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Several factors have been proposed as contributors to interfamilial and intrafamilial
phenotypic variability in autosomal dominant disorders, including allelic variation,
modifier genes, environmental factors and complex genetic and environmental
interactions. However, regardless of the similarity of genetic background and
environmental factors, asymmetric limb or trunk anomalies in a single individual and
variable manifestation between monozygotic twins have been observed, indicating other
mechanisms possibly involved in expressivity of autosomal dominant diseases. One
such example is Holt-Oram syndrome (HOS), which is characterized by congenital
cardiac defects and forelimb anomalies, mainly attributed to mutations in the TBX5 gene.
We hypothesize that monoallelic expression of the TBX5 gene occurs during embryo
development, and, in the context of a mutation, random monoallelic expression (RME)
can create discrepant functions in a proportion of cells and thus contribute to variable
phenotypes. A hybrid mouse model was used to investigate the occurrence of RME
with the Tbx5 gene, and single-cell reverse transcription PCR and restriction digestion
were performed for limb bud cells from developing embryos (E11.5) of the hybrid mice.
RME of Tbx5 was observed in approximately two-thirds of limb bud cells. These results
indicate that RME of the Tbx5 gene occurs frequently during embryo development,
resulting in a mosaic expression signature (monoallelic, biallelic, or null) that may provide
a potential explanation for the widespread phenotypic variability in HOS. This model will
further provide novel insights into the variability of autosomal dominant traits and a better
understanding of the complex expressivity of disease conditions.

Keywords: random monoallelic expression, phenotype, expressivity, autosomal dominant disorders, single cell

It has been well-recognized that many autosomal dominant Mendelian traits involved in birth
defects, adult diseases and other genetic anomalies widely vary in their phenotypic properties such
as penetrance, dominance, expressivity, age-of-onset, etc. Although progress has been made in
understanding the basis of these features, in the vast majority of cases, it is still not fully revealed
why identical genotypes can generate subtly or even profoundly different phenotypes. Several
possible factors have been proposed as contributors to interfamilial and intrafamilial phenotypic
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variability in these genetic disorders, including allelic variation
(Zlotogora et al., 1995; Li et al., 2008), modifier genes (Howeler
et al., 1989; Riordan and Nadeau, 2017), environmental factors
and complex genetic and environmental interactions (Gennari
et al., 2010). However, regardless of the similarity of genetic
background and environmental effects, asymmetric limb or trunk
anomalies in a single individual (Basson et al., 1999; Elliott
et al., 2005; Wei et al., 2012) and variable manifestation between
monozygotic twins have been observed (Huang, 2002; Huang
et al., 2002; Dayer et al., 2007; Mukherjee et al., 2014), indicating
other mechanisms are involved in the expressivity of these genetic
diseases.

What, then, is the mechanism for this variability? A closer
look at the mechanisms of gene expression may reveal some
insights. For diploid organisms inheriting two homologous alleles
from each parent, the expression of a gene can be carried
out in a biallelic (expression of both alleles) or monoallelic
(expression of only one allele) manner. In the traditional model,
both alleles are expressed simultaneously at similar levels in
cells; in reality, however, there are a number of genes that
exhibit monoallelic gene expression. A typical case of monoallelic
expression is genomic imprinting, in which gene expression
occurs from only one allele based on the parental origin of the
allele. This phenomenon occurs as a consequence of epigenetic
marking of the parental germlines, such as DNA methylation
or histone modification, with the result that these genes are
expressed exclusively from either the maternal or paternal allele
in most somatic cells (Ferguson-Smith et al., 1993; Hu et al., 1998;
Carr et al., 2007). Although the evolutionary forces leading to
this genetic conflict between parental alleles is still a matter of
debate, imprinting is known to be a particularly critical factor in
mammalian development, with experiments dating back to the
1980s clearly showing that both maternal and paternal genetic
contributions are required for the completion of embryogenesis
(Barton et al., 1984; McGrath and Solter, 1984). Incorrect
imprinting of specific genomic loci has also been demonstrated
to be correlated with disease conditions, such as Angelman and
Prader-Willi syndromes (Buiting et al., 1995).

