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ABSTRACT OF THE DISSERTATION
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by
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Doctor of Philosophy in Electrical and Computer Engineering
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Professor Gregory J. Pottie, Chair

Digital health technologies, such as smart toothbrushes, hold great potential for unobtru-

sively monitoring brushing behaviors in home settings by utilizing motion-sensors, including

accelerometers, gyroscopes, and magnetometers. Some studies have attempted to modify tooth-

brushes by attaching these sensors to the brush handle, while others have employed external

devices, such as wrist-watches to identify the dental regions being brushed during a brushing

session. Although these research studies show promising preliminary results, they were con-

ducted under structured toothbrushing assumptions performed in controlled laboratory settings

(e.g. limited head and body movement, predefined sequence of brushing) and not the free-form

brushing observed in real-world settings.

To address the aforementioned issue, we collected a dataset of 187 brushing sessions, in-

cluding free-form brushing, and present, to the best of our knowledge, the first motion-sensor

dataset obtained during free-form brushing. We label these brushing session using concurrent

video recordings as the ground truth. Given the fast and frequent transitions of the brush, la-

beling is prone to errors, known as the noisy label scenario in machine learning, and to address

this challenge, we propose a relabeling algorithm for dataset cleaning. To perform a statis-

tical analysis of brushing behavior for the first time, we utilized a zero-inflated mixed-effect

generalized linear regression model to examine the brushing time for each dental region. Pre-
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vious studies frequently depended on non-parametric tests, such as the Wilcoxon test, which

are not suitable for repeated measurement studies like ours, involving multiple participants

each brushing for multiple sessions. Our results show that individuals generally brushed their

buccal teeth surfaces (i.e. outer teeth surfaces) more than twice as long as the occlusal (i.e. flat

teeth surfaces) (2.18 times longer (95% CI 1.42, 3.35; p leq 0.001)) and lingual surfaces (i.e.

inner teeth surfaces) (2.22 times longer (95% CI 1.62, 3.10; p leq 0.001)). Additionally, we also

propose a three-stage method (i.e. pre-processing, change point detection (CPD), and time-

series classification) to detect the teeth surfaces brushed during a session using motion-sensor

data. We present CluMing, a novel change point detection (CPD) algorithm based on cluster-

ing, which outperforms other CPD algorithms in our application. We compare the results of

multiple time-series classification methods in machine learning such as the feature engineering

method, LSTM, and Transformer models. Our findings indicate that high classification accu-

racy can be achieved using a random train-test split of the data (i.e. k-fold cross-validation);

however, considering the high variations in brushing data, generalization beyond the partici-

pants in the training set (i.e. one-subject-out cross-validationin), may need additional aid such

as domain knowledge transfer or personalization. We validate our findings by applying our

proposed method to our provided dataset, as well as the datasets of toothbrushing in controlled

settings.

iii



The dissertation of Mahmoud Essalat is approved.

Oscar Hernan Madrid Padilla

Xiang (Anthony) Chen

Lieven Vandenberghe

Vivek Shetty

Gregory J. Pottie, Committee Chair

University of California, Los Angeles

2023

iv



To my mom who put her heart into my education.

v



Contents

1 Introduction 1

2 Background and Definitions 7

2.1 Toothbrushing Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Bass brushing technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Motionsensors and Orientation measurement . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Motion sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Orientation Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Orientation Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Position Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Toothbrushing Region Detection - Data Collection and Analysis 23

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 ToothBrushing monitoring using wrist-worn sensors . . . . . . . . . . . . 23

3.1.2 ToothBrushing monitoring using sensors attached to the toothbrushes . . 25

3.1.3 ToothBrushing monitoring using sound . . . . . . . . . . . . . . . . . . . 27

3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Challenges of Toothbrushing Region Detection . . . . . . . . . . . . . . . . . . . 32

3.4 Limitation of Physics Based Methods and the Need for Machine Learning . . . . 36

vi



4 Toothbrushing Region Detection - Proposed Method 39

4.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Time-stamp synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Low Pass filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 Magnetometer Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Transition Points detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 CluMing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Sticky HDP-HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 Local Change point Detection . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Segment Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Hand-Tailored Feature Extraction Method . . . . . . . . . . . . . . . . . . 48

4.3.2 Dynamic Time Warping (DTW) . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.3 Wasserstein Distance (WD) . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.4 Long Short-Term Memory (LSTM) networks . . . . . . . . . . . . . . . . 51

4.3.5 Transformer Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.6 Majority voting technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.3 Change Point Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Toothbrushing Behavior Analysis 65

5.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 The duration of brushing on each dental surface . . . . . . . . . . . . . . 67

5.2.2 Duration of excessive brushing pressure on each dental surface . . . . . . 80

5.2.3 Total active brushing duration of each brushing session . . . . . . . . . . 84

5.3 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

vii



6 Conclusion and Future Research Directions 93

viii



List of Figures

2.1 Defined 16 brushing regions of mouth [49] . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Axis-Angle representation of orientation. . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Estimated Euler Angles in a brushing session using Madgwick filter . . . . . . . . 16

2.4 Estimated Euler Angles in a brushing session using Cho filter . . . . . . . . . . . 17

2.5 Estimated Euler Angles in a brushing session using Mahony filter . . . . . . . . . 17

2.6 Estimated Euler Angles in a brushing session using Cho filter and Cho calibration

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Position of the toothbrush calculated from Equation 2.12 . . . . . . . . . . . . . 21

2.8 Position of the toothbrush calculated from Equation 2.12 . . . . . . . . . . . . . 22

3.1 The sensors used in the study and their coordinates . . . . . . . . . . . . . . . . 29

3.2 Labeling Procedure. The implemented labeling procedure involves two steps.

Firstly, labels are generated manually utilizing video recordings of the brushing

sessions. Secondly, the labels are corrected based on the top-three predictions of

a classifier trained based on the labels output from the first step. . . . . . . . . . 31

3.3 Two brushing regions that have similar associated brush orientation [49] . . . . . 32

3.4 Euler Angles of 16 brushing regions of participant #1 session #1 . . . . . . . . . 33

3.5 Euler Angles of 16 brushing regions of participant #1 session #6 . . . . . . . . . 33

3.6 Euler Angles of 16 brushing regions of participant #2 session #2 . . . . . . . . . 34

3.7 Discriminating features for classifying some brushing regions of subject #8 . . . 37

3.8 Discriminating features for classifying the same brushing regions of subject #11 . 38

3.9 Applying the discriminating features of subject #8 to subject #11 . . . . . . . . 38

ix



4.1 Choosing the optimal K for K-means clustering method by using the Elbow point

on the graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Applying CluMing algorithm to a brushing session (CluMing change point esti-

mations are in black dashed lines and red lines are true change points . . . . . . 46

4.3 Our Transformer Encoder model configuration . . . . . . . . . . . . . . . . . . . 54

4.4 Confusion matrix of the Transformer Encoder model applied to our provided

dataset, with the one-subject-out accuracy calculated for the case where partic-

ipant #1 is left out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 F1 score of one-subject-out evaluation metric using the Transformer Encoder model 59

4.6 F1 score of one-session-out evaluation metric using the Transformer Encoder model 59

5.1 Zero-inflated distribution of brushing duration on MaxRO. . . . . . . . . . . . . 68

5.2 Brushing time of all dental surfaces. MaxAB, MaxLB, and MaxRB were the

areas brushed the longest and in contrast, MaxLL and MaxLO were frequently

skipped during brushing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Group-level brushing times of different dental regions. Categorized by (A) jaw,

(B) side, and (C) surface. Buccal surfaces were brushed twice more than the

lingual and occlusal surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Between-individual variability in brushing duration by region. (A) by jaw and

(B) by tooth surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Within-individual variability in brushing duration for dental surfaces. Partici-

pant 2’s brushing duration for the lingual surfaces varied greatly across sessions. 80

5.6 Coefficient of variation of brushing duration of all regions brushed by all partic-

ipants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Episodes of excessive brushing pressure by region. Occlusal surfaces were most

frequently brushed with excessive pressure. . . . . . . . . . . . . . . . . . . . . . 82

5.8 Brushing duration for the 12 participants. Active brushing duration is calculated

by excluding pauses in brushing and the times transitioning the brush head to

different regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

x



6.1 Transition matrix of brushing region sequences. Probabilities less than 0.1 are

removed for better representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Transition graph of brushing region sequences. Probabilities less than 0.1 are

removed for better representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 EAs change during the brush transitions. Left-to-right transitions and right-to-

left transitions indicate different ψ changes. . . . . . . . . . . . . . . . . . . . . . 99

6.4 Transition Span for a transition of the brush from ManLL to MaxLB . . . . . . . 99

xi



List of Tables

4.1 F1 score of our proposed classification methods . . . . . . . . . . . . . . . . . . . 57

4.2 Accuracy of change point detection methods . . . . . . . . . . . . . . . . . . . . . 61

5.1 Estimated fixed effects of count submodel for brushing duration of each dental

surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Estimated fixed effects of zero-inflation submodel for brushing duration of each

dental surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Estimated participant-level random effects of count submodel for brushing du-

ration of each dental surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Estimated participant-specific overdispersion parameters of count submodel for

brushing duration of each dental surface. . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Estimated standard deviations of random effects of count submodel for brushing

duration of each dental surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Estimated standard deviations of random effects of zero-inflated submodel for

brushing duration of each dental surface. . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Estimated participant-level random effects of zero-inflated submodel for brushing

duration of each dental surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8 Coefficient of variation of all 16 dental regions for all participants . . . . . . . . . 79

5.9 Estimated fixed effects of count submodel for excessive brushing pressure dura-

tion on each dental surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.10 Estimated fixed effects of zero-inflation submodel for excessive brushing pressure

duration on each dental surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xii



5.11 Estimated standard deviations of random effects of count submodel for excessive

brushing pressure duration on each dental surface. . . . . . . . . . . . . . . . . . 84

5.12 Estimated standard deviations of random effects of zero-inflation submodel for

excessive brushing pressure duration on each dental surface. . . . . . . . . . . . . 85

5.13 Estimated participant-level random effects of count submodel for excessive brush-

ing pressure duration on each dental surface. . . . . . . . . . . . . . . . . . . . . 85

5.14 Estimated participant-level random effects of zero-inflated submodel for excessive

brushing pressure duration on each dental surface. . . . . . . . . . . . . . . . . . 85

5.15 Estimated fixed effects of total active brushing in each brushing session . . . . . 87

5.16 Estimated participant-specific overdispersion parameter of total active brushing

in each brushing session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.17 Estimated random effect standard deviation of total active brushing in each

brushing session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.18 Estimated participant-level random effects of total active brushing per brushing

session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.19 Participant-specific estimates of active brushing duration. . . . . . . . . . . . . . 89

xiii



Acknowledgements

Completing this dissertation signified a journey abundant with diverse experiences, ranging

from trials to triumphs. It was a testament to perseverance, steadfast dedication, and resource-

fulness. Throughout this endeavor, my family, friends, and advisors emerged as invaluable

pillars, providing support during challenging times, lifting my spirits, and redirecting me to-

ward success.

I am immensely grateful to Prof. Pottie for his consistent support during my PhD journey.

His encouragement cultivated an environment conducive to my growth and the completion of

this dissertation. His guidance emphasized focusing on ’what I can achieve’ in life, steering

me away from fixating on limitations. I deeply appreciate his dedication in extracting the best

from this dissertation, devoting time and energy to help me reach this milestone. I extend

my gratitude to Prof. Padilla for his unwavering support and availability for both technical

and non-technical discussions. His contributions to the statistical analysis of this dissertation

and his mentorship remain invaluable. I also express heartfelt appreciation to Prof. Shetty

for his commitment to advancing the project and his guidance on the dental aspects. I am

thankful for his provision of resources, facilitating connections and collaborations through the

mHealth program, and financial support, which were instrumental in progressing through this

dissertation. Additionally, my thanks go to Prof. Vandenberghe and Prof. Chen for their

guidance on my PhD committee.

I extend my gratitude to Deeona Columbia, the graduate student counselor, for her genuine

care and support within the department. Her professional approach to handling various issues,

despite the influx of requests, has been invaluable.

Furthermore, I appreciate the collaboration and contributions of my former labmate, Dr.

xiv



Douglas Ezra Morrison, to the statistical analysis of brushing behavior. His sense of respon-

sibility and readiness to assist were exceptional. At UCLA, I had the privilege of mentoring

bright and hardworking students who significantly aided in data collection and labeling: Isabel

Roig Penso, Sumukh Kak, E. Jun Chang, Rachel J. Kulchar, and Alok Elashoff. I extend my

heartfelt thanks to all the participants and volunteers in our studies, pivotal in executing this

extensive and significant project.

My friends have been a constant source of support throughout my PhD journey. Sheean

Hanlan, in particular, stood as a true cheerleader, offering unwavering encouragement and sup-

port during the most challenging phases. My cousin Shahryar Rex Feizi’s immense support

throughout my PhD journey has been invaluable. The friendships cultivated during this jour-

ney have been incredible. I am thankful to Arash Seif for the memorable experiences and

adventures we shared. I extend my appreciation to Manie Tadayon for his readiness to aid

and offer invaluable advice during tough phases. My gratitude extends to Milad Salem, Alireza

Javani, brothers Arash and Darius Roohani, Shadi Shahsavari, Elijah Zoarski, and Yi Zhou

for their great camaraderie. Additionally, I am grateful to my old friends Sahand Sepehrvand,

Mohammad Abolhosseini, and Ehsan Rojhani for maintaining our friendship since our days in

Iran, despite the distance.

My time at UCLA housing was made memorable by the companionship of wonderful house-

mates, Richie Chu and Alast Ahmadi, who transcended the roles of mere housemates and

became great friends.

I extend my deepest gratitude to my mother, a consistent source of encouragement through-

out my life. Her steadfast support in every facet of my education remains a cherished blessing.

Equally, I am thankful for my father’s unwavering presence during my times of need. My heart-

felt appreciation extends to my brother for his guidance and counsel throughout my educational

pursuits, from imparting wisdom in advanced courses to encouraging me to strive for my best.

The success of this dissertation was a collaborative effort, made possible by the care, support,

and contributions of numerous individuals. I am grateful for my time at UCLA’s beautiful

campus and the incredible people I encountered.

A portion of the material presented in Chapters 3 and 4 has been submitted to the Journal

xv



of Biomedical and Health Informatics with contributions from co-authors Drs. Oscar Hernan

Madrid Padilla, Vivek Shetty, and Gregory J. Pottie (M. Essalat et al., 2023). A version of

the material presented in Chapter 5 has been published in Plos One with contributions from

co-authors Drs. Douglas Ezra Morrison, Oscar Hernan Madrid Padilla, and Vivek Shetty (M.

Essalat et al., 2022). This work received partial support from the National Institute of Dental

and Craniofacial Research under NIH grant numbers R01DE025244 and 1UG3DE028723. The

author holds sole responsibility for the content, which may not necessarily reflect the official

views of the NIH.

xvi



Curriculum Vitae

Education

• Ph.D. Candidate in Electrical and Computer Engineering: University of Califor-

nia, Los Angeles (UCLA), U.S., 2017 - 2023

• M.Sc. in Electrical and Computer Engineering: University of California, Los

Angeles (UCLA), U.S., 2017 - 2020

• B.Sc. in Electrical Engineering: Sharif University of Technology, Iran, 2012 - 2017

Publications

1. Essalat, M., Mashhadi, M. B., & Marvasti, F. (2016, December). Supervised heart rate

tracking using wrist-type photoplethysmographic (PPG) signals during physical exercise

without simultaneous acceleration signals. In 2016 IEEE global conference on signal and

information processing (GlobalSIP) (pp. 1166-1170). IEEE.

2. Mashhadi, M. B., Essalat, M., Ahmadi, M., & Marvasti, F. (2016, November). An

improved algorithm for heart rate tracking during physical exercise using simultaneous

wrist-type photoplethysmographic (ppg) and acceleration signals. In 2016 23rd Iranian

Conference on Biomedical Engineering and 2016 1st International Iranian Conference on

Biomedical Engineering (ICBME) (pp. 146-149). IEEE.

3. Mashhadi, M. B., Farhadi, M., Essalat, M., & Marvasti, F. (2018, April). Low complexity

heart rate measurement from wearable wrist-type photoplethysmographic sensors robust

xvii



to motion artifacts. In 2018 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP) (pp. 921-924). IEEE.

4. Farhadi, M., Mashhadi, M. B., Essalat, M., & Marvasti, F. (2016). Realtime heart

rate monitoring using photoplethysmographic (PPG) signals during intensive physical

exercises. bioRxiv 092627.

5. Essalat, M., Morrison, D., Kak, S., Chang, E. J., Penso, I. R., Kulchar, R. J., ... & Shetty,

V. (2022). A naturalistic study of brushing patterns using powered toothbrushes. Plos

one, 17(5), e0263638.

6. Essalat, M., Abolhosseini, M., Le, T. H., Moshtaghion, S. M., & Rezai Kanavi, M. (2022).

An Interpretable Deep Learning Approach for Automatic Diagnosis of Fungal Keratitis

and Acanthamoeba Keratitis Based on an Introduced Database of in Vivo Confocal Mi-

croscopic Images.

7. Essalat, M., Madrid Padilla, O. H., Shetty, V., & Pottie, G. (2023). Monitoring Brushing

behaviors using Toothbrush Embedded Motion-Sensors.

xviii



Chapter 1

Introduction

As a majority of Americans have experienced or will experience injurious oral diseases, such as

caries or gingival disease, that can negatively impact their quality of life, healthcare professionals

have made it a priority to improve the oral health of this population [24]. The primary cause of

periodontal (gum) disease and caries is dental plaque [29,57]. Plaque, which is a sticky film of

bacteria that covers the teeth, can cause tooth and gum decay by producing acids that break

down enamel and irritate the gums if it is not removed [56].

Brushing one’s teeth is the primary mechanism for removing plaque; however, proper brush-

ing technique is crucial to ensure effective plaque removal [33,59]. Unfortunately, many people

are not aware of the proper brushing techniques, resulting in suboptimal oral health practices.

In fact, studies have shown that 46% of children only brush their teeth once a day [3]. It

is widely recognized that systematic, twice-a-day tooth brushing is essential for maintaining

good oral health and preventing dental diseases [82]. Despite this knowledge, this fundamental

behavior is not as widely and fully practiced as dental professionals and health organizations

would like.

The challenges of promoting optimal oral health behaviors (OHBs) are numerous and com-

plex. They include a confusing array of brushing recommendations, with some being too intri-

cate to perform consistently; expecting generic oral hygiene instructions (OHIs) to work equally

well among dissimilar populations; viewing OHI as a one-time event rather than an ongoing

process that extends beyond the dental clinic; inability to monitor and influence actual OHBs

in home settings; and failing to detect emerging non-adherence to prescribed OHBs and provide
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adequate timely support. Ultimately, good oral health depends on an individual’s ability and

willingness to carry out self-care behaviors. Engaging individuals in their own care is vital to

reducing disease burden, costs, and improving satisfaction with the care experience for both

patients and clinicians [46].

