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What You Submit is Who You Are: A Multi-Modal
Approach for Deanonymizing Scientific Publications

Mathias Payer, Ling Huang, Neil Zhenqiang Gong, Student Member, IEEE, Kevin Borgolte, Mario Frank

Abstract—The peer-review system of most academic confer-
ences relies on the anonymity of both the authors and the
reviewers of submissions. In particular with respect to the
authors, the anonymity requirement is heavily disputed and pros
and cons are discussed exclusively on a qualitative level.

In this paper, we contribute a quantitative argument to this dis-
cussion by showing that it is possible for a machine to reveal the
identity of authors of scientific publications with high accuracy.
We attack the anonymity of authors using statistical analysis of
multiple heterogeneous aspects of a paper, such as its citations, its
writing style, and its content. We apply several multi-label, multi-
class machine learning methods to model the patterns exhibited
in each feature category for individual authors and combine
them to a single ensemble classifier to deanonymize authors
with high accuracy. To the best of our knowledge, this is the
first approach that exploits multiple categories of discriminative
features and uses multiple, partially complementing classifiers in
a single, focused attack on the anonymity of the authors of an
academic publication.

We evaluate our author identification framework, deAnon,
based on a real-world data set of 3,894 papers. From these
papers, we target 1,405 productive authors that each have at
least 3 publications in our data set. Our approach returns a
ranking of probable authors for anonymous papers, an ordering
for guessing the authors of a paper. In our experiments, following
this ranking, the first guess corresponds to one of the authors of
a paper in 39.7% of the cases, and at least one of the authors is
among the top 10 guesses in 65.6% of all cases. Thus, deAnon
significantly outperforms current state-of-the-art techniques for
automatic deanonymization.

I. INTRODUCTION

In academia, the publication process and the merit of a
publication is often based on rigorous peer review. In computer
science, many conferences rely on a double-blind review
process, where both the authors of a submission and the
reviewers of a paper stay anonymous. The motivation for hiding
the author’s identity during the review process is to reduce any
implicit or explicit bias a reviewer might have against an author
or an author’s affiliation. The motivation to hide the reviewer’s
identity is to provide proper feedback, to support him or her
in asking crucial but potentially unpleasant questions, and for
him or her to be protected from any attacks by authors who
feel disadvantaged or wrongfully rejected.

In order to ensure anonymity, the authors of a paper are
required to reformat their paper prior to submission by (i)
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removing the names of authors and their affiliations from the
title section, (ii) describing all previous work in the third
person, and (iii) blinding particular references if anonymity
is not guaranteed otherwise. Generally, this process is very
cumbersome for the authors and often done after the paper is
already near completion. Sometimes, authors forget to conceal
some revealing references or forget to rephrase parts of the
paper that reveal information on some of their identities. But
even if authors remove their names, describe their work in
the third person, and blind their references properly, it is a
common belief that a knowledgeable reviewer can correctly
identify some of the authors of a paper with high accuracy.
Realistically, the reviewers work in related fields and therefore
they are likely to be aware of the current focus and current
projects of their peers (e.g., through discussions at conferences,
grant proposals, or resubmissions of rejected papers). However,
this belief requires experimental validation.

Several prior studies [5], [15] showed some success on au-
thor identification for scientific papers using only the citations
made in the paper. However, their success was mostly achieved
in constrained space, e.g., identifying authors for papers in
specific domains (e.g., Physics [15] or Machine Learning [5]),
or for papers sharing common (self-)citations [5]. Citations
are just one source of information and, to make a strong
quantitative argument about author anonymity, one should take
into account all the information that is available to reviewers.

We overcome these limitations by incorporating additional
heterogeneous information that is available in scientific papers.
This turns out to be a challenging task. Although additional
features derived from writing style and contents of the paper are
available in anonymous submissions, it is difficult to combine
them with citation features to improve accuracy significantly
over citation-based author identification. Naturally, features
derived from different types of information differ from each
other, show different sparsity, and are at different scale. We
show in our evaluation that simply concatenating all features
regresses the overall results and reduces accuracy.

To make things worse, a scientific paper often has multiple
authors, each of them adding their own footprint to the paper,
which makes the problem much more difficult to model as
a whole. While the range of topics in an academic setting
is generally narrow, different authors may write papers on
the same topic, and the same author may change research
topics over time, which, in turn, makes it a challenging task
to leverage content information to identify authors.

To address these challenges, we introduce deAnon, a frame-
work for breaking the anonymity of authors of anonymized
academic papers. We target authors that published at least 3
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papers in the past, and these papers are then used to train multi-
label classifiers to guide the attack. Our approach then attacks
the anonymity of the established authors.

The deAnon framework uses a large historical corpus of
papers in the Portable Document Format (PDF), the most
common distribution format for academic publications, as the
input to extract any relevant information, including but not
limited to title, authors, text, citations, and other information.
This textual data is then leveraged to extract specific features
based on writing style, topic, and citations for each author. We
adapt several multi-label, multi-class machine learning methods
to model the patterns exhibited in each feature category, and
propose a principled way to combine them into an ensemble
classifier to aggregate complementary information. This final
classifier is then used to break the anonymity of the respective
author for new, anonymized submissions.

The main contributions of our paper are the following:
1) We provide a systematic, large-scale study on breaking

the authors’ anonymity of submissions based on 3,894
papers from 17 different computer science conferences1.
Our results show that a machine can reveal an author
of a paper on the first guess with 39.7% accuracy and
at least one author is among the first 10 guesses with
65.6% accuracy. Our results confirm the anecdotal belief
that it is possible to guess authors with high accuracy
given prior knowledge of publications of these authors.

2) We design and implement deAnon, the first multi-modal
attack framework that learns per-author ensemble clas-
sifiers based on writing style, topics, and citations.
Furthermore, we solve the problem of combining these
heterogeneous sources of information about an author in
one unified framework.

3) We discuss high-profile features and common pitfalls that
result in an immediate loss of anonymity for authors in
a scientific context (e.g., tools that embed user names
and author names in PDF files). We present possible
remedies that improve anonymity by leveraging our
attack framework in a feedback-guided process.

The remainder of the paper is organized as follows: first, in
Section II, we discuss the design of our framework, then, in
Section III, we discuss data and feature extraction. Following,
in Section IV, we provide details on the prediction engine
and, in Section V, we evaluate deAnon based on a real-world
data set of academic papers from various top-tier conferences.
Future work based on deAnon and pitfalls one has to take care
of when authoring a paper are discussed in Section VII. In
Section VIII, we compare deAnon to related work, and, finally,
we conclude in Section IX.

II. DEANON DESIGN

Our approach aims to simulate a realistic peer-review setting.
We assume that an attacker knows and possesses or has
access to a large corpus of published papers in the related
fields and knows the names of the authors (e.g., by crawling

1Anonymized submissions are not openly available. To remedy this
problem we split the data corpus into a train and test data set (similar to
related work), removing the names and affiliations of papers in test data.

