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Abstract 
 

A numerical modeling approach to investigate opportunity for 
nature-based shorelines in urban estuaries 

 
Rae Taylor-Burns 

 

Urban estuaries are at risk of increased flooding due to storms and accelerating sea level rise 

(SLR) caused by anthropogenic climate change. This high and rising risk is forcing coastal 

communities to develop adaptation strategies. While gray infrastructure (walls, levees, 

berms) has historically been used to protect coastal communities from flooding, over recent 

decades nature-based solutions have emerged as a management approach to adapt to 

increasing flood risk. However, nature-based solutions have yet to be widely treated with the 

same rigor as traditional engineering solutions, both in hydrodynamic modeling and in policy 

related to urban planning and flood risk management. This dissertation uses coastal 

engineering and risk management tools, social and economic data, and stakeholder and 

practitioner perspectives to assess the utility and limitations of marsh habitat conservation 

and restoration as a flood defense strategy in the largest urban estuary in California, San 

Francisco Bay. This suite of research shows that marsh conservation and restoration can be 

cost-effective paths to reduce coastal flood risk in an era of global climate change and 

accelerating SLR, providing community safety and co-benefits including improved habitat, 

carbon sequestration, and recreation opportunities. Results support policy that facilitates 

conservation and restoration of existing and historical marsh habitat and incorporates habitat 

and green infrastructure into risk science and insurance. 
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Anthropogenic climate change is raising global sea levels and threatening coasts around the 

world with increased risk of flooding. Thermal expansion of seawater and melting of land-

based ice is predicted to cause between 0.3 and 3 m of sea level rise (SLR) by 2100 (DeConto 

and Pollard 2016; Sweet et al. 2017; 2022; Le Bars et al. 2017; Masson-Delmotte et al. 2021). 

In addition to SLR, coastal flooding is amplified by tides, storm-driven surge, waves, and river 

discharge (Barnard et al. 2019). More than 600 million people live in the coastal zone and 

that number is expected to increase to more than 1 billion by 2050 (Merkens et al. 2016). 

These factors combine to create hazard, exposure, and risk for coastal communities around 

the world, forcing such communities to develop adaptation strategies to mitigate risk. 

Historically, flood risk reduction has been primarily achieved with hard human-made 

structures such as seawalls, levees, and revetments. Seawalls are concrete walls built in front 

of developed areas and directly receive wave impact, reflecting wave energy back towards 

the sea and preventing erosion. Levees are earthen walls often built along the banks of rivers 

or bays, which protect developed areas from flooding. Revetments are similar to retaining 

walls and serve to stabilize a coast from erosion. These examples of traditional shoreline 

protection structures each have slightly different purposes but are widely deployed globally 

and generally serve to reduce flood risk during storms. However, these traditional shoreline 

protections all fail eventually without maintenance, and many of these approaches disturb, 

degrade, or destroy coastal habitat. Further, traditional shoreline protections often present 

tradeoffs such as disrupting sediment transport pathways, accelerating beach erosion, 

limiting beach-access, and preventing habitat transgression.  
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Coastal habitat such as coral reefs, mangrove forests and marshes can play a role in 

increasing resilience to storms and high water levels by buffering incoming waves and storm 

surge and stabilizing shorelines (Shepard et al. 2011; Ysebaert et al. 2011; Suzuki et al. 2012; 

Quataert et al. 2015; Narayan et al. 2016; Nowacki et al. 2017; Storlazzi et al. 2019). Research 

suggests that wetlands reduced damage from Hurricane Sandy by $625 million (Narayan et al. 

2017), coral reefs annually protect over 18,000 people (Storlazzi et al. 2019) and $1.8 billion 

dollars of infrastructure in the USA (Reguero et al. 2021), and mangroves provide $65 billion 

in flood protection benefits globally each year (Menéndez et al. 2020). Findings like these 

have caused a recent shift in scientific and management focus to consider, evaluate, and 

implement nature-based shoreline protection (Powell et al. 2019). However, nature-based 

solutions to coastal flooding have only recently begun to be treated with the same rigor as 

traditional engineering solutions, both in hydrodynamic modeling and in policy related to 

urban planning and flood risk management.  

Recent research suggests that in California, 600,000 people are at risk of flooding in a 

scenario with 2 meters of sea level rise combined with a 100 year storm (Barnard et al. 2019). 

The population bordering San Francisco Bay (“the Bay Area”) accounts for two-thirds of 

future flooding impacts in California, and the cost of raising regional protection structures to 

prepare for 2 meters of SLR could reach $450 billion (Hirschfeld and Hill 2017). While the Bay 

relies heavily on gray infrastructures (primarily levees) for flood protection today, a wide 

variety of pathways for integrating nature-based shorelines have been identified regionally 

(Beagle et al. 2019). Coastal development has altered or removed about 90% of the Bay’s 

historical tidal wetlands (Safran et al. 2013), resulting in dramatic habitat loss and 
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fragmentation and in the past several decades marsh restoration has emerged as a unifying 

management objective in the Bay (Callaway et al. 2007; Brew and Williams 2010; Callaway et 

al. 2011; Foxgrover et al. 2019). The coincidence of high and rising flood risk as well as 

opportunity for wetland conservation and restoration makes San Francisco Bay, CA, well 

suited to serve as a study site for an investigation of the potential for marsh restoration as a 

nature-based flood defense. This dissertation uses quantitative engineering approaches to 

assess how marsh plants and marsh restoration can be strategically used to reduce coastal 

flood risk in the densely urbanized estuary of San Francisco Bay.  

In chapter one, observational data from San Francisco Bay, CA (USA), is used to calibrate and 

validate a model and establish that the model, XBeach non-hydrostatic, can hindcast wave 

heights and periods in vegetation fields. Then, through experimental schematized simulations 

which vary hydrodynamic conditions, vegetation characteristics, and marsh morphology 

dimensions, this study examines the role of vegetation in influencing wave transformation. 

The analysis shows how different characteristics of marshes control wave transformation and 

dynamic water levels, how these characteristics interact, and how the potential of marshes to 

reduce flooding may change with higher water levels and larger waves. In the range of model 

settings explored in this chapter, vegetation on a marsh reduces significant wave height by a 

median of 35 cm and reduces runup by a median of 40 cm. Meaningful reductions in wave 

height and runup can be achieved even in the narrowest marshes simulated (50 m). Flood 

managers can use the information presented here to strategically plan for extreme events. 

For example, under conditions similar to a 100-year storm in San Francisco Bay, 50 m of 
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marsh vegetation reduces runup by a median of 65 cm. Results demonstrate the importance 

of maintaining and restoring healthy marshes in urban estuaries.   

Chapter two assesses the flood risk reduction benefits of marsh restoration, under current 

and future climate conditions, to characterize how and where they provide climate 

adaptation benefits now and into the future. The study is focused in San Mateo County, 

which has the highest future flood risk in the state and large areas with potential for wetland 

restoration.  Results show that marsh restoration provides flood reduction benefits along 

shorelines unprotected by levees and along levee sections that are overtopped by high water 

levels. Countywide marsh restoration provides a present value in avoided damages of $21 

million. This value increases to five-fold to $106 million with 0.5 m of sea level rise, and to 

$500 million with 1 m of sea level rise. Results show that marsh restoration can be a cost 

effective approach to climate adaptation in one of the most at-risk counties in the U.S. 

Considering future climate scenarios is becoming common practice with traditional 

infrastructure solutions (Hallegatte et al. 2013; Aerts et al. 2014; de Ruig et al. 2019), and 

similar approaches should be taken when assessing the potential of nature-based solutions. 

This work demonstrates that investments in nature and community resilience made today 

can result in increasing payoffs as climate change progresses and risk increases.  

Chapter two shows that wetland restoration can be effective in reducing flood risk but that 

that marsh restoration in diked and drained former wetlands can amplify flood levels and 

overtop levee crests in some instances. Therefore, exploring how marsh restoration in diked 

and drained former wetlands like the San Francisco Bay salt ponds can be strategically 
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executed to maintain community safety is a necessary next step. In chapter three, I explore 

how restoration scenarios in one of the salt ponds of in San Francisco Bay could influence 

flooding in the future and provide guidance on the factors that should be considered when 

restoring diked and drained former wetlands. This work combines high fidelity numerical 

modeling with a simplified model built on the shallow water equations for tidal inlets to 

understand the controlling factors and the effects of sea level rise. The simplified model is 

applicable in other contexts. With a case study in San Francisco Bay, this work aims to inform 

wetland restoration in other geographies. These simulations demonstrate that the width of 

the tidal inlet and the bathymetry modifications of the restoration site are key drivers of 

water levels. Both factors can be controlled but are rarely considered when planning 

restorations. These results are timely for the Bay Area and beyond as regional and national 

priorities shift to investing in nature-based climate solutions (Olander et al. 2022). 

Finally, chapter four applies the model developed in chapter one to a specific region, the bay 

shore of San Mateo County. This analysis is a first look at how nature-based climate 

adaptation measures can increase levee system safety with sea level rise in an area with high 

population density. Horizontal levees comprise a gently sloping vegetated area fronting a 

buried levee. The plants on the horizontal levee can provide wave attenuation benefits as 

well as habitat benefits. Here, a hydrodynamic model, XBeach non-hydrostatic (XB-NH), is 

used to assess the stability and sustainability of existing levees and determine how hybrid 

nature-based climate adaptation measures can reduce the risk of levee failure in San 

Francisco Bay. Various horizontal levee configurations are implemented in the numerical 

model under a variety of sea level and wave conditions and compare overtopping rates of the 
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existing levee and of the horizontal levee configuration to assess how horizontal levees 

perform in reducing flood risk, both with present day conditions and with SLR. Results show 

that the risk of levee failure can be reduced by up to 30% with horizontal levels.  Further, the 

analysis provides insight to horizontal levee design considerations and a methodological 

approach to adapt levees to prepare for SLR in urban estuaries. 

Altogether, this suite of work establishes that marsh habitat can play a strong role in 

increasing resilience to climate change in low-lying urban estuaries with high and rising flood 

risk. Marsh plants can meaningfully reduce wave heights, even across narrow fringing marsh 

areas, reducing risk of overtopping levees and extending the viability of the levee system into 

the future. Marsh restoration can provide net-positive economic benefits in some places, 

purely through reduction of flood damages. Results support policy that facilitates 

conservation and restoration of existing and historical marsh habitat and incorporates habitat 

and green infrastructure into risk science.  
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Abstract 

Assessing the influence of marshes on mitigating flooding along estuarine shorelines under 

the pressures of sea level rise requires understanding wave transformation across the marsh. 

