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RESEARCH

Human liver single nucleus and single cell 
RNA sequencing identify a hepatocellular 
carcinoma-associated cell-type affecting 
survival
Marcus Alvarez1†  , Jihane N. Benhammou2,3†, Nicholas Darci‑Maher1, Samuel W. French4, Steven B. Han5, 
Janet S. Sinsheimer1,6,7, Vatche G. Agopian8, Joseph R. Pisegna1,3 and Päivi Pajukanta1,7,9* 

Abstract 

Background: Hepatocellular carcinoma (HCC) is a common primary liver cancer with poor overall survival. We 
hypothesized that there are HCC‑associated cell‑types that impact patient survival.

Methods: We combined liver single nucleus (snRNA‑seq), single cell (scRNA‑seq), and bulk RNA‑sequencing (RNA‑
seq) data to search for cell‑type differences in HCC. To first identify cell‑types in HCC, adjacent non‑tumor tissue, and 
normal liver, we integrated single‑cell level data from a healthy liver cohort (n = 9 non‑HCC samples) collected in the 
Strasbourg University Hospital; an HCC cohort (n = 1 non‑HCC, n = 14 HCC‑tumor, and n = 14 adjacent non‑tumor 
samples) collected in the Singapore General Hospital and National University; and another HCC cohort (n = 3 HCC‑
tumor and n = 3 adjacent non‑tumor samples) collected in the Dumont‑UCLA Liver Cancer Center. We then leveraged 
these single cell level data to decompose the cell‑types in liver bulk RNA‑seq data from HCC patients’ tumor (n = 361) 
and adjacent non‑tumor tissue (n = 49) from the Cancer Genome Atlas (TCGA) multi‑center cohort. For replication, 
we decomposed 221 HCC and 209 adjacent non‑tumor liver microarray samples from the Liver Cancer Institute (LCI) 
cohort collected by the Liver Cancer Institute and Zhongshan Hospital of Fudan University.

Results: We discovered a tumor‑associated proliferative cell‑type, Prol (80.4% tumor cells), enriched for cell cycle 
and mitosis genes. In the liver bulk tissue from the TCGA cohort, the proportion of the Prol cell‑type is significantly 
increased in HCC and associates with a worse overall survival. Independently from our decomposition analysis, we 
reciprocally show that Prol nuclei/cells significantly over‑express both tumor‑elevated and survival‑decreasing genes 
obtained from the bulk tissue. Our replication analysis in the LCI cohort confirmed that an increased estimated pro‑
portion of the Prol cell‑type in HCC is a significant marker for a shorter overall survival. Finally, we show that somatic 
mutations in the tumor suppressor genes TP53 and RB1 are linked to an increase of the Prol cell‑type in HCC.
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Background
Hepatocellular carcinoma (HCC) is the third lead-
ing cause of cancer-related death world-wide [1]. 
Although early detection has been associated with 
improved overall survival [2], most patients present in 
later stages, which prevents curative therapies such as 
hepatic resection and liver transplantation, resulting in 
a 5-year survival of only 18% [3]. Previous studies have 
demonstrated that tumor heterogeneity is common in 
HCC [4], which may explain some of the differences 
in survival outcomes and responses to therapies [5, 6]. 
Sub-classification of HCCs by molecular and cellular 
characteristics could help guide biomarker discovery 
and treatment options, especially in NAFLD-related 
HCCs, which remain poorly understood and underrep-
resented in most transcriptomic HCC studies.

Single-cell RNA sequencing (scRNA-seq) has 
advanced the study of complex admixtures of cells, 
shedding light on cellular functions at the single cell 
level in unprecedented ways [7–10]. However, applying 
scRNA-seq technology to precious, archived human 
tissues, such as liver biopsies or resections, has proven 
to be challenging as it is not possible to dissociate intact 
cells from these existing biopsies of solid tissues. Sin-
gle nucleus RNA sequencing (snRNA-seq) techniques 
[11] have overcome these technical challenges [12] 
and enabled cell-type level characterization of frozen 
solid tissues [13–16]. As scRNA-seq and snRNA-seq 
technologies improve, their use for solid tissues, such 
as liver, has expanded [17, 18]. However, studies inte-
grating data from multiple single cell level cohorts are 
needed to improve power of small individual cohorts.

In the field of tumor biology, scRNA-seq and snRNA-
seq have helped elucidate the presence of tumor 
heterogeneity, which is commonly observed at the 
molecular and clinical level in HCC [19–21]. ScRNA-
seq and snRNA-seq have provided ways to further 
identify and characterize cell-types at finer resolu-
tions [14–18, 21], which was not possible using bulk 
RNA-seq. In addition, many scRNA-seq studies have 
investigated tumor microenvironment by immune 
cells as this has been shown to be an important target 
in HCC treatment in the era of immunotherapy, with 
potential prognostic utilities [22, 23]. The importance 
of understanding tumor heterogeneity is further illus-
trated by the clinical observation that NAFLD-related 
HCC cases may be more resistant to new systemic 

immunotherapies [24], as shown at the molecular level 
both in human studies and murine models [22]. Thus, 
given the changing landscape of HCC etiologies and 
the observed clinical heterogeneity, additional cell-type 
level transcriptomics studies of HCC are warranted.

We hypothesized that snRNA-seq can complement 
the existing scRNA and bulk expression data from liver 
HCC and normal liver cohorts and that these data can 
be integrated to identify currently unknown HCC-asso-
ciated cell-types that affect survival when their propor-
tions expand in the tumor tissue. To this end, we first 
used a liver snRNA-seq data set that we previously 
generated from HCC tumor and adjacent non-tumor 
liver biopsies from patients with NAFLD-related HCC 
[25], and then integrated these data with two existing 
liver scRNA-seq data sets, representing multiple eti-
ologies of HCC and normal liver [7, 8]. Thus, we gen-
erated a powerful reference data set, comprising both 
viral and non-viral origin HCC, adjacent non-tumor, 
and normal liver samples at the single cell resolution. 
We then leveraged the cell-type marker genes identified 
in these three reference data sets to decompose cell-
type proportions in liver bulk RNA-seq data from the 
well-phenotyped Cancer Genome Atlas (TCGA) cohort 
[26] (361 HCC tumor and 49 adjacent non-tumor biop-
sies) to first accurately estimate the tumor/non-tumor 
cell-type proportions and then test the effects of the 
identified HCC-enriched cell-types on survival out-
comes. To replicate and further validate the results, we 
used the Liver Cancer Institute (LCI) cohort [27] (221 
HCCs and 209 adjacent non-tumor tissue biopsies), 
collected by the Liver Cancer Institute and Zhongshan 
Hospital of Fudan University, which consists predomi-
nantly of chronic hepatitis B-HCCs. Using these two 
independent HCC cohorts, we discovered a replicated, 
proliferative cell-type, Prol, characterized by 656 mito-
sis and cell-cycle enriched cell-type marker genes, that 
is significantly more present in the HCC cases than in 
adjacent non-tumor liver tissue both in TCGA and LCI, 
in line with our single cell level data. Previous studies 
have not identified HCC cell-types associated with sur-
vival. Thus, our discovery that HCCs with a high Prol 
cell-type content have significantly worse survival out-
comes advances the field by elucidating a key HCC risk 
cell-type. Importantly, we observed this same result 
both in TCGA and LCI, which increases the scientific 
rigor of our finding.

Conclusions: By integrating liver single cell, single nucleus, and bulk expression data from multiple cohorts we iden‑
tified a proliferating cell‑type (Prol) enriched in HCC tumors, associated with a decreased overall survival, and linked to 
TP53 and RB1 somatic mutations.
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Multiple cancer genes and mutations have been identi-
fied in HCC, including mutations in tumor suppressors, 
such as tumor protein P53 (TP53) [6]. However, it is not 
known whether these somatic mutations are also asso-
ciated with cell-type changes in HCC. To address this 
knowledge gap and elucidate the molecular mechanisms 
of the identified cell-types, we investigated the HCC risk 
cell-type, Prol, for accumulation of known somatic can-
cer mutations [6, 28]. Using somatic mutation of origin 
analysis, we discovered that somatic TP53 and RB1 muta-
tions are linked to the identified increase of Prol in HCC.

Methods
Study design
To identify cell-types associated with HCC and its sur-
vival outcomes, we first analyzed three liver single cell 
level data sets from an existing snRNA-seq cohort of 
NAFLD-related HCC [25], an existing scRNA-seq cohort 
of HCC from various etiologies [8], and a healthy liver 
scRNA-seq cohort [7] to identify and characterize their 
cell-types. Next, we leveraged these liver cell-type ref-
erence data to decompose cell-type proportions in the 
liver bulk RNA-seq data from the Cancer Genome Atlas 
(TCGA) cohort [26] and subsequently tested the esti-
mated cell-type proportions for associations with HCC 
and survival outcomes. Then, the HCC and survival 
associated cell-types identified in TCGA were tested for 
replication in independent liver bulk microarray expres-
sion data from the previously published LCI cohort [27]. 
Finally, we searched for associations between cell-type 
proportions and somatic mutations in the TCGA cohort.

snRNA‑seq cohort
We identified NAFLD-related HCC cases among patients 
undergoing surgical resection for HCC treatment at the 
Dumont-UCLA Liver Cancer Center [25]. The 3 patients 
with NAFLD-related HCC were women with a mean 
age of 77.9 ± 3.1 years and a mean body mass index of 
25.3 ± 2.9 kg/m2, who had components of the metabolic 
syndrome (hypertension, dyslipidemia and insulin resist-
ance). All patients exhibited features of nonalcoholic 
steatohepatitis (NASH) on liver histopathology (steato-
sis, ballooning and lobular inflammation [29]), and none 
had cirrhosis, as assessed by the METAVIR fibrosis score 
[30] (Additional file 1: Fig. S1). All patients also presented 
with clinically heterogeneous tumors, based on sizes, 
histological stages of differentiation (moderate to poorly 
differentiated), and serum alpha fetoprotein (AFP) levels, 
with one patient exhibiting an AFP of > 400 ng/mL.

