. doi:
10.1038/s41586-018-0017-2. URL https://doi.org/10.1038/s41586-018-0017-2.

[12] C Ø Rasmussen, N Madsen, and F Robicheaux. Aspects of 1s-2s spectroscopy of
trapped antihydrogen atoms. Journal of Physics B: Atomic, Molecular and Optical
Physics, 50(18):184002, sep 2017. doi: 10.1088/1361-6455/aa854c. URL https://dx.

doi.org/10.1088/1361-6455/aa854c.

[13] M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, E. Butler, A. Capra, C. Carruth,
C. L. Cesar, M. Charlton, S. Cohen, R. Collister, S. Eriksson, A. Evans, N. Evetts,
J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N.
Hardy, M. E. Hayden, C. A. Isaac, A. Ishida, M. A. Johnson, S. A. Jones, S. Jonsell,

252

https://doi.org/10.1063/1.862904
https://doi.org/10.1063/1.862904
https://doi.org/10.1038/nature09610
https://doi.org/10.1038/nature21040
https://doi.org/10.1038/s41586-018-0017-2
https://dx.doi.org/10.1088/1361-6455/aa854c
https://dx.doi.org/10.1088/1361-6455/aa854c


L. Kurchaninov, N. Madsen, M. Mathers, D. Maxwell, J. T. K. McKenna, S. Menary,
J. M. Michan, T. Momose, J. J. Munich, P. Nolan, K. Olchanski, A. Olin, P. Pusa,
C. Ø Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M.
Silveira, S. Stracka, G. Stutter, C. So, T. D. Tharp, J. E. Thompson, R. I. Thompson,
D. P. van der Werf, and J. S. Wurtele. Observation of the hyperfine spectrum of
antihydrogen. Nature, 548(7665):66–69, Aug 2017. ISSN 1476-4687. doi: 10.1038/
nature23446. URL https://doi.org/10.1038/nature23446.

[14] M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, A. Capra, C. Carruth, C. L.
Cesar, M. Charlton, S. Cohen, R. Collister, S. Eriksson, A. Evans, N. Evetts, J. Fajans,
T. Friesen, M. C. Fujiwara, D. R. Gill, J. S. Hangst, W. N. Hardy, M. E. Hayden, E. D.
Hunter, C. A. Isaac, M. A. Johnson, J. M. Jones, S. A. Jones, S. Jonsell, A. Khramov,
P. Knapp, L. Kurchaninov, N. Madsen, D. Maxwell, J. T. K. McKenna, S. Menary,
J. M. Michan, T. Momose, J. J. Munich, K. Olchanski, A. Olin, P. Pusa, C. Ø Ras-
mussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M. Silveira, D. M.
Starko, G. Stutter, C. So, T. D. Tharp, R. I. Thompson, D. P. van der Werf, and J. S.
Wurtele. Observation of the 1s–2p lyman-α transition in antihydrogen. Nature, 561
(7722):211–215, Sep 2018. ISSN 1476-4687. doi: 10.1038/s41586-018-0435-1. URL
https://doi.org/10.1038/s41586-018-0435-1.

[15] M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, A. Capra, C. Carruth, C. L.
Cesar, M. Charlton, S. Cohen, R. Collister, S. Eriksson, A. Evans, N. Evetts, J. Fajans,
T. Friesen, M. C. Fujiwara, D. R. Gill, P. Granum, J. S. Hangst, W. N. Hardy, M. E.
Hayden, E. D. Hunter, C. A. Isaac, M. A. Johnson, J. M. Jones, S. A. Jones, S. Jonsell,
A. Khramov, P. Knapp, L. Kurchaninov, N. Madsen, D. Maxwell, J. T. K. McKenna,
S. Menary, J. M. Michan, T. Momose, J. J. Munich, K. Olchanski, A. Olin, P. Pusa,
C. Ø Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M.
Silveira, C. So, D. M. Starko, G. Stutter, T. D. Tharp, R. I. Thompson, D. P. van der
Werf, J. S. Wurtele, and The ALPHA Collaboration. Investigation of the fine structure
of antihydrogen. Nature, 578(7795):375–380, Feb 2020. ISSN 1476-4687. doi: 10.1038/
s41586-020-2006-5. URL https://doi.org/10.1038/s41586-020-2006-5.

