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A characteristic feature of disasters is the disruption of routine activities in a society. This

disruption spurs novel activity from a variety of social units, from organizations to public

officials to ordinary citizens. A major component of this response is informal communication

among the public and this public communication increasingly occurs in online settings. Much

of this online, informal communication falls under the formal definitions of rumoring and I

harness the precision of Twitter’s timestamped, geolocated messages to probe the spatial and

temporal features of rumoring. A challenge of relying on streams of online data is finding sig-

nal amid the overwhelming volume of activity. To overcome this obstacle I use what is known

about the spatial and temporal characteristics of both rumoring and disaster-related informa-

tion transmission to develop a spatio-temporal filtering approach for measuring rumoring. I

demonstrate in the first chapter that this approach offers strong increases in signal of hazard-

related rumoring activity across a variety of events, both natural and anthropogenic. The

results shed light onto the distribution of rumoring activity across large spatial scales. In

the second chapter I use the same spatio-temporal filtering approach to identify surges in

signal of content of hazard-related rumoring as I look for evidence of topical convergence and

content evolution throughout the rumoring process. In the third chapter I test a variety of

rumor theories by measuring which features of each U.S. county—its demographics, history

xi



of tornado events, and volume interpersonal ties to the tornado-affected county—determine

its propensity to rumor about severe tornado events. Using data whose spatio-temporal pre-

cision and scope (both in geography and variety of events) have historically been infeasible,

this dissertation makes several valuable contributions to rumor theories.
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Chapter 1

Introduction

Over the past century, the development of broadcast media relayed through radio and tele-

vision has greatly increased the speed of information dissemination to the public. During

disaster events, however, the dominant channel through which individuals share information

has long been informal. In disaster settings, official sources of information, such as emer-

gency management organizations and elected officials, typically fail to outpace the flow of

informal information spread among the public (Caplow, 1947; Greenberg, 1964; Kreps, 1984;

Richardson et al., 1979). When populations receive insufficiently comprehensive or timely

information from official sources, they turn to informal exchange of information to acquire

new information and validate existing information (Bordia and DiFonzo, 2004; Caplow, 1947;

Perry et al., 1981; Quarantelli, 1954). This informal exchange among individuals falls under

the formal definition of rumoring: unsubstantiated (i.e., unofficial) discussion about cur-

rent, newsworthy issues of interest (Allport and Postman, 1947; Bordia and DiFonzo, 2004;

Caplow, 1947; Kapferer, 2013; Rosnow and Kimmel, 2000; Shibutani, 1966). Although social

scientists have studied rumoring for decades, the challenges of measuring rumoring with any

degree of precision outside of laboratory environments have limited our understanding of the

mechanisms by which rumoring operates. Little is known about the spatial characteristics
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of rumoring, especially across large geographic scales. This dissertation uses online, infor-

mal communication data with historically unmatched precision to characterize hazard-driven

informal communication at large spatial scales.

While the phenomenon of informal exchange of information has continued unabated from

the radio age through the internet age, members of the public now have more media through

which to exchange information amongst themselves. Many have turned to the Internet –

and particularly social media sites like Twitter – to share information. With nearly 300

million members posting 500 million messages per day, Twitter has become an increasingly

useful platform for event-specific communication during disasters (Guan and Chen, 2014;

Sutton et al., 2008, 2013a,b; Vieweg et al., 2010, 2008). Brief, topically relevant statements

that are well suited for retransmission, disaster-related Twitter messages closely adhere to

the type of communication historically analyzed in rumoring studies (Allport and Postman,

1947; Caplow, 1947). Additionally, the types of communicative activity observed in disaster

contexts on Twitter mirror traditional rumoring behaviors: information diffusion, collective

sensemaking, and message retransmission. Accordingly, I treat online informal communica-

tion on Twitter as synonymous with rumoring and in this dissertation I will use the terms

interchangeably. Because online populations respond in systematic, consistent, and mea-

surable ways to disaster events, Twitter is an ideal online context for studying rumoring.

Furthermore, the Twitter platform allows us to observe the timing, content, and location

of messages, which enables us to observe rumoring behavior with unprecedented precision

and across large spatial scales. The precision offered by the online environment allows novel

investigations of rumoring activity and gives us the opportunity to revisit classical theories

of rumoring behavior.
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1.1 Rumoring and Disrupted Environments

The disruption of social structures and routines is a characteristic feature of disasters. Kreps

(1984) defines a disaster as an event inducing damages, losses, and/or disruption, where the

impact affects social structures and/or societies. Key to this definition is that a disaster com-

pels a response from social units, often in response to the disruption of essential functions

of society (Fritz, 1961). This response translates into action from individuals, households,

organizations, and other social units (Drabek et al., 1981; Leik et al., 1981). This action

takes the form of emergent and often novel behavior. For example, emergency management

organizations conduct response-related activities such as triage, search and rescue, and mit-

igation; affected individuals take protective action and seek shelter, aid, and assistance; and

throughout the immediate aftermath of an event, individuals, families, and organizations

seek, collect, and disseminate information pertaining to ongoing circumstances. Disasters

routinely spur action from a wide variety of social units.

Much of the social action generated by disasters is informal. While most disasters have

some element of emergency response activity by formal organizations (search and rescue,

firefighting, aid provision, triage), informal actors such as individuals and families engage in

a variety of activities. They take protective action, verify official information (i.e. emergency

alerts), supplement official information with information from friends, family, and neighbors,

check the status of others, and engage in mitigation activities such as search and rescue,

evacuation, and cleanup (Drabek et al., 1981; Leik et al., 1981; Quarantelli, 1954, 1980).

Citizen response routinely serves as the first emergency response during disasters, followed

shortly thereafter by official emergency responders (Kreps, 1983). Informal response to

emergency situations is a critical aspect of the hazard environment.

Informal communication is an essential component of disaster response. Informal communi-

cation includes, for example, face-to-face conversations between neighbors, phone conversa-
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tions between friends, and emails exchanged among students. By contrast, formal commu-

nication typically occurs through channels such as press conferences, official mailings, press

releases, and emergency alerts. Informal communication in this context falls under formal

definitions of rumoring : informal, person-to-person communication pertaining to current,

newsworthy topics of interest among a population (Allport and Postman, 1947; Bordia and

DiFonzo, 2004; Caplow, 1947; Rosnow and Kimmel, 2000; Shibutani, 1966). A key compo-

nent of this definition of rumor is that such statements are not confirmed by official sources.

During disaster events informal channels are heavily utilized as citizens regularly provide sit-

uational reports from the disaster zone (information on road closures, online maps of affected

areas, reports of damaged/destroyed structures) before such information is released by offi-

cial sources (Goodchild, 2007; Goodchild and Glennon, 2010; Sutton et al., 2008). While the

general principles of the rumoring phenomenon are understood in this context, measuring

informal communication with any degree of precision has been an ongoing challenge.

1.2 The Challenge of Observing Informal Communica-

tion

Although the rumor literature has a rich history, studying rumoring has posed numerous

methodological challenges. Measuring person-to-person communication has been challeng-

ing in both natural, observational settings and controlled, laboratory settings. Allport and

Postman (1947) describe how the laboratory setting poses several artificial restrictions on

the flow and content of rumor, an argument also made by Caplow (1947). In such settings

the narrative color of rumor (e.g., exaggeration, humor, excitement) is frequently suppressed

as subjects focus on maintaining the precision and accuracy of their statements. This phe-

nomenon is frequently attributed to the experimenters’ instructions and the accuracy and

fidelity implied by the university environment in which such experiments typically occur.
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Further confounding matters, such experiments typically are short-lived and cannot cap-

ture the evolution of rumor over the span of hours or days, nor do they typically permit

cross-examination of the rumorer from the rumor recipient. Although Allport and Postman

concede that ”indoor” rumors typically capture the “basic phenomena” of rumor spreading,

such rumors lack the spontaneity of “outdoor” rumors (Allport and Postman, 1947, p. 65).

Caplow, however, finds that both the form and content of rumors outside the laboratory en-

vironment have “alien” configurations that bear little semblance to indoor rumors (Caplow,

1947, p. 300). To the extent that we can monitor rumoring in a natural setting, we limit

our exposure to these constraints on the behavior.

The laboratory environment’s superior control, however, allows researchers to avoid some of

the challenges of studying rumoring in a natural setting. Scanlon (2007) describes many of

the challenges faced by Carleton University’s Emergency Communications Research Unit in

its decades of studying rumoring and disasters. Sampling issues are common, as defining the

study population is difficult and finding the population may prove challenging during disas-

ter contexts because individuals frequently relocate in order to follow evacuation orders, seek

medical assistance, or flee an imminent threat. Informant accuracy issues also complicate

matters. In the aftermath of a highly publicized kidnapping of the British Trade Commis-

sioner, Scanlon (2007) finds that people frequently forgot from whom they heard rumors

and periodically misattributed the source of the rumor. To maintain a manageable scope

of analysis, many studies outside the laboratory ask respondents where they heard a par-

ticular rumor (Erickson et al., 1978; Greenberg, 1964; Miller, 1992; Richardson et al., 1979;

Scanlon, 1977; Walker and Beckerle, 1987). This is in contrast to the classic Allport and

Postman (1947) and Caplow (1947) analyses on rumoring, which capture multiple threads

of rumor. With a few exceptions (Kapferer, 1989; Schachter and Burdick, 1955) studies of

rumor typically operate retrospectively and suffer from a success bias. As a result, we know

less about situations under which rumors fail to emerge or diffuse.
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In light of these many challenges, social scientists have called for principled approaches to

studying emergent phenomena during disaster environments, including rumoring (Drabek

and McEntire, 2003). Such approaches ought to capture the complete process of rumoring—

from inception to the spread of rumors to the elimination of ambiguity—in a methodologi-

cally sound, generalizable manner (Bordia and Rosnow, 1998). Understanding the complete

process of rumoring is key to understanding the phenomenon (Rosnow, 1974). Recent stud-

ies have begun to incorporate precise temporal (Blanford and MacEachren, 2014) or spatial

(Starbird and Palen, 2010) components of informal communication in response to disaster

(and on rare occasion, both simultaneously (Guan and Chen, 2014)). However, the afore-

mentioned papers only cover single case studies and the authors do not attempt to generalize

the findings to rumor theories.

The online environment offers an opportunity to overcome many of the historic challenges

of studying informal communication in disaster contexts. As populations increasingly turn

to platforms such as Twitter, OpenSteetMap, Facebook, and Wikimapia to send and re-

ceive information during disaster settings (Goodchild, 2007; Goodchild and Glennon, 2010;

Sutton et al., 2008), scholars now have opportunities to monitor online, informal commu-

nication at global spatial scales and collect metadata on the timing, location, and content

of such communication. While the online environment affords new opportunities for ob-

serving hazard-related informal communication, the scale of the data can be overwhelming.

Taking advantage of this new data regime without succumbing to its heft requires a careful

approach. By leveraging what we know about hazard-related informal communication, we

can selectively filter communication data to capture and observe the rumoring phenomenon.

This allows us to capture the phenomena of rumoring without becoming bogged down with

extraneous, unrelated communication.
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1.3 Determinants of Rumoring

Rumoring is known to have several properties that constrain it to a particular point in

space and time. Rumoring is not a ubiquitous response to disrupted environments. It

does not propagate endlessly, which is what separates rumors from urban legends and folk

tales (Miller, 1992). Some have described rumoring as a task of collective problem solving

(Bordia and DiFonzo, 2004; Shibutani, 1966) with reasonably well defined start and end

points. A process helping individuals make sense of their environments and cope with un-

certainty, rumoring tends to dissipate once cognitive unclarity has been eliminated (Caplow,

1947). Salience also plays an important role in determining the lifespan of a rumor. As an

event/entity becomes more and more likely to affect individuals, those individuals become

more and more likely to rumor about it (Allport and Postman, 1947). This process also

works in reverse; populations further removed in time from an event become less likely to

rumor about it. In addition to temporal proximity, one’s spatial proximity to the subject

of rumors plays a role one’s propensity to engage in rumoring. Rumors pertaining to a

particular topic typically survive only as long as that topic is relevant to the population

(Allport and Postman, 1946), but not all topics are salient to all populations. Although

capable of traveling great distances in short periods of time, rumors fail to gain traction and

quickly perish if they are not relevant or interesting to a population (Caplow, 1947). These

mechanisms driving rumoring activity place limits on its spatio-temporal prevalence.

Characteristics of disasters further constrain the spread of rumoring activity across time

and space. Rumors thrive in disrupted settings, and disasters have long provided contexts

for studying rumoring. In disruptive and high-anxiety situations, rumor viscosity decreases

and rumors spread at relatively high rates (Caputo, 1999; Stein, 1980; Walker and Beckerle,

1987). Periods of disruption or anxiety are finite in time and space, however, and rumoring

activity will only persist as long as these states are active. Although the spatio-temporal

variation in rumor quantity and content has long been of interest to the field, collecting data
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that accounts for temporal and spatial characteristics of rumoring has been extraordinarily

difficult to do with any degree of precision. Some have been able to capture rumoring data

with some degree of temporal precision (Bordia and Rosnow, 1998; Danzig, 1958; Greenberg,

1964) or with some spatial precision (Larsen, 1954), but bridging the two has been difficult.

Synthesizing temporal and spatial rumoring data across a wide variety of events had long

been beyond the capabilities of researchers. Simply gathering reliable data on rumoring was

already fraught with challenges.

Measuring rumoring has historically been challenging in hazard contexts. The field has tra-

ditionally relied on post hoc informant reports of rumoring, which are subject to a variety of

informant errors (Back et al., 1950; Romney et al., 1986; Romney and Weller, 1984; Sudman

et al., 1996). Informants may misremember the timing of when they heard or spread rumors

and they may mis-attribute the sources or recipients of rumors (Scanlon, 2007). Disasters

frequently displace portions of the population that evacuate to safety, seek medical attention,

or assist with emergency response. Furthermore, those who have left the area may have been

more likely to have heard the rumor and acted on that information, thus leaving the remain-

ing population with a lower likelihood of having heard or spread the rumor. Developing a

sampling frame for such during these periods of population displacement is infeasible, as is

measuring rumoring activity by interviewing populations across large spatial scales. Merely

measuring rumoring has historically been quite challenging; measuring rumoring with accu-

rate spatial and temporal precision has been infeasible with human informants.

In this dissertation I take advantage of the opportunities afforded by the online environment

in order to characterize the spatio-temporal characteristics of rumoring. Salience effects

and collective problem-solving goals limit the spread of rumors across time and space; these

complement the spatio-temporal characteristics of disasters and the disruption and anxiety

induced by such events. Knowing the general spatio-temporal characteristics of rumoring in

disaster, I can harness online data to identify and characterize rumoring behavior. Using
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metadata with precise measures of time, location, and content, I can simultaneously mea-

sure rumoring activity with historically unmatched precision and across large spatial scales.

This dissertation develops spatio-temporal filtering techniques to characterize the rumor-

ing activity at large scale across a variety of disasters. The remainder of this introductory

chapter provides an overview of the ongoing data set collected under Project HEROIC. I

then demonstrate a spatio-temporal filtering approach that reliably measures activity lev-

els of hazard-related rumoring across a wide variety of disaster events. Next I utilize this

spatio-temporal filtering approach to determine if we can measure the content of rumors

across time and space during disasters. The final substantive chapter examines predictors

of county-level, tornado-related rumoring in the aftermath of severe tornado events. Finally,

I conclude the dissertation with a reflection on its contributions and speculation on how to

develop further this research.

1.4 Data: Project HEROIC

To obtain streams of online, informal communication containing a variety of disaster-related

keywords, I turn to Twitter. Twitter is an online microblogging service where users post

short messages (called tweets) up to 140 characters in length. Like a traditional RSS system,

users subscribe to (or ”follow”) accounts to receive all tweets posted by that account. These

messages are timestamped and some users have opted to include geographic metadata with

each message. The limited scope of these messages creates an environment conducive to

traditional rumoring behaviors. Past studies find that rumor statements tend to be brief,

structurally simple, and easily retransmitted (Allport and Postman, 1947; Baron et al., 1997;

Caplow, 1947). Further aligning its content with that of traditional rumoring, Twitter’s

activity is largely topical and the company has institutionalized features to promote and

take advantage of the topicality of its content. With over 300 million active, registered
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users posting 500 million tweets per day 1 , Twitter is an extremely popular service and

the 9th-most visited website in the world 2 . Although users may opt to restrict access

to their tweets, many follow Twitter’s recommendation to contribute to the public stream

by sharing their tweets publicly. Twitter has a robust search engine that allows visitors

(both registered and unregistered users alike) to perform keyword-based searches in the

public stream of tweets. This allows users to discover who else is talking about specific

topics and promotes contribution to the public discussion. Twitter handles an estimated

2.1 billion search queries per day 3 . Twitter also supports the use of hashtags, metadata

tags that link messages to informal, user-generated topic channels. For example, someone

posting a tweet about Hurricane Sandy may use the #HurricaneSandy hashtag to include

that message in the stream of tweets about that topic. Similar to the search function,

users can click on (or directly search) hashtags to return a list of all recent posts containing

that hashtag. These hashtags often serve as channels along which users discuss topical

information, frequently with strangers (i.e. accounts they are not following). Hashtags are

entirely user-generated and the rise and fall in popularity of hashtags is an organic process.

Between the search function and hashtags, Twitter serves as a robust, powerful tool for

informal, public communication.

Twitter is an increasingly useful platform for event-specific communication during disas-

ters. Case study work has highlighted the use of social media for information sharing and

collective disaster-related sensemaking(Vieweg et al., 2008). In the online environment in-

dividuals employ informal communication to cope with information shortages and relieve

feelings of helplessness (Sutton et al., 2008), share eyewitness observations of events in real

time (Vieweg et al., 2010), and engage in information diffusion by retransmitting others’

messages (Sutton et al., 2013a,b). Topically relevant informal communication characterized

by high levels of retransmission, Twitter messages closely adhere to the type of communi-

1https://about.twitter.com/company
2http://www.alexa.com/topsites
3http://www.statisticbrain.com/twitter-statistics/
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cation historically studied in the rumoring literature (Allport and Postman, 1947; Caplow,

1947). These aforementioned studies on Twitter usage during disasters indicate that online

populations respond in systematic, consistent, measurable ways to disaster events. Such

responses typically include increased volume of event-specific keywords, changes in message

structure, and changes in information retransmission behavior. This regular behavior and

adherence to definitions of rumor endorse the Twitter platform as a tool for understanding

rumoring in the context of hazards.