The widespread availability of mobile devices and the increasing intersection with behavioral

science have given rise to the use of digital approaches, known as digital health interventions

(DHIs), for reinforcing health behaviors and self-care on a large scale [58, 68]. The advent

of low-cost sensors has enabled unobtrusive monitoring, thereby providing an accurate repre-

sentation of a patient’s behaviors in real-world settings, thus enabling the use of digital health

interventions (DHIs) on a large scale [58,68]. To leverage the potential of this pervasive technol-

ogy, researchers have proposed a variety of models over the years to monitor activities of daily

living (ADL), including categories of personal hygiene such as hand washing [27], flossing [5],

mobility-related activities like climbing stairs, walking, and functional transfers such as stand-

ing up from a chair or lying down on a bed [12–14]. These activity recognition systems can be

employed in the realm of behavioral change, such as smoking cessation [62, 62, 67] or cessation

of obsessive eating [72]. While these methods have demonstrated accuracy and reliability for

their intended purposes, the systems are often designed and optimized for specific applications.

As a result, the techniques used to recognize some ADL may not be easily transferable to other

domains, thus accounting for the diversity of approaches used for activity recognition.

The area of toothbrushing monitoring is a newly emerged field of study that presents unique

challenges not encountered in recognizing activities such as walking, standing, and running.

In contrast to these activities, which have easily observable sensor patterns, toothbrushing

activities, such as brushing the inner and outer surfaces of teeth, may exhibit much more

subtle differences in acceleration patterns captured by attached sensors. Therefore, accurate

toothbrushing sensing poses significant challenges. [52]

Studies that have attempted to study monitor brushing have been conducted in controlled

clinical settings (e.g. limited head and body movement, predefined sequence of brushing) and

does not represent free-form brushing in naturalistic settings.

In this dissertation, our objective is to monitor and analyse brushing behavior in naturalistic
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settings, utilizing motion sensors. We study the detection of the regions being brushed during

a brushing session using motion-sensors attached to a brush. Additionally, we conduct a com-

prehensive analysis of brushing behaviors in at-home settings to elucidate both the similarities

and variabilities observed between- and within- individuals during brushing.

Specifically, our contributions are as follows:

1. We delve into the challenges associated with brushing region detection and elucidate why

achieving accurate position tracking of the brush within the mouth poses inherent diffi-

culties. Furthermore, we explore the limitations of employing a physics-based approach

solely relying on the 3D geometry of orientation to address this problem. Consequently,

we discuss how to use machine learning techniques as a more viable solution.

2. We provide the first publicly available dataset of 9-axis motion-sensor (including ac-

celerometer, gyroscope, and magnetometer) attached to the handle of the toothbrush.

This dataset is unique because it includes both manual and electronic toothbrushes and

involves free-form brushing sessions. Unlike previous studies, which only included brush-

ing performed under constraints such as no head/body movement or a predefined sequence

of brushing regions, our dataset offers a more realistic representation of brushing behavior.

Also, we include two different facing direction during brushing in our dataset; a factor

not considered in the previous studies or bypassed by modifying the brush as in [36].

3. We will address the challenges associated with labeling the brushing dataset and shed

light on the reasons why the labels are susceptible to errors. To mitigate these challenges

and improve the quality of the dataset, we propose a relabeling procedure which was able

to correct up to 10% of the mislabeled data. The relabeling procedure aims to enhance

the accuracy and reliability of the dataset annotations.

4. We propose a three-stage framework (i.e., pre-processing, brush transition times estima-

tion, and time-series classification) to tackle the toothbrushing region detection problem.

By applying our algorithm, both to our dataset as well as the dataset collected under

the structured brushing assumption [37], we show that region detection during free-form

brushing is more challenging than detection in controlled settings.
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5. We show that a high classification accuracy can be achieved using a random train-test split

(i.e. k-fold cross validation), but generalization beyond the participants in the training

set (i.e. leave-one-subject-out cross-validation) poses difficulties. Our observation should

guide other researchers in reporting the results of their brushing detection studies.

6. We compare different classification methods based on feature engineering and deep learn-

ing techniques. We apply the Transformer Encoder model to our dataset and show that

additional customization can be done for different types of brushes (i.e. manual and elec-

tronic) and the attributes of the user (i.e. left-handed and right-handed) by introducing

feature embedding technique used in natural language processing applications (NLP). We

show that our proposed classifier can achieve a higher accuracy compared to the method

proposed in [38] under all evaluation settings.

7. We present the first statistical model for analyzing brushing behavior, specifically focus-

ing on the duration of brushing and the application of pressure on each dental region.

Previous studies commonly relied on the Wilcoxon test [28], a non-parametric test, for

statistical deductions. However, the applicability of this test is limited in the context

of repeated measurement studies, such as our study where multiple subjects engage in

multiple brushing sessions each. Moreover, the inability to utilize multiple measurements

per subject would require incorporating hundreds of participants (e.g. in [81]), resulting

in a costly and time-consuming study design. Therefore, we conducted a systematic anal-

ysis of brushing behavior for the first time using mixed-effect generalized linear regression

models. Recognizing that many regions may be skipped during brushing, we advocate for

the suitability of a zero-inflated model. The count submodels employ a log-link function

and a negative binomial distribution to effectively account for count-based outcomes. On

the other hand, the zero-inflation submodels utilize a logistic link function and a Bernoulli

distribution to address the excess zeros observed in the data. By employing this model,

we found that participants generally brushed their buccal (i.e., outer) tooth surfaces more

than twice as long as the occlusal (i.e., flat) surfaces, with a factor of 2.18 times longer

(95% CI 1.42, 3.35; p ≤ 0.001). Similarly, participants spent 2.22 times longer (95% CI
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1.62, 3.10; p ≤ 0.001) brushing their lingual (i.e., inner) surfaces compared to the occlusal

surfaces. Interestingly, the lingual surfaces of the maxillary molars (i.e., upper jaw) were

frequently neglected (p ≤ 0.001). Additionally, the occlusal surfaces were more prone to

being brushed with excessive pressure (95% CI 0.10, 0.98; p = 0.015).

8. We propose a statistical analysis that encompasses both between-individual and within-

individual variability in brushing behavior using our zero-inflated mixed-effect regression

model. Previous studies, which relied on non-parametric tests like the Wilcoxon test, were

inadequate in analyzing intra-subject variability. Our model incorporates fixed effects for

tooth surface, mouth side, and jaw in both the zero-inflation and count submodels. To

capture between- and within-participant variabilities, random effects were included on the

intercept by session nested within each participant. This accounts for person-to-person

and session-to-session differences in overall brushing duration. In the count submodel for

region-specific brushing duration, participant-specific random effects were also included

for tooth surface, mouth side, and jaw. Our analysis revealed that all dental regions that

were brushed exhibited a coefficient of variation exceeding 20%, indicating significant

between-individual variability in brushing duration for each dental surface. Additionally,

the coefficients of between-individual and within-individual variability for total brushing

duration were 0.19 and 0.17, respectively, highlighting substantial variability between and

within individuals in brushing duration.

In Chapter 2, we provide the necessary background information to understand this disserta-

tion, including the definition of brushing regions and methods for estimating object orientation

using motion sensors. We also explain why absolute position tracking is not feasible in our

application in Section 2.3. In Chapter 3 we discuss the challenges of the toothbrushing re-

gions detection problem. We start by discussing previous research conducted on this problem

in Section 3.1. We then explain our experimental setup for data collection in Section 3.2. In

Subsection 3.2.2 we explore the challenges in labeling our dataset and propose a relabeling

method to deal with the noisy labels. Section 3.4 discusses the challenges of our problem and

why machine learning is necessary to address it accurately. In Chapter 4, we present our pro-
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posed method for brushing region detection, starting with data preprocessing in Section 4.1,

followed by the introduction of CluMing, a novel change point detection algorithm, in Sub-

section 4.2.1. Finally, in Section 4.3, we introduce the machine learning methods used for

time-series classification. We demonstrate the results of our algorithm on our provided dataset

and controlled toothbrushing datasets in Section 4.4. In Chapter 5, we analyze the brushing

behaviors of individuals using zero-inflated mixed-effect generalized linear regression models.

In particular, we analyze the total brushing time, time spent brushing each dental region, and

the time brushed with excessive pressure on each dental region. We also demonstrate between-

and within-individual variability in each category. We conclude and discuss potential future

research directions in Chapter 6.
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Chapter 2

Background and Definitions

In this chapter, we will provide some necessary background information to facilitate a better

understanding of the problem we are attempting to solve, which will be used throughout this

dissertation.

2.1 Toothbrushing Regions

There is no universally accepted standard for dividing the mouth into different brushing regions

in the dental community. However, two common approaches are the use of four brushing regions

known as quadrants, or six brushing regions known as sextants.

In this dissertation, we adopt the standard developed under the Bass brushing technique,

as outlined in [49]. According to this approach, the mouth area is divided into 16 regions,

as demonstrated in Figure 2.1. This is the same division that has been used by researchers

in [35, 52] for the sake of consistency. It is worth noting, however, that the Bass technique

includes the tongue as an additional region of the mouth, which we did not consider in our data

collection due to participant reluctance.

There have been other studies that have used varying numbers of brushing regions. For

instance, the authors of [80] divided the mouth into 18 regions by adding two extra regions to

the 16 regions mentioned above. In [16], 24 brushing regions were proposed based on the 20

milk teeth that children have.
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Figure 2.1: Defined 16 brushing regions of mouth [49]
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2.1.1 Bass brushing technique

The Bass brushing technique is a widely accepted method for toothbrushing that involves

positioning the bristles of the toothbrush at a 45-degree angle towards the gum line and making

short, gentle back-and-forth strokes. The technique requires the user to gently vibrate the brush

head in small circular motions while applying light pressure against the gums. The brushing

movement should be performed for about 20 seconds on each tooth, focusing on a few teeth

at a time before moving on to the next set. The method also involves gentle brushing of the

tongue and the roof of the mouth to remove bacteria and freshen breath.

The Bass brushing technique has been shown to be effective in removing plaque and pre-

venting gum disease when performed correctly. However, its effectiveness depends on proper

positioning of the toothbrush bristles and consistent use over time.

2.2 Motionsensors and Orientation measurement

In this section, we will first introduce the various sensors commonly used for orientation esti-

mation. Then, we will present several methods for representing the orientation of an object.

Finally, we will suggest a few techniques for estimating the orientation and compare them by

applying them to the data obtained by motion sensors during a brushing session.

In order to accurately detect the brushing regions, it is necessary to track the position of the

toothbrush head within the mouth. Motion sensors can be employed for this purpose. However,

there are challenges associated with that which we discuss in Subsection 2.3.

2.2.1 Motion sensors

Motion sensors are available in various types and forms, and can be compared based on several

factors such as size, cost, energy consumption, response time, and sensitivity to external factors.

In our study, we utilize micro-electro-mechanical system (MEMS) sensors, which are small and

lightweight enough to be mounted on a brush grip. Additionally, they are affordable, have low

power consumption, and have short start-up times [44]. Typically, motion sensors include one

or more of the following sensors:
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1. 3-axis accelerometer sensor, which measures the acceleration applied to the sensor along

its x, y, and z axes. During brushing, an accelerometer attached to the brush can detect

the acceleration of the brushing strokes and the effect of gravity along the sensor axes.

2. 3-axis gyroscope sensor, which measures the rotational velocity of the sensor around its x,

y, and z axes. During a brushing session, the gyroscope signal has almost zero magnitude

when the brush performs motions that do not involve much rotation, such as back and

forth brushing strokes. However, it changes rapidly during transitions from one brushing

region to another.

3. 3-axis magnetometer sensor, which measures the magnetic flux intensity at the sensor

location along its x, y, and z axes. The magnetometer sensor is designed to measure the

earth’s magnetic field at the sensor location but is also affected by other ferromagnetic

components nearby.

Motion sensors that include accelerometer and gyroscope sensors are referred to as inertial

sensors or Inertial Measurement Units (IMUs). Those that have a magnetometer in addition to

an accelerometer and gyroscope are called Magnetic, Angular Rate, Gravity (MARG) sensors.

2.2.2 Orientation Representation

The orientation of an object is measured with respect to a reference frame. As a result, the

reference frame should be defined before computing orientation. In motion sensor applications,

the orientation of the sensor frame, which is also called the body frame, is represented in the

world reference frame. The world reference frame is defined as follows:

1. The X-axis of the world frame is in the direction of the north magnetic pole, which has

a declination angle from the north pole.

2. The Z-axis of the world frame is in the opposite direction of gravity.

3. The Y -axis of the world frame is defined using the right-hand rule based on the X and Z

axes of the world frame.
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3D orientation is represented in three main ways:

1. Euler Angles (EAs) represent orientation with three angles known as roll or bank angle

ϕ, pitch or elevation angle θ, and yaw or heading angle ψ. These angles measure the

orientation angle with respect to the x, y, and z axes, respectively. However, there are

multiple ways of incorporating EAs, such as by changing the order of the rotation around

the x, y, and z axes, using body frame coordinates or world frame coordinates as the

axes of rotation, and using active or passive rotations. In this dissertation, we use the

Tait-Bryan EA convention, which means consecutive active rotations with respect to the

world frame.

We also use the convention of a leading subscript for the frame being described and a

leading superscript for the frame that the orientation is referenced to. For example, W
B ψ

is the heading angle of the brush in the world reference frame.

2. Quaternions are expressions with four constituents, one of which is a real number and

the other three are imaginary components [32]. They can be interpreted as an arbitrary

rotation by an arbitrary angle θ around an arbitrary axis of rotation r, as shown in Figure

2.2. They are computed using Equation 2.1.

A
B q̂ =

[
q1 q2 q3 q4

]
=

[
cos θ

2 −rx sin θ
2 −ry sin θ

2 −rz sin θ
2

]
(2.1)

A three-dimensional vector can be rotated by a quaternion using the relationship described

in Equation 2.2. Av and Bv are the same vector described in frame A and frame B,

respectively, where each vector contains a 0 inserted as the first element to make them 4

element row vectors [53].

Bv = A
B q̂ ⊗ Av ⊗ A

B q̂∗ (2.2)
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Figure 2.2: Axis-Angle representation of orientation.

2.2.3 Orientation Estimation

The process of orientation estimation entails the fusion of information from all motion sensors,

a procedure known as sensor fusion, by means of an orientation filter. Relative estimation of

orientation with respect to the initial orientation, can be obtained by integrating gyroscope

values, which represent angular velocity. Nevertheless, this integration process can trigger drift

in orientation estimation, caused by the accumulation of minor errors in gyroscope measure-

ments, referred to as the gyroscope drift problem [53]. To establish an absolute reference, an

accelerometer is utilized to provide a reference to the z-axis direction of the world reference

frame. In the case of IMU sensors, both the accelerometer and gyroscope are used in tandem to

determine the absolute roll angle ϕ, absolute pitch angle θ, and heading angle ψ relative to the

sensor’s initial orientation. However, to ascertain the absolute heading angle, a magnetometer

sensor (such as that found in MARG sensors) is required to provide an absolute reference to

the x-axis of the world frame.

To obtain an accurate estimation of orientation in relation to the world reference frame,

it is imperative to use accelerometer and magnetometer sensors in conjunction. While the

accelerometer can provide the roll ϕ and pitch angle θ, the magnetometer can furnish the heading

angle ψ. However, to achieve a smoother estimation of orientation, it is necessary to fuse the

gyroscope with the accelerometer and magnetometer in MARG sensors using orientation filters,
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which are commonly referred to as complementary filters. This approach leverages the faster

dynamic response of the gyroscope and leads to a more refined orientation estimation.

A multitude of methods exist for orientation estimation, ranging from Kalman-based ap-

proaches [26,51,55] to complementary filters [23,54]. However, Kalman-based methods can be

complex, require extensive parameter tuning, and necessitate a high sampling rate, often in the

order of kHz [53].

In 2010, Madgwick et al. [53] introduced a method for orientation estimation that is appli-

cable to both IMU and MARG sensors. In our study, we employed this filter and compared its

performance to another complementary filter proposed by Mahony et al. [54], which has similar

objectives. We also evaluated the results against the Cho filter, a method proposed by Cho et

al. [17], which we refer to as such in this dissertation.

Madgwick filter

The orientation estimation filter we employed is a lightweight computational model based on

a complementary fusion algorithm that can be implemented with just a couple of hundred

arithmetic operations. The fusion algorithm combines the orientation representation obtained

from the gyroscope with the one derived from the accelerometer and magnetometer, resulting

in a more accurate orientation estimation.

Orientation estimation from gyroscope

It is shown in [18] that the quaternion derivative describing the rate of change of orientation

of the earth frame relative to the sensor frame S
E q̇ω,t can be calculated from the gyroscope

measurements [ωx ωy ωz] as follows:

Sω =
[

0 ωx ωy ωz

]
S
E q̇ = 1

2
S
E q̂ ⊗ Sω

(2.3)

By integrating these measurements at time t, given the sample period ∆t and the orientation

at time t− 1 , we can compute the orientation at time t as follows:
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S
Eqω,t = S

E q̂est,t−1 + S
E q̇ω,t∆t (2.4)

Here, the subscript ω indicates that the orientation computed from gyroscope measurements.

Orientation estimation from accelerometer and/or magnetometer

If the direction of an earth’s field (e.g. gravitational or magnetic) is known in the earth frame,

a measurement of the field’s direction within the sensor frame will allow an orientation of the

sensor frame relative to the earth frame to be calculated. This may be achieved through the

formulation of an optimization problem where the orientation of the sensor, S
E q̂, is that which

aligns a predefined reference direction of the field in the earth frame, Ed̂, with the measured

direction of the field in the sensor frame, S ŝ, using the rotation operation described by the

equation 2.2 as follows [53]:

minSε∈T 4 f
(

S
E q̂,Ed̂,S ŝ

)
f

(
S
E q̂,Ed̂, S ŝ

)
= S

E q̂∗ ⊗ Ed̂ ⊗ S
E q̂ − S ŝ

S
E q̂ =

[
q1 q2 q3 q4

]
Ed̂ =

[
0 dx dy dz

]
S ŝ =

[
0 sx sy sz

]
(2.5)

which can be solved with gradient descent as follows:

S
Eqk+1 = S

E q̂k − µ
∇f

(
S
E q̂k,

Ed̂, S ŝ
)

∥∥∥∇f
(

S
E q̂k,

Ed̂, S ŝ
)∥∥∥ , k = 0, 1, 2 . . . n (2.6)

Assuming the direction of gravity as z-axis of the earth frame, we can write:

E ĝ =
[

0 0 0 1
]

Sâ =
[

0 ax ay az

] (2.7)
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Also, the earth’s magnetic field can be considered to have components in one horizontal axis

and the vertical axis considering the inclination of it.

E b̂ =
[

0 bx 0 bz

]
Sm̂ =

[
0 mx my mz

] (2.8)

In order to use both sensor measurements, we can stack them as a larger vector:

fg,b

(
S
E q̂, Sâ,E b̂, Sm̂

)
=

 fg

(
S
E q̂,E ĝ, Sâ

)
f b

(
S
E q̂,E b̂, Sm̂

)
 (2.9)

Filter fusion

The final orientation estimation can be obtained by a linear combination of the orientation

estimations from the equations 2.6 and 2.3 as follows:

S

E qest,t = γS
tE

q∇,t + (1 − γt)S
E qω,t , 0 ≤ γt ≤ 1 (2.10)

By setting the value of γt as that which ensures the weighted divergence of S
Eqω is equal to the

weighted convergence of S
Eq∇, and some further simplifications, the following final estimation

is obtained:

SEqest,t =
S

E q̂est,t−1+
S

E q̇est,t∆t
S

E q̇est,t =
S

E q̇ω,t − βS
E

˙̂qϵ,t

S

E ˙̂qϵ,t = ∇f
∥∇f∥

(2.11)

It can be seen from these equations that the filter calculates the orientation S
Eqest ,t by

numerically integrating the estimated orientation rate S
E q̇est. The filter computes S

E q̇est as

the rate of change of orientation measured by the gyroscopes, S
E q̇ω, with the magnitude of

the gyroscope measurement error, β, removed in the direction of the estimated error, S
E

˙̂qϵ ,

computed from accelerometer and magnetometer measurements.