A numerical model was applied to investigate how vegetated marshes influence wave 

transformation. XBeach non-hydrostatic (XB-NH) was calibrated and validated with high 

frequency pressure data from the marsh at China Camp State Park in San Pablo Bay, 

California (USA). The model was used to examine how marsh and hydrodynamic 

characteristics change the potential for marshes to mitigate wave driven flooding. Model 

results demonstrate that hydrodynamics, vegetation, and marsh width influence wave 

transformation most, while marsh morphology parameters such as elevation and slope had 

least effect. Results suggest that in the range of settings explored here (incident wave heights 

ranging from 0.5 to 3 m and water levels ranging from current mean higher high water to 3 m 

above current mean higher high water), in comparison to wave propagation over an 

unvegetated mudflat, marsh vegetation reduces runup by a median of 40 cm and wave 

height by a median of 35 cm. Results illustrate how marshes can be strategically utilized to 

provide flood reduction benefits.  

1.1 Introduction 

Climate change is raising global sea levels and threatening coasts around the world with 

increased risk of flooding. Thermal expansion of seawater and melting of Iand-based ice is 

predicted to cause between 0.3 and 3 m of sea level rise (SLR) by 2100 (DeConto and Pollard 

2016; Sweet et al. 2017; 2022; Le Bars et al. 2017; Masson-Delmotte et al. 2021), which will 

significantly increase coastal flood risk (Vitousek et al. 2017; Taherkhani et al. 2020). In 
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addition to SLR, coastal flooding is amplified by tides, storm-driven surge, waves, and river 

discharge (Barnard et al. 2019). Disproportionate population density in coastal areas further 

compounds this risk. More than 600 million people live in the coastal zone and that number 

is expected to increase to more than 1 billion by 2050 (Merkens et al. 2016). These factors 

combine to create hazard, exposure, and risk for coastal communities around the world. 

Coastal habitat such as coral reefs, mangrove forests and marshes can play a role in 

increasing resilience to storms and high water levels by buffering incoming waves and storm 

surge and stabilizing shorelines (Shepard et al. 2011; Ysebaert et al. 2011; Suzuki et al. 2012; 

Quataert et al. 2015; Narayan et al. 2016; Nowacki et al. 2017). Research suggests that 

wetlands reduced damage from Hurricane Sandy by $625 million (Narayan et al. 2017), coral 

reefs annually protect over 18,000 people (Storlazzi et al. 2019) and $1.8 billion dollars of 

infrastructure in the USA (Reguero et al. 2021), and mangroves provide $65 billion in flood 

protection benefits globally each year (Menéndez et al. 2020). Incorporating vegetation into 

levee systems on a global scale can reduce required levee height and result in cost savings on 

the order of $300 billion (van Zelst et al. 2021). Findings like these have caused a recent shift 

in scientific and management focus to nature-based shoreline protection (Powell et al. 2019).  

Though coastal habitats have been shown to be effective in reducing flooding, projected sea 

level rise is anticipated to squeeze coastal habitat; for example, a morphological study of San 

Francisco Bay suggests that intertidal areas will drown with 21st century SLR (Elmilady et al. 

2019), though this response depends on sediment supply, location, and morphology. A marsh 

with sufficient sediment supply may continue to accrete sediment on the marsh platform, 

raising its elevation gradually (Kirwan et al. 2010; Swanson et al. 2014). A marsh may also 
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respond to rising water levels with landward retreat of vegetation zones (Stralberg et al. 

2011; Bigalbal et al. 2018), or lateral erosion and steepening of the marsh edge (Tommasini 

et al. 2019). Marshes that cannot keep up or migrate may lose vegetation density and 

transition to mudflat as the inundation periods begin to exceed the tolerance of marsh plants 

(Stralberg et al. 2011; Schile et al. 2014).  

Wave energy on coasts dissipates through several processes. In the inner shelf and shoreface, 

dissipation occurs due to bottom friction (Putnam and Johson 1949), percolation (meaning 

transfer of energy into a permeable bottom; Putnam 1949; Shemdin et al. 1978), fluctuation 

in the bed level (Putnam and Johson 1949), and white capping (Hasselmann 1974); these 

processes can reduce wave energy significantly before waves ever begin to break. As waves 

enter the surf zone, turbulence due to depth-induced wave breaking is the primary driver of 

wave energy dissipation, though bottom friction also plays a role. There is great variation in 

energy loss due to breaking, depending on factors including surf zone morphology, 

infragravity energy, and breaker type (Wright and Short 1984). Finally, once waves reach the 

swash zone, energy loss occurs due to turbulence, bottom friction, and percolation (Stutz et 

al. 1998). Though swash, which is defined as the movement of water up the shore after the 

breaking of a wave, represents only a small fraction of the initial energy of waves, it can cause 

coastal morphology change and property damage.  

Plants can reduce wave energy via work done by frictional drag. Vegetation induced wave 

attenuation has been studied extensively, in field (Foster-Martinez et al. 2018; Garzon et al. 

2019) and lab experiments (Bouma et al. 2013; Maza et al. 2015),  as well as with empirical 

(Mendez and Losada 2004) and physical models (Suzuki et al. 2012; Ma et al. 2013). The 
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amount of drag plants provide depends on hydrodynamic conditions (Mendez and Losada 

2004; Callaghan et al. 2010; Foster-Martinez et al. 2018) and vegetation characteristics 

(Foster-Martinez et al. 2018). Dalrymple et al. (1984) developed an expression to describe 

energy dissipation of waves through a vegetated field, treating the vegetation elements as 

rigid cylinders, and subsequently that expression was modified for a random wave field by 

Mendez and Losada (2004), who also developed an analytical solution for shallow-water 

waves with a sloped water depth. The work of Mendez and Losada (2004) applies only to 

submerged plants, which are relatively short and stiff (such as marsh plants and some types 

of sea grass), and not to vegetation with low stiffness and high buoyancy (such as certain 

types of kelp), though it has been applied to vegetation with low stiffness.  

The formulation developed by Mendez and Losada (2004) is the basis of wave attenuation in 

the XBeach model (van Rooijen et al. 2015). This formulation paired with the recent 

development of the XBeach non-hydrostatic mode, which, though computationally costly, is 

resolved for incident-band waves, (XB-NH; de Ridder et al. 2020) enables a first look at the 

impact of vegetation on incident-band (i.e., short period or high frequency) driven wave 

runup, which is the sum of wave setup and swash ( Miche 1951; Longuet-Higgins and Stewart 

1963; Guza and Thornton 1981; Stockdon et al. 2006). Runup requires high frequency (wave 

resolved) data to observe, and in the past has been observed using time series imagery 

(Stockdon et al. 2006), which is challenging to collect. Though runup is a direct indicator of 

maximum coastal flooding, and is thus a key consideration in coastal planning, the 

interactions of wave runup (measured vertically) and vegetation are not well understood and 

have only recently begun to be studied (van Wesenbeeck et al. 2022). Previous studies have 
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determined that wave height decay across vegetation fields depends on variables including 

water level, vegetation height, wave height, and frictional coefficient ( Foster-Martinez et al. 

2018; Garzon et al. 2019). However, other aspects of marsh morphology have not been 

considered, such as marsh platform elevation relative to tidal datum, mudflat and marsh 

edge slope, and marsh width. Furthermore, interactions between these variables have not 

been examined.  

This study employs observational data from San Francisco Bay, California (USA), to calibrate 

and validate a model and establish that XB-NH can hindcast wave heights and periods in 

vegetation fields. Then, through experimental schematized simulations which vary 

hydrodynamic conditions, vegetation characteristics, and marsh morphology dimensions, this 

study examines the role of vegetation in reducing flooding potential. The analysis shows 

which characteristics of marshes control wave transformation and dynamic water levels, how 

these characteristics interact, and how the potential of marshes to reduce flooding may 

change with higher water levels.  

1.2 Methods 

1.2.1 Study site 

In the winter of 2014-2015, and the summer of 2016, Foster-Martinez et al. (2018) 

performed vegetation surveys and deployed pressure sensors along a transect in China Camp 

State Park (38.0095°, -122.4837°), in San Pablo Bay, in the northwest corner of San Francisco 

Bay (Figure 1.1). They characterized the marsh with four different vegetation zones: a low 

marsh, characterized by Spartina foliosa; a high marsh, characterized by Salicornia pacifica; 
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and two transition zones, characterized by combinations of the two vegetation species. 

Vegetation surveys were conducted on January 23, 2015, and June 6, 2016, using one-meter 

quadrats to determine percent cover of each species and average and maximum canopy 

heights, which were determined by measuring the height of the tallest and a typical stem, 

and quarter-meter quadrats to determine stem count and stem diameter measurements. 

These values were measured for the high marsh and low marsh zones and interpolated 

linearly for the transition zones based on percent cover of high and low marsh vegetation. 

Pressure sensors were deployed on a 150 m transect, starting 35 m outside the marsh on the 

mudflat, and extending into the marsh, placed at the boundaries of the vegetation zones. 

These sensors collected data at either 6 or 8 Hz in bursts of measurements every 10 or 15 

minutes. Bursts were 2048 measurements long, which is approximately 5 minutes at the 

given measurement frequencies. These data are publicly available (Lacy et al. 2017) and were 

utilized to calibrate and validate an XB-NH model. To convert total pressure to water depth, a 

constant water density was assumed, and atmospheric pressure was temporally interpolated 

from measurements taken at the NOAA RCMC1 weather station, which is 11.5 km from the 

site, and subtracted from total pressure. A spectral analysis was used to determine variance 

density from pressure time series, and variance density (from which wave statistics such as 

peak wave period Tp, significant wave height Hs or Hm0 can be calculated) was used to force 

calibration and validation model runs.  
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Figure 1.1 Location (A and B; base-map layer from Google Earth) and view (C; photograph taken by R. 
Taylor-Burns) of the study site, and depiction of the transect deployed in 2016 by Lacy et al. (2017; D 
and E). MDF is the offshore site, SPD marks the beginning of the low marsh, DX1 marks the beginning 
of the first transition zone, DX2 marks the beginning of the second transition zone, and DXA – DX4 are 
all on the high marsh. 

1.2.2 Model and data sources 

XBeach (Roelvink et al. 2009) is a process-based model which simulates nearshore processes 

including wave transformation, wave-induced setup, over-wash, and inundation; in addition 

to information on water levels and wave heights, model outputs can include parameters such 

as flow and orbital velocity, bed shear stress, and Stokes drift. XBeach was originally 

developed as a phase-averaged model that resolves amplitude variation on the wave group 

scale (surfbeat) but does not resolve individual waves as in a Boussinesq model. Recently, a 

non-hydrostatic mode (XB-NH) was developed for XBeach (de Ridder et al. 2020), which is 
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similar to a depth-averaged version of the SWASH model (Zijlema et al. 2011; Smit et al. 