Tissues were characterized by a pathologist using H&E 
and immunohistochemical stains, which confirmed 
the diagnoses of HCC (n = 3) and adjacent non-tumor 
(n = 3). Samples were snap frozen and kept at −  800C 

until extraction of the nuclei. All histopathology slides 
were reviewed by the same pathologist. We abstracted 
clinical data and other demographics from the electronic 
health records. The study was approved by the UCLA 
IRB, and all participants provided a written informed 
consent.

Two existing scRNA‑seq cohorts
Along with the snRNA-seq data  [25], we also incorpo-
rated liver scRNA-seq data from two previously pub-
lished cohorts into our single cell level analysis [1]: HCC 
patients with viral origin of HCC (n = 4), HCC patients 
with unspecific origin of HCC (n = 10), and adjacent con-
trol liver samples (n = 14), as well as a healthy normal 
donor, collected in the Singapore General Hospital and 
National University Hospital [8], and [2] normal liver 
samples (n = 9), collected in the Strasbourg University 
Hospital [7]. Data from Sharma et  al. [8] were down-
loaded from https:// data. mende ley. com/ datas ets/ 6wmzc 
skt6k/1. Read counts for filtered droplets (n = 73,589) 
from the 14 HCC patients and 1 control were extracted 
from the downloaded HCC.h5ad file. Read counts for 
the 9 normal liver samples from Aizarani et al. [7] were 
downloaded from GEO under the accession number 
GSE124395. We used the filtered set of droplets provided 
by the authors (n = 10,372) for analysis.

Processing of The Cancer Genome Atlas (TCGA) bulk 
RNA‑seq, mutation, and clinical data
To expand our cell-type composition analysis to a larger 
number of HCC samples, we leveraged data from The 
Cancer Genome Atlas Liver Hepatocellular Carcinoma 
(TCGA-LIHC) (referenced as TCGA in the text) [26]. 
The TCGA-LIHC cohort includes 361 cases with pri-
mary tumors. We included only those cases that were 
designated as non-recurrent primary HCC and excluded 
cholangiocarcinomas, HCC-cholangiocarcinoma mixed 
tumors, and other rarer types of HCC, such as fibrola-
mellar, as these have different pathogenesis and clinical 
outcomes. We integrated bulk RNA-seq, mutation, clini-
cal, and survival data with our single cell level RNA-seq 
data to identify HCC-associated cell-types.

Clinical data were downloaded from Genomics Data 
Commons (GDC) portal [31] (https:// portal. gdc. cancer. 
gov/ proje cts/ TCGA- LIHC). We abstracted the avail-
able clinical and biospecimen data from Genomic Com-
mon Data portal, which included age, sex, ethnicity, and 
HCC tumor size, as well as node and metastatic Ameri-
can Joint Committee on Cancer (AJCC) TNM staging, 
and RNA integration number (RIN). Some other clini-
cal characteristics were missing in TCGA, and thus, we 
had no data on cirrhosis status, the Model for End-Stage 
Liver Disease (MELD), serum AFP levels, or additional 

https://data.mendeley.com/datasets/6wmzcskt6k/1
https://data.mendeley.com/datasets/6wmzcskt6k/1
https://portal.gdc.cancer.gov/projects/TCGA-LIHC
https://portal.gdc.cancer.gov/projects/TCGA-LIHC
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clinical phenotypes (e.g., diabetes and medication). End-
point data for the survival analysis were downloaded 
from Table  S1 from Liu et  al. [32], and redacted cases 
were removed before analysis.

Liver bulk RNA-seq expression data were down-
loaded from the GDC portal [31] as HTSeq counts for 
all TCGA-LIHC individuals. We included counts for the 
361 primary tumor samples, as well as for 49 matched 
non-tumor samples. For downstream analysis, the counts 
were Trimmed Mean of M-values (TMM) normalized 
with edgeR [33] and log10 transformed after adding a 
prior count of 1. Finally, RIN was regressed out to obtain 
the final normalized expression data.

Somatic mutation data collected from whole exome 
sequencing of tumor biopsies for the TCGA-LIHC were 
downloaded from the Broad Genome Data Analysis 
Center (GDAC) (http:// gdac. broad insti tute. org). The 
Analysis Results file from the MutSig2CV under Muta-
tion Analyses were downloaded on May 18, 2021. These 
included a MAF file of somatic mutations for each sam-
ple (LIHC-TP.final_analysis_set.maf), as well as a list of 
69 significantly frequently mutated HCC genes (q < 0.1) 
(sig_genes.txt).

The Liver Cancer Institute (LCI) cohort used for replication 
analyses
To validate the results obtained in TCGA, we analyzed 
a previously published HCC microarray dataset [27, 34]. 
This study recruited the HCC patients from the Liver 
Cancer Institute (LCI) and Zhongshan Hospital of Fudan 
University, most of whom had a history of chronic hepa-
titis B (HBV) infection. We obtained tumor microarray 
expression, clinical, and overall survival (OS) outcome 
data for a total of 221 patients. Additionally, 209 of these 
patients had expression data for adjacent non-tumor 
liver biopsies. RMA-normalized microarray expres-
sion data in log space were directly downloaded from 
GSE14520 in GEO. The clinical data, including OS end-
points, were downloaded as the extra endpoint text file 
from GSE14520. The expression data had been normal-
ized by the authors [27], and thus, we used them directly 
for downstream analysis.

Liver single nucleus extraction for snRNA‑seq
For the snRNA-seq of the 3 NAFLD-related HCC and 3 
adjacent non-tumor control biopsies, we cut the frozen 
samples over dry ice and placed them in glass tubes, as 
described earlier [25]. Briefly, we added 4 ml of lysis buffer 
consisting of 0.1% IGEPAL, 10 mM Tris-HCl, 10 mM 
NaCl, and 3 mM MgCl2 to the tissue. After 10 min on ice, 
we mechanically homogenized the tissue using a Dounce 
homogenizer, and then filtered them through a 70-μm 
MACS smart strainer (Miltenyi Biotec #130-098-462) to 

remove debris. We isolated the nuclei by spinning the 
homogenate at 500 x g for 5 minutes at 4 °C and washed 
the nuclei in 1 ml of resuspension buffer (RSB) consist-
ing of 1X PBS, 1.0% BSA, and 0.2 U/μl RNase inhibitor. 
We filtered the nuclei a second time using 40 μm Flowmi 
cell strainer (Sigma Aldrich # BAH136800040) and 
centrifuged them at 500×g for 5 min at 4 °C. We resus-
pended the nuclei in the wash buffer and kept them on 
ice. To assess nuclei isolation (for clumping and intact 
membrane), we labeled the nuclei with Hoechst stain and 
counted them using BZ-X710 fluorescent microscope. 
Nuclei were immediately processed them with the 10X 
Chromium platform following the Single Cell 3′ v2 pro-
tocol. We generated libraries with the 10X platform and 
sequenced the nuclei on an Illumina NovaSeq S2 at a 
sequencing depth of 300–400 million reads per sample.

Processing of the snRNA‑seq data
Before read alignment, we trimmed template switch oli-
gos, primers, and polyA sequences greater than 20 base 
pairs from the fastq reads using cutadapt (https:// cutad 
apt. readt hedocs. io/ en/ stable/). We aligned reads to the 
GRCh38 human genome reference and Gencode v26 [35] 
gene annotations using STARSolo in STAR v2.7.3a [36]. 
Gene counts were taken from the full pre-mRNA tran-
script using the “—soloFeatures GeneFull” option. We 
filtered empty and contaminated droplets using Debris 
Identification using Expectation Maximization (DIEM) 
[13], where we further adapted estimation of the multino-
mial mixture model parameters by adding a prior count 
of 1 to the gene mean estimates and the cluster member-
ship estimates to avoid overfitting. To further remove 
doublets and contaminated clusters from the snRNA-seq 
data, we separately clustered parenchymal hepatocytes 
and non-parenchymal nuclei. Nuclei were clustered in a 
first pass and assigned to hepatocyte and non-hepatocyte 
cell-types. Each group was clustered again separately. 
Then, we removed nuclei belonging to clusters expressing 
markers from multiple cell-types, leaving the filtered set 
of nuclei (n = 39,995).