As an extra element of their proposed filter, they suggest a method to compensate for
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Figure 2.3: Estimated Euler Angles in a brushing session using Madgwick filter

magnetic distortions and also gyroscope drift, which is only applicable to MARG sensors.

Cho filter

They use an accelerometer to calculate the roll and pitch angle θ and they use a magnetometer

to derive the yaw angle ψ by using the earth’s magnetic field inclination angle or dip angle.

They propose a method to find the dip angle and they use that to calibrate magnetometer

values (see Subsection 4.1.3 for calibration).

Comparison between Orientation Filters

Below, we consider the motion data that was captured by the MARG sensor attached to the

brush in a brushing session with a manual toothbrush and we compare the EAs that were

estimated using Madgwick, Mahony, and Cho filters.

As observed in Figures 2.3, 2.4, and 2.5, the estimated EAs from all three methods exhibit

remarkable similarity, and they all demonstrate low computational complexity. The run times

for Madgwick, Mahony, and Cho filters are 0.056, 0.063, and 0.002 milliseconds per sample,
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Figure 2.4: Estimated Euler Angles in a brushing session using Cho filter

Figure 2.5: Estimated Euler Angles in a brushing session using Mahony filter
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respectively, on an Intel(R) Core(T M) i7-6700T CPU @ 2.8 GHz. However, it should be noted

that the Cho filter lacks the ability to measure the ψ angle when magnetometer measurements

are unavailable. In contrast, both the Madgwick and Mahony filters can integrate gyroscope

measurements to capture changes in the ψ angle. Therefore, for orientation estimation in this

dissertation, we rely on the Madgwick filter.

In order to derive these EA estimations we used the magnetometer calibration method

described in Subsection 4.1.3. However, for Cho filter we can use its own magnetometer cali-

bration technique (min-max normalization), which would generate the results shown in Figure

2.6. A comparison of the estimated angles reveals that the ϕ and θ angles are consistent be-

tween Figures 2.4 and 2.6 since they are derived from the accelerometer, which is the same in

both cases. However the ψ angle is differs because it is calculated based on the magnetometer

measurements, which are calibrated differently.

Figure 2.4 demonstrates a more accurate estimation of the ψ angle compared to Figure 2.6.

In Figure 2.6, the ψ angle estimated for the MaxRB and ManRB regions diverges significantly,

and the gap between them even encompasses the ManLB and MaxLB regions. However, in

reality, the ManRB and MaxRB regions should exhibit similar ψ angles due to their proximity

in brushing orientation, as depicted in Figure 2.4. Moreover, Figure 2.4 indicates that the

MaxAB and ManAB regions have an angular difference of approximately 70 degrees with respect

to the ManRB, MaxRB, ManLB, and MaxLB regions on average. This aligns more closely with

a realistic scenario compared to the approximately 100 degrees difference depicted in Figure

2.6. These findings have been validated through additional experiments involving measured

orientations.

2.3 Position Tracking

Challenges associated with accurate position tracking of the brush in the mouth is as follows:

1. Hardware limitations for sensing and transmitting motion signals: Due to the rapid tooth-

brushing movements and quick transitions of the toothbrush head between different brush-

ing regions, accurate estimation of the toothbrush head position requires a high sampling
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Figure 2.6: Estimated Euler Angles in a brushing session using Cho filter and Cho calibration
method

rate. However, motion sensors are currently limited in their ability to provide such a high

sampling rate. Additionally, the transmission of large amounts of motion sensor data,

which typically occurs via Bluetooth, is not possible due to communication limitations.

2. Size of mouth: The mouth is a relatively small cavity that is divided into 16 different

regions in our study. Precise measurements of the toothbrush head position within the

mouth are required for accurate tracking. However, motion-sensors do not currently

possess the level of precision required by the geometric dimensions of the mouth. In

particular, to estimate the position of the toothbrush in mouth, we should do a double

discrete integration of the gravity compensated accelerometer vector defined as follows:

AGC = RW
B ×A−


0

0

g

 . (2.12)

Here, g is the gravitational acceleration which is approximately 9.8 m/s2, A is the three-
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dimensional acceleration vector measured by the accelerometer, and RW
B is the rotation

matrix representing the orientation of the brush with respect to the world reference frame.

The world reference frame is a coordinate frame with its X-axis in the direction of the

north magnetic pole, its Z-axis in the opposite direction of the gravity, and its Y -axis in

the direction of the outer product Z ×X.

The double integration of AGC can amplify any measurement errors in the accelerometer

values. More importantly, the errors that exist in estimating the rotation matrix RW
B can

introduce too much error in location estimation. This makes location estimation using

motion-sensors not a suitable approach in our application.

Figure 2.7 shows the location of the toothbrush estimated from the motion sensors attached

to it while it was left idle on a table. As can be seen, the location of the brush changes about

19 meters in two seconds. Even when ignoring the z-axis position change (since it might not be

valuable for estimating the brush location in the mouth, provided that the dental surfaces are

located at similar height approximately), the brush position changes about 1 meter both along

the X and Y directions. This value is higher than the almost 4cm dimensions of the mouth in

the X, Y, and Z directions, making precise tracking of the brush position challenging in such a

small space.

To obtain a more accurate estimation of the orientation of the brush, one can consider using

a low-pass filter to remove the noise appearing as high-pass components of the accelerometer

before calculating RW
B in Equation 2.12. This approach may result in less noise being involved

during the double integration of the accelerometer. Additionally, after each integration, it may

be beneficial to apply band-pass filtering to the velocity and position estimation obtained to

obtain a better estimation of the position considering that the integrations may accumulate

noise drifts as biases in the measurements.

In our experiment, we used a Butterworth filter of order 3 with cutoff frequencies of 0.5

and 4 Hz as a band-pass filter, and a low-pass filter of order 3 with a cutoff frequency of 0.5

Hz. This resulted in a position estimation shown in Figure 2.8. As can be seen, this estimation

yielded an error of about 12 cm along the X and Y directions, which is almost triple the size

of the mouth along each of those dimensions. Also, the filters side lobes (in the time-domain)
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Figure 2.7: Position of the toothbrush calculated from Equation 2.12
without low-pass filtering of acceleremoter

would appear as oscillations in the output signal (estimated position).

Therefore, the focus of the study is on estimating the orientation of the brush head using

motion-sensors to detect the brushing regions.
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Figure 2.8: Position of the toothbrush calculated from Equation 2.12
with low-pass filtering of acceleremoter, and band pass filtering velocity and position
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Chapter 3

Toothbrushing Region Detection - Data Collection
and Analysis

In this chapter, we delve into the related work on brushing region detection, elucidate our

data collection process, discuss the challenges encountered during dataset labeling, present

our proposed method for improving the accuracy of data labels, and delve into the challenges

associated with brushing region detection.

3.1 Related Work

In this section, we will introduce the methods that have been proposed for brushing region de-

tection. These methods employ external devices such as wrist-worn sensors or sensors attached

to the brush.

3.1.1 ToothBrushing monitoring using wrist-worn sensors

In 2016, Huang et al. [35] introduced a system for detecting brushing regions using wrist-watch

embedded Magnetic, Angular Rate, Gravity (MARG) sensors, specifically for manual tooth-

brushing. The data collected from the sensors was sent to a cloud system for storage and

further processing. The authors attached multiple small magnets to the toothbrush grip to

modify it, claiming that this modification was necessary for the algorithm to work effectively

against rolling motions of the brush in the user’s hand. In this scenario, the rotational move-

ments of the brush in the user’s hand, which would have no effect on the motion signals sensed
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by the user’s wristwatch (as the wrist remains unchanged in orientation), would be detected by

the motion sensor in the wristwatch. The authors relied on the change in the magnetic field

sensed at the wrist-worn sensor location caused by the added magnets to detect the brushing

regions. Additionally, they used the wristwatch microphone to record the sound of the brushing

strokes to count the number of brush strokes. The study lasted for 3 weeks and involved 12

participants. It was conducted in two phases: In the first phase, the participants were trained

on the Bass brushing technique (refer to Section 2) for some period of time, and in the second

phase, they were asked to brush using the learned Bass brushing technique.

A machine learning algorithm was proposed based on time and frequency domain features

extracted from the accelerometer and magnetometer signals, achieving an accuracy of 85.6%

in detecting 15 brushing regions using the Naive Bayes classifier. The authors later showed

that using a two-layer shallow neural network, they could achieve an accuracy of 91.2% [36].

The authors combined MaxAB and ManAB brushing regions due to similar brushing patterns

(refer to Section 3.3). Although these studies by Huang et al. exhibited superior performance

compared to previous research, it is important to note that their instruction to participants

was solely focused on the Bass-brushing technique. Furthermore, participants were asked to

limit their head and body movements, which hinders the scalability of their proposed model.

The algorithm can only be applied to detecting brushing regions in sessions conducted under

the specific technique. Therefore, their model lacks generalizability to real-world scenarios,

where individuals may move their head and body in various ways and hold their brushes at

different angles that may not conform to the recommended 45 degrees angle for the Bass-

brushing method. This limitation makes their algorithm less applicable to free-style brushing

sessions and real-world scenarios. Furthermore, the authors used the transition matrix between

consecutive brushing regions on their tested population of 12 subjects to gain an extra boost in

the algorithm’s performance, which is not applicable to the general population of brush users.

It is also unclear whether their method is applicable to the use of electronic toothbrushes.

Another study that employed a similar setup is presented in [52]. In this study, researchers

conducted a month-long investigation with ten subjects using brushes equipped with IMU sen-

sors. Unlike the previous study, they did not modify the toothbrush or use audio signal recording
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in their setup, and they only used accelerometer signals. They claimed to have eliminated the

differences in signals obtained from sensors attached to manual and electronic toothbrushes

using a low-pass filter, but there is no explanation of the amount of data obtained from sensors

attached to either of the brushes. Additionally, the Bass technique was taught to the par-

ticipants, and they were asked to brush with that restriction. The researchers demonstrated

that using an attention-based LSTM network [78], they could achieve a 97.3% accuracy on 15

brushing activities using raw accelerometer data after applying a rotation matrix. They did

not include MaxAB and ManAB in their categories and added ”raising hand to brush” as an

extra brushing activity while replacing ManAL with brushing the tongue (refer to Subsection

2.1). Furthermore, they claimed to classify brushing activity from other ADLs such as running,

walking, and dining, using a dataset containing three minutes of doing those activities by each

user during the study. However, it is not clear how big their dataset was. Their data was

collected by restricting users to brush according to the Bass technique, which, similar to the

previous study, limits the generalizability of their method. Additionally, they reported that

signal annotation was performed manually by the researchers, which raises concerns about the

usefulness of this method of annotating data in real-life brushing scenarios, considering the

fast brushing behavior of users in transitioning the brush between different brushing regions

in a short period of time. Moreover, the results reported use a random train-test split of the

data (i.e. k-fold cross validation) and the study does not consider the generalization of their

classification algorithm beyond the participants in their training set.

3.1.2 ToothBrushing monitoring using sensors attached to the tooth-

brushes

The authors in [47–49] have proposed a method that involves attaching a MARG sensor to

manual toothbrushes to detect 16 brushing regions. In a series of studies, they first tested the

feasibility of tooth brushing monitoring and brushing pattern classification algorithm schemes

in [47] and [48] using a limited dataset that they had collected. While they showed proof of

concept and how different orientations are represented in the accelerometer and magnetometer

signals collected, they encountered difficulties in distinguishing between left and right brushing
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regions due to inaccurate estimation of the heading angle ψ of the brush (refer to Section 3.3).

To overcome this challenge, they planned to use magnetometer data with proper calibration in

their later studies. In [49], they claimed to have solved the heading angle problem provided

that the heading angle ψ of the front mirror is given and users remain very still. In their study,

they included 15 subjects (13 right-handed and 2 left-handed) and collected about 3 minutes

of brushing time in total from each participant using only accelerometer and magnetometer

sensors. They proposed a method that involves classifying the posture of the brush into one of

four categories (up, down, left, or right) based on the rolling angle ϕ, and then performing K-

means clustering [41] on a stack of accelerometer and magnetometer data and Euler angles (EA)

as feature vectors to identify the brushing region. They reported a classification accuracy of

97.1% on 15 brushing regions (where ManAB and MaxAB were considered as one region) (refer

to Subsection 2.1). While they reported high accuracy, they restricted participants from any

head or body movements and assumed that the heading angle ψ of the front mirror was measured

accurately. They also asked participants to follow a predefined sequence of brushing regions

and spend five seconds on each region, and to use the Bass brushing technique, which uses

rolling strokes with specific motion on the side teeth, in developing their proposed algorithm.

These assumptions generated a highly biased dataset and depended on factors that do not exist

in real-life brushing scenarios. Hence, their dataset and results have limited generalizability.

In addition, the reported results are based on a random division of the data into training and

testing sets using k-fold cross-validation. However, the generalizability of their classification

algorithm beyond the individuals included in the training set has not been taken into account.

Recently, Hussain et al. [37, 38] published a dataset collected from accelerometer and gyro-

scope sensors attached to the brush handle during toothbrushing. They used 17 participants in

their study, each brushing their teeth for one to five brushing sessions for a total of 64 brushing

sessions. Three participants used electronic toothbrushes while the rest used manual brushes.

They calculated pitch and roll angles using a complementary filter [63] and used a random

forest classifier to detect the brushing regions. The participants were instructed to brush each

dental region for approximately seven seconds, following the Bass brushing technique, and to

tackle the teeth surfaces in a specified order. However, these instructions impose limitations
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on the generalizability of their method to brush users beyond those included in their dataset.

Furthermore, the restrictions on head and body movements, as well as the predefined sequences

of brushing, render their study not applicable to real-world scenarios of free-form brushing.

3.1.3 ToothBrushing monitoring using sound

The authors in [45] have proposed a method that utilizes sound data recorded from the user’s

phone to capture toothbrushing sound data. They extracted spectrograms from the audio

signals and applied a Hidden Markov Model (HMM) to classify 4 brushing regions. In contrast,

the researchers in [60] utilized an innovative approach by capturing audio signals of a user’s

brushing strokes from an earphone equipped on the neck and ear of the user. They applied

classifiers on the feature set obtained from the spectrogram of the signals and achieved a notable

85.69% accuracy in classifying seven brushing strokes. However, it should be noted that in

their study, they only performed fine (gentle) brushing strokes for some dental regions and

rough brushing strokes for other regions. Moreover, their approach was unable to differentiate

between strokes on the upper or lower sides of the mouth, as well as the left or right sides of

the mouth.

3.2 Data Collection

3.2.1 Experimental Setup

While there are multiple studies conducted on toothbrush monitoring, there is no publicly

available dataset that we could use for real-world conditions. Hence, we designed a study

that includes 12 participants (2 left handed and 10 right handed) brushing their teeth for

187 brushing sessions total where each brushing session includes a random combination of the

following factors:

1. Brush type: In our study, we have included both manual and electric toothbrushes as the

brushing style with these two types of brushes differs. Brushing with an electric tooth-

brush involves slower and smoother brushing strokes, whereas brushing with a manual
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toothbrush involves faster and stronger brushing strokes. Additionally, transitions from

one brushing region to another in electric toothbrushing include more dragging motions

of the brush on the teeth surfaces of each jaw, compared to the lifting motion that occurs

in manual toothbrushing. While previous studies have focused only on manual tooth-

brushes, [52] claimed that their algorithm is robust to brush type. However, they did not

investigate the differences in brushing behavior using the two types of brushes.

2. Direction: We arranged two mirrors at a 90-degree angle from each other to enable par-

ticipants to brush in front of them in different directions. Our dataset will examine the

impact of face direction on the magnetometer, considering its effect. This factor oc-

curs naturally because users face different directions while brushing in different locations.

In [35], the authors claimed that facing different directions does not affect their algorithm,

as the brush grip has strong magnets attached to it, which is at the cost of modifying the

manual toothbrush.

3. Brushing Method: Brushing typically involves quick transitions of the brush between

different regions, and the brush stays in one region for a very short period of time. This

makes the process of labeling data difficult and time-consuming. Furthermore, some

brushing sessions are short, which is not advantageous for Machine Learning algorithms

that require a large amount of labeled data. Hence, our dataset provides two brushing

methods:

(a) Scripted: Participants should follow a random sequence of 16 brushing regions (with-

out any repetitive region) from a slideshow projected on a screen beside the mirror

that they use for brushing. Each slide displays a figure of the mouth with the specific

region pointed at for 10 seconds. To prepare the participants for the next brushing

region, the next brushing region is displayed on the side of the screen in the last 3

seconds of each slide.

(b) Freestyle: Participants are allowed to brush freely as they do on their own. Includ-

ing freestyle brushing in our dataset is essential due to the variations in individual

brushing styles and the need to develop a brushing region detection algorithm that
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Figure 3.1: The sensors used in the study and their coordinates

can work for real-life brushing scenarios, unlike other datasets collected in previous

studies [35,49,52].

All participants provided written informed consent and the study protocol was reviewed

and approved by the Institutional Review Board of the University of California, Los Angeles

(IRB#18–000874).

In our study, we used two MARG sensors. The first sensor was attached to the participants’

toothbrush, and the second sensor was embedded in the wristband that participants wore during

brushing sessions.

All sensors in our study collected data at a 25Hz sampling rate and transferred their data

to a nearby phone via Bluetooth. We made an effort to replicate the exact attachment settings

for attaching the sensors to all the brushes used in our study, including the same location on

the brush and the same orientations. The figures in 3.1 demonstrate the axes of the brushes,

and the wristband sensors. These axes were defined in a manner that avoids the gimbal lock

problem when representing EAs, as described in [20].

To establish ground truth, we deployed two cameras to record the participants’ faces from

bottom and top angles. This was done to capture the brushing region in case their hand

obscures one camera’s angle of sight.
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3.2.2 Labeling

In order to label the signal, we undertook a preprocessing step to synchronize the signals from

both sensors with the accompanying video. To accomplish this, we had to estimate the signal

values precisely at the times the Bluetooth packets were transmitted. Unfortunately, we only

had access to the timestamps for when the Bluetooth packets were received by the phone,

which could deviate by a few milliseconds. Furthermore, certain packets were lost during

transmission. Consequently, we spline interpolated the signals by using the timestamps of the

Bluetooth packets that were received by the phone to synchronize both signals.

Labeling toothbrushing regions can be a challenging task due to the following reasons:

1. Frequent brush transitions: During toothbrushing, the brush transitions frequently be-

tween different regions, with only brief stays at each region that may last only half a

second. This makes the labeling process time-consuming and prone to inaccuracies.

2. Obscured brushing regions: The brushing regions can often become obscured by the

participant’s hand or the brush, even though we employed two cameras to minimize this

effect.

3. Brushing of neighboring brushing regions together: Occasionally, participants may brush

two neighboring brushing regions together, such as (ManLB, MaxLB), (ManRB, MaxRB),

or (ManAB, MaxAB).