As Twitter has become accessed increasingly via applications on GPS-enabled mobile phones

and tablets, more and more users opt to include geographic metadata (VGI) with each tweet.

Twitter reports that 80% of its active users access the site via mobile devices 1 . When

users utilize Twitter’s VGI, each message they post contains data about the location from

which they send each message. Such data include the city, state, and country from which

the message was sent, along with the latitude and longitude coordinates. Reported by the

mobile device’s GPS, this has high levels of precision and accuracy. To test the accuracy

of Twitter’s reported coordinates, I enabled Twitter’s location-tracking services and sent

messages from a variety of locations (both indoors and outdoors) in Southern California and

Northeastern Georgia during Fall 2013. I noted my position on Google Maps at the time

of sending and compared it to the coordinates reported by Twitter. The location reported

by Twitter was consistently within 20 feet, which is consistent with observed accuracy of

commercial-grade GPS systems, such as those found in mobile phones (Modsching et al.,

2006; Wing et al., 2005; Zandbergen and Barbeau, 2011). While users previously had to

opt in to Twitter’s geolocation services, VGI is increasingly common as the default setting

in a variety of Twitter’s mobile phone applications (and third party applications). Before

the rise of geolocated tweets, reliably inferring message location was a challenge. Inferring

geolocation from terse tweet text is possible, but difficult and imprecise (Davis Jr et al.,

2011; De Longueville et al., 2009; Twaroch et al., 2008). Such techniques struggle to capture

tweets that contain no clear geographic information in the tweet (e.g., “There is a fire a few
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blocks away from my house”), and may be susceptible to false positives. The reliability of

GPS data is much higher and the ease of obtaining precise VGI ensures that I will not have

to leverage text-based location inference techniques. Recent estimates suggest about 3.5%

of tweets contain this location data (Weidemann and Swift, 2013). My own estimates based

on the HEROIC data stream are consistent with these findings. Although this is a small

fraction of all tweets, this still represents over 17.5 million geotagged tweets per day.

The Twitter service hosts a fertile environment for rumoring activity. The character-constrained

messages are concise and conducive to rapid diffusion. In fact Twitter has its own convention

for message retransmission called a retweet. Users retransmit one another’s messages by typ-

ing “RT” (short for retweet) in front of the original message. Without the sterile laboratory

environment suppressing the narrative color of rumor (Allport and Postman, 1947; Caplow,

1947), the Twitter environment provides an excellent opportunity for studying “outdoor”

rumors. Despite operating outside the laboratory setting, studies on rumoring on Twit-

ter are free from many of the methodological obstacles inherent in studying rumoring in a

natural, social environment. With the precise timing and geolocation metadata of Twitter

messages, I observe when and where users discuss particular topics. Furthermore, the Twit-

ter API (discussed below) allows me to monitor rumoring prospectively. This allows me to

observe when and where rumoring activity takes place as well as when and where it does not

take place. Historically, the absence of rumoring has been exceptionally difficult to monitor

outside experimental settings. Finally, I am able to monitor the general phenomenon of ru-

moring rather than limiting monitoring to individual rumors. With a prospective approach

to studying rumoring activity measured precisely across space and time, I simultaneously

tackle many of rumoring’s most difficult methodological challenges.
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1.4.1 HEROIC’s Data Collection System

The data in this dissertation come from Project HEROIC (Hazards and Emergency Re-

sponse in Online Informal Communication), a multi-year project dedicated to the collection

and analysis of online, informal communication in response to hazard events. This disser-

tation uses keyword-driven data collected from Twitter’s Streaming API. Under HEROIC

Project we continuously collect data from 72 unique, hazard-related keywords such as “wild-

fire,” “earthquake,” “collapsed,” “flood,” and “shooting” which cover 19 distinct hazard

types. This keyword-driven data collection continuously gathers all public tweets returned

by Twitter containing the specified keywords. For this dissertation I use data from the most

recent version (1.1) of the Twitter Streaming API, which allows me to examine hazard-related

messages from May 2013 onward.

For each of these terms we continuously observe its stream of activity over time. This long-

term, prospective approach allows us to observe when and where rumoring activity occurs

on a given keyword, as well as how long it lasts. Likewise, we also observe the absence

of activity, which sheds light into times and places where rumoring does not occur. With

a prospective, cross-hazard measure of rumoring activity across a variety of topics, we are

well equipped to observe and analyze rumoring activity at scale. The timing, location, and

text data allow us to observe the phenomenon with unmatched precision despite our large-

scale data collection. However, the opportunity afforded by Twitter’s abundance of data

is balanced by the challenge of finding signal amid an overwhelming mass of information.

The first chapter of this dissertation develops an approach to refine our search such that we

maximize signal of hazard-related rumoring.
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Chapter 2

Spatio-temporal Filtering Techniques

for Detection of Disaster-Related

Communication

The increasing prevalence and accessibility of online data heralds a new regime for data col-

lection and analysis. We enjoy greater access to large-scale, observational social science data,

much of which has a textual component. This new data regime brings great opportunities

but also poses several challenges (Boyd and Crawford, 2012; King, 2011). While many new

data sources offer opportunities to analyze and understand social phenomena with precision

and at scales that have long been infeasible, the scope of such data can be overwhelming.

These kinds of large-scale data are often too large to examine manually and are frequently

noisy due to a conglomeration of different competing signals of activity. This challenge cre-

ates an opportunity for the development of filtering techniques to refine signal from noise in

order to highlight a particular activity or set of activities.

Scholars from a variety of fields have recently turned attention towards identifying signals
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of social processes in large-scale, user-generated online text data from platforms such as

Twitter. At any given moment individuals use online platforms to discuss a wide variety

of topics such as news, sports, work/school, weather, and what they ate for lunch. Each of

these topics has its own “signal” and the site’s collective activity is awash with signals from

a nearly endless array of topics. The challenge of parsing large volumes of online text to

identify signal has drawn much attention in recent years (Ferrari et al., 2011; Hollenstein and

Purves, 2013; Mamei et al., 2010; Pozdnoukhov and Kaiser, 2011). While the application

in the online environment is novel, the general problem is not. Interest in automated signal

processing in noisy environments (Fawcett and Provost, 1999; Hamid et al., 2005; Macleod

and Congalton, 1998; Ribeiro Jr et al., 2012; Singh, 1989; Stauffer and Grimson, 2000)

predates the proliferation of user-generated online activity and we can apply the lessons

learned in those contexts to the online context.

Although the signal identification problem is not new, detecting signal in the online environ-

ment poses new challenges that require novel solutions. Short message length and esoteric

language and grammar on sites like Twitter enhance the difficulty of identifying signals of

social processes (Davis Jr et al., 2011; Go et al., 2009; Kireyev et al., 2009; Kouloumpis

et al., 2011; Pak and Paroubek, 2010; Yang et al., 2014). The challenges of detecting sig-

nals of social phenomena in this online environment implore us to develop a fundamental

understanding of the social phenomena we intend to detect. Failure to understand the social

processes underlying activity observed at large scale is dangerous and may lead to misleading

or spurious results (Back et al., 2011; Boyd and Crawford, 2012; Johnson, 2014; Lazer et al.,

2014; Leinweber, 2007), such as misclassifying failure-to-connect error messages as “anger”

messages in a stream of pager messages or overestimating flu incidence based on search term

activity on Google. To prevent such outcomes we can harness what is known about rumoring

behavior in the context of disaster events in order to filter activity selectively as we search

for signal of hazard-related rumoring.
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This principle of systematic filtering motivates my analysis in this chapter. Here my goal is

to detect aberrations in human activity in response to disasters. Using timestamped streams

of geolocated, informal communication activity, I selectively filter communication streams by

time and location in order to identify surges of rumoring activity in response to a disaster.

Spatial filtering enhances our ability to detect events by utilizing the “signal” produced by

sources that are known (or expected) to produce reliable data, thereby enhancing our ability

to detect distinct activity patterns above and beyond typical global activity (i.e. background

noise). I begin this chapter by characterizing different types of informal response to disas-

ter, reviewing techniques for event detection, and examining how volunteered geographic

information (VGI) enables us to use spatial filtering to identify local surges in rumoring

activity. I then illustrate such a technique with a series of activity logs of online, informal

communication in the context of several different types of disaster events.

2.1 Stages of Informal Response

A routine pattern of activity characterizes response to disaster events. Many, but certainly

not all, disasters are preceded by a series of warnings or alerts. Organizations such as

the National Weather Service generate these messages and issue them to be distributed by

local offices in areas that may be affected by the impending hazard event. Salience effects

play an important role in determining the level of activity in response to these warnings.

Allport and Postman (1947) use the goal-gradient phenomenon to link salience and rumoring

behaviors. As an event becomes increasingly likely to affect a population, the ”more fertile

is the soil for anticipatory rumors” (Allport and Postman, 1947, p. 63). In anticipation

of the disaster event, individuals to whom the warning is salient go through processes of

confirming the warning, developing a ”warning belief” to assess whether the event poses a

threat, determining how threatening the risk is, and concluding that taking protective action
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is or is not necessary (Perry et al., 1981). Part of this process involves milling behaviors,

in which individuals collectively determine whether to pursue action in response to these

warning messages (Drabek et al., 1981; Fritz, 1961; Killian and Turner, 1972; Quarantelli

and Dynes, 1977). Milling is a classic example of a traditional rumoring behavior. This pre-

event activity is not boundless, however. Warnings and alerts are issued to specific locations

and persist for a finite period of time (ranging from an hour to a few days). Accordingly,

rumoring activity in response to warnings ought to occur when and where warnings are

active.

The immediate response to a hazard event primarily occurs at the site of the event as

the population situates itself in its new environment and begins response activities such

as rescue and mitigation. During and immediately following the event, people engage in

informal discussion of events and the passing of improvised news (Shibutani, 1966). Such

news frequently is more timely than news from official sources and therefore becomes the

dominant mode of information transmission (Caplow, 1947; Kreps, 1984). This sharing of

news primarily occurs where the impact of the event is salient to the population. Rumors

pertaining to a particular topic typically survive only as long as that topic is relevant to the

population (Allport and Postman, 1946). That is, distant populations wholly unaffected by

an event will have a low propensity to rumor about it. In addition to existing while salient,

rumors also thrive in disrupted environments. In disruptive and high-anxiety situations,

rumors spread quickly (Caputo, 1999; Stein, 1980; Walker and Beckerle, 1987) as populations

attempt to make sense of their circumstances. These salience and disruption effects also

extend to spatial contexts. In addition to temporal proximity, one’s spatial proximity to

a disrupted environment plays a role in the propensity to rumor about the event. Those

who witness an event (or its impact) typically communicate about the event with a specific

audience, those to whom the event is salient and interesting. It follows then that while the

disaster is ongoing and in its immediate aftermath we ought to observe rumoring activity in

and around locations directly impacted by the event.
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In the aftermath of the event we see additional communicative activities in response to the

event. In the areas directly impacted by the event we observe a continuation of response

and recovery efforts. Activity also begins to emerge in areas outside the disaster zone. The

event aftermath is frequently characterized by a series of distinct responses across different

distances to the epicenter (Dynes, 1970). Those near the disaster site frequently discuss

firsthand accounts of the event and spread information of these firsthand accounts to others.

Populations further away may hear about the impact of the event from news media. Some

events may be followed by a mass convergence phenomenon, in which individuals share

information about the event, express concern about those impacted, and/or attempt to

increase awareness about how to help those affected (Sutton, 2010). This mass convergence

may emerge in a variety of locations, from local individuals to those situated hundreds or

thousands of miles away (Hughes and Palen, 2009; Sutton, 2010). Eventually the response

will taper off as the event becomes less and less salient. Additionally, a return to normal

routines accompanies an elimination of the ambiguity under which rumoring thrives (Caputo,

1999; Schachter and Burdick, 1955; Stein, 1980). Unlike anticipatory and primary excitation

in response to the event, post-event secondary excitation may take place in locations distant

to the affected area.

A variety of social processes—including pre-event milling and generation of warning beliefs,

immediate response to the disrupted environment induced by the disaster, and mass con-

vergence following the event—generates signal in response to hazard events. Distinguishing

among them and distinguishing them from typical activity can be a challenge, however. That

they occur at different points in time and space implores us to use a spatio-temporal filtering

approach to identify them. We ought to observe distinct rumoring activity at specific points

in time and space in the time leading up to, during, and after an event. Detecting these

distinct processes will be an important step towards validating a spatio-temporal filtering

approach for measuring online rumoring behavior.
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2.2 Anomaly Detection

Informal communication is an essential component of disaster response and different types

of event-driven communication occur in particular spans of time and space. While we know

that anomalous communication activity occurs in response to disaster, the challenge here

is distinguishing that response from ordinary activity. Filtering signal from noise is key to

identifying surges of activity, whether said activity is social, man-made (e.g. traffic), or

natural (e.g. wind events). The ”activity monitoring” class of problems involves observation

of streams of activity, followed by an alert if an aberration has occurred in the stream

(Fawcett and Provost, 1999). The primary challenge is to balance sensitivity of the alert

mechanism while preserving robustness to noise in the signal (Stauffer and Grimson, 2000).

Too many false positives ensure that the alarm loses its effectiveness while excessive false

negatives may lead to a failure to correct or respond to a disruptive event, such as a the

closure of an emergency exit (Andrade et al., 2006), a traffic jam (Stauffer and Grimson,

2000), or a disruption of ordinary routines in a loading dock (Hamid et al., 2005). In this

case, I treat keyword-driven samples of online informal communication as distinct streams

of activity, whose disruption I identify using aggregate counts and spatio-temporal metadata

to help identify changes in behavior across time and space.

To ensure proper detection of communication surges in response to disasters, I need to

strike a balance between mistakenly classifying spurious changes of local, hazard-related

communication activity and ensuring that hazard-related communication activity in response

to disaster events is not overlooked. To detect aberrations in communication I use a profiling

method (Fawcett and Provost, 1999). The profiling method approach establishes a baseline

level of normal activity and looks for deviations from typical activity patterns or sequences;

these deviations are then classified as atypical events (Fawcett and Provost, 1999; Hamid

et al., 2005; Stauffer and Grimson, 2000). I follow this same approach by monitoring activity

streams over an extended period of time and establishing a baseline level of activity and
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measures of typical levels of variation. Having established baseline measures I can then

begin to look for aberrant surges of activity.

Orthogonal to the profiling method is the procedure for identifying responses to specific

hazard events in the stream of activity. The abundance of keywords collected under Project

HEROIC allows me to identify responses to a wide variety of disasters, including wildfires,

shootings, floods, tornadoes, structure collapses, and more. To account for differences in

volume and location of usage across keywords, I separate each keyword into its own distinct

stream of activity. Each keyword-driven activity stream ought to have a different spatio-

temporal activity profile: when and where people use a technical term such as “aftershock”

is very different from usage of a more general term such as “fire.” Accordingly, each keyword

has a distinct pattern of variation in volume across regular intervals (hourly, daily, monthly).

I illustrate this in Table 2.1, where I list the average daily posting rate for a variety of

keywords within 100 miles of three distinct areas: the small town of Carrington, North

Dakota (population 2,065); the large city of Denver, Colorado (population 600,158); and the

extremely large population center of New York, New York (population 8,491,079). I also

illustrate the total number of geolocated messages for each term on a daily basis.

Table 2.1: Daily posting rates for hazard-related keywords

Carrington, ND Denver, CO New York, NY Global

aftershock 0.000 (SD=0.000) 0.037 (SD=0.189) 0.211 (SD=0.802) 12.437 (SD=14.815)
alert 0.178 (SD=0.446) 27.819 (SD=21.371) 171.948 (SD=108.915) 2228.119 (SD=1201.739)

collapsed 0.000 (SD=0.000) 0.181 (SD=0.488) 2.811 (SD=6.681) 41.044 (SD=33.833)
earthquake 0.004 (SD=0.061) 0.556 (SD=1.880) 5.393 (SD=13.227) 934.219 (SD=638.979)

fire 0.439 (SD=1.044) 23.922 (SD=21.821) 215.442 (SD=180.595) 3930.097 (SD=3422.849)
flood 0.007 (SD=0.086) 8.126 (SD=32.929) 13.159 (SD=17.083) 385.252 (SD=464.900)
rain 0.409 (SD=0.884) 21.475 (SD=31.239) 265.404 (SD=378.567) 10720.110 (SD=5529.984)

shooting 0.063 (SD=0.243) 4.830 (SD=5.812) 38.337 (SD=40.214) 651.844 (SD=652.418)
tornado 0.061 (SD=0.434) 3.343 (SD=14.248) 10.600 (SD=40.636) 272.257 (SD=609.788)
warning 0.654 (SD=2.653) 9.621 (SD=21.176) 25.561 (SD=18.832) 812.208 (SD=707.917)
wildfire 0.000 (SD=0.000) 0.980 (SD=2.242) 0.693 (SD=1.395) 22.207 (SD=33.424)

Across each of these three areas posting rates change notably, with New York frequently

having an order of magnitude more daily hazard tweets than Denver, whose posting rates

are roughly two orders of magnitude higher than those around Carrington. Accordingly, I
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take steps to recognize the difference between an observation of 100 more “fire” keywords

than normal during a day in Carrington, North Dakota and an equivalent increase in New

York City. Given the small population of Carrington, such an increase is likely indicative of

a fire event, while the latter is well within the expected daily variation in New York City’s

population. Additionally, posting rates vary across keywords. In a city of Denver’s size, an

increase of 20 messages more than average containing the term “flood” is distinct from an

increase in 20 messages with the keyword “wildfire.” The rarity of the latter term suggests

that such an increase may be due to a wildfire event. The former term’s increase is likely

part of typical variation in activity, however. To account for this variation across keyword

streams and across space, I use individual profiling (Fawcett and Provost, 1999) for each

keyword. By characterizing the typical amount of activity across space and independently

across keywords, I create multiple information streams to monitor and thereby improve my

ability to detect responses to different kinds of events in different locales. We harness our

ability to detect change in aggregate activity to identify signals of hazard-related rumoring.

