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Abstract

We develop and discuss a methodology for batch-level analysis of hyperspectral stimulated Raman 

scattering (hsSRS) data sets of human meibum in the CH-stretching vibrational range. The 

analysis consists of two steps. The first step uses a training set (n=19) to determine chemically 

meaningful reference spectra that jointly constitute a basis set for the sample. This procedure 

makes use of batch-level vertex component analysis (VCA), followed by unsupervised k-means 

clustering to express the data set in terms of spectra that represent lipid and protein mixtures in 

changing proportions. The second step uses a random forest classifier to rapidly classify hsSRS 

stacks in terms of the pre-determined basis set. The overall procedure allows a rapid quantitative 

analysis of large hsSRS data sets, enabling a direct comparison among samples using a single set 

of reference spectra. We apply this procedure to assess 50 specimens of expressed human meibum, 

rich in both protein and lipid, and show that the batch-level analysis reveals marked variation 

among samples that potentially correlate with meibum health quality.

Keywords
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1 Introduction

Raman spectroscopy probes molecular vibrational modes under benign conditions, allowing 

label-free identification of important molecular classes in biological samples of unknown 

composition. This capability qualifies Raman spectroscopy as a noninvasive technique for 

examining the molecular content of superficial tissues. For instance, dermatology studies 

have shown the potential of the technique to detect skin cancer1,2. Another example is the 

use of Raman spectroscopy as a probe for tissue health in accessible body cavities, such as 

the examination of colonic3, stomach4, and upper gastrointestinal tissues5 in vivo. Beyond 

superficial tissues, Raman spectroscopy has shown its diagnostic potential for excised 
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tissues, enabling for instance the identification of lesions in human arteries6,7 and breast 

tissues8. These successes have solidified the potential of Raman spectroscopy as a 

biomedical tool and continue to drive the clinical translation of the technique2,9–11.

In Raman spectroscopy, the illumination spot on the sample is typically much larger than the 

dimensions of a cell, implying that individual cells cannot be resolved and the resulting 

spectra are spatial averages over several structures in the tissue. Although much can be 

learned from spatially averaged spectra, the ability to spatially resolve important tissue 

structures adds significant analytical value. Different structures in the tissue can display 

distinct spectra, and can thus be discriminated in a manner not easily achieved with spatially 

averaged spectra. Raman microscopy, on the other hand, generates images with Raman 

contrast at sub-micrometer resolution, thus enabling the identification of individual cells and 

even intra-cellular structures12–15. On a tissue level, the additional spatial information 

offered by microscopy introduces another axis along which the spectral analysis can be 

refined. With the aid of multivariate analysis methods16–18, the spatial separation of 

meaningful spectral features improves the analytical capabilities of the Raman technique, 

and enables detailed chemical mapping of healthy and diseased tissue5,19,20.

To speed up data acquisition, nonlinear Raman microscopy methods can be used. Both 

coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) 

microscopy offer a significant gain in image acquisition speed21,22, especially if the spectral 

region of interest is relatively narrow23. Coherent Raman methods are also much less 

sensitive to tissue fluorescence, which can plague spontaneous Raman microscopy 

experiments of tissues and cells24. SRS microscopy, in particular, is a direct analogue of 

spontaneous Raman microscopy, producing images with contrast based on the same spectral 

information as probed in linear Raman imaging. When the spectral dimension is limited to a 

single Raman line, SRS images can be acquired at video rate25. Adding more spectral 

information generally slows down the acquisition speed, but recent advances in 

hyperspectral SRS (hsSRS) imaging have pushed the pixel dwell time into the microsecond 

regime while still collecting a broad range of spectral data points26,27. The combination of 

spectral information and imaging speed makes it possible to map out larger sections of 

tissues or assess larger volumes of samples. The analysis of the larger data sets thus 

generated benefits enormously from advanced multivariate analysis tools. Several strategies 

have already been implemented to analyze hsSRS data sets, including multivariate curve 

resolution (MCR)28,29, independent component analysis (ICA)30, vertex component analysis 

(VCA)31, or k-means clustering analysis (KMCA)32. We have chosen to combine the latter 

two approaches. An analysis based on VCA allows segmentation with a large dynamic 

range, producing a reduced dataset that forms the starting point for a refined clustering using 

simple yet robust algorithms such as KMCA. VCA is a good choice for multivariate analysis 

of spectral data sets when pure spectra are present or can be easily identified, such as is the 

case in meibum samples which contain a high concentration of lipids and isolated protein 

clusters.