[16] C. J. Baker, W. Bertsche, A. Capra, C. Carruth, C. L. Cesar, M. Charlton, A. Chris-
tensen, R. Collister, A. Cridland Mathad, S. Eriksson, A. Evans, N. Evetts, J. Fajans,
T. Friesen, M. C. Fujiwara, D. R. Gill, P. Grandemange, P. Granum, J. S. Hangst,
W. N. Hardy, M. E. Hayden, D. Hodgkinson, E. Hunter, C. A. Isaac, M. A. John-
son, J. M. Jones, S. A. Jones, S. Jonsell, A. Khramov, P. Knapp, L. Kurchaninov,
N. Madsen, D. Maxwell, J. T. K. McKenna, S. Menary, J. M. Michan, T. Momose,
P. S. Mullan, J. J. Munich, K. Olchanski, A. Olin, J. Peszka, A. Powell, P. Pusa, C. Ø
Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M. Silveira,
D. M. Starko, C. So, G. Stutter, T. D. Tharp, A. Thibeault, R. I. Thompson, D. P.
van der Werf, and J. S. Wurtele. Laser cooling of antihydrogen atoms. Nature, 592
(7852):35–42, Apr 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03289-6. URL
https://doi.org/10.1038/s41586-021-03289-6.

[17] C. Amole, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, E. Butler, A. Capra,

253

https://doi.org/10.1038/nature23446
https://doi.org/10.1038/s41586-018-0435-1
https://doi.org/10.1038/s41586-020-2006-5
https://doi.org/10.1038/s41586-021-03289-6


C. L. Cesar, M. Charlton, S. Eriksson, J. Fajans, T. Friesen, M. C. Fujiwara, D. R.
Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, M. E. Hayden, C. A. Isaac, S. Jonsell,
L. Kurchaninov, A. Little, N. Madsen, J. T. K. McKenna, S. Menary, S. C. Napoli,
P. Nolan, K. Olchanski, A. Olin, A. Povilus, P. Pusa, C. Ø Rasmussen, F. Robicheaux,
E. Sarid, D. M. Silveira, C. So, T. D. Tharp, R. I. Thompson, D. P. van der Werf,
Z. Vendeiro, J. S. Wurtele, A. I. Zhmoginov, and A. E. Charman. An experimental limit
on the charge of antihydrogen. Nature Communications, 5(1):3955, Jun 2014. ISSN
2041-1723. doi: 10.1038/ncomms4955. URL https://doi.org/10.1038/ncomms4955.

[18] S. Maury. The antiproton decelerator: Ad. Hyperfine Interactions, 109(1):43–52, Aug
1997. ISSN 1572-9540. doi: 10.1023/A:1012632812327. URL https://doi.org/10.

1023/A:1012632812327.

[19] S. Maury, W. Oelert, W. Bartmann, P. Belochitskii, H. Breuker, F. Butin, C. Carli,
T. Eriksson, S. Pasinelli, and G. Tranquille. Elena: the extra low energy anti-proton
facility at cern. Hyperfine Interactions, 229(1):105–115, Oct 2014. ISSN 1572-9540. doi:
10.1007/s10751-014-1067-y. URL https://doi.org/10.1007/s10751-014-1067-y.

[20] C. M. Surko, R. G. Greaves, and M. Charlton. Stored positrons for antihydrogen
production. Hyperfine Interactions, 109(1):181–188, Aug 1997. ISSN 1572-9540. doi:
10.1023/A:1012657517779. URL https://doi.org/10.1023/A:1012657517779.

[21] M. J. T. Collier, L. V. Jørgensen, O. I. Meshkov, D. P. van der Werf, and M. Charlton.
Development and testing of a positron accumulator for antihydrogen production. AIP
Conference Proceedings, 498(1):13–18, 12 1999. ISSN 0094-243X. doi: 10.1063/1.
1302096. URL https://doi.org/10.1063/1.1302096.

[22] C. J. Baker, W. Bertsche, A. Capra, C. L. Cesar, M. Charlton, A. J. Christensen,
R. Collister, A. Cridland Mathad, S. Eriksson, A. Evans, N. Evetts, S. Fabbri,
J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, P. Grandemange, P. Granum,
J. S. Hangst, M. E. Hayden, D. Hodgkinson, C. A. Isaac, M. A. Johnson, J. M.
Jones, S. A. Jones, A. Khramov, L. Kurchaninov, N. Madsen, D. Maxwell, J. T. K.
McKenna, S. Menary, T. Momose, P. S. Mullan, J. J. Munich, K. Olchanski, J. Peszka,
A. Powell, C. Ø. Rasmussen, R. L. Sacramento, M. Sameed, E. Sarid, D. M. Sil-
veira, C. So, D. M. Starko, G. Stutter, T. D. Tharp, R. I. Thompson, C. Torkz-
aban, D. P. van der Werf, and J. S. Wurtele. Design and performance of a novel
low energy multispecies beamline for an antihydrogen experiment. Phys. Rev. Ac-
cel. Beams, 26:040101, Apr 2023. doi: 10.1103/PhysRevAccelBeams.26.040101. URL
https://link.aps.org/doi/10.1103/PhysRevAccelBeams.26.040101.