Integration and clustering of the single cell level data 
from the three cohorts
To analyze the single-cell level data across the cohorts, 
we first removed cohort- and experiment-specific 
effects by performing data integration. Counts were 
first normalized using sctransform [37] and integrated 
using canonical correlation analysis (CCA) [38]. Inte-
grations were performed across the 6 NASH-HCC sam-
ples, the 15 patients (14 HCC and 1 healthy control) in 
the Sharma [8] data set, and the single combined set of 
9 samples in the Aizarani [7] data set. The 22 samples 
across the 3 cohorts were used for independent samples 

http://gdac.broadinstitute.org
https://cutadapt.readthedocs.io/en/stable/
https://cutadapt.readthedocs.io/en/stable/
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during normalization and integration. Each of the 22 
samples were normalized with sctransform using 3000 
genes for the number of variable features. To reduce 
the time required for integration, we selected a sub-
set of the 22 samples for use as a reference during the 
FindIntegrationAnchors step. We selected 11 samples, 
including the combined sample from Aizarani et  al. 
[7] to serve as a healthy control, and 10 additional ran-
domly selected samples. After anchor identification, all 
22 samples from the 3 cohorts were integrated with the 
IntegrateData function in Seurat [38] using 30 dimen-
sions. This resulted in corrected counts for the 123,956 
droplets. Finally, we performed clustering on these cor-
rected counts for downstream cell-type assignment. 
We ran principal component analysis (PCA) and con-
structed the shared nearest neighbor (SNN) graph with 
30 PCs. This graph was used as the input to Louvain 
clustering by running the FindClusters function with 
a resolution of 1 [38]. We chose a resolution of 1 to 
accommodate the large number of cells and nuclei and 
better identify subtypes. To evaluate the effect of inte-
gration, we also clustered cells and nuclei in the three 
cohorts by clustering the merged data without CCA 
integration. Sctransform was run on the merged counts 
as described above, treating the cells and nuclei from 
the three cohorts as a single sample. PCA and cluster-
ing were performed on the sctransformed counts in the 
same manner as for the integrated data.

Marker gene identification and cell‑type assignment 
of single cell level data
For cell-type classification, we obtained the upregu-
lated marker genes and log-fold changes for each clus-
ter using the uncorrected, log-normalized counts. Raw 
counts for all droplets were multiplied by a scaling fac-
tor to sum to 1,000 as this was the approximate median 
across all droplets, and then log-transformed. To iden-
tify marker genes, we performed a logistic regression 
test using the FindAllMarkers function in Seurat [38] 
and kept marker genes with an average  log2 fold change 
of at least 0.1 and Bonferroni-adjusted p-value < 0.05 
corrected for the total number of genes in the data set. 
For the pathway enrichment analysis, we also obtained 
the log fold changes for all expressed genes by calcu-
lating the difference in  log2 means between the counts 
of droplets classified within and outside of the cluster. 
Cell-types were assigned based on manual curation of 
known marker genes [26]. Throughout the manuscript, 
we call the 25 assigned clusters the subcell-types. We 
further merged the subcell-types into the 8 main cell-
types based on their common lineage, expressed genes, 
and enriched pathways.

Pathway enrichment analyses of the single cell level data
To gain insight into cell-type functions in the liver sin-
gle cell level data, we performed pathway enrichment 
analysis of upregulated marker genes for each liver sub-
cell-type. We used the clusterProfiler [39] R package to 
run gene set enrichment analysis (GSEA) [40]. We tested 
for enrichments of the pathways in the Reactome data-
base [41, 42]. For each subcell-type, its log fold changes 
were used to rank the gene set as input to the gsePath-
way function, using 10,000 permutations and an epsilon 
of 1 ×  10−50. p-values were corrected for multiple testing 
using FDR.

Clustering of Prol cells and nuclei
The Prol cluster that we identified in the integrated anal-
ysis expressed markers involved in cell division; however, 
our integrated analysis did not further separate these 
cells/nuclei, so we subclustered the 1,743 Prol cells/
nuclei to identify its composition. We ran a clustering 
pipeline similar to the whole data set, with modifications 
to account for the lower number of cells. The Prol cells/
nuclei were first split by cohort, and sctransform was 
run on the raw counts for each of the three samples. We 
then ran CCA integration with the k.filter and k.weight 
parameters set to 75 to account for the small number of 
cells/nuclei in each cohort, as only 92 Prol cells were pre-
sent in the healthy liver tissues from the Aizarani data 
set [7]. Cluster assignments and UMAPs were generated 
using 30 PCs with a resolution of 0.2 to accommodate the 
lower number of cells/nuclei and to match clusters with 
the main cell-types.

To assign Prol cells/nuclei to the main liver cell-types, 
we used SingleR [43]. For classification, we first gener-
ated a reference of the 7 main cell-types (excluding the 
Prol cluster) from the integrated liver data. Briefly, pair-
wise T-tests were performed across the 7 main cell-types 
and the top 100 markers were extracted. A reference was 
derived on the log-normalized counts using these top 
markers with the trainSingleR function. To account for 
the single-cell level nature of the reference, the counts 
were aggregated to pseudobulk samples with the aggr.ref 
parameter. Finally, we ran the classifySingleR function on 
the droplets in the Prol cluster and assigned their cell-
type to the pruned labels.

Estimating cell‑type proportions and correlation analyses 
of the cell‑type marker genes in the liver bulk RNA‑seq 
from TCGA and microarray data from LCI
To estimate cell-type proportions in the bulk liver expres-
sion data in the TCGA-LIHC cohort [26], we used a co-
expression based approach implemented in Bisque [14]. 
Briefly, this approach performs PCA on the top cell-type 
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marker genes for each cell-type. We used normalized 
RNA-seq expression and cell-type markers as input, 
requiring a minimum of 20 genes and a maximum of 300 
genes for the set of markers for PCA. The marker genes 
were obtained from our single cell level reference data. 
Decomposition was performed for the 8 main cell-types 
and 25 subcell-types. As we observed high correlation 
(R > 0.9) between proportion estimates of subcell-types 
within their main classification, we used only the propor-
tion estimates for the main cell-types for downstream 
analysis.

In order to replicate our results with the decomposed 
proportion estimates observed in TCGA, we ran the 
same decomposition in the LCI cohort. We ran Bisque 
on the normalized microarray expression data using the 
same parameters and marker gene input described above. 
To assess the reliability of the TCGA and LCI proportion 
estimates, we analyzed the co-expression patterns of the 
marker genes in each cohort. We found that for the LCI 
cohort, the B cell marker genes did not show positive cor-
relations across their expression. As our decomposition 
approach relies on co-expression of marker genes, we 
excluded B cells from the LCI main cell-type proportion 
estimates.

Cell‑type proportion differences between tumor 
and non‑tumor in the single cell level and bulk data
To identify tumor-enriched or depleted cell-types, we 
performed paired Wilcoxon signed-rank tests between 
tumor and non-tumor samples. In the single-cell-level 
data, we calculated differences in the observed propor-
tions between paired tumor and non-tumor samples in 
the 17 patients with matched biopsies. Differences were 
calculated for each subcell-type. The observed subcell-
type proportions for each tumor or non-tumor sample 
were calculated by dividing the number of cells/nuclei in 
the subcell-type by the total number in the sample. For 
the tumor samples in the Sharma data set [8], the core 
and peripheral tumor droplets were combined. p-values 
were corrected for testing 25 subcell-types using FDR.

For calculating differences in cell-type proportion 
estimates between tumor and adjacent non-tumor sam-
ples in the TCGA and LCI bulk tissue cohorts, we per-
formed a paired Wilcoxon test in TCGA (n = 49) and LCI 
(n = 209). p-values were corrected for testing 8 and 7 cell-
types in the TCGA and LCI cohorts, respectively, using 
FDR.

Survival outcome associations with cell‑type proportion 
estimates
To investigate the effect of cell-types on survival out-
comes, we performed associations between survival out-
comes and cell-type proportion estimates. Associations 

were carried out with Cox proportional hazard regres-
sions for overall survival (OS) and progression free 
interval (PFI) in TCGA, and OS in the LCI validation 
cohort. We included age, sex, and ethnicity as covari-
ates in TCGA, and age and sex in the LCI cohort, as most 
patients from this cohort were of Asian descent. In addi-
tion, we included tumor stage as a binary covariate where 
specified, where patients with stage I and II were grouped 
into the low group and those with stage III and IV were 
grouped into the high group. Patients with any missing 
covariate data were excluded. All p-values were corrected 
for multiple testing using false discovery rate (FDR). All 
survival analyses were performed with the survival pack-
age in R [44]. We tested survival differences between low 
vs. high proportion groups, splitting the participants by 
median or quartile. In the median analysis, tumor sam-
ples with proportion estimates below and above the 
median were grouped into low and high, respectively. 
Similarly, the quartile analysis was performed using the 
lower and upper 25% quartiles of the cell-type propor-
tion estimates as cutoffs. Plots were generated using the 
Kaplan-Meier method without any covariates. Unless 
otherwise specified, all cell-type effects were corrected 
for testing 8 and 7 cell-types in the TCGA and LCI 
cohorts, respectively, using FDR.