2013) and is able to fully resolve incident-band waves. Resolution of incident-band waves, 

though computationally costly, is necessary to determine swash on relatively steep slopes 

and is thus necessary to investigate runup (as determined by the last wet grid cell), and 

potential overtopping on levees. Runup and overtopping in the non-hydrostatic mode have 

been validated using several separate datasets from sandy beaches. Results show that 

incident-band driven runup height is predicted with good accuracy and a maximum deviation 

of 15% (Roelvink et al. 2018). A reduced two-layer non-hydrostatic formulation is included 

that allows for a more accurate description of the frequency dispersion in relatively deeper 

water. Relative depth (KD) determines whether waves are in deep water (waves do not 

interact with the bottom, KD > π) or shallow water (waves interact with the bottom, KD < 

π/10), and is based on water depth and wavelength. De Ridder et al. (2020) showed good 

performance up to a relative depth of 3. XB-NH allows for the inclusion of the effect of 

vegetation within the model via vegetation parameters including stem density, frictional drag 

coefficient, stem height, and stem diameter (van Rooijen et al. 2015; 2016).  

In this study, XB-NH was applied in one-dimensional mode. This approach assumes that wave 

forcing is shore-normal and neglects lateral flow, assumptions which were also made in the 

analysis by Foster-Martinez et al. (2018). This approach also neglects tidal channels and 

creeks, which facilitate drainage of water on the marsh. Model boundary conditions were 

determined by obtaining wave statistics from every burst at the offshore observation station, 

MFD (Figure 1.1). Bathymetry was determined from a 2 m digital elevation model (DEM), 

which was collected aerially with Light Detection and Ranging (LiDAR, Danielson et al. 2016). 
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Discrepancies between elevations at the study sites in the DEM and elevations reported by 

Lacy et al. (2017) ranged from 0 to 20 cm, with largest discrepancies in the high marsh zone. 

These discrepancies are likely due to LiDAR overestimating elevation in dense vegetation. A 

vegetation-corrected DEM (only available at elevations above -1 m NAVD88) was also tested 

(Buffington and Thorne 2018), but it also had discrepancies and had lower spatial resolution 

(5 m) and thus was not used. To correct for vertical discrepancies between field observations 

and the 2 m DEM, a linear interpolation of the discrepancies was created and subtracted 

from the DEM. 

Variable grid spacing was used, with a minimum of 30 grid points per wavelength and the 

total number of grid points ranging from 1500 to 19,000. Sensitivity analyses show that the 

model results converge at this resolution. A Manning’s friction formulation was used for 

mudflat friction. The equilibrium bound long wave, which is energy that fluctuates at the 

same frequency as the wave group but 180 degrees out of phase, was not imposed in the 

calibration or validation as this saved significant computational time and did not impact 

model results. In contrast to open-coast conditions, offshore spectra in this sheltered 

environment do not show components of bound long waves in the variance density 

spectrum. We hypothesize that this is related to the relatively young age of the sea-state in 

combination with steep slope compared to wave period in San Pablo Bay. To determine wave 

statistics from water level time series, a Guza filter (Guza et al. 1984) was used to separate 

incoming and outgoing wave energy. A fast Fourier transform was used to determine wave 

spectra from water level time series. Significant wave height and peak period were 

determined from wave spectra. The last wet grid cell was utilized to determine a runup time 
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series and the 98th percentile of this time series was utilized to determine R2%, or the runup 

value which is exceeded by 2% of waves.  

1.2.3 Calibration and validation  

Bursts for which the significant wave height was greater than 5 cm at the offshore station 

(MFD), and for which ratio of wave group velocity to phase velocity (cg/cp, or N) was less than 

0.85 at the offshore station, were selected for calibration and validation in order enable us to 

model meaningful decay of wind waves with deep water boundary conditions. Few bursts 

during the summer deployment met these conditions, so the model was developed using 

winter measurements, with the calibration dataset from January 15 –25, 2015 (n = 257), and 

the validation dataset from December 18 –28, 2014 (n = 88). For all bursts, the relative depth 

(KD) was less than 1.5, and the ratio of wave height to water depth was less than 1/3.  

The vegetation module of XB-NH was utilized to account for wave-vegetation interactions 

within the marsh (van Rooijen et al. 2015). Stem height, diameter, and density for each of the 

four vegetation zones were taken from the vegetation surveys done by Foster-Martinez et al. 

(2018). That study calculated drag coefficients, Cd, for the four vegetation zones in winter and 

summer and found, progressing from the bay to the marsh, that the mean and standard 

deviation of Cd across the four vegetation zones and spanning the full range of water level 

conditions to be [9.85 ± 19.23, 0.44 ± 0.33, 0.56 ± 0.25, 0.93 ± 0.53] for winter and [0.34 ± 

0.41, 0.56 ± 0.19, 0.41 ± 0.10] for summer (there was only one transition zone during the 

summer deployment). The Cd for the low marsh in winter is very high due to low vegetation 

frontal area at that time, caused by seasonal loss of leaves (see Figure 4 in Foster-Martinez et 

al. (2018) for a visual), but similar wave attenuation to the summer months. Foster-Martinez 
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et al. (2018) discusses possible mechanisms for similar attenuation despite seasonal changes 

in marsh plants. Additionally, uncertainty for Cd in the low marsh during winter is very high. 

Because that value is anomalously high, with high uncertainty, and inconsistent with other 

values reported in the literature, the summer Cd value for the low marsh was used, such that 

the values of Cd we used across the four vegetation zones were [0.34, 0.44, 0.56, 0.93], 

respectively. Vegetation parameters for calibration are shown in Table 1-1. 

Table 1-1 Vegetation parameters used in the model calibration. Values for stem diameter, vegetation 
height, and stems/m2 for the low and high marsh are taken from the field surveys done by Foster-
Martinez et al. (2018). Stem diameter and vegetation height for the transition zones are linearly 
interpolated from the high and low marsh, based on proportional vegetation cover of the two main 
vegetation species. Stem density for the transition zones is determined by back-calculating from the 
N×Bv values listed in Table 1 of Foster-Martinez et al. (2018). Values of drag coefficient (Cd) are the 
mean of values calculated by Foster-Martinez et al. (2018) from the winter deployment, except for the 
low marsh Cd, which is from the summer deployment. 

 

Model results were assessed by comparing modeled and measured wave heights and wave 

periods. Predictive skill was determined by calculating relative bias (RB), scatter index (SCI), 

and mean absolute error (MAE), using equations 1.1 – 1.3, where m is the measured value, c 

is the calculated value, and n is the number of observations. For model calibration, values of 

Cd were varied for each of the four vegetation zones, several DEMs were tested, and the 

Manning’s coefficient of the mudflat and maximum breaking steepness of waves were varied 

as well. 

Marsh zone Species Stem diameter (m) Vegetation height (m) Stems/m2 Cd 

Low marsh Spartina foliosa 0.0027 0.16 312 0.34 

Transition zone 1 20% S. foliosa, 15% S. pacifica 0.0024 0.186 5583 0.43 

Transition zone 2 5% S.foliosa, 55% S. pacifica 0.00205 0.215 23,562 0.56 

High marsh Salicornia pacifica 0.002 0.22 44,000 0.93 



23 
 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 (𝑅𝐵) =
(𝑐 − 𝑚)

|𝑚|
⁄       (Eq. 1.1) 

𝑆𝑐𝑎𝑡𝑡𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 (𝑆𝐶𝐼) =  
√(𝑐 − 𝑚)2

|𝑚|
⁄

      (Eq. 1.2) 

𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸) =
∑|𝑐𝑖 − 𝑚𝑖|

𝑛⁄      (Eq. 1.3) 

Previous research shows that Cd varies with Reynolds or Keulegan-Carpenter numbers 

(Mendez and Losada 2004; Pinsky et al. 2013; Foster-Martinez et al. 2018) and that as 

turbulence increases, Cd decreases. The field campaign carried out by Foster-Martinez et al. 

(2018) observed a limited range of Reynolds numbers (Re < 600), so we used a constant Cd 

across all calibration and validation bursts. The Cd was treated as a bulk drag coefficient, or an 

empirical coefficient appropriate for the whole vegetation field. It was determined by the 

mean value from the range of observed hydrodynamic conditions and was not time-varying, 

following the approach of Van Rooijen et al. (2016). Like Van Rooijen et al. (2016), model-

data agreement in this study was found to have relatively low sensitivity to small changes in 

values of Cd. Calibration and validation skill scores are shown in Figure 1.2. See Figure S1.1 for 

a detailed look at several individual bursts.  
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Figure 1.2 Results from model calibration (red) and validation (blue), showing wave height (row 1) and 
wave period (row 2). Columns A through E show model-data agreement at the six offshore observation 
locations at China Camp State Park, MFD, SPD, DX1, DX2, DXA, and DX3. Locations of these points can 
be seen in Figure 1.1. Skill scores correspond to relative bias, scatter, and mean absolute error. No 
calibration data are shown in column D because data were not collected at DX2 during the calibration 
period. 

Calibration results showed that the model was relatively insensitive to Manning’s friction 

coefficient of the mudflat and the maximum steepness of waves before breaking. Model 

sensitivity to bathymetry was similar to sensitivity to changes in vegetation drag coefficient 

ranging up to one standard deviation, or a factor of about two (Table S1-1). Given that 

maximum steepness and Manning’s coefficient are not strong controls on the model and 

given the uncertainty in the 2 m DEM, the default value for maximum wave steepness was 

used (0.4), a standard Manning’s friction was used for the mudflat (0.018 s/m1/3, Chow 1959; 

Fernandes et al. 2000; Shen et al. 2006) and the vegetation drag coefficients calculated by 

Foster-Martinez et al. (2018) based on field observations were used.  

In many bursts, both observed and modeled wave spectra have a peak at very low 

frequencies, resulting in both modeled and observed wave periods of up to 400 s. We 

hypothesize this is due to the length of bursts at which data were collected and the method 



25 
 

of spectral analysis. However, long period infragravity waves (Talke and Stacey 2003) or basin 

and sub-basin oscillation motions such as seiching (Kimmerer 2004) could also be at play. The 

focus of this analysis is on local wind waves and therefore these bursts have been excluded. 

The calibration process also revealed that the model does not simulate propagation of waves 

less than 1 mm, because XB-NH does not model capillary waves. Thus, bursts in which wave 

transformation over the transect resulted in peak wave periods greater than 20 s and 

significant wave heights less than 1 mm were excluded from the plots and skill scores shown 

in Figure 1.2, which is why there are many more data points at the offshore boundary than 

on the marsh platform. 

The model hindcasts wave height and wave period, establishing that XB-NH effectively 

models wave transformation in vegetation fields. There is an over-prediction of wave period 

in the transition zones of the marsh (Figure 1.2, 2C, 2D), and an underprediction of wave 

period in the high marsh (2F). Wave heights during the calibration and validation phase at 

DX1 have negative and positive bias, respectively (Figure 1.2, 1F). However, the observed 

wave heights are small (<4 cm), and thus the biases could be due to changes in the 

bathymetry between the calibration and validation time periods, which were a month apart.  

1.2.4 Schematized model setup 

Having established that XBeach, a process-based model, is able to hindcast wave 

transformation in vegetation, we changed physical parameters in the model to explore the 

full range of possibilities that have been observed and modeled in our study region and 

similar study regions, including variations in vegetation, marsh morphology, and 

hydrodynamics, with a goal of creating idealized simulations that are applicable to other 
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locations in San Francisco Bay as well as other estuaries. The model settings from calibration 

and validation were used and physical parameters were varied, including Cd, following the 

approach taken by Quataert et al. (2015), Best et al. (2018), and Harris et al. (2018). 