PDF JSON

DBLP Citation features

Topic features

Writing features

Data & feature extraction Prediction
Engine

Classifier

(a) Training the classifiers

PDF Data & feature extraction (as above)
Author 
Ranking

Classifier
(as above)

(b) deAnonymizing 'test' papers

1
2 3

Fig. 1: Data processing pipeline for (a) training papers and (b)
test papers: (1) parsing papers, (2) cleaning title section and
references, and (3) extracting features.

the conference websites or digital libraries and downloading
large sets of publications). The attacker extracts all kinds of
information from the paper corpus to build models guiding
the attack. Given an anonymous paper, the attacker extracts
information from the paper, feeds it to the model, and gets
the most likely list of candidate authors (ranked by some
criterion). Using the ranked candidate list, he/she can then
identify the authors of the paper (possibly by incorporating
other information that is not part of the model). In our setting,
the attacker is only interested in deanonymizing already known
authors, i.e., those who have already published a number of
papers. Accordingly, we define the paper deanonymization
problem as follows:

Paper Deanonymization Problem. Given a large corpus of
historical papers and their authors and given an anonymous
paper, correctly identify one or more authors of the paper from
the set of all authors in the corpus.

A. Approach Overview

Figure 1 illustrates the complete deAnon pipeline. At a high
level, deAnon deanonymizes submitted papers by comparison
with older papers using machine learning techniques. The input
to the deAnon framework is a data set of publicly available
papers published in the past years at different conferences (in
the PDF format). The query data is a set of anonymized papers.
Our parser recovers structured text from the PDF automatically,
which is then grouped into title, a list of authors, abstract,
introduction, related work, conclusion, a list of citations, and
remaining sections. Our framework then transforms the struc-
tured data into vectors in the feature space and trains classifiers
that capture the publishing patterns of different authors.

On completion of training the classifier, the framework can
deanonymize anonymized papers in the PDF format. Given an
anonymous paper, the deAnon classifier outputs a prediction
score for each candidate author that indicates how likely this
candidate is (one of) the true author(s) of the paper. These
prediction scores are then used to rank the candidates to make
a sequence of educated guesses, from most likely to least
likely true authors of the paper. When making an ultimate
guess about authorship, the attacker may incorporate additional
characteristics or information that is not available to our
automatic method. If an author appears near the top of the
resulting list of ranked candidates, the author is considered
especially identifiable.
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B. Input Data

A large corpus of training data is crucial for deAnon to
succeed. For each identifiable author we need papers that were
written by her or him. deAnon cannot identify authors without
prior publications in our training data set because it cannot
learn models for these authors.

In academia, the camera-ready version of most papers is
published and publicly available from the author’s or institute’s
website. In addition, most venues release published papers
in digital form. We use this data to train the classifiers.
Experienced authors, e.g., professors, have published multiple
papers as part of their own doctoral studies, during their tenure
process, or when advising their students. We observe that a
large portion of papers are authored or co-authored by at least
one experienced author. Generally, the data set should be large
enough to have prior publications for the experienced authors
of the fields.

III. DATA AND FEATURE EXTRACTION

In this section, we describe the design choices made to
extract data from scientific papers and present in detail how
we derive three categories of features from the extracted data.

A. Data Extraction

Some conferences and authors release papers in a struc-
tured format, e.g., HTML. Unfortunately, there is no unified
structured format for which more than a couple of papers
are available and it is practically infeasible to implement
a converter for each format and conference. For example,
USENIX Security published many papers in structured file
formats, but the format varies from year to year.

In contrast, papers are almost always available in PDF
format. However, PDFs are hard to analyze because the format
focuses on the layout of the paper’s pages rather than its text
flow2. Our parser recovers the missing structural information
using layout analysis and identifies the heading section, which
includes title and list of authors (for training papers), the
citations, and individual text sections like abstract, introduction,
related work, conclusions, and remaining text.

As it turns out, it is very hard to extract citations from a
corpus of PDF files. The main reason is that in order to be
useful for author prediction, a citation must be matched with
an author in the database of all cited authors of the data set and
with papers of the database, if it exists there. This matching step
is hindered by different citation formats, abbreviated names,
different ordering of first name and last name. Therefore, our
parser matches the authors, title, and parsed citations of each
publication against the publicly available DBLP [20] data to
recover a clean version of the meta-information.

B. Feature Extraction

Table I gives an overview of the different features used in our
classification models. Using structured data, we extract features

2The PDF format does not define a document structure but only focuses
on the placement of characters. PDF supports embedded images and some
publications are only available as scanned versions, relying on an OCR step.

Category Description Count
Writing style

Length number of words/characters 2
Vocabulary
richness

Yule’s K and frequency of hapax legom-
ena, dis legomena, etc.

11

Word shape frequency of words with a mix of upper
and lower case letters

5

Word length frequency of words that have 1–20 char-
acters

20

Letters frequency of a to z, ignoring case 26
Digits frequency of 0 to 9 10
Punctuation frequency of .?!,;:()"-’ 11
Special char-
acters

frequency of other special characters
‘˜@#$%ˆ&*_+=[]{}\|/<>

21

Function
words

frequency of words like ‘the’, ‘of’, and
‘then’

293

Content
Bag of words concatenating text from paper title, ab-

stract, and conclusion sections, remov-
ing stop words, doing word stemming
and selecting word stems that have a
frequency of at least 20 as features.

2,374

Citation
References each paper is treated as a binary feature. 7,954

TABLE I: Features used for classification. In total, we have
10,727 heterogeneous features.

that can capture the characteristics of the individual authors
to train machine learning classifiers. deAnon uses features
from three different categories of information available in the
structured data: the writing style of the paper, the topic of the
paper, and the citations made in the paper.

1) Writing Style Features: The writing style of an author
describes the manner in which an author encodes information
for the audience. Identifying the author of a text based on the
writing style has an established history [24], [25], [1], [27].

We extract writing style features for each paper from its text,
excluding its references. Following the work by Narayanan
et al. [27], the extracted writing style features reflect the
distributions of characters and words such as the frequency
of the letters and the frequency of function words.

2) Topic Features: Unlike blog authors who may cover
substantially different topics from post to post, scientific
researchers generally focus on a core research area in which
they publish a series of papers. Thus, it is reasonable to assume
that the central topics of a paper correlate with the core areas
of a researcher. Therefore, we assume that the topic of a paper
is informative for identifying its authors.

There are several ways to capture topic features of the papers.
A straightforward way is topic modeling on the corpus of
plaintext extracted from the paper [4], [30]. However, due to
the rich structure of research papers, some sections of a paper,
i.e., title, abstract, and conclusion, may have more information
to indicate the topic of a paper than the other sections (e.g.,
related work or evaluation). For any well-written paper, we
believe that its text in title, abstract, and conclusion sections
was carefully drafted by the authors to capture the main ideas
and contributions of the paper in the best possible way, thus
the text in those sections approximates the main topic of the
paper well. Therefore, instead of performing topic modeling,
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we leverage a bag-of-words model to extract textual features
from the title, abstract, and conclusion sections.