Mutation analyses in TCGA‑LIHC
We hypothesized that mutations in distinct genes would 
lead to increased Prol proportions in HCC tumor sam-
ples. We thus tested for differences in proportions 
between tumor samples with and without a somatic 
mutation in TCGA-LIHC, as LCI did not profile tumor 
mutations. Somatic mutations in TCGA-LIHC were col-
lected from exome sequencing data processed by GDAC 
(http:// gdac. broad insti tute. org). We restricted our analy-
sis to 69 genes frequently and significantly mutated in 
HCC, as reported previously in the TCGA-LIHC cohort 
(http:// gdac. broad insti tute. org) [45]. A gene was con-
sidered significantly mutated if its q-value was less than 
0.1, as determined by MutSig2CV [46]. Tumor samples 
with at least one synonymous, nonsense, in frame, splice 
site, missense, or frame shift variant were considered as 
having a somatic mutation (mut.). Tumor samples with-
out any somatic mutation detected were considered as 
wildtype (WT). For each gene and each main cell-type, 
we used a Wilcoxon test to assess the difference in cell-
type proportion estimates between tumor samples with 
a somatic mutation detected and tumor samples without 
a somatic mutation. For TP53, we also tested for tumor 
proportion differences between wildtype (WT) cases and 
each of the somatic mutation types listed previously. Wil-
coxon p-values were adjusted for multiple testing across 
all gene-main-cell-type pairs using FDR.

http://gdac.broadinstitute.org
http://gdac.broadinstitute.org
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Bulk liver differential expression (DE) analyses
In addition to estimating cell-type proportions, we also 
reciprocally evaluated the significance of cell-types in 
HCC by assessing single cell expression of genome-
wide significant bulk tumor-elevated, survival decreas-
ing, and mutation-elevated genes. To first obtain the 
genome-wide tumor-elevated genes in TCGA and LCI, 
we ran differential expression (DE) genome-wide in 
both the TCGA and LCI bulk expression cohorts. DE 
was run on the 49 and 209 paired samples in the TCGA 
and LCI, respectively, that contained the matched 
tumor and adjacent non-tumor samples. For the TCGA 
RNA-seq data, we first filtered for expressed genes by 
removing those with an average number of reads less 
than 10 across the 98 samples. We then ran edgeR [33] 
on the TMM normalized counts with the generalized 
linear model (GLM) framework (glmFit and glmLRT 
functions) and setting a prior count of 1. For the LCI 
microarray data, we used the gene-filtered and normal-
ized data provided. We then ran limma [47] to fit a lin-
ear model (lmFit function) and compute test statistics 
with empirical Bayes shrinkage of variances (eBayes 
function). For both the TCGA and LCI, we accounted 
for the paired status of the samples by including the 
patient as an indicator covariate.

Next, to obtain the genome-wide survival-decreasing 
genes in the bulk expression cohorts, i.e., OS- and PFI-
decreasing genes in TCGA and OS-decreasing genes in 
LCI, we performed Cox proportional hazard regressions 
for OS and PFI in TCGA, and OS in the LCI validation 
cohort. As with the proportion analyses, we included age, 
sex, and ethnicity as covariates in TCGA, and age and sex 
in the LCI cohort. Patients with any missing covariate 
data were excluded. We then ran Cox proportional haz-
ards regression testing normalized gene expression val-
ues as a quantitative predictor against survival outcomes. 
The statistical significance of these survival-decreasing 
genes was corrected for genome-wide testing using FDR. 
Regressions were performed with the survival package in 
R [44].

Similarly, to identify genes upregulated in the context 
of a somatic mutation in TP53 and RB1, we also per-
formed genome-wide DE between somatic mutation 
(mut.) and wildtype (WT) carriers in the TCGA cohort. 
We broadly included genes with greater than 0 counts in 
at least 50% of the 410 samples. To test for DE, we ran the 
GLM framework in edgeR [33] using TMM normaliza-
tion. DE was run on the 357 primary tumor samples with 
both mutation and RNA-seq data. We tested for differ-
ences in bulk liver expression between participants that 
were wildtype (WT) and those that had a somatic muta-
tion (mut.) in the particular gene. A genome-wide DE 
analysis was performed for both TP53 and RB1.

Scoring of the cell‑cycle, tumor‑elevated, OS‑ 
and PFI‑decreasing, and mutation upregulated bulk genes 
in the single cell level data
To assess cell/nuclei expression of the cell-cycle genes 
[48] (42 S phase genes and 54 G2 and M phase genes) 
as well as the tumor-elevated, OS- and PFI-decreasing, 
and mutation upregulated genes identified in our bulk 
DE analyses (see above), we assigned module scores with 
the AddModuleScore function implemented in the Seu-
rat package [38]. Briefly, module scores are derived by 
calculating the average expression of the gene set and 
subtracting the average expression of gene sets. Control 
gene sets are randomly selected from bins based on aver-
age expression. The expression data of cells/nuclei for 
module scoring were calculated by multiplying raw read 
counts to sum to 1,000 and log transforming them.

For cell cycle scoring, the gene sets included 42 S phase 
genes and 54 G2 and M phase genes provided in the Seu-
rat package [38, 48]. For tumor-elevated scores, we used 
the genes identified in the bulk liver DE analysis that had 
a log fold change greater than 1 of tumor over non-tumor 
and an FDR-corrected p-value < 0.05. The tumor-elevated 
gene set included 1065 genes in TCGA and 335 genes in 
LCI. For the OS- and PFI-decreasing gene sets, we ana-
lyzed the genes identified in the genome-wide survival 
analysis of the bulk liver data that had a hazard ratio > 1 
(increased expression leading to a worse prognosis) and 
an FDR-corrected p-value < 0.05. There were 740 OS-
decreasing genes and 528 PFI-decreasing genes in TCGA 
and 36 OS-decreasing genes in LCI. For the mutation 
upregulated genes, we included those from the genome-
wide DE mutation analysis for TP53 and RB1 that had 
a log fold change greater than 0.5 and an FDR adjusted 
p-value < 0.05. This resulted in a set of 1358 TP53 mut. 
upregulated genes and a set of 774 RB1 mut. upregulated 
genes.

Differences in tumor-elevated, OS-decreasing, PFI-
decreasing, and mutation upregulated gene scores 
between the Prol and all other clusters were assessed by 
running a Wilcoxon test between droplet scores within 
and outside of the Prol cluster.

Results
Overview of study design
HCCs are poorly characterized at the cell-type level. To 
address this scientific and biomedical knowledge gap, 
we utilized the following three single cell level RNA-seq 
data sets to produce a comprehensive cell-type reference 
for HCC tumor, adjacent non-tumor tissue, and nor-
mal livers [1]: liver snRNA-seq data that we previously 
generated from HCC samples (n = 3) and adjacent non-
tumor control tissue samples (n = 3) from patients with 
NAFLD-related HCC undergoing hepatic resection [25] 
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[2]; existing liver scRNA-seq data from HCC patients 
with viral origin of HCC (n = 4), HCC patients with 
unknown etiology of origin of HCC (n = 10), adja-
cent non-tumor control tissue samples (n = 14), and a 
healthy control liver sample (n = 1) [8]; and [3] existing 
liver scRNA-seq data from normal liver samples (n = 9) 
[7]. After integrating these data and identifying the cell-
types, we leveraged the cell-type transcriptional profiles 
to estimate cell-type proportions (decompose) in bulk 
liver RNA-seq samples from the well-established TCGA 
cohort [26] (361 patients with primary HCC tumors, 49 
of whom have paired adjacent non-tumor tissue samples) 
and searched for cell-types that are significantly enriched 
in HCC. To replicate these findings, we used the LCI 
cohort [27] with microarray data from 221 patients with 
primary HCC tumors, of whom 209 have paired adja-
cent non-tumor biopsies. Next, we tested the effect of 
the HCC-increased cell-type on survival outcomes in the 
TCGA and LCI cohorts. Finally, we searched for associa-
tions between somatic mutations and the increased cell-
type proportion estimates in HCC (for the overall study 
design, see Additional file 1: Fig. S2).

Data integration, clustering, and cell‑type assignment 
in three single cell level RNA‑seq cohorts
To decompose liver bulk RNA-seq cell-types in the 
TCGA and LCI cohorts, we first set up a single cell level 
reference data set. We utilized three single cell level 
cohorts generated using either snRNA-seq or scRNA-
seq to build a powerful liver cell-type reference data set 
with a large number of cells and multiple HCC etiologies 
represented. Briefly, the included cohorts consist of both 
viral and non-viral origin HCC biopsy samples, adjacent 
non-tumor control samples, and normal liver samples 
(for cohort descriptions see Methods). Merging of the 
three data sets without integration resulted in cohort-
specific clustering, indicating the presence of batch 
effects (Additional file 1: Fig. S3). When merging without 

integration, we also observed evidence of inter-patient 
heterogeneity across the 17 paired HCC samples (Addi-
tional file 1: Fig. S3). In order to identify shared cell-types 
and correct for these batch effects, we integrated these 
single cell level expression data using the CCA approach 
[38, 49] that should retain biologically meaningful signals 
while reducing technical variance (Fig.  1a,b). The inte-
grated data were clustered using Seurat [38], resulting in 
the identification of 25 cell-types (Fig. 1a,b).

