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1Center for Biomedical Informatics, Charles R. Drew University of Medicine and Science, 
Los Angeles, CA; 2Dept of Computer Science, University of Massachusetts, Amherst, 

Amherst, MA 

Abstract 

Introduction: Timely diabetic retinopathy detection remains a problem in medically underserved settings in the US; 
diabetic patients in these locales have limited access to eye specialists. Teleretinal screening programs have been 
introduced to address this problem.  
Methods: Using data on ethnicity, gender, age, hemoglobin A1C, insulin dependence, time since last eye 
examination, subjective diabetes control, and years with diabetes from 27,116 diabetic patients participating in a 
Los Angeles County teleretinal screening program, we compared different machine learning methods for predicting 
retinopathy. The dataset exhibited a class imbalance. 
Results: Six classifiers learned on the data were predictive of retinopathy. The best model had an AUC of 0.754, 
sensitivity of 58% and specificity of 80%.   
Discussion:  Successfully detecting retinopathy from diabetic patients’ routinely collected clinical data could help 
clinicians in medically underserved areas identify unscreened diabetic patients who are at risk of developing 
retinopathy.  This work is a step towards that goal.  

Introduction 

Diabetic retinopathy is a sight-threatening complication of diabetes, and the leading cause of blindness in working age 
adults within the US.1, 2 It is particularly problematic in medically underserved areas of the US, where annual screening 
rates for diabetic retinopathy are often much lower than the US national average.3-5 Teleretinal screening services are 
increasingly being used in these settings to extend specialty eye care services to patients who would otherwise have 
limited access to them. A complicating factor in addressing diabetic retinopathy is that many diabetic patients with 
retinopathy experience no symptoms, even when they are at advanced stages of the condition.6  Risk factors for 
diabetic retinopathy include the length of time a person has had diabetes,6-9  high blood glucose/poor blood sugar 
control,6-10  high blood pressure,7-10  dyslipidemia/7 high 
cholesterol,8  pregnancy,7  nephropathy,9  obesity,7  inflammation,7  ethnicity,7  and insulin treatment for Type II 
diabetes.9  High blood glucose, duration of diabetes and high blood pressure are considered to be the strongest 
predictors of retinopathy.7   

Our ultimate goal is to develop a decision support system that helps primary care physicians who practice in medically 
underserved settings to identify unscreened diabetic patients who are at high risk of retinopathy, using the diabetic 
patients’ routinely collected clinical data stored within Electronic Health Record Systems. This study represents a step 
towards achieving that goal. We are particularly interested in clinical data that correspond to known risk factors for 
retinopathy.  

In previous work, we examined data from six federally qualified health centers (FQHCs) in South Los Angeles, 
obtaining data for machine learning from a class-imbalanced11-13  subset of 513 diabetic patients. Using standard 
classifiers on this dataset, the best classification result we achieved was with a Bayesian network that had a sensitivity 
of 26.2%, a specificity of 94.5% and an Area Under the ROC Curve (AUC) of 0.71.14  Using a majority class 
undersampling technique in combination with an ensemble of weak decision tree learners, we achieved an AUC of 
0.72, a sensitivity of 69.2% and a specificity of 55.9%.15 Table 1 below shows the 24 risk factors that were available 
to us when we developed the machine learning models for this prior work. 

Related work by others include a study utilizing public health records from the Korea National Health and Nutrition 
Examination Surveys (KNHANES) for retinopathy assessment.16 Data from 327 diabetic patients were used to create 
predictive models, followed by an internal validation on 163 patients from the KNHANES V-1 dataset. External 
validation was performed using data from 562 diabetic patients in the KNHANES V-2 dataset. The best results were 
achieved with support vector machines:17 an AUC of 0.83 and sensitivity of 71% on the internal validation set, and an 
AUC of 0.81 and sensitivity of 75.7% on the external validation set. In another study, authors developed predictive 
models for diabetic retinopathy using data on 266 individuals from the 2005-2008 versions of the US National Health 
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and Nutrition Examination Surveys (NHANES). The study reported a best AUC of 0.74, a low precision of 22% and 
a high negative predictive value of 99%, but did not list sensitivities or specificities.18  
 
For this study, we performed machine learning using a limited set of risk factors currently available to us from data 
collected through EyePACS,19  a web-based teleretinal screening software platform.  The data is from diabetic patients 
utilizing the Los Angeles County Department of Health Services/LACDHS’ Teleretinal Diabetic Retinopathy 
Screening Program and Reading Center. 
 
 Table 1. Clinical variables obtained from six FQHCs for machine learning on diabetic retinopathy  

 

 

Methods 

We obtained institutional review board approval to use clinical data for the study from the Charles R. Drew University 
of Medicine and Science under IRB#: 16-10-2491-01. 
 