[23] J. Fajans and A. Schmidt. Malmberg–penning and minimum-b trap compatibility:
the advantages of higher-order multipole traps. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 521(2):318–325, 2004. ISSN 0168-9002. doi: https://doi.org/10.1016/j.
nima.2003.11.194. URL https://www.sciencedirect.com/science/article/pii/

S0168900203031127.

254

https://doi.org/10.1038/ncomms4955
https://doi.org/10.1023/A:1012632812327
https://doi.org/10.1023/A:1012632812327
https://doi.org/10.1007/s10751-014-1067-y
https://doi.org/10.1023/A:1012657517779
https://doi.org/10.1063/1.1302096
https://link.aps.org/doi/10.1103/PhysRevAccelBeams.26.040101
https://www.sciencedirect.com/science/article/pii/S0168900203031127
https://www.sciencedirect.com/science/article/pii/S0168900203031127


[24] David E. Pritchard. Cooling neutral atoms in a magnetic trap for precision spec-
troscopy. Phys. Rev. Lett., 51:1336–1339, Oct 1983. doi: 10.1103/PhysRevLett.51.
1336. URL https://link.aps.org/doi/10.1103/PhysRevLett.51.1336.

[25] G.B. Andresen, W. Bertsche, P.D. Bowe, C. Bray, E. Butler, C.L. Cesar, S. Chapman,
M. Charlton, J. Fajans, M.C. Fujiwara, D.R. Gill, J.S. Hangst, W.N. Hardy, R.S.
Hayano, M.E. Hayden, A.J. Humphries, R. Hydomako, L.V. Jørgensen, S.J. Kerrigan,
L. Kurchaninov, R. Lambo, N. Madsen, P. Nolan, K. Olchanski, A. Olin, A. Povilus,
P. Pusa, F. Robicheaux, E. Sarid, S. Seif El Nasr, D.M. Silveira, J.W. Storey, R.I.
Thompson, D.P. van der Werf, J.S. Wurtele, and Y. Yamazaki. Antihydrogen formation
dynamics in a multipolar neutral anti-atom trap. Physics Letters B, 685(2):141–145,
2010. ISSN 0370-2693. doi: https://doi.org/10.1016/j.physletb.2010.01.066. URL
https://www.sciencedirect.com/science/article/pii/S0370269310001371.

[26] M. Zhong, J. Fajans, and A. F. Zukor. Axial to transverse energy mixing dynamics
in octupole-based magnetostatic antihydrogen traps. New Journal of Physics, 20(5):
053003, may 2018. doi: 10.1088/1367-2630/aabb84. URL https://dx.doi.org/10.

1088/1367-2630/aabb84.

[27] D. L. Eggleston. Electron vortex dynamics in an applied shear flow. AIP Confer-
ence Proceedings, 331(1):54–63, 1995. doi: 10.1063/1.47904. URL https://aip.

scitation.org/doi/abs/10.1063/1.47904.

[28] C. Smorra, A. Mooser, K. Franke, H. Nagahama, G. Schneider, T. Higuchi, S.V. Gorp,
K. Blaum, Y. Matsuda, W. Quint, J. Walz, Y. Yamazaki, and S. Ulmer. A reservoir
trap for antiprotons. International Journal of Mass Spectrometry, 389:10–13, 2015.
ISSN 1387-3806. doi: https://doi.org/10.1016/j.ijms.2015.08.007. URL https://www.

sciencedirect.com/science/article/pii/S1387380615002560.

[29] J. R. Danielson, T. R. Weber, and C. M. Surko. Extraction of small-diameter beams
from single-component plasmas. Applied Physics Letters, 90(8):081503, 02 2007. ISSN
0003-6951. doi: 10.1063/1.2709522. URL https://doi.org/10.1063/1.2709522.

[30] C. Amole, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, E. Butler, A. Capra,
C. L. Cesar, M. Charlton, A. Deller, N. Evetts, S. Eriksson, J. Fajans, T. Friesen,
M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, M. E.
Hayden, C. A. Isaac, S. Jonsell, L. Kurchaninov, A. Little, N. Madsen, J. T. K.
McKenna, S. Menary, S. C. Napoli, K. Olchanski, A. Olin, P. Pusa, C. Ø. Ras-
mussen, F. Robicheaux, E. Sarid, D. M. Silveira, C. So, S. Stracka, T. Tharp,
R. I. Thompson, D. P. van der Werf, and J. S. Wurtele. In situ electromagnetic
field diagnostics with an electron plasma in a penning–malmberg trap. New Jour-
nal of Physics, 16(1):013037, jan 2014. doi: 10.1088/1367-2630/16/1/013037. URL
https://dx.doi.org/10.1088/1367-2630/16/1/013037.