Most multivariate approaches used for hsSRS operate on the level of single image stacks, 

which are three dimensional data sets of position (typically x, y) and frequency (Raman 

shift). However, the hsSRS image acquisition speed allows for collecting multiple stacks 
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from multiple samples, which emphasizes the need for global multivariate analysis methods. 

A global analysis of hsSRS data sets would allow a direct comparison between samples, 

using both space and frequency as discriminators. Because the information content of 

combined data sets is rich, machine learning tools become important for identifying 

meaningful features in both spatial and spectral frequency dimensions.

In this work, we discuss a global analysis approach for hsSRS data stacks collected from 

multiple samples. We implement spectral unmixing and machine learning strategies to 

extract meaningful spectral information across samples and enable a direct comparison 

between specimens. To illustrate the clinical utility of this approach, we apply the 

methodology to analyze lipid samples (meibum) expressed from the eyelids of 50 human 

subjects. Meibum secretions are lipid and protein amalgams deposited in the tear film lipid 

layer of the ocular surface. Meibum has been the subject of chromatographic and 

spectroscopic studies, which point out its different composition in healthy and dry eye 

patients33,34. Conventional Raman spectroscopy has been used to characterize the lipid 

content of human meibum, but clear Raman markers for discriminating between meibum 

from healthy and dry eye patients have remained elusive35. Recent hsSRS microscopy 

experiments pointed out the utility of adding the spatial dimension, enabling the observation 

that the lipid-to-protein ratio changes within the Meibomian glands from the acinus to the 

central duct, before the meibum is finally released (by a blink) into the tear film of the eye36. 

The proposed framework is capable of extracting detailed spectral information from a 

relatively narrow but rich portion of the spectra, such as the CH stretching spectral range. 

We show that the global analysis discussed in the current work provides additional insight in 

the relation between composition and spatial distribution that may prove useful in addressing 

meibum quality and its association with ocular surface diseases.

2 Materials and Methods

2.1 Sample collection and preparation

This study conformed to the tenets of the Declaration of Helsinki and was approved by the 

institutional review boards of both the University of California at Irvine and Marshall B. 

Ketchum University, Fullerton. All subjects provided written informed consent following 

explanation of study procedures prior to initiation of any study procedures.

Pooled meibum samples (obtained from 2 or more orifices) were obtained from the central 

meibomian glands of the patients lower eyelids, following gentle cleaning with a dry sterile 

cotton tipped applicator to remove debris, eye makeup, etc. At 10X magnification at the 

biomicroscope, the Meibomian Gland Evaluator was used to exert the constant force of a 

hard blink (1.25 g/mm2) for 10–15 seconds37. Meibum was collected from the orifices using 

a sterile foreign body spud (Miltex Ellis 18–380, Steele Supply Co., Michigan, USA) and 

smeared on a clean microscope slide labeled with the subject number, eye, and clinical 

secretion grade. Meibum samples were covered with a thin cover glass, and stored at room 

temperature until further analysis. Meibum samples were collected from both eyes of 50 

human subjects in a primarily clinic-based sample. Included subjects were over the age of 

18, but with no upper age limit, and without restriction as to sex or race. Healthy (non-dry 
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eye) subjects were recruited as well as those with aqueous tear deficiency and evaporative 

(e.g., meibomian gland dysfunction) types of dry eye38.