In addition to detecting when and where aberrations in activity occur, I need to identify the

direction and magnitude of activity changes. Determining the extent of the change in activity

is a key component of anomaly detection (Lu et al., 2004; Macleod and Congalton, 1998).

Emulating the concept of a spectral change vector (Singh, 1989), I describe the direction and

magnitude of change in activity relative to normal, baseline activity levels. Establishment

of this baseline allows me to determine when a particular aberration occurs. With our

timestamped (at the second) series of hazard-keyword communications, I use differences in

the volume of keyword usage to determine the magnitude and direction of change over time.
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2.3 Spatial Filtering

The spatial inhomogeneity of activity in response to disaster implores me to use spatial

subsampling to detect surges in activity across space. By filtering activity into distinct

blocks based on distance from the epicenter of a disaster event, I am able to harness (what

ought to be, per rumor theories) the strongest signal of communicative activity in response

to the event. Geographic metadata in our activity streams enables the use of these spatial

filtering techniques. Thanks to the rise of volunteered geographic information (VGI) in

social media, locating online informal communication is easier than it has ever been. VGI is

the voluntary creation, assembly, and dissemination of geographic information by the public

(Goodchild, 2007). Historically, geographic information has largely been produced by a small

collection of formal entities with access to high precision mapmaking tools. With the spread

of tools such as Google Maps and GPS-enabled cell phones, individuals have unprecedented

access to exceptionally precise mapmaking tools (Elwood et al., 2012). Websites such as

OpenStreetMap, Wikipedia, and Wikimapia are being joined by major services such as

Twitter and Facebook as platforms for individuals to provide geoinformation. The range

of information shared varies considerably, from reviews of local businesses to photographic

travel logs to geotagged Wikipedia entries that become accessible via online maps. Much of

the recent development of VGI initiatives has fostered the production of local geoinformation.

This is not a new phenomenon, however. Members of the population without expertise in

geography have historically contributed to the production of geographic information, albeit

less frequently and on a smaller scale. A series of land use surveys in 1930s and 1940s Britain

was carried out by schoolteachers and their pupils (hardly official sources in land use), and

the Audubon Society’s Christmas Bird Count has regularly harnessed volunteer information

about geolocated counts of birds for over a century (Elwood et al., 2012). The widespread

usage of VGI, however, is a novel phenomenon and I harness this location data to determine

where individuals are using particular event-specific keywords.
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The often informal nature of VGI allows it to be produced and disseminated very quickly.

During disaster events citizens function as local experts and use VGI to provide situational

reports, frequently before official sources are able to verify and release their reports (Good-

child, 2007). During a series of wildfires in 2009, user-generated maps of the affected areas

supplanted official sources, which were slower to incorporate details of the situation (Good-

child and Glennon, 2010). The lack of constraints on informal sources provokes questions

about determining the accuracy of VGI data. While geographic information has historically

followed a set of formal standards and been produced and verified by a handful of experts,

no such standardization or verification exists to ensure that individuals do not produce

false geographic information online. Geographers have addressed this by invoking Tobler’s

First Law of Geography and a variety of techniques from the field of informant accuracy

(Goodchild and Li, 2012; Latonero and Shklovski, 2010). Tobler’s First Law of Geography

states that “All things are related, but nearby things are more related than distant things”

(Tobler, 1970). Barring drastic changes to the landscape, new information from a specific

locale should be consistent with what we already know about that location as well as what

we know about nearby locations. If we notice a widespread surge of “blizzard” messages

during the winter in Denver, for example, we ought to be safe to assume that a response to

a blizzard-related event is occurring. If we identify a small number “brush fire” messages

sprinkled throughout the information stream during the same event, we can usually dismiss

such messages as noise. Tobler’s first law has been demonstrated to be accurate with VGI,

as geotagged Wikipedia entries in nearly two dozen languages demonstrate a high level of

precision and accuracy (Hecht and Moxley, 2009). Generally, consistent information across

geographic space implies reliability and accuracy.

Because geographic facts are typically objective and replicable, theories of informant accu-

racy help to verify the accuracy of VGI. Those with accurate domain knowledge provide

more reliable responses with less error than those without such knowledge (Romney et al.,

1986; Romney and Weller, 1984; Sudman et al., 1996; Weller and Romney, 1988). Their
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observations will cluster around a single “truth” while inaccurate observations (i.e. error)

will be randomly scattered around the truth; that is, error is inhomogeneous and does not

typically converge around a small number of data points. In the case of VGI-aided informa-

tion streams, during a disaster event any noise or error ought to be outweighed by the signal

produced by accurate observers. Should no such disaster be present, the indiscriminate noise

should ensure that we see no such signal in any direction. We are more likely to observe

an event where we find a series of similar, spatially clustered reports than we are if we only

observe a single report (Latonero and Shklovski, 2010). These principles of informant ac-

curacy have been used to infer characteristics of places from VGI: activity logs have been

used to characterize activity “hot spots” in a variety of urban environments (Ferrari et al.,

2011; Pozdnoukhov and Kaiser, 2011); geotagged photographs point to bastions of activity

and popular sites among tourists (Hollenstein and Purves, 2013; Leung and Newsam, 2010;

Mamei et al., 2010); and changes in spatio-temporal activity patterns throughout the day

enable the classification of different parts of the city as either residential, industry-driven

(“office towns”), nightlife-driven, or a combination of activities (Wakamiya et al., 2011). Not

unlike my purpose in this chapter, timestamped, topical, geolocated activity data enables

the identification of specific types of aberrant events, such as traffic events (Ribeiro Jr et al.,

2012). Through spatial filtering, geographic metadata greatly enhances anomaly detection

by allowing us to focus on activity signal at the site of the event.

2.4 Anomaly Detection on Twitter

I have described a typical set of responses to hazard events and now intend to identify those

responses in online data. Response to the warnings/alerts, response to the event, and post-

event mass convergence all occur at distinct points in time and space. Accordingly, I ought

to be able to measure different patterns in excitation across space and time. Responses to

24



warnings and alerts ought to occur in areas where such warnings were issued and they should

occur prior to the event. Reaction to the event itself ought to occur near the event epicenter

immediately following the event. Finally, mass convergence of attention will occur following

the event but may occur at any location. By sorting the data into distinct bins separated

across time and space, I attempt to identify surges in activity consistent with the response

we expect to follow a disaster.

To demonstrate how I detect informal communicative responses to disaster events, I use the

case of the Moore tornado. On Monday May 20th, 2013 an EF5 Tornado struck Moore, a

city of 55,000 in the Oklahoma City metro area. The Oklahoma Department of Emergency

Management reports that the tornado killed 25, injured 377, destroyed approximately 1,150

homes, and caused an estimated $2 billion in damages. A hallmark disaster, this was an

event that severely disrupted social routines and spurred a surge of activity in anticipation of

and response to the tornado. As with many such incidents, activity on Twitter reflected this

disruption. In Figure 2.1 I show a map of all geotagged tweets containing the word “tornado”

in the United States from May 18th through May 23rd and during a typical six-day period.

We observe a substantial increase in nationwide tornado tweets during the period around

Moore’s onset. I counted 14,871 geotagged tornado tweets worldwide during this six-day

period, compared to a typical six-day period, in which we would find an average of 1,634

worldwide, geotagged “tornado” tweets; the z-score for such an increase over this span is

5.18. Most of the activity during the Moore event is in the “Tornado Alley” section of the

United States, where several milder tornadoes touched down throughout the period. We also

see large increases in tornado tweets in unaffected areas, particularly in population centers

such as New York, Los Angeles, Chicago, and Atlanta. While we are primarily interested in

activity surges in affected areas, this surge in activity in unaffected areas is an interesting

byproduct, perhaps related to the severity of the Moore tornado. Many of these tweets

outside the affected areas share information, post news stories and photos, encourage aid
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Figure 2.1: I illustrate the location of all geotagged tweets originating from the United
States and containing the term “tornado.” Concentrations of red indicate higher levels of
tornado-related messaging activity. Above depicts the locations of geotagged tweets during
the six-day period surrounding the onset of an EF5 tornado in Moore, Oklahoma. Below
depicts a typical six-day period beginning on a Friday and ending on a Wednesday.

and donation, and express condolences to those affected by the tornado–all characteristics

of mass convergence phenomena. In the typical six-day period I find minimal discussion of
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tornadoes, as demonstrated by the small, faint sections of red on the map.

Figure 2.2: Concentrations of red represent usage of the term “tornado” in geolocated tweets
in the Oklahoma City metro area, with the Moore city center highlighted in yellow. Above
depicts the six-day period surrounding the onset of an EF5 tornado in Moore Oklahoma.
Below depicts a typical six-day period.

I illustrate the Oklahoma City metro area in Figure 2.2. We see a substantial increase in

“tornado” tweets during the disaster time period and very few “tornado” tweets during a
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typical period. The “tornado” tweets are widespread throughout the Oklahoma City metro

area during the tornado time period, with a particularly large concentration in the city of

Moore (highlighted in yellow). Of the 4,935 geotagged “tornado” tweets on May 20th, 716

originated within 100 miles of Moore. This is nearly 100 times more than the daily average

of 7.45 “tornado” tweets in the same location (z-score=68.18). This helps demonstrate the

utility of spatial filtering techniques for identifying signal of hazard-related communication

in response to disaster events. Globally, we find 20 times as many “tornado” tweets as

normal on May 20th. However, with spatial filtering we are able to find that this signal

peaks around Moore, where we note 96 times as many tweets as normal. I illustrate in

Figure 2.3 how filtering across space allows us to isolate elevated signals local to the disaster

event, in contrast to lower (but nonetheless elevated) signals at greater distances. Spatial

filtering allows us to refine our observations to identify the strongest signal of activity.
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Figure 2.3: Tornado-related message activity on May 20th, day of the Moore tornado. On
the left I illustrate raw counts of messages in each 100-mile bin around Moore and on the
right I depict the z-scores associated with each count. Both the raw counts and z-scores
indicate strong signal of activity around Moore. Beyond 300 miles, the signal drops off
notably. Although we observe large counts of messages at 600 miles (which includes Denver
and New Orleans) and 800 miles (which includes Chicago and Atlanta) from the event, the
z-score indicates that this is not as great of a departure from normal “tornado” message
counts as we observe between 100 and 300 miles, due to higher average activity in the 600
and 800-mile bins.
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We find a large difference between the volume of tornado-related informal communication

during the Moore tornado and a typical period, but I need to represent this as a systematic,

quantitative difference from a baseline level of tornado keyword activity. To obtain such a

baseline measurement, I compare the observed number of tweets to a measure of “normal”

activity, determined through daily averages of activity of geotagged “tornado” keywords.

Many “tornado” tweets throughout the year do not refer to ongoing weather events. Users

frequently refer to their homes, whose rooms’ disorganization and clutter resemble the af-

termath of a tornado. Additionally, many weather-related “tornado” tweets refer to past

events or fictional events in movies and television. All this background noise is captured

in my measure of “normal” activity. Surges in activity related to an actual tornado event

ought to produce a distinct signal above the typical “tornado” noise on Twitter, particularly

in areas near the site of the event. I use this hypothesis to develop an signal enhancement

technique that calculates the signal-to-noise ratio of activity at the local level relative to

global signal-to-noise level, which I illustrate in the following section.

2.5 Spatially Filtered Activity Signals

Through spatial filtering of activity data, I calculate the signal-to-noise ratio at sequential

distances from the event epicenter. I begin by taking the set of all geolocated tweets contain-

ing a keyword related to the hazard, such as ”tornado,” for example. Using the geographic

coordinates of each tweet, I bin tweets in concentric circles around the event epicenter, such

that I include all tweets within 100 miles of the epicenter in one bin, all tweets further than

100 miles from the epicenter up to 200 miles in another bin, and so on. I measure the volume

of activity in each of these bins. One could employ a wide variety of approaches for measur-

ing activity in each bin. A raw count of messages reflects the total volume of hazard-related

rumoring activity. As illustrated in Table 2.1, the counts of messages vary by location based
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on the populations in those locations. Accordingly, raw counts will be influenced by the

population in each bin. One could adjust for this by calculating the ratio of the observed

count of messages to the average daily count of messages. This relative rate would indicate

the posting rate on any given day relative to the average posting rate. Without recognizing

the typical variation in message counts on any given day, this relative rate offers no insight

into whether this departure is large or small compared to typical variation in posting rates.

To measure change in message count relative to typical variations in message counts, one

may employ a measure based on a z-score. By reporting how many standard deviations

above or below the mean our message count is, this measure tells us activity change net of

typical variation. In this chapter I employ a measure based on z-scores.

In each of these bins I compare the observed number of tweets to an expected number of

tweets in that bin, where the expected number is an average calculated from the baseline level

of daily activity. This baseline is based on a nine-month set of messages beginning in May of

2013. As demonstrated in Equation 1, I calculate z-scores at both the bin and global levels

and report the ratio of these z-scores. I define activity A as the count of messages containing

a keyword (or set of keywords) k in geographic bin b during time interval t. I observe

tweet volumes in 24-hour intervals, which illustrates daily changes in activity. For message

volume A during a given day in a particular geographic bin, I take the difference between

the observed number of messages in that geographic bin and the daily average number of

messages in that geographic bin, and divide the difference by the standard deviation of

number of daily messages in that bin. This follows the standard z-score calculation for how

far the observed spatio-temporal activity level is from the mean activity level. I call this the

raw spatially filtered signal. This tells us the extent to which the bin-level communication

volume varies compared to activity in a typical day.

In addition to calculating the z-score for a given keyword in a given spatio-temporally filtered

bin, I also calculate a z-score of all geolocated messages containing that z-score on that day.
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While a z-score in the spatio-temporally filtered bin indicates variation in activity in that

bin, such variation may not necessarily be specific to that bin. If we find that worldwide the

count of geolocated “tornado” messages is ten standard deviations above typical activity,

then we would be misguided to suggest that an increase of ten standard deviations in any

given bin is a feature specific to that bin. Instead this is likely a reflection of the increased

global activity. Likewise, if the global count of “tornado” messages is ten standard deviations

below normal, then a typical count of tornado messages in any given bin may be noteworthy.

To account for this I calculate the global z-score, which I call the global signal. The ratio

of z-scores gives us the ratio of spatially filtered signal to the global signal, which I call the

adjusted spatially filtered signal. I illustrate this equation below.

(
Akbt − Akb

σ(Akb)

)
Akgt − Akg

σ(Akg)


(2.1)

The numerator represents the magnitude of the spatially filtered keyword signal while the

denominator accounts for variation in global traffic of the keyword. Adjusting for global

variation in activity helps us account for spurious, global variation in keyword traffic that

may account for the change in activity we see at the local level. I calculate the adjusted

spatially filtered signal in each of the concentric bins around the event epicenter and observe

how the signal varies over time.

2.5.1 Moore Tornado Results

Calculating the adjusted spatially filtered activity across all geographic bins for the days

surrounding the Moore tornado, I plot the results below in Figure 2.4. On the y-axis is the
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adjusted spatially filtered signal and the x-axis illustrates the distance from the epicenter

(in 100-mile bins). I use distinct colors to plot each day’s adjusted spatially filtered signals

as we move further and further from Moore, Oklahoma, the epicenter of the EF5 tornado.

I find typical levels of tornado keywords during May 18th, two days before the event. On

May 19th, however, we begin to notice anticipatory excitation. I tallied 590 “tornado”

messages within 100 miles of Moore, well above the daily average of 7.45. This translates

to a 60-fold increase in the adjusted spatially filtered signal, above and beyond the global

level of “tornado” messages on that day. This signal persists within several hundred miles

of Moore and declines once we get further from 300 miles away. Much of this activity is in

response to the severe weather alerts issued throughout the area on the day preceding the

EF5. Reflecting this surge of event-specific keyword usage, the adjusted signal for that day

rises dramatically. This surge only appears in a handful of bins around Moore; locations not

affected by these warnings do not show surges in tornado communication. This is consistent

with the kind of activity we expect to observe in response to warnings and alerts, per rumor

theory.

Primary excitation on the day of the event is characterized by a strong signal of activity in

and around the impacted areas on the day of the event. I note more than a 100-fold increase

in signal within 100 miles on May 20th. This surge of activity in an extremely disrupted

environment is consistent with theories of rumoring during periods of disruption or anxiety.

Sustaining approximately $2 billion in damage, Moore was devastated following the tornado.

During this disruption we observe a tremendous increase in signal of “tornado” messages.

This signal declines with distance from the event epicenter, but remains strong elsewhere.

From 500 to 600 miles away a 50-fold increase in signal remains, with signal declining as a

function of distance to Moore.

On the day after the event we begin to notice secondary excitation which is characterized by

strong signals of a mass convergence phenomenon. Signal within 100 miles declines on the

32



100 200 500 1000 2000 5000

0
50

10
0

15
0

20
0

Signal to Noise Enhancement for Spatially Filtered 'Tornado' Tweets

Distance to Moore, OK (Miles)

R
at

io
 o

f Z
−

S
co

re
 a

t S
pe

ci
fie

d 
D

is
ta

nc
e 

to
 G

lo
ba

l Z
−

S
co

re
May 18th, 2013
May 19th, 2013
May 20th, 2013 (EF5 Tornado Strikes)
May 21st, 2013
May 22nd, 2013
May 23rd, 2013

Figure 2.4: Signal to noise ratio for “tornado” tweets binned at 100-mile increments from
the epicenter. I have smoothed the lines with a LOWESS routine.

day after the event, but remains elevated with an 80-fold increase in signal. Many bins exhibit

their highest signal on this day. We see great increases in activity within several hundred

miles of Moore, around 1000 miles, and around 2000 miles. As news spreads about the

devastation in Moore, we see a surge of attention to tornado-related discussion throughout

the United States. We even observe surges in activity abroad, which is reflected in the bins

4,000-5,000 miles away. Throughout the US and elsewhere, many of these messages express

condolences to those affected, raise awareness of how to help recovery efforts, and spread

information about the event. These are typical elements of mass convergence phenomena

(Dynes, 1970; Hughes and Palen, 2009; Sutton, 2010).
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Except for some residual signal 4,000-5,000 miles away, activity levels return to normal on

May 22nd. By this point, tornado-related rumoring activity has dropped back to baseline

levels. The event no longer appears to be a salient topic for rumors, perhaps because most

cognitive unclarity surrounding the event has been extinguished. By May 23rd all signals

have reverted back to baseline levels.