[31] M. D. Tinkle, R. G. Greaves, C. M. Surko, R. L. Spencer, and G. W. Mason. Low-order
modes as diagnostics of spheroidal non-neutral plasmas. Phys. Rev. Lett., 72:352–355,
Jan 1994. doi: 10.1103/PhysRevLett.72.352. URL https://link.aps.org/doi/10.

1103/PhysRevLett.72.352.

255

https://link.aps.org/doi/10.1103/PhysRevLett.51.1336
https://www.sciencedirect.com/science/article/pii/S0370269310001371
https://dx.doi.org/10.1088/1367-2630/aabb84
https://dx.doi.org/10.1088/1367-2630/aabb84
https://aip.scitation.org/doi/abs/10.1063/1.47904
https://aip.scitation.org/doi/abs/10.1063/1.47904
https://www.sciencedirect.com/science/article/pii/S1387380615002560
https://www.sciencedirect.com/science/article/pii/S1387380615002560
https://doi.org/10.1063/1.2709522
https://dx.doi.org/10.1088/1367-2630/16/1/013037
https://link.aps.org/doi/10.1103/PhysRevLett.72.352
https://link.aps.org/doi/10.1103/PhysRevLett.72.352


[32] R. W. Gould and M. A. LaPointe. Cyclotron resonance in a pure electron plasma
column. Phys. Rev. Lett., 67:3685–3688, Dec 1991. doi: 10.1103/PhysRevLett.67.3685.
URL https://link.aps.org/doi/10.1103/PhysRevLett.67.3685.

[33] E. Sarid, F. Anderegg, and C. F. Driscoll. Cyclotron resonance phenomena in a non-
neutral multispecies ion plasma. Physics of Plasmas, 2(8):2895–2907, 08 1995. ISSN
1070-664X. doi: 10.1063/1.871189. URL https://doi.org/10.1063/1.871189.

[34] R. G. Greaves and C. M. Surko. Inward transport and compression of a positron plasma
by a rotating electric field. Phys. Rev. Lett., 85:1883–1886, Aug 2000. doi: 10.1103/
PhysRevLett.85.1883. URL https://link.aps.org/doi/10.1103/PhysRevLett.85.

1883.

[35] J. R. Danielson and C. M. Surko. Torque-balanced high-density steady states of single-
component plasmas. Phys. Rev. Lett., 94:035001, Jan 2005. doi: 10.1103/PhysRevLett.
94.035001. URL https://link.aps.org/doi/10.1103/PhysRevLett.94.035001.

[36] G. B. Andresen, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P. D. Bowe, E. But-
ler, C. L. Cesar, S. Chapman, M. Charlton, J. Fajans, T. Friesen, M. C. Fujiwara, D. R.
Gill, J. S. Hangst, W. N. Hardy, R. S. Hayano, M. E. Hayden, A. Humphries, R. Hy-
domako, S. Jonsell, L. Kurchaninov, R. Lambo, N. Madsen, S. Menary, P. Nolan,
K. Olchanski, A. Olin, A. Povilus, P. Pusa, F. Robicheaux, E. Sarid, D. M. Sil-
veira, C. So, J. W. Storey, R. I. Thompson, D. P. van der Werf, D. Wilding, J. S.
Wurtele, and Y. Yamazaki. Evaporative cooling of antiprotons to cryogenic tempera-
tures. Phys. Rev. Lett., 105:013003, Jul 2010. doi: 10.1103/PhysRevLett.105.013003.
URL https://link.aps.org/doi/10.1103/PhysRevLett.105.013003.

[37] D. L. Eggleston and T. M. O’Neil. Theory of asymmetry-induced transport in a non-
neutral plasma. Physics of Plasmas, 6(7):2699–2704, 07 1999. ISSN 1070-664X. doi:
10.1063/1.873225. URL https://doi.org/10.1063/1.873225.

[38] A. A. Kabantsev, J. H. Yu, R. B. Lynch, and C. F. Driscoll. Trapped particles and
asymmetry-induced transport. Physics of Plasmas, 10(5):1628–1635, 05 2003. ISSN
1070-664X. doi: 10.1063/1.1564089. URL https://doi.org/10.1063/1.1564089.

[39] T. Mohamed, A. Mohri, and Y. Yamazaki. Comparison of non-neutral electron plasma
confinement in harmonic and rectangular potentials in a very dense regime. Physics
of Plasmas, 20(1):012502, 01 2013. ISSN 1070-664X. doi: 10.1063/1.4773900. URL
https://doi.org/10.1063/1.4773900.