Due to the aforementioned challenges in labeling, the resulting labels may contain noise and

cannot be entirely relied upon. Therefore, we implemented a two-step procedure to enhance

the labeling as illustrated in Figure 3.2, which involved:

1. In the first step, we diligently endeavored to label our dataset using the video data and

subsequently applied our proposed algorithm, as described in Chapter 4, to train a clas-

sifier based on these initial labels. To accomplish the primary labeling step, we assigned

labels to each epoch of toothbrushing that lasted for more than 0.5 seconds after synchro-

nizing the videos with the signals captured by the two sensors. Specifically, we labeled
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Figure 3.2: Labeling Procedure. The implemented labeling procedure involves two steps.
Firstly, labels are generated manually utilizing video recordings of the brushing sessions. Sec-
ondly, the labels are corrected based on the top-three predictions of a classifier trained based
on the labels output from the first step.

the starting and ending samples for each brushing region within the brushing session, ex-

cluding the periods when the brush was transitioning between brushing regions or when

the user was not actively brushing any region.

2. In the second step, we employed our trained classifier to predict the brushing regions and

identified regions that did not rank among the top three predictions made by the classifier.

Subsequently, we rectified these regions using the brushing video.

Through this method, we were able to correct roughly 10% of the labels produced in the

first labeling step.

In this dissertation, our focus is solely on the detection of brushing regions using the tooth-

brush sensor. However, we do plan to explore the potential of utilizing the wristband sensor as

a future research direction.
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Figure 3.3: Two brushing regions that have similar associated brush orientation [49]

3.3 Challenges of Toothbrushing Region Detection

The challenges in using orientation of the toothbrush head to detect the brushing regions are

as follows:

1. Uniquely mapping toothbrushing orientations to brushing regions: As discussed in Section

2.2.3, tracking the position of the toothbrush is currently not feasible. Therefore, we

aim to detect brushing regions using the orientation of the toothbrush head. However,

mapping toothbrush orientation to the 16 defined brushing regions is a challenging task

due to the similarity in brush orientation between many of the brushing regions. Figure

3.3 illustrates two brushing regions (ManLO and ManRO) that have similar brushing

orientations. The difficulty in detecting left or right brushing regions was also observed

and reported in previous studies [48, 49]. In Figure 3.4, we present the EAs of all 16

brushing regions obtained during a brushing session with a manual toothbrush. As can

be seen, many regions have very similar orientations and overlapping EAs, making their

detection challenging.

2. Intra-subject variations in brushing styles: Even when limiting the brushing behavior

study to a single subject, there are variations in the orientation of the brush between

different brushing sessions. Figure 3.5 compares the EAs of the brush obtained from

another brushing session of the same subject using a manual toothbrush.
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Figure 3.4: Euler Angles of 16 brushing regions of participant #1 session #1

Figure 3.5: Euler Angles of 16 brushing regions of participant #1 session #6
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Figure 3.6: Euler Angles of 16 brushing regions of participant #2 session #2

Another factor that can further complicate this problem is the potential change in brushing

habits over time.

3. Inter-subject variations in brushing styles: Although not well studied in the literature,

our observations suggest that individuals have different brushing styles, as reflected in

variations in toothbrushing stroke type, brushing orientations, brushing pressure, and

habits such as the time spent on each brushing region and the order of visiting brushing

regions. Figure 3.6 illustrates how brushing orientations differ among subjects brushing

the same regions.

We study some of the variation in the brushing behavior mentioned in Chapter 5.

4. Head Movements: During a brushing session, individuals tend to move their head, which

can cause artifacts in detecting brushing regions as the orientation of the toothbrush

with respect to the user’s head is desired. Relying solely on brush orientation without

any reference to the head orientation can lead to errors in estimating brushing regions.

Therefore, any proposed method for estimating brushing regions should be robust to head

movements. However, head movement during toothbrushing has not been allowed in the

previous studies [49]. In our experimental setup, we allowed for free head movements to
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propose an algorithm that is robust to this factor when detecting toothbrushing regions.

5. Facing direction: There are two components that should be studied about facing direction:

(a) Initial facing direction, W
B ψ0, is an important factor to consider when detecting the

orientation of a toothbrush with respect to the user’s mouth. As toothbrush users

in different locations face different directions, it is essential to determine their initial

facing direction. To achieve this, we aim to calculate the heading direction of the

brush with respect to the user at each time t, denoted as U
Bψt. This can be achieved

using the following equation:

U
Bψt = W

B ψt − W
U ψt (3.1)

Here, W
B ψt represents the heading direction of the toothbrush in the world reference

frame, while W
U ψt represents the facing direction of the user in the world frame.

W
U ψ0 can be calculated using two methods:

i. Using a magnetometer for an initial measurement: A method mentioned in [49]

is to calculate W
B ψ0 by placing a magnetometer on the front mirror of the user

at the beginning of the brushing session. However, this method has limited

practicality due to its inconvenience for the user.

ii. Using anchor regions: Another method to find W
B ψ0 is to estimate it when we

are confident that the user has brushed a particular region, which we call the

anchor regions, using ϕ and θ angles calculated from the accelerometer. Authors

in [52] have used a similar approach, using IMU sensors and having ManLB

and MaxLB regions as their anchor regions. However, the disadvantage of this

method is that anchor regions may never occur in a brushing session or may

occur at the end of a brushing session, which limits their usability for online

detection of brushing regions and just-in-time feedback for brushing behavior

change. The advantage of using a magnetometer is that it is more accurate than

a gyroscope in finding the heading angle ψ, since a gyroscope is prone to the

drift problem as mentioned in Section 2.2.3.
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(b) Change in facing direction during a brushing session is a challenge even if W
U ψ0 is

obtained using one of the methods described above, because users may move and

turn around during the session. Therefore, any method that uses a magnetometer

to find the heading angle of the brush is prone to error.

On the other hand, if a gyroscope is used to calculate W
U ψ, it is less sensitive to

changes in facing direction during the session, provided W
U ψ is initialized using anchor

regions. This robustness is due to the fact that the gyroscope measures angular

velocity with respect to the body frame and therefore does not sense significant

changes in facing direction, even when the user turns around. However, as previously

discussed in Section 2.2.3, gyroscope measurement of heading angle ψ is unreliable

due to the drift problem. This issue has not been discussed in the previous studies.

But perhaps this is why [38] does not include ψ angle in their proposed method.

3.4 Limitation of Physics Based Methods and the Need

for Machine Learning

The challenges outlined in Section 3.3 demonstrate that while EAs are useful in detecting

brushing regions, they are not comprehensive. There are many variations in brushing behavior

at both population and subject levels that cannot be captured solely by relying on EAs. In

other words, we can identify ”groups of regions” that are either separable using EAs or have

some overlaps, but further classification of the ”regions inside the groups” is not feasible using

EAs alone. Therefore, we propose incorporating machine learning and time series techniques

in addition to the 3D geometry of orientation to address the region detection problem more

effectively.

Our premise is that there exist certain time or frequency domain features that can be

extracted from the brushing data at both population and individual levels to enable the classi-

fication of regions inside the groups. Indeed, some studies have yielded promising results. For

instance, the authors in [39] found that the frequency of brushing is higher on the left side of

the mouth than on the right side, based on motionsense data collected from dentists during
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Figure 3.7: Discriminating features for classifying some brushing regions of subject #8

brushing. Furthermore, [61] demonstrated that some statistical features differ between brushing

regions, such as ManLL/MaxLL and ManAB/MaxAB regions.

To provide an example of such existing features, Figure 3.7 demonstrates that ManAL,

ManRO and ManLO can be distinguished using two features extracted from a manual brushing

session of a subject, which relate to the force and speed of the back-and-forth brushing strokes.

To elaborate, it should be noted that although the features extracted from a manual brushing

session of a subject were successful in discriminating between ManAL, ManRO, and ManLO

regions, the same features may not be able to classify the regions inside the same group for a

new subject. This point is highlighted in Figure 3.9.

However, it is possible that other features could be used to classify these regions for the new

subject. For example, we applied new features that relate to the sideway motions of the brush

to the same regions for the new subject, and the results are shown in Figure 3.8.

This indicates that personal level features extracted from individual brushing sessions may

have the potential to improve the estimation of brushing regions at the population level.
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Figure 3.8: Discriminating features for classifying the same brushing regions of subject #11

Figure 3.9: Applying the discriminating features of subject #8 to subject #11
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Chapter 4

Toothbrushing Region Detection - Proposed
Method

In this chapter, we propose a method to solve the brushing region detection problem, which

consists of three main stages. Firstly, we preprocess the data. Secondly, we find the brush

transition points, which are the moments when the brush moves from one brushing region to

another. Lastly, we classify the samples between two transition points, which we refer to as

segments to detect the region being brushed during that segment.

4.1 Preprocessing

In this stage, we begin by interpolating all received signals to synchronize them (as explained in

Section 3.2). Then, we calibrate the magnetometer signals to compensate for the effect of any

magnetic source that may affect the measurement of the earth’s magnetic field. Next, we filter

the accelerometer and magnetometer signals before feeding them into the orientation filter.

4.1.1 Time-stamp synchronization

To accurately label the signal, we implemented a preprocessing step to synchronize the signals

from the two motion sensors used in our study: one attached to the brush and the other

embedded in the wristband. This synchronization was also helpful in aligning the signals with

the corresponding video footage. The motionsensors transmitted their data to a nearby phone

using Bluetooth. However, we only had access to the timestamps for when the Bluetooth packets

39



were received by the phone, which could introduce a slight deviation of a few milliseconds

compared to the time they actually been collected. To address this, we employed a linear

regression approach to modify the motion sensor timestamps based on their corresponding

counters (which was stored and sent in the Bluetooth packets), allowing us to achieve a nominal

sampling rate of 25Hz. Additionally, some packets were lost during transmission, for which we

used spline interpolation to fill in the gaps in the signals. This interpolation was performed

using the timestamps of the Bluetooth packets received by the phone, ensuring synchronization

of both signals.

4.1.2 Low Pass filtering

In our work, we apply a Butterworth low-pass filter of order 5 with a cutoff frequency of

2Hz. The reason for applying low-pass filtering is that orientation filters utilize accelerometer

and magnetometer signals as a reference with a low dynamic response to compensate for the

erroneous high-frequency components in the estimated orientation generated by the gyroscope.

Specifically, the accelerometer measurements are affected by the acceleration of the brushing

strokes, which appear as high-frequency components in the signals. Therefore, by applying low-

pass filtering to the accelerometer signals, we can remove those components and retain only the

components that relate to orientation, which have only low-frequency components generated

by gravity.

4.1.3 Magnetometer Calibration

In this section, we discuss how magnetometer measurements can be affected by the geomagnetic

field and the ferromagnetic sources in the vicinity of the magnetometer. These sources can cause

distortion in the magnetometer measurements and can be divided into two categories:

1. Hard-iron distortions refer to the ferromagnetic components that are present on the

printed circuit board (PCB) on which the magnetometer is mounted [61]. These compo-

nents are fixed and will remain with the magnetometer after it is built. Hard-iron sources

create a constant bias in the magnetometer measurements and can be modeled by an
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additive constant vector to the magnetometer measurements.

2. Soft-iron distortions are caused by magnetic components present in the magnetometer

environment, including electrical appliances, metal furniture, and metal structures within

a building’s construction [53]. These sources not only affect the magnetometer measure-

ments directly but also induce a temporary magnetic field into normally unmagnetized

ferromagnetic components, such as steel shields and batteries, on the PCB [61]. The effect

of soft-iron sources can be modeled by a 3x3 matrix multiplication.

Hence, magnetometer measurements can be modeled as:

Bmeasured = Wsoft-iron ×Bsensor +Bhard-iron (4.1)

We include any distortion factors that can be modeled as matrix multiplication, such as

accelerometer and magnetometer axis misalignment or magnetometer axis non-orthogonality,

in Wsoft-iron. Similarly, Bhard-iron includes any zero field offset in the magnetometer factory

calibration.

Our goal in calibrating the magnetometer is to determine Bhard-iron and Wsoft-iron so that

we can correct for magnetic distortions and obtain Bsensor, which represents the magnetometer

measurements without any distortions. As demonstrated in [61], it can be shown that the

distorted magnetometer measurements under arbitrary orientations form an ellipsoid, but if

the distortions are corrected through calibration, they will form a sphere. The equation for the

distorted magnetometer values is as follows:

{
W−1(Bmeasured −Bhard-iron)

}T {
W−1(Bmeasured −Bhard-iron)

}
=

(R×B


cos δ

0

sin δ

)T (R×B


cos δ

0

sin δ

) =

B2
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Here, B represents the geomagnetic field strength, δ represents the geomagnetic inclina-

tion angle, R is the rotation matrix that represents the world frame in the body frame, and

W−1(Bmeasured −Bhard-iron) represents the calibrated magnetometer measurements after com-

pensating for distortion. The equation can be written in the form of an ellipsoid locus as shown

below:

(R−R0)TA(R−R0) = const (4.2)

where A = W−1W−T and R0 = Bhard-iron.

By fitting an ellipsoid to distorted magnetometer measurements we can find A and R0.

Under the constraint of symmetric W−1 [61], W−1 can be found uniquely.

To fit an ellipsoid to the magnetometer measurements, we use the method proposed in [7]

based on a least squares fitting method. Using the calculated W−1 and Bhard-iron we can

calibrate our magnetometer measurements.

4.2 Transition Points detection

In the second stage of our proposed algorithm, the transition points are estimated. Transition

points are the moments that the brush transits from one region to another one. As it can be

seen in figure 4.2, at these transition points, often a change in the values of some of the brush

motionsense signals can be observed, which originates from the change in the orientation of the

brush. This change in the signal regime is referred to as change point detection (CPD) in the

literature [2].

There are several change point detection methods available in the literature [42]. However,

upon examination, we found that most of these methods either have a high computational cost

or have been designed for specific applications, limiting their usability in our problem.

Here, we propose CluMing, a novel CPD method based on K-means clustering. Next, we

describe a nonparametric Bayesian CPD method. Lastly, we propose another CPD method,

which, unlike the previous two methods, is an online algorithm. It will be demonstrated in

Section 4.4 that CluMing outperforms the other methods in detecting brushing transition points.
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Figure 4.1: Choosing the optimal K for K-means clustering method by using the Elbow point
on the graph

4.2.1 CluMing algorithm

CluMing consists of a two stages:

1. Clustering stage: In this stage, we cluster the sample points of a brushing session using

accelerometer and magnetometer values as features by the K-means++ algorithm [6].

To determine the optimal number of clusters, we employ the Elbow method [73]. This

technique involves calculating the sum of squared Euclidean distances between the samples

and the center of their assigned cluster, serving as a measure of unexplained variation.

By plotting the explained variation against the number of clusters, we identify the elbow

point on the graph. The Elbow point (Figure 4.1 represents the value of k, the number

of clusters, at which the explained variation exhibits a significant change. To ensure a

meaningful reduction in unexplained variation, we select the largest k value that results

in at least a 20% decrease in this measure.

2. Merging stage: After implementing the previous stage, all samples in the brushing session

are assigned to specific clusters. Any change in the cluster assignment between consecutive

samples is considered a transition point, indicating a transition of the brush from one

region to another. As previously mentioned, the samples between two transition points

are referred to as a segment. However, segments from the clustering stage can sometimes
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be as small as 5 samples (one fifth of a second), which does not align with the fact that

a brushing session, as a time series, cannot have such rapid transitions from one region

to another. To address this issue, we propose a method for merging segments with their

left or right neighbor segments by recursively changing their cluster assignments to their

neighbor’s cluster label. This approach effectively eliminates most of the falsely detected

change points and results in smoother cluster assignments with fewer abrupt transitions.

In the merging step, we begin with the segment with the shortest length as our reference

segment and attempt to merge it with either its left or right neighbor segment, based

on the following criteria. We continue this process until there are no segments left with

a length less than a threshold τ . We set τ to 25 samples, which equals one second

considering the 25Hz sampling rate of our sensors. This means we expect the subject to

brush for at least one second in each region before transitioning to a new dental region.

The criteria for selecting the left or right neighbor segment to merge with the reference

segment is based on two factors: the relative length of the neighboring segments and

their mean Euclidean distance to the reference segment in the feature space (in our case

6-dimensional signal resulted from the concatenation of accelerometer and magnetometer

signals). Specifically, the following criterion is used:

SLR = lL
lR

− λ ||F̄ −F̄L||2
||F̄ −F̄R||2


S > 0 −→ the considered segment will merge with the left segment

S ≤ 0 −→ the cosidered segment will merge with the right segment

Here, F =
[
Acc Mag

]
represents the 6-dimensional vector resulted from the concatenation

of three-axis accelerometer and three-axis magnetometer signals. SLR denotes the score

of the left neighbor segment compared to the right neighbor segment. F̄ represents the

mean of the features of the samples in the considered segment. The subscripts L and
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R indicate left and right segments, respectively. λ is a constant that weighs the length

factor over the euclidean distance factor, which we set to 1 in our work.

This criterion favors longer segments as they are more likely to be correctly clustered as

well as the segments that are closer in feature space, indicating that they are more likely

to belong to the same cluster.

The CluMing algorithm is presented in pseudocode in Algorithm 4.2.1. An example of

applying the CluMing algorithm to a segment of a brushing signal is illustrated in Figure 4.2.

Algorithm 1 CluMing algorithm
Input F
Output A

1: k-means++ on F → AOld

2: while mini lSegi
≤ τ do

3: Merging Step on AOld → ANew

4: ANew → AOld

5: end while
6: ANew → A

Here, A represents the cluster assignment of samples in the brushing session.

4.2.2 Sticky HDP-HMM

A method is proposed in [25] to use Hidden Markov Models (HMMs) with an infinite number of

states in which the states generate a Hierarchical Dirichlet Process (HDP) with a bias towards

self-transition.

By choosing states based on a Dirichlet Process (DP), the previously visited states have a

chance to be revisited, and there is also a possibility that a new state is visited that was never

visited before. This model is based on an analogy to the Chinese restaurant process, where

each customer that enters the restaurant will either sit at an occupied table with a probability

proportional to the number of customers already sitting at that table or choose to sit at a new

unoccupied table. This is a non-parametric model that assumes the number of states is not

known a priori and can be potentially infinite. Therefore, a new table can always be opened up

in this imaginary restaurant.
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Figure 4.2: Applying CluMing algorithm to a brushing session (CluMing change point estima-
tions are in black dashed lines and red lines are true change points

Under the assumption that observations in each state come from a multimodal distribution,

the states are organized into a Hierarchical Dirichlet Process. Each parent state, called a group,

has associated children states, called atoms, that have a chance of being selected based on a

Dirichlet distribution. In other words, a global DP prior DP (α,G0) is placed on Θ (atoms), and

group-specific distributions are drawn from a global prior, Gj ∼ DP (α,G0). The base measure

G0 acts as an ”average” distribution across all groups, and E[Gj |G0] = G0. The base measure

G0 is distributed according to a Dirichlet process G0 ∼ DP (γ,H), implying that atoms are

shared not only within groups but also between groups [70].

The HDP-HMM has been applied to the speaker diarization problem, where the goal is to

recognize the correct speaker from an unknown and possibly infinite number of speakers in an

unsupervised manner. To address the non-interruptive nature of speech in group settings, the

authors in [25] introduced a modification to the state transition probability in the conventional

HMM, by adding a bias towards self-transition, and coined the term ”sticky HMM” to describe

it. Through their experiments on a real speaker diarization problem, they demonstrated that

sticky HDP-HMM outperforms conventional HDP-HMM, which often suffers from too many
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switches between the estimated states.