Moreover, we build a corpus out of text from title, ab-
stract, and conclusion sections from all papers, and finally,
leverage the MATLAB Natural Language Processing tool
(MatlabNLP [14]) to extract the bag-of-words features. During
extraction, we perform stop-word removal and word stemming.
Following the extraction, we normalize the features by applying
the standard Term Frequency-Inverse Document Frequency
(TF-IDF [28]) method.

Although we use topic features, we do not expect them to
provide reliable and accurate predictions alone, particularly
due to the following reasons: (i) different authors write papers
on the same topic and compete with each other, i.e., two
papers on a similar topic can be from distinct sets of authors;
(ii) authors might change their topic over time, and write
papers on topics that have little correlation to each other; (iii)
highly-productive authors, such as professors advising large
groups, publish papers on a diverse range of topics, and even
in different areas. Therefore, we imagine topic features to be
complementary to other more fundamental features. Combining
them together however, we can achieve better results than by
leveraging only individual features.

3) Citation Network Features: Scientific publications use
citations to refer a reader to related or similar previous work,
generally because the work to be presented builds upon this
earlier work or is compared to this work. A popular belief
is that the list of references provides hints on the authors of
a paper. Two main assumptions support this belief. First, it
is assumed that authors tend to cite their own papers. One
reason for this might be that authors have a better overview
over their own prior work than over the entire literature. Clearly,
another reason might be that citing a paper increases the paper’s
impact which is in the interest of the author. Second, it is often
assumed that authors use similar citations for many of their
papers. Since a thorough literature review for a given topic is
time intensive, authors might carry out this review only for
their first paper on a new topic and then later re-use their
findings for other papers on this topic. Consequently, a large
fraction of citations may be shared across papers of the same
author and the same set of papers that have not been cited in
earlier papers might have been missed in newer papers as well.

An important consideration for the citation network feature
is the informational content of each citation. If a paper is cited
by many different authors in different papers, i.e., if it is a
high-impact paper, then the informative value of this citation
is not as high as if the paper is of low-impact. Popular and high-
impact papers are well known by the academic community and
cited often. Rare papers, on the other hand, are only known
by few people and, in turn, leak more information about the
specific authors or their affiliations.

In earlier work [5], [15], citations have been used as the only
feature to deanonymize authors of scientific papers and have
been found to be highly discriminative, confirming prior beliefs
of researchers who participate in the peer-review process.
Therefore, we include the citations of a paper as one of the
features in our classification framework.

IV. PREDICTION ENGINE

In this section we describe our prediction engine that takes
the extracted features of a submitted paper as an input and
outputs the prediction for the authors of this paper. We begin
by explaining the task from a general machine learning point
of view, and follow-up by describing the various parts that our
approach leverages. Some of these individual classifiers are off-
the-shelf methods; some are tailored to the author prediction
problem. One of the biggest challenges that we face is to
combine these multiple classifiers to achieve a significantly
better prediction accuracy than any individual one and prior
work.

A. General Machine Learning Setting

We model the author prediction problem as a multi-label
classification problem, i.e., a paper can have more than
one labels (authors). Suppose we have m authors, and we
denote them as A = {a1, a2, · · · , am}. Moreover, we denote a
paper, its feature vector, and its labels as pi, pi ∈ χ, and
ai ∈ {0, 1}m, respectively, where χ is the feature space
and aij = 1 (j ∈ {1, 2, · · · ,m}) means that the author aj
coauthored pi. In the training phase, a set of papers whose
features are p

(tr)
i and labels are a(tr)

i are given to train a model,
where i = 1, 2, · · · , n(tr). In the test phase, we are given a
set of unlabeled testing papers whose features are p

(te)
i ∈ χ,

where i = 1, 2, · · · , n(te). In contrast to conventional settings
where an estimated binary author vector is outputted, our
model produces a score vector si for each test paper p(te)

i ,
where a score entry sij corresponds to the likelihood that p(te)

i

is co-authored by aj . After predicting all n(te) test papers,
we combine all prediction scores to obtain a score matrix
S ∈ Rn(te)×m.

Figure 2 illustrates the prediction engine in detail. In the
following section, we describe the different classifiers that
operate on the introduced features and handle this multi-label
problem. Our prediction engine then combines the output
of these individual predictors into a single prediction using
ensemble learning.

B. Citation Classifiers

In Section III-B3, we argue that the references made in
a paper are a valuable source for predicting the authors. In
this section, we investigate different methods to leverage this
information on citations.

Citation features

Topic features

Writing features

CoSim

ML-kNN

SVM

1

Ensemble
2

Cit.-Rank

Fig. 2: Workflow of the prediction engine: (1) classifier training,
(2) combining the classifiers using the ensemble method.
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1) Top-cited Author: The simplest guessing strategy is to
select the authors that are cited the most often in the paper.
While this method has been proven successful in previous work
[5], [15], it bears the drawback that it outputs only a small set
of candidate authors that are randomly ordered and it provides
no estimate on other potential authors. In our experiments, we
refer to this predictor as top-cited author.

2) Author Citation Rank: To overcome the limitations of
the top-cited author predictor, we introduce a predictor that
augments each candidate author with a citation score. This
citation score is the number of citations of the author’s work,
i.e., the count on how often the respective author is cited in the
paper. In this way, the predictor provides a list for the second
and third most likely author and so on [15]. Yet, a drawback
remains: authors who are not cited at all will not be assigned
a score by author citation rank.

3) Weighted Cosine Similarity Ranking: In order to provide
a prediction score for candidate authors that are not cited at all
in the paper, we adopt a method proposed by Bradley et al. [5].
Their method establishes a neighborhood relation between all
papers in the training set and all papers in the test set. With m
candidate authors, the feature vector of a paper pi is pi ∈ Nm,
which indicates for each author how often he or she has been
cited in pi. For two papers whose features are pi,pi′ ∈ Nm,
the method computes the cosine similarity to measure how
close these papers are: S(pi,pi′) = pi · pi′ (‖pi‖‖pi′‖)−1.

For each test paper p(te)
i , the n(tr) scores S(p(te)

i ,p
(tr)
i′ ), i′ ∈

{1, 2, · · · , n(tr)} provide a neighborhood ranking of all training
papers. We define the ranking index as t ∈ {1, 2, · · · , n(tr)}.
Authors of papers that are ranked high (i.e., those that are
close) receive a higher score than those with a low ranking.
There are several ways to aggregate scores for each candidate
author aj ∈ A over all the training papers. Bradley et al. [5]
suggest to aggregate the ranking scores using exponentially de-
caying weights. We generalize this weighting scheme idea and
explore several other weight functions. The general aggregation
formula is:

sij =
n(tr)∑
t=1

δ(a
(tr)
tj = 1) · w(t) , (1)

where the switch function δ(x) returns 1 if the predicate x
is true and 0 otherwise. The method of Bradley et al. [5]3

is modeled with a decay base of 9% per rank position, i.e.,
w(t) = 1.09−t.