Takekawa et al. (2013) performed an extensive regional survey of San Francisco Bay marshes, 

and observations from this survey (Table 1-2) were used to determine physical parameters of 

schematized model transects. Multiple vegetation surveys (Table 1-2) were used to 

determine typical values and ranges for stem height, diameter, density, and values of Cd. 

Table 1-2 A summary of marsh parameters observed in a 2013 regional survey done by Takekawa et al. 
(2013), followed by a summary of vegetation parameters found in existing literature.  

Marsh tidal data Survey observations (m NAVD88) 

Mean sea level (MSL) 0.99 - 1.21* 

Mean high water (MHW) 1.70 - 1.92 

Mean higher high water (MHHW) 1.85 - 2.09 

Mean marsh elevation 1.4 - 2.1 m ** 

Marsh vegetation zones Survey observations (m relative to MSL) 

Typical mudflat elevation < +0.2  

Typical low marsh elevation +0.2 - 0.45, mostly Spartina spp 

Typical mid marsh elevation +0.45 – 0.7 

Typical high marsh elevation >  +0.7, mostly Salicornia pacifica 

* 10 of the 12 surveyed marshes had mean sea levels between 0.99 and 1.07 m NAVD88 

** 11 of the 12 surveyed marshes had mean marsh elevations between 1.6 and 2.1 m NAVD88 

Species 
Stem density 
(stems/m2) 

Stem diameter 

(m) 

Vegetation 
height (m) 

Cd Location Citation 

Salicornia pacifica 44000 0.002 - 0.0034 0.22 - 0.25 0.41 - 0.93 SF Bay 
Foster-Martinez et 

al. 2018 

Spartina foliosa 312-440 0.0027 - 0.0047 0.16 - 0.48 0.34 SF Bay 
Foster-Martinez et 

al. 2018  

Various marsh species 500 (model) 0.007 (model) 1.5 (model) 
0.01 - 10  

(mean=2.6) 
various Pinsky et al.  2013  

Spartina alterniflora 
and Spartina patens 

100-500 0.007 1.5 
  

North 
Carolina 

Gittman et al. 
2014  

Spartina foliosa 284   0.94   
Tijuana 

Ward et al.  2003 
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Schematized transects included, from bay to marsh, a sloped mudflat, a sloped marsh edge, a 

flat marsh top, and an unvegetated levee. The levee was included to ensure there is no flow 

out the back of the transect, with a slope of 1/10 and a height of +10 m NAVD88. The 

seaward boundary of each transect had a depth of -5 m NAVD88, thus resulting in ~500 – 

2500 m of mudflat leading up to the vegetated marsh, depending on the mudflat slope. The 

transitions between the first three zones were smoothed with a spline interpolation. Mean 

sea level (MSL) was set at 1 m (NAVD88), and mean higher high water (MHHW) was set at 

1.85 m (NAVD88) (Takekawa et al. 2013). The low marsh vegetation zone was set between 

+0.2 and +0.45 m MSL, the transition zone was set between elevations of +0.45 and +0.7 m 

MSL, and the high marsh was set above +0.7 m MSL (Takekawa et al. 2013). Regional surveys 

show that S. pacifica is dominant in the high marsh, and S. foliosa is dominant in the low 

marsh, and that these two species are dominant and nearly equally abundant in the 

transition zone (Takekawa et al. 2013). Foster-Martinez et al. (2018) also showed that drag 

coefficients are strongly dependent on the vegetation survey methods; thus, in the 

schematized models we used a range of vegetation density and frictional values centered on 

those measured (stem diameter, stem height and stem density, for which we picked values in 

the middle of the ranges reported) and calculated (Cd, which we rounded to one significant 

Estuary 

Spartina foliosa 270 
      

Tijuana 
Estuary 

Desmond et al. 
1999  

Salicornia  pacifica 
    

0.15 - 0.35 
  

SF Bay 
Woo and 

Takekawa 2012 

 

Salicornia europaea 1200 - 10000 
  

0.05 - 0.2 
  

Rhode 
Island 

Ellison 1987 
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figure, as shown in Table 1-3) by Foster-Martinez et al. (2018). These vegetation parameters 

are consistent with studies of similar vegetation from other regions.  

A 30-year hindcast by O’Neill et al. (2017) suggested that the largest waves formed (99.9th 

percentile;  i.e., exceeded 9 hours per year) in San Francisco Bay during the time period 1975 

and 2004 reached significant wave heights of 1.38 to 1.93 m, depending on basin subregion. 

Similarly, field observations in the shallows of San Pablo Bay showed that significant wave 

height frequently surpasses 0.5 m in summer months, and can reach up to 0.8 m during 

winter storms (Lacy and MacVean 2016). These extreme wave heights occur in the main 

channels of the bay, where water depth is greatest, but can propagate toward marshes in the 

bay shallows; the same field observations show that wave height decays by 50% over 6.5 

kilometers of mudflat. A 70-year water level hindcast by Nederhoff et al. (2021) suggested 

that storm-driven water levels in San Francisco Bay can exceed 1.2 m above predicted tides. 

Beyond high water levels driven by storm conditions, sea level rise is predicted to cause 

relative elevation of marshes to decrease by between 0.4 and 1.3 m in San Francisco Bay by 

the end of the century under a moderate emissions scenario (Swanson et al. 2014). Thus, by 

the end of the century, San Francisco Bay marshes could be exposed to up to 2.5 m of 

additional water level during storms. Higher water levels in estuaries will increase depth and 

fetch, enabling larger waves to form (Lacy and MacVean 2016; Karimpour et al. 2017). For 

example, previous research suggested that one meter of sea level rise in San Francisco Bay 

will result in up to 0.4 m greater wave heights during a 100 year storm (O’Neill et al. 2017), 

though this depends on bay sedimentation rates (Ranasinghe et al. 2013). To account for 

daily and storm wave conditions in San Francisco Bay, as well as estuaries with greater fetch, 
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we simulated wave heights ranging from typical present day conditions (Lacy and MacVean 

2016) to 1.5 – 2 × present day modeled extreme San Francisco Bay wave height (O’Neill et al. 

2017). Thus, in some simulations, waves are already breaking by the time they reach the 

marsh, resulting in greater dissipation over the mudflat as compared to dissipation over 

vegetation. Experimental models were forced with a JONSWAP spectrum (Hasselmann et al. 

1973). To account for storm water levels as well as higher water levels due to rising sea 

levels, water levels from present day MHHW (1.85 m NAVD88) to 3.15 m above present day 

MHHW (5 m NAVD88) were used as boundary conditions. Existing marshes tend to have 

marsh platform with elevations within 20 cm of MHHW, thus this study simulates marshes 

with 0.05 to 3.2 m of inundation. See Table 1-3 for more information on experimental 

simulation boundary conditions.  

Previous studies with explicit vegetation representation show that Cd can vary widely 

between sites and under different hydrodynamic conditions (Pinsky et al. 2013; Foster-

Martinez et al. 2018). Pinsky et al. (2013) found that drag coefficients ranged from 0.5 to 30 

for similar hydrodynamic conditions, illustrating that Cd is a highly variable and uncertain 

parameter. Numerous studies quantify relationships between Cd and Re in marsh vegetation, 

but these relationships vary widely and do not extend beyond Re > 103. Because established 

relationships between Re and Cd do not extend beyond Re > 103, in higher Re simulations Cd 

values are an approximation. To account for this uncertainty in Cd, as well as variations in 

vegetation density and stem diameter, which also have direct effects on energy attenuation 

formulation developed by Mendez and Losada (2004), in this study we used a three order of 
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magnitude range of drag coefficients, centered on the average of the four-week study period 

in China Camp, which spanned a variety of tidal and wave conditions.  

Table 1-3 and Figure 1.3 illustrate the schematized model settings that were used. In the first 

round of simulations, for each variation in schematized model settings shown in Table 1-3 

(base case values are bolded in column 2 of Table 1-3), a range of water levels and frictional 

coefficients were used (shown by asterisks in column 1 of Table 1-3) to create a suite of 

multi-dimensional model runs and investigate how each parameter impacts the ability of 

marshes to transform waves and reduce potential flooding. Each model was run with 

vegetation present and with vegetation completely removed, to separate the influence of 

vegetation and the influence of bathymetry. In the unvegetated models, the Manning’s 

friction coefficient determined from calibration and used on the mudflat was applied across 

the entire transect. This process consisted of 1650 XB-NH simulations. Results can be seen in 

Section 1.3.2 and were utilized to identify parameters most important in controlling wave 

transformation. 

Table 1-3 A summary of vegetation parameters used in the schematized experimental model runs, 
followed by a summary of the range of parameters that were varied in the schematized experimental 
runs. In the bottom half of the table, an asterisk denotes variables that were covaried in all 
simulations. 

Marsh Zone Stems/m2 Stem height [cm] Stem diameter [mm] Cd 

Low 400 15 3 0.3 

Transition 20,200 20 2.5 0.6 

High 40,000 25 2 0.9 

 

Parameter  Range Source 

Water level* [1.85, 2.5, 3, 4, 5] m NAVD88 Nederhoff et al. 2021 

Wave height [0.5, 1, 1.5, 2, 3] m ONeill et al. 2017 
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Wave steepness [0.025, 0.035, 0.04, 0.045, 0.055] Zhao and Li 2019 

Vegetation density [0, 0.5, 1, 1.5, 2] × values listed above Foster-Martinez et al. 2018 

Cd, Frictional drag coefficient of 
vegetation* 

[0.1, 0.5, 1, 2, 10] × values listed above 
Foster-Martinez et al. 2018, 

Pinsky et al. 2013 

Minimum elevation of vegetation [0, +10, +20, +30 +40] cm relative to MSL Takekawa et al. 2013 

Mudflat slope [1:100, 1:200, 1:300, 1:400 1:500] Danielson et al. 2016 

Low marsh slope [1:10, 1:20, 1:30, 1:40, 1:50] Danielson et al. 2016 

Marsh platform elevation 
[-25, -15, -5, +5, +15] cm relative to 

MHHW 
Takekawa et al. 2013 

Marsh platform width [50, 100, 250, 500, 750, 1000] m Danielson et al. 2016 

 

Based on results from the first round of simulations, a second round of simulations was 

subsequently run. In the second round of simulations, the key parameters identified in the 

first round of simulations (italicized in column 1 of Figure 1.3) were all covaried, creating a 

complete set of every combination of the key drivers of wave transformation in the ranges 

identified in Table 1-3 and Figure 1.3, both with vegetation present and with vegetation 

removed from the transect. This process consisted of 3750 XB-NH simulations and results can 

be seen in Section 1.3.3. 
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Figure 1.3 Depiction of the schematized transect. Bolded text identifies variables that were changed in 
the schematized model runs. 