Discovery of an HCC‑associated, cell‑cycle‑related cell‑type 
in the single cell level data
Clustering of the integrated single cell level data (123,956 
analyzed nuclei/cells) identified 25 subcell-types in total 
(Fig.  1b), which we merged and classified into 8 main 
cell-types based on their lineage (Fig.  1a). Subcell-types 
and main-cell types were classified based on expression 
of known marker genes and enriched pathways (Fig. 1c; 
Additional file 1: Fig. S4; Additional file 2: Table S1 and 
Additional file 3: Table S2). We then searched for subcell-
types/cell-types enriched or depleted in HCC tumor cells 
(Fig. 1d). We observed a significant enrichment of tumor 
cells (80.4%) in a new cell-type cluster that we named Pro-
liferative (Prol) cell-type (Fig. 1d,e). The pathway analysis 
of its marker genes suggested that this tumor-enriched 
cell-type consists of mitotic cells (Fig.  1c, see below). 
We also observed a significantly increased number of 
tumor cells in T, myeloid, and hepatocyte subcell-types 
and a decreased number of tumor cells in natural killer 
T subcell-type (Fig. 1d). Thus, our multi-cohort integra-
tion of both snRNA-seq and scRNA-seq data allowed us 
to identify the tumor cell-enriched Prol cell-type that had 
not been identified previously. The top pathway enrich-
ments of the Prol marker genes were oxidative phospho-
rylation and cell cycle, suggesting that their functions are 
related to growth and cell division (Fig.  1c). To further 
investigate the proliferative capacity of Prol, we assigned 
G2M and S module scores based on average expres-
sion of G2M and S cell cycle genes [48] (see Methods), 

Fig. 1 Multi‑cohort integration of three liver HCC single cell level data sets identifies and characterizes an HCC‑associated cell‑type. We assessed 
liver cell‑types and HCC‑related cell‑type changes by integrating Aizarani et al. [7] scRNA‑seq data (n = 9 non‑HCC samples), Sharma et al. [8] 
scRNA‑seq data (n = 1 non‑HCC, n = 14 HCC‑tumor, and n = 14 adjacent non‑tumor samples), and Rao et al. [25] snRNA‑seq data (n = 3 HCC‑tumor 
and n = 3 non‑tumor samples). a, b Uniform Manifold Approximation and Projection (UMAP) visualization of 123,956 cells and nuclei integrated to 
remove cohort‑specific effects. Clusters were assigned to (a) 8 major cell‑types and (b) 25 subcell‑types. c Pathway gene set enrichment analysis 
of the expression profiles for each subcell‑type using the Reactome pathway database. The enr values indicate normalized enrichment scores and 
q‑values denote Benjamini‑Hochberg‑adjusted p‑values. Full pathway names are shown in Additional file 3: Table S2. d The bar plot shows the 
proportion of cells/nuclei in the full set of 123,956 cells/nuclei originating from HCC tumor and non‑tumor samples separated by subcell‑type. 
Darker fills indicate an FDR‑adjusted p‑value < 0.05 from a paired Wilcoxon test between proportions of HCC tumor and non‑tumor samples. e 
Proportions of the Proliferative (Prol) cell‑type are significantly higher in the 17 HCC tumor samples than in their 17 adjacent paired non‑tumor 
samples after correcting for multiple testing with FDR, as assessed by a paired Wilcoxon test. f, g UMAP plots with cells/nuclei colored by their cell 
cycle score in the full single‑cell level RNA‑seq data of 123,956 droplets show that the Prol cluster consists of droplets with higher expression of (f) 
G2M phase genes and (g) S phase genes. The asterisks denote the significance of a difference between G2M and S phase gene scores between Prol 
and non‑Prol cells/nuclei. Significance levels for p‑values in (e–g) *p < 0.05, **p < 0.005, ***p < 0.0005. B indicates B cells; Chol, cholangiocytes; Endo, 
endothelial cells; Hep, hepatocytes; Myel, myeloid cells; Stell, stellate cells; and T, T cells

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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respectively. We found that cells/nuclei from Prol dem-
onstrated significantly higher S and G2M phase module 
scores when compared to other cell-types (Fig. 1f,g). The 
higher cell cycle scores imply that Prol consists of actively 
dividing cells. To determine the cell-type composition of 
these proliferating cells, we re-classified the Prol cells/
nuclei into main cell-types using a reference trained on 
the non-Prol cells/nuclei. In addition to hepatocytes, 
all non-parenchymal cell-types were observed in this 
tumor-enriched cluster (Additional  file  1: Fig. S5). This 
presence of dividing non-hepatocyte cells observed in the 
tumor-enriched Prol cluster highlights the importance of 
the microenvironment in supporting HCC growth [50].

We next explored the marker genes within the Prol 
cell-type to further understand its biology. We identified 
656 protein-coding marker genes in Prol, of which 15 had 
a log fold change > 1 for differential expression between 
the Prol and other cell-types (Additional file 2: Table S2). 
Most of these 15 strongest Prol marker genes (12/15; 
80%) had previously been identified in HCC pathogenesis 
or associated with clinical features of the disease [51–58]. 
Consistent with our findings, liver bulk expression of the 
histone protein, H2AFZ, a marker gene in Prol, was also 
identified in an independent HCC study to be associ-
ated with cell cycle genes regulated by TP53 [59]. How-
ever, among the 15, we discovered three genes, HMGN2, 
RARRES2, and HIST1H4C, which have previously been 
described in other malignancies [60, 61] but not in HCC. 
Two of these, HIST1H4C and HMGN2, are nuclear pro-
teins that bind to nucleosomal DNA, consistent with Prol 
having higher S and G2M scores (Fig. 1f, g).

Overall, the single cell level reference data suggest that 
the Prol cell-type is associated with HCC. Therefore, 
we next used this single cell level reference data set to 
decompose cell-type proportions in the liver bulk RNA-
seq HCC cohorts, TCGA and LCI, and then tested them 
for cell-type proportion differences between the HCC 
tumor and adjacent non-tumor control tissues.

Decomposition of cell‑type proportions in HCC 
and adjacent non‑tumor samples discovers high 
proportions of the proliferative cell‑type Prol in HCC
Next, we sought to determine whether cell-type com-
position changes observed in our single cell level refer-
ence data were conserved and universally present in 
HCCs. Therefore, we estimated cell-type proportions 
for the 8 main cell-types and 25 subcell-types from bulk 
liver RNA-seq data in the TCGA Liver Hepatocellu-
lar Carcinoma (TCGA-LIHC) cohort, consisting of 361 
non-recurrent primary tumors and 49 paired adjacent 
non-tumor samples (total n = 410). We investigated the 
proportion estimates only for the 8 main cell-types as we 
found that estimates of the 25 subcell-types showed high 

intra-group correlation within their broader classifica-
tions (Additional file 1: Fig. S6), and these types of high 
correlations typically prevent accurate decomposition of 
subcell-types in bulk tissues [14]. For cell-type decom-
position, we utilized Bisque [14], as described in detail 
in the Methods, resulting in proportion estimates for the 
8 main cell-types. The marker genes of these main cell-
types used for decomposition in Bisque (Additional file 4: 
Table  S3) show high intra-cell-type co-expression and 
correlation with their respective proportion estimates 
(Additional  file  1: Fig. S7a), suggesting their validity for 
estimating proportions. We then searched for differ-
ences in the abundance of these 8 cell-types between the 
paired HCC tumor and non-tumor tissue in TCGA. Of 
the 8 cell-types, we found that only Prol was significantly 
increased (Wilcoxon adjusted p = 5.68 ×  10−14) in the 
49 HCC tumors when compared to the paired adjacent 
non-tumor samples in TCGA, while 5 cell-types signifi-
cantly decreased in tumors (Fig. 2a and Additional file 5: 
Table S4). This increase in Prol abundance was consistent 
with our observations in the single cell level data (Fig. 2a 
and Fig. 1d).

To replicate the cell-type differences we identified in 
the TCGA cohort, we investigated the LCI cohort that 
consists of mainly Asian HCC patients with HBV-HCC. 
We estimated the proportions of 7 of the 8 main cell-
types in the liver microarray data from tumor (n = 221) 
and adjacent non-tumor (n = 209) biopsies (see Meth-
ods). We excluded B cells, as its marker genes showed 
little to no co-expression in the microarray data of this 
cohort, and thus the proportions could not be estimated 
reliably (Additional  file  1: Fig. S7b). All of the other 7 
main cell-types demonstrated higher intra-cell-type co-
expression and correlations with their respective pro-
portion estimates (Additional  file  1: Fig. S7b). Then, we 
tested for differences between the tumor and adjacent 
non-tumor biopsies. We found strikingly similar cell-type 
changes between the tumor and non-tumor tissues in 
the LCI and TCGA cohorts (Fig. 2b and Additional file 5: 
Table  S4). Only the Prol cell-type was significantly 
increased in HCC in the LCI cohort (Fig. 2b), while the 
myeloid, T, and Hep clusters were significantly decreased 
in both TCGA and LCI, with Hep showing the largest 
decrease (Fig. 2b). These replicated results show that Prol 
is the only consistently upregulated cell-type in HCC 
tumors using both the TCGA and LCI cohorts.