We investigate the following weight functions. We explore
linearly decaying weights with w(t) = n(tr) − t, as well as
hardcore weights with w(t) = 1 − δ(t > τ). For hardcore
weights and τ = 1, this method boils down to assigning all
weight to the authors of the nearest paper in citation space.
More generally, for τ = k, the method assigns equal weight
to all authors of the k nearest neighbors. Finally, we improve
the exponential weighting scheme w(t) = d−t by selecting the
optimal decay base d through cross-validation on the training
data. We select d∗, such that it maximizes the success rate on
randomly hold-out training papers and then use w(t) = (d∗)−t

3 Equation 1 was multiplied by 500,000 for Bradley et al. [5]. We omit
this constant factor because it does not affect the order of guessing authors.
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Fig. 3: a) Weighting schemes b) Cross-validation search for
optimal weighting scheme on training data.

on the entire training set. We refer to this method as learned
weights.

All weighting schemes are graphically illustrated in Fig-
ure 3 (a). The x-axis indicates the paper ranking according
to cosine similarity with the respective test paper. The y-axis
indicates the score that will be assigned to all authors of the
training paper at the respective rank. Figure 3 (b) depicts the
search result for cross-validation of the exponential decay base
d. We see that weighting those authors higher who have more
distant papers in citation space (that is d < 1) leads to a 0%
success chance. For d>1, authors of closer papers are assigned
higher weights, which immediately improves the results. The
accuracy continues to increase until, for d > 1.18, it slowly
and monotonically decreases, suggesting that it pays off to not
completely ignore authors of papers that are more distant than
the nearest neighbor.

C. Generic Classifiers

In this section we explain three generic classifiers, SVM,
ML-kNN, and ranking by cosine similarity, that are feature-
agnostic, i.e., they work independently from the particular fea-
tures extracted from the data. We choose to use them because
they are capable to handle high dimensional sparse data, and
are widely used in multi-label classification problems [22].

1) Support Vector Machines: Support Vector Machines
(SVM) are popular binary classifiers [10] and often achieve the
best prediction results for tasks with high dimensional sparse
data [19], [31]. It has also been shown [22] that SVM-based
variants perform among the best multi-label classifiers in text-
mining related settings.

We use linear SVM, which has been shown to be efficient for
training large-scale problems and to exhibit similar prediction
accuracy on high-dimensional sparse data as the more complex
and time-consuming kernel SVM [19], [13]. We use the known
one-vs-all approach to transfer our multi-label classification
problem into multiple binary SVM classification problems [32].
For each candidate author, the one-vs-all approach trains a
classifier that distinguishes the author’s papers from all other
papers. The scores of the set of all such binary classifiers
are then combined to provide a score vector for the multi-class
problem. In the following, we describe how each of these steps
works in detail. We use the LIBSVM implementation [9] to
train the involved support-vector machines.
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Using the training data set, where each paper may have
multiple authors, we create m classifiers, one for each author
aj ∈ A. For the classifier of aj , we label the papers with
binary labels {+1,−1}. In this data set, the positive class
includes all the training papers that aj has co-authored, and
the negative class includes all the other papers in the training
set. We then train a SVM classifier cj on the training examples
and predict on the testing examples. When predicting whether
a test paper pi has aj as an author, instead of just outputting
a binary prediction, we output the SVM score sij . This score
can be interpreted as the probability that the classifier of aj
predicts that paper pi belongs to class +1. In total, we obtain
m scores from the m classifiers for each test paper, each of
which indicates how likely the given paper is authored by the
respective candidate author.

2) ML-kNN: ML-kNN is a classification method that has
a proven track record regarding classification performance on
multi-label problems [22], [33]. ML-kNN was first proposed
by Zhang et al. [34], where it was tested on three naı̈ve
classification problems.

The ML-kNN classifier works as follows: For each test
paper pi, it requires the k most similar papers N(i) in the
training set as an input. For all three kinds of features, we use
cosine similarity as the similarity metric and compute N(i)
for each test paper. The classifier then computes a membership
count vector mi ∈ Nm, where mij =

∑
i′∈N(i) δ(a

(tr)
i′j = 1).

Intuitively, the element mij of this vector indicates how many
papers in N(i) are co-authored by aj . Treating these counts
as a feature, we compute the scores:

sij = P
(
aij=1

∣∣mij

)
(2)

3) Ranking by Average Cosine Similarity: Ranking by
average cosine similarity (CosSim) slightly differs from the
previous weighted ranking methods based on citations. It is
also based on cosine similarity but can be applied generically
to the other features and is not specific to citations. This method
has been shown to perform surprisingly well even when only
a small amount of training data is available [27].

Suppose we have m authors in the training data set. For
each test paper, we construct a characteristic vector whose
length is m, each entry of which corresponds to an author. The
characteristics vector is constructed as follows: First, for each
candidate author aj , we find all the training papers that are co-
authored by aj . Second, we compute the cosine similarity in
a generic feature space for all pairs of the test paper and such
training papers. This feature space could either be spanned
by style features, by topic features, or by citations. Third, the
score of author aj is the average of these cosine similarities.
The higher this score is, the closer in feature space are the
papers of this author to the target paper.

D. Combining Multiple Modalities

Given a set of heterogeneous features from multiple sources,
including writing style, topics, and citations of the paper, there
are a variety of ways to combine them together to learn
classifiers and make predictions. A naive way is to simply

concatenate all the different feature sets together into a single
feature set (e.g., concatenating all rows of different feature sets
together). However, we do not expect this approach to achieve
the best results, due to the heterogeneous nature, sparsity,
and scale of different features. This is also evident by our
experimental results in Section V.

Instead, we use ensemble methods to gracefully combine
multiple feature sets. Ensemble methods are machine learning
techniques that strategically combine multiple (diverse) models
to solve a particular computational intelligence problem [29].
Ensemble learning is powerful in that it can fuse together
heterogeneous data from multiple sources, and/or use multiple
models to obtain better performance than any of the constituent
models could, especially when there is a significant diversity
among data and models [7].

In our setting, we design three classifiers: CosSim, ML-
kNN, and SVM for each of the three feature sets: writing
style features, topic features, and citation features plus the best
citation-specific classifier. As a result, we have 10 classifiers
that are naturally diverse (due to both the diversity among
features and models). We use a stacking ensemble approach
to combine the individual classifiers together [12]. In this
procedure, given c base classifiers fi(x)′s (e.g., CosSim on
citation features, SVM on topic features, etc.), we construct a
combined classifier that is a weighted combination of the base
classifiers fi(x)′s:

fM (x) =

c∑
i=1

wi fi(x) (3)

where wi > 0 is the weight of hypothesis fi, and wi > wj

means fi has more impact to the final prediction than fj .
To train this two-level ensemble classifier, we further divide

the training part of the dataset into two equal parts. The first
part is used to train individual base classifiers as described
above, and the second part is used to learn the weights wi’s for
combining these base classifiers. We select the wi’s that achieve
the best prediction accuracy on the second part of the training
data. We use a derivative-free pattern search algorithm [16]
to find the optimal wi’s on the training data. This algorithm
requires no knowledge of the objective function gradient. It
samples points in the domain, and uses the information it
has obtained to decide where to search next. This method
has been applied to various cases for solving large industrial
problems [8], [35].