The brushing region detection problem bears striking similarities to the speaker diarization

problem, where a user brushes one region for some time before transitioning to another region,

making the sticky nature of the HMM a suitable model for both. Moreover, as discussed in

section 3.3, the brushing regions tend to form groups, thus justifying the use of a hierarchical

structure as employed in sticky HDP-HMM. The overlap in brushing groups further strengthens

the suitability of using HDP, as it allows for sharing of atoms between groups.

However, although using a nonparametric Bayesian model where the number of states can

potentially be infinite may seem inappropriate for our problem with only 16 brushing states,

we can still confine the number of states to an upper bound of L by using the degree L weak

limit approximation to the DP, as described in [70].

Specifically, in accurate HDP, the discrete probabilities are defined as follows:

vk | γ ∼ Beta(1, γ) k = 1, 2, . . .

βk = vk

∏k−1
ℓ=1 (1 − vℓ) k = 1, 2, . . .

(4.3)

Here, the stick-breaking construction works by dividing a unit-length stick into segments

with lengths determined by the weights βk. Specifically, the kth weight is a random propor-

tion vk of the remaining stick after the previous (k − 1) weights have been established. This

construction is commonly referred to as the GEM(γ) distribution.

In approximated HDP, the following discrete probabilities are used:

GEML(α) ≜ Dir(α/L, . . . , α/L) (4.4)

By employing this approximation, we not only reduce the computational complexity in

sampling posterior probabilities, but also obtain an accurate representation of the limited state

space of brushing regions by setting L = 16.

The authors of [25] describe two methods of inference in sticky HDP-HMM, which involve

sampling posterior probabilities through either direct assignment or blocked sampling of state

sequences. For our purposes, we have applied the latter method to infer the state sequences in
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a brushing session, and the results of this analysis are presented in section 4.4.

4.2.3 Local Change point Detection

In this subsection, we propose a simple and efficient online CPD method called Local CPD.

This method operates by using a sliding window of length L that overlaps by P percent over

the motionsense signals. It detects a change in signals by observing the change in their mean

values. We have used L = 50 and P = 20 heuristically to optimize the performance of the

method.

To detect a change in a window, we employ the following criterion:

∥∥F̄i − F̄i−1
∥∥

2 > ∥σi−1∥2 ∗ α+ β (4.5)

The criterion we use for detecting a change in a window is based on comparing the Euclidean

norm of the change in F̄ , which is the mean feature vector in the considered window, to a linear

threshold that is determined based on σ, the Euclidean norm of the vector of standard deviation

of the features in the previous window.

Using the standard deviation to set the threshold allows for adaptability to the recent range

of signal variations, which outperforms a fixed threshold in our experience.

4.3 Segment Classification

In this section, we introduce several algorithms that can be used for time series classification,

ranging from traditional methods that involve feature engineering which uses hand-tailored

features to deep learning frameworks that automatically select features. Later in Section 4.4,

we compare the results obtained from using these algorithms for classifying brushing regions.

4.3.1 Hand-Tailored Feature Extraction Method

In this method, we extract time and frequency domain features from each segment in our

training set. Our framework employs features commonly used in activity recognition problems
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using motion sensors.

The features that we extracted from the brush sensor signals comprise of various measures

such as the mean and variance of the motionsense signals, Auto-Regressive (AR) coefficients

of those signals, mean and variance of EAs, mean quaternion representation of the orientation,

mean frequency of the motionsense signals extracted from Yule-Walker [15] estimation of their

spectrum, cross correlation of the motionsense signals, and mean and variance of the gravity

compensated linear acceleration of the brush. These features were specifically chosen as they

are commonly used in activity recognition problems using motion sensors.

Out of the 120 features extracted in this stage, we selected the top 20 features by applying

linear discriminant analysis [50]. This involved finding the optimal projection matrix Φ that

maximizes the Rayleigh quotient, which is defined as follows:

J (Φ) =

∣∣∣ΦT Σ̂bΦ
∣∣∣∣∣∣ΦT Σ̂wΦ
∣∣∣ (4.6)

In this optimization problem, J (Φ) represents the ratio of between-class variance to within-

class variance. Therefore, Σ̂b and Σ̂w denote the between-class and within-class scattering

matrices, respectively. Solving the generalized eigenvalue problem below yields the solution to

this optimization problem:

Σ̂bΦ = λΣ̂wΦ (4.7)

Then, based on the selected features, a classifier is used to detect the brushing region. In

section 4.4, we only report the performance of the Naive Bayes classifieres since other classifiers

(e.g. random forest, multiclass support vector machine (SVM), and multilayer perceptron) had

similar performance.

4.3.2 Dynamic Time Warping (DTW)

DTW is a well-known method for time series classification, which can identify specific patterns

in time series regardless of their shift in time or frequency. DTW finds an optimal match
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between two arbitrary-length time series and can therefore yield a distance measure between

them. By ignoring the length of a signal, DTW would focus on similarities in the similar

patterns exist in two signals. An introduction to DTW can be found in [9].

We use the DTW distance, which is based on the euclidean distance, to classify a segment

of motion sense data in the test set. This is done by finding the minimum mean DTW distance

to the n random segments of the classes in the training set, as follows:

jopt = argminj∈{1,...,16}
Σn

i=1DTW (s, tij)
n

(4.8)

where s is the test segment and tij is the ith train segment from class j. To avoid extra

computational complexity, we chose the subset of n = 100.

The underlying assumption of our approach is that different users exhibit different brushing

habits and patterns while brushing different regions. Therefore, we hypothesize that DTW can

capture the distinctive time series patterns associated with these habits and aid in the detection

of the brushing regions.

4.3.3 Wasserstein Distance (WD)

The WD, also known as Earth’s mover distance (EMD), is a distance metric used for computing

the distance between distributions. It calculates the minimum cost needed to transform one

distribution into another.

In particular, let P = {(p1, wp1) , . . . , (pm, wpm)} be the first signature with m clusters,

where pi is the cluster representative and wpi
is the weight of the cluster; Q be defined as

Q = {(q1, wq1) , . . . , (qn, wqn
)} the second signature with n clusters; and D = [dij ] the ground

distance matrix where dij is the ground distance between clusters pi and qj . We want to find

a flow F = [fij ], with fij the flow between pi and qj , that minimizes the overall cost [65]:

WORK(P,Q,F) =
m∑

i=1

n∑
j=1

dijfij (4.9)

subject to the following constraints:
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fij ≥ 0 for 1 ≤ i ≤ m , 1 ≤ j ≤ n (4.10)

n∑
j=1

fij ≤ wpi
for 1 ≤ i ≤ m (4.11)

m∑
i=1

fij ≤ wqj
for 1 ≤ j ≤ n (4.12)

m∑
i=1

n∑
j=1

fij = min

 m∑
i=1

wpi,

n∑
j=1

wqj

 (4.13)

Constraint 4.10 allows moving “supplies” from P to Q and not vice versa. Constraint 4.11

limits the amount of supplies that can be sent by the clusters in P to their weights. Constraint

4.12 limits the clusters in Q to receive no more supplies than their weights; and constraint 4.13

forces to move the maximum amount of supplies possible. We call this amount the total flow.

This problem can be solved by linear programming and once we find the optimal flow F,

the earth mover’s distance is defined as the resulting work normalized by the total flow:

EMD(P,Q) =
∑m

i=1
∑n

j=1 dijfij∑m
i=1

∑n
j=1 fij

(4.14)

The above equations demonstrate that EMD takes into account not only the Euclidean

distance between distributions but also the difference in their shapes. This justifies the use of

EMD when dealing with the challenges illustrated in Section 3.3, as different brushing regions

may have distributions with similar shapes in their corresponding feature space.

4.3.4 Long Short-Term Memory (LSTM) networks

LSTM networks [34] are specific types of Recurrent Neural Networks (RNNs) that can overcome

the exploding and vanishing gradient problems happening during training of the Neural Net-

works. They are being used for classifying time-series data and are powerful at remembering

the long term dependencies in time-series data. By using the LSTM networks, we intended
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to capture not only the features related to the specific orientations of the brush but also any

motion patterns that exist during brushing a particular region.

We concatenated the accelerometer, magnetometer, and EAs to obtain 9-dimensional feature

vectors and then fed them to our LSTM model. We used two layers of bidirectional LSTM

networks, with 64 hidden units and a drop-out layer with a drop-out probability of 0.1 after

each layer. At the end, we connected the LSTM output to a fully-connected layer and then

calculated the Softmax probabilities of the brushing regions. Our model hyper-parameters were

selected heuristically by a coarse-to-fine approach.

For training, we used multi-class cross entropy loss and Adam [43] optimizer with a learning

rate of 1e-3. Our network was trained for 10 epochs with a batch-size of 1024. The number of

epochs was chosen based on the training and evaluation accuracy to avoid overfitting.

We further describe our training process in Subsection 4.3.6.

4.3.5 Transformer Encoder

Transformers made a revolution in natural language processing (NLP). These models that were

initially used in language translation tasks, consist of two parts: an encoder and a decoder.

These models use the attention mechanism [77] to learn the long-term dependencies in a corpus

and are shown to outperform the RNN models in almost all NLP tasks.

While both the encoder and decoder parts of the Transformers are needed for language

translation tasks, the Transformer Encoder can be used by itself to learn a vector representation

of the time-series data for classification tasks. This is accomplished by adding a classification

token to the beginning of the time-series segment.

In this chapter, we used the Transformer Encoder model to classify the segments of motion-

sense signals during a brushing session. The architecture of our model is shown in Figure 4.3.

Similar to the Subsection 4.3.4, we concatenated the accelerometer, magnetometer, and EAs as

9-dimensional feature vectors and then fed them into our Transformer Encoder model. We first

used a fully-connected layer of size 32 to project our feature vectors into a feature space with

higher dimensions. Then we added a positional embedding vector as well as brush-type and

left-handedness embedding vectors of size 32 to the feature vectors. The addition of the latter
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embedding vectors will allow further personalization to be possible via Transformer Encoder

models.

Then we used a stack of four attention layers each containing a feed-forward (fully-connected)

layer with 256 hidden units. Each attention layer has two attention heads with a size of 128

for key, query and value vectors. We chose a drop-out probability of 0.1 for both the attention

scores as well as the feed-forward layer inside each attention layer. We used the Gelu activation

function for the feed forward layers. Here again, our model hyper-parameters were selected

heuristically by a coarse-to-fine approach.

Our training configuration was similar to the LSTM network discussed in Subsection 4.3.4,

with the exception of using the BERT-Adam optimizer instead of the Adam optimizer.

4.3.6 Majority voting technique

Since we know that each segment of the motion-sense data which lies in between two consecutive

brush transition times corresponds to only one brushing region, any subsegment of each segment

should also correspond to the same brushing region. Therefore, we can split each segment into

multiple subsegments using a sliding window of size l with a stride of p percent of the window

length. At the training time, splitting our segments into multiple subsegments is useful due to

the increase in the training set size which helps with reducing the generalization error of our

classifiers. At the test time, to predict the class that each segment belongs to, we can split the

segment into multiple subsegments and perform majority voting over the class predictions of the

subsegments. For majority voting, we treated the subsegments as independent measurements.

Therefore, we summed the log probabilities of the subsegments’ distributions over the classes

(i.e. brushing regions) to find the class with the highest probability as the final prediction. We

applied this technique to predict segments using both the LSTM and the Transformer Encoder

models and observed a performance improvement of approximately 10% in accuracy compared

to not using the technique. We set the values of l = 32 and p = 0.25 heuristically.

53



Figure 4.3: Our Transformer Encoder model configuration
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4.4 Results

In this section, we present the performance of our proposed algorithm using various segment

classification algorithms described in Section 4.3. First, we describe the evaluation metrics

employed in our study, followed by a comparison of the performance of different classifiers

based on these metrics.

4.4.1 Evaluation metrics

We report three cross-validation accuracy metrics defined as follows:

• One-subject-out accuracy: To calculate this metric, we train our model on brushing data

from all participants except for one and evaluate its performance on the left-out par-

ticipant. We repeat this process for each participant and then average the results. This

metric evaluates the model’s generalization power to new participants outside the training

set and measures how well it can perform at the population level.

• One-session-out accuracy: For this cross-validation metric, we train our model on all

brushing sessions of a participant except for one, which we use as the validation set.

We repeat this process for all sessions of the participant and all participants, and then

average the results. This method evaluates the personalization power of the models for

each individual since the training set includes data from one participant.

• K-fold accuracy: For k-fold (we set k=5), cross-validation [8] all brushing sessions of all

participants are used. We used this metric since it is conventionally used to evaluate the

performance of the machine learning models.

4.4.2 Classification results

To evaluate the performance of our proposed algorithm, we report micro-F1 score [30] for

sample-based and segment-based classification methods in Table 4.1. In the sample-based clas-

sification method, we classify each sample of motion-sense signals based on the method proposed
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in [38]. The Random Forest classifier is applied to the feature vectors generated by concate-

nation of accelerometer, magnetometer, and roll and pitch angles for each time-sample. The

roll and pitch angles are estimated using the proposed complimentary filter in [38]. In contrast

to classifying feature vectors of each time-sample in sample-based methods, in the segment-

based classification methods, we classify the segments that lie in between the consecutive brush

transition times. In segment-based methods, we ultimately assign the predicted class of each

segment to all samples in the corresponding segment. Hence, the reported accuracy of segment-

based methods is calculated based on the correct predictions of the samples. This makes the

comparison of the performance of the segment-based and the sample-based methods valid.

For classification, since some regions are brushed together or the accurate location of the

brush is not clear in the videos, we merged some regions which were often ambiguous during

labeling following the convention proposed in [4]. Hence, we ended up with 9 brushing regions

as follows:

R = {ManRO/ManRL,ManLO/ManLL,

MaxLO/MaxLL,MaxRO/MaxRL,

MaxRB/ManRB,MaxLB/ManLB,

MaxAB/ManAB,ManAL,MaxAL}.

As it can be seen in Table 4.1, our proposed segment-based methods outperform the sample-

based method proposed in [38] when applied on both their published dataset as well as our

provided dataset. The difference in the performances of our model when applied on our dataset

versus the dataset in [37], shows the challenging nature of brushing region detection when per-

formed free-form versus under constraints (such as prescribed sequence of brushing, structured

Bass brushing technique, etc.). While our models can achieve high k-fold cross-validation ac-

curacy, one-subject-out classification accuracy is much more challenging. This large gap in the

models’ performances, manifest the vast variation in brushing styles and the other challenges

discussed in Section 3.3. Hence, it is important to assess models’ performances based on one-
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Table 4.1: F1 score of our proposed classification methods
Our
Dataset

Dataset
in
[37,38]

Sample-Based
(method in [37,38])

K-fold 81.5 91.2
Subject-out 52.4 61.5
Session-out 60.7 67.3

Segment-
Based

Feature
Engineering

K-fold 80.3 89.5
Subject-out 50.7 58.1
Session-out 60.4 66.5

LSTM
K-fold 89.5 93.3
Subject-out 53.4 63.7
Session-out 65.3 70.5

Transformer
Encoder

K-fold 95.3 97.2
Subject-out 58.6 67.9
Session-out 67.3 74.7

subject-out evaluation metric. This should guide other researchers in the field when reporting

their models’ performance metrics.

Furthermore, it can be observed that one-session-out accuracy is higher than the one-subject-

out accuracy. This may be because of the fact that the individuals’ brushing habits might differ

from each other and hence a personalized model would perform better than a general model

for the whole population.

Overall, the Transformer Encoder model performed slightly better than the other segment-

based models. The one-subject-out and one-session-out accuracy metrics for the Transformer

Encoder model are shown in Figures 4.5 and 4.6, respectively. In the one-subject-out histogram,

each bar represents the accuracy of the model when the data from that participant constituted

the validation set. In the one-session-out histogram, each bar represents the accuracy result

of the corresponding participant averaged over cases where each session of that participant

constituted the validation set and the rest of that participant’s sessions constituted the training

set. Figure 4.4 displays the confusion matrix of the Transformer Encoder model applied to our

provided dataset, with the one-subject-out accuracy calculated for the case where participant

#1 is left out. Our model performed well in distinguishing regions with different brush-head

orientations (e.g., ManRO and MaxRO). However, it had some difficulties discerning regions

with similar brush orientations, such as ManRO and ManLO regions.
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Figure 4.4: Confusion matrix of the Transformer Encoder model applied to our provided dataset,
with the one-subject-out accuracy calculated for the case where participant #1 is left out.
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Figure 4.5: F1 score of one-subject-out evaluation metric using the Transformer Encoder model

Figure 4.6: F1 score of one-session-out evaluation metric using the Transformer Encoder model
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4.4.3 Change Point Detection

Evaluation metrics

To compare the performance of CPD methods, we use the Hausdorff distance [10], which mea-

sures how far two subsets of a metric space are from each other. Let T̂ be the set of estimated

change points and T ∗ be the set of true change points. The Hausdorff distance is defined as

follows:

HD
(

T ∗, T̂
)

:= max{HT ∗, HT̂ } := max
{

max
t̂∈T̂

min
t∗∈T ∗

∣∣t̂− t∗
∣∣ , max

t∗∈T ∗
min
t̂∈T̂

∣∣t̂− t∗
∣∣} (4.15)

This can be viewed as the greatest distance from any point in either one of the sets to the

closest point in the other set.

We also introduce three new metrics for quantifying the performance of change point de-

tection methods: the number of extra estimated change points, denoted by E; the number of

missing change points, denoted by M; and the distance error, denoted by D, which measures

the discrepancy between the estimated change points and the true change points.

To achieve this, we find the maximum matching between the sets of bipartite graphs T ∗

and T̂ with the minimum sum of distances, as follows:

minx

∑
∀t∗∈T ∗,∀t̂∈T̂ d(t∗, t̂)x(t∗, t̂) subject to:∑

t x(t∗, t̂) = min{|T ∗|, |T̂ |} ∀t∗ ∈ T ∗∑
t∗ x(t∗, t̂) = min{|T ∗|, |T̂ |} ∀t̂ ∈ T̂

x(t∗, t̂) ∈ {0, 1} ∀t∗ ∈ T ∗, t̂ ∈ T̂

where | · | denotes the cardinality of a set. For the distance metric d, various distance measures

can be employed, and we use the ℓ1 norm as a straightforward distance measure.

By solving a proxy to this problem and obtaining xopt, we can define M , E, and D based

on the set of matched estimated change points, denoted by T M, as follows:
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E M D HP HQ HD
(probability) (probability) (samples) (samples) (samples) (samples)

Local CPD 0.29 0.16 7.84 217.12 255.68 285.89

CluMing 0.25 0.14 5.59 209.07 256.35 281.68

HDP-HMM 0.12 0.54 3.29 1591.1 254.22 1593.5

Table 4.2: Accuracy of change point detection methods

T M = {∀t∗ ∈ T ∗ | ∃t̂ ∈ T̂ such that xopt(t∗, t̂) = 1}

E = max{0, |T M − T̂ |}

M = max{0, |T̂ − T M|}

D =
∑

∀t∗∈T ∗,∀t̂∈T d(t∗, t̂)xopt(t∗, t̂)

Results

According to Table 4.2, cluMing outperforms HDP-HMM in terms of both accuracy and run-

time by a significant margin among the CPD methods. However, Local CPD is a faster algo-

rithm, making it more suitable for online CPD. We heuristically tuned the hyper-parameters α

and β to 0.5 and 1, respectively, although further hyper-parameter tuning is possible.