[40] C. F. Driscoll and J. H. Malmberg. Length-dependent containment of a pure electron-
plasma column. Phys. Rev. Lett., 50:167–170, Jan 1983. doi: 10.1103/PhysRevLett.
50.167. URL https://link.aps.org/doi/10.1103/PhysRevLett.50.167.

[41] R. Keinigs. Field-error induced transport in a pure electron plasma column. The
Physics of Fluids, 27(6):1427–1433, 1984. doi: 10.1063/1.864763. URL https://aip.

scitation.org/doi/abs/10.1063/1.864763.

256

https://link.aps.org/doi/10.1103/PhysRevLett.67.3685
https://doi.org/10.1063/1.871189
https://link.aps.org/doi/10.1103/PhysRevLett.85.1883
https://link.aps.org/doi/10.1103/PhysRevLett.85.1883
https://link.aps.org/doi/10.1103/PhysRevLett.94.035001
https://link.aps.org/doi/10.1103/PhysRevLett.105.013003
https://doi.org/10.1063/1.873225
https://doi.org/10.1063/1.1564089
https://doi.org/10.1063/1.4773900
https://link.aps.org/doi/10.1103/PhysRevLett.50.167
https://aip.scitation.org/doi/abs/10.1063/1.864763
https://aip.scitation.org/doi/abs/10.1063/1.864763


[42] C. F. Driscoll, K. S. Fine, and J. H. Malmberg. Reduction of radial losses in a pure
electron plasma. The Physics of Fluids, 29(6):2015–2017, 1986. doi: 10.1063/1.865580.
URL https://aip.scitation.org/doi/abs/10.1063/1.865580.

[43] J. Notte and J. Fajans. The effect of asymmetries on non-neutral plasma confinement
time. Physics of Plasmas, 1(5):1123–1127, 1994. doi: 10.1063/1.870762. URL https:

//doi.org/10.1063/1.870762.

[44] D. L. Eggleston. Confinement of test particles in a malmberg–penning trap with a
biased axial wire. Physics of Plasmas, 4(5):1196–1200, 1997. doi: 10.1063/1.872299.
URL https://doi.org/10.1063/1.872299.

[45] J. M. Kriesel and C. F. Driscoll. Two regimes of asymmetry-induced transport in non-
neutral plasmas. Phys. Rev. Lett., 85:2510–2513, Sep 2000. doi: 10.1103/PhysRevLett.
85.2510. URL https://link.aps.org/doi/10.1103/PhysRevLett.85.2510.

[46] R.C. Davidson. Theory of Nonneutral Plasmas. Frontiers in physics. W. A. Ben-
jamin, 1974. ISBN 9780805323467. URL https://books.google.com/books?id=

lWosAAAAYAAJ.

[47] R. H. Levy. Two New Results in Cylindrical Diocotron Theory. The Physics of
Fluids, 11(4):920–921, 04 1968. ISSN 0031-9171. doi: 10.1063/1.1692026. URL https:

//doi.org/10.1063/1.1692026.

[48] W. D. White, J. H. Malmberg, and C. F. Driscoll. Resistive-wall destabilization of
diocotron waves. Phys. Rev. Lett., 49:1822–1826, Dec 1982. doi: 10.1103/PhysRevLett.
49.1822. URL https://link.aps.org/doi/10.1103/PhysRevLett.49.1822.

[49] G. Bettega, F. Cavaliere, B. Paroli, R. Pozzoli, M. Romé, and M. Cavenago. Excitation
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L. Gesa, F. Gibert, D. Giardini, R. Giusteri, C. Grimani, J. Grzymisch, I. Harri-
son, G. Heinzel, M. Hewitson, D. Hollington, M. Hueller, J. Huesler, H. Inchauspé,
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A1 Appendix: Electrostatics in a cylindrical conduc-

tor

A1.1 Constructing a finite-length solution from an infinite-length
solution

Throughout this thesis I use a few analytic solutions to electrostatic problems in the presence
of a conducting cylinder. This includes the potential due to a patch of voltage perturbation
on the wall of the cylinder, the potential due to a cylindrical electrode, and the potential due
to a charged cylinder inside of grounded conducting walls. Many would construct a Green’s
function for this geometry to solve these problems [143], but in this chapter I describe
another method which is more intuitive and surprisingly versatile. It also yields an infinite
sum rather than an integral. Of course, with some algebra, these two approaches can be
shown to give equivalent results. For me, it is easier to evaluate infinite sums than it is to
evaluate numerical integrals—I find that estimating the error due to truncating a sum is
simpler than estimating the error from evaluating an integral numerically.