V. EVALUATION

In this section, we present and discuss our experimental
findings. We first explain the methodology used to investigate
our framework, describe the data used to evaluate our approach,
and then analyze the results under different experimental tasks.

A. Methodology and Evaluation Metric

We simulate a realistic peer-review setting to analyze the
success rate of an adversary in guessing the authors of an
anonymous paper. In this setting, we use a large corpus of
papers from conference proceedings and a snapshot of the
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DBLP data, but no other (e.g., online) information, to build
authorship prediction models.

For an anonymous paper, a prediction model outputs a
prediction score for each candidate indicating how likely this
candidate is (one of) the true author(s) of the paper. Using this
score one can rank all the candidates for a given paper. Based
on this ranking, the adversary can then narrow down the list of
possible candidates to assist in manual guessing. In practice, a
domain expert might achieve a high success rate by discarding
some of the higher ranked candidates due to auxiliary side
information. However, it is impossible to simulate this and we
only simulate an adversary that blindly follows the ranking
derived from our prediction model to make a sequence of
guesses, where the candidate author with the highest score
constitutes the first guess and the candidate with the second
highest score provides the second guess and so on. We compute
the probabilities that the attacker hits one of the true authors
for a given number of guesses, i.e., the probabilities that the
correct author is among the first K predictions.

B. Dataset
Our parser extracts data from PDF versions of 8,739 papers

from 17 conferences in different domains as an input data
corpus. Table II lists the conferences and year that are used in
this analysis. We select the span of years where digital (non-
scanned) versions of the conference proceedings are available.
Out of 8,739 papers, our PDF parser recovers some of the text
and citations of 6,873 papers (79%). In the parsing process we
drop unparsable papers (papers are dropped due to encoding
problems, missing PDF features in our parser, or problems
matching the format of the paper to our extraction format). For
completeness, any unparsable papers may be added manually.

For each candidate author we require at least three prior
publications to extract precise features. We drop papers where
no author has at least three publications in our data set,
reducing the data set from 6,873 papers to 5,071 papers.

Conference years papers parsed A3+ training test
ASIACCS 06-12 224 209 120 94 15
ASPLOS 02-12 247 201 146 119 18
Usenix ATC 03-12 340 291 114 87 2
CC 02-12 322 191 113 76 3
CCS 00-12 637 578 457 357 60
CGO 03-12 317 214 155 103 8
ICNP 00-12 662 328 208 50 0
IEEE S&P 96-12 582 330 214 139 2
NDSS 98-12 300 236 151 118 4
NSDI 04-12 255 233 178 135 0
NIPS 03-12 2889 2396 2042 1291 195
OSDI 99-12 247 180 105 95 1
PLDI 02-12 420 388 307 247 30
POPL 02-12 386 333 223 148 16
SIGCOMM 02-12 397 368 282 240 20
SOSP 01-11 136 117 99 99 0
Usenix Security 98, 00-12 378 280 166 118 4
Total 8739 6873 5071 3516 378

TABLE II: Sources for our dataset. The rightmost column indi-
cates the number of test papers with authors being undisclosed
to our framework. A3+ is the number of papers where at least
one author has at least 3 papers in the dataset.
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Fig. 4: a) Prediction accuracy of different tasks using a SVM
classifier with writing style features. b) Accuracy of different
citation classifiers.

For the feature extraction we also drop papers where some
part of the paper was not parsed correctly (e.g., a missing
abstract). This very conservative approach reduces our data
set (training and testing) to 3,894 papers (77% of papers
where at least one author has at least three papers in the
dataset). There are 1,405 authors associated with these papers.
These authors constitute the set of candidate authors from
which we must predict when given an anonymous paper. On
average each author only has less than three training papers,
making it a very challenging machine learning task. Naturally,
better PDF parsing capabilities and feature extraction tools
will lead to more complete datasets and we expect that our
prediction rate increases alongside. Similar to [27], we use
three types of normalization for feature data when we train our
prediction models. We find that classifiers perform differently
with different normalizations. We only discuss the results with
the best normalization technique due to limited space.

Unfortunately, anonymized papers are not openly available
(and if they were available we would need additional ground
truth about the authors and affiliations to evaluate our frame-
work). We split unblinded data into training and testing set,
removing authors and affiliations from the submission for
the test data (comparable to related work). Our framework
relies on features that are present both in anonymized and
accepted versions of the paper. Our features are stable and
depend on the writing style, topic, and citations of a submission
which all do not change upon acceptance of a paper and our
approach remains valid while this assumption holds. 3,516
papers from preceding years, starting in 1996, are used to train
our classifiers; and 378 papers from 2012 are used to test the
accuracy of our classifiers.

C. Success Rates Under Different Scenarios

We quantify the success rates of our framework under three
different tasks that are defined as follows. The first task is
guess-one, the task to correctly guess at least one of the
true authors of a paper. The second one is guess-all, the
task to correctly predict all true authors of a paper. The last
one is guess-most-productive-one, the task to correctly guess
the author of a given paper that has the largest number of
publications. Intuitively, the guess-one and the guess-all task
span the entire range of difficulty for the attacker. The hardest
task is to guess all authors of the paper correctly, the easiest
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Fig. 5: (a): Statistics of the number of references of a paper.
(b): Network of citations between authors. Authors are sorted
by conferences and then by year.

task is to guess at least one author correctly. In practice, an
attacker would probably be satisfied with solving the guess-
one task. Successfully guessing the group of researchers that
has submitted the paper is sufficient in most cases. The real
target of an attacker is the name of the group that contributed
most to the paper. As this is closely connected with the most
productive (the academically ‘oldest’ author), we also compute
the success score for this task.

We study the success rate of our framework for the three
different tasks using the SVM classifier with writing style
features. The results of this experiment are depicted in Figure 4
(a). The x-axis of this plot is the rank of the candidate authors
provided by the classifier. As the attacker slavishly follows this
ranking when carrying out his guessing attack, this axis can
be interpreted as the number of guesses of the attacker. The
y-axis is the probability, i.e., fraction of papers in the test set,
where the respective task is solved with that many guesses. For
instance, for 23% of all papers, the first guess of this classifier
suffices to predict the most productive author, i.e., to solve
the task guess-most-productive-one. To solve the same task for
47% of the papers ten or more guesses are needed.

As we expected, the prediction accuracy of the classifier on
all tasks increases quickly with the number of guesses. The
classifier achieves the best prediction accuracy for the guess-
one task, with around 28% success rate for the first guess,
i.e., 28% accuracy that the top ranked candidate is among the
true authors. The worst prediction accuracy is achieved on the
guess-all task. Interestingly, the prediction accuracy (around
23%) for guess-most-productive-one is close to that of guess-
one. This confirms our belief that the most productive author
is the one that is the easiest to guess.

We also evaluated the prediction accuracy for all three tasks
using other classifiers with other features. In each case, we
observe a very similar pattern. Based on these findings, we
conclude that the guess-one task can be treated as the task
that a real-world attacker is most likely interested in, namely
correctly guessing the research group that has submitted the
paper. Therefore, in what follows, we only show the prediction
results for the guess-one scenarios.

