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A genetic risk score using human 
chromosomal‑scale length 
variation can predict schizophrenia
Christopher Toh & James P. Brody*

Studies indicate that schizophrenia has a genetic component, however it cannot be isolated to a single 
gene. We aimed to determine how well one could predict that a person will develop schizophrenia 
based on their germ line genetics. We compared 1129 people from the UK Biobank dataset who had 
a diagnosis of schizophrenia to an equal number of age matched people drawn from the general 
UK Biobank population. For each person, we constructed a profile consisting of numbers. Each 
number characterized the length of segments of chromosomes. We tested several machine learning 
algorithms to determine which was most effective in predicting schizophrenia and if any improvement 
in prediction occurs by breaking the chromosomes into smaller chunks. We found that the stacked 
ensemble, performed best with an area under the receiver operating characteristic curve (AUC) 
of 0.545 (95% CI 0.539–0.550). We noted an increase in the AUC by breaking the chromosomes 
into smaller chunks for analysis. Using SHAP values, we identified the X chromosome as the most 
important contributor to the predictive model. We conclude that germ line chromosomal scale length 
variation data could provide an effective genetic risk score for schizophrenia which performs better 
than chance.

Abbreviations
AUC   Area under the curve
CNV  Copy number variation
CSLV  Chromosomal-scale length variation
GBM  Gradient boosted machines
GLM  General linear model
ROC  Receiver operator curve
SHAP  SHapley Additive exPlanations
SNP  Single nucleotide polymorphism

Schizophrenia is a highly heritable, complex psychiatric  disorder1,2. Genome wide association studies have identi-
fied over one hundred genetic loci that contribute to its  heritability2–7. However, these loci still account for less 
than half of the genetic risk for  schizophrenia3. Environmental exposure to chemicals appears to play almost no 
role in the development of schizophrenia, but different forms of trauma experienced during development does 
appear to be a risk  factor8. Twin studies have consistently shown a significant genetic contribution to schizo-
phrenia, and many twin studies find that the environmental contribution to schizophrenia exists but that genetic 
effects provide significant liability to  schizophrenia9.

Genetic risk  scores10–12 have been developed for many different forms of disease, including breast  cancer13, 
coronary artery  disease14, and  stroke15. Polygenic risk scores based on SNPs clearly can predict schizophrenia. 
One study measured an odds ratio of about 8 (95% CI 4–14) for the highest decile compared to the lowest  decile16. 
A second study found that polygenic risk scores for schizophrenia (and bipolar disorder) are also associated with 
 creativity17. A review of polygenic risk scores for schizophrenia highlighted the difficulty these studies had find-
ing a consistent diagnosis of  schizophrenia18. One limitation of polygenic risk scores is that they only consider 
linear combinations of SNPs.

Copy number variations (CNVs) in germ line DNA have also been associated with  schizophrenia4,5,19–24. 
Evidence suggests that these CNVs associated with schizophrenia are represented also by  SNPs24; the predictive 
power of CNVs does not add to the predictive power of SNPs when using linear prediction algorithms. The 
dimensionality of the data (many more SNPs than patients with schizophrenia) precludes the use of non-linear 
machine learning techniques.
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Chromosome-scale length variation (CSLV) reduces the dimensionality of the data, while maintaining suf-
ficient information for predictive algorithms. Combining CSLV with modern machine learning classification 
algorithms provides a powerful tool to predict phenotypes from a person’s  genome25.The CSLV values are aver-
ages, across all or most of a chromosome, of copy number variation (CNV) measured at each SNP location. This 
method is particularly appealing for genetic risk scores because it includes epistatic effects that might be missed 
with conventional genome wide association studies, which use logistic regression—a linear combination of SNP 
scores. By attempting to still utilize every CNV value, this model aims to demonstrate that there are likely global 
CNV interactions which may be missed by conventional genetic risk scores.

The purpose of this paper is to evaluate how well a genetic risk score based on chromosome-scale length 
variation and machine learning classification algorithms can predict schizophrenia in individuals. We evaluated 
this approach on a dataset of 1129 patients who had schizophrenia in the UK Biobank dataset. These patients 
were previously genotyped as part of the UK Biobank project.