2.2 Hyperspectral stimulated Raman scattering

Stimulated Raman scattering signals were obtained as described previously31. Briefly, a 

76MHz mode-locked Nd:Vanadate laser (PicoTrain, High-Q, Hohenems, Austria) delivered 

a fundamental beam at 1064nm (Stokes beam) of 7ps pulses, and a frequency-doubled beam 

at 532nm that pumped an optical parametric oscillator (OPO; Levante, Emerald OPO, 

Berlin, Germany). The OPO beam was spectrally tuned by adjusting its crystal temperature, 

Lyot filter, and cavity length with the aid of automated computer code. A portion of the 

1064nm beam was used as the Stokes beam in the SRS process, whereas the signal output of 

the OPO was used as the pump beam. The two beams were overlapped both temporally and 

spatially, and passed through a laser scanner (Fluoview 300, Olympus, Center Valley, PA), 

interfaced with an inverted microscope (IX71, Olympus). The combined beams were then 

focused with a 20x, 0.75 NA objective lens (UplanS Apo, Olympus) onto the sample.

SRS images were obtained by detecting the stimulated Raman loss of the pump beam. For 

this purpose, the Stokes beam was modulated at 10MHz with an acousto-optic modulator 

(AOM; Crystal Technology, Palo Alto, CA). The modulation of the pump intensity was 

detected by a photodiode (FDS1010; Thorlabs, Newton, NJ), and the signal was 

demodulated with a custom lock-in amplifier. The average combined power of Stokes and 

pump beams at the specimen was kept under 30mW throughout this study to minimize 

sample photodamage.

Hyperspectral SRS image stacks were acquired with custom software. The spectral range in 

the experiments reported in this work spanned the CH-stretching region of the Raman 

spectrum from ∼ 2800 to 3050 cm−1, with a ∼ 7 cm−1 resolution. The hsSRS stacks 

consisted of 37 images of 512 by 512 pixels, with a pixel size of 0.46μm.

2.3 Methodology

For clinical purposes, it is critical that the acquisition and analysis method allows 

comparison of sample composition across specimens and time points. For samples of 

unknown composition, unsupervised algorithms can help retrieve their main descriptors. 

Unsupervised multivariate analysis is data-driven and thus dependent on the individual 

hsSRS image to which it is applied; the extracted basis spectra may vary from image to 

image, complicating the comparison among specimens. Instead, batch-level analysis, where 

the basis spectra are obtained considering the data of all the images in the data set, enables a 

much more meaningful comparison. However, batch-level analysis of complete data sets is 

inefficient when the number of hsSRS image stacks is high, and impractical when the data 

set is incomplete (i.e. if more samples want to be added and analyzed in the future for 

clinical purposes). To systematically analyze and quantify a large number of images and 

compare samples from different patients, we have developed a two-step, batch-level image 

analysis framework based on machine learning strategies. First, we characterize the chemical 

classes that best describe the specimens with unsupervised multivariate analysis on a subset 

of images that we call training set. Second, we classify the rest of the images into the 
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previously defined chemical classes by means of a supervised classifier. The overall 

approach is summarized in the diagram of Fig. 1 and explained below.

2.3.1 Step 1: Generating reference spectra from a training set—Given a set of 

hyperspectral images of unknown composition, unsupervised multivariate analysis provides 

a rapid characterization. To describe the samples in terms of their spectral (chemical) 

content, vertex component analysis (VCA) is used to unmix the spectral components 

providing an initial, intuitive segmentation. The result can be ultimately mapped into color-

coded images with chemical meaning. VCA projects unlabeled data into a simplex geometry 

by means of singular value decomposition, assuming the different components of the sample 

are linearly mixed together. The vertices of the defined simplex are occupied by the 

extremes of the projection, the so-called end members. VCA assumes there is at least one 

pixel in the data set for each pure component of the mixture (for each end member). A 

detailed derivation of VCA was given by Nascimento and Dias39.

The present model (see Eq.1e) defines each spectrum of the data set (S; size p × q) as a 

linear combination of the pure end member spectra (M; size l × q), weighted by an 

abundance matrix (a; size p × l). The model also assumes there is a noise level (n; size p × 

q) associated with each measurement. For the study of the meibum samples the total number 

of pixels, and thus of spectra, in the training set is p = x × y × n, where x, y are the number 

of spatial pixels and n is the number of samples in the training set. Using x = y = 512 and n 
= 19, the total number of data points is 4,980,736. Each point in this data set has a spectral 

dimension, which is spanned by q = 37 spectral points. The chosen number of end members 

is l = 3, based on prior knowledge of the samples, which contain three main spectral classes: 

lipids, proteins, and the background introduced by the microscope slide glass.