Usually I want to consider some voltage source or charge distribution in the presence of
an otherwise grounded conducting cylinder of radius Rw. A general solution to the Laplace
equation in cylindrical coordinates, with the boundary condition V (Rw) = 0, is:

V (r, θ, z) =
∞∑
n=0

∞∑
m=1

Jn

(
αn
mr

Rw

)[
anm exp

(
αn
mz

Rw

)
cos(nθ) + bnm exp

(
αn
mz

Rw

)
sin(nθ)

+cnm

(
−αn

mz

Rw

)
cos(nθ) + dnm

(
−αn

mz

Rw

)
sin(nθ)

]
, (A1.1)

where Jn(x) is the n’th Bessel function of the first kind, and αn
m is itsm’th zero (not including

the one at x = 0 for m ̸= 0). Please excuse my notational abuse putting n as a superscript;
it has nothing to do with contraviariance versus covariance, it just helps keep track of which
index is which.

Consider that we want to find the potential everywhere due to some charge distribution
or voltage perturbation on the trap wall between z = −l/2 and z = +l/2. The charge
distribution is only a function of r and θ: ρ(r, θ), and the voltage perturbation is along the
trap wall, and it is only a function of θ. For example, consider a cylindrical electrode set to
a voltage V0 with a length l in the presence of an otherwise grounded conducting cylinder,
as in Fig. A1.1.

z = 0

V = V0V = 0 V = 0

Figure A1.1: The situation we want to find an electrostatic solution for.
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The first step is to solve the Poisson equation (or the Laplace equation in the case of a
perturbation to the potential along the trap wall) in the situation where our perturbation
extends from z = −∞ to z = +∞. This solution will be referred to as Vinf(r, θ). For the
electrode, this is trivial; the voltage is simply Vinf(r, θ) = V0, as shown in Fig A1.2. Usually
this step is trivial, or at least easily completed using image charges, Gauss’ law, or the general
solution to the Laplace equation in 2–D.

z = 0

V = + V0

Figure A1.2: The first step to solving the situation in Fig. A1.1. We compose an infinite
length version of the problem where the potential is trivially V0 everywhere.

Next we find a solution to the Laplace equation with two semi-infinite voltage perturba-
tions of opposite sign, as in Fig. A1.3. By symmetry, we know that the potential at z = 0 is
zero, and the potential at z = −z0 is −1 times the potential at z = z0.

z = 0

V = V0 V = + V0

Figure A1.3: Two semi-infinite electrodes with opposite voltage. The second step toward
solving the situation in Fig. A1.1.

Therefore we only need to solve for the potential at z > 0. Of course we can eliminate
exponentially growing terms (and for this specific electrode problem, we can eliminate any
term where n ̸= 0). Because the terms in Eq. A1.1 are all zero at r = Rw and they all solve
the Laplace equation, we must add Vinf. We have the general solution:

V (r, θ, z > 0) = Vinf(r, θ)−
∞∑
n=0

∞∑
m=1

Jn

(
αn
mr

Rw

)
exp

(
−αn

mz

Rw

)
[anm cos(nθ) + bnm sin(nθ)] . (A1.2)

The coefficients anm and bnm need to be chosen so that when z = 0, the boundary condition at
z = 0 is satisfied. We can do this by finding a “Fourier-Bessel” series. Just like sin(nθ) and

cos(nθ) form an orthogonal set of basis functions with respect to the inner product
∫ 2π

0
dθ,

the Bessel functions Jn(α
n
mr/Rw) form an orthogonal set of basis functions with respect to

the inner product
∫ Rw

0
rdr. Thus the coefficients can be found using:

anm =
2

πR2
wJ

2
n+1(α

n
m)(1 + δn0)

∫ Rw

0

rdr

∫ 2π

0

Jn

(
αn
mr

Rw

)
cos(nθ)Vinf(r, θ). (A1.3)
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bn̸=0
m =

2

πR2
wJ

2
n+1(α

n
m)

∫ Rw

0

rdr

∫ 2π

0

Jn

(
αn
mr

Rw

)
sin(nθ)Vinf(r, θ). (A1.4)

In my time using this method, I have found the following indefinite integrals to be useful:∫
J0(cr)rdr =

rJ1(rc)

c
(A1.5)

∫
J0(cr)r

3dr =
2r2J2(rc)− r3cJ3(rc)

c2
(A1.6)∫

J0(cr) log(r/r0)rdr =
rcJ1(rc) log(r/r0) + J0(rc)

c2
(A1.7)∫

Jm(cr)r
m+1dr =

rm+1Jm+1(rc)

c
(A1.8)∫

Jm(cr)r
−m+1dr =

−r−m+1Jm−1(rc)

c
(A1.9)