Methods
Data was obtained from the UK Biobank under Application Number 47850. The UK Biobank project collected 
extensive data from about 500,000 people who were between the ages of 40 and 69 during the 2006–2010 recruit-
ment years. This data included genotyping data and medical records. In addition, most of the participants’ medi-
cal records are linked, through the National Health Service, to the UK Biobank records. This linkage provides 
for ongoing follow-up of health  conditions26,27.

First, we downloaded the “l2r” files from the UK Biobank. Each chromosome has a separate “l2r” file. Each 
“l2r” file contained 488,377 columns and a variable number of rows. Each column represented a unique patient 
in the dataset, who can be identified with an encoded ID number. Each row represented a different location in 
the genome. The values in the file represent the log base 2 ratio of intensity relative to the expected two copies 
measured at the SNP location.

After downloading the “l2r” data from the UK Biobank, we computed the mean l2r value for different por-
tions of each chromosome for each patient in the dataset. We created three different datasets, which we refer to 
as “splits”. We split each chromosome into either 1, 4, or 8 nominally equal parts. Then, we compute the length 
for each person’s chromosome split using the l2r files by taking the average of all l2r values measured within 
that portion of the chromosome split. A value of 0 represents the nominal average length of that portion of the 
particular chromosome. We call this dataset the chromosome-scale length variation (CSLV) dataset.

The CLSV numbers represent the copy number of the genomic DNA recognized by the probe. We computed 
a measure of the length of chromosomes, or chromosome fragments, by averaging these l2r measurements from 
different probes along the chromosome. For each person, we have 1 split, 4 split, and 8 split datasets. The 1 split 
data consists of 23 numbers, one for each of the autosomes and one for the X chromosome. The 4 split data 
consists of 92 numbers and the 8 split data has 184 numbers for each person.

This CSLV dataset was matched with the UK Biobank Health records dataset. UK Biobank matched the 
person in the Public Health England data with UK Biobanks internal records to produce the person’s encoded 
participant ID. The dataset we have, provided by UK Biobank, contains the participant ID and date the patient 
was diagnosed by a doctor as having schizophrenia.

Using the CSLV-Schizophrenia dataset, we selected all people who had a diagnosis of schizophrenia and 
labelled them in the dataset. We constructed an age-matched control group of the same size that had an identical 
age profile as those in the schizophrenia group. The age-matched control group was selected from all those in 
the UK Biobank dataset having no indication of schizophrenia. Since only a small fraction of the people in the 
UK Biobank had a schizophrenia diagnosis, we could rerun the analysis with a different age-matched control 
group many times to build up statistics.

We used the  H2O machine learning package in  R28,29. We created 100 machine learning models that were 
trained to classify a person in the dataset, consisting of those who had schizophrenia and age-matched controls, 
based solely on their chromosome scale length variation data. Each model was trained with fivefold cross-
validation. Each model had a distinct set of controls. These models were trained to perform a binary classifica-
tion, distinguishing between those who had been diagnosed with schizophrenia and those who did not have 
schizophrenia. The models were evaluated by measuring the area under the curve of the receiver operating 
characteristic curve, known as the AUC.

The  H2O package implements several common machine learning algorithms. Distributed Random Forest 
(drf) is based on an algorithm originally called “Extremely randomized trees”30. The Gradient Boosting Machine 
algorithm (gbm) builds regression trees in  parallel31,32. The generalized linear model (glm) is implemented using 
an augmented linear  model33–35. XGBoost is a refinement to the general Gradient Boosting Machine  algorithm36. 
Ensembles are a combination of these other machine learning algorithms. This combination often provides 
superior results to any particular  algorithm37,38. The  H2O package implements stacked ensembles as super learner 
 algorithms39. The  H2O package also uses SHAP values to interpret the  models40. SHAP values are measures of 
how important different features are to the prediction.

Our computer analysis system is a Linux server running Ubuntu 18.04. The system is a 64-bit system running 
two Intel Xeon E5-2690 2.90 GHz CPUs. It also has a GeForce GT 710 NVIDIA GPU. 32 GBs of RAM were also 
available with a 10 TB HDD.