Another distinct class of monoallelic expression is random
monoallelic expression (RME), defined as the stochastically
determined, selective expression of a single allele. Random
X-chromosome inactivation (XCI) is a well-documented subset
of RME (Lyon, 1961, 1962, 1989; Smith, 1985; Wu et al., 2014;
Chen et al., 2016). In female cells, one copy of the X-chromosome
is randomly silenced; as a result, alleles located on the remaining
active chromosome are monoallelically expressed. The ultimate
outcome of this process is that the X-chromosome gene “dosage”
between male and female cells becomes roughly equal, preventing
the severe developmental and metabolic problems that would
result from an entire chromosome becoming transcriptionally
unbalanced between the sexes (Smith, 1985; Lyon, 1989). In
addition to XCI, RME occurring on autosomes has been studied,
especially in large gene families with functions related to the
nervous and immune systems, such as the olfactory receptor
gene family (Chess et al., 1994; Rodriguez, 2013), protocadherins
(Esumi et al., 2005), and immunoglobulins (Pernis et al., 1965).
Intriguingly, increasing numbers of studies have also revealed

that autosomal RME can occur in individual genes (Bix and
Locksley, 1998; Hollander et al., 1998; Gimelbrant et al., 2005;
Calado et al., 2006; Takizawa et al., 2008; Thomas et al.,
2011; Aseem et al., 2013) outside of these large gene families.
These scattered genes are involved in a wide range of cellular
functions, and monoallelically expressed in distinct types of
cells.

Since monoallelically expressed genes are prevalent genome-
wide and involved in a wide range of functions (Gimelbrant
et al., 2007; Deng et al., 2014), RME might be closely related
to gene expression regulation and tuning, cell differentiation,
and/or embryo development. Any of these would place RME in
a position to significantly influence phenotypic variability and
disease status. Physiologically, RME has the potential to generate
different transcriptional signatures and profiling, resulting in
a remarkable level of cellular diversity. A typical and well-
studied case is the olfactory receptor gene family, which consists
of approximately 1400 functional genes in mice and 350 in
humans, scattered across 40 or more genomic clusters (Young
et al., 2002; Clowney et al., 2011). It has been demonstrated
that these receptor genes are expressed in a monogenic (Buck
and Axel, 1991) and monoallelic (Chess et al., 1994) manner
in the main olfactory epithelium, with the latter likely helping
to reinforce the former. This strict expression of a single allele,
from a single gene, out of almost 350 possible loci is quite
remarkable, and enables each individual neuron to possess a
highly specific and narrowly tuned range of odor recognition.
Also, given that correct axon guidance of olfactory neurons is
dictated by the odorant receptors they express (Wang et al.,
1998), this monoallelic expression pattern is critical to the
existence of a well-organized and harmonious olfactory network.
In the realm of more serious genetic disorders, RME could
provide an intriguing explanation for the unexplained variability
in pathology and clinical symptoms for autosomal dominant
genetic diseases. Theoretically, RME could cause phenotypic
variability with regards to penetrance and expressivity, either
through the dosage difference between expressing one rather
than two homologous alleles, or by stochastically initiating
expression of a non-functioning allele when the genotype is
heterozygous (Reinius and Sandberg, 2015). However, in order
to entertain the possibility that RME is behind these phenotypic
variabilities, what is first required is an autosomal dominant
disease model amenable to a cell-by-cell investigation of allelic
expression.

Among those autosomal dominant disorders with variable
expressivity is Holt-Oram syndrome (HOS). This disorder
is characterized by congenital cardiac defects and forelimb
anomalies, mainly attributed to mutations of the TBX5 gene,
a member of the T-box family of transcription factor genes
(Basson et al., 1994, 1997). The clinical manifestations of HOS
vary widely (Basson et al., 1994, 1999; Newbury-Ecob et al., 1996;
Sletten and Pierpont, 1996; Brassington et al., 2003), and these
interfamilial and intrafamilial phenotypic variations have been
explained by the hypothesis that modifier genes or other aspects
of the genetic background may play an important role. Previous
molecular studies tried to establish initial genotype–phenotype
correlations and have indicated that mutations predicted to
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create truncated TBX5 can produce substantial abnormalities
in both the limbs and heart. In contrast, missense mutations
of TBX5 could result in two distinct categories of phenotypes,
depending on their location in the T box: either significant
cardiac malformations (but only minor skeletal abnormalities),
or more extensive upper limb malformations (but less significant
cardiac abnormalities) (Basson et al., 1999). However, further
analysis of the expressivity of HOS in a larger cohort with
more independent cases has suggested that neither the type
of mutation in TBX5 nor the location of a mutation in
the T box could accurately predict the phenotypic variability
in individuals with the condition (Brassington et al., 2003).
Moreover, given that many of these cases involve asymmetric
limb anomalies within a single individual (Basson et al.,
1999) and variable phenotypes have been observed even in
monozygotic twins (Huang, 2002; Huang et al., 2002), it is
clear that genetic background and environmental effects alone
cannot reasonably explain the discordant features in individuals
with HOS. Thus, the molecular mechanisms that lead to wide
phenotypic variability in HOS remain poorly understood. As
stated above, however, we believe that the proposed model of
RME-mediated disease may explain this variability, and have
utilized the TBX5 gene as a means to test this model. We
hypothesize that monoallelic expression of the TBX5 gene occurs
during embryo development, contributing to the fine-tuning
of developmental regulatory pathways. In the context of a
mutation, this would suggest that RME can create discrepant
functions in a proportion of cells. This, we propose, contributes to
discordant features and variable phenotypes, such as asymmetric
malformations.