We then sought to validate the observed increase in the 
Prol proportion estimates in HCC tumors by analyzing 
gene-level differential expression between tumors and 
adjacent non-tumors from the bulk liver data. We first 
took the most specific cell-type marker genes with a log 
fold change > 0.5 in the single-cell level data and searched 
for differences in expression between the tumor and 
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non-tumors in the bulk. The marker genes for the Prol 
cluster had the highest average log fold changes in both 
the TCGA and LCI cohorts when compared to all other 
cell types (Fig.  2c,d). We then performed a reciprocal 
analysis by taking all tumor upregulated genes with a log 
fold change greater than 1 in the bulk data and scoring 
cells/nuclei in the single-cell level data for their average 
expression using the module score option in Seurat [38]. 
We found that cells/nuclei from Prol had the highest bulk 
tumor scores when using the strongest tumor-upregu-
lated genes from both TCGA (Wilcoxon p < 2.2 ×  10−16) 
and LCI (Wilcoxon p < 2.2 ×  10−16) (Fig.  2e–h). Taken 
together, the significantly increased expression of Prol 
marker genes at the bulk HCC tissue level, and vice versa 
the highest expression of the bulk tumor-upregulated 
genes in the Prol cell-type, support an increased abun-
dance of the Prol cell-type itself in HCCs.

The Prol cell‑type is associated with HCC survival outcomes 
in TCGA and LCI
To determine the clinical significance of the Prol cell-
type on survival outcomes in TCGA [32], we assessed 
its impact on overall survival (OS) and progression-free 
interval (PFI) in the 361 HCC patients. We hypothesized 
that an increased proportion of the tumor-associated 
Prol cell-type may be associated with poorer OS and PFI 
outcomes. To investigate this, we first associated the Prol 
cell-type proportions with survival outcomes in TCGA. 
We stratified the HCC patients into low and high cell-
type proportion groups using the median (see Methods) 
and performed a Cox proportional hazards regression 
adjusting for age, sex, and ethnicity (Additional  file  6: 
Table S5). Noteworthy, in TCGA, Prol had a statistically 
significant hazard ratio above 1 for both OS (HR = 1.76; 
p = 4.77 ×  10−3) and PFI (HR = 1.89; p = 1.25 ×  10−4) 
(Table  1, Fig.  3a,b). The Prol survival associations were 
even more pronounced after stratifying by quartile and 

remained significant after adjusting for tumor stage 
(Table  1). As expected, the other cell-types did not sig-
nificantly decrease OS or PFI in TCGA (Additional file 6: 
Table S5). These results suggest that a high estimated Prol 
cell-type proportion is associated with poor survival out-
comes and plays a key role in HCC tumor aggressiveness.

Next, we sought to replicate the effect of the HCC 
risk cell-type Prol on survival in the LCI cohort. As 
OS was the only available overlapping outcome in 
LCI, we used OS for our validation analysis. We per-
formed Cox proportional hazards regression adjusting 
for age and sex. Testing the effect of the Prol cell-type 
on OS in LCI resulted in a significant hazard ratio 
(HR = 1.79; p = 8.79 ×  10−3) (Table  1 and Fig.  3c) and 
remained significant after adjusting for stage (HR = 1.67; 
p = 2.34 ×  10−2). This result replicated our finding 
observed in TCGA, demonstrating that a higher Prol 
is associated with a worse OS outcome in LCI as well. 
Taken together, the negative link between the tumor Prol 
cell-type and survival is robust and reproducible across 
independent HCC cohorts.

We again sought to validate our proportion-based 
results at the gene level. To do so, we analyzed the rela-
tionship between survival outcomes and gene expression 
of individual cell-type markers. We first performed Cox 
proportional hazards regression adjusting for age, sex, 
and ethnicity for all expressed genes in the TCGA HCC 
liver expression data for OS and PFI as outcomes. We 
observed that a higher number of Prol-specific marker 
genes (log fold change > 0.5) had a hazard ratio over 
1 for OS (71.7%) and PFI (58.7%) compared to those of 
all other cell-types (Fig.  3d,e). Additionally, 23.9% and 
17.4% of Prol markers had a genome-wide significant 
hazard ratio for OS and PFI, respectively, all of which 
were associated with a worse prognosis (Additional file 1: 
Fig. S8a,b). To replicate these findings, we performed 
Cox proportional hazards regression for OS in the LCI 

(See figure on next page.)
Fig. 2 Among all cell‑types decomposed in the TCGA and LCI bulk liver cohorts, Prol has the highest enrichment in HCC when compared to 
adjacent non‑tumor tissue. The Prol cell‑type shows consistent upregulation in HCC tumors in two independent liver bulk cohorts. a, b Proportions 
were estimated in the liver bulk RNA‑seq data for the major cell‑types identified in the single‑cell level data and then tested for differential 
abundance between the tumor and non‑tumor samples. The upper panel shows the T‑statistic from a paired t‑test between tumor and adjacent 
non‑tumor tissue, with FDR‑adjusted p‑values calculated from a paired Wilcoxon test. The bottom panel shows a bar plot of the proportion 
estimates separated by tumor status. The differential abundance tests highlight the Prol cell‑type as upregulated in the (a) TCGA (n = 49) and (b) 
LCI (n = 209) cohorts. B cell proportions were not estimated for LCI (b) as its marker genes did not show evidence of co‑expression. c, d Association 
of the Prol cell‑type with HCC tumors is highlighted by the  log2 fold‑changes  (log2FC) of tumor over adjacent non‑tumor samples for the marker 
genes of the cell‑types that are indicated on the y‑axis.  Log2FC values were derived from a paired differential expression (DE) analysis in (c) 
TCGA (n = 49) and (d) LCI (n = 209) cohorts. e–h The Prol cells/nuclei significantly express tumor‑elevated genes, as shown by droplet scores in 
the single‑cell level data for tumor‑elevated genes derived from the TCGA and LCI cohorts. Genome‑wide DE analysis was performed between 
the paired tumor and non‑tumor samples, and genes with an FDR‑adjusted p‑value less than 0.05 and a  log2FC greater than 1 were considered 
tumor‑elevated genes. Module scores of the tumor‑elevated genes for each droplet were calculated based on their expression compared to 
a background set. e, f UMAP plots for (e) TCGA and (f) LCI are shown with cells and nuclei colored by their tumor module score. g, h Bar plots 
show the droplet tumor scores calculated from (g) TCGA and (h) LCI tumor‑elevated genes separated by major cell‑type. e–h Asterisks denote a 
significant difference in gene scores between Prol and non‑Prol cells/nuclei as assessed by a Wilcoxon test. Significance levels for p‑values: *p < 0.05, 
**p < 0.005, ***p < 0.0005



Page 12 of 20Alvarez et al. Genome Medicine           (2022) 14:50 

Fig. 2 (See legend on previous page.)



Page 13 of 20Alvarez et al. Genome Medicine           (2022) 14:50  

cohort. Although we did not observe a notable number 
of genome-wide significant effects, we found a similar 
enrichment of Prol marker genes with a hazard ratio over 
1 for OS (63.6%) (Fig. 3f and Additional file 1: Fig. S8c). 
These marker gene results further support the conclusion 
that the Prol cell-type itself is associated with survival.

Finally, we evaluated the cell-type enrichment for all 
genes with a significant association with OS and PFI in 

the bulk TCGA cohort and with OS in the LCI cohort. 
Cells/nuclei in the single-cell level data were assigned 
survival-decreasing module scores using Seurat for 
expression of the 740 and 528 genes with a significant 
hazard ratio above 1 for OS and PFI in the TCGA bulk 
RNA-seq data, respectively (FDR adjusted p < 0.05). We 
found that the Prol nuclei/cells had the highest aver-
age OS-decreasing (Wilcoxon p < 2.2 ×  10−16) and PFI-
decreasing (Wilcoxon p < 2.2 ×  10−16) scores (Fig.  3g, 
h and Fig.  3j, k), indicating that Prol over-expresses DE 
genes associated with poor survival outcomes in TCGA 
more prominently than all other cell-types. In order to 
replicate these results in the LCI cohort, we scored cells/
nuclei for expression of the 36 genes that among all genes 
had a significant hazard ratio above 1 for OS in LCI (FDR 
adjusted p < 0.05). Again, the Prol cluster had the highest 
average OS-decreasing score from the LCI association 
results (Wilcoxon p = 2.98 ×  10−151) (Fig.  3i, l). Thus, by 
taking all genome-wide significant results in an unbiased 
manner, we highlight the Prol cell-type in poor survival 
outcomes. Overall, our bulk-based single cell level find-
ings, showing that Prol nuclei/cells significantly over-
express both tumor-elevated bulk DE genes (Fig.  2e–h) 
and survival-decreasing bulk DE genes (Fig.  3g–l), sup-
port the association of the Prol cell-type with HCC and 
worse survival independently from our decomposition 
analysis.