For our electrode example, of course anm and bnm for n ̸= 0 are 0. a0m (which I will just call
am) can be found using Eq. A1.5, giving am = 2V0/α

0
mJ1(α

0
m). Finally, we can compose

our desired electrode by adding together two of these solutions shifted left and right by a
distance l/2, as shown in Fig. A1.4. Thus our general solution is:

z = 0

V = + V0/2 V = V0/2

+

z = 0

V = V0/2 V = + V0/2

=

z = 0

V = V0V = 0 V = 0

Figure A1.4: The method of solving the electrostatic situation in Fig. A1.1 by adding together
two solutions of the situation in Fig. A1.3
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V (r, θ, z) =



1

2

∞∑
n=0

∞∑
m=1

[
a
n
m cos(nθ) + b

n
m cos(nθ)

] [
exp

(
α
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m
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n
m
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Rw

)]
Jn

(
αn
mr

Rw

)
z < −

l

2

1

2

∞∑
n=0

∞∑
m=1
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a
n
m cos(nθ) + b

n
m cos(nθ)

] [
− exp

(
−α

n
m

l/2 + z

Rw

)
+ exp

(
α
n
m

l/2 − z

Rw

)]
Jn

(
αn
mr

Rw
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l

2

Vinf(r, θ) −
1

2

∞∑
n=0

∞∑
m=1
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a
n
m cos(nθ) + b

n
m cos(nθ)

] [
exp

(
−α

n
m

l/2 + z

Rw

)
+ exp

(
−α

n
m

l/2 − z

Rw

)]
Jn

(
αn
mr

Rw

)
−

l

2
< z <

l

2

(A1.10)

Or the version with azimuthal symmetry:

V (r, z) =



1

2

∞∑
m=1

am

[
exp

(
α0
m

l/2 + z

Rw

)
− exp

(
−α0

m

l/2− z

Rw

)]
J0

(
α0
mr

Rw

)
z < −

l

2

1

2

∞∑
m=1

am

[
− exp

(
−α0

m

l/2 + z

Rw

)
+ exp

(
α0
m

l/2− z

Rw

)]
J0

(
α0
mr

Rw

)
z >

l

2

Vinf(r)−
1

2

∞∑
m=1

am

[
exp

(
−α0

m

l/2 + z

Rw

)
+ exp

(
−α0

m

l/2− z

Rw

)]
J0

(
α0
mr

Rw

)
−

l

2
< z <

l

2

(A1.11)

For z ̸= ±l/2, these equations converge because for large m, αn
m increases by π for each step

of m, and the arguments of the exponentials are all increasingly negative with increasing
m. Thus, it is easy to create an order of magnitude estimate for how many terms need
to be summed to achieve a certain precision. However when z approaches ±l/2, these
sums typically form an alternating sum with the summand decreasing like m−1/2—not very
impressive convergence. The electric field typically diverges when z is exactly ±l/2. When
evaluating charged particle trajectories, for example, the electric field is actually what I am
more interested in calculating. When evaluating these equations in code, I typically prepare
the coefficients anm and the zeros αn

m ahead of time up to some maximum n = N and m = M .
I come to an estimate of how close I can get to the boundaries while achieving an approximate
maximum error of ϵ ≪ 1 by setting ln ϵ = Mπ(l/2−z)/Rw → z−l/2 = −Rw ln ϵ/M . If I want
to evaluate the electric field or the potential at smaller separations from the boundaries, I will
simply evaluate these quantities at a few points farther from the boundary and extrapolate
to the desired point.

A1.2 A charged cylinder in a grounded conducting cylinder

In most of my plasma equilibrium solvers, I represent the plasma as a grid of “charged rings”
of length δz, outer radius ro, and inner radius ri = ro − δr. A grid is set up to record the
charge density ρ in each charged ring. Once a guess is formed for the charge density, we
need to find the potential in the center of each ring—the potential at r = (ri + r0)/2, or
at r = 0 for the innermost ring. To do this, we need to find the potential everywhere for a
ring of charge density ρ with an inner and an outer radius and a length δz. The first step
is to simply realize that we can form this situation by subtracting a cylinder of charge with
radius rp = ri from a cylinder with radius rp = ro, as shown in Fig. A1.5. Thus we really
only need to find the potential everywhere due to a charged cylinder with radius rp.