Ethics approval and consent to participate. Ethics approval and participant consent was collected by 
UK Biobank at the time participants enrolled. All subjects in the database have given informed consent, and if 
under 18, consent from a parent and/or legal guardian. Additionally, all subjects have the ability to withdraw at 
any time from the UK Biobank. This paper is an analysis of anonymized data provided by UK Biobank. Accord-
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ing to UC Irvine’s IRB, analysis of anonymized data does not constitute Human Subjects Research. All methods 
and experimental research protocols were approved by the UK Biobank.

Results
Figure 1 presents results showing the performance of different machine learning algorithms. We found that the 
stacked ensemble models consistently performed best. As Fig. 1 shows, we found a slight difference between 
algorithms and their performance. But all algorithms could predict schizophrenia significantly better than chance 
(AUC = 0.50). This finding indicates that germ line genetics of the patient, as represented by the set of chromo-
some-scale length variation numbers, demonstrates predictability of schizophrenia.

The AUC (area under the curve of the receiver operating characteristic curve) for the machine learning 
classification models was 0.583 (standard deviation 0.014, 95% confidence interval of 0.581–0.586). A clas-
sification model with an AUC of 0.50 is equivalent to random guessing. The measured AUC differs from 0.50 
with p < 0.00001.

We also tested how well each model could predict schizophrenia on a holdout set of validation data. The 
holdout set was 30% of the original test data and was not included in the training of the models. The AUC of the 
holdout set was 0.5734 with a 95% confidence interval of 0.569–0.578.

We then tested whether increasing the number of splits improves model performance. We constructed three 
overlapping datasets with 1 split, 4 splits, and 8 splits. The phrase “1 split” represents the average l2r value meas-
ured across an entire chromosome for all 23 chromosomes giving a total of 23 numbers, “4 splits” represents the 
average of each quarter of the 23 chromosomes l2r values for a total of 92 numbers, and “8 splits” represent the 
average of each eighth of the 23 chromosomes’ l2r values for a total of 184 numbers.

Figure 2 shows how models compare on the 3 different split datasets. Overall, a stacked ensemble had the best 
performance, however a general linear model (glm) was most often the best candidate model.

In all models, increasing splits improves model performance for the same runtime. Figure 3 demonstrates 
the difference of all models for 1 split, 4 splits, and 8 splits datasets. We tested whether finer splits of the dataset 
provided significantly improved AUCs. As shown in Table 1, the p-value of the 4 splits model compared to the 1 
split model is p = 1× 10

−24 . Comparing the mean AUC for the 8 splits model to the 1 split model gave a p-value 
of  p = 3× 10

−30 indicating that finer splits significantly improved the predictive ability of the models. The 4 
splits and 8 splits models performed better than the 1 split models by a significant amount.

We then calculated the odds ratio (OR) of our predictions drawn from the cross-validated model. Table 2 
shows that a patient in the upper quintile is approximately twice as likely to have schizophrenia when compared 
to the lower quintile.

In order to understand how our models came to their conclusions, we created several plots to explain them 
from H2O’s “explainability” framework. The first is a variable importance heatmap across the generated models 
which is shown in Fig. 4. Our analysis here indicated that chromosome X was one of the highest contributing 
variables in predicting Schizophrenia, especially in tree models such as GBM and XGBoost. We then confirmed 
this with a Shapley Additive exPlanation or SHAP plot in Fig. 5. This plot also indicates that chromosome X was 
the leading factor in our leading model for predicting schizophrenia.

Utilizing our findings above, we then proceeded to train new models from scratch using only CSLV values 
from chromosome X but with 64 CSLV splits. This model did not contain any information from the 22 autosomes 
but instead relied solely on CNVs in the X chromosome and our aim was to see if the model would be comparable 
to our previous 4-split and 8-split models. We found that on average these models had a comparable performance 
of about 0.58 with the highest being around 0.627 as shown in Fig. 6.