4.5 Discussion and Conclusion

In this chapter, we present a comprehensive dataset designed for the detection of dental regions

being brushed during a brushing session. Our dataset comprises motion-sense signals obtained

from accelerometers, gyroscopes, and magnetometers attached to the toothbrush. We collected

a total of 187 brushing sessions from 12 participants. Unlike previous studies that focused

on constrained brushing conditions, such as following a structured Bass brushing technique,

prescribed brushing transition sequences, and fixed head/body positions, our data collection

encompasses free-form brushing, reflecting real-world naturalistic settings.
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We discussed the challenges associated with accurately tracking the position of the tooth-

brush during brushing, considering the geometric dimensions of the mouth. To address this, we

proposed a three-stage algorithm consisting of pre-processing, brush transition time detection,

and time-series classification. This algorithm enables the prediction of nine brushing regions

by identifying the moments when the brush transitions between different dental regions and

classifying the segments between consecutive brush transitions. Notably, we observed that free-

style brushing poses greater challenges compared to the dataset presented in [37], which was

collected under structured brushing assumptions.

Furthermore, we demonstrated that classifiers can achieve high classification accuracy using

a random train-test split approach, such as k-fold cross-validation. However, when it comes to

generalizing the algorithm to new toothbrush users, particularly in leave-one-subject-out cross-

validation, significant challenges arise due to variations in brushing styles and other factors,

such as head movement during brushing.

The outcomes, as presented in Section 4.4, were achieved via a hyperparameter tuning pro-

cess. To optimize the hyperparameters of our classifiers, we employed a coarse-to-fine approach

consisting of two steps:

1. Initially, a coarse grid of values was selected to evaluate the overall performance of the

classifiers over a wide range of hyperparameter values.

2. Subsequently, in the second step, a finer grid of values was explored around the range

of values that yielded the best results on the desired metric, particularly one-subject-out

cross-validation accuracy.

In addition, in the case of neural network classifiers, we did not allow the time-consuming

training process to run for multiple epochs. Instead, we terminated the training process after

the first few epochs. This approach is in line with the concept of the critical learning period in

deep learning [1], where the initial phase of training neural networks is shown to be critical in

achieving the final performance of the network.

In general, we observed that for neural networks, regardless of the type of the three cross-

validation metrics mentioned in Section 4.4, increasing model complexity enables attaining high
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training accuracy. However, this usually results in a decline in validation accuracy, commonly

known as overfitting in machine learning. Below are the ranges of hyperparameters that we

found to be effective for the classifiers we employed. Hyperparameter values falling outside

these ranges may cause underfitting or overfitting for the classifiers we utilized:

• Transformer Encoder:

– Hidden size for the key, query, and value: [128, 256]

– number of stacked-attention layers: [3, 5]

– number of hidden units in the attention layer: [128, 512]

– number of attention heads: [2, 4]

– dropout probabilities: [0.1, 0.4]

• LSTM:

– hidden size: [64, 128]

– dropout probability: [0.1, 0.4]

• Random-Forrest (for the method proposed in [38]):

– number of trees: [70, 120]

– trees’ depths: [12, 18]

Regarding the optimization process, we discovered the subsequent range of values that

prevent underfitting or overfitting:

• learning rate: [5e-4, 5e-3]

• number of epochs: [5, 10] for one-subject- and one-session- out cross-validation, and [20,

30] for k-fold cross-validation

• batch size: [256, 2048]

For the majority-voting technique:
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• segment length: [0.4, 1.5] × sampling rate

• stride length: [0.1, 0.4] × sampling rate

Nevertheless, although we attempted to find the optimal values within the aforementioned

ranges, additional experiments within these ranges may yield further optimization.

Regarding the labeling process, we implemented a two-step algorithm that involves rela-

beling some of the inaccurate labels using the trained classifiers’ predictions. However, the

literature provides various methods to handle partially accurate labels, commonly referred to

as noisy labels [69]. Some methods tackle this problem by modifying the loss function, such as

Bootstrapping, Forward/Backward Loss Correction, and Mixup, while others rely on relabeling

the data based on the trained classifiers’ predictions. Certain approaches utilize semi-supervised

learning after discarding less confident labels. However, in our study, we proposed a relabeling

approach that uses the classifiers’ predictions in conjunction with the video recordings of the

brushing sessions as the ground truth. Our approach is particularly suitable for our work due

to the relatively small size of our dataset and the lack of brushing datasets in the field. More-

over, for regions that can be brushed together (e.g., ManAB, MaxAB), we could label them as

ManAB/MaxAB, which could pave the way for multi-label classification [76].
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Chapter 5

Toothbrushing Behavior Analysis

In this chapter we explain the heterogeneity of brushing behaviors. We gathered accurate

data on habitual brushing patterns using powered/electronic toothbrushes, with a focus on the

duration of each session, tooth surfaces covered, and episodes of excessive brushing pressure per

session. By examining habitual brushing patterns at the individual and session-level, we sought

to clarify the similarities as well as the between- and within- person variability in brushing

patterns using powered toothbrushes.

5.1 Data collection

As part of the parent study, 12 healthy college students with no evident dental disease, provided

their brushing data in the home setting over three weeks (10 sessions each). The 12 participants

comprised of eight females and four males with ages ranging from 18 to 23 years (20.77 ± 1.59).

Basic instruction on the use of the brush and setting up the data collection system was given

and the participants were instructed to freely brush their teeth in a manner most natural to

them. All participants provided written informed consent and the study protocol was reviewed

and approved by the Institutional Review Board of the University of California, Los Angeles

(IRB#18–000874).

To allow objective, individual-level, and ecologically-valid data on oral hygiene behaviors,

we deployed the Remote Oral Behaviors Assessment System (ROBAS) described previously

in [68]. Briefly, ROBAS builds on a broadly available consumer-grade powered toothbrush
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(Oral-B Genius X; Procter & Gamble) as the data source for brushing behaviors (timing,

duration, pressure applied). The Oral-B brush employs a rotational-oscillation mode of action

and brushing movements are captured by an accelerometer, gyroscope, and pressure sensor

contained within the powered brush. Captured data is transmitted over BLE (Bluetooth Low

Energy) to a paired smartphone running the companion data collection app. Collected data

is then uploaded to a secure cloud server for remote monitoring of data yields and analytics.

Visualization of time-series data streams of brushing episodes and remote monitoring of sensor

function and participant compliance is accomplished through an adaptation of the open platform

GrafanaTM dashboard [31].

Upon enrollment, each participant was provided an Oral-B powered toothbrush, a suction-

cup phone mount, charger, and quick-start instructions. Participants downloaded the study-

specific app onto their own smartphone and paired it to the powered brush. Participants

were instructed on the operation of the powered brush and on how to mount the smartphone

to their bathroom mirror during a brushing session for the duration of the study (3 weeks).

Participants were instructed to brush twice daily for two minutes each time. At the start of each

brushing session, participants launched the study app and activated the smartphone camera.

Data from the embedded sensors was buffered by the brush and transmitted to the study phone

via Bluetooth. Turning off the toothbrush ended data collection and triggered the app to save

the timestamped brushing data. The brushing session data and the corresponding video clip

were then uploaded via the ROBAS platform to a secure cloud server for subsequent analysis.

The ROBAS platform with integrated GrafanaTM dashboard allowed research staff to remotely

monitor data feeds and conduct quality checks.

For labeling the brushing sessions, we performed the same procedure explained in Section

3.2.2.

5.2 Analyses

Several participants skipped some regions altogether in some or all brushing sessions, and most

participants avoided using excessive pressure most of the time. Therefore, the durations of
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region-specific brushing and region-specific brushing with excessive pressure were often equal

to zero, a statistical phenomenon referred to as zero-inflation [11]. Accordingly, we analyzed

these outcomes using statistical models that account for zero-inflation. Specifically, we modeled

these outcomes (each measured in counts of 25Hz samples) using zero-inflated generalized linear

mixed-effects regression models, with a log-link and a negative binomial outcome distribution

for the count submodels and a logistic link and a Bernoulli outcome distribution for the zero-

inflation submodels.

Here, we provide a more detailed explanation of our analysis regarding three quantities of

interest: the duration of brushing on each dental surface, the duration of excessive brushing

pressure on each dental surface, and the total active brushing duration of each brushing session.

We calculated the total active brushing duration per-session by excluding pauses in brushing

and the epochs of transitioning the brush head to different dental surfaces.

To examine the data on subject and session levels, we used boxplots. Data points were

labeled as outliers if they were not in the range of [q1 − w × (q3 − q1), q3 + w × (q3 − q1)]; in

which w is the Whisker value and q1 and q3 are the 25th and 75th percentiles of the sample

data, respectively. We used a whisker value of ±2.7σ (σ is the standard deviation of the sample

data) that corresponds to the coverage of 99.3% of the data, if the data is normally distributed.

The significance level α was set at 5%.

All statistical analysis was performed in R version 4.1.1 [64], using the regression modeling

package “glmmTMB” [11]. The boxplots are generated using Matlab R2021a [71]. The dataset

used as well as the code to generate the results are publicly available publicly at a GitHub

repository [22].

5.2.1 The duration of brushing on each dental surface

Several participants skipped some regions altogether in some or all brushing sessions. Therefore,

the brushing durations of any dental surface was often equal to zero, and hence forming a zero-

inflated distribution. Zero-inflation for brushing duration distribution of MaxRO is shown in

Fig 5.1.

As a result, we fit a zero-inflated negative binomial regression model for the amount of
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Figure 5.1: Zero-inflated distribution of brushing duration on MaxRO.

time (measured in counts of 25 Hz samples) spent brushing each dental surface, with a log-link

and a negative binomial outcome distribution for the count submodel and a logistic link and

a Bernoulli outcome distribution for the zero-inflation submodel. Both submodels had fixed

effects for tooth surface, mouth side, and jaw, and random effects on the intercept by session

nested in participant, to account for participant-to-participant and session-to-session differences

in overall brushing duration, and participant-specific overdispersion parameters to account for

participant-to-participant differences in residual variance. The count submodel also included

participant-specific random effects for tooth surface, mouth side, and jaw. We attempted to add

participant-specific random effects for tooth surface, mouth side, and jaw in the zero-inflation

submodel, but the estimation algorithm failed to converge for that extended model.

Fig 5.2 summarizes the brushing duration of each region for all participants. MaxAB,

MaxLB, and MaxRB were the areas brushed the longest with a median of 10.68, 8.78, and 8.22

seconds respectively. In contrast, MaxLL and MaxLO were frequently skipped during brushing.
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Figure 5.2: Brushing time of all dental surfaces. MaxAB, MaxLB, and MaxRB were the
areas brushed the longest and in contrast, MaxLL and MaxLO were frequently skipped during
brushing.
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Modeling

The brushing duration Yijk of participant i ∈ {1 : 12}, in session j ∈ {1 : 10}, of dental surface

k ∈ {MaxRO, MaxRB, MaxAB, MaxLB, MaxLO, MaxRL, MaxAL, MaxLL, ManRO, ManRB,

ManAB, ManLB, ManLO, ManRL, ManAL, ManLL } is modeled in Equation 5.1:

Zijk ∼ Bernoulli (πijk)

Yijk ∼

 0 if Zijk = 1

NB (λijk, κi) if Zijk = 0

(5.1)

We used the negative binomial distribution parameterized as described in Equation 5.2:

p (Yijk = y | Zijk = 0) = (λijk)y

y! · Γ (y + κi)
Γ (κi) (κi + λijk)y ·

(
1 + λijk

κi

)κi

(5.2)

Hence:

E (Yijk | Zijk = 0) = λijk

Var (Yijk | Zijk = 0) = λijk

(
1 + λijk

κi

)

It should be noted that larger values of κi correspond to smaller variances.

We modeled λijk = E (Yijk | Zijk = 0) as shown in Equation 5.3:
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log (λijk) = β0ij + βMi1{k ∈ M} + βOi1{k ∈ O} + βLi1{k ∈ L} + βAi1{k ∈ A} + βGi1{k ∈ G}

β0ij = β0 + α0i + γij

βMi = βM + αMi

γij ∼ N
(
0, σ2

γ

)


α0i

αMi

...

 ∼ N

0,


σ2

α0
σα0σMρα0M · · ·

σα0σMρα0M σ2
M

. . .
... . . . . . .




log (κi) = ηi

(5.3)

We modeled πijk as in Equation 5.4:

logit (πijk) = θ0ij + θM1{k ∈ M} + θO1{k ∈ O} + θL1{k ∈ L} + θA1{k ∈ A} + θG1{k ∈ G}

θ0ij = θ0 + δi + ϵij

δi ∼ N
(
0, σ2

δ

)
ϵij ∼ N

(
0, σ2

ϵ

)
(5.4)

In expressions 5.3 and 5.4, M,O,L,A,G denote the sets of maxillary, occlusal, lingual,

anterior, and gauche (left) regions, respectively; e.g., M = { MaxRO, MaxRB, MaxAB, MaxLB,

MaxLO, MaxRL, MaxAL, MaxLL } and O = { MaxRO, ManRO, MaxLO, ManLO }.

Results

We initially considered using a Poisson distribution for the outcome of the count submodel.

However, upon comparing the results, we found that the negative binomial distribution is a

more suitable choice. The Akaike Information Criterion (AIC) for the zero-inflated negative

binomial model was 18,598.76, which was 69,183.57 lower than the AIC of the zero-inflated

Poisson model with the same fixed and random effects. Additionally, the Bayesian Information

Criterion (BIC) for the negative binomial model was 18,865.64, which was 69,116.85 lower than
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Table 5.1: Estimated fixed effects of count submodel for brushing duration of each dental
surface.

Parameter Log-Mean SE 95%CI p
β0 : Intercept 5.33 0.11 (5.12, 5.54) < .001
βL : Surface (Lingual) -0.78 0.22 (−1.21,−0.35) < .001
βO : Surface (Occlusal) -0.80 0.16 (−1.13,−0.48) < .001
βA : Side (Anterior) -0.01 0.09 (−0.19, 0.17) 0.892
βG : Side (Left) −3.29e − 03 0.08 (−0.15, 0.15) 0.966
βM : Jaw (Maxillary) 0.09 0.14 (−0.18, 0.37) 0.508

Table 5.2: Estimated fixed effects of zero-inflation submodel for brushing duration of each
dental surface.

Parameter Log-Odds SE 95% CI p
θ0 : (Intercept) -4.25 0.43 (−5.09,−3.41) < .001
θL : Surface (Lingual) 3.04 0.23 (2.59, 3.49) < .001
θO : Surface (Occlusal) 3.47 0.25 (2.98, 3.96) (2.59, 3.49)
θA : Side (Anterior) 0.17 0.19 (−0.20, 0.53) 0.363
θG : Side (Left) 0.13 0.14 (−0.16, 0.41) 0.381
θM : Jaw (Maxillary) 0.68 0.13 (0.42, 0.94) < .001

the BIC of the zero-inflated Poisson model with the same fixed and random effects. These

findings demonstrate that the negative binomial distribution is a better choice as it mitigates

the risk of overfitting.

The estimated parameters for the count and zero-inflated submodels are summarized in the

tables below .

Table 5.6: Estimated participant-level random effects of count sub-

model for brushing duration of each dental surface.

Participant # Parameter Estimate Std. Error Pr(> |z|) 2.5% 97.5%

1 α01 : (Intercept) 0.132 0.141 0.347 -0.143 0.408

2 α02 : (Intercept) 0.363 0.140 0.010 0.087 0.638

3 α03 : (Intercept) -0.008 0.152 0.958 -0.306 0.290

4 α04 : (Intercept) 0.506 0.167 0.003 0.178 0.834

5 α05 : (Intercept) -0.305 0.181 0.091 -0.660 0.049

6 α06 : (Intercept) 0.091 0.166 0.584 -0.234 0.416

Continued on next page
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Participant # Parameter Estimate Std. Error Pr(> |z|) 2.5% 97.5%

7 α07 : (Intercept) -0.225 0.206 0.275 -0.629 0.179

8 α08 : (Intercept) -0.273 0.162 0.092 -0.589 0.044

9 α09 : (Intercept) -0.473 0.177 0.007 -0.820 -0.127

10 α010 : (Intercept) -0.114 0.155 0.459 -0.417 0.188

11 α011 : ( Intercept) 0.496 0.185 0.007 0.134 0.858

12 α012 : ( Intercept) -0.267 0.158 0.091 -0.575 0.042

1 αL1 : SurfaceLingual 0.188 0.239 0.431 -0.280 0.657

2 αL2 : SurfaceLingual 0.498 0.236 0.034 0.037 0.960

3 αL3 : SurfaceLingual 0.401 0.240 0.095 -0.070 0.872

4 αL4 : SurfaceLingual -0.593 0.264 0.025 -1.110 -0.076

5 αL5 : SurfaceLingual -0.276 0.257 0.282 -0.779 0.227

6 αL̸ : SurfaceLingual -0.794 0.425 0.061 -1.627 0.038

7 αL7 : SurfaceLingual -0.951 0.869 0.274 -2.654 0.752

8 αL8 : SurfaceLingual 0.547 0.251 0.029 0.055 1.039

9 αL9 : SurfaceLingual 0.940 0.262 < 0.001 0.426 1.453

10 αL10 : SurfaceLingual 0.496 0.245 0.043 0.016 0.975

11 αL11 : SurfaceLingual -1.015 0.304 0.001 -1.610 -0.420

12 αL12 : SurfaceLingual 0.504 0.249 0.043 0.015 0.992

1 αO1 : SurfaceOcclusal 0.312 0.194 0.108 -0.069 0.693

2 αO2 : SurfaceOcclusal 0.091 0.225 0.686 -0.350 0.533

3 αO3 : SurfaceOcclusal -0.996 0.257 < 0.001 -1.499 -0.492

4 αO4 : SurfaceOcclusal -0.545 0.253 0.032 -1.042 -0.048

5 αO5 : SurfaceOcclusal -0.824 0.259 0.001 -1.332 -0.315

6 αO6 : SurfaceOcclusal 0.567 0.218 0.009 0.140 0.994

7 αO7 : SurfaceOcclusal 0.109 0.297 0.714 -0.474 0.692

8 αO8 : SurfaceOcclusal 0.390 0.214 0.068 -0.029 0.809

9 αO9 : SurfaceOcclusal -0.311 0.259 0.229 -0.819 0.196

Continued on next page
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Participant # Parameter Estimate Std. Error Pr(> |z|) 2.5% 97.5%