A hybrid mouse model was used to investigate the occurrence
of RME in the mouse ortholog of the Tbx5 gene. A single
nucleotide polymorphism (SNP) site has been identified in the
3′ untranslated region of the mouse Tbx5 gene to distinguish
different parental alleles. Specifically, C3H/HeJ and BALB/cJ
mice carry a homozygous T and C nucleotide at c.2583
(NM_011537.3) of the gene, respectively. Embryos of F1
heterozygous mice were obtained from the following mouse
cross: C3H/HeJ × BALB/cJ. Single-cell reverse transcription
(RT)-PCR and restriction digestion were performed for limb
bud cells from the developing F1 embryos at the E11.5 stage,
during which the Tbx5 interacts with other factors, such as
Sall4, to initiate the complex regulation of limb patterning
and morphogenesis in mouse embryos (Koshiba-Takeuchi et al.,
2006). The limb bud cells were collected from both the left and
the right forelimbs and digested with collagenase and trypsin.
After the cells were dispersed into single cell suspension by
pipetting, a fluorescence-activated cell sorter (BD FACSAria
II, BD Biosciences, San Jose, CA, United States) was used to
sort the cells according to the manufacturer’s instructions, and
single cells were placed into 96-well plates. The single cells
were lysed and treated with DNase (Ambion Turbo DNAfree,
Austin, TX, United States). An RT-PCR was performed with
a primer pair that spans the last two exons of the Tbx5
gene in order to exclude contamination from residual genomic
DNA using a single-step RT-PCR kit (OneStep RT-PCR Kit,
QIAGEN, Hilden, Germany), and the products were then

subjected to a nested PCR to amplify the target fragment in the
3′ untranslated region of Tbx5. The final products underwent
restriction endonuclease digestion using BsaOI (recognition
sequence: CGRYCG), which can distinguish the heterozygous
genotype of T/C. For the paternally expressed allele (BALB/cJ
with the sequence: CGACCG), the PCR products were specifically
cut into two smaller fragments, 153 and 108 bp, while PCR
products with a full length of 261 bp were observed for
the maternally expressed allele (C3H/HeJ with the sequence:
TGACCG). In total, 38 single limb cells were gathered, and
readable results were obtained for 30 samples, with the other
eight showing no readable signals. The unreadable signals were
likely due to either low transcriptional levels of the Tbx5 gene in
those particular cells, or failure of single cell lysis or nested RT-
PCR. Among the readable signals, 60% (18 out of 30) showed
monoallelic expression model of Tbx5, in which 23.3 and 36.7%
of alleles (7 and 11 out of 30, respectively) were paternally and
maternally expressed, respectively (Figure 1).

Through the hybrid mouse model, this study found that
Tbx5 was monoallelically expressed in about two-thirds of
limb bud cells. The monoallelic expression is random and
independent of parental origin. Since the E11.5 mouse limb
buds have differentiated into several cell types with early
hints of apical ectodermal ridge, humerus, myogenic cells,
nerve fascicles, etc. (Martin, 1990), it is certainly possible
that the observed monoallelic expression pattern could be
attributable to tissue-specific expression. Alternatively, both
the random monoallelic and the tissue-specific models could
be true, depending on the cell type in question (e.g., skin
cells may only express one allele, while muscle cells express
both alleles in a random monoallelic fashion). Regardless,
our results indicate a generally monoallelic expression pattern
and a mosaic expression signature (monoallelic, biallelic, or
null) of Tbx5 in mouse developing limb bud cells within the
critical development window. As a control, we also examined
cardiomyocytes with a similar approach. We found that all of
the cardiomyocytes expressed both alleles due to the natural
presence of multiple nuclei in fetal cardiomyocytes. These
findings may provide a reasonable explanation for the discordant
limb malformations in monozygotic twins with the same TBX5
genotype and asymmetric limb anomalies in individuals with
HOS.