Figure 1.  This boxplot figure presents the results of the machine learning predictions. We created 100 different 
datasets. For each dataset, we used the same set of schizophrenia patients with a distinct set of age matched 
people from the general UK Biobank population as controls. Then H2O was used to perform a grid-search 
of possible best algorithms. The best performing algorithm was then reported with an AUC. The differences 
between algorithms is reported here. The machine learning algorithms tested were distributed random forests 
(drf), gradient boosting machine (gbm), general linear model (GLM), stacked ensemble (a combination of the 
other four algorithms) and XGBoost (XGBoost).



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18866  | https://doi.org/10.1038/s41598-021-97983-0

www.nature.com/scientificreports/

Figure 2.  We tested whether finer splits of each chromosome lead to better predictability. We split each 
chromosome into either one, four, or eight subsections. We computed the chromosome scale length variation 
for each of these subsections for each person. This set of numbers was used to predict whether patients had 
schizophrenia. The quality of this prediction was characterized by the AUC. This plot demonstrates how the 
quality of these predictions increase with finer information on chromosome length variation. The Stacked 
Ensemble algorithm performs the best across all split variations.

Figure 3.  This plot represents the average performance of 150 models for each split type for a total of 450 
models.

Table 1.  The mean and standard deviation of the cross validated AUCs of 1 split, 4 splits, and 8 splits datasets 
of 150 models each.

Dataset Mean AUC Standard Deviation P-value vs 1 split

1 split 0.5614 0.0148

4 splits 0.5807 0.0146 1× 10
−24

8 splits 0.5838 0.0141 3× 10
−30

Table 2.  This table represents the odds ratio between the quintiles of predicted results from our cross-
validated results. The result indicates that the top quintile is twice as likely to have an accurate prediction for 
Schizophrenia as the bottom quintile.

Quintile Normal Schizophrenia Odds ratio Count 95% CI

1 185 123 0.67 308 0.51–0.85

2 156 152 0.97 308 0.76–1.24

3 153 155 1.0 308 0.79–1.3

4 142 165 1.2 307 0.91–1.5

5 133 174 1.3 307 1.0–1.7
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We then again performed a variable importance heatmap analysis to get greater granularity of our under-
standing of the contributing CSLVs in chromosome X. We found that this was again consistent with the previous 
findings from the 4-split model. Figure 7 indicates that the top features of variable importance are again being 
found in the first and last regions of chromosome X. As such it appears that the majority of the predictive power 
of any model trained with CSLV and when predicting schizophrenia in an individual is a result of CNVs on 
chromosome X. We also report corresponding estimates of hg38 coordinates in Table 3.

We wanted to ensure these results were not due to inherent sex differences. We trained 50 models using the 
64 split chromosome X dataset which were not only age-matched with the controls but also sex-matched. 25 of 
the AutoML models were trained with the actual data with correctly labeled disease states. The other 25 AutoML 
models were trained with the schizophrenia diagnosis randomly shuffled. The results are shown in Table 4. Here 
we can see that a portion of the previous performance is most likely due to CSLV differences inherent between 
males and females (Supplemental D). However, a portion of the prediction is statistically still better than random 
guessing.

Discussion
These results indicate that germline genetic variation contributes at least to some degree to the onset of schizo-
phrenia in individuals. Our results indicate that genetic structural variation across the global chromosomal scope 
is sufficient to predict, better than guessing, whether or not an individual will have schizophrenia. The patients 
were an equal number of patients by gender between the control and disease group and the ages of patients in 
the control group also were matched to the ages of patients in the disease group. Further analysis revealed that 
length variation in a handful of regions of the X chromosome was sufficient to reproduce the predictive model. 
Recently, there has been revived discussion of copy number variations as a large contributing factor to sev-
eral neurological ailments including  schizophrenia41. Additionally, hypotheses about sex chromosome links to 
schizophrenia inheritance have been discussed for several decades and our findings lend support to this  idea42.