Data Source and Description: 
Clinical data for the study were obtained from a retrospective review of LACDHS EyePACS records. Records 
obtained included data on eight predictor variables: age, ethnicity/race, gender, hemoglobin A1C, insulin dependence, 
time since last eye examination, years with diabetes and a patient’s subjective assessment of how well-controlled 
his/her diabetes was, and one outcome variable: diabetic retinopathy (dichotomized for this study as “yes” or “no”). 
EyePACS records for LACDHS included data from 27,116 patients with Type I or Type II diabetes seen by the 
County’s Teleretinal Diabetic Retinopathy Screening Program and Reading Center between January 1, 2015 and 
December 31, 2016.  Of the 27,116 records obtained, 9,233 records or 34.1% of the sample were cases involving 
diabetic retinopathy (i.e., the diabetic retinopathy outcome variable value was “yes”) and 17,883 records or 65.9% of 
the sample were cases that did not involve diabetic retinopathy (i.e., the diabetic retinopathy outcome variable value 
was “no”). This represents a class imbalance, since the majority of the data available to us corresponded to cases that 
did not involve diabetic retinopathy. 
 
Classification Methods: 
Missing data were handled using k-nearest neighbor imputation techniques with a k of 9. Numeric variables (age and 
hemoglobin A1C) were normalized prior to use in machine learning.  We learned three standard classifiers on the 
data: penalized logistic regression, support vector machines (SVMs) with radial basis function kernels, and artificial 
neural networks (ANNs). Since many machine learning approaches work best when the dataset used for learning has 
a relatively balanced distribution of class instances (e.g., an equal number of “yes” and “no” instances for diabetic 
retinopathy), we also learned three classifiers incorporating data pre-processing methods such as minority class 
oversampling and majority class undersampling, which can help to improve models learned from class-imbalanced 
data.  These included: penalized logistic regression with the Synthetic Minority Oversampling 
TEchnique/SMOTE,20 SVM with underbagging, a majority  class undersampling technique, and ANNs with SMOTE. 
 

Clinical variables collected that might impact diabetic retinopathy risk 

Age Gender 
Ethnicity/race Marital Status 
Education Household income 
Insulin dependence Insurance 
Number of years patient has had diabetes Body mass index 
Hemoglobin A1C value Primary language 

Co-morbid conditions 
Peripheral vascular disease Cerebrovascular accident/Stroke 
Hypertension Other heart-related diagnosis 
Nephropathy Neuropathy 
Depression Erectile dysfunction 
Dyslipidemia Obesity 
Other (hypothyroidism, etc.) Previous diagnosis & treatment of retinopathy 
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We reserved a random selection of 34% of the dataset, a total of 9,039 cases, as a hold-out test set/internal validation 
set.  We then performed 10-fold cross validation with parameter tuning on the remaining 66% of the dataset (18,077 
cases) using the three standard classifiers described above as well as the three classification approaches that 
incorporated data pre-processing methods. The best models developed from the cross-validation process were assessed 
on the internal validation set. Analyses were performed in R,21  using the caret22  package and the VIM23  package. 
 
For each classification approach utilized, we measured sensitivity or the true positive rate (the total number of cases 
classified as having diabetic retinopathy divided by the total number of cases actually involving retinopathy), 
specificity or the true negative rate (the total number of cases classified as not having diabetic retinopathy divided by 
the total number of cases that did not involve retinopathy), and the AUC, which represents the trade-off between the 
true positive rate/sensitivity and the false positive rate or 1 – specificity.  Since general model accuracy (the total 
number of correct predictions divided by the total number of records) is often misleading in the context of class-
imbalanced data, we chose to focus on the three metrics listed above (sensitivity, specificity and AUC), since they are 
better suited to evaluating models learned from class-imbalanced data. 

Results 

The set of predictor variables/features utilized in developing each of the models used is shown in Table 2.  Table 3 
shows the results of 10-fold cross-validation using standard classifiers on the training set. Table 4 gives the results of 
applying the best standard classifiers to the internal validation set. Table 5 shows the results of 10-fold cross-validation 
using classification methods adapted to handle class-imbalances on the training set. Table 6 gives the results of 
applying the best classification methods adapted to handle class-imbalances to the internal validation set. 
 
 
Table 2. Variables obtained from EyePACS that could impact development of diabetic retinopathy 

 
 
Table 3. Ten-fold cross-validation results using standard classifiers 

 
 
 Table 4. Internal validation set results using standard classifiers 

 
 
Table 5. Ten-fold cross-validation results using classifiers that take into account class-imbalances 

Predictor Variables Obtained from LACDHS EyePACS 

Age Gender 
Ethnicity/race Hemoglobin A1C  
Insulin dependence Time since last eye examination 
Years patient has had diabetes Patient’s subjective assessment of diabetes control 

 Penalized logistic regression Support Vector Machines  
(with RBF kernel) 

Artificial Neural 
Networks 

Sensitivity 45.9% 39.8% 45.4% 
Specificity 87.2% 89.3% 87.6% 
AUC 0.758 0.728 0.762 

 Penalized logistic regression Support Vector Machines 
(RBF kernel) 

Artificial Neural 
Networks 

Sensitivity 44.8% 39.2% 44.8% 
Specificity 87.2% 89.4% 87.9% 
AUC 0.753 0.729 0.756 

 Penalized logistic 
regression with SMOTE 

Underbagging SVM (RBF 
kernel) 