All runs were at least 1000 waves long (based on peak period) plus 60 minutes of spin-up 

(400 – 1500 waves, depending on period) to reach stationarity of the wave setup, which were 

not used for analysis. Model results were post-processed to obtain significant wave height 

100 m into the high marsh (Hs), average wave-induced setup 100 m into the high marsh 

(setup), and the 98th percentile runup value (R2%). Hs was calculated spectrally using 

functions available on Open Earth Tools, which is a repository for free and open-source code 

for a variety of topics related to delta and coastal areas 

(https://publicwiki.deltares.nl/display/OET/OpenEarth); setup was calculated as the mean 

water level 100 m into the marsh relative to the offshore water level (i.e., at the offshore 

edge of the transect, which is between 500 and 2500 m offshore from the marsh edge, 

depending on mudflat slope); runup was also calculated relative to the offshore water level. 

Thus, runup is determined by the total water level at the last wet grid cell (TWL) minus the 
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still water level at the offshore boundary (SWL) and includes both swash and setup. In the 

shortest marsh settings (50 m of vegetation), Hs and setup were measured at the last 

vegetated grid cell.  

1.3 Results 

1.3.1 Wave transformation due to vegetation 

To examine and isolate the impact of vegetation on wave transformation, spectral analyses of 

the incoming water level and subsequent computed wave energy and height from the 

schematized experimental model runs were completed; an example of this is shown in Figure 

1.4. Results show that a large proportion of wave decay due to vegetation happens across a 

short horizontal distance, with the majority of wave energy dissipation due to vegetation 

occurring in as little as 50 meters into the marsh vegetation (1D), which is approximately 30 

m into the high marsh. This decay in wave height (row 2) and wave energy (1D and 1E) is due 

to reflection of wave energy by vegetation, which is shown by the peak in the outgoing wave 

height at that point on the transect (row 3), and to frictional drag. Additionally, wave spectral 

energy analysis reveals that vegetation reduces relatively higher frequency energy first, and 

as waves travel up the transect through the marsh vegetation, spectral energy shifts toward 

lower frequencies (1D, 1E and 1F). 
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Figure 1.4 The effects of vegetation on spectral density of wave energy and on wave height. Green 
lines show model results from a transect with a vegetated marsh and brown lines show results from a 
transect with an unvegetated marsh. Row 1 row shows, from left to right, spectral density at the 
offshore boundary (1A), 1 km onto the mudflat (1B), at the edge of the marsh (+1.2 m NAVD88, 1C), 50 
m into the marsh (1D), 200 m into the marsh (1E), and of the runup signal (1F), with the y-axis plotted 
in log scale. Black lines in row 1 indicate idealized JONSWAP spectra determined by wave statistics 
used at the offshore boundary, which diverge from model results at low frequencies due to wave-wave 
interactions. The middle three rows show, from top to bottom, total significant wave height (row 2), 
incoming wave height (row 3), and outgoing, or reflected, wave height (row 4). The bottom row (row 
5) shows transect bathymetry in black, vegetation location in green, and mean water level in blue. 
Bathymetry and water level are identical for the vegetated and unvegetated model. Black labeled dots 
on the bottom four plots show locations of the spectra in the top row (runup location is variable and 
thus approximate). Models were forced with wave heights of 1.5 m and steepness of 0.04 (peak period 
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of 4.9 s), and water level was 2.5 m NAVD88 (or 0.65 m of marsh inundation). Drag coefficient (Cd) was 
10% of China Camp observations.  

1.3.2 Effects of marsh and hydrodynamic settings 

The capacity of a marsh to reduce potential flooding increases with increasing vegetation 

density, Cd, and wave steepness and decreases with increasing minimum elevation of 

vegetation, water level, and wave height (Figure 1.5 - Figure 1.7). Generally, there are many 

positive outliers, which signify that when high water levels and low friction coefficients 

coincide, the potential of marshes to reduce waves and flooding decreases. Marsh width, 

vegetation friction, water level, and wave height conditions are the strongest controls on 

wave transformation. 

1.3.2.1 Hydrodynamic conditions 

Increasing water level (Figure 1.5, column A) results in an increase in Hs and runup. At higher 

water levels, bathymetric effects are reduced, mudflat friction decreases per the Manning 

friction formulation, and the relative height of vegetation decreases, thus reducing frictional 

drag by marsh plants. Increasing the steepness of offshore waves (column B) decreases the 

wave period, thus decreasing the wave power. This causes a decrease in Hs, setup and runup. 

In the range of conditions studied here, wave height has a stronger effect on wave 

transformation metrics than wave steepness. Increasing wave height (column C) causes an 

increase in Hs, setup and runup as expected based on prior work (Guza and Thornton 1981; 

1982; Stockdon et al. 2006).  
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Figure 1.5 Box plots showing changes in wave transformation across the marsh. Wave transformation 
metrics are on the y axis of all box plots, including: wave height 100 m into the high marsh (Hs, row 1), 
wave induced setup 100 m into the high marsh (row 2), and R2% (row 3). Characteristics of 
hydrodynamic conditions are on the x axis of all box plots, including water level (column A), offshore 
wave steepness (column B), offshore wave height (column C), with each box representing results from 
all simulations in which the specified hydrodynamic condition has the same setting. Red lines indicate 
medians, blue rectangles indicate the interquartile range, and blue dots indicate outliers. There are 
many positive outliers that are caused by coincidence of high water levels and low drag coefficient (Cd). 
Water level and wave height are the strongest controls on wave transformation. 

1.3.2.2 Vegetation characteristics 

Increasing vegetation density (Figure 1.6, column A) and increasing Cd (column B) cause 

similar impacts on wave transformation and flood reduction, resulting in decreased Hs, setup, 

and runup by increasing the short-wave dissipation due to vegetation. Increasing the 

minimum elevation of vegetation (column C) causes a greater proportion of the transect to 

be unvegetated, resulting in waves traveling over more mudflat and a narrower vegetation 
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field. Thus, increasing the vegetation elevation decreases dissipation due to vegetation. This 

causes an increase in Hs, setup, and runup. The highest setting of vegetation elevation 

eliminates the high marsh zone completely, meaning that only low and transition marsh 

zones are present. This setting results in the greatest change of the wave reduction metrics 

suggesting that minimum elevation of vegetation has little impact on wave transformation 

until the high marsh zone is completely lost. 

 

Figure 1.6 Box plots showing changes in wave transformation across the marsh. Wave transformation 
metrics are on the y axis of all box plots, including: wave height 100 m into the high marsh (Hs, row 1), 
wave induced setup 100 m into the high marsh (row 2), R2% (row 3). Characteristics of vegetation are 
on the x axis of all box plots, including vegetation density (column A), vegetation frictional drag 
coefficient (Cd, column B), and minimum vegetation elevation (column C), with each box representing 
results from all simulations in which the specified vegetation condition has the same setting. Red lines 
indicate medians, blue rectangles indicate the interquartile range, and blue dots indicate outliers. 
There are many positive outliers that are caused by coincidence of high water levels and low Cd. 
Vegetation density and Cd are the strongest controls on wave transformation. 
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1.3.2.3 Marsh morphology 

The marsh morphology settings include marsh platform elevation, low marsh slope, mudflat 

slope, and marsh platform width. These settings had the weakest influence on wave 

transformation with marsh platform width providing the greatest variation, particularly in 

runup. Increasing the marsh platform width (Figure 1.7, column D) decreases runup because 

waves must travel across more vegetation before hitting the levee and causing runup. Thus, 

waves are dissipated more as they travel across the marsh platform in wider marshes, 

causing less runup at the levee.  

 

Figure 1.7 Box plots showing changes in wave transformation across the marsh. Wave transformation 
metrics are on the y axis of all box plots, including: wave height 100 m into the high marsh (Hs, row 1), 
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wave induced setup 100 m into the high marsh (row 2), and R2% (row 3). Characteristics of marsh 
morphology are on the x axis of all box plots, including marsh platform elevation (column A), low mash 
slope (column B), mudflat slope (column C), and marsh platform width (column D), with each box 
representing results from all simulations in which the specified morphology condition has the same 
setting. In the shortest marsh setting, Hs and setup were measured at the last vegetated grid cell. Red 
lines indicate medians, blue rectangles indicate the interquartile range, and blue dots indicate outliers. 
There are many positive outliers that are caused by coincidence of high water levels and low drag 
coefficient (Cd). Marsh width is the strongest control on wave transformation. 

1.3.3 Key drivers of wave transformation 

The cumulative sum of the difference in medians of Hs, setup, and runup across the range of 

model settings was calculated (Figure 1.8). For example, the top bar shows the difference in 

median Hs (blue), setup (orange), and runup (red) between the highest and lowest offshore 

Hs simulated. Variables which produced a cumulative sum of greater than 5 cm were 

identified as the most important factors that influence the impact of marshes on wave 

transformation. These include Hs, Cd, water level, and marsh width.  
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Figure 1.8 The cumulative sum of the difference in medians of Hs, setup, and swash across the range 
of model settings used in 1.3.2. Variables which produced a cumulative sum greater than 5 cm, shown 
by the dashed line, were selected to be used in a subsequent analysis. 

We ran a subsequent set of simulations using the same settings described in Table 1-3 in 

which five different factors were covaried (wave height, water level, Cd, marsh width, and 

wave steepness) to identify combinations of settings that resulted in extreme results, and to 

further explore the key drivers of wave transformation in marsh ecosystems. Wave steepness 

was included to provide a more complex look at wave and vegetation dynamics and to allow 

for multiple settings for each run. All runs were done with and without vegetation present. 

An overview of results from the second round of simulations is shown in Figure 1.9. 

Across the range of conditions explored here, which represent 55 simulations with settings 

described by italicized entries in Table 1-3, vegetation reduces significant wave height 100 m 
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into the marsh by a median of 35 cm (Figure 1.9, 1B) and 94% (1C). The middle 95% of 

significant wave height reduction due to vegetation (cm) falls in the range [1, 157]. 

Vegetation reduces setup by a median of less than 1 cm (2B). The middle 95% of setup 

reduction due to vegetation (cm) is falls in the range [-5, 17]. Vegetation reduces runup by a 

median of 40 cm (3B) and 90% (3C). The middle 95% of runup reduction due to vegetation 

(cm) falls in the range [4, 133]. 

 

Figure 1.9 An overview of results from the second round of simulations (n = 55) in which wave height, 
wave steepness, water level, drag coefficient (Cd), and marsh width were all covaried across the ranges 
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identified in Table 1-3, and in which simulations were completed with and without vegetation. In 
column A, an empirical cumulative density function of significant wave height 100 m into the high 
marsh (Hs, row 1), setup 100 m into the high marsh (row 2), and runup at the last wet grid cell (row 3) 
with vegetation present (green) and vegetation removed (brown) from the transect. In column B and 
C, reduction in wave height 100 m into the high marsh (Hs, row 1), setup 100 m into the high marsh 
(row 2), and runup at the last wet grid cell (row 3) between vegetated and unvegetated transects, with 
absolute reduction in B, and percent reduction in C. Dotted lines show the 25th, 50th, and 75th 
percentiles. Across the range of settings explored here, vegetation reduces significant wave height 100 
m into the marsh by a median of 35 cm (1B); vegetation reduces setup by a median of less than 1 cm 
(2B); and vegetation reduces runup by a median of 40 cm (3B). 