Random monoallelic expression could cause widespread
phenotypic variability in autosomal dominant disorders by
stochastically initiating expression for one of the two functionally
discrepant parental alleles (Reinius and Sandberg, 2015). This
has been well-discussed in X-chromosome linked diseases, in
which males are hemizygous and show more severe disease
manifestation than females, since females are cellular mosaics
for X-linked gene profiles. This does not mean, of course, that
females escape the consequences of these mutations unscathed,
as a subset of their tissues can become affected depending
on whether the X-chromosome containing the mutant allele
or the one containing the wide-type allele is chosen for
random silencing during early embryonic development. For
instance, mutation of the X-linked gene MECP2, encoding
the “methyl-CpG binding protein 2,” is lethal for males at
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FIGURE 1 | RT-PCR products of single limb bud cells digested with BsaOI. Single-cell RT-PCR products of limb bud cells were digested with BsaOI (recognition
sequence: CGRYCG). For paternally expressed allele (BALB/cJ with the sequence: CGACCG), the PCR products were specifically cut into two smaller fragments,
153 and 108 bp, while the PCR products with a full length of 261 bp were observed for the maternally expressed allele (C3H/HeJ with the sequence: TGACCG).
PCR products displaying all three bands indicate biallelic expression in those particular cells. PCR products showing no readable signals are likely due to either low
transcriptional level of the Tbx5 gene that fall below the detection threshold in single cells, or failure of single-cell lysis or nested RT-PCR.

FIGURE 2 | Scheme of monoallelic expression in developing organs. Random monoallelic expression (RME) occurs in maternal or paternal alleles (i.e., turned “On”
or turned “Off”) stochastically in the developing embryos, which results in a mosaic expression signature (monoallelic, biallelic, or null) in a specific tissue or across
different tissues. When one of the parental alleles is mutant—for example, the paternal allele as indicated in the scheme (P: paternal; M: maternal)—the mosaic
expression profile further generates co-existence of discrepant protein composition or function in a proportion of cells, attributable to random inactivation of the
wild-type maternal allele. For instance, cells showing haploinsufficiency for a particular gene will co-exist alongside cells completely lacking functional protein when
the gene mutation is loss-of-function.

an early age, while females with mutations can survive, but
often develop Rett syndrome, a severe progressive neurological
disorder (Amir et al., 1999). In fact, even in monozygotic
twins, the implications can be quite different. In a previous
study of a pair of monozygotic twins, one of the twins was
affected by Rett syndrome, while the other one showed no
observable manifestations (Migeon et al., 1995). The MECP2
gene is dosage-sensitive, and thus plays a critical role in a
disease context. For instance, duplications of MECP2 also cause
severe mental retardation in males (Van Esch et al., 2005), and
mild to severe mental retardation in females (Grasshoff et al.,

2011). Importantly, it has been indicated that several autosomal
RME genes, whose dosage are essential for gene function, are
associated with various disorders. APP (amyloid beta precursor
protein) and SNCA (alpha-synuclein), which are implicated,
respectively, in Alzheimer’s (Rovelet-Lecrux et al., 2006) and
Parkinson’s diseases (Singleton et al., 2003), are a case in point
(Gimelbrant et al., 2007; Eckersley-Maslin et al., 2014; Gendrel
et al., 2014). The high levels of expression of these genes are
known to be detrimental, and disturbing their RME regulation
likely enhances the dosage of these genes and potentially triggers
diseases.
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Few studies have explored the possible link between RME
and the penetrance or expressivity of autosomal dominant
inherited diseases. In previous studies, the eyes absent homolog
1 (Eya1) gene and sine oculis homeobox homolog 1 (Six1)
gene were indicated to undergo stable RME in mouse neural
progenitor cells, and Eya1 was found to be monoallelically
expressed in vivo during mouse cochlear development (Gendrel
et al., 2014). Forming a bipartite complex, the EYA1 and SIX1
proteins function as transcriptional activators, and play essential
roles in organogenesis during embryo development. Loss of
function of the EYA1-SIX1 complex causes Branchiootorenal
syndrome (Ruf et al., 2004; Zou et al., 2008), an autosomal
dominant disorder characterized by craniofacial abnormalities,
hearing loss, and kidney deficiency, but with widely varying
conditions and phenotypes, even among individuals from the
same family. Eya1 gene dosage critically affects the development
of sensory epithelia in the mammalian inner ear, and different
threshold levels of Eya1 are required in different regions of the
inner ear (Zou et al., 2008). In mice, Eya1 homozygous mutant
individuals lack ears and kidneys, while heterozygous mutants
exhibit a conductive hearing loss and renal abnormalities,
similar symptoms to the Branchiootorenal syndrome (Xu et al.,
1999). These findings suggest that RME of dosage-sensitive
genes, such as EYA1 and SIX1, could potentially play a vital
role in phenotypic variability, either through haploinsufficiency
or a total absence of functional protein in a critical portion
of cells attributable to random inactivation of the wide-type
allele. Given that the random and dynamic expression of RME
genes potentially generates a mosaic expression signature, the
ratio between cells expressing mutant alleles versus wild-type
alleles in various tissues or organs, together with the timing
of these expression patterns at specific developmental stages,
are likely to be significant factors in autosomal dominant
diseases with regards to their penetrance and expressivity
(Figure 2).