Artificial Neural 
Networks with SMOTE 

Sensitivity 57.6% 65.7% 57.2% 
Specificity 79.4% 72.0% 79.4% 
AUC 0.755 0.754 0.751 
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Table 6. Internal validation set results using classifiers that take into account class-imbalances 

 
 
 
 
Discussion 
 
 A great deal of work has been done in recent years on automated identification of diabetic retinopathy from the 
digital retinal images of patients who utilize teleretinal screening services.24-28  However, these advances do not 
address the needs of the substantial proportion of diabetic patients in medically underserved areas who are not 
receiving annual eye screenings and who, as a consequence, do not have any digital retinal images that can be 
assessed. Given the sizable number of records used for the present study, which utilized data from 27,116 diabetic 
patients, the results presented here are, to our knowledge, the largest thus far focusing on diabetic retinopathy 
prediction from non-image data.  

In general, the results show classifiers that are moderately predictive of retinopathy.  Classification methods that were 
adapted to handle class-imbalances yielded the best results, with the combination of ANNs and SMOTE having a 
sensitivity of 58%, a specificity of 80% and the highest area under the ROC curve (0.754) on the validation set. As 
observed in previous studies, for classifiers that incorporate methods to address class-imbalances, improvements in 
sensitivity came with the trade-off of decreases in specificity. Underbagging SVMs with radial basis function kernels 
produced the highest sensitivity on the internal validation set (65.6%), which from the standpoint of reaching the 
largest number of diabetic patients at risk for retinopathy would be very important.  Underbagging SVMs maintained 
a specificity of 71.3% on the internal validation set, which, while worse than the specificity results for ANNs and 
SMOTE, is still reasonable.  They achieved an overall AUC of 0.745.  Penalized logistic regression with SMOTE on 
the internal validation set produced results very similar to ANNs with SMOTE (a sensitivity of 57.5%, specificity of 
79.4% and AUC of 0.752). 

The key scientific contributions of this work are to demonstrate that: 
(1) even the minimal amount of clinical data that accompanies digital retinal images uploaded for teleretinal 

screening purposes can produce moderately accurate predictions of patients that are at high risk of developing 
diabetic retinopathy, and, 

(2) the use of data pre-processing methods designed to address class imbalances is well suited to the problem of 
determining diabetic retinopathy risk from data in which the majority of cases do not involve diabetic 
retinopathy. 

 
The current study shows that at a large scale, predictive models that utilize methods for handling class imbalance 
can help to detect diabetic patients who have likely developed diabetic retinopathy.  Our previous work in this area 
used data on 24 diabetic retinopathy risk factors collected from 513 diabetic patients.  With such a small dataset, 
there is a danger of the dataset not being adequately representative of the condition we wish to model.  Using a 
larger dataset that contains data from 27,116 diabetic patients gives more confidence in the results observed, as the 
larger dataset has more than 52 times the number of examples as the previous work, even though a smaller number 
of features (8 versus 24) was available.  Tables 1 and 2 show the differences in the datasets available for machine 
learning for our prior study and the current work.   
 

Our work also shows that the limited amount of clinical data (independent of digital retinal images) available to 
readers performing teleretinal screening has some predictive value and could potentially be used to augment deep 
learning models that utilize fundus images to automatically stage and grade diabetic retinopathy. 

Limitations of the current study include the fact that we did not have access to data on known risk factors, such as 
high blood pressure, that are considered important predictors of retinopathy. However, two key risk factors for 
predicting diabetic retinopathy, hemoglobin A1C levels and the number of years a patient has had diabetes were 
available to us in both studies. Future work will involve obtaining access to the complete EHR records of the 27,116 
diabetic patients through ORCHID, the LACDHS Cerner implementation, so that we can link existing EHR data on 

 Penalized logistic 
regression with SMOTE 

Underbagging SVM (RBF 
kernel) 

Artificial Neural Networks 
with SMOTE 

Sensitivity 57.5% 65.6% 58.0% 
Specificity 79.4% 71.3% 80.0% 
AUC 0.752 0.745 0.754 
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known retinopathy risk factors to the EyePACs data already obtained for this study.  We envision that this will produce 
models that are even more predictive of retinopathy.  

Conclusion 

Given the substantial personal, health, and financial costs associated with vision loss from diabetic retinopathy, it is 
important to develop methods that can assist clinicians in targeting diabetic patients in medically underserved settings 
who: (1) are not in compliance with American Diabetes Association guidelines on annual eye examinations, and, (2) 
may be unaware that they have latent retinopathy because they are not yet experiencing any symptoms.  We have 
presented machine learning methods which demonstrate that it is possible to identify high risk patients using clinical 
data collected in the course of their care.  Refinement of these methods to improve their sensitivity and specificity will 
be an important next step.  

Acknowledgments: This work was funded by the National Library of Medicine under grant 1 R01 LM012309. The 
authors would like to thank Dr. Lauren Patty Daskivich, Director of Ophthalmology and Eye Health programs at 
LACDHS for providing EyePACS data from the LACDHS Teleretinal Diabetic Retinopathy Screening Program and 
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