Figure 4.  This variable importance heatmap shows the variables which most affected the performance and 
outcome of decisions made by the specified model. A value closer to 1.0 indicates higher importance of that 
variable. In most tree-based models the CSLV values for chromosome X have the highest importance.
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On average, a stacked ensemble is the best approach to creating a predictive model for the prediction of 
schizophrenia. However, all models that were tested still created models with predictive power better than chance 
(Supplementary Information A, B, & C). Since  H2O’s AutoML performs a grid-search of all the possible datasets 
and each trial we ran included the same disease group but with a different control groups, we can see in Fig. 1 
that a general linear model (GLM) oftentimes was still the best option. Gradient Boosted Machines (GBM) and 
XGBoost also typically performed the same as GLM.

Utilizing a more granularized dataset by splitting the autosomes into quarters and eighths performs signifi-
cantly better than using a CSLV averaged across an entire chromosome. This observation suggests we can increase 
performance by increasing splits. In the future, we plan on exploring the trade off in run time and computational 
resources required by increasing splits. Other methods of dimensionality reduction may also yield better results 
without sacrificing runtime performance.

The CSLV values are averages of copy number variation (CNV) measured at each SNP location. Simply using 
every single CNV value introduces a dimensionality problem as our dataset only has roughly 488,000 individu-
als while the total number of CNV values is 764,257 across the 22 autosomes and an additional 18,857 CNV 
values for the X Chromosome. This means there is likely diminishing returns for using more splits unless it can 
be offset with increased data.

This approach has several limitations. First, CSLV is an averaged measure of copy-number variations across 
a large section of the entire chromosome. We used SHAP values to highlight the regions that seem to be more 
important, but this does not provide a mechanistic explanation. Second, the dataset lacks diversity. The UK 
Biobank population is primarily Caucasian individuals in the United Kingdom (although not exclusively). Third, 
the diagnosis of schizophrenia in an individual is difficult to quantify and the disease might consist of a het-
erogeneous group of underlying biological processes. Finally, this analysis is based on a single dataset and the 
conclusions would be stronger if the analysis could be replicated in an independent dataset. However, similar 
datasets are not currently available.

Figure 5.  This SHAP plot indicates that the leading model for our 4-splits model relied heavily on the first 
quarter and last quarter value of chromosome X with some contribution from other regions and the second 
quarter of chromosome X.
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Conclusion
We were able to create machine learning models for prediction of schizophrenia in patients. These models 
perform better than chance with an average AUC of 0.545. Prediction was performed with only chromosomal 
scale length variation measurements as the input variables. Further analysis of the SHAP values suggests that 
the length variation of several regions of the X chromosome are sufficient to reproduce this predictive value.

Figure 6.  This ROC Curve for a schizophrenia prediction model utilizing 64-splits or 64 CSLVs of chromosome 
X only. The reported AUC is 0.627.
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Figure 7.  This variable importance heatmap shows the variables which most affected the performance and 
outcome of decisions made by the specified model. A value closer to 1.0 indicates higher importance of that 
variable. In most of the models we find that the CSLV values were mostly centered around split 50, 1, 9, 42, 13, 
58, and 6. This is consistent with Fig. 4.

Table 3.  This table shows the estimated hg38 coordinates for the corresponding CSLV splits with high variable 
importance as shown in Fig. 7.

CSLV Split Estimated hg38 Coordinates

1 chrX:60425–634774

6 chrX:5651118–7792613

9 chrX:11426091–13234434

13 chrX:20912585–22990332

42 chrX:107331058–110669244

50 chrX:128031497–130523635

58 chrX:145709120–147908169

Table 4.  This table shows a comparison of the age and sex matched models using 64 Split chromosome X 
data. The reported mean AUCs demonstrates that a portion of the previous performance is attributed to 
differences between male and females in X Chromosome CSLV levels as shown in Supplementary Information 
D. However, it still performs better than randomly guessing.

Dataset Mean AUC Standard Deviation

64 Split × normal 0.545 0.01373103

64 Split × random 0.525 0.01363745

Welch two sample t-test between normal and random T = − 5.0111
df = 47.998 p-value = 7.763e-06
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Data availability
The datasets analyzed during the current study are available from UK Biobank at https:// www. ukbio bank. ac. uk/.

Received: 25 May 2021; Accepted: 1 September 2021
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