With the development of high-throughput screening
technologies, such as SNP arrays (Gimelbrant et al., 2007; Jeffries
et al., 2012; Zwemer et al., 2012) and next-generation RNA-
sequencing methodologies (Nag et al., 2013; Xue et al., 2013;
Deng et al., 2014; Eckersley-Maslin et al., 2014; Gendrel et al.,
2014; Marinov et al., 2014; Borel et al., 2015), RME has been
studied and assessed at a transcriptome-wide level. Gimelbrant
et al. (2007) performed the first genome-wide analysis of RME
in clonal populations of human lymphoblast cell lines by SNP
arrays and found that 9.4% of genes (371 out of 3939 assessable
genes) were monoallelically expressed based on at least one
informative SNP. A similar ratio of RME genes (15.6%, or 212
out of 1385 assessed genes) was found in mouse B lymphoblasts
(Zwemer et al., 2012). Compared with lymphoblasts, relatively
fewer genes (approximately 2 to 3%) were found to be expressed
in a monoallelic pattern in neural stem and progenitor cells
(Jeffries et al., 2012; Eckersley-Maslin et al., 2014; Gendrel
et al., 2014). In fact, among the assessed autosomal genes in
human or mouse, while as many as 5 to 10% of the genes in
lymphoblasts (Gimelbrant et al., 2007; Zwemer et al., 2012)
were mitotically stable across different clones and generations, a

relatively low level were found to meet this criteria in fibroblasts
(Zwemer et al., 2012), neural stem cells (Jeffries et al., 2012)
and progenitor cells (Eckersley-Maslin et al., 2014; Gendrel
et al., 2014), and embryonic stem cells (Eckersley-Maslin et al.,
2014). However, RME could also be a dynamic process, in which
the monoallelic expression is temporary and not conserved
during mitosis, likely resulting from unsynchronized or discrete
transcriptional bursting of the two alleles (Xue et al., 2013;
Deng et al., 2014). Recent single-cell RNA-sequencing studies
have discovered widespread dynamic monoallelic expression
in human and mouse (Xue et al., 2013; Deng et al., 2014;
Marinov et al., 2014; Borel et al., 2015). These investigations
identified abundant RME of autosomal genes in the mouse
in vivo preimplantation embryos (12 to 24% of genes), in vivo
hepatocytes (∼30% of genes) and in vitro fibroblasts (∼24% of
genes) (Deng et al., 2014). Dynamic RME has also been observed
in human lymphoblastoid cells (Marinov et al., 2014) and
primary fibroblasts (Borel et al., 2015). The application of high-
throughput screening technologies in further studies of RME
genes will facilitate a better understanding of gene transcriptional
regulation and its relationship with the expressivity and severity
of genetic disorders.

In conclusion, we have observed RME of the Tbx5 gene
during mouse embryo development, which may provide a
potentially reasonable explanation for the widespread phenotypic
variability in HOS. Based on this result and the review
of the relevant literature described above, we suggest that
the possibility of RME should be investigated in those
situations where autosomal dominant disorders display intra-
and interindividual variability. This model will further provide
novel insights into the variability of autosomal dominant traits,
and a better understanding of the expressivity of disease
conditions.
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