Using a spatial filtering approach, I am able to identify signals associated with the typical

sequence of hazard-related information. Anticipatory excitation occurs locally in response

to the series of warnings and alerts. Primary excitation is concentrated in Moore on the

day of the event and declines with distance to the event epicenter. Finally, many locations’

peak activity occurs during the phase of secondary excitation, in which mass convergence

of attention contributes to strong increases in signal as far as 5,000 miles away. The Moore

tornado was one of North America’s costliest disasters in 2013 and this pattern of response

may be atypical. To determine whether we can observe similar responses using spatial

filtering, I now turn to fourteen additional events.

2.5.2 Cumulative Results

In addition to the Moore tornado, I examined spatially filtered activity signals in response

to several disaster events in the United States and Canada. I provide some basic descriptives

about each event in Table 2.2, as well as a rating of how strong the adjusted spatially filtered

signal was at the event epicenter on the day of the event. The events cover a wide spectrum

of disasters experienced in the United States. We have natural disasters and man-made

disasters, both accidental (structure collapse) and intentional (shooting). Several of these

events occurred without warning while others were preceded by official warnings and alerts.

The impact of the events varies substantially, from events such as the Moore tornado, Calgary

floods, and Peoria tornado–whose damage estimates exceeded $1 billion–to earthquakes in
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Spanish Springs, NV and Atka, AK, which had no damage reported. Casualty estimates also

vary significantly across events: several tornadoes killed dozens and injured hundreds while

the earthquake events had no casualties. We also have considerable variation in the number

of people affected, with the Calgary floods affecting a city of over 1 million and the Atka

earthquakes impacting a town of only 61. Despite the diversity of these events in form and

impact, I routinely detect a strong, local activity signal on the day of the disaster (with the

lone exception being the Alexander, IA tornado). These findings demonstrate the robustness

of this approach, as I consistently identify informal responses to these events regardless of

measured impact, population size, or type of event.

Table 2.2: Event descriptions

Event Keyword Location Date Population Deaths Injuries Damage

EF5 tornado*** tornado Moore, OK 5.20.2013 55,081 24 377 $2 billion
EF4 tornado** tornado Peoria, IL 11.17.2013 119,698 2 125 $1.6 billion
EF4 tornado** tornado El Reno, OK 5.31.2013 17,510 8 151 $40 million
EF3 tornado tornado Alexander, IA 6.12.2013 175 0 0 < $ 1 million
Bridge collapse** collapsed Skagit River, WA 5.23.2013 31,743 0 3 $18 million
Building collapse** collapsed Philadelphia, PA 6.05.2013 1,526,006 6 14 < $1 million
M7.0 earthquake* earthquake Atka, AK 8.30.2013 61 0 0 0
M6.5 earthquake* earthquake Atka, AK 9.03.2013 61 0 0 0
M5.7 earthquake** earthquake Greenville, CA 5.24.2013 1,129 0 0 < $100k
M4.2 earthquake* earthquake Spanish Springs, NV 8.26.2013 15,064 0 0 0
Wildfire** wildfire Yarnell, AZ 6.28.2013 649 19 23 $1.8 million
Wildfire** wildfire Black Forest, CO 6.11.2013 13,116 2 0 $90 million
Flood*** flood Calgary, AB 6.20.2013 1,214,839 4 $1.7 billion
Flood* flood Boulder, CO 9.09.2013 97,385 8 0 $1 billion
School shooting* shooting Centennial, CO 12.13.2013 103,743 2 0 0

Adjusted activity signal within 100 miles of event epicenter: * > 5, ** > 10, *** > 50,

In Figure 2.5 I average the signal across all fifteen events and plot the adjusted activity signal

as a function of distance from event epicenter. I find typical levels of activity three days prior

to events and two days prior to events, on average. On the day prior to the events, however,

we begin to notice anticipatory excitation. I find, on average, a roughly 5-fold increase in

signal, which persists within a couple hundred miles of the event epicenter. Much of this

activity is in response to warnings and alerts issued in advance of some events. Primary

excitation is characterized by a strong signal of activity in and around the impacted areas

on the day of the event. I note more than a 20-fold increase in average signal around the

event epicenter on the day of the event. This surge of activity in a disrupted environment is
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consistent with theories of rumoring during periods of disruption or anxiety. Signal declines

with distance to event and, except for a small surge around 800 miles, is not distinguishable

from noise after 600 miles. Although signal declines within 200 miles on the day after the

event, signal of secondary excitation roughly matches the signal of primary excitation at

300 miles and beyond. This sustained signal at great distances is reminiscent of a mass

convergence phenomenon. As news spreads about events, we see a surge of attention to

hazard-related discussion. In many of the more severe events such as the Moore tornado,

Peoria tornado, and Calgary flooding, many of these messages express condolences to those

affected, raise awareness of how to help recovery efforts, and spread information about the

event. These are typical elements of mass convergence phenomena (Dynes, 1970; Hughes

and Palen, 2009; Sutton, 2010).

100 200 500 1000 2000

−
5

0
5

10
15

20
25

30

Average Signal to Noise Enhancement for Spatially Filtered Tweets

Distance to Event Epicenter (Miles)

A
dj

us
te

d 
S

pa
tia

lly
 F

ilt
er

ed
 S

ig
na

l E
nh

an
ce

m
en

t

−3 days
−2 days
−1 day
Event onset
+1 day
+2 days
+3 days

Figure 2.5: Adjusted spatially filtered signal for hazard keywords tweets across fifteen
different natural and man-made disaster events.

As this is a mix of events that are foreseeable and events that occur spontaneously, only some

are characterized by warnings and alerts. In Figure 2.6 I illustrate two plots: one depicting
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signal for events with warnings and one depicting signal for events without warnings.
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Figure 2.6: Anticipatory excitation is present in events with warnings (top) but disappears
when we examine events without warnings (bottom)
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As expected, I find evidence of anticipatory excitation in events with warnings while events

without warnings have no such excitation. Furthermore, the excitation occurs within about

300 miles on the day prior to the event. As these warnings may span large areas, these results

are reasonable. In neither of these cases, however, do we observe an increase in signal two or

three days prior to the event, before such warnings are issued. This demonstrates that, on

average, I am not measuring false positives of signal. Furthermore, signal generally returns

to baseline levels by the second and third days after the event, after mass convergence of

attention has subsided. While the spatial filtering technique is sensitive enough to pick up

earthquake events near the tip of the Aleutian Islands in Atka, AK, it is robust enough to

noise that I do not falsely report any surges in activity signal several days before or after

any event. These results help validate the overall findings.

Although our observations of mass convergence are constrained to events with warnings, I do

not expect a direct relationship between the two to exist. Instead this appears to be related

to the fact that the most destructive events we observe—events that should be characterized

by post-event mass convergence—are events such as floods and tornadoes, events typically

characterized by warnings and alerts.

I find clear evidence of three distinct activities occurring during these disasters. Among

events with warnings, I find anticipatory excitation occurring near the site of the event

impact. This is consistent with salience theories (Allport and Postman, 1946; Caplow, 1947;

Larsen, 1954) and Allport and Postman (1947)’s goal gradient hypothesis. Those to whom

the alerts/warnings are salient engage in greater levels of hazard-related rumoring. On the

day of the event I find primary excitation peaking at the site of the event and declining

with distance. Disaster epicenters are frequently characterized by disruption, anxiety, and

informal communication (Caputo, 1999; Schachter and Burdick, 1955; Stein, 1980; Walker

and Beckerle, 1987) and we find strong signals of this activity. Finally, I observe mass

convergence on the day after severe events and the spatial heterogeneity of this response
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is consistent with typical patterns of mass convergence (Hughes and Palen, 2009; Sutton,

2010). By filtering the data across time and space, I am able to distinguish among these

responses to disaster events.

2.6 Discussion

By monitoring streams of geolocated informal messaging, I am consistently able to detect

surges of activity in response to—and for certain events, in anticipation of—a wide range

of disaster events. Following longstanding rumor theories and using VGI whose accuracy

is supported by Tobler’s First Law of Geography and informant accuracy theories, I filter

these data streams accordingly to enhance signal and eliminate noise from distant locations.

I find the strongest signal-to-noise ratio close to the site of disaster, with the activity signal

steadily declining with distance to the epicenter. Comparison to baseline levels of activity—

at the local level across time and the global level for that particular day—enables detection

of signal among the noise in areas as remote as the Aleutian Islands or areas as noisy

as Philadelphia, Pennsylvania. Due to the disruptive nature of disasters and the public’s

response to that disruption, I am able to harness these deviations in typical activity to locate

surges of communication in response to these disasters.

These results demonstrate the utility of using filtering techniques to identify and classify

signals in data streams. By filtering out data from locations where we do not a priori expect

surges in activity, we greatly enhance detectable signal. This improves the effectiveness

of event detection techniques, particularly in cases where we have spatial and temporal

metadata associated with activity logs. Beyond illustrating changes in signal strength, these

changes across distance may reflect different social processes, such as direct experience and

word of mouth in the directly affected areas and reaction to news reports elsewhere. Finally,

the results support rumor theories and theories of mass convergence by demonstrating that
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certain responses have distinct patterns across space and time. The proliferation of VGI data

enable us to revisit and refine classical theories with data whose precision was previously

unattainable.
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Chapter 3

Spatial Variation in Hazard-Related

Content in Online Informal

Communication

Over the past few decades the volume of text transmitted electronically has grown dramat-

ically. Major newspapers publish volumes of stories on a daily basis, mobile phone users

exchange text messages, and the public increasingly posts text through weblogs and sites

such as Twitter and Facebook. Identifying topics in these voluminous streams of text is an

ongoing research frontier (Hoffman et al., 2010; Ramage et al., 2010; Zheng et al., 2006). One

of the primary challenges in this domain is that the population of documents (articles, text

messages, tweets) in these streams is too large to examine manually, as reading millions of

documents is infeasible. This has spurred the development of automated and semi-automated

methods for identifying signals in text, a research problem that has increasingly drawn the

interest of social scientists (Hopkins and King, 2010; Lucas et al., 2015; Roberts et al., 2014).

Deciphering topics in length-constrained streams of messages poses unique challenges for lan-
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guage processing. Media such as text messages and Twitter posts impose strict limits on the

text length, resulting in linguistic idiosyncrasies such as acronyms, obscure shorthand, and

grammatical oddities (Kireyev et al., 2009). When performed without a strong understand-

ing of the underlying text, automated analysis of this kind of text can lead to confounding

or utterly incorrect results (Back et al., 2011; Bollen et al., 2011; Lansdall-Welfare et al.,

2012). To avoid these pitfalls, I test the viability of an approach that leverages a corpus of

human-coded messages to identify and categorize topics in streams of terse text. One of the

key advantages is that this relies on the expertise of human coding to develop a corpus of

coded messages, which we can use to identify topics in subsequent events. This eliminates

the need for hand-coding every case study one wishes to analyze.

In the previous chapter I demonstrated that we can harness what is known about the ru-

moring phenomenon to develop spatio-temporal filtering techniques that identify rumoring

activity amid disaster events. This chapter follows the same spatio-temporal filtering ap-

proach of the previous, but uses this approach to identify surges in particular message content

during disaster events. Rather than identify changes in volume in response to disaster, this

chapter identifies surges in content resulting from topic coalescence during the rumoring

process. By harnessing what is known about when and where topics converge during ru-

moring (and how the convergence varies across space), this chapter assesses the feasibility of

using this spatio-temporal filtering approach in conjunction with coded messages to measure

content of hazard-related rumoring.

3.1 Content Evolution in Rumors

Many describe rumoring as a process that helps populations engage in collective problem

solving in order to explain how the world (or a small part of it) works (Rosnow, 1988; Shibu-

tani, 1966; Sinha, 1952; Walker and Beckerle, 1987). Rosnow (1974) describes rumoring as a
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three-step process, beginning with the parturition stage during which rumor statements are

generated. While rumoring activity increases during this period, rumor statements converge

onto the subject of interest. This period is followed by the diffusion stage when some of

those rumor statements gain traction and begin to spread through a population. The final

stage is control, when the rumor achieves saturation among the population or facts become

disclosed by an official source. After this final stage rumoring activity dissipates as the

rumoring process comes to an end.

As the rumoring phenomenon undergoes its typical pattern of evolution, the content of

rumor statements likewise undergoes evolution. Allport and Postman (1947) were first to

describe three of the primary processes that shape rumor statements: leveling, sharpen-

ing, and assimilation. Leveling refers to the process by which a message loses non-essential

details and becomes shorter and more precise as it spreads from person to person. Com-

plementing leveling, sharpening is the selective reporting of details from a larger context.

Finally, assimilation refers to the distortion of memories, as subjects recall what ought to

have been observed rather than what was observed (for example, a marquee at a movie

theater that mentioned actor “Gene Antry” was usually recalled as “Gene Autry”). These

processes simplify messages to make them more suitable for retransmission, but they also

help ground the rumor in reality (or, at least, what reality ought to be) in order to improve

its function as a sensemaking tool. These developments typically catalyze the convergence

of rumor statements onto a particular topic by trimming any extraneous information. This

development helps to focus rumors onto a specific substantive problem for the population

to solve. The problem-solving process frequently follows a common pattern beginning with

uncertainty, followed by speculation, and concluding with a reduction of cognitive unclarity

through the development of a common understanding or belief (Bordia and DiFonzo, 2004).

Upon first hearing a rumor, people generally consult with others to determine the validity

of the rumor (Caplow, 1947; Kapferer, 1989). In their observations of rumors among in-

ternet discussion groups, Bordia and DiFonzo (2004) find mostly interrogatory messages in

43



the early phase of rumoring, followed by disbelief messages. Sensemaking then peaks and

discussion shifts away from rumoring as digressive messages peak at the final time period.

With most uncertainty eliminated in this final time period, individuals divert their attention

to new, unrelated topics. Bordia and DiFonzo (2004) recognize this systematic evolution of

content and argue that this illustrates that rumoring is a task of collective problem solv-

ing. The convergence of rumors onto a particular problem and the population’s process of

understanding that problem are characteristic features of rumoring behavior. Populations

purposively engage in rumoring and we can harness known characteristics of the rumoring

process to identify topical convergence and evolution over the course of disaster events.

While rumor statements show variation in content across time, they also vary across space.

As discussed in the previous chapter, rumor diffusion decreases as a function of distance

due to salience effects (Caplow, 1947). Among populations that do engage in rumoring

during a disaster event, different populations will rumor about distinct aspects of that event

that they find to be salient. The content of their rumors will be differentiated accordingly.

Populations across space may have different informational needs and they will attend to

and disseminate information that pertains to those needs (Shklovski et al., 2008; Starbird

et al., 2012). In a study of rumoring during a forest fire, Larsen (1954) finds that the local

“in group” of firefighters and local residents discussed property damage and casualties while

the distant “out group” of public officials and reporters focused on identifying leadership

during the event and determining who was to blame (Larsen, 1954, p. 115). Although the

fire event was salient to both populations, each focused on unique features of the event and

the subject of their rumors reflects that. Differential attention to specific aspects of the

subject of a rumor can lead populations to converge on distinct rumor topics during the

same disaster event.

Although not described in the context of rumor theories, literature on disasters and dis-

rupted environments suggests a convergence and evolution of information discussed infor-
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mally among those affected by the event. Perry et al. (1981) identify four components that

define a post-warning environment, all of which have analogs in the rumoring literature.

These components include: confirming the warning, developing a “warning belief” to de-

termine whether a threat exists, determining how threatening the risk is, and concluding

that a protective response may or may not be necessary. This evolution is similar to the

interrogatory-disbelief-sensemaking-digressive sequence described by Bordia and DiFonzo

(2004). Others find a common sequence of events where people engage in milling behavior

in order to verify official information, after which they determine whether or not to act

on that information (Drabek et al., 1981; Leik et al., 1981; Quarantelli, 1954, 1980). This

pattern of post-warning rumoring behavior is reproduced in online, informal communication

as the public increasingly turns to Twitter for information sharing, collective sensemak-

ing, and message retransmission (Sutton et al., 2008, 2013a,b; Vieweg et al., 2010, 2008).

Time-ordered convergence of message topics has also been reported in online, informal com-

munication as “siren” and “tornado” messages operated on different “life cycles” during the

Moore tornado (Blanford and MacEachren, 2014). Message topics also vary across space

during disaster events, as individuals who self-identify as locals were more likely to retrans-

mit locally relevant information during a series of Oklahoma fires while non-local individuals

shared more abstract information (Starbird and Palen, 2010). Starbird et al. (2010) report

similar findings from the Red River floods of 2009: those who posted autobiographical mes-

sages or adapted existing knowledge were primarily locals. These recent case studies provide

initial evidence that online informal communication follows typical rumoring processes of

convergence onto a set of problems and a content evolution as the population strives to

eliminate cognitive unclarity.
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3.2 Spatio-temporal Content Filtering

To detect topical convergence and content evolution of rumor messages during disaster events,

I return to the spatio-temporal filtering approach employed in the last chapter. I use the

same timestamped, geolocated streams of messages containing hazard-related keywords and

put them into bins based on the timestamp and location. Again, I build bins that span

seven days (three days prior, the day of event onset, and the following three days) around

the disaster event. Instead of creating 100-mile-wide bins in concentric circles around the

event epicenter, I create three spatial bins. The first includes all messages within 100 miles

of the event epicenter; I call this the local bin. Next I create the regional bin, which includes

all messages between 100 and 500 miles of the event. Finally, I create a bin of distant

messages, which are posted between 500 and 2500 miles from the event. Compared to the

spatially filtered bins of activity, several of these bins have been consolidated to reduce

sparsity of messages in certain bins. Per theories of rumoring and information transmission

during disasters, I ought to be able to differentiate the topics discussed in these bins. Topics

discussed at ground zero should be distinct from those discussed hundreds or thousands of

miles away. Likewise, topics ought to vary over time, with a convergence on a set of rumors

during the onset of the disaster event, an establishment of a set of ground truths to eliminate

cognitive unclarity, and a divergence from those topics once the disruption induced by the

disaster has passed.

3.2.1 Content Codes

To assess the content of each of these spatio-temporal bins, I compare each bin’s content

to a corpus of messages that have been human-coded for a variety of hazard-related topics.