D. Citation Data and Classifiers
We now present an overview of the citation data we extracted

from the entire corpus of all papers, followed by the evaluation
of all classifiers, proposed in Section IV-B, that use citation
features as an input. Later, we take the best such classifier as
an input for our ensemble method.

1) Basic citation statistics: Figure 5 depicts an overview of
the citation data. Figure 5 (a) shows the citation statistics over
all papers in our database. For each paper, we counted the num-
ber of references for which we were able to correctly retrieve
a cleaned-up version from DBLP. The histogram indicates that
most papers cite between 5 and 15 other publications. While
this distribution rises quickly on the left flank it has a long tail
reaching to 50 or more citations. Figure 5 (b) illustrates the
citation network of the authors in our data set. Entry (i, j) of
this matrix indicates if author i has cited author j at least once.
If so, the entry is plotted by a colored dot, if not it is white. The
rows and columns of this matrix are sorted in two ways. First,
authors are added conference by conference with a random
ordering of conferences (the biggest conference in this matrix is
NIPS). If an author has been already added by one conference
he will not be added again even if she/he published at other
conferences. Second, within a conference, earlier proceedings
come first. This organization of the matrix highlights two
dominant effects in this citation network. First, authors tend
to cite authors that publish in the same conferences. Some
conferences are well connected, indicating that they belong to
the same scientific community. Second, the earlier an author
has published, the more frequently he/she is cited on average.

2) Citation-based classification: We now compare the
guessing power of different weighting functions for author
rankings based on weighted cosine similarity of the citations.
Recall that these methods work as follows. For each test paper,
we first compute a nearest neighbor ranking by sorting all
training papers by decreasing cosine similarity between their
citation vector and the citation vector of the test paper. As
defined in Equation 1, the score of each candidate author is a
sum over all of her or his training papers, where each training
paper contributes with a weight that depends on its nearest-
neighbor rank with respect to the test paper. Figure 3 (a) depicts
all such weighting schemes that we used.

Figure 4 (b) indicates the guessing power of all citation-
based methods on the hold-out test data. It is apparent that
the Citation-Rank and Top-Cited author methods work best
with about 23%. Second best are the exponentially decaying
weighting schemes. Thereby, the exponential decay base of
9% per paper rank (‘CMU weights’) and our base of 18%
per paper rank selected by cross-validation (‘learned weights’),
perform almost equally well with a hit chance of 20%-21%.
These classifiers even produce estimates when the true authors
are not cited in the paper, which explains why they achieve
good results for a large number of guesses (beyond 50). The
linear weighting scheme performs worst with a 2% hit chance
of the first guess. The generic CosSim classifier applied to the
citation features achieves 12%

Overall, the best classifier on citation features is to assign
each candidate author a score that equals the number of times
the author is cited by the paper (‘Citation-Rank’). It correctly
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Fig. 6: Performances of different classifiers with (a) writing style features, (b) topic features and (c) citation features. The y-axis
is the probability that the correct author is among the first K guesses, for each K (x-axis).

guesses at least one author for 23% of all test papers and for
later guesses its success rate grows faster than for all other
methods. Therefore, we take this classifier output as input
for our ensemble method. Taking the small set of most-cited
authors (‘top-cited author’) performs equally well on the first
and second guess. However, for third and later guesses its
success rate grows significantly slower than using the citation
numbers to rank these candidates.

E. Success Rates of Generic Classifiers
We investigate the predictive power of the generic classifiers

with different features. We generate guessing attacks with each
of the three machine learning methods (CosSim, ML-kNN and
SVM) with each of the three different types of features (writing
style, topic, and citation features), and show their prediction
accuracy in Figure 6. For citation features, we also use the
method of weighting each candidate author by how often he
or she is cited by the respective paper. We observe for all
classifiers on all features that the prediction accuracy increases
quickly with the rank. From Figure 6 (a) we see that with
the writing style features, the SVM classifier achieves the best
prediction accuracy up to rank 208, and then is dominated by
the CosSim classifier. From Figure 6 (b) we see that with topic
features, SVM classifier dominates the other two when the rank
is less than 6, and CosSim classifier dominates when the rank
is larger than 30. ML-kNN always performs the worst. From
Figure 6 (c) we see that with citation features, all three generic
classifiers perform similarly. The Citation-Rank classifier, the
method of ranking each candidate by the number of citations,
has significantly higher chances to succeed across almost all
ranks. For this method we see a sharp jump of performance
after rank 500 and 70% success chance. This point marks the
fraction of the remaining 30% of the papers that do not cite
any of the true authors of the paper.

Across plots (a), (b) and (c) in Figure 6, we observe that:
first, in a low rank region the Writing Style classifier performs
the best (e.g., with around 29% accuracy for the first guess, i.e.,
the top ranked candidate is among the true authors), Citation-
Rank classifier performs the second best (e.g., with around 23%
accuracy for the first guess). Second, the topic features have
weaker prediction power than the other two features, with SVM
classifier achieving about 18% accuracy for the first guess.

F. Ensemble Classifier

We evaluate methods that combine all classifiers with all
the features together to achieve better accuracy for author
identification.

Feature concatenation is suboptimal: As depicted in Fig-
ure 6, different features have different predictive power for
author identification, and different classifiers have different
capabilities to extract relevant information from features that
is informative with respect to authorship. Therefore, we do not
expect a single method to achieve the best results in combining
all the features. Instead we expect an ensemble of several
different classifiers on the features to achieve best results.

To prove our hypothesis, we first study how a single classifier
performs on data that simply concatenates all the features
together, i.e., for each paper, its feature representation includes
all features from writing style, topic, and citation. In this
experiment, we normalize the features from different sets in a
different way, train an SVM classifier on each of the possible
normalization settings, and plot the best prediction results in
Figure 7 a). We see that the performance of SVM with all
features concatenated is very close to or even worse for small
ranks than that of SVM with only writing style features. We
also train and test CosSim and ML-kNN classifiers on the
concatenated feature data. The results of all these methods are
almost the same. This phenomenon partially results from the
fact that for each paper, both the topic features and citation
features are far more sparse than the writing style features.
When we concatenate these features, writing style feature data
dominates the other two, and the other two features contribute
far less to the accuracy of authorship prediction.

G. Ensemble method versus state-of-the-art

We now investigate the performance of our ensemble method
and compare it with the feature-concatenation method and
Citation-Rank classifier, which is the state-of-the-art technique
for predicting authors of scientific papers. Among the 10
classifiers (CosSim, ML-kNN and SVM on writing style, topic
and citation, respectively, plus the Citation-Rank classifier),
we observe from Figure 6 (c) that the Citation-Rank performs
significantly better than the three generic citation classifiers,
so we decide to drop the three classifiers and only use
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Fig. 7: a) Feature concatenation does not work. b) Comparing
our ensemble methods to previous work.