1.3.3.1 Wave height 

The presence of vegetation plays a key role in reducing significant wave height in the marsh 

(Hs), shown by the empirical cumulative density plots in Figure 1.10. When Cd = 0 

(representing no vegetation), Hs increases for all model settings (1D). The widest spread in Hs 

reduction due to vegetation occurs with changes in wave height and water level (2B and 2C), 

meaning that vegetation is reducing Hs effectively across the range of water level and wave 

settings. Greatest values for Hs and Hs reduction by vegetation occur in simulations with 

largest waves (1B, 2B) and highest water levels (1C, 2C). Hs is highest with low Cd values (1D), 

and Hs reduction by vegetation is highest with high Cd values (2D). Wave steepness has 

limited effect wave height; marsh width also has limited effect because Hs is measured 100 m 

into the marsh, or at the last vegetated grid cell. Results show that vegetation reduces Hs by 

a median of 30 cm, and up to 118 cm even with the lowest friction coefficients (2D).  
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Figure 1.10 In row 1, empirical cumulative density functions showing significant wave height 100 m 
into the high marsh; and in row 2, empirical density functions showing wave height reduction due to 
vegetation. Plots are separated from left to right by wave steepness (column A), wave height [m] 
(column B), water level [m NAVD88] (column C), drag coefficient (Cd) of vegetation (column D), and 
marsh width [m] (column E), with each single line on each subplot showing an empirical cumulative 
density function of the mean Hs values from 54 simulations. Results show that the presence of 
vegetation plays a key role in reducing wave height across the range of simulation settings. 

1.3.3.2 Setup 

Vegetation influences setup through several mechanisms including radiation stress gradients 

(Buckley et al. 2016), wave-induced force due to emergent vegetation (Dean and Bender 

2006), and wave-induced force due to skewed waves (Dean and Bender 2006), which each 

decrease setup; vegetation can also increase setup due to an increase in the mean drag force 

(Løvås and Tørum 2001; Luhar et al. 2010). As a result, the influence of vegetation on setup is 

nuanced, as shown by the empirical cumulative density plots in Figure 1.11. Extreme values 

for setup and setup reduction by vegetation occur in simulations wth largest waves (1B, 2B) 

and lowest water levels (1C, 2C). Narrow marshes (1E), no vegetation (1D), and the least 

steep waves (1A) result in highest values of setup. Setup reduction due to vegetation is 

greatest across wider marshes (2E) with higher Cd (2D); wave steepness has limited effect. 
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The widest spread in setup reduction due to vegetation occurs with changes in water level. At 

lower water level settings, vegetation can reduce setup by more than 25 cm, while at higher 

water level settings, vegetation can increase setup by more than 5 cm (2C), likely due to large 

mean drag forces acting to increase setup in these settings (Løvås and Tørum 2001; Luhar et 

al. 2010). Wave height also plays an important role, with vegetation resulting in the most 

significant increases and decreases in setup under the largest wave settings (2B).  

 

Figure 1.11 In row 1, empirical cumulative density functions showing setup 100 m into the high marsh; 
and in row 2, empirical density functions showing setup reduction due to vegetation. Plots are 
separated from left to right by wave steepness (column A), wave height [m] (column B), water level [m 
NAVD88] (column C), drag coefficient (Cd) of vegetation (column D), and marsh width [m] (column E), 
with each single line on each subplot showing an empirical cumulative density function of the mean 
setup values from 54 simulations. Results show that the presence of vegetation plays a key role in 
influencing setup, particularly in low water level and in large wave settings. 

1.3.3.3 Runup 

Results show that the presence of vegetation plays a key role in reducing runup (setup + 

swash) across the range of simulation settings, shown by the empirical cumulative density 

plots in Figure 1.12. Extreme values for runup and runup reduction by vegetation occur in 

simulations with largest waves (1B, 2B) and highest water levels (1C, 2C). Runup is highest 
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with low Cd (1D) and runup reduction is highest with high Cd (2D). Runup is greatest across 

narrow mashes (1E), but vegetation reduces runup effectively even in the narrowest marshes 

(2E). Wave steepness has limited effect on runup and runup reduction due to vegetation. 

Results show that vegetation reduces runup by a median of 45 cm in the narrowest marshes 

(dark purple line in 2E) and by a median of 30 cm with the lowest friction coefficients (blue 

line in 2D). In both settings, vegetation can reduce runup by more than 130 cm. 

 

Figure 1.12 In row 1, empirical cumulative density functions showing runup at the last wet grid cell; 
and in row 2, empirical density functions showing runup reduction due to vegetation. Plots are 
separated from left to right by wave steepness (column A), wave height [m] (column B), water level [m 
NAVD88] (column C), drag coefficient (Cd) of vegetation (column D), and marsh width [m] (column E) 
with each single line on each subplot showing an empirical cumulative density function of the mean 
runup values from 54 simulations. Results show that the presence of vegetation plays a key role in 

1.3.4 Extreme Events 

In many locations in San Francisco Bay, marsh width is constrained between open water and 

levees. To understand the interplay between vegetation, marsh width, and extreme storm 

conditions, we explored the effects of marsh vegetation and marsh width in conditions 

representative of a present-day strong storm with wave heights of 1.5 m (O’Neill et al. 2017) 
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and water level 1.15 m above MHHW (Nederhoff et al. 2021), or 3 m NAVD88, with wave 

steepness and Cd varied across the ranges shown in Table 1-3. 

 

Figure 1.13 Runup across a vegetated marsh (blue) and runup reduction due to vegetation (red) on the 
y axis, and marsh width on the x axis. Black dots show simulated marsh widths. Conditions represent 
an extreme storm in San Francisco Bay (wave height of 1.5 m and water level 1.15 m above MHHW).   

Results show that even in the narrowest marshes simulated (50 m), runup (setup + swash) is 

unlikely to exceed 25 cm, and that vegetation can reduce runup by a median of 65 cm across 

a 50 m marsh in storm conditions (Figure 1.13). As marsh width increases, runup quickly 

decreases. Beyond 250 meters of marsh width, additional width has limited impact on runup. 

Vegetation reduces runup most in narrower marsh settings because runup in unvegetated 

transects is greatest in narrower settings.  

In the same hydrodynamic conditions representative of an extreme storm, across the range 

of marsh widths, Cd values, and wave steepness settings explored in this work, the main role 

vegetation plays in reducing nearshore water levels is through reducing swash. Vegetation 
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reduces water levels at the base of the levee by a median of 55 cm primarily through 

reduction in swash (Figure 1.14). 

 

Figure 1.14 Bar graphs showing components of the dynamic water level (left) and the total water level 
(right), with and without vegetation. Components of the dynamic water level include setup (measured 
100 m into the marsh or at the last vegetated grid cell) and swash (measured at the last wet grid cell), 
and components of the total water level include the still water level (SWL), setup, and swash. The total 
water level y axis starts at the MHHW level. Bars represent median values and error bars show the 
middle 50% of values for setup and swash. Vegetation reduces the dynamic water level by a median of 
55 cm in conditions representative of a present-day extreme storm (wave heights of 1.5 m and water 
level 1.15 m above MHHW), across a range of drag coefficient (Cd), marsh width, and wave steepness 
values. 

1.4. Discussion 

Vegetation on marshes can be effective in reducing potential wave induced flooding. In the 

range of model settings explored here, vegetation on a marsh reduces significant wave height 

by a median of 35 cm, causes minor changes in wave-induced setup (<5 cm), and reduces 

runup by a median of 40 cm (Figure 1.9). Meaningful reductions in wave height and runup 

can be achieved even in the narrowest marshes simulated (50 m, Figure 1.13).  
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Flood managers can use the information presented here to strategically plan for extreme 

events. For example, under conditions similar to a 100-year storm in San Francisco Bay, with 

offshore water level of 1.15 m above MHHW and wave heights of 1.5 m, 50 m of marsh 

vegetation reduces runup by a median of 65 cm and runup after a 50 m wide marsh will likely 

be less than 25 cm, reduced from as high as 1 m (Figure 1.13). Under these same conditions, 

the dynamic water level at the base of the levee without vegetation is a median of 55 cm 

higher than it is with vegetation (Figure 1.14), increasing likelihood of levee overtopping. High 

velocities introduced by wave overtopping of levees can introduce turbulence, scouring, and 

erosion of levees, as modeled by Xiao et al. (2009) and observed during Hurricane Katrina in 

New Orleans, Louisiana, USA. 

The validation presented here shows that the XB-NH model is capable of accurately 

simulating wave transformation of incident-band waves due to vegetation, allowing a first 

look at the effects of vegetation on incident-band driven runup. This has been achieved by 

utilizing a constant bulk drag coefficient (Cd) similar to other authors (van Rooijen et al. 2016) 

in which vegetation is schematized as a rigid-cylinder concept. Over the past several decades, 

several authors (Mendez and Losada 2004; Pinsky et al. 2013; Jadhav et al. 2013; Möller et al. 

2014; Foster-Martinez et al. 2018) have developed formulas to describe the relationship 

between Cd and Reynolds number (Re). The trend in these relationships is clear and shows 

that Cd decreases as conditions become more turbulent, with high Re. However, the specific 

relation varies widely between vegetation types and even between different studies of the 

same vegetation species. Pinsky et al. (2013) uniformly re-analyzed existing wave attenuation 

in marshes from 14 prior studies to determine a generalized relationship between Cd and Re. 
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However, Cd is inherently difficult to measure, and is typically calculated using other 

vegetation measurements including stem height, stem density, and stem diameter, which 

each pose challenges in measurement due to seasonal, site, and species variability. These 

challenges have spurred recent developments in quantifying wave attenuation in marshes by 

their standing biomass rather than the parameters listed above (Maza et al. 2022), though 

this approach is not yet incorporated into numerical models like XBeach. Here, we utilized a 

constant Cd, determined from field measurements taken by Foster-Martinez et al. (2018) and 

varied it across three orders of magnitude. While we did not vary Cd as a function of Reynolds 

number in this study, 77% of hydrodynamic and Cd combinations fell within one standard 

deviation of the relationship derived by Pinsky et al. (2013), which is specific to marsh 

habitat; 13% fell below and 10% fell above one standard deviation. This is largely due to the 

high degree of uncertainty in relationships between Cd and Re, particularly beyond Re > 103, 

which is the upper limit of established relationships between Re and Cd. The uncertainty of 

our experimental simulations increases outside the calibrated range, but similarly to van 

Rooijen et al. (2016), our results show a relatively low sensitivity to a three order-of-

magnitude variation in Cd in comparison to changes in hydrodynamics, as shown by the 

spread of empirical density curves in column D of Figure 1.10 - Figure 1.12. Further, based on 

the Pinsky et al. (2013) equation, a three order of magnitude variation in Cd is approximately 

the range expected for the range of Reynolds numbers simulated here. This is encouraging 

for applications in which vegetation measurements are limited and the vegetation bulk drag 

coefficient is unknown. The inverse relationship between Cd and Re results in outliers shown 

throughout Figure 1.5 - Figure 1.7, which occur with coincidence of high water-levels and low 

Cd. These simulations give insight to how wave transformation capacity of vegetated marshes 
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may change in high water level settings due to changes in wave Reynolds number, driven by 

an increase in orbital velocity. To further explore how marsh plants can reduce wave driven 

flooding, we recommend prioritizing additional observational studies measuring wave 

attenuation in marshes, particularly during extreme hydrodynamic conditions, such as strong 

storms and high tides. 