This corpus of over 12,000 coded tweets comes from five different disaster events: the Boston

Marathon bombing of 2013, Hurricane Sandy, Waldo Canyon Fire, Boulder floods of 2013,
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and Winter Storm Nemo. Drawn from the HEROIC database, these sets of tweets come from

a targeted sample of accounts that covers all officials who were actively posting messages

during the event. These accounts represent a mix of appointed and elected public officials

whose duties include some aspect public safety and those tasked with providing information

during disasters, including news media. For each event we collected all tweets posted by

those accounts during the period of imminent threat or hazard, which ranged in duration

from approximately twenty-four hours during the Waldo Canyon Fire to five days during the

aftermath of the Boston Marathon bombing. These messages were independently coded by

Jeannette Sutton and Britta Johnson (Sutton et al., 2015, 2013b), two members of Project

HEROIC, and cross-checked for a sufficient level of inter-coder reliability. We identified

several content themes that were common to the five events and coded each message for its

presence of that theme. The content codes represent a mix of directives and information

dissemination in addition to more amiable content such as gratitude and encouragement.

The former categories represent typical statements from emergency managers and others

relaying firsthand information during disasters while the latter categories appeared when

organizations would thank others for their assistance, thank the public for cooperation, or

promote cohesion and unity in the aftermath of a disruptive event (the “Boston Strong”

statement was common in these kinds of cohesion-building statements). None of the content

elements are mutually exclusive; messages may belong to multiple categories. I list in table

3.1 the content elements for which each message was coded.

These coded messages are drawn from events representing a variety of disasters, both natural

and anthropogenic. Additionally, they represent a variety of impacted populations, from

the major metropolitan areas impacted by the Boston Bombing and Hurricane Sandy to

moderately sized cities of Boulder and Colorado Springs, CO. The diversity of event types

and populations impacted limit the chance that I will mistakenly classify similarity based

on hazard type or population characteristics rather than message content.
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Table 3.1: Coded content categories

Category Content

Advisory Advice that guides people on specific actions they should
take in response to the event

Closures/Openings Closure and re-opening of roads, facilities, public trans-
portation

Corrections Corrections to previously posted information
Emotive/Judgment Comments expressing emotion, judgment, evaluative

content, or encouragement
Hazard Impact Descriptions including when and where the event will

strike, the impact of the event, and descriptions of dam-
age

Help/Directed Comm. Direct requests for assistance
Information Any messages that provide information regarding ongo-

ing response and recovery actions
Re-entry Information about returning after evacuation
Thank Yous Messages offering gratitude and thanks
Volunteer/Donate/Help Information on how to help

3.2.2 Assessing Topic Similarity

I use pairwise comparison between the spatio-temporally filtered bins of observed messages

and the sets of coded messages to determine how well the content of each bin aligns with the

content in the set of messages belonging to a particular code. By observing the similarities

between bins and our coded corpus over time, I observe how the content of observed messages

varies across time and space and determine if there is convergence on any particular topic or

set of topics. I use a bag of words approach to measure content of the bin and the content

of the set of messages belonging to a code, each of which I will refer to as a document. The

bag of words approach simplifies each document by representing it as a multiset of words.

This approach disregards word order (and hence grammar) and represents the document as

a vector. Each entry in that vector represents a word and the value refers to the number of

times the word appears in the document. While frequency of appearance is the simplest value,

other weights based on bigrams, trigrams, or term frequency–inverse document frequency

(tf-idf) are also frequently employed. Using this simplified approach we can derive topical
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information from each document based on the weights associated with each term.

I use cosine similarity to assess the topical similarity between the two documents. Cosine

similarity calculates the cosine of an angle between two documents in vector space (Singhal,

2001). To aid exposition, I visualize the concept in Figure 3.1. I illustrate four color-coded

documents containing a total of two terms (for the sake of simplicity), which creates a two-

dimensional space for these documents to inhabit. We can represent each document with a

vector from the origin to its position in space, where position is is based on the weights of

terms in the document.

Documents further apart in this topic space are more dissimilar while documents closer

together have more similar topics. I quantify similarity based on the cosine of the angle

between the vectors representing documents. In the schematic figure, documents 1 and 3

share no terms and the angle between their vectors is 90 degrees. Maximally dissimilar in

this space, the cosine similarity between them is 0. A 45-degree angle separates document 2

from document 1 and document 3; the cosine similarity between 2 and 1 and between 1 and 3

is .707, suggesting notable similarity between them. With an angle of 0 between the vectors

of documents 3 and 4, their cosine similarity is maximal at 1. Although documents 3 and 4

contain different counts of the term “alert,” the cosine similarity approach normalizes counts

of terms to prevent measures of (dis)similarity from reflecting differences in magnitudes of

word counts. Accordingly, document 2 would sit on the same vector as a document stating

“tornado alert” and a document containing the terms “tornado” and “alert” 100 times each.

While this two-dimensional topic space is easy to represent through visualization, in practice

I will calculate cosines between vectors in k-dimensional space, where k is the total number

of terms appearing in either document.

I calculate the cosine similarity between each pair of documents, where one document is the

set of messages in a spatio-temporally filtered bin and the other is the set of all messages

belonging to a specific code (e.g. information, advisory, emotive, etc.). I represent each
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“Tornado” 
occurrences 

“Alert” occurrences 

Documents: 
1. tornado tornado 
2. tornado alert tornado alert 
3. alert alert 
4. alert alert alert 

Figure 3.1: Cosine similarity measures the similarity of documents when projected into
vector space, where location is defined by the frequency of terms in that document. The
size of the angle between documents in this space is proportional to their dissimilarity.
Orthogonal to the vectors of documents 3 and 4, document 1 is maximally dissimilar from
documents 3 and 4. Because 3 and 4 sit on the same vector, they are maximally similar.
Document 2 is moderately similar to document 1 and documents 3 and 4. Because the
documents only contain two terms among them, I only need two dimensions to represent the
vector space. In practice, vector space often has hundreds or thousands of dimensions.

document by a vector of weights representing the document’s bigram distribution. These

bigrams are composed of consecutive words in each tweet. For example, a message stating (“I

saw a tornado outside”) would have the bigrams “I saw,” “saw a,” “a tornado,” and “tornado

outside.” Using bigrams allows me to preserve stopwords, which are typically discarded in

language processing in order to prevent excess weight from being placed on terms such as

“a,” “that,” or “and.” Prepositions, conjunctions, articles, and other stopwords often have
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subtle yet meaningful implications and I am accordingly hesitant to discard them. By using

bigrams, I preserve these stopwords without allowing them to dominate the vector weights.

For each document, the weights are equivalent to the total number of times each bigram

appears in the document.

3.3 Results

Following the same adjusted spatio-temporally filtered signal enhancement technique from

the previous chapter, I calculate how much signal enhancement we achieve through spatio-

temporal filtering of tweets. Instead of identifying enhancement of activity signal, however,

I measure enhancement of topic signal. Consider an example where I measure the amount

of emotive topic enhancement we attain in a local bin of “tornado” messages on the day of a

disaster event. To calculate the topic enhancement I measure the cosine similarity between

the observed set of local “tornado” messages on the event day and the set of messages coded

for the presence of emotive content. I compare the observed local-emotive cosine similarity to

the expected local-emotive cosine similarity, calculated from the average daily local-emotive

cosine similarity. I calculate a z-score by taking the difference between the observed and

average emotive-local cosine similarity and dividing it by the standard deviation of the daily

local-emotive cosine similarities. This gives us the raw spatially filtered topic enhancement,

a measure of how much more similar the “tornado” messages in the local bin are to the

emotive messages on that given day, compared to a typical day. I adjust for global topic

similarity by calculating the global z-score, where this represents how much more (or less)

emotive content we observe among all “tornado” messages on the event day, relative to

typical global variation. I demonstrate in Equation 3.1 how I calculate z-scores at both the
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bin and global levels and report the ratio of these z-scores.

(
CSbtc − CSbc

σ(CSbc)

)
CSgtc − CSgc

σ(CSgc)


(3.1)

In the general case I define cosine similarity CS as cosine similarity between our observed

messages in geographic bin b during time interval t and the set of messages coded for topic

c. The numerator gives us the raw spatially filtered topic signal while the denominator

indicates the global signal. Together the ratio of these two gives us the adjusted spatially

filtered topic signal, which tells us how similar messages in a bin are to a topic, net of the

typical similarity of messages in that bin to that topic and net of global similarity to that

topic on that particular day.

For each of the seven days surrounding a disaster event, I calculate the adjusted spatially

filtered topic enhancement (ASFTE) at the local, regional, and distant levels for all ten

of the coded categories. This is a computationally expensive process that requires me to

calculate the cosine similarity between each code and each of the four bins (local, regional,

geographic, and all global messages) for the entirety of the nine-month reference period.

This is necessary in order to establish the mean and standard deviation of similarities for

each category in each bin. I illustrate in Table 3.2 the number of messages in each content

category and for each keyword (globally) on a daily basis. Due to the expense of parsing

the messages, constructing vectors of bigrams, and comparing them, I use a subset of events

examined in the previous chapter.

In Table 3.3 I list the events for which I calculate the adjusted spatially filtered topic enhance-

ment. This covers a mix of events preceded by warnings and events occurring spontaneously.
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Table 3.2: Counts of messages and bigrams

Document Messages Bigrams

Content Codes
Advisory 395 4,506
Closure/Opening 424 3,959
Correction 20 233
Emotive 119 1,543
Evacuation 115 1,250
Impact 207 2,578
Help/Directed Comm. 50 708
Information 882 9,802
Thanks 155 1,712
Volunteer/Donate 29 344

Daily Keyword Streams
“Collapsed” avg. 41.7 599.2
“Earthquake” avg. 930.8 5,840.10
“Flood” avg. 385.2 3,546.70
“Shooting” avg. 651.8 7,281.20
“Tornado” avg. 248.8 2,434.20
“Wildfire” avg. 21 231.4

Additionally, these events inflict a wide range of impact, with some having no reported

damage and some causing billions of dollars in damage.

Table 3.3: Event descriptions

Event Keyword Location Date Population Deaths Injuries Damage

EF5 tornado tornado Moore, OK 5.20.2013 55,081 24 377 $2 billion
EF4 tornado tornado Peoria, IL 11.17.2013 119,698 2 125 $1.6 billion
EF4 tornado tornado El Reno, OK 5.31.2013 17510 8 151 $40 million
Building collapse collapsed Philadelphia, PA 6.05.2013 1,526,006 6 14 < $1 million
M4.2 earthquake earthquake Spanish Springs, NV 8.26.2013 15,064 0 0 0
Wildfire wildfire Yarnell, AZ 6.28.2013 649 19 23 $1.8 million
Flood flood Calgary, AB 6.20.2013 1,214,839 4 $1.7 billion
School shooting shooting Centennial, CO 12.13.2013 103,743 2 0 0

I illustrate the average spatially filtered topic enhancement in Figure 3.2, with each frame

representing a different geographic region. Each coded topic is distinctly colored to show its

individual topic enhancement over a seven day-span of time surrounding the disaster event.

The y-axis indicates the adjusted spatially filtered topic enhancement, with higher values

indicating more similarity with that topic (net of both typical daily similarity and global
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similarity on that day). The x-axis indicates the day relative to event onset, beginning three

days prior to the event onset and ending three days following the event onset. In the local

region we observe a distinct increase in topic signal on the day of the event; this activity

subsides on the following day and returns to typical levels on the second day after the event.

The increase in topic enhancement suggests that messages in that local bin are more closely

aligned with each category of coded messages. We find less topic enhancement in the regional

bin and no clear signal enhancement in the distant region, suggesting less similarity between

topics discussed in those regions and the coded corpus of messages. The Appendix contains

tables with significance tests for the plotted values.

Although we observe topic enhancement in the local region, there is notable similarity among

the signal enhancement for each individual topic. This suggests that I am picking up some

dimension of hazard-related communication that is common to each individual coded cate-

gory, rather than observing distinct signal from each of the ten categories. The homogeneity

of signal across categories may represent an emergency management dimension of discussing

disasters that is common to emergency managers, public officials, and news media that com-

pose the accounts in the coded corpus. Language they use may be more germane to topics

at ground zero. This surge in similarity of messages in the local bin with the coded messages

suggests a topical convergence on the day of the event. This is a distinct contrast from the

pattern of signal enhancement in the regional and distant bins. That we observe notable

differences between regions is consistent with rumor theories and theories of information

diffusion during disasters. Groups in different locations have different informational needs

during a disaster and the content of their rumor statements will reflect this. These results

offer some support of these theories and, more generally, endorse a spatio-temporal filtering

approach for isolating particular rumoring signals.

While the average adjusted spatially filtered topic enhancement shows some increase in local

hazard signal in anticipation of the event, not all of these events were preceded by warnings
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Figure 3.2: Adjusted spatially filtered topic enhancement averaged across all eight events
and plotted over a seven-day span surrounding a disaster event. Each color represents a
different category from the coded corpus of messages. Higher values indicate the observed
messages have elevated similarity with that topic, net of both typical daily topic similarity
in that region and global topic similarity on that specific day. The results show a local
convergence of hazard-related topics surrounding the disaster, with no clear convergence on
these topics in the regional and distant bins. Please refer to the Appendix for significance
tests on the plotted values.

and alerts. For further validation of the results, I split the events into those that occurred

with advance warning and those that did not. I plot the split results in Figure 3.3.
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Figure 3.3: I separate local adjusted spatially filtered topic enhancement into events that
are preceded by warnings (left) and those that occur without warning (right). The contrast
between the two helps to validate that I am indeed picking up signal of hazard-related topics.

The results provide further face validity for the local signal I am picking up through spatial

filtering. On the day prior to the event we observe no signal enhancement for hazard topics

occurring without warning. By contrast, we observe an increase in topic signal prior to

events that are preceded by warnings. We observe elevated signal of the coded topics on the

day prior to the event, followed by a peak on the day of the event and a decline towards

normality afterwards. In addition to helping validate this technique, this also supports that

we can pick up signal of the Allport and Postman (1947) goal-gradient phenomenon, where

populations are increasingly likely to rumor about an imminent event. We observe topic

coalescence in anticipation of the event, as the content of communication begins to converge

on hazard-related topics.

The results indicate that the spatio-temporal filtering approach can distinguish between local,

regional, and distant topic signals across a variety rumoring events. The surge of similarity to

the coded corpus in the local bin suggests a convergence on emergency management-related

topics common to the coded corpus. That we observe no such convergence in the regional
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and distant bins indicates a contrast between the content of messages observed in the local

area and the regional/distant bins. Because we cannot readily distinguish the signals of

individual topics, we have no evidence of evolution of rumoring topic content over the course

of disaster events. To evaluate whether these results are indeed indicative of a lack of content

evolution or whether this is an artifact of the corpus of coded messages, I turn to the Moore

case study for further investigation of rumoring content.

3.3.1 Moore Case Study

In both the aggregate case and in Moore (as demonstrated in Figure 3.4) I find evidence of

local convergence on some rumoring topic (or set of topics), but I cannot readily distinguish

among the individual topic signals. Because the coded topics seem to represent a general

signal of some emergency management dimension of discussion, I cannot identify any evidence

of evolution of content from topic to topic over the course of the event(s). To remedy this,

I examine rumoring during the Moore event in greater depth to determine if I can find any

evidence of content evolution. This investigation will offer further validation (or perhaps

cast doubt) on the patterns of topical convergence we observed during the rumoring process.

As illustrated in Figure 3.4 the adjusted spatially filtered topic enhancement in Moore’s

local, regional, and distant bins looks qualitatively similar to the adjusted spatially filtered

topic enhancement averaged across all eight events. We observe local topic convergence in

anticipation of the event, some evidence of delayed regional topic convergence following the

event (which is slightly more pronounced than the aggregate regional signal), and no notable

signal enhancement in the distant bin. The similarities between the Moore event and the

aggregate pattern indicate that it is not wholly inappropriate to suggest that the findings of

the Moore case may generalize to other events. The analyses of the Moore case study serve

two purposes: 1) further investigation of patterns of topic convergence and 2) identification
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Figure 3.4: Adjusted spatially filtered topic enhancement during the Moore tornado. The
pattern bears a strong resemblance to the average ASFTE.

of the presence or absence of topic evolution over the course of the event.
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3.3.2 Interregional Similarity

I begin by investigating interregional topic convergence by measuring the extent to which

different regions discuss the same topics. For each of the seven days surrounding the Moore

tornado I calculated the cosine similarities among the sets of all “tornado” messages orig-

inating from each region. We observe little similarity between regions three days prior to

the event and two days prior, when most tornado-related messages were a mixture of off-

topic and on-topic. On the day before the Moore tornado, watches were issued throughout

Oklahoma, Kansas, Nebraska, Iowa, and Missouri. On this day we observe a large increase

in cosine similarities, suggesting a coalescence of topics common to all three regions. We

observe the strongest overlap in topics between the regional and distant bins. Although

elevated above typical levels, the similarity between local topics and regional/distant topics

is substantially lower than the similarity between regional and distant bins. This suggests a

division of topics between the local bin and the regional/distant bins.

This distinction between local topics and regional/distant topics persists on the day of the

Moore tornado. Again, the similarity between regional and distant bins is much higher than

the similarity either bin has with the local region. On the day following the Moore tornado

the distinction declines somewhat. While the local-regional similarity remains quite low,

the local-distant similarity becomes the highest interregional similarity we observe on that

particular day. By the second day after the event topics diverge across regions and on the

third day they return to their pre-event levels which indicate no notable similarity across

the regions.