Somatic TP53 mutations are associated with increased 
proportions of the Prol cell‑type in HCC
Somatic mutations in HCC have been characterized 
in several cohorts, and although heterogeneous, these 
studies have identified commonly mutated driver genes 
[5]. However, it has remained elusive whether somatic 
mutations can lead to specific tumor cell-type expan-
sions or depletions. Therefore, we performed associa-
tions between cell-type profiles against mutations in 

Table 1 Increased abundance of the tumor‑associated cell‑type 
Prol is associated with a worse prognosis both in the TCGA and 
LCI cohorts

Hazard ratios of overall survival and progression free interval based on the Prol 
cell-type proportion in the TCGA HCC cases (n = 361) and hazard ratios of overall 
survival in the LCI HCC cases (n = 221) show that an increased abundance of 
Prol is associated with decreased survival. Cox proportional hazard regression 
was performed for the event and model indicated. The Prol model indicates 
the predictor tested. The median model stratifies the cases into low and high 
abundance groups based on whether the individual’s estimated Prol proportion 
was below or above the median, respectively. The median adjusted (adj.) stage 
results are obtained by including in the median model a covariate for the low 
and high AJCC tumor stage status, where stage I and II form the low stage 
and stage III and IV form the high stage. The quartile model tests low and high 
abundance groups by splitting participants below and above the 25th and 
75th percentile of Prol proportion estimates, respectively. All tests in TCGA were 
adjusted for age, sex, and ethnicity. All tests in LCI were adjusted for age and sex. 
Unadjusted p-values are shown. HR indicates hazard ratio, CI confidence interval, 
OS overall survival, PFI progression free interval

Cohort Event Prol model Multivariable 
HR

95% CI p‑value

TCGA OS Median 1.76 1.19–2.61 4.77 ×  10−3

TCGA OS Median adj. 
stage

1.52 1.02–2.26 4.20 ×  10−2

TCGA OS Quartile 3.25 1.84–5.72 4.62 ×  10−5

TCGA PFI Median 1.89 1.37–2.63 1.25 ×  10−4

TCGA PFI Median adj. 
stage

1.73 1.24–2.41 1.14 ×  10−3

TCGA PFI Quartile 2.85 1.76–4.63 2.14 ×  10−5

LCI OS Median 1.79 1.16–2.76 8.79 ×  10−3

LCI OS Median adj. 
stage

1.67 1.07–2.60 2.34 ×  10−2

Fig. 3 The HCC‑enriched Prol cell‑type associates with overall survival (OS) and progression free interval (PFI) in TCGA and with OS in LCI. Increased 
Prol cell‑type proportion estimates are associated with poor survival outcomes in TCGA and LCI. a–c Kaplan‑Meier survival curves for (a) overall 
survival (OS) and (b) progression free interval (PFI) in TCGA and (c) OS in LCI show worse survival outcomes for patients with high liver Prol 
cell‑type frequency estimates. Patients with Prol frequency (freq.) estimates above and below the median were classified into high and low groups, 
respectively. The “+” signs on the line indicate right censoring of the event. The hazard ratios (HR) and FDR adjusted p‑values were calculated from 
a Cox proportional hazards regression adjusting for age, sex, and for TCGA, race. d–f Association of the Prol cell‑type with poor survival outcomes is 
highlighted by the HR values for cell‑type marker genes calculated from a Cox proportional hazards regression of their expression in TCGA and LCI. 
Survival tests were performed for (d) OS and (e) PFI in TCGA and (f) OS in LCI. Each dot indicates a gene, with its HR on the x‑axis and its cell‑type on 
the y‑axis. g–l Module scores of survival‑decreasing genes in the single‑cell level data are significantly higher in cells/nuclei from the Prol cell‑type. 
Survival‑decreasing genes were derived from genome‑wide Cox proportional hazards regression analyses of all genes for the indicated event and 
cohort and taking the genes with FDR‑adjusted p‑values less than 0.05 and HR values greater than 1.0 into the module score analyses in (g–l). g–i 
UMAP plots show cells/nuclei colored by (g) TCGA OS score, (h) TCGA PFI score, and (i) LCI OS scores. j, l Bar plots of survival‑decreasing module 
scores for (j) TCGA OS, (k) TCGA PFI, and (l) LCI OS separated by the cell‑type. g–l Asterisks denote a significant difference in survival‑decreasing 
gene scores between Prol and non‑Prol cells/nuclei as assessed by a Wilcoxon test. Significance levels for p‑values: *p < 0.05, **p < 0.005, ***p 
< 0.0005

(See figure on next page.)
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the 69 significantly mutated genes that have previously 
been characterized in TCGA HCCs (https:// gdac. broad 
insti tute. org). We identified 3 genes associated with a 
higher cell-type abundance (Wilcoxon adjusted p < 0.05) 
(Additional file 7: Table S6). Among these, mutations in 
TP53 (Wilcoxon adjusted p = 7.58 ×  10−9) and in RB1 
(Wilcoxon adjusted p = 9.45 ×  10−3) led to a significant 
increase in the estimated proportions of the Prol tumor 
cell-type (Fig. 4a and Additional file 1: Fig. S9). Further-
more, Prol was the only significantly increased cell-type 
in individuals with TP53 mutations or RB1 mutations 
(Fig. 4b). Interestingly, we also observed that BAP1 muta-
tions are associated with an increase in cholangiocyte 
proportion estimates. BAP1 has been shown to be fre-
quently inactivated in cholangiocarcinomas [62].

Many mutations in TP53 are known to lead to a loss of 
the tumor suppressor function of p53 and consequently 
uncontrolled cell growth [63]. We therefore tested the 
effect of distinct TP53 mutation types on Prol abundance. 
We observed that TP53 missense, frame shift, and non-
sense mutations led to significantly higher proportions 
of Prol (Fig.  4c). While frame shift and nonsense muta-
tions are likely to lead to a total loss of function, missense 
mutations in TP53 have been found to occur mainly in 
the DNA-binding domain of the protein, also leading to 
a loss of its tumor suppressor function [63]. To further 
investigate whether the Prol cell-type is the main conse-
quence of TP53 mutations, we first identified 1358 mut. 
over-expressed genes with significant log fold changes 
greater than 0.5 between mutation (mut.) carriers and 
wildtype (WT) cases in TCGA. We then assigned mod-
ule scores to droplets in the single-cell level data based 
on expression of these mut. upregulated genes. We found 
that the Prol cells/nuclei had significantly higher TP53 
mutation scores than all other cells/nuclei (Wilcoxon p 
< 2.2 ×  10−16) (Fig. 4d, f ). We performed the same analysis 
for 774 RB1 DE genes and found a similar enrichment of 
mut. upregulated gene scores in Prol droplets (Wilcoxon 

p < 2.2 ×  10−16) (Fig. 4e, g). Overall, these results suggest 
that distinct somatic mutations can lead to a tumor cell-
type expansion and highlight the role of TP53 mutations 
in proliferation and uncontrolled cell growth.

Discussion
We developed a new framework using comprehensive 
single cell level reference data from multiple etiologies 
of HCC, adjacent non-tumor, and normal liver tissue to 
decompose cell-types in liver bulk RNA-seq and micro-
array expression data generated from HCC and adja-
cent non-tumor tissue in the TCGA and LCI cohorts. 
This integrative transcriptomics framework identified 
an HCC-associated proliferative cell-type, Prol, the high 
proportion of which in HCC tumors is associated with 
significantly worse survival outcomes. Noteworthy, we 
first observed this survival effect in TCGA, and then rep-
licated our finding in LCI. Our results should be robust 
not only because we replicated our findings in an inde-
pendent cohort, but also because they do not depend on 
the technology used to measure single cell and tissue-
level gene expression in the liver, given that both scRNA-
seq and snRNA-seq were used to build the reference data 
set and both bulk RNA-seq in TCGA and microarray 
technology in LCI were used to decompose the cell-types 
in the liver tissue. Furthermore, our reciprocal module 
score analyses show that Prol nuclei/cells significantly 
over-express both tumor-elevated DE genes and survival-
decreasing DE genes obtained from the bulk expression 
data in the TCGA and LCI cohorts. Thus, these bulk-
based single cell level results further support the associa-
tion of the Prol cell-type with HCC and worse survival 
independently from the decomposition analysis. When 
searching for mutated driver genes of the HCC cell-
types, we found that among 69 genes with somatic muta-
tions catalogued in TCGA earlier (https:// gdac. broad insti 
tute. org), Prol is the only significantly increased cell-type 
in individuals with TP53 and RB1 mutations. Thus, we 