As sea levels rise, marshes may either vertically accrete, retreat landward, erode, or drown; 

the response of a marsh depends on sediment supply, location, and morphology. This study 

has parameterized these responses: a marsh accreting vertically gains marsh platform 

elevation (Figure 1.7, column A); a marsh retreating increases the elevation where vegetation 

begins (Figure 1.6, column C); a marsh laterally eroding steepens the low marsh slope (Figure 

1.7, column B); a marsh that drowns and transitions to mudflat loses vegetation density 

(Figure 1.6, column A). Results from this study show that flood risk increases most drastically 

for marshes that lose vegetation density and transition to mudflat (Figure 1.6, column A). In a 

setting similar to China Camp, transition to mudflat could mean increases of 50 cm in wave 

height at the marsh interior and increases of 30 cm in vertical wave runup (Figure 1.6, A1, 

and A3, respectively), emphasizing the importance of maintaining marsh vegetation coverage 

in urban estuaries. In marshes that are providing important flood reduction services, 

managers could consider sediment nourishment to facilitate vegetation persistence with 

rising water level (Ganju 2019).  

This work highlights the importance of continuing research on sediment dynamics in marshes 

and marsh response to higher water levels. Radioisotope dated cores show San Francisco Bay 

marshes have been keeping up with sea level rise over the last 150 years, with typical vertical 
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accretion rates of 0.2 – 0.5 cm/year (Callaway et al. 2012). However, studies accounting for 

future sea level rise rates and current marsh accretion rates show that accretion rates are 

presently less than 4% of what will be necessary to keep up with accelerating sea level rise by 

the end of the 21st century (Knowles 2010; Barnard et al. 2013). The relative elevations of 

marshes in San Francisco Bay are predicted to decrease by 0.4 to 1.3 m by 2100 (Swanson et 

al. 2014), causing marshes that do not have migration space to transition to mudflats 

(Elmilady et al. 2019).  

Beyond San Francisco Bay, the majority of the world’s megacities are coastal, and average 

global flood losses are expected to rise tenfold between 2005 and 2050, even with 

adaptation investments to maintain constant flood probability (Hallegatte et al. 2013). Many 

of these coastal megacities are at least partially protected by marshes, meaning that flood 

risk will be further amplified beyond SLR if marsh sedimentation rates are outpaced by SLR. 

Without rigorous sediment nourishment, there may be a tipping point after which relative 

elevations of marshes have decreased such that marsh habitat is not an effective flood 

defense. At that point, flood managers interested in nature-based shorelines could instead 

focus efforts on approaches such as vegetated levees to reduce swash, which still provide 

wave and flood reduction benefits of vegetation fields but are less sensitive to relative sea 

level. 
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Abstract 

Incorporating nature-based solutions (NBS) into coastal climate adaptation is of broad and 

growing interest, but NBS are rarely assessed with the same rigor as traditional engineering 

solutions or with respect to future climate change. This gap poses challenges for the use of 

NBS for climate adaptation. We value the flood protection benefits of stakeholder-identified 

marsh restoration under current and future climate change within San Francisco Bay, a 

densely urbanized estuary, focusing on San Mateo County, the California county most 

vulnerable to future flooding. Marsh restoration provides a present value of $21 million 

which increases to over $100 million with 0.5 m of sea level rise (SLR), and to about $500 

million with 1 m of SLR. We identify hotspots where marsh restoration delivers the highest 

benefits for adaptation, which reach $9 million/hectare. Today’s investments in nature and 

community resilience can result in increasing payoffs as climate change progresses and risk 

increases.  

2.1 Introduction 

Climate change is raising sea levels and increasing the threat of coastal flooding. By 2100, sea 

level is expected to rise 0.6 to 2.2 m along the contiguous United States, primarily due to the 

melting of ice sheets and glaciers, and thermal expansion of seawater (Sweet et al. 2022), 

which will significantly increase coastal flooding (Vitousek et al., 2017; Taherkhani et al., 

2020). Flooding due to sea-level rise (SLR) is amplified by storms, which drive higher coastal 

water levels via surge, waves, and increased river discharge (Barnard et al. 2019). Increasing 

coastal population density further compounds the consequences of flooding. More than 600 

million people live in the coastal zone, a number which is expected to increase to more than 
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1 billion by 2050 (Merkens et al. 2016). These factors combine to create high and rising flood 

risk on coasts around the world. 

Recent research suggests that in California, 675,000 people and $250 billion in property are 

at risk of flooding in a scenario with 2 m of sea level rise combined with a 100-year storm 

(Hazard Reporting and Analytics (HERA), 2017; Barnard et al., 2019). The population 

bordering San Francisco Bay (“the Bay Area”) accounts for two-thirds of future flooding 

impacts in California, and the cost of raising Bay area coastal protection structures to prepare 

for 2 m of SLR could reach $450 billion (Hirschfeld and Hill 2017). Across California and the 

West Coast of the United States West Coast, the communities bordering low-lying urban 

estuarine environments including Puget Sound, San Francisco Bay, and smaller Southern 

California lagoons and estuaries are all highly vulnerable to flooding, resulting in the majority 

of socio-economic exposure of the U.S. West Coast (Barnard et al. 2019).  

Within California, San Mateo County has the most projected flood exposure due to climate 

change, with more than 140,000 people and $50 billion of property exposed to flooding 

through this century (“Hazard Reporting and Analytics (HERA)” 2017). Communities are 

already beginning to experience these impacts. San Mateo County’s bay shoreline (Figure 

2.1B and Figure 2.1B) is highly altered and contains critical public infrastructure, including the 

San Francisco International Airport (SFO, Figure 2.1B), touchdowns of two regional bridges, 

an interstate highway, the heart of the Silicon Valley technology industry, and over 750,000 

residents. Levees are an essential component of flood control throughout the region (San 

Francisco Estuary Institute (SFEI) 2016). Much of the urban coast is built on historical 

wetlands that have been drained, diked, and filled; wetlands have also been diked to create 
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ponds for industrial salt production (Goals Project, 2015). The result of this filling, diking, and 

development of former tidal marshes is that San Mateo County is one of only six counties in 

the country with over 100,000 residents at risk of flooding with 0.9 m of SLR (Hauer et al. 

2016).   

Communities in San Francisco Bay rely heavily on gray infrastructure (primarily levees and 

seawater pumping) for flood protection today, but a wide variety of pathways for integrating 

nature-based shorelines have been identified regionally (Beagle et al., 2019; BCDC, 2020; Bay 

Adapt: Regional Strategy for a Rising Bay, 2021). There is strong interest in the use of 

wetlands in reducing flooding – in 2016, Bay Area voters passed Measure AA, which uses a 

$12 per year parcel tax to restore wetlands to prepare for climate change (Gutierrez 2016) in 

addition to providing other co-benefits including supporting fish and wildlife and carbon 

sequestration (Callaway et al., 2012; Pinsky et al., 2013; Narayan et al., 2017; Foster-Martinez 

et al., 2018). However, coastal development has altered or removed up to 90% of the Bay’s 

historical tidal wetlands (Safran et al. 2013), resulting in dramatic habitat loss and 

fragmentation. In San Mateo County, large marshes in the northern part of the county were 

buried and developed to create planned communities; in the southern part of the county, 

marsh habitat was diked and drained to create ponds for salt production. In the past several 

decades, marsh restoration has emerged as a unifying management objective in the Bay, 

particularly restoration of legacy salt ponds (Callaway et al., 2007, Brew & Williams, 2010; 

2011; Foxgrover et al., 2019). San Mateo County’s tidal marshes are among the highest 

ranked for conservation priority across the Bay (Veloz et al. 2013). Marshes receive sediment 

supply from suspended sediment deposition during periods of flooding, a process that 
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facilitates vertical accretion (Lacy et al. 2020). A large portion of San Mateo County’s bay 

coast is historical marsh that has been diked to prevent tidal flooding (San Francisco Estuary 

Institute (SFEI) 1999); many historical diked marshes have subsided in elevation and are no 

longer high enough to support a full range of marsh vegetation. Marsh restoration in the 

region usually includes strategic breaching of levees across historical channels (Figure 2.1D) 

to allow inundation and sedimentation to occur in diked historical marsh (Figure 2.1C), 

facilitating revegetation by native marsh plants (Figure 2.1E and Figure 2.1F).  

 

Figure 2.1 Location of the study area and details of the simulated restorations. (A) and (B) Location of 
this study, shown by the red dot in (A) and the orange line in (B). The thin white boxes in (B) show the 
extent of the maps in (C), (E) and (F) and the thick white box in (B) shows the extent of the map in (D). 
(C) Vertical offset applied to the restoration sites to simulate sediment accretion/nourishment, 
bringing each site to +1 m relative to mean sea level. These values range from 0.05 to 1.1 m. (D) Levee 
breaches across historical marsh channels to facilitate tidal connectivity in salt ponds are shown in 
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blue. (E) Current and (F) restored marsh habitat types, determined by elevation relative to tidal datum. 
The three shades of green, from dark to light, denote low, transition, and high marsh habitat. 

With the highest future flood risk in the state and large areas of wetlands with potential for 

restoration, San Mateo County’s shoreline is a key study site for investigating the potential of 

marsh restoration as a nature-based flood defense.  Few studies have quantified the flood 

risk reduction benefits provided by habitat (Reguero et al. 2018). Even fewer assess benefits 

of habitat restoration (Gourevitch et al., 2020; Storlazzi et al., 2021; Beck et al., 2022; 

Martínez-García et al., 2022) and none have rigorously quantified the value of restored 

habitat under climate change. Impacts of climate change present pressing challenges to 

coastal communities and assessments of the benefits of both natural and artificial 

infrastructure will need to account for these challenges. Here, we address this gap by 

assessing the flood risk reduction benefits of marsh restoration projects in San Francisco Bay, 

under current and future climate conditions, to characterize how and where they provide 

climate adaptation benefits now and into the future.  