These results provide further evidence for the finding that hazard-related rumoring does not

fully converge on a single topic across all regions. This was evident in the aggregate case

because we found convergence on emergency management topics local in the local bins but

no such convergence elsewhere. Although we did not observe convergence on emergency
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Figure 3.5: Over the seven-day span surrounding the Moore tornado I represent the cosine
similarity between each region’s set of “tornado” messages. Darker blue areas represent
stronger cosine similarities, while lighter areas indicate less similarity. The results highlight
an overall trend of topic coalescence on the three-day period surrounding the Moore tornado,
but not all locations appear to converge on the same topics.

management topics in the regional or distant bins, the results here suggest that they may

instead have converged on other topics, as suggested by their remarkably high cosine similar-

ities. Although we do not find strong evidence of an overall topic convergence, the notable

increase in baseline interregional cosine similarity suggests that there is some minor to mod-

erate overlap across all regions. They may not necessarily attend to the same specific subject

matter, but they all appear to be discussing a common topic.
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3.3.3 Intraregional Similarity

I next compare sets of “tornado” messages within each bin to compare intraregional similarity

to interregional similarity. By identifying whether similarity was stronger within or across

regions, we can more accurately characterize the convergence phenomenon. I calculated the

cosine similarity between all days’ “tornado” messages within each region and plotted the

results in Figure 3.6. In each bin we observe elevated autocorrelation around the time of

the Moore tornado. In fact, all three bins exhibit the highest cosine similarities between the

pairing of days T-1 and T and the pairing of T and T+1. This not a clear continuation of

topics across the entire time period, however, as in all three cases the similarity between T-1

and T+1 is substantially lower than the aforementioned similarities. Instead this suggests

some degree of evolution in topic from day to day. Although the results indicate that there is

intraregional topical convergence during the period of time surrounding the Moore tornado,

we also have evidence that what these populations converge on appears to shift over time.

A comparison between the intraregional and interregional similarities helps solidify a dis-

tinction between local topic convergence and regional/distant topic convergence. On T-1

the local topics are more similar to the local messages at T than they are to either regional

or distant topics on T-1. Similarly, local topics on T are more similar to local topics on T-1

and T+1 than they are to either the regional or distant bins on that day. That intraregional

similarity is stronger in the local bin than interregional similarity suggests further evidence

of local topic coalescence. On the day after the event, however, local topics are more similar

to distant topics on T+1 than they are to local topics on either T-1 or T. An examination

of the most popular bigrams in each region over T-1, T, and T+1 reveals that this may be

part of a mass convergence phenomenon.
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Figure 3.6: For each region I plot the cosine similarity between each day’s “tornado” mes-
sages for the seven-day period surrounding the Moore tornado. Each region shows moderate
to strong autocorrelation during the three-day period before, during, and after the Moore
tornado.

3.3.4 Moore Bigrams

To provide further insight into the patterns of similarity we observe, I enumerate the fifteen

most common bigrams in each region on the day prior to, day of, and day after the Moore

tornado. In the following tables I rank them based on frequency of appearance, beginning
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with local bigrams in Table 3.4.

Table 3.4: Moore: top-15 local bigrams

T-1 T T+1

tornado warning (90) the tornado (93) the tornado (55)
a tornado (81) tornado warning (80) tornado victims (21)

may 19 (55) a tornado (75) in the (17)
19 at (54) warning for (50) of the (17)

the tornado (53) this tornado (46) oklahoma tornado (16)
on the (50) in ok (42) in moore (15)

warning for (43) ok until (39) a tornado (14)
tornado on (38) of the (38) to the (14)
the ground (35) 19 at (36) this tornado (13)

tornado watch (28) may 19 (36) to help (13)
by nws (27) in the (34) tornado in (13)
cdt by (27) tornado is (28) in oklahoma (12)

cdt until (27) on the (27) moore tornado (12)
issued may (27) tornado watch (24) this is (12)

until may (27) counties in (23) to donate (11)

On the day prior to the Moore tornado the most popular bigrams in the local bin primarily

refer tornado warnings and use language that frequently appears in such warnings. “Tornado

warning” is the most common bigram and one of several related to warnings and watches.

The bigrams “may 19,” “19 at,” “by nws [National Weather Service],” “cdt [Central Daylight

Time] by,” “cdt until,” “issued may,” and “until may” all contain snippets of language that

frequently accompanies watches issued by the National Weather Service, such as dates and

times. Ahead of major storms such as the one preceding the Moore tornado Twitter users

frequently retransmit alerts and warnings, or parts thereof, and this bin reflects a surge of

this typical retransmission activity.

On the following day we continue to see a variety of watch and warning messages, but several

of the most popular bigrams describe tornadoes in a more tangible manner. The top bigram

on the day of the event is “the tornado,” which is particularly noteworthy in that “tornado”

is preceded by a definite article. This language specifically refers to a tornado event that

has been realized, rather than a potential event that is typically discussed in the context
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of warnings and alerts (which is always preceded by an indefinite article). The prominence

of “this tornado” and “in ok [Oklahoma]” provide further evidence that individuals are

discussing a specific event that has occurred in a defined location (Oklahoma). On the day

after the event we continue observing the prominence of definite articles, pronouns, and

location-specifying prepositions in the top bigrams. Additionally, we begin to see words

such as “victims” and “donate,” which reflect increased attention towards recovering from

the tornado event. Over the course of this three-day period we see a transition in content of

the most popular bigrams in the local bin. From warnings to a realized event to recovery,

these messages display a notable shift in content. This is consistent with the transformation

in content we observe with the cosine similarities between local bins. Although the underlying

topic of tornado events remains constant, the local population converges on different aspects

of that topic over time (warnings, event, recovery).

Table 3.5: Moore: top-15 regional bigrams

T-1 T T+1

19 at (741) 20 at (744) 20 at (254)
may 19 (741) may 20 (744) may 20 (254)
by nws (441) by nws (479) by nws (177)
cdt by (441) cdt by (479) cdt by (177)

cdt until (441) cdt until (479) cdt until (177)
tornado watch (435) issued may (479) issued may (177)

issued may (429) until may (479) until may (177)
until may (429) tornado watch (458) tornado watch (156)

watch issued (392) watch issued (403) watch issued (132)
nws storm (303) a tornado (210) the tornado (107)

prediction center (303) 1000pm cdt (203) 21 at (100)
storm prediction (303) at 1000pm (203) may 21 (100)

1000pm cdt (233) 19 at (190) tornado warning (96)
at 1000pm (233) may 19 (190) a tornado (89)
a tornado (161) tornado warning (179) 300am cdt (63)

Within the regional bigram we observed the highest levels of topic autocorrelation, as the

similarities between T-1/T and T/T+1 were .72 and .90, respectively (compared to .7 and

.45 in the local bin and .8 and .52 in the distant bin). The consistency of bigrams from
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day to day reflects this elevated autocorrelation. During all three days the most frequent

bigrams are dominated by language typical of tornado watches and warnings. Except for the

date, the top-five bigrams are identical across these three days. Although the order of the

rankings varies, the following four bigrams are identical across all three dates and refer to

when tornado watches were issued. Before, during, and after the Moore tornado the regional

bins are dominated by messages related to tornado watches and warnings as the larger storm

system passes over the Midwest and into the Mississippi River Valley.

Table 3.6: Moore: top-15 distant bigrams

T-1 T T+1

19 at (1268) tornado watch (684) the tornado (315)
may 19 (1202) 19 at (640) in oklahoma (281)

by nws (662) by nws (625) oklahoma tornado (238)
tornado watch (618) may 19 (622) a tornado (223)

cdt by (615) watch issued (619) tornado in (161)
cdt until (615) cdt by (595) tornado watch (136)

issued may (615) cdt until (595) by nws (111)
until may (615) issued may (588) at least (110)

watch issued (575) until may (588) of the (110)
at 900pm (343) may 20 (532) watch issued (108)

900pm cdt (319) 20 at (527) by the (103)
nws storm (307) 300am cdt (412) 21 at (100)

prediction center (307) at 300am (412) may 21 (100)
storm prediction (307) a tornado (309) issued may (94)

at 1000pm (188) the tornado (260) until may (94)

The inter-regional cosine similarities suggest strong convergence between the regional and

distant bins on the day prior to and day of the Moore tornado and the prevalence of watch-

related bigrams during those days is consistent with those results. On the day after the Moore

tornado, however, the distant topics are almost equally similar to regional and local message

content. The top bigrams on that day offer insight into how the distant bin resembles both

the local and regional bins on that day. The top bigrams refer specifically to a tornado event

in Oklahoma (almost certainly the Moore tornado), while the remainder resemble the usual

warning-related messages. The prevalence of Oklahoma-related messages suggests evidence
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of a mass convergence of attention from distant locales onto Oklahoma and likely onto those

impacted by the Moore tornado.

3.4 Discussion

By relating the coded corpus of messages to spatio-temporally filtered bins of messages I

find strong and consistent evidence of local topical convergence on the day of hazard events.

Events preceded by warnings and alerts show local topical convergence in anticipation of the

events and all event types show, on average, a reversion to baseline similarity levels with

the coded corpus two days after the event. These results support theories of local topic

coalescence during periods of elevated rumoring. We find little evidence of coalescence onto

the coded corpus in regional and distant bins, suggesting that all populations do not converge

on a single topic. Instead, populations outside the impacted communities may converge on

distinct topics, as observed in the Moore tornado. While the Moore results suggest that

across all locations there is a heightened level of similarity, intra-group similarity tends to be

higher than intergroup similarity in local and non-local (i.e., regional/distant) populations.

Local rumoring activity showed similarity with all types of coded official messages, which

prevented us from identifying in the aggregate case whether rumoring is an evolutionary

process. An examination of intraregional and interregional similarity in Moore suggested

that there is some degree of evolution among messages in all bins. Although the results may

not necessarily generalize to all events, I do find some initial support that rumoring is a

process marked by topical evolution over time.
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3.5 Conclusions

The pattern of the results bears semblance to rumor theories and this offers support of

the spatio-temporal filtering approach for topic enhancement during rumors. We clearly

identified types of content that were specific to ground zero of a wide variety of disaster

events. The contrast against the signal (or lack thereof) observed in regional and distant

bins suggests that this spatio-temporal filtering approach can be tuned to recognize distinct

topical streams of rumoring. The case study results refine our understanding of rumor across

large spatial scales by suggesting that it is an evolutionary process that retains location-

specific topical foci. Given the speed at which information flows and develops in the online

environment, spatio-temporal filtering at the daily scale is a rather blunt approach towards

identifying topical signals in rumoring. That makes it more encouraging that I could identify

topical signals with this approach. A more refined spatio-temporal filtering approach utilizing

much thinner time slices to analyze a variety of events could shed further light onto the rough

outline of the evolutionary processes observed in the Moore case.
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Chapter 4

Spatial Excitation: Testing a Network

Activation Theory of Rumor

Transmission

Interpersonal ties play an important role in the diffusion of information during disasters.

During disaster events, immediately available alters such as coworkers, neighbors, friends,

and family members (Erickson et al., 1978; Richardson et al., 1979; Scanlon, 2007) become

likely candidates for information exchange (Al-Makaty et al., 1994; Dodd, 1958; Miller, 1992).

I broadly refer to the notion that individuals impacted by or learning of a disaster event

primarily respond by activating existing ties in their personal networks as conduits for in-

formation exchange (rather than e.g. forming new ties, or relying on formal communication

channels) as the network activation theory of information transmission in disasters. In this

chapter I test the network activation theory and several other theories of rumoring to de-

termine what accounts for county-level rumoring activity in the aftermath of severe tornado

events.
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It is widely recognized that the likelihood of forming an interpersonal relationship such as

friendship or marriage declines with distance (Bossard, 1932; Brakman et al., 1999; Festinger

et al., 1950; Freeman et al., 1988). It follows, therefore, that interpersonal relationships tend

to be geographically constrained and, accordingly, information spread through those ties will

likewise be spatially constrained (Caplow, 1947; Dodd, 1953). To illustrate this concept, I

demonstrate in Figure 4.1 the relationship between rumoring activity and interpersonal tie

volumes in the aftermath of a severe tornado event. I illustrate county-level counts of mes-

sages on Twitter containing the term “tornado” during the 24 hours following the touchdown

of the Moore tornado, an EF5 tornado that struck on May 20th, 2013 and killed 24, injured

377, and caused $2 billion in damage. Using a spatial interaction function to simulate net-

works across geographic space, I estimate the number of interpersonal ties from Cleveland

County (highlighted red), site of the Moore tornado, to the rest of the state. I superimpose

that network on a map of tornado-related rumoring activity to illustrate the relationship

between tie volumes and rumoring activity. The figure shows a strong relationship between

tie volumes to Cleveland County and county-level tornado-related rumoring activity in the

aftermath of the Moore tornado.

In addition to constraints on rumoring activity imposed by the spatial distribution of ties (i.e.

potential rumor pathways), salience also plays an important role in constraining the spread

of rumoring activity. Rumoring is not a ubiquitous response to disrupted environments; it

typically occurs in a bounded slice of space and time. A rumor does not propagate endlessly,

which is one factor separating rumors from urban legends and folk tales (Miller, 1992).

Rumors pertaining to a particular topic typically survive only as long as that topic is relevant

and interesting to the rumoring population (Allport and Postman, 1946; Caplow, 1947).

However, topics salient to one population may not necessarily be salient to all populations.

Although capable of traveling great distances in short periods of time, rumors fail to gain

traction and quickly perish if they are not salient to a population (Caplow, 1947). Like the

phenomenon of rumoring, salience is a concept that is easily understood yet remains very
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Figure 4.1: Volumes of interpersonal ties between Cleveland County, Oklahoma and all
other counties in Oklahoma are projected on a map in which counties are shaded according
to the level of tornado-related online rumoring activity in response to the Moore tornado.
Counties depicted with larger nodes have greater volumes of ties to Cleveland County. I
find that counties with more ties to Cleveland County tend to have greater levels of tornado-
related rumoring activity in response to the Moore tornado. The overlap between the spatial
distributions of tie volumes and rumoring activity is consistent with the network activation
theory of rumoring.

difficult to measure reliably outside laboratory environments.
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4.1 Overcoming Traditional Challenges to Measuring

Rumoring

The online environment allows us to employ novel approaches for observing rumoring ac-

tivity. Historically, studies of hazard-related rumoring have relied on a post-hoc approach

where researchers interview informants about their rumoring activity after the disaster event

has occurred. Accuracy issues emerge when asking informants to report on their own be-

havior (Back et al., 1950; Romney et al., 1986; Romney and Weller, 1984; Sudman et al.,

1996), particularly in hazard contexts. Informants may, for example, mis-attribute sources

of rumors or misremember when or where they heard a rumor (Scanlon, 2007). Additionally,

defining sample populations for observational rumor studies is a challenge, as is interview-

ing anything larger than a modest population. These sampling issues are exacerbated by a

disaster’s propensity to displace populations that have left their homes to reach safety, find

shelter, seek medical attention, or assist with disaster response (Scanlon, 2007). Further-

more, many studies outside the laboratory environment ask respondents where they heard

a particular rumor (Erickson et al., 1978; Greenberg, 1964; Miller, 1992; Richardson et al.,

1979; Scanlon, 1977; Walker and Beckerle, 1987). This is in contrast to the classic Allport and

Postman (1947) and Caplow (1947) analyses on rumoring, which capture multiple threads

of rumor. With a few exceptions (Kapferer, 1989; Schachter and Burdick, 1955) studies of

rumor typically operate retrospectively and suffer from a success bias. As such, we know less

about situations under which rumors fail to emerge or diffuse. Instead of employing a post

hoc approach I opt to observe rumoring activity continuously, which enables us to monitor

activity (or lack thereof) before, during, and after a disaster event. Computer-mediated

interactions provide a valuable opportunity for unobtrusively monitoring rumoring (Bordia

and DiFonzo, 2004) and we have accordingly seen a shift in attention towards rumoring

behaviors in online, informal communication (Maddock et al., 2015; Mendoza et al., 2010;

Sutton et al., 2013a,b; Vieweg et al., 2008). With precise data on the timing, location, and

71



content of rumors, the online environment bypasses many of these sampling and informant

accuracy challenges that have plagued rumor studies for decades.

I turn to Twitter to capture rumoring behaviors during disaster contexts. Studies of Twitter

usage during disasters indicate that online populations respond in systematic, consistent,

measurable ways to disaster events. This is demonstrated by increased volume of event-

specific keywords, changes in message structure, and changes in information retransmission

behavior (Sutton et al., 2008, 2013a,b; Vieweg et al., 2010). This regular behavior and

relevance to classical definitions of rumoring suggest the Twitter platform as a tool for

understanding rumoring in the context of hazards.

Using Twitter’s Streaming API, I monitor rumoring activity based on the posting of messages

containing the term “tornado.” Metadata accompanying each message indicates its exact

timestamp and the poster’s latitude and longitude coordinates if the message comes from a

GPS-enabled device, such as a mobile phone or tablet. These metadata enable me to harness

the spatial and temporal characteristics of rumoring activity to measure the phenomenon

with precision historically unmatched in studies of rumoring. Although the spatio-temporal

variation in rumor quantity and content has long been of interest to scholars, collecting

data that measures both temporal and spatial characteristics of the phenomenon has been

extraordinarily difficult to do with any degree of precision. Some have been able to capture

temporal (Bordia and Rosnow, 1998; Danzig, 1958; Greenberg, 1964) or spatial (Larsen,

1954) aspects of rumoring, but bridging the two has been difficult. Recent studies have

begun to incorporate more precise temporal (Blanford and MacEachren, 2014) or spatial

(Starbird and Palen, 2010) measures of informal communication in response to disaster (and

on rare occasion, both simultaneously (Guan and Chen, 2014)). I build on this prior work by

employing such spatio-temporal measurement of communication activity to test competing

theories regarding rumoring in disaster.
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4.2 Results

To measure rumoring activity I collected geolocated, timestamped tornado-related messages

during three major tornado events in the United States during 2013. These events represent

all fatal tornadoes with an Enhanced Fujita (EF) score of 4 or 5 that occurred after May

17th, 2013 (when we began collecting geolocated messages through the new version of Twit-

ter’s Streaming API). The severity of these events ensures that I will observe substantial

rumoring activity in response to the event, including rumoring across a large spatial scale. I

observe activity during two stages of the response, which I call the primary excitation and

secondary excitation phases. I define the primary excitation phase as the period from the

moment the tornado touches down until one hour after it has dissipated, during which we

typically observe an initial proliferation of rumoring and saturation of awareness in response

to the event (Danzig, 1958; Erickson et al., 1978; Greenberg, 1964; Richardson et al., 1979).

Secondary excitation covers the 24-hour period following the end of primary excitation, dur-

ing which we typically observe a mass convergence of attention on the disaster site (Hughes

and Palen, 2009; Sutton, 2010). Response during this latter period is often characterized by

individuals sharing information about the event, expressing concern about those impacted,

and/or attempting to increase awareness about how to help those affected. While primary

excitation is typically described as a local phenomenon, mass convergence may occur on

a nationwide scale (Sutton, 2010). To measure geolocated rumoring activity during each

time period, I use the geospatial metadata from each “tornado” message to identify the U.S.

county from which the message originated. These county-level counts demonstrate the extent

to which each county engages in rumoring activity in response to the event and illustrate

the spatial distribution of rumoring activity across the entire nation.