I use the subscript p standing for “plasma” because the same calculation comes up when
we want to find the space charge potential of a cold nonneutral plasma (Debye length much
smaller than radius) which is much longer than the trap wall radius, as discussed in the
introduction. Using Gauss’ law, we can find that the potential in this infinite length situation
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Figure A1.5: We subtract two charged cylinders to find an electrostatic solution for a cylin-
drical ring with an inner and an outer radius.

is:

Vinf(r) =


λ

2πϵ0

[
ln

(
rp
Rw

)
+

r2 − r2p
2r2p

]
r < rp

λ

2πϵ0
ln

(
r

Rw

)
r > rp

(A1.12)

where λ = πr2pnq is the line charge density. Integrating Eq. 5.16 using Eqs. A1.5, A1.6, and
A1.7, we get:

am =
λ

πϵ0(α0
m)2J2

1 (α
0
m)

[
−J0

(
rp
Rw

α0
m

)
− rpa

0
m

2Rw
J1

(
rp
Rw

α0
m

)
+ J2

(
rp
Rw

α0
m

)
− rpα

0
m

2Rw
J3

(
rp
Rw

α0
m

)]
.

(A1.13)

These coefficients can be substituted into Eq. A1.11; then Eq. A1.11 gives the potential
everywhere due to a finite-length charged cylinder of radius rp.

A1.3 Patch electrode using contour integration

In this section I derive the potential due to a patch of length l and angular extent θ0, as in
Fig. A1.6. However, I will not use the technique presented earlier in this appendix. Rather,
I will use a more general solution to the Laplace equation in cylindrical coordinates to show
how the two methods are equivalent. In particular I hope to show that this method is less
efficient. We start with the general solution to the Laplace equation in cylindrical coordinates

Figure A1.6: The patch of voltage perturbation.

(having already eliminated the sin terms by symmetry):

V (r, θ, z) =
∞∑
n=0

cos(nθ)

∫ ∞

−∞

cn(k)

In(k)
cos

(
kz

Rw

)
In

(
kr

Rw

)
dk, (A1.14)
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where In is the n’th modified Bessel function of the first kind. Setting r = Rw we get our
boundary condition, which looks like a Fourier series in θ and a Fourier transform in z:

V (Rw, θ, z) =
∞∑
n=0

cos(nθ)

∫ ∞

−∞
cn(k) cos

(
kz

Rw

)
dk. (A1.15)

The Fourier series of a function which is a constant value of 1 between θ = −θ0/2 and
θ = θ0/2 is given by coefficients:

d0 =
θ0
2π

; dn̸=0 =
2

nπ
sin(nθ0/2). (A1.16)

And the Fourier transform of a function which is V0 from −l/2 to l/2 and 0 everywhere else
is:

1

2πRw

∫ L/2

−L/2

cos

(
kz

Rw

)
dz =

1

πk
sin

(
kL

2rw

)
. (A1.17)

Thus our voltage everywhere can be written:

V =
∞∑
n=0

dn cos(nθ)

∫ ∞

−∞

sin(kL/2Rw)

πkIn(k)
cos

(
kz

Rw

)
In

(
kr

Rw

)
dk. (A1.18)

Often this is where one leaves things. However, I want to show that we can reach the same
answer that we would with the methods presented in the previous section, and I would rather
have a sum version of this potential. So to prepare for contour integration, I will rewrite this
as:

V =

∞∑
n=0

dn cos(nθ)Im

[∫ ∞

−∞

exp(ik(l/2 + z)/Rw) + exp(ik(l/2− z)/Rw)

2πkIn(k)
In

(
kr

Rw

)
dk

]
. (A1.19)

We have to solve integrals of the form∫ ∞

−∞

exp(ikz)

2πkIm(k)
Im(kr/rw)dk. (A1.20)

Noting the following relationship between Im and Jm

In(r) = i−nJn(ir); In(ir) = i−nJn(−r) = inJn(r), (A1.21)

we realize that the integrand has poles at ix wherever Jn(x) has zeros at x. We use the con-
tours shown in Fig. A1.7 to solve this integral. I won’t bore the reader with the justifications
of why the function falls off sufficiently quickly in every direction to justify these contours.
The pole at the origin has residue (1/2π)(r/Rw)

n. Note that this residue is included in the
value of the contour integral if the origin is encircled, but either way half his value should
be subtracted from the contour integral to correctly get the value of the line integral. After
some algebra, we arrive at an expression that is clearly in a similar form to what we would
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Figure A1.7: We use these two contours when the z > 0 and z < 0 respectively to solve
the integral shown in Eq. A1.20. The red dots show the sequence of poles we encircle,
corresponding to zeros of Jn.

have obtained if we solved this the easier way:

V (r, θ, z) =



V0
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n=0
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∞∑
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(A1.22)
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