The initial spectral data set for a given pixel p is written as:

(1a)

(1b) (1c)

For the vertex component analysis, we define the j component of the spectrum of pixel p as 

follows:

(1d)

In its generalized form, this can be written as:

(1e)
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(1f)

(1g)

(1h)

VCA reduces the dimension of the spectral space from q to l features, with q ≫ l. In our 

case, from 37 spectral data points to 3 basis spectra. Each spectrum of the data set is now 

defined by three components that represent the weight of each end member spectrum. The 

end member spectra correspond to the vertices of a triangle, as schematically depicted in 

Fig. 2a. Each end member spectrum is assigned to a color, which permits the reconstruction 

of color-coded images with chemical meaning. For convenience, we have chosen the RGB 

color space, with red attributed to spectra rich in lipids, green for spectra rich in proteins, 

and blue for background, as depicted in Fig. 2d. All other spectra in the training set are 

defined as linear combinations of the three end members, with [αr, αg, αb] the color 

coefficients of each hyperpixel as determined by the abundance matrix. These hyperpixels 

reconstruct the spectra of each pixel in the image as:

(2)

It is important to note that the data applied to this first step is pretreated and z-scored (to 

have zero mean and a standard deviation of one), in order to avoid intensity variation effects. 

We note that additional data preprocessing steps, such as signal-to-noise ratio enhancement 

strategies, can be implemented prior to VCA, which may lead to improved results.

Color-coded VCA generates images that display a rich variation of spectral and 

morphological features (see Fig. 3a). Despite being informative and detailed, these images 

are difficult to quantify. In order to select statistically meaningful thresholds for grouping the 

spectra in representative classes, we implement a k-means clustering analysis (KMCA) 

within the 3D color space spanned by the VCA end members. KMCA is another 

unsupervised algorithm that groups data into a predefined number of clusters k. KMCA 

assigns each spectrum within the data set, now defined by 3 color coefficients instead of 37 

frequency features, to a group by minimizing the sum of distances between original spectra 

 to the mean spectrum of the assigned cluster (ck), the so-called centroids40:

(3a)
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(3b)

First, J spectra are randomly assigned to each cluster k, and the mean of every cluster (ck) is 

computed. The k-means algorithm examines the distance between each spectrum and the 

computed cluster centroids. If the spectrum of interest is not assigned to the group with the 

closest mean, it is re-assigned to the one that minimizes such distance. As an iterative 

process, this step is repeated until all spectra are located in the cluster with the nearest 

centroid, or until the overall sum is minimized18.

As depicted in Fig. 2b, KMCA groups the spectra out of the VCA analysis by color 

similarity, providing as a result three spectra that better describe the sample’s content (Fig. 

2e). This step facilitates further quantification of the samples, as now each group is 

composed of a finite number of pixels. For our particular data set, a detailed analysis of the 

spectral content in each group unveiled a wide variation in the spectra in the lipid-rich group. 

Therefore, we applied a nested KMCA only to those pixels that constitute the lipid-rich 

group. This latter step allowed us to obtain a subset of groups hidden in the first KMCA, 

which are relevant to the case of study (Fig. 2c and Fig. 2f).

Overall, the nested clustering approach defines a set of reference spectra that simplify the 

description of the samples: in the first (coarse) KMCA the background and the protein 

spectra are determined (Fig. 2b and 2e), and in the second (fine) KMCA various levels of 

lipid-protein mixtures are discerned (Fig. 2c and 2f).

2.3.2 Step 2: Classifying images according to the reference spectra—The 

characterization step is slow and computationally intense, impractical to apply to hundreds 

(or even dozens) of hsSRS image stacks. Therefore, only a reduced number of hsSRS 

images (training set) are used to characterize the set of samples, while the rest of the image 

stacks are directly classified into predefined reference spectra, speeding up the process 

significantly. This approach also allows for an increase in the number of images that can be 

added to the analysis a posteriori.