I use negative binomial regression to model counts of county-level “tornado” messages as a

function of covariates related to salience and network activation. I also incorporate a number

of controls (including population size, urbanicity, and lagged effects), as discussed below.
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These models demonstrate how features of each individual county influence its propensity

to engage in rumoring activity in response to each tornado event. I illustrate the model

coefficients for primary excitation and secondary excitation in Figure 4.2 and Tables 4.1 and

4.2.

Because we observe county-level counts over three events, we observe each county three times

in the model. Accordingly, the total N in our model is 9,411.

Table 4.1: Negative binomial regression of county-level “tornado” message counts during
primary excitation

Primary Excitation Coef exp(Coef) SE p-value

Intercept -12.1723 0.0000 0.6031 0.0000
Responding county: number of warnings 0.0044 1.0044 0.0019 0.0207
Responding county: number of events -0.0271 0.9733 0.0151 0.0729
Responding county: impact -0.0006 0.9994 0.0208 0.9773
Total migration: responding-event counties -0.0004 0.9996 0.0004 0.3479
Event county: whiter population 0.0250 1.0253 0.0033 0.0000
Event county: poorer population 0.0142 1.0143 0.0066 0.0312
Responding county: rural index -0.0268 0.9735 0.0356 0.4515
Log (base 2) tie volume 0.3480 1.4163 0.0126 0.0000
Responding county: log (base 2) population 0.5110 1.6669 0.0302 0.0000
N=9,411 AIC: 8,941

Table 4.2: Negative binomial regression of county-level “tornado” message counts during
secondary excitation

Secondary Excitation Coef exp(Coef) SE p-value

Intercept -10.3653 0.0000 0.4563 0.0000
Responding county: number of warnings 0.0061 1.0062 0.0014 0.0207
Responding county: number of events 0.0077 1.0078 0.0115 0.0729
Responding county: impact -0.0068 0.9932 0.0168 0.9773
Total migration: responding-event counties -0.0006 .9994 0.0004 0.3479
Event county: whiter population 0.0148 1.0149 0.0023 0.0000
Event county: poorer population 0.0268 1.0263 0.0049 0.0312
Responding county: rural index 0.0396 1.0403 0.0271 0.4515
Log (base 2) tie volume 0.2021 1.2240 0.0108 0.0000
Responding county: log (base 2) population 0.5002 1.6491 0.0231 0.0000
Responding county: log (base 2) primary excitation 0.3481 1.4164 0.0274 0.0000
N=9,411 AIC: 14,136

These models capture three categories of variables that may influence rumoring activity:
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Figure 4.2: Negative binomal regression coefficients for county-level counts of “tornado”
messages during periods of primary excitation (left), within 1 hour of the tornado event,
and secondary excitation (right), the 24-hour period following primary excitation. Positive,
statistically significant (p < 0.05) terms are red while non-significant terms are black. Line
width for each coefficient represents its 95% confidence interval. I measure effects for event
salience, demographic salience, and network activation on county-level, tornado-related ru-
moring activity.
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salience of the event itself, salience of the population affected by the event, and interpersonal

tie volumes between the rumoring and event-stricken populations. Table 4.3 lists the mean,

median, and standard deviation for county-level excitation and a number of other predictors

of excitation. I have broken these measures down to statistics that are general county

measures and event-specific statistics. The county measures represent descriptive statistics

for each individual county, such as number of warnings over a five-year period or population.

The event-specific county measures refer to statistics in each county that may change across

the three events under study, including volumes of messages during primary and secondary

excitation and the number of ties to the tornado-affected county.

Table 4.3: County and event-level statistics

Mean Median SD

County Measures
Warnings 30.82 28.00 22.70
Warnings* 33.44 30.00 21.71
Events 1.87 1.00 2.54
Events* 2.91 2.00 2.65
Impact 0.00 -0.16 1.53
Pct. White Residents 17.23 16.30 6.60
Pct. Poverty Residents 82.91 89.11 16.85
Population 98,398.08 25,893.00 313,176.30

Event-specific County Measures
Primary Excitation 0.43 0.00 3.26
Secondary Excitation 0.87 0.00 4.96
Avg. Individual’s Ties to Tornado County 3.10 0.00 172.69

*Counties with 1 or more warning/event

In the following sections I will describe each of the model terms in much greater detail. I

begin with the salience category.
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4.2.1 Salience

Outside laboratory experiments, salience is very difficult to measure and manipulate in

rumoring studies, as it is a mental state that is not directly observable. Relying on informant

reports is infeasible, as informants would have great difficulty recalling what was and was

not salient, particularly if the event was traumatic (Haber and Haber, 2000) or if they were

unaware of the event. Instead of relying on informant reports of salience, I directly observe

factors that are known to affect salience.

4.2.1.1 Event Salience

I measure two components of salience: salience of the tornado event itself and salience of

the population affected by that event. The first three model terms in Figure 4.2—warnings,

events, and impact— represent the salience of past tornado events. These terms measure

the extent to which each county’s exposure to past tornado events (potential or realized)

influences its level of observed rumoring activity in response to severe tornado events affecting

the United States. Where disaster events are made more salient by past exposure to events

and warnings, subsequent events and warnings enhance public response and communication

(Mileti and O’Brien, 1992). Those regularly impacted by tornado events and warnings, for

example, may be more likely to discuss a severe tornado event, even if that event strikes

a distant community. Likewise, those lightly affected or unaffected by a series of disaster

events tend to have a normalization bias, which suppresses their likelihood to respond to

future warnings and events (Mileti and O’Brien, 1992). To measure factors contributing

to tornado event salience at the county level, I use a five-year measure of several tornado-

related statistics. I collected these data from three agencies within the National Oceanic and

Atmospheric Administration (NOAA): the Storm Prediction Center, National Climatic Data

Center, and National Weather Service. From these agencies I collected data on numbers of
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tornado events, numbers of tornado warnings, and measures of impact from tornado events

including injuries, fatalities, crop damage, and property damage. I matched those warning

and event statistics to each U.S. county and used these county-level measures from the five-

year period of 2010-2014 to measure tornado event salience. These measures indicate whether

any given county’s past experience with tornado events and warnings impact is propensity

to engage in tornado-related rumoring during our EF4 and EF5 events under study.

In the model I preserve the measures of warning counts and event counts, but I consolidate

the impact measures. To generate the “impact” measure I conducted a principal compo-

nents analysis on the county-level measures of injuries, fatalities, crop damage, and property

damage. I take the first principal component (which captures 58.3% of the variance) and

assign a score to each county. (I note that the consolidated impact measure produced similar

results in the model when compared to individual impact measures, whether modeled jointly

or separately.) The results indicate that during neither primary excitation nor secondary

excitation does the number of events or the impact of past events in any given county make

that county more likely to engage in tornado-related rumoring during severe events in 2013.

During both periods, however, I find a positive, statistically significant (p < 0.05) relation-

ship between tornado-related rumoring and the number of warnings in a county. That is,

counties with more warnings were more likely to generate increased counts of “tornado”

messages in response to our major 2013 tornado events. However, the effects are rather

weak in both models. An increase of 10 tornado warnings (the mean is approximately 30

over a 5-year period) in any given county is associated with a 4.5% increase in “tornado”

messages during primary excitation and a 6.3% increase during secondary excitation. The

weakness of these effects coupled with the lack of significance of our other terms suggests

that event-related salience does not have a major effect on rumoring activity across large

geographic scales.
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4.2.1.2 Demographic Salience

In addition to event-related salience, I also examine social dimensions of salience. The

characteristics of the population affected by a disaster influence the amount of attention

paid to the event by other populations. However, past studies do not converge on one single

explanation for how the social dimensions of salience operate. Some claim that events are

more salient to a population when that event affects a demographically similar population

(Rogers, 2000). By contrast, social status theories posit that disasters affecting wealthier

communities receive disproportionate attention (Chomsky, 1998; Fothergill et al., 1999), even

when several communities with varying economic backgrounds are impacted by the same

event (Rovai and Rodrigue, 1998). Vulnerability theories argue the opposite and suggest

that greater attention is paid to dramatic, exceptional circumstances in disaster, which is

frequently its impact on vulnerable and fragile communities (Cutter et al., 2003; Tierney

et al., 2006). I evaluate all of these theories by relating county-level rumoring activity to

the differences between demographics of the tornado-affected county and the responding

counties.

I use several demographic measures to determine whether salience is driven by characteristics

of the population affected by a tornado event. To measure the demographics of each U.S.

county, I use racial demographic data from the U.S. Census (Almquist, 2010) and poverty

data from the U.S. Census’ Model-based Small Area Income and Poverty Estimates. I match

these data to each U.S. county and compare the demographic data of the county where

the tornado struck to all other U.S. counties. I calculate the signed differences between

the percentage of White residents and the percentage of residents in poverty of the event

county and all other counties. Together these demographic measures help to indicate whether

the salience of tornado events is based on demographic similarity between the affected and

responding county, or whether attention is disproportionately paid to communities that differ

demographically from the activated county.
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Figure 4.3: Projected activation based on the demographic differences between the tornado
event county and the activated county. Event counties with larger absolute percentages of
white residents and residents in poverty than activated counties generate greater activation
during both primary and secondary excitation. The plotted projections are based on a county
with average event salience measures, average population size, and an average of five ties
per person to the tornado event county. While the effect for Whiter populations is stronger
than the effect for poorer populations during primary excitation, the strength of the results
is flipped during secondary excitation.

As I demonstrate in Figure 4.3 the findings for both primary excitation and secondary exci-

tation indicate that counties have a positive, significant propensity to rumor about tornado

events that impact a population that is Whiter than the activated county or a population

that is poorer than the activated county. These findings offer mixed support for both social

status and vulnerability theories, as each theory is supported by one effect and contradicted

by another. The evidence clearly disagrees with theories that salience is driven by demo-

graphic similarity between the event population and the activated population. A variety

of experiments demonstrate that sympathy and assistance in the aftermath of disasters are

mediated by perceptions of whether the affected population is deserving or worthy of as-

sistance (Batson et al., 2005; Cheung and Chan, 2000; Zagefka et al., 2012). One possible

explanation for these mixed findings is that poorer, whiter communities are perceived as

“worthy victims” who reside at the intersection between positive attention and a position
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conducive to sympathy (Herman and Chomsky, 1988).

I also examine the role of inter-county migration on salience. One may expect that higher

migration flows between counties would increase the attention paid to an event striking one

of those counties. To measure the role of migration, I collected county-to-county migration

data from the American Community Study. I use the sum of counts of inbound and outbound

migration for each event county to and from all other U.S. counties. In neither model do

I find a significant effect for migration, which suggests that salience vis a vis migration

patterns does not influence rumoring activity.

4.2.2 Network Activation

Finally, I test the network activation theory of information diffusion. If rumors spread

through interpersonal ties, then rumoring activity in any given county ought to be propor-

tional to the volume of ties it has to the tornado-affected county. Because I cannot feasibly

measure tie volumes of all residents in all U.S. counties, I instead follow the Butts et al. (2012)

approach of using simulated tie volumes. I employ a spatial interaction function (SIF) to

govern tie formation across space, where the marginal tie probability between two individuals

declines with distance, a common feature of social networks (Bossard, 1932; Hägerstrand,

1966; Latané et al., 1995; Zipf, 1949). Spatial structure is sufficient to account for most

network structure at large geographic scales (Butts, 2003) and network models based on

SIFs have been shown to be predictive of social phenomena such as neighborhood crime

rates (Hipp et al., 2013), regional identification (Almquist and Butts, 2014), and interor-

ganizational collaboration Butts and Acton (2011). An SIF Fd(d,Ψ) defines the marginal

probability of a tie between two individuals i and j as a function of some real parameter

vector Ψ and the physical distance d between i and j. In most social networks, the marginal

tie probability declines with distance. Beyond the individual case, I can employ SIFs to
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estimate tie volumes between arbitrary geographic units such as Census tracts, cities, or

countries. In the present case I use U.S. counties as our geographical unit. Holding dis-

tances constant, I expect to observe greater tie volumes between more populated geographic

units. Given two point locations i and j the expected tie volume between would then be

PiPjFd(dij,Ψ), where Pi and Pj are the populations of the regions in question, and dij the

distance between them. To model tie volumes over extended areas, I employ the expectation

EV(A,A′) =
∫
A

∫ ′
A

PA

|A|
PA′
|A′|Fd(D(v, v′),Ψ)dvdv′ where V is the interregional tie volume, A and

A′ are the areas in question, v and v′ are coordinates, P is population, |A| is land area, and

D is the geodesic distance; this is halved for ties from A to itself. I employ an SIF that

approximates the spatial distribution of “technologically mediated communication” (Butts

and Carley, 2002; Hägerstrand, 1966). This is an attenuated power law distribution with

a slowly decaying distance function that declines at d−2.96. Based on this SIF I use the

networkSpatial package in the R statistical computing environment (Butts and Almquist,

2013) to estimate tie volumes by numerical quadrature.

For each tornado event, I use the SIF to estimate the county-to-county tie volumes between

the county affected by the tornado and all U.S. counties (including reflexive tie volumes

within the affected county). To reduce computational complexity I assume a uniform spatial

distribution of population within each county. I improve the accuracy of our estimation of

reflexive ties within the tornado-affected county by taking the sum of tie volumes between

all tracts within the county. With a higher spatial resolution, tract-level tie volumes provide

a more precise estimate at an acceptable level of added computational complexity.

For the tie volume coefficients I find strong, positive, significant results (p < 0.001) for

both primary excitation and secondary excitation. Net of other factors, doubling of the

tie volume between a county with a tornado event and any other county is associated with

a 42% increase in the count of “tornado” messages during primary excitation and a 22%

increase during secondary excitation. I illustate projected tie volume effects in Figure 4.4.
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Figure 4.4: Projected activation as a function of tie volume and population size. Each curve
represents a different population size. We find that as each individual’s average number
of ties to the tornado event county increases, the activated county increases its estimated
count of tornado-related messages. The projections are based on a county with average event
salience measures and average demographic salience measures.

These results provide strong support for the network activation theory. Where we have large

volumes of ties between counties, I find increased activity in response to a tornado event

striking one of those counties.

In addition to the model terms for event salience, demographic salience, and tie volume,

I include terms to help control for other exogenous drivers of rumoring activity. Users of

Twitter are more likely to live in urban environments (Duggan and Brenner, 2013) and I

account for this with a term that measures each county on a rural-urban index. The Centers

for Disease Control and Prevention’s National Center for Health Statistics developed a six-

point scale to identify where each U.S. county lies on the urban-rural spectrum. I use this

index in the model to account for overrepresentation of urban communities on Twitter. In

the full models the results indicate no evidence that rural counties are less likely to engage in

tornado-related rumoring in the aftermath of an event. I do, however, find marginal effects

for urban status on the volume of tweets; urban counties have higher marginal counts of
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“tornado” messages during both primary and secondary excitation. I also control for the

population size of each county, as locations with large populations are much more likely to

engage in rumoring activity in the aftermath of a disaster (Buckner, 1965; Richardson et al.,

1979). I find strong effects for population during periods of primary excitation and secondary

excitation. Doubling the population of the activated county produces an estimated 66.7%

increase in primary excitation and 64.9% increase during secondary excitation. Finally, I also

include a term for primary excitation in our secondary excitation model. Although the mass

convergence phenomenon is well documented (Hughes and Palen, 2009; Sutton, 2010), we

know little about the mechanisms driving it. The primary excitation term is strong, positive,

and significant, which suggests that secondary excitation (during which we typically observe

mass convergence) is carried by the momentum of primary excitation. Locations where we

observe primary excitation tend to continue generating excitation during the secondary exci-

tation period. I also note that the significant effects are quite similar in both models, which

suggests that secondary excitation—and the mass convergence phenomena that encompasses

it—is a continuation of primary excitation rather than a separate phenomenon.

4.3 Conclusions

The results build on classic studies of rumor by scaling rumor theory from small group and

small town settings to a spatially heterogeneous population of hundreds of millions. At this

spatial scale, however, I find limited evidence that rumoring activity is driven by salience

of past tornado events. Instead I find that demographic salience plays a role, although the

implications are mixed. I find that activated counties have increased response to events

impacting Whiter counties or poorer counties. Separately, each of these findings supports

and contests social status theory and vulnerability theory. I find strong and consistent

support for network activation theory, as we observe greater activity in counties that have
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many ties to the event county. This suggests that across large spatial scales, interpersonal

ties play an important role in rumoring, either as conduits of information transmission or

as channels for attention. As the first paper of its kind to test network activation theory

at scale, this chapter sheds new insight into information diffusion processes across large,

spatially heterogeneous populations.

This approach uses online informal communication to measure county-level, tornado-related

rumoring activity in response to severe tornado events. A novel source for measuring rumor-

ing activity, the online environment allows us to measure the phenomenon with a combina-

tion of scale and precision that have historically been infeasible. I study this post-disaster

rumoring phenomenon at a fairly high spatial and temporal resolution with events that

likewise impact a very narrow slice of time and space. Accordingly, the findings may not

necessarily represent the pattern of communication during disasters that unfold across larger

spatial and temporal scales. I expect that future work will expand this approach to examine

spatio-temporal characteristics of rumoring during events that develop more slowly, such as

hurricanes, blizzards, and wildfires, and events that impact larger areas such as earthquakes.

During such events the pace of rumoring may change, however it may be driven by the

same mechanisms we observe in this paper. These results are a first step towards extending

classical rumor theories to large geographic scales and at this scale I find strong support for

network activation theories of rumoring activity.
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Chapter 5

Concluding Matters

In this final chapter of the dissertation I review the key findings across all three chapters,

recognize limitations of my analyses, and look ahead to future research that builds off these

findings.