10 αO10 : SurfaceOcclusal 0.569 0.208 0.006 0.161 0.977

11 αO11 : SurfaceOcclusal 0.301 0.236 0.201 -0.161 0.764

12 αO12 : SurfaceOcclusal 0.266 0.209 0.204 -0.144 0.677

1 αM1 : JawMaxillary -0.148 0.164 0.365 -0.469 0.172

2 αM2 : JawMaxillary -0.046 0.164 0.781 -0.366 0.275

3 αM3 : JawMaxillary -0.084 0.168 0.615 -0.414 0.245

4 αM4 : JawMaxillary -0.340 0.193 0.079 -0.719 0.039

5 αM5 : JawMaxillary -0.476 0.193 0.014 -0.854 -0.097

6 αM6 : JawMaxillary 0.190 0.195 0.330 -0.192 0.573

7 αM7 : JawMaxillary 1.404 0.236 < 0.001 0.941 1.866

8 αM8 : JawMaxillary -0.033 0.177 0.850 -0.380 0.313

9 αM9 : JawMaxillary 0.001 0.198 0.996 -0.387 0.389

10 αM10 : JawMaxillary -0.097 0.172 0.571 -0.434 0.240

11 αM11 : JawMaxillary -0.264 0.212 0.212 -0.679 0.150

12 αM12 : JawMaxillary -0.107 0.177 0.544 -0.453 0.239

1 αA1 : SideAnterior 0.177 0.139 0.203 -0.095 0.448

2 αA2 : SideAnterior -0.031 0.130 0.813 -0.285 0.223

3 αA3 : SideAnterior -0.009 0.143 0.951 -0.289 0.271

4 αA4 : SideAnterior 0.020 0.162 0.901 -0.297 0.338

5 αA5 : SideAnterior 0.335 0.186 0.072 -0.030 0.699

6 αA6 : SideAnterior -0.426 0.271 0.116 -0.958 0.105

7 αA7 : SideAnterior -0.464 0.230 0.043 -0.914 -0.014

8 αA8 : SideAnterior 0.024 0.148 0.872 -0.265 0.313

9 αA9 : SideAnterior 0.088 0.168 0.600 -0.241 0.418

10 αA10 : SideAnterior 0.236 0.151 0.118 -0.060 0.533

11 αA11 : SideAnterior -0.116 0.184 0.529 -0.477 0.245

12 αA12 : SideAnterior 0.170 0.148 0.248 -0.119 0.460

Continued on next page
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Participant # Parameter Estimate Std. Error Pr(> |z|) 2.5% 97.5%

1 αG1 : SideLeft -0.009 0.112 0.934 -0.229 0.210

2 αG2 : SideLeft -0.204 0.120 0.090 -0.439 0.032

3 αG3 : SideLeft 0.086 0.125 0.489 -0.159 0.331

4 αG4 : SideLeft -0.034 0.149 0.817 -0.326 0.257

5 αG5 : SideLeft 0.293 0.158 0.065 -0.018 0.603

6 αG6 : SideLeft -0.074 0.154 0.631 -0.375 0.227

7 αG7 : SideLeft -0.313 0.200 0.118 -0.705 0.080

8 αG8 : SideLeft 0.091 0.122 0.458 -0.148 0.329

9 αG9 : SideLeft 0.290 0.134 0.030 0.028 0.552

10 αG10 : SideLeft -0.025 0.120 0.836 -0.261 0.211

11 αG11 : SideLeft -0.321 0.171 0.061 -0.657 0.015

Continued on next page
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Participant # Parameter Estimate Std. Error Pr(> |z|) 2.5% 97.5%

12 αG12 : SideLeft 0.249 0.137 0.068 -0.019 0.518

Brushing time categorized by different regions is shown in Figure 5.3. Participants did

not vary significantly in the brushing times spent on the maxillary and mandibular regions

or different sides (right, anterior, and left). However, participants differed in the times spent

brushing various teeth surfaces with buccal surfaces brushed significantly more than the lingual

and occlusal surfaces. As can be seen in Table 5.1, on average, buccal surfaces were brushed

2.18 times longer than the lingual surfaces (95% CI 1.42, 3.35; p ≤ 0.001) and 2.22 times longer

than the occlusal surfaces (95% CI 1.62, 3.10; p ≤ 0.001).

Figure 5.3: Group-level brushing times of different dental regions. Categorized by (A) jaw, (B)
side, and (C) surface. Buccal surfaces were brushed twice more than the lingual and occlusal
surfaces.

76



Table 5.3: Estimated participant-specific overdispersion parameters of count submodel for
brushing duration of each dental surface.

Parameter Coefficient SE 95% CI p
η1 : Participant 1 1.23 0.12 (1.00, 1.46) < .001
η2 : Participant 2 1.55 0.14 (1.29, 1.82) < .001
η3 : Participant 3 1.16 0.13 (0.91, 1.40) < .001
η4 : Participant 4 0.84 0.14 (0.58, 1.11) < .001
η5 : Participant 5 0.64 0.13 (0.38, 0.90) < .001
η6 : Participant 6 0.74 0.16 (0.43, 1.05) < .001
η7 : Participant 7 1.05 0.19 (0.68, 1.43) < .001
η8 : Participant 8 0.77 0.12 (0.54, 1.00) < .001
η9 : Participant 9 0.56 0.12 (0.31, 0.80) < .001
η10 : Participant 10 0.98 0.11 (0.75, 1.20) < .001
η11 : Participant 11 0.72 0.14 (0.44, 0.99) < .001
η12 : Participant 12 0.94 0.12 (0.70, 1.18) < .001

Table 5.4: Estimated standard deviations of random effects of count submodel for brushing
duration of each dental surface.

Parameter Coefficient
σα0 : SD (Intercept: Participant) 0.34
σγ : SD (Intercept: Participant:Session) 9.56e − 05
σL : SD (SurfaceLingual: Participant) 0.68
σO : SD (SurfaceOcclusal: Participant) 0.54
σM : SD (JawMaxillary: Participant) 0.47
σA : SD (SideAnterior: Participant) 0.26
σG : SD (SideLeft: Participant) 0.22

Table 5.5: Estimated standard deviations of random effects of zero-inflated submodel for brush-
ing duration of each dental surface.

Parameter Coefficient
σϵ : SD (Intercept: Session:Participant) 0.12
σδ : SD (Intercept: Participant) 1.20
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Table 5.7: Estimated participant-level random effects of zero-inflated submodel for brushing
duration of each dental surface

Participant # Parameter Estimate Std. Error Pr(> |z|) 2.5% 97.5%
1 δ1 : (Intercept) -1.467 0.449 0.001 -2.347 -0.587
2 δ2 : (Intercept) 0.430 0.396 0.278 -0.347 1.207
3 δ3 : (Intercept) -0.306 0.405 0.450 -1.101 0.488
4 δ4 : (Intercept) 0.541 0.396 0.172 -0.235 1.318
5 δ5 : (Intercept) 0.151 0.399 0.704 -0.631 0.933
6 δ6 : (Intercept) 1.162 0.397 0.003 0.385 1.939
7 δ7 : (Intercept) 2.496 0.414 < 0.001 1.684 3.308
8 δ8 : (Intercept) -1.389 0.445 0.002 -2.261 -0.516
9 δ9 : (Intercept) -0.091 0.402 0.821 -0.879 0.697
10 δ10 : Intercept) -1.765 0.471 < 0.001 -2.688 -0.842
11 δ11 : (Intercept) 0.796 0.396 0.044 0.021 1.572
12 δ12 : (Intercept) -0.399 0.407 0.327 -1.197 0.399

Between-individual variability in brushing duration

There was considerable between-individual variability in terms of brushing time devoted to

different regions (Figure 5.4). Coefficient of variation for all the regions brushed during a

session was greater than 20%. Some (e.g. participant 7) brushed their maxillary teeth much

more than their mandibular teeth (see Table 5.6; p ≤ 0.001). Others (e.g. participant 11), paid

less attention to their lingual surfaces and focused primarily on the buccal surfaces (see Table

5.6; p = 0.001).

Within-individual variability in brushing duration

Participants varied greatly in their brushing of different regions across their brushing sessions.

As exemplified by the brushing patterns of participant 2, the brushing duration for the lingual

surfaces across sessions varied from none to 60 seconds (Figure 5.5).

From the ratio of the estimated standard deviations for participant and session level random

effects on the intercept, σ̂γ

σ̂α0
= 9.56e−05

0.34 < 0.1% and σ̂ϵ

σ̂δ

= 0.12
1.20 = 10%, we can see that within-

participant variability (session-to-session) is much smaller than between-participant variability,

on the logmean scale.

We summarized coefficient of variation of all 16 dental regions of all 12 participants in Table

5.8 and illustrated in Fig 5.6.
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Figure 5.4: Between-individual variability in brushing duration by region. (A) by jaw and (B)
by tooth surface.

Table 5.8: Coefficient of variation of all 16 dental regions for all participants
Participant ManAB ManAL ManLB ManLL ManLO ManRB ManRL ManRO MaxAB MaxAL MaxLB MaxLL MaxLO MaxRB MaxRL MaxR0

1 1.072 0.328 0.399 0.503 0.443 0.291 0.735 0.355 0.465 0.575 0.377 0.714 0.583 0.384 1.001 0.518
2 0.468 0.437 0.482 0.456 1.436 0.880 0.622 2.894 0.383 0.770 0.370 1.795 3.162 0.449 0.611 2.500
3 0.275 0.562 0.242 0.500 2.111 0.300 0.346 2.539 0.254 0.579 0.302 0.583 1.917 0.441 0.261 1.807
4 0.337 0.554 0.284 0.663 2.037 0.391 0.845 1.250 0.409 1.457 0.493 2.110 2.742 0.310 3.162 0
5 0.686 1.153 0.669 1.104 1.240 0.813 1.026 0 0.326 1.224 0.891 0.994 1.476 0.995 1.091 0.835
6 1.158 2.108 0.830 0 0.610 0.399 0 1.302 0.495 3.162 0.907 0 0.639 0.718 3.162 0.376
7 2.250 0 0.721 0 0 1.192 3.162 0.688 0.397 0 0.214 0 0 0.249 0 0
8 0.981 0.473 0.567 0.403 0.568 0.552 0.580 0.699 0.616 0.554 0.394 0.573 1.639 0.667 0.645 0.912
9 0.839 0.860 0.400 0.382 1.673 0.635 0.414 1.369 0.336 1.753 0.600 0.636 2.279 0.544 0.496 1.417
10 0.544 0.394 0.474 0.263 0.680 0.473 0.266 0.622 0.204 0.593 0.300 1.203 0.508 0.663 0.745 0.543
11 0.373 2.482 0.460 1.656 0.506 0.524 1.629 1.203 0.278 2.061 0.518 0 2.182 0.519 0 1.181
12 0.610 0.286 0.609 0.470 0.751 0.710 0.671 0.979 0.370 1.093 0.330 1.758 0.911 0.466 1.7623 1.050
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Figure 5.5: Within-individual variability in brushing duration for dental surfaces. Participant
2’s brushing duration for the lingual surfaces varied greatly across sessions.

As it can be seen all the dental regions which are brushed at all, have a coefficient of variation

of more than 20%.

5.2.2 Duration of excessive brushing pressure on each dental surface

Figure 5.7 summarizes the episodes of excess brushing pressure by region. About 16.7% of the

participants exerted excessive brushing pressure of more than one second duration during each

brushing session.

As in Subection 5.2.1, we fit a zero-inflated negative binomial model; both the zero-inflation

and count submodels include fixed effects for tooth surface, side, and jaw, and random effects

on the intercept by participant and session. Extended models adding participant-level random

effects on tooth surface, side and jaw and participant-specific overdispersion parameters failed

to converge.
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Figure 5.6: Coefficient of variation of brushing duration of all regions brushed by all participants
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Figure 5.7: Episodes of excessive brushing pressure by region. Occlusal surfaces were most
frequently brushed with excessive pressure.

Modeling

Our model is described in Equation 5.5

Zijk ∼ Bernoulli (πijk)

Yijk ∼

 0, Zijk = 1

NB (λijk, κ) Zijk = 0

(5.5)

Hence:

λijk = E (Yijk | Zijk = 0)

Var (Yijk | Zijk = 0) = λijk

(
1 + λijk

κ

)

λijk is modeled as:
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log (λijk) = β0ij + βM1{k ∈ M} + βO1{k ∈ O} + βL1{k ∈ L} + βA1{k ∈ A} + βG1{k ∈ G}

β0ij = β0 + α0i + γij

γij ∼ N
(
0, σ2

γ

)
α0i ∼ N

(
0, σ2

α0

)
log(κ) = η

(5.6)

We modeled πijk as in Equation 5.7

logit (πijk) = θ0ij + θM1{k ∈ M} + θO1{k ∈ O} + θL1{k ∈ L} + θA1{k ∈ A} + θG1{k ∈ G}

θ0ij = θ0 + δi + ϵij

δi ∼ N
(
0, σ2

δ

)
ϵij ∼ N

(
0, σ2

ϵ

)
(5.7)

Results

Initially, we contemplated utilizing a Poisson distribution as the outcome for the count sub-

model. Nevertheless, upon conducting a thorough comparison, we determined that the negative

binomial distribution is more appropriate in this context. Our evaluation, based on the Akaike

Information Criterion (AIC), revealed that the zero-inflated negative binomial model achieved

an AIC of 1,252.2, representing a noteworthy 274.6 decrease compared to the AIC of the zero-

inflated Poisson model with identical fixed and random effects. Moreover, when considering the

Bayesian Information Criterion (BIC), the negative binomial model attained a BIC of 1,346.7,

which exhibited a significant reduction of 269.0 in comparison to the BIC of the zero-inflated

Poisson model with the same fixed and random effects. These results unequivocally demonstrate

the superiority of the negative binomial distribution as it effectively addresses the potential issue

of overfitting.
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Table 5.9: Estimated fixed effects of count submodel for excessive brushing pressure duration
on each dental surface.

Parameter Log-Mean SE 95% CI p
β0 : (Intercept) 2.12 0.30 (1.53, 2.71) < .001
βL : Surface (Lingual) 0.01 0.29 (−0.56, 0.58) 0.971
βO : Surface (Occlusal) 0.54 0.22 (0.10, 0.98) 0.015
βA : Side (Anterior) 0.04 0.32 (−0.58, 0.66) 0.889
βG : Side (Left) -0.04 0.20 (−0.44, 0.37) 0.862
βM : Jaw (Maxillary) -0.10 0.21 (−0.51, 0.30) 0.612

Table 5.10: Estimated fixed effects of zero-inflation submodel for excessive brushing pressure
duration on each dental surface.

Parameter Log-Odds SE 95%CI p
θ0 : Intercept) 4.87 0.93 (3.04, 6.69) < .001
θL : Surface (Lingual) 0.93 0.34 (0.27, 1.60) 0.006
θO : Surface (Occlusal) -1.01 0.29 (−1.59,−0.44) < .001
θA : Side (Anterior) -0.20 0.37 (−0.93, 0.52) 0.583
θG : Side (Left) -0.38 0.27 (−0.91, 0.14) 0.151
θM : Jaw (Maxillary) 0.59 0.24 (0.11, 1.07) 0.016

The estimated parameters for the count and zero-inflated submodels for excessive brushing

pressure duration are summarized in the tables in this subsection. Additionally, the estimated

value for overdispersion parameter η was 0.72 .

As it can be seen in Table 5.9, the occlusal surfaces were most frequently brushed with

excessive pressure (estimated log relative duration = 0.54; 95% CI 0.10, 0.98; p = 0.015).

5.2.3 Total active brushing duration of each brushing session

Modeling

As demonstrated in Equation 5.8, we fit a negative binomial regression model for the total

active duration of each brushing session (measured in counts of 25 Hz samples), with a log-link

Table 5.11: Estimated standard deviations of random effects of count submodel for excessive
brushing pressure duration on each dental surface.

Parameter Coefficient
σγ : SD (Intercept: Session:Participant ) 0.27
σα0 : SD (Intercept: Participant) 0.38
κ : Overdispersion parameter 2.06
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Table 5.12: Estimated standard deviations of random effects of zero-inflation submodel for
excessive brushing pressure duration on each dental surface.

Parameter Coefficient
σϵ : SD (Intercept: Session:Participant) 0.69
σδ : SD (Intercept: Participant) 2.39

Table 5.13: Estimated participant-level random effects of count submodel for excessive brushing
pressure duration on each dental surface.

Participant # Parameter Estimate Std. Error Pr(> |z|) 2.5% 97.5%
1 α01 : (Intercept) 0.289 0.232 0.213 -0.166 0.743
2 α02 : (Intercept) -0.002 0.380 0.996 -0.747 0.743
3 α03 : (Intercept) -0.002 0.380 0.996 -0.747 0.743
4 α04 : (Intercept) -0.002 0.380 0.996 -0.747 0.743
5 α05 : (Intercept) -0.158 0.302 0.600 -0.750 0.434
6 α06 : (Intercept) -0.599 0.349 0.086 -1.283 0.084
7 α07 : (Intercept) -0.002 0.380 0.996 -0.747 0.743
8 α08 : (Intercept) 0.206 0.346 0.552 -0.473 0.885
9 α09 : (Intercept) -0.002 0.380 0.996 -0.747 0.743
10 α010 : (Intercept) -0.080 0.254 0.753 -0.578 0.418
11 α011 : (Intercept) 0.277 0.254 0.276 -0.221 0.775
12 α012 : (Intercept) -0.022 0.324 0.947 -0.656 0.613

Table 5.14: Estimated participant-level random effects of zero-inflated submodel for excessive
brushing pressure duration on each dental surface.

Participant # Parameter Estimate Std. Error Pr(> |z|) 2.5% 97.5%
1 δ1 : (Intercept) -3.737 0.938 < 0.001 -5.576 -1.898
2 δ2 : (Intercept) 1.594 1.576 0.312 -1.494 4.682
3 δ3 : (Intercept) 1.594 1.576 0.312 -1.494 4.682
4 δ4 : (Intercept) 1.594 1.576 0.312 -1.494 4.682
5 δ5 : (Intercept) -1.269 1.002 0.205 -3.233 0.695
6 δ6 : (Intercept) -2.172 0.963 0.024 -4.060 -0.284
7 δ7 : (Intercept) 1.594 1.576 0.312 -1.494 4.682
8 δ8 : (Intercept) -0.329 1.089 0.763 -2.463 1.805
9 δ9 : (Intercept) 1.594 1.576 0.312 -1.494 4.682
10 δ10 : Intercept) -2.207 0.956 0.021 -4.082 -0.333
11 δ11 : Intercept) -2.842 0.944 0.003 -4.693 -0.992
12 δ12 : Intercept) -0.717 1.044 0.492 -2.762 1.328
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and random intercepts by participant ID. We also included a participant-specific overdispersion

parameters to account for participant-to-participant differences in residual variance.

Yij ∼ NB (λij , κi) (5.8)

Hence:

λij = E (Yij)

Var (Yij) = λij

(
1 + λij

κi

)
We modeled λij as follows:

log (λij) = β0i

β0i = β0 + α0i

α0i ∼ N
(
0, σ2

α0

)
log (κi) = ηi

Results

Figure 5.8 summarizes the active brushing duration for all participants. Most of the participants

(91.67%) brushed less than the prescribed two minutes in all sessions. The mean brushing

duration for a participant was 89.22 seconds.

Some participants (e.g. # 1 and 2) brushed for almost two minutes in most sessions, whereas

others (e.g. participant 5) brushed for less than a minute. Some participants (e.g., # 2, 4, and

7) brushed consistently for nearly the same duration each time; others (e.g., # 5, 9, and 12)

varied greatly (≥ 70 seconds) in their brushing duration.

Initially, we considered employing a Poisson distribution for the count submodel. However,

upon analysis, we discovered that the negative binomial distribution is a more suitable choice.

This determination was supported by the significant improvement observed in the Akaike In-

formation Criterion (AIC) and Bayesian Information Criterion (BIC) values. Specifically, the

AIC for our chosen model was 1,802.112, which was substantially lower by 8,098.558 compared
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Figure 5.8: Brushing duration for the 12 participants. Active brushing duration is calculated
by excluding pauses in brushing and the times transitioning the brush head to different regions.