A random forests classifier was implemented to label hsSRS images with the 6 predefined 

groups established with the training set. Random forests classifiers are supervised algorithms 

that generate multiple classification outputs for a given entry and the most popular one is 

chosen as the final classification decision41. Once the algorithm is trained against a specific 

classification, it assigns spectra from new data sets in the context of the predefined groups. 

To setup the classifier we implemented a 5-fold cross-validation, with 20 trees and a 

minimum leaf size of 5, and obtained an accuracy of 87%. Training the classifier required 4 

hours (for the 19 images of the training set), but once set the posterior classification of new 

images was very fast, 50 images were classified in less than 10 minutes. For the entire 

analysis, customized code was written in Matlab on an Intel(R) Xeon(R) PC running 

Windows 7 with 16.0 GB of RAM.
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3 Results

We have chosen to limit the Raman spectral range to 2800 – 3050 cm−1, which captures the 

CH-stretching vibrational modes. Although additional information can be obtained in the 

finger print region, the CH-stretching has previously been shown to provide useful spectral 

features that can be used for spectral unmixing42,43. In addition, this range provides the 

strongest SRS signals, which facilitates signal acquisition. In the following, we describe the 

implementation of the batch-level analysis to extract meaningful information from hsSRS 

images of meibum samples obtained from 50 patients. First, we will describe the success of 

the procedure to identify spectra in the training set that are representative of lipid and protein 

components in the meibum sample. Second, we will use the obtained spectral groups to 

rapidly classify meaningful features in the complete data set.

3.1 Step 1: Characterization of meibum spectral content

The first step consists of characterizing the meibum content in terms of its biochemical 

composition, provided by the Raman spectra reconstructed from the hsSRS images. A 

random set of 19 hsSRS images was selected to act as training set. The main spectra that 

define the training set are extracted by spectral unmixing and nesting 2 clustering methods: 

VCA, coarse KMCA, and fine KMCA, as described in Section 2.3. The results are 

summarized in Fig. 3. The first row (Fig. 3a) contains the VCA reconstructed images of 

three meibum samples. The color scheme is defined by the basis spectra in Fig. 2d. Red 

denotes lipid-rich areas, green is assigned to protein-rich parts, and blue is left for 

background. The second row shown in Fig. 3b depicts the same images after the 

implementation of the coarse KMCA on the VCA output. Notice how only three colors 

compose the images, which match the average group spectra depicted in Fig. 2e. The lipid-

rich pixels are orange, the protein pixels green, and the background indigo. Importantly, the 

KMCA facilitates the quantification of the image in terms of chemically meaningful 

reference spectra, as demonstrated by the histogram in Fig. 3c. Application of the fine 

KMCA enables a partitioning of the lipid fraction into four groups (Fig. 3c). Although the 

result qualitatively resembles the images of the VCA result shown in Fig. 3a, the fine 

KMCA produces reference spectra that make it easier to quantitatively analyze the images in 

terms of biochemical content. The histogram shown in Fig. 3e identifies groups that relate 

directly to the images in Fig. 3d. The color coding of the lipid-rich spectra is given in Fig. 

2f.

The result of the second KMCA provides a graded variation of the contribution of the ∼ 
2940 cm−1 spectral component in the samples. This contribution coincides with the methyl 

stretch vibrational mode, which is indicative of protein. Spatially, this spectral contribution 

shows up most prominently in areas that are devoid of lipids, further suggesting that this 

spectral component can be ascribed to protein. Together with the protein-rich spectra from 

the coarse KMCA, the 5 reference spectra define a scale of relative protein contribution in 

each area of the sample, from lipid-rich (dark orange, G1) to protein-rich (green). These 

reference spectra are normalized and depicted in Fig. 4a, and, in combination with the 

background spectrum (for total of 6 reference spectra), will be used for classification of the 

spectral features in the remainder of the data set.
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3.2 Step 2: Classification of meibum spectral content

Once the main spectra that characterize the biochemical composition of the meibum 

secretions are established, we apply a random forests classifier that sorts the spectra in the 

remaining hsSRS images into the six reference spectral classes (Fig. 4a). Once trained, the 

classifier allows for a rapid analysis of each hsSRS image stack. The only pre-processing 

performed on the raw data is the z-score normalization.