5.1 Key Findings

• Spatio-temporal filtering works! Even though geolocated messages represent a

small fraction (3-4%) of Twitter’s stream, data sparsity is not major a problem for

detecting and analyzing rumoring activity in a spatially and temporally resolved man-

ner. I am able to use this limited data to observe and analyze rumoring activity on a

consistent basis. Furthermore, all these analyses were based on events that I observed

with a single keyword. Despite data sparsity, I did not have to develop techniques to

identify joint signal across multiple keywords in order to detect rumoring activity from

a single event. Such techniques could certainly help boost signal of rumoring, but they

were not essential prerequisites for these analyses. Finally, it is noteworthy that I was
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regularly able to detect rumoring activity during events. Although disaster sites may

feature power outages, congested cellular networks, population displacement due to

evacuation, and individuals’ preoccupation with preserving personal safety over post-

ing online, I consistently observed hazard-related communication during a wide variety

of events. This is a promising finding for the future of online, informal communication

analyses, especially for those requiring spatial metadata.

• Distance is not dead: Although digital media have transformed communication

and commerce by connecting far-reaching segments of the globe over the last two

decades, distance still appears to play an important role in online responses to disaster

events. The largest surge in signal of informal communicative activity following a

disaster occurs at the site of that disaster. As we become further removed from the

event, signal of communicative activity declines. While severe events are followed by

a mass convergence of attention at great distances (thousands of miles), that mass

convergence does not exceed the strongest local signal. Furthermore, I find evidence

that the topics discussed around ground zero differ from those further away, suggesting

different informational needs based on a population’s distance from the event epicenter.

• Warnings matter: Events preceded by warnings show anticipatory excitation, as

indicated by a surge in signal of local communicative activity and local, topical con-

vergence on emergency management-related topics. Where warnings are issued ahead

of events we observe a notable increase in hazard-related communication. While this

does not necessarily imply that individuals take preventive action taken to protect

themselves from the event, this finding suggests that warnings can spur social action

as far as a day ahead of a disaster event. This has important policy implications for

the efficacy of warnings and alerts.

• Network activation theory: I develop a network activation theory of information

exchange which suggests that during disaster events individuals activate existing ties
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in their personal networks (rather than form new ones) as conduits for information

exchange. I find a strong effect for tie volume between the affected county and the ac-

tivated county on the volume of messages coming from the activated county. This effect

holds, net of features such as population size of the activated county, which suggests

strong support for network activation theory. Furthermore, the wide geographic scope

of analysis suggests that network activation theory accounts for rumoring activity at

national scales.

5.2 Limitations

• Twitter idiosyncrasies: Activity on Twitter does not represent all rumoring activity

or all online, informal communication. Pew Research Center’s Internet and American

Life Project provides an in-depth examination of how Twitter’s demographics compare

to those of the United States (Duggan and Brenner, 2013). Twitter demographics skew

(independently) young, urban, and minority, while there is no significant difference

in participation across gender, educational attainment, and income. The results of

this dissertation may overrepresent rumoring activity from minority, urban, or young

populations. It is not immediately clear, however, how this would bias the results,

as the literature does not clearly demonstrate that these particular groups engage in

rumoring activity that differs in volume, content, or form from other populations.

Nonetheless, it is worthwhile to recognize the biased population from which these data

are drawn.

• Content evolution? Unable to distinguish among the coded content categories in

the topic filtering chapter, I could not reliably demonstrate clear evolution of content

across all cases. The Moore case study provides some evidence of content evolution in

each bin according to intraregional cosine similarities. Additionally, changes in the top
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bigrams suggest content evolution. However these results are limited to a single case.

While the results suggest some initial evidence of content evolution, further analysis is

necessary to obtain a stronger understanding of the evolutionary process.

• Network activation: Although I test a network activation theory of information

transmission, I do not conduct a true test of the network activation process. I did

not measure transmission of information across ties. Instead, I related county-level

rumoring activity to county-level tie volumes. The findings indicate that the spatial

distribution of rumoring is consistent with what we would expect communication to look

like under a network activation theory, but we did not directly observe that network

activation process. It is possible that tie volumes at the county level may be proxies

for attention rather than conduits for information transmission.

5.3 Future Directions

• Content evolution: Measuring topical convergence and content evolution at the

daily level proved to be feasible, although the timespan may have been too wide to

capture the phenomenon adequately. Two modifications to the approach could help

better measure the phenomena. First, coding tweets from a sample from the public

stream may allow for better matching between observed data and coded messages. The

results suggested that measures of similarity picked up on an emergency management

aspect that was common across the set of messages from officials rather than specific

content within those messages. A coded corpus based on public messages may prevent

this issue. Secondly, an analysis conducted at the hourly level will allow us to keep

pace with the rapid flow of information. Some events may be characterized by an

interrogatory-disbelief-sensemaking-digressive process (Bordia and DiFonzo, 2004) that

occurs within the span of a single a day, thus preventing me from detecting it with daily
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time slices. Analyses with finer temporal filtering would pose additional challenges,

such as message sparsity and the need to account for hourly periodicity. With these

finer intervals, however, I could obtain stronger evidence in favor of or against the

topical convergence and content evolution findings. While preliminary results suggested

that there is topical convergence and some evidence of content evolution, we still have

much to learn about which topics the population converges on and how message content

changes during this evolutionary process.

• Network activation cascades: I observed at the county level during primary exci-

tation and secondary excitation that hazard-related communication is elevated where

the population has a large number of ties to the event epicenter. It is worth revisiting

the network activation problem in order to obtain a stronger understanding informa-

tion diffusion along these ties. I looked at first order tie volumes between activated

counties and the event county, but hazard-related rumoring often follows paths with

lengths longer than one. To trace rumoring across paths of length two, three, four, and

so on, I will need to examine information diffusion with higher spatial resolution and

with finer temporal resolution. Cellular phone data would be ideal in this case. Such

records indicate person-to-person information transmission (which I could not directly

observe) with very precise temporal metadata. Using cell tower data from sender and

recipient, I could geolocate both parties. Examining this information transmission

during periods of primary and secondary excitation would yield information on direct

information flows to and from the event epicenter, an improvement over my analysis

which could not observe the direction of information flows. Furthermore, I could then

trace the flow of information from tower to tower to observe secondary and tertiary

message transmission This could build on these initial results to provide a much richer

picture of information diffusion during and after disaster events.

• Allocation of attention to warnings: In both of the spatial filtering chapters I
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found that warnings and alerts trigger anticipatory excitation ahead of disaster events.

Not much is known about allocation of attention to such messages, however. By ob-

serving activity following alerts and warnings, I have the opportunity to answer a wide

variety of questions related to attentional dynamics in rumoring. What determines the

allocation of attention of the public to warnings and alerts? Is it driven by past experi-

ence with such events, salience of the event/warnings, risk perception, or other factors?

How does sentiment vary in response to these events? Using Project HEROIC’s com-

prehensive data on wireless alerts sent to mobile phones and issued through traditional

National Weather Service/Storm Prediction Center channels, I can compare the re-

sponses to warnings in a wide variety of contexts: false positives (alerts where no event

occurs), realized events, and successive sets of false positives, realized events, or a mix-

ture thereof. For example, does a series of false positives dampen rumoring activity

for a subsequent warning? If so, how long does this dampening effect last? Further-

more, I can distinguish attentional effects based on the type of alert: advisory, watch,

warning, or warning transmitted directly to cell phones. In addition to contributing

to the literature on attentional dynamics and salience, this has practical applications

for policy makers and emergency practitioners.
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Appendix A

Appendix

In this appendix I provide the list of tables illustrating the result of t-tests on the adjusted

spatio-temporally filtered topic signals. Each test compares the cosine similarities between

messages in a spatio-temporal bin and one of the coded categories. For each test I compare

the observed cosine similarities on a given day relative to a disaster event across all eight

events with the cosine similarities observed between messages in that bin and messages in

the coded corpus across the entire period of observation. This is effectively a comparison

between observed messages during the period of time surrounding a disaster and a baseline

measure of similarity, where the baseline is a measure of all cosine similarities during the

nine-month reference period.
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T-tests, three days prior to disaster

Mean of Differences DF t-value p-value

Local
Advisory -0.113 7 -0.414 .691

Closure/Opening -0.008 7 -0.037 .972
Correction -0.207 7 -0.492 .638

Emotive -0.033 7 -0.125 .904
Evacuation 0.034 7 0.142 .891

Impact -0.158 7 -0.481 .645
Help/Directed Comm. -0.022 7 -0.082 .937

Information -0.031 7 -0.122 .907
Thanks -0.315 7 -0.856 .420

Volunteer/Donate -0.202 7 -0.588 .575
Regional

Advisory -0.267 7 -0.819 .440
Closure/Opening -0.268 7 -1.084 .314

Correction -0.557 7 -1.634 .146
Emotive -0.280 7 -1.104 .306

Evacuation -0.358 7 -1.986 .087
Impact -0.453 7 -1.384 .209

Help/Directed Comm. -0.010 7 -0.038 .971
Information -0.268 7 -1.065 .322

Thanks -0.239 7 -0.624 .552
Volunteer/Donate -0.411 7 -1.418 .199

Distant
Advisory -0.352 7 -0.906 .395

Closure/Opening -0.064 7 -0.149 .886
Correction -0.247 7 -0.506 .628

Emotive -0.245 7 -0.857 .420
Evacuation -0.115 7 -0.380 .715

Impact -0.438 7 -1.082 .315
Help/Directed Comm. 0.028 7 0.095 .927

Information -0.302 7 -1.160 .284
Thanks -0.148 7 -0.430 .680

Volunteer/Donate -0.530 7 -1.707 .132
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T-tests, two days prior to disaster

Mean of Differences DF t-value p-value

Local
Advisory -0.069 7 -0.169 .870

Closure/Opening -0.384 7 -0.384 .712
Correction 0.264 7 1.099 .308

Emotive -0.181 7 -0.819 .440
Evacuation 0.009 7 0.031 .976

Impact 0.132 7 0.445 .670
Help/Directed Comm. 0.053 7 0.163 .875

Information -0.187 7 -0.544 .604
Thanks 0.131 7 0.446 .669

Volunteer/Donate -0.087 7 -0.395 .705
Regional

Advisory 0.175 7 0.632 .547
Closure/Opening 0.344 7 1.294 .237

Correction 0.363 7 1.298 .236
Emotive 0.278 7 0.864 .416

Evacuation 0.367 7 1.300 .235
Impact 0.112 7 0.401 .700

Help/Directed Comm. -0.030 7 -0.143 .890
Information 0.152 7 0.425 .684

Thanks 0.001 7 0.008 .994
Volunteer/Donate 0.200 7 0.499 .633

Distant
Advisory -0.102 7 -0.439 .674

Closure/Opening 0.049 7 0.205 .843
Correction 0.000 7 -0.002 .999

Emotive -0.059 7 -0.188 .856
Evacuation -0.111 7 -0.604 .565

Impact 0.008 7 0.034 .974
Help/Directed Comm. -0.010 7 -0.032 .976

Information -0.079 7 -0.275 .792
Thanks -0.003 7 -0.012 .991

Volunteer/Donate 0.225 7 0.888 .404
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T-tests, one day prior to disaster

Mean of Differences DF t-value p-value

Local
Advisory 0.868 7 1.053 .327

Closure/Opening 0.436 7 0.568 .588
Correction 0.089 7 0.098 .925

Emotive 0.751 7 1.161 .284
Evacuation 0.393 7 0.458 .661

Impact 0.430 7 0.516 .622
Help/Directed Comm. 1.150 7 1.844 .108

Information 0.474 7 0.548 .601
Thanks 0.602 7 1.088 .313

Volunteer/Donate 0.064 7 0.120 .908
Regional

Advisory -0.302 7 -0.618 .556
Closure/Opening -0.506 7 -0.910 .393

Correction -0.629 7 -0.826 .436
Emotive -0.348 7 -0.777 .463

Evacuation -0.480 7 -0.691 .512
Impact -0.572 7 -1.083 .315

Help/Directed Comm. 0.116 7 0.412 .693
Information -0.452 7 -0.866 .415

Thanks -0.327 7 -0.964 .367
Volunteer/Donate -0.590 7 -1.508 .175

Distant
Advisory 0.278 7 0.378 .717

Closure/Opening -0.012 7 -0.017 .987
Correction -0.820 7 -0.989 .356

Emotive -0.267 7 -0.565 .590
Evacuation 0.064 7 0.071 .945

Impact -0.412 7 -0.874 .411
Help/Directed Comm. 0.266 7 0.513 .624

Information -0.319 7 -0.629 .549
Thanks 0.100 7 0.164 .875

Volunteer/Donate -0.243 7 -0.578 .581
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T-tests, day of disaster

Mean of Differences DF t-value p-value

Local
Advisory 3.075 7 5.078 .001

Closure/Opening 2.578 7 6.687 .000
Correction 2.808 7 3.417 .011

Emotive 3.005 7 6.764 .000
Evacuation 2.281 7 4.171 .004

Impact 2.316 7 4.107 .005
Help/Directed Comm. 2.826 7 4.866 .002

Information 2.882 7 5.022 .002
Thanks 2.744 7 6.124 .000

Volunteer/Donate 2.267 7 3.982 .005
Regional

Advisory 0.618 7 1.134 .294
Closure/Opening 0.316 7 0.953 .372

Correction 0.029 7 0.046 .965
Emotive 0.230 7 0.604 .565

Evacuation 0.133 7 0.238 .819
Impact 0.391 7 0.679 .519

Help/Directed Comm. 0.815 7 1.235 .257
Information 0.704 7 1.095 .310

Thanks 0.441 7 0.561 .592
Volunteer/Donate 0.407 7 0.609 .562

Distant
Advisory -0.564 7 -1.522 .172

Closure/Opening -0.503 7 -1.359 .216
Correction -0.671 7 -2.131 .071

Emotive -0.812 7 -1.271 .244
Evacuation -0.480 7 -1.33 .227

Impact -0.724 7 -2.497 .041
Help/Directed Comm. -0.094 7 -0.234 .821

Information -0.684 7 -1.821 .112
Thanks -0.379 7 -1.201 .269

Volunteer/Donate -0.833 7 -1.247 .252
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T-tests, one day after to disaster

Mean of Differences DF t-value p-value

Local
Advisory 1.957 7 3.512 .010

Closure/Opening 1.810 7 3.610 .009
Correction 1.605 7 3.594 .009

Emotive 1.725 7 2.550 .038
Evacuation 1.915 7 3.133 .017

Impact 1.601 7 2.736 .029
Help/Directed Comm. 2.483 7 2.960 .021

Information 1.701 7 3.117 .017
Thanks 2.116 7 3.185 .015

Volunteer/Donate 0.823 7 1.062 .324
Regional

Advisory 0.801 7 2.360 .050
Closure/Opening 0.745 7 1.625 .148

Correction 0.882 7 1.818 .112
Emotive 1.254 7 1.569 .161

Evacuation 0.403 7 1.218 .263
Impact 0.418 7 0.912 .392

Help/Directed Comm. 1.309 7 2.36 .050
Information 0.747 7 1.853 .106

Thanks 0.937 7 1.366 .214
Volunteer/Donate 0.444 7 0.703 .505

Distant
Advisory -0.803 7 -2.407 .047

Closure/Opening -0.720 7 -2.322 .053
Correction -0.767 7 -2.992 .020

Emotive -0.620 7 -1.090 .312
Evacuation -0.746 7 -2.266 .058

Impact -0.818 7 -2.717 .029
Help/Directed Comm. -0.436 7 -1.044 .331

Information -0.838 7 -2.428 .046
Thanks -0.598 7 -1.784 .118

Volunteer/Donate -1.511 7 -3.143 .016

107



T-tests, two days after disaster

Mean of Differences DF t-value p-value

Local
Advisory 0.854 7 1.902 .099

Closure/Opening 0.425 7 1.854 .106
Correction 0.808 7 1.623 .149

Emotive 0.254 7 0.632 .548
Evacuation 0.878 7 2.097 .074

Impact 0.857 7 1.903 .099
Help/Directed Comm. 0.714 7 1.783 .118

Information 0.754 7 1.834 .109
Thanks 0.262 7 0.795 .453

Volunteer/Donate 0.498 7 1.154 .286
Regional

Advisory 0.696 7 1.209 .266
Closure/Opening 0.688 7 1.032 .336

Correction 0.719 7 1.203 .268
Emotive 0.779 7 1.215 .264

Evacuation 0.642 7 1.236 .257
Impact 0.483 7 0.985 .358

Help/Directed Comm. 0.700 7 1.268 .245
Information 0.608 7 1.014 .344

Thanks 0.839 7 1.241 .255
Volunteer/Donate 0.356 7 0.521 .618

Distant
Advisory 0.050 7 0.119 .908

Closure/Opening 0.236 7 0.434 .677
Correction -0.120 7 -0.376 .718

Emotive 0.204 7 0.416 .690
Evacuation 0.195 7 0.453 .664

Impact 0.062 7 0.147 .887
Help/Directed Comm. 0.157 7 0.412 .693

Information 0.126 7 0.267 .798
Thanks -0.090 7 -0.222 .831

Volunteer/Donate -0.120 7 -0.248 .811
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T-tests, three days after disaster

Mean of Differences DF t-value p-value

Local
Advisory 0.343 7 0.987 .357

Closure/Opening -0.111 7 -0.404 .698
Correction 0.455 7 1.305 .233

Emotive 0.437 7 1.099 .308
Evacuation 0.320 7 1.003 .349

Impact 0.161 7 0.683 .517
Help/Directed Comm. 1.011 7 1.674 .138

Information 0.078 7 0.308 .767
Thanks 0.756 7 1.793 .116

Volunteer/Donate 0.410 7 0.964 .367
Regional

Advisory -0.200 7 -0.723 .490
Closure/Opening -0.386 7 -1.642 .145

Correction -0.148 7 -0.453 .664
Emotive 0.072 7 0.197 .850

Evacuation -0.207 7 -0.657 .532
Impact -0.105 7 -0.339 .744

Help/Directed Comm. -0.302 7 -0.691 .512
Information -0.182 7 -0.695 .509

Thanks -0.208 7 -0.463 .657
Volunteer/Donate -0.151 7 -0.495 .634

Distant
Advisory -0.751 7 -3.650 .008

Closure/Opening -0.752 7 -3.370 .012
Correction -0.743 7 -2.519 .040

Emotive -0.905 7 -3.800 .007
Evacuation -0.622 7 -2.684 .031

Impact -0.722 7 -3.404 .011
Help/Directed Comm. -0.465 7 -1.374 .212

Information -0.896 7 -3.302 .013
Thanks -0.545 7 -2.358 .050

Volunteer/Donate -1.078 7 -2.576 .037
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