Writing style Topic Citation
SVM 0.277 0.121 /

CosSim 0.277 0.000 /
ML-kNN 0.091 0.000 /

Citation-Rank / / 0.234

TABLE III: Weights of different classifiers in the ensemble
model for the year 2012.

the remaining seven classifiers for ensemble learning, whose
results are shown in Figure 7 b) and Table III.

From Figure 7 b), we see that our ensemble method
significantly outperforms both other methods, especially for
the low-rank region, where the attacker tries to pin down the
authors by a small number of guesses. More precisely, our
method achieves around 39.7% accuracy for a single guess,
and a 65.6% chance that 10 guesses contain at least one true
author. The other methods both have 22.5% (SVM-All) or 23%
(Citation-Rank) success chance with the first guess and a 52.4%
(SVM-All) or 60.4% (Citation-Rank) chance with 10 guesses.
This result confirms that combining multiple modalities in a
consistent way extracts more discriminative information than
using individual features or simply concatenating all features.

Table III shows the optimal weights learned by our ensemble
method for combining different classifiers together. We observe
the following two interesting results. First, large weights are
allocated to classifiers trained on both writing style features
(column 1) and citation features (column 3), which confirm our
intuition that they are predictive features and complementary
to each other. Second, zero or small weights are allocated to
classifiers trained on topic features (column 2). Our hypothesis
is that although topic features are predictive, they are redundant
to and dominated by citation features, so the ensemble does
not bother to use them. To test our hypothesis, we train
an ensemble classifier using the six classifiers derived from
writing style features and topic features (but not citation
features). As shown in Table IV, this ensemble classifier puts
much more weight on classifiers trained on topic features,
although the prediction accuracy degrades (e.g., single-guess
accuracy degrades to 26.1% from 39.7%), due to the classifier
not using citation features.

H. Cross-validation

The different contents of the papers in our dataset, the
citations, the words used, and the scientific topics are all

Writing style Topic Citation
SVM 0.343 0.258 /

CosSim 0.183 0.086 /
ML-kNN 0.129 0.000 /

Citation-Rank / / /

TABLE IV: Weights of different classifiers in the ensemble
model without citation features for year 2012.

Guess-one Guess-10 # train. papers # authors
2010 43.2% 72.6% 2401 969
2011 39.0% 72.0% 2964 1184
2012 39.7% 65.6% 3516 1405

TABLE V: The cross-validation results for the ensemble
classifiers in years 2010, 2011, 2012.

random variables following some unknown distributions. As
a consequence the features that we extract from this data and
consequently also the predictions of our framework and the
resulting performance scores are random variables. As the
number of observations (here the number of papers) is finite,
the valid question arises to what extent our results vary with
different random realizations of the involved random variables.

In order to investigate the significance of our findings
we have carried out a cross-validation experiment where we
run our framework on different subsets of the data-set. This
approach is commonly used to evaluate methods that operate
on finite observations of random variables. Usually one simply
subdivides the given dataset into several random subsets and
carries out the method on these subsets such that different
quantiles of the target scores can be computed. Our particular
problem has two aspects that render traditional cross-validation
challenging. First, holding out papers from the training set
reduces the number of papers for some authors below three
papers such that they might drop out as candidate authors.
As the number of candidates influences the difficulty of the
deanonymization problem, it is difficult to compare across
random subsets of papers. Even worse, even though our
training dataset consists of many papers, only a small subset
of authors have more than three papers. This means reducing
the number of papers by subdividing the training set can have
a big effect. Second, papers appear in a chronological order
that cannot be ignored. In particular, younger papers cite older
papers and older papers cannot cite younger papers. Also,
scientific topics emerge at one point in time and there are
no papers about that topic before that time.

Considering these challenges, we have carried out three
different experiments for three consecutive years from 2010
to 2012. For each year we took all papers prior to that year as
the training set and the papers of that year as the test set. This
means there are no chronological inconsistencies. However,
there are fewer training papers and fewer candidate authors for
2010 than for 2012. For earlier years, this effect would be so
significant that we did not go further back in time.

The results are depicted in Table V. We report the number of
training papers and the number of candidate authors along with
two success rates of guessing authors: correctly guessing with
one guess and hitting at least one correct author with the first
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10 guesses. Clearly, fewer training observations (fewer papers)
render the classifiers weaker. In contrast, fewer candidate
authors make it easier to guess the true authors by chance.
Despite these factors, the success rates vary in terms of a few
percents only. Taking the trend of decreasing accuracies into
account, it seems like the number of candidate authors is the
dominating factor that overrides the statistical variations as
well as the influence of the number of training papers.

I. Processing Time
Our deanonymization pipeline consists of three stages: paper

parsing, feature extraction, and classifier training. We report
the processing time used in each stage, and discuss feasible
ways to further speedup the pipeline. Unless otherwise stated,
performance numbers are derived by running our pipeline on
a single core on an Intel Xeon X5550 machine at 2.67GHz.

1) Paper parsing: Extracting all text elements and layout
reconstruction of a paper takes less than 30s on average.
Matching all references against a data set of well-known clean
references takes 10-30s per reference, resulting in an overall
processing time of 2 to 10 min. per paper. Data extraction
is embarassingly parallel as each paper can be processed
independently.

2) Feature extraction: Our pipeline extracts writing style
(1206s), topic (3745s) and citation network features (273s) in
parallel for all papers. Topic feature extraction dominates this
stage. The majority of time is used for stop-word removal and
word stemming, which can be parallelized linearly (e.g., using
4 cores, the processing time is reduced to 839s). Fortunately,
we only need to do this vocabulary construction once for all
papers.

3) Classifier training: The classifier training stage consists
of two steps: training individual classifiers and ensemble
learning. We use seven individual classifiers for the ensemble,
and all of them can be trained in parallel because there is
no dependence between different classifiers. So the processing
time in this step is dominated by the classifier taking the longest
time. Among the seven classifiers, ML-kNN with writing style
features takes the longest time (1898s). A large portion of the
time is spent for the computing of the pair-wise similarity,
which can be easily sped up using a scalable similarity search
algorithm [3]. SVM training for content features ranks second
(1562s) as we build one classifier per author. Classifiers for
individual authors could be trained in parallel.

Once individual classifiers are trained, the ensemble learning
is fast: it takes around 133s to search for the optimal weights
to combine different classifiers together.

4) Processing summary: It only takes 2 to 10 minutes of
initial processing per paper. This paper parsing part must only
be executed once per paper. It takes less than 1 hour to extract
the features and to train the classifiers. This step must be
repeated whenever new data is added to the training corpus. It
takes between 2 to 10 minutes to attack a new, anonymized
paper given a pre-trained data-set.

VI. PDF CONTAINER LEAKED DATA FEATURES

During PDF compilation, many PDF generators add aux-
iliary information about embedded files to the PDF. This

includes which tools and versions were used to generate figures
or tables, the directories of the figures relative to the paper
source, the internal original name of the citation in the LaTeX
file, or even the user name or company name, which holds the
program license. This information is only infrequently available
and very diverse such that it is hard to include it to a large-
scale approach like ours. However, it can easily complement
our attack as it can discard or highlight authors in our ranking.