50 images are classified according to this reference in less than 10 minutes, and room is still 

left for optimizing the classification process. Fig. 4 shows two examples of hsSRS images of 

meibum samples, in the form of a maximum intensity projection of the spectral stack (Fig. 

4b) and its corresponding classified image (Fig. 4c). The classified images show that the 

extracted meibum consists of mixtures of protein and lipid with various degrees of protein to 

lipid ratios. The classification procedure makes it possible to directly compare the images 

obtained from sample 1 and 2. In sample 1, the streak contains a high proportion of the lipid 

class G1, a spectrum that is indicative of wax esters. In sample 2, the overall protein content 

is relatively higher. In addition, signatures of phase separation are observed, with patches of 

higher protein content (greener patches) surrounded by lipid-rich pools, which are not 

evident in sample 1. This example illustrates that the combined spectral and spatial features 

provide useful metrics that enable categorization of the samples.

3.3 Global analysis and findings

The importance of batch-level analysis of SRS data is shown in Fig. 5, which displays the 

difference between VCA implemented on individual images and the corresponding batch-

level analysis. VCA yields different end member spectra for each image when these are 

analyzed separately, precluding direct comparison among them. In this case, the generated 

colors have different meaning in each image on Fig. 5a, as illustrated by the different spectra 

in Fig. 5b. The differences are small, but relevant, as red pixels in image 1 have a different 

biochemical composition than red pixels in image 2. For example, end member one, 

depicted in red, has nonexistent contributions of the 2940cm−1 band for images 1 and 3, 

whereas for image 2 these methyl stretches are contributing to the spectra of end member 

one. Further quantification of these samples is complicated due to the lack of reference. For 

images 1 and 3, red areas evoke a purer wax ester contribution, whereas for image 2, red 

areas have a significant CH3 stretches contribution, a difference that is relevant to the 

meibum quality. On the other hand, the batch-level analysis yields a set of end members 

common to all the images; the colors across samples refer to the same basis spectra allowing 

their direct comparison, and facilitating further quantification. In this case, red pixels 

translate to pure wax esters, and mixtures with CH3 stretches are depicted in oranges shifting 

to green as these become dominant. Additionally, batch-level analysis also reduces spectral 

noise on the resulting end members and subsequent group spectra, and yields a more 

accurate representation of the most prominent spectral features in the samples.

The chemical maps thus obtained unveil complex meibum composition only made visible by 

the global analysis of spatial and spectral distributions. Inspection of the classified 

hyperspectral images reveals that different structures in the tissue display distinct spectra. 

Some patterns can be recognized upon examining these spatio-spectral correlations. 
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Common structures found within the data set are displayed in Fig. 6. The majority of the 

meibum secretions are composed of lipid-rich areas that are mixtures of different lipid types, 

and appear as homogeneous lipid-protein mixtures on the micrometer scale (sample 1). A 

subset of samples displays a structure of lipid blobs that are characterized by a wax ester 

Raman signature (the darker red hyper-pixels), embedded in a surrounding protein-rich 

matrix (sample 2). In some occasions, protein aggregates appear as crystalline structures of 

variable size, enveloped by lipid-rich areas or isolated (sample 3). Fig. 6a shows the 

maximum intensity projection of the hsSRS, rich in spatial information but poor in spectral 

content. Fig. 6b displays the corresponding VCA images, which keep the spatial distribution 

information complemented with detailed composition evaluation. Thresholds that delineate 

the extent of a bio-molecular group facilitate the quantification of these VCA images in 

terms of reference spectra, which is accomplished in the corresponding KMCA images 

shown in Fig. 6c.