Table 5.15: Estimated fixed effects of total active brushing in each brushing session
Parameter Log-Mean SE 95% CI p
β0 : (Intercept) 7.71 0.04 (7.63, 7.79) < .001

to the zero-inflated Poisson model with identical fixed and random effects. Similarly, the BIC

for our model yielded a value of 1,841.137, significantly reduced by 8,065.108 in comparison to

the zero-inflated Poisson model with the same fixed and random effects. These findings indicate

that our decision to opt for the negative binomial distribution was crucial to mitigate the risk

of overfitting.

The estimated parameters are summarized in the tables of this subsection.

To find out the between- and within-person variabilities in active brushing duration, we

have summarized the mean and standard deviations estimated from the model and calculated

empirically from the samples in Table 5.19.

As it can be seen in Table 5.19, the empirical values and the model estimates are close. By

calculating the standard deviation of the second column and the mean of the fourth column,

we report the between- and within- person variability in brushing duration to be 16.69 and

14.50 seconds, respectively. By dividing the calculated between- and within-person variability
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Table 5.16: Estimated participant-specific overdispersion parameter of total active brushing in
each brushing session.

Parameter Coefficient SE 95%CI p
η1 : Participant1 5.34 0.51 (4.34, 6.34) < .001
η2 : Participant2 3.95 0.49 (3.00, 4.91) < .001
η3 : Participant3 4.32 0.48 (3.37, 5.26) < .001
η4 : Participant4 3.78 0.47 (2.86, 4.71) < .001
η5 : Participant5 0.97 0.52 (−0.05, 1.99) 0.064
η6 : Participant6 2.97 0.47 (2.06, 3.89) < .001
η7 : Participant7 4.10 0.48 (3.17, 5.04) < .001
η8 : Participant8 3.19 0.47 (2.27, 4.10) < .001
η9 : Participant9 2.21 0.46 (1.30, 3.12) < .001
η10 : Participant10 5.24 0.51 (4.24, 6.23) < .001
η11 : Participant11 3.68 0.47 (2.76, 4.60) < .001
η12 : Participant12 2.86 0.46 (1.95, 3.77) < .001

Table 5.17: Estimated random effect standard deviation of total active brushing in each brushing
session.

Parameter Coefficient
σα0 : SD (Intercept: Participant) 0.12

Table 5.18: Estimated participant-level random effects of total active brushing per brushing
session.

Participant # Parameter Estimate Std. Error Pr(> |z|) 2.5% 97.5%
1 α01 : (Intercept) 0.172 0.048 < 0.001 0.078 0.266
2 α02 : (Intercept) 0.185 0.061 0.003 0.065 0.305
3 α03 : (Intercept) -0.021 0.052 0.684 -0.123 0.081
4 α04 : (Intercept) 0.045 0.059 0.438 -0.069 0.160
5 α05 : (Intercept) -0.145 0.154 0.346 -0.446 0.156
6 α06 : (Intercept) -0.085 0.069 0.222 -0.220 0.051
7 α07 : (Intercept) -0.028 0.054 0.604 -0.133 0.078
8 α08 : (Intercept) -0.064 0.065 0.322 -0.192 0.063
9 α09 : Intercept) -0.095 0.088 0.277 -0.267 0.076
10 α010 : (Intercept) 0.124 0.048 0.010 0.030 0.219
11 α011 : (Intercept) -0.029 0.058 0.617 -0.143 0.085
12 α012 : (Intercept) -0.071 0.071 0.318 -0.210 0.068
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Table 5.19: Participant-specific estimates of active brushing duration.
sample
mean
(seconds)

sample var
(seconds ∧ )

sample sd
(seconds)

lambda
(samples)

lambda
(seconds) kappa model var

(seconds 2)
model sd
(seconds)

1 107 58.2 7.63 2646 106 209 57.8 7.6
2 110 195 14 2680 107 52.2 224 15
3 87 103 10.1 2180 87.2 75.1 105 10.2
4 93.9 171 13.1 2330 93.2 44 201 14.2
5 46.7 477 21.8 1927 77.1 2.63 2263 47.6
6 79.3 292 17.1 2046 81.9 19.6 345 18.6
7 86.3 113 10.6 2166 86.6 60.6 127 11.3
8 81.9 287 16.9 2088 83.5 24.2 291 17.1
9 74.9 486 22 2025 81 9.15 720 26.8
10 101 59.9 7.74 2522 101 188 58.2 7.63
11 86.1 192 13.8 2163 86.5 39.6 192 13.9
12 80.5 368 19.2 2074 83 17.4 399 20

to the mean of the second column, we can calculate the coefficients of between- and within-

person variability to be 0.19 and 0.17 which is more than 5%. Therefore, there was substantial

between- and within- individual variability in brushing duration.

5.3 Discussion and Conclusion

In this chapter, we conducted an in-depth analysis of brushing behavior among a sample of

12 subjects, each of whom participated in 10 brushing sessions. Our primary objective was to

model various aspects of brushing behavior, including the duration of brushing on individual

dental surfaces, the total brushing duration, and the duration of excessive pressure applied to

each dental surface.

Previous studies on brushing behavior analysis were limited in scope, as separate investiga-

tions were conducted to address specific questions regarding brushing behavior. For example,

previous studies focused on determining the total duration of brushing or comparing the dura-

tion of brushing on specific dental regions within the mouth. These separate studies were neces-

sary because they did not incorporate a statistical model to comprehensively analyze brushing

behavior. Instead, the results were predominantly derived using non-parametric tests, such as

the Wilcoxon test, which does not make assumptions about the underlying data distribution.

However, relying on the Wilcoxon test for each brushing behavior question had several

drawbacks. Firstly, it required running separate tests for each question regardings brushing

behavior, such as comparing the brushing of lingual (inner) teeth surfaces to occlusal (flat) teeth
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surfaces. Moreover, since the Wilcoxon test does not assume a specific distribution, there was no

exploration of a relevant distribution to model brushing behavior. Furthermore, the Wilcoxon

test is not specifically designed for repeated measurement studies, such as brushing scenarios

involving multiple participants, each participating in multiple brushing sessions. Attempting

to compensate for this limitation by conducting studies with hundreds of participants, but with

only one brushing session per participant (e.g., as observed in [81]), would result in considerable

expenses and time consumption. In contrast, opting for a smaller group of participants with

multiple sessions not only renders the analysis more feasible but also enables the examination

of intra-subject brushing behavior, a crucial aspect that has been lacking in previous literature.

To overcome these limitations, we undertook a systematic modeling of brushing behavior in

a free-form brushing scenario, utilizing generalized mixed-effect linear regression models. Our

analysis unveiled that the distribution of brushing times on each dental surface demonstrated

zero-inflation, indicating the necessity of incorporating a zero-inflation submodel into our pro-

posed framework. To capture the outcomes, measured as counts of 25Hz samples, we employed

zero-inflated generalized linear mixed-effects regression models. The count submodels were

fitted with a log-link and a negative binomial outcome distribution, while the zero-inflation

submodels utilized a logistic link and a Bernoulli outcome distribution.

Our model offers several advantages, including its ability to handle multiple measurement

studies and incorporate random factors to analyze inter- and intra-subject variability in brush-

ing behavior. For instance, we incorporated random effects on the intercept by session nested

in participant, allowing us to account for differences in overall brushing duration between in-

dividuals and sessions. Furthermore, we introduced person-specific over-dispersion parameters

to account for variations in residual variance among participants. In the count submodel for

region-specific brushing duration, we also included participant-specific random effects for tooth

surface, mouth side, and jaw.

Moreover, in a novel contribution, we analyzed brushing behavior when excessive pressure

was applied using powered/electric toothbrushes. This aspect had not been explored in previous

studies, further enhancing the comprehensiveness of our analysis.

Our study revealed that brushing patterns with powered toothbrushes in the home setting
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varied greatly between individuals as well as within individuals. Most participants brushed

their teeth for less than the prescribed two minutes. Most spent less than 85 seconds per

brushing session, a finding consistent with other studies that indicate that patients often fail

to adhere to the recommended brushing time of two minutes [19]. Even individual participants

were inconsistent in the total duration of time they spent brushing over different days. The

times devoted to brushing different dental regions are quite unequal at the individual level with

certain regions receiving more attention than the others. Participants generally brushed the

buccal tooth surfaces twice as long as the occlusal and lingual surfaces; the lingual surfaces of

the maxillary molars were often neglected.

Our observation that participants tended to brush tooth surfaces unequally substantiates

other studies [19, 28, 66, 81]. Whereas some studies found that lingual surfaces are brushed

significantly less than both occlusal and buccal surfaces [19,66], we did not find any statistically

significant difference between the times spent brushing the occlusal and lingual surfaces (see

Table 5.1).

Also, participants varied in the epochs of excessive brushing pressure and the regions to

which they were applied. In general, the occlusal surfaces were more likely to be brushed

with excessive pressure. Only a subset (16.7%) of our participants exerted excessive brushing

pressures and these were mostly transient (∼ 1 second). This finding contrasts Janusz et al. [40]

who reported that 46.3% of their participants exerted excess brushing pressures for more than

four seconds within a two-minute brushing session.

Our technology-facilitated study has several strengths. Unlike previous observational stud-

ies with limited external validity, our naturalistic study is more representative of real-world

brushing behaviors and patterns. Study limitations include the fact that the study participants

were recruited as a convenience sample and involved a young well-educated and dentally-aware

group of college students. This may limit the generalizability of our findings to an older and

more socioeconomically diverse population.

Our study uncovers substantial variations in the application of powered toothbrushes among

users, highlighting a departure from recommended brushing practices. With our framework,

we are able to derive statistically significant insights about brushing behavior at both the
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population and individual levels, thereby paving the way for personalized brushing behavior

recommendations. The identification of inconsistent brushing patterns also creates an opportu-

nity for providing tailored feedback and behavioral nudges to individuals who neglect to brush

specific dental quadrants for a sufficient time or overlook certain dental regions. This personal-

ized approach can enhance brushing efficiency. In related work, the authors in [74,75] explored

the application of reinforcement learning to assess brushing behavior, specifically focusing on

the total duration of brushing sessions. However, further studies are warranted to incorporate

more specific brushing behavior recommendations tailored to individuals, addressing aspects

that are most important for their oral hygiene.
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Chapter 6

Conclusion and Future Research Directions

In this dissertation, we presented a method to detect the regions of the mouth that are be-

ing brushed during a brushing session and analysed brushing behaviors using motion sensors

(i.e. accelerometer, gyroscope, and magnetometer sensors). Previous research studies show

promising preliminary results; however, they were conducted under structured toothbrushing

assumptions performed in controlled laboratory settings (e.g. limited head and body move-

ment, predefined sequence of brushing) and not the free-form brushing observed in real-world

settings. To address the aforementioned issue, we collected a dataset of 187 brushing sessions,

including free-form brushing, and present, to the best of our knowledge, the first motion-sensor

dataset obtained during free-form brushing. The labeling of these brushing sessions is done

using concurrent video recordings as the ground truth. However, due to the rapid and fre-

quent transitions of the brush, labeling is susceptible to errors, which is known as a noisy label

scenario in machine learning. To address this, we introduced a relabeling algorithm aimed at

cleaning the dataset.

We conducted an extensive statistical analysis of brushing behavior, focusing on the dura-

tion of brushing on individual dental surfaces, total brushing duration, and excessive pressure

applied to each dental surface. Previous studies on brushing behavior were limited as they

relied on separate investigations and non-parametric tests like the Wilcoxon test [28, 81], lack-

ing a comprehensive statistical model. This approach had drawbacks, requiring separate tests

for each brushing behavior related question and neglecting the exploration of a suitable dis-

tribution for modeling brushing behavior. Additionally, the Wilcoxon test was unsuitable for
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repeated measurement studies like ours, involving multiple participants brushing for multiple

sessions. To address these limitations, we developed a systematic framework using generalized

mixed-effect linear regression models. Our analysis revealed zero-inflation in the distribution

of brushing times, necessitating the inclusion of a zero-inflation submodel. We employed zero-

inflated generalized linear mixed-effects regression models, with log-link and negative binomial

distribution for count submodels, and logistic link and Bernoulli distribution for zero-inflation

submodels. Our model offers several advantages, accommodating multiple measurement studies

and incorporating random factors to capture inter- and intra-subject variability in brushing be-

havior. We accounted for variations in overall brushing duration and residual variance through

participant-specific random effects. Additionally, we examined brushing behavior under exces-

sive pressure using powered/electric toothbrushes, a novel contribution to the field. Our findings

revealed that individuals tended to spend over twice as much time brushing their buccal teeth

surfaces (outer teeth surfaces) compared to the occlusal (flat teeth surfaces) (2.18 times longer,

95% CI 1.42, 3.35; p ≤ 0.001) and lingual surfaces (inner teeth surfaces) (2.22 times longer, 95%

CI 1.62, 3.10; p ≤ 0.001). The study highlighted substantial variations in brushing patterns

with powered toothbrushes in a home setting, both between individuals and within individuals.

Most participants fell short of the recommended two-minute brushing time, typically spend-

ing less than 85 seconds per session. These findings align with previous studies that indicate

patients often fail to adhere to the recommended brushing duration. Interestingly, even in-

dividual participants exhibited inconsistencies in the total duration of their brushing sessions

across different days. Moreover, there was a notable imbalance in the time allocated to brushing

different dental regions, with certain regions receiving more attention than others. Specifically,

participants dedicated twice as much time to brushing buccal surfaces compared to occlusal

and lingual surfaces, with the lingual surfaces of the maxillary molars often being neglected.

Additionally, the occlusal surfaces were more likely to be brushed with excessive pressure. The

findings of our study highlight significant variations in the application of powered toothbrushes

among users, deviating from recommended brushing practices. The observed inconsistencies in

brushing patterns emphasize the need for personalized feedback regarding individual brushing

habits.
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We thoroughly discussed the limitations associated with accurate position tracking of the

toothbrush due to the geometric dimensions of the mouth. Additionally, we conducted a com-

prehensive analysis and comparison of various orientation estimation algorithms. Consequently,

we concluded that relying solely on brush head orientation is not a reliable method for accu-

rately detecting brushing regions, mainly due to challenges such as the similarity of brush head

orientations in certain regions.

To overcome these challenges, we proposed a three-stage algorithm, consisting of pre-

processing, brush transition times detection, and time-series classification, to infer brushing

regions. Our algorithm effectively identifies the instances when the brush transitions between

dental regions and accurately classifies the segments between consecutive brush transition times.

In addition, we introduced CluMing, a novel method for change point detection based on time-

series clustering, which exhibited superior performance in our application.

Furthermore, we compared the results obtained from multiple time-series classification meth-

ods in machine learning, including feature engineering methods, LSTM, and Transformer mod-

els. We observed that free-style brushing poses more challenges compared to the dataset pre-

sented in [37], which was collected under structured brushing assumptions. Additionally, we

demonstrated that classifiers can achieve high classification accuracy using a random train-test

split (i.e., k-fold cross-validation). However, generalization to new toothbrush users (i.e., leave-

one-subject-out cross-validation) presents significant challenges due to variations in brushing

styles and other factors, such as head movement during brushing.

Our results signifies that generalization to specific manifolds of data (e.g. one-subject-out

cross-validation), is a more challenging problem in cases such as toothbrushing region prediction

which involves significant between- and with- subject variability. Considering the complexity

and the variations included in our problem, we think that a bigger dataset (our speculation is

at least 20 times bigger) is needed for the models to be able to generalize to the subjects outside

our datasets’ participants. In small data scenarios such as our case, we also hypothesize that

other avenues of machine learning which are suitable for out-of-distribution genralization, such

as transfer learning [79], can possibly be effective. This may need training models on other

datasets that involve IMU sensors for detection of other activities other than toothbrushing.
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Another potential avenue for future work involves applying continuous Hidden Markov Mod-

els (HMMs) to the brushing region detection problem. HMMs learn from the sequence of states

and their corresponding observations using the Baum-Welch algorithm [21] to be able to predict

the most probable sequence of states based on the observations recorded using the Viterbi algo-

rithm. Figures 6.1 and 6.2 present the transition matrix and transition graph for the sequence

of brushing regions in our dataset, respectively. To generate this graph, we used all the data

collected during the free-style brushing sessions and removed any transition probabilities below

a threshold of 0.1 to simplify the representation. In the context of HMMs for this problem, the

states correspond to brushing regions, and there are two sets of observations:

Figure 6.1: Transition matrix of brushing region sequences. Probabilities less than 0.1 are
removed for better representation.

1. Motion sensor signals during brushing of a single region. Each observation is associated

with only the corresponding brushing region.

2. Motion sensor signals at the time of a brush transition from one dental region to another.

Each observation is associated with two brushing regions: the region from which the brush
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Figure 6.2: Transition graph of brushing region sequences. Probabilities less than 0.1 are
removed for better representation.

is transitioning and the region to which it is transitioning.

In this dissertation, we mainly used the first set of observations to detect brushing regions.

However, estimating brushing regions based solely on the first set of observations may not be

effective due to challenges such as person-to-person and session-to-session variations, as well as

head movement, as mentioned in Section 3.3. To address these challenges, we hypothesize that

the second set of observations, which consider the relative changes in brush orientation/position,

can be useful in detecting brushing regions by identifying the type of brush movements, such as

brush flips (up-down or down-up rotations) and side-to-side transitions (left-to-right or right-

to-left transitions). To support this hypothesis, we extracted the Euler Angles changes of the

brush orientation during transitions from left-to-right and right-to-left, as shown in Figure 6.3.

As observed, the psi angle change for transitions from left to right is positive, while it is negative

for the reverse transition. We estimated the EA change by integrating the gyroscope values

for the motion sense samples during the transition period, which we refer to as the transition

span, as marked in Figure 6.4. We hypothesize that while the absolute value of the psi angle

may not be relevant as mentioned in Section 3.3, the relative change of psi can be useful in

estimating brushing regions. Considering the confusion matrix presented in Section 4.4 and the
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confusion between detecting the regions on the left or right side of the mouth, we hypothesize

that side-to-side transitions can aid in brushing region detection. For instance, the confusion in

estimating ManRO and ManLO can be resolved if the next brushing region is ManAL because

one region consists of a left-to-right transition and the other consists of a right-to-left transition.

However, there are some challenges in using HMMs for this problem, such as:

1. Accurately estimating the transition span is critical for the success of this algorithm.

Integrating gyroscope values outside the transition span can lead to incorrect estimation

of the EA change, which can in turn result in inaccurate estimation of the brushing regions

and a cascade of errors in estimating other brushing regions in the session.

2. Observations in HMMs are typically associated with a single state, whereas the second

set of observations in our problem includes two states (i.e., the region that the brush

transitions from and the one brush is transitioning to) and thus requires an extension of

HMMs to model the second set of observations discussed earlier. One potential approach

is to stack the first and second set of observations as the observations associated with the

states.

3. However, it should be noted that not all confusions can be resolved by considering side-

to-side transitions. For example, if the confusion is between ManRO and ManAL regions

and the subsequent region is ManLO, the side-to-side transition from both ManRO and

ManAL to ManLO is the same.

In this dissertation, we presented a novel approach to detect brushing regions using mo-

tion sensors and extract valuable brushing habit data. Building upon this foundation, future

studies can focus on determining the information that resonates most positively with users and

effectively motivates them to improve their brushing habits. By exploring the key elements of

brushing habit information that hold the greatest significance for brush users, we can pave the

way for personalized interventions that foster positive behavior change and promote optimal

oral hygiene practices.
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Figure 6.3: EAs change during the brush transitions. Left-to-right transitions and right-to-left
transitions indicate different ψ changes.

Figure 6.4: Transition Span for a transition of the brush from ManLL to MaxLB
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