Out of 5,477 original papers 4,766 contained some form of
leaky strings. 532 (11.2%) papers directly contained a total
of 1,600 author names that make it trivial to identify the
original authors. This hidden author string is orthogonal to
the clear text in the title section. Browsing through the list, we
discovered many email addresses and full names that might
have been used during the registration of software components.
Some PDF tools extract the username and the associated full
name of the user that is producing the PDF and automatically
embed it in the PDF. In addition, we found 7 papers that
included a company name (embedded in licensing information
for software components used to generate content).

When looking at the creator and producer options in the
raw PDF stream we discovered that 1009 papers (21.2%)
contain at least one leaky creator and 1127 (23.4%) papers
contain a leaky producer. Each paper with a creator contains
on average 4.0 creators and each paper with a producer contains
on average 2.9 producers. Creators and producers identify the
software (and often the exact version and the operating system
kernel) that was used to generate the PDF or a figure of
the PDF. In addition, 255 papers (5.4%) contained a total of
2219 original file names for embedded figures and 9 papers
contained absolute file names that leak the user name of the
person generating the PDF.

If this information is available in an anonymous submission,
then it is a strong indicator for the original author. However,
since this information can easily be removed (e.g., the surplus
information like user names) or randomized (e.g., for internal
citation references), we refrain from leveraging any of those
features in our evaluation and discuss them here only for
completeness. We urge authors (and tool writers) to remove
this information for anonymous submissions.

VII. DISCUSSION

We have seen that our framework outperforms state-of-the
art author deanonymization. In this section we discuss practical
aspects of deploying our method in a conference submission
system. The offline approach presented in this paper uses only
published proceedings of earlier conferences for the analysis
and openly published and accessible DBLP data to verify the
extracted references. Using this data corpus a reviewer can
attack the anonymity of a submitted paper and recover the
authors possibly using additional online information like a web
search.

A. Automatic anonymity checker

A system that breaks author anonymity can be used in
an online setting as part of a conference submission system.
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Comparable to a format checker, the submission system auto-
matically parses any uploaded paper and checks if anonymity
holds. If any of the real authors is in the (e.g., top 10) set of
projected authors then the submission system gives feedback
on which features were used to deanonymize the paper (e.g.,
specific citations that stick out, writing style of specific sections,
or certain topic features). The authors can then change the
paragraphs or citations that leak most information about their
identity in an iterative process.

Such an approach is feasible, can be implemented with low
overhead, and can be added to large conference submission
systems like EasyChair. The amount of new papers is finite
and can be processed when released to the digital libraries.
Each paper must be parsed once (2 to 10 min. per paper) and
the classifiers need to be trained after adding new proceedings
to the training set (up to a few hours of computation). In the
online setting a testing paper is parsed in roughly 2 min. and
can then be matched against the existing classifiers in seconds.

B. Mitigation

Looking at the ensemble set up, we see that the citation
classification and writing style features help most in identifying
possible authors. While it is hard to consciously change one’s
writing style it is easier to decrease the prediction quality of
the citation classifier.

Given that the number of citations per candidate author is
the best individual classifiers, one should not use too many
self-citations. Also, many authors cite the same (sub-)set of
papers for different papers. The citation classifier identifies
these sub-sets and uses them to match different authors. So
as a second mitigation strategy authors should minimize the
shared set of cited papers to the necessary related work.

C. Additional features

The format of a paper can also leak information about
authorship as different authors format and structure papers
differently. The location of the related work section (beginning
or end), the placement of figures on the page (top, bottom,
left or right column), the length of figure or table captions,
the length of the title or the individual sections can all reveal
information about the author.

The relationship between sets of authors evolves over time
as well as authors shift their focus area and they publish
on different topics. Temporal features group authors and co-
authors according to temporal information. For example, it is
much more likely that an author worked on a current paper
together with a recent co-author, than with a co-author he or
she stopped working together several years ago. The same
argument also holds for topics: an author is more likely to
publish in a related area where he or she worked recently in,
rather than in an area where the author stopped publishing
years ago.

While in our current model we do not use these additional
features, our prediction engine is open for additional feature
sets and classifiers, but we leave adding paper format features
and temporal features for future work.

VIII. RELATED WORK

Much prior work studies the degree of anonymity of the
review process for scholarly research articles. Nanavati et
al. [26] show that stylometry enables identifying reviewers
of research papers with reasonably high accuracy, given that
the adversary has access to a large number of unblinded
reviews of potential reviewers by serving on conference and
grant selection committees. Several researchers have studied
the feasibility of identifying the author of an academic paper
under blind review solely from the citations [15], [5]. Our
work goes one step further to demonstrate that by gracefully
combining writing style features, topic features, and citations,
identification accuracy is greatly improved.

There is a long list of prior work on identifying the author
of a text based on the writing style. The seminal work of
Mosteller and Wallace [25] leverages function words and
Bayesian analysis to identify the authors of the disputed
Federalist Papers. Research in the last decade has focused on
the machine-learning paradigm and the inclusive approaches
to feature extraction [21], [1], [11]. These studies consider
“topic-free” models and are able to discriminate between 100-
300 authors. Afroz et al. [2] study author identification in
adversarial scenarios, and propose an effective method for
detecting stylistic deception in written documents.

Several other recent approaches extend the existing methods
to large-scale author identification. Koppel et al. [18], [17]
study authorship recognition on a blog corpus spanning 10,000
authors. Their work makes use of both content-based features
and stylistic features to identify authorship with certain success
rates. To remove the interference from context, Narayanan
et al. [27] perform a large-scale study on the feasibility of
Internet-scale author identification using stylistic features only,
and achieve 20% accuracy on a corpus of texts from 100,000
authors.

Much research has been carried out to investigate techniques
for transforming text to successfully resist author identifica-
tion [6], [23]. These papers consider off-the-shelf stylometry
attacks and propose semi-automated techniques to identify
where and how to change the document to accomplish its
anonymization.

IX. CONCLUSION

We presented deAnon, a framework that solves the Paper
Deanonymization Problem using a multi-label, multi-class
machine learning approach. Based on a large data corpus
of existing proceedings from a diverse set of conferences,
deAnon trains 1,405 per-author classifiers based on multiple
heterogeneous modalities like their writing style, published
topics, and their citation behavior. On queries of anonymized
papers, deAnon returns a ranking of candidate authors.

Further, we evaluate deAnon using proceedings from 17
computer science conferences from 1996 to 2012 with 3,894
total papers, splitting these submissions into train and test data
sets. deAnon recovers one author with 39.7% probability on
the first guess and with 65.6% probability the top-ten guesses
contain at least one true author, significantly outperforming
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prior work (less than 21% for the first guess using the CMU
classifier on our data set).

These results demonstrate that deanonymization of anony-
mous paper submissions is feasible and confirms the common
belief shared by many reviewers. Anonymity is considerably
limited by the effectiveness of authors to change their behavior:
either authors of anonymous submissions need to take more
care to anonymize their papers or we as a community need to
rethink the anonymous review process.
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