The usefulness of reducing the classification to 5 interpretable reference spectra is evident 

when analyzing larger batches. In Fig. 7, we show the classification of the data set 

comprising of 50 human subjects, of varying dry eye diagnosis. The quantification is 

normalized to only account for the pixels that contain meibum (excluding the background - 

in indigo on the maps). The KMCA on the VCA output permits a data-driven quantification 

to generate the presented histograms, where every color represents a biochemical class. The 

procedure followed here avoids setting arbitrary thresholds assigned by human bias. 

Importantly, all images within the set can be quantitatively compared, as all the classified 

images are expressed within the same basis set of reference spectra. Comparison of the 

histograms allows a rapid inspection of pure lipid (red), mixtures of protein and lipid 

(orange shades) to pure protein (green). We see that the biochemical composition among the 

samples shown here varies markedly. In some specimens, such as sample #48, the protein-

rich material dominates. In other samples, such as sample #29, the protein-to-lipid ratio is 

low with protein only present in microscopically homogeneous mixtures. Sample #26 

exemplifies a segregated area, with protein-rich material on the top pf the image, and lower 

lipid-to-protein ratio small areas surrounding it, and larger ones below it. The global analysis 

and representation in terms of SRS reference spectra facilitates comparison among 

specimens, at sample quantities that are commensurate with clinical studies.

Further examination of these biochemical metrics and correlation with clinical data may 

spur insights into the biochemical underpinnings of dry eye disease, its diagnostic 

observables, and its response to treatment.

4 Discussion and Conclusion

In Raman spectroscopy, the use of batch-level multivariate analysis is a common approach to 

compare measured spectra from different samples in terms of a joint basis set. In Raman 

microscopy, which enjoys both spatial and spectral information, multivariate approaches are 

growing more and more important for the analysis of spectroscopic images. Most of these 

approaches have been carried out on the single cell level, where multivariate analysis has 

proven indispensable for the identification of intracellular structures and organelles44. 

Similar strategies have also found their way in the analysis of coherent Raman hyperspectral 
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images of cells and tissues23,45,46. There are a few examples of studies that have 

implemented multivariate analysis and machine learning approaches in Raman microscopy 

on a batch level47,48. In these studies, multiple Raman images of single cells were jointly 

analyzed with the aid of a single set of reference spectra. The work presented here employs a 

similar strategy for the batch-analysis of hsSRS images. Since hsSRS images can be 

acquired at faster rates compared to spontaneous Raman images, the optimization of batch-

level analysis for SRS is an important step towards making vibrational microscopic methods 

suitable for clinical purposes.

In this study, we combined hsSRS microscopy with machine learning analysis tools to 

identify the biochemcial content of human expressed meibum and map out their spatial 

distribution. The methodology consists of a two step process. First, a subset of samples are 

examined with unsupervised spectral unmixing via vertex component analysis, and clustered 

with k-means cluster analysis. This step provides insight in the nature of the samples, it 

identifies their spectral content and groups those spectra to facilitate quantification. Second, 

a classifier is trained to group all other samples into the identified spectral clusters. A 

Random Forests classifier was selected for the task as it provided accurate and fast 

classifications. Further fine-tuning of the classifier, or even other classifiers, can further 

improve the degree of accuracy. The relevance of the two-step process is also two-fold. First, 

it permits a direct quantitative comparison across samples, as they are all analyzed in terms 

of the same reference spectra. Second, it allows to add new images/samples to the analysis in 

an efficient and rapid manner.

We have implemented the batch-level analysis by using a limited range of the Raman 

spectrum, namely the CH stretching spectral band. Even though the spectral features are 

broad, this range is rich in spectral information. In particular, spectral unmixing of the lipid 

and protein molecular classes can be achieved in this spectral range, which is very relevant 

for the application chosen here. We have applied the batch-level multivariate analysis and 

classification to assess a data set comprised of meibum preparations from 50 patients. All 

samples were analyzed in terms of 5 reference spectra, which represent mixtures of proteins 

and lipids in various ratios. Even though all samples are composed of lipids and proteins, the 

batch-level analysis shows that the variability among samples is high. The method identified 

samples with regions where proteins and lipids are almost completely segregated, whereas 

other samples display regions where the protein and lipid components are homogeneously 

mixed on the micro-scale. Chemical separation and phase segregation of mixtures are 

potentially important observables that can be used to assess meibum health quality. Such 

information cannot be obtained by spatially averaging the spectra over the sample, 

underlining the usefulness of the spatial dimensions to extract meaningful demarcation 

criteria from the hyperspectral data set.