(See figure on next page.)
Fig. 4 Associations between estimated cell‑type proportions and somatic mutations in the TCGA cohort link TP53 and RB1 mutations to increased 
Prol abundance. Mutations associated with changes in the bulk TCGA liver proportion estimates of the Prol cell‑type. a Prol proportion estimates 
are significantly higher in the HCC cases harboring a mutation (Mut) in TP53 (left panel) and RB1 (right panel) compared to those with both 
wildtype (WT) alleles. b The Prol cell type is highlighted as the only cell‑type significantly increased in HCC cases with Mut TP53 and Mut RB1. 
Differential abundance for the 8 cell‑types testing for differences in proportions between Mut vs. WT TP53 (top panel) and RB1 (bottom panel) cases. 
Differential abundance was performed with a Wilcoxon test (n = 357 tumor samples). The difference in means of the scaled proportions is plotted 
in the x‑axis and the ‑log10 p‑value in the y‑axis. The vertical red line (x = 0) indicates no difference. c Prol proportion estimates are plotted against 
no TP53 mutation (None) and different TP53 mutation types. Prol estimates are significantly increased in individuals with loss of function (LOF) 
mutations in TP53. d–g The cells/nuclei in the Prol cell‑type significantly express mutation‑upregulated genes, as shown by the droplet module 
scores of mutation upregulated genes for the indicated mutation in TCGA. Mutation upregulated genes were derived by running genome‑wide 
differential expression (DE) between patients with and without a somatic mutation in the indicated gene and taking those over‑expressed in HCC 
patients harboring a mutation and with an FDR‑adjusted p value less than 0.05. Droplet module scores were calculated by comparing the average 
expression of mutation upregulated genes to a background set of genes. d, e UMAP of the single‑cell‑level data showing droplets colored by 
scores for genes upregulated in patients with (d) TP53 and (e) RB1 mutations. f, g Bar plots of the (e) TP53 mutation upregulated scores and (g) RB1 
mutation upregulated scores separated by cell‑type. d, g Asterisks denote a significant increase in mutation upregulated gene scores between Prol 
and non‑Prol cells/nuclei as assessed by a Wilcoxon test. Significance levels for nominal p‑values in (a, c, d‑g): *p < 0.05, **p < 0.005, ***p < 0.0005

https://gdac.broadinstitute.org
https://gdac.broadinstitute.org
https://gdac.broadinstitute.org
https://gdac.broadinstitute.org
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show that mutations in these tumor suppressor genes are 
associated with the expansion of the tumor-associated 
Prol cell-type in HCC.

Exploring cell-type heterogeneity provides a novel 
avenue to study microenvironment in cancer cells. The 
notion that tumor microenvironment, specifically of 
immune cells, may affect tumor progression and affect 
survival first stemmed from non-HCC studies, such as 
ovarian tumors [64]. This was subsequently investigated 
in HCC [19, 65], which has clinical implications given 
that only ~ 18% of patients responded to therapies tar-
geted to immune-dependent pathways with checkpoint 
inhibitors (programmed death 1 or PD1) in early clinical 
trials [66]. Losic and colleagues used scRNA-seq from 2 
patients across multiple regions within the same tumor 
to demonstrate tumor heterogeneity, which provided 
early evidence that the immune microenvironment is 
heterogeneous between patients and within samples [19]. 
In line with these studies, we observed similar heteroge-
neity in cell-type composition within HCC patients from 
multiple etiologies. Using single cell level data generated 
by both scRNA-seq and snRNA-seq, we found patient-
specific clusters when not correcting for this heterogene-
ity with integration (Additional file 1: Fig. S3).

Large existing cohorts, such as TCGA [26] and LCI 
[27], provide invaluable tools to the research commu-
nity. Accordingly, we leveraged our integrated liver single 
cell level data to identify cell-types associated with HCC 
and their clinically significant outcomes in TCGA and 
LCI, both with long-term follow-up data. The system-
atic identification of the Prol cell-type across the single 
cell level reference data with multiple etiologies of HCC, 
the TCGA cohort (mostly viral etiologies with HBV and 
HCV), and the LCI cohort (HBV-predominant origin of 
HCC) suggests universal points of convergence in HCC 
pathogenesis that can be further investigated at the single 
cell level. Understanding tumor biology at the cell-type 
level instead of the bulk tissue level provides more insight 
into the underlying tumor biology [67]. Several of the 
Prol marker genes have previously been associated with 
poor survival outcomes [52–59, 68]; however, our study 
discovered that these genes form a distinct HCC-associ-
ated cell-type. Furthermore, we discovered that somatic 
mutations in TP53 and RB1 are associated with increased 
Prol proportions in HCC. Interestingly, differences in 
somatic mutations have also been observed in various 
etiologies of HCC, with the TP53 mutations being linked 
to viral and alcohol etiologies of HCC [69] (similar to 
the patient composition of the TCGA and LCI cohorts), 
while ACVR2A (activin A receptor type 2A) mutations 
have been more commonly found in NASH-HCC [69].

Previous studies have identified molecular sub-classes 
of HCC that correlate with tumor phenotypes and 

clinical outcomes [6, 26, 70–72]. About half of all HCCs 
consist of the proliferative sub-class that predominantly 
have TP53 mutations [6], which we also identified as 
significant mutations in our cell-type analyses. Our data 
suggest that somatic mutations in the tumor suppressor 
gene, TP53, result in dysregulation of mitosis and cell-
cycle pathways, in line with their enrichment in the Prol 
cell-type. Consistent with our findings, in an independ-
ent study, the histone protein, H2AFZ that we identified 
as a marker gene in Prol, was associated with cell cycle 
genes and reported to be regulated by TP53 in HCC [59]. 
Overall, our integrative approach identified a cell-type 
with somatic mutations in a tumor suppressor gene that 
is significantly associated with worse overall survival. 
These results may improve current HCC subclassification 
and provide insight into co-dependent biological mecha-
nisms of HCC.

Several of the genes identified in the Prol cell-type 
have previously been associated with poor overall or 
recurrence-free survival outcomes in HCC, including 
PTMA [52, 68], HMGB2 [53], HMGB1 [54], H2AFZ [59], 
GAPDH [55], TUBB [57], STMN1 [56], and TUBA1B 
[58]. However, despite this growing body of literature 
identifying individual HCC genes with prognostic poten-
tial in the TCGA and other cohorts, our study used a sin-
gle cell level-based decomposition approach to identify 
an HCC-associated cell-type, the proportion of which 
is significantly increased in HCC tumors with poor sur-
vival. The Prol cell-type suggests uncontrolled mitosis 
and cell-cycle dysregulation as converging mechanisms 
for worse survival. Furthermore, the Prol cell-type not 
only contains previously known HCC genes [52–59, 
68], but also provides new targets, including HMGN2, 
RARRES2, and HIST1H4C that have not been explored 
yet. Overall, our integrative multi-cohort approach pro-
vided hundreds of Prol cell-type marker genes, which can 
be used to advance our understanding of the complex 
HCC biology in future studies.

Given the poor survival outcomes in patients diagnosed 
with HCC [3, 66], it is critical to further our understand-
ing of factors affecting survival. We demonstrate that 
the use of cell-type markers could be of clinical utility as 
a potential future biomarker to guide treatment options 
and determining clinical outcomes. Current clinical 
prognostic tools of HCC mostly rely on the number and 
size of tumors, AFP, the presence of underlying chronic 
liver disease, and the patient’s medical status. The use of 
cell-type markers as a tool to understand tumor biology 
can improve current clinical practice. Our Prol marker 
genes could serve as a basis for developing new expres-
sion-based prognostic technologies. For example, quan-
titative PCR could be used to rapidly perform predictive 
gene expression panel tests [73]. As RNA sequencing 
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matures, clinical labs can detect global gene expression 
patterns with prognostic value [74]. Assays such as these 
could measure Prol markers to evaluate the abundance 
of the two cell types and test if they predict clinical out-
comes. Whether this cell-type is prognostic for HCC 
recurrence post resections or liver transplantation would 
also need to be determined. Our pipeline utilizing single 
cell level reference data to decompose cell-types in bulk 
RNA-seq can also be applied to other malignancies that 
have an admixture of heterogeneous cells to identify pre-
dominant cancer cell-types.

Although this study improves our understanding of 
new HCC cell-types with a potential for clinical implica-
tions, it is not without limitations. As HCC prevalence 
continues to rise and liver transplantation allocation 
policies are changing [75], larger studies with different 
HCC etiologies are needed in cirrhosis and non-cirrhosis 
backgrounds, especially given the observed differences in 
treatment responses [22]. In addition, cell-type changes 
in recurrent HCCs would have to be investigated in 
future studies. It should also be noted that although our 
survival analyses in TCGA discovered the significance 
of the Prol cell-type in OS and PFI, even after adjusting 
for tumor stage, other clinically relevant factors in HCC 
outcomes, including AFP levels, extent of chronic liver 
disease, presence of lymph vascular invasion on histo-
pathology, and tumor size could not be explored in our 
models because up to 35% of the 361 individuals had 
missing data for these parameters. Thus, future studies 
are warranted to assess their correlations with the Prol 
tumor-associated cell-type.

Conclusions
In conclusion, using comprehensive single cell level refer-
ence data to decompose cell-types in the TCGA and LCI 
liver bulk tissue cohorts, we discover the important role 
of the previously unknown Prol cell-type in HCC and 
survival outcomes in TCGA, which replicated in LCI. We 
also linked somatic mutations in the tumor suppressors 
TP53 and RB1 to Prol cell-type expansion in HCC. Our 
integrative transcriptomics pipeline can be extrapolated 
to other cancer cohorts to identify key tumor cell-types 
using single cell level samples as the cell-type reference 
data. The detection of tissue-specific and cancer-associ-
ated cell-types can advance our understanding of tumor 
biology with a great potential for biomarker discovery in 
larger, prospective validation studies.
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