The composition of meibum is known, and contains a mixture of wax esters, sterol esters, 

and phospholipids49. The spatially averaged Raman spectrum of purified meibum reflects 

the presence of these ingredients35, but does not necessarily reveal the spatial distribution of 

its constituents. Small changes in chemical composition can produce large changes in the 

degree of mixing and segregation of the lipid components, sample characteristics that can 

only be identified when assessing the spatial distribution of the compounds. In addition, the 
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presence of protein may constitute an important factor that affects meibum fluidity and 

cloudiness36,45. Information about the distribution of both lipids and protein in meibum 

expressed from the gland can thus provide important clues toward the link between meibum 

quality, its biochemical composition and its micro-rheology. Although a full clinical analysis 

of the meibum specimens is beyond the scope of the present work, the batch-level 

multivariate hsSRS study presented in here is ideally suited for establishing such links from 

clinical data sets.

Further improvements of the methodology discussed here include expansion of the training 

set, thereby improving the quality of the reference spectra. In addition, it would be useful to 

cross-validate the reference spectra with other analytical tools such as mass 

(micro-)spectroscopy34. The latter may provide a deeper assessment of the chemical 

components that underlie the measured (stimulated) Raman spectra.

As the imaging speed and capabilities of hsSRS continue to grow, we expect that batch-level 

analysis and machine learning will gain in prominence. The method presented here is an 

important first step that emphasizes the power of analyzing multiple samples in terms of a 

single set of reference spectra. With further improvements in speed and efficiency, the batch-

level analysis will be an important contribution to the translation of coherent Raman 

scattering techniques for clinical studies.
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Figure 1. 
Methodology implemented to quantify hyperspectral SRS images. In a first step, the data are 

characterized by unsupervised multivariate analysis based on vertex component analysis 

(VCA) k-means clustering analysis (KMCA). The outcome of the first step is used to train a 

random forests classifier, which is later used to describe the rest of the data set. The final 

labeled images are further used for quantification purposes.
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Figure 2. 
Multivariate analysis characterized the chemical composition of meibum samples. a,d) 

Vertex component analysis (VCA) is used to describe the spectra in terms of three end 

members, each one assigned to an RGB base color. b,e) K-means clustering analysis 

(KMCA) groups the VCA output by color similarities and provides biochemical meaningful 

reference spectra. c,f) A nested KMCA within the lipid-rich group of the previous KMCA 

unveils extra grouping relevant to the meibum samples.
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Figure 3. 
Characterization of the training set. a) Result of applying vertex component analysis (VCA) 

on three representative images in the training set. b) Result of applying the coarse K-means 

clustering analysis (KMCA) on the previous images and c) corresponding histogram 

quantification. d) Final result after applying the fine KMCA on the images and e) 

corresponding histogram quantification. Image size is 235.5 × 235.5 μm.
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Figure 4. 
Classification results. a) Reference spectra used to train the random forests classifier. b) 

Maximum intensity projection hsSRS images of expressed meibum and c) corresponding 

classification. Image size is 235.5 × 235.5 μm.
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Figure 5. 
Vertex component analysis (VCA) implemented a) on single images, with b) the 

corresponding end member spectra 1 (red) and 2 (green), and c) at the batch-level, with d) 

the corresponding end member spectra 1 (red) and 2 (green). Image size is 235.5 × 235.5 

μm.
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Figure 6. 
Characteristic features of expressed maibum. a) Maximum intensity projection hsSRS. b) 

VCA reconstructed images. c) KMCA reconstructed images. Image size is 235.5 × 235.5 

μm.
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Figure 7. 
High throughput analysis and quantification of human expressed meibum. a) Biochemical 

maps, and b) corresponding composition fraction histograms. Image size is 235.5 × 235.5 

μm.
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