2.2 Methods 

2.2.1 Model description 

The Delft3D Flexible Mesh modeling suite (Delft3D Flexible Mesh 2020.04, Deltares, 2022) 

and Simulating WAves Nearshore (SWAN, Booij et al., 1999) were two-way coupled to assess 

the flood impacts of marsh restoration. Delft3D FM solves the shallow-water equations on 

staggered unstructured grids in one-, two-, and three-dimensional schematizations with a 

finite volume method. Here, we ran the model in a two-dimensional-horizontal 

schematization, which simulates depth-averaged flow. SWAN, a third-generation, phase-
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averaged numerical wave model, simulates the propagation of waves from deep to shallow 

waters by solving the energy balance and action balance equations. The use of the energy 

spectrum through these equations allows models such as SWAN to significantly reduce 

computational time, but as a result, they do not resolve individual waves. Wave-current 

interactions are simulated in the coupled model, and result in changes in current refraction, 

bottom friction, wave setup, turbulence, and bed shear stress. Thus, this model includes 

tides, steric changes in water level, creek discharge, wave setup, and relative SLR. This model 

does not account for swash, which requires a wave-resolving model.   

The domain for this model was adapted from Tehranirad et al. (2020), and the approach was 

based on the Coastal Storm Modeling System (Barnard et al. 2014; 2019). The open boundary 

was perpendicular to the main bay channel, approximately 5 km south of the Bay Bridge. The 

grid resolution was increased over existing and potential marsh habitat to ~10 m, to capture 

complex bathymetry and tidal channels of the marshes (Figure S2.1). Bathymetry was derived 

from a Lidar Elevation Adjustment with NDVI (LEAN)-corrected 5-m horizontal resolution 

digital elevation model, used above -1 m NAVD88 (Buffington & Thorne, 2018). The LEAN-

correction facilitates the Lidar collected elevation data to capture the mudflat rather than the 

top of marsh plants. 10-m resolution model was used below -1 m NAVD88 (Fregoso et al., 

2017). The tidal constituents at the open model boundary for this model are derived from the 

FES Global Tide Model (“FES Global Tide Model” 2014). Constituents were calibrated to 

maximize model-data agreement.  

Land cover type was determined the National Land Cover Database (Homer et al. 2020), 

which details satellite-derived land cover nationally. Open water Manning’s friction values 
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were set to 0.02, following Tehranirad et al. (2020) and supported by sensitivity testing. 

Vegetation was represented implicitly with Manning’s friction coefficients of 0.03, 0.035, and 

0.04 for low, transition, and high marsh zones, respectively. These values follow those 

suggested by Bunya et al. (2010) and DHI (2013).  

Tidal vegetation location in the Bay Area Aquatic Resources Inventory (BAARI, San Francisco 

Estuary Institute & Aquatic Science Center (SFEI ASC) 2015) was used to determine marsh 

habitat locations. Because marsh plants are sensitive to flooding periods (Takekawa et al. 

2013), the extents of the three different marsh vegetation zones were determined based on 

elevation relative to tidal data (mean sea level, or MSL, and mean higher high water, or 

MHHW). This was done using z* as a metric, following the methods established by Beagle et 

al. (2019): 𝑧 ∗ =   
𝑙𝑎𝑛𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛−𝑀𝑆𝐿

𝑀𝐻𝐻𝑊−𝑀𝑆𝐿
. Areas with a z* value between 1.02 and 1.38 

were assumed to support high marsh; locations with a z* value between 0.75 and 1.02 were 

assumed to support transition marsh; locations with a z* value between -0.14 and 0.75 were 

assumed to support low mash(Beagle et al. 2019).  MHHW and MSL were determined from 

values reported in Appendix 5 of Beagle et al. (2019) and assumed to be constant across the 

domain. This assumption neglects the regional < 20 cm variation in MHHW. MSL was 

assumed to be 1.00 m NAVD88 and MHHW was assumed to be 2.12 m NAVD88. Flood 

control infrastructure was included as a sub-grid feature with location determined from the 

San Francisco Estuary Institute’s Bay Shore Inventory (San Francisco Estuary Institute (SFEI) 

2016), and height determined from the most highly resolved DEM available (Danielson et al. 

2016). The two gauged creeks in the study region are San Francisquito Creek and San Mateo 

Creek (Figure S2.1), and both were included in the model, allowing for the simulation of 
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flooding driven by high offshore water-levels as well as upland flooding driven by high creek 

flows. 

2.2.2 Calibration and validation 

To calibrate the model, non-tidal residuals (NTR) at the model boundary were derived from a 

70-year model hindcast developed by Tehranirad et al. (2020) and Nederhoff et al. (2021). 

This hindcast, which spans from 1950 to 2020, was forced with tides and ERA5 30-km 

resolution winds (Hersbach et al. 2020), which provide a longer temporal record than other 

hindcasts of finer resolution, facilitating a more robust calibration. A low pass filter was used 

to remove the tidal signal from the 70-yr time series, and to generate the NTR signal, which 

was used to force Delft3D. For calibration and validation, waves were simulated with the 

built-in fetch-limited wave formulation, which is more computationally efficient than SWAN, 

and forced with Rapid Refresh wind hindcasts (Benjamin et al. 2016). This data is resolved to 

13 km, which is lower than many other hindcast winds, but it is the only available data for the 

study region during the calibration period. Flow rates for San Mateo and San Francisquito 

creeks were derived from USGS gauges (National Water Information System Data Available 

on the World Wide Web (USGS Water Data for the Nation), 2016). 

Modeled water-levels were compared to measurements collected by the NOAA Redwood 

City Tide Gauge (NOAA, 2021) and by a water logger deployed in Laumeister Marsh during 

storms in 2010 and 2011 (Thorne et al. 2013). The months of January 2010 and March 2011, 

which included significant storms and extreme high water-levels, were used for calibration 

and validation, respectively. The amplitude and phase offset of individual tidal constituents 

were compared between the modeled and observed data. The differences were used to 
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adjust to the FES constituents on the boundary to improve model data agreement (Figure 

S2.2 and S2.3). Root mean square error (RMSE) for the calibration period was 9 and 12 cm at 

Redwood City and Laumeister Marsh, respectively, and 10 and 20 cm at Redwood City and 

Laumeister Marsh, respectively, for the validation period. The full tidal amplitude at both 

sites is about 2.5 m and 1.5 m, respectively.  

Model-observation agreement was initially very poor in Laumeister Marsh because the marsh 

channel in which observations were taken was unresolved in the 5-m resolution DEM and the 

10-m resolution model grid. Thus, to facilitate model-observation comparison in Laumeister 

Marsh, channel depth was increased manually. Simulations with varying marsh platform 

height and marsh channel depth were done during the calibration period to assess the model 

sensitivity to marsh bathymetry. This analysis revealed that model data agreement in 

Laumeister Marsh is most strongly sensitive to channel depth, and less sensitive to platform 

elevation. Results from the sensitivity analysis are shown in Table S2-1. After manually 

adjusting channel depth, a systematic bias was still present in the Laumeister Marsh model-

data agreement. This bias is likely due to uncertainty in marsh channel depth in Laumeister 

Marsh.  

2.2.3 Hydrodynamic simulations 

To understand how marsh habitat restoration influences flood depth and extent, simulations 

with existing marshes and potential restoration projects were compared under various sea 

level and storm conditions, including: 0, 0.5, and 1.0 m of SLR, within the range of most 

updated intermediate estimates for California by 2100 (Sweet et al. 2022), along with annual, 

20-year and 100-year storm conditions. For each of these SLR scenarios, several marsh 
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habitat distributions were simulated, including existing marsh, as defined by San Francisco 

Estuary Institute & Aquatic Science Center (SFEI ASC, 2015), and an extensive regional 

restoration. The simulated marsh restorations were identified in close collaboration with local 

flood managers over a series of workshops, with the goal of developing plausible scenarios of 

marsh restoration to assess effects on flood risk in the study region.  

Storm water levels and wind and pressure time series were derived from Barnard et al. 

(2014) and Barnard et al. (2019). These were originally developed for the Coastal Storm 

Modeling System (CoSMoS). A 21st century total water level proxy time-series was created 

from global climate model sea surface temperatures, winds, sea level pressures, and water 

levels from this time series were ranked. Mean, annual, 20-yr, and 100-yr events occurring on 

future dates were extracted from the ranked water levels. Local models were forced with 

downscaled 21st century wind and pressure for the future dates. These storms were run in 

combination with plausible 21st century increases in sea level, thus capturing non-linear 

interactions between waves and water levels. These downscaled 21st century storms were 

used as boundary conditions in the present work.  

Data from the tide gauge closest to the open boundary, located in Alameda (NOAA, 2021), 

were appended before and after the 50-hour storm water level time series at the open 

boundary, to facilitate isolating NTR from changes in water level due to tides. A low-pass filter 

was used to derive the NTR. This caused the storm water levels to become non-progressive in 

the second day of the simulation, so water levels from the first day of the simulation were 

used to determine maximum flood depth.  
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Creek flows for San Francisquito Creek were derived from Erikson et al. (2018), which 

determined flow rates for 8 California creeks and rivers coincident with annual, 20-yr, and 

100-yr 21st century storms based on a 21st century time series of flow for the Sacramento/San 

Joaquin Delta (Knowles et al., 2015). San Mateo Creek was not included in that analysis, so 

flow rates for San Mateo Creek were determined by the same percentile of flow from the 

stream gauge as flow rates from San Francisquito Creek, which is 20 km away. This approach 

neglects localized watershed differences in normalized flow rates. 

The study region is home to low-lying marshes, which, though presently classified as marsh 

habitat, are too low in elevation to support a full range of marsh vegetation. In such 

locations, the restoration projects assume sediment nourishment and re-vegetation that 

would bring the sites to a mean elevation of 2 m NAVD88, or +1 m relative to regional MSL, 

which is representative of healthy marshes in San Francisco Bay (Takekawa et al. 2013). The 

uniform elevation increase was applied to sites that were identified by stakeholders as 

potential restoration sites (Figure 2.1C). Vegetation zones were shifted according to the new 

z* score (Figure 2.1E and Figure 2.1F). For the 0.5 and 1.0 m SLR scenarios, vegetation zones 

were modified to represent the corresponding upward and landward shift of marsh 

vegetation zones caused by an increase in mean sea level. The simulated restorations also 

included breaching several levees surrounding salt ponds. We used satellite and historical 

photography, as well as conversations with stakeholders, to determine locations for the 

breaches, which are made across historical channels (Figure 2.1D).  

The restoration sites and projects were implemented using the most recently available data 

on marsh distribution and levee location. However, certain sections of the region’s levee 
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system have been breached since the SFEI Bayshore Inventory was published in 2016 and a 

section of Bair Island has been restored to marsh habitat from open water in recent years. To 

ensure hydrodynamics in the model reflect the current state of the study region, we manually 

edited the datasets for marsh distribution and levee elevation based on stakeholder input.  

2.2.4 Flood damages and socioeconomic analysis 

To calculate flood damages on buildings, we used the Federal Emergency Management 

Association’s (FEMA’s) Flood Assessment Structure Tool (FAST, Hazus, 2021). FAST connects 

FEMA’s Hazus depth-damage curves with flood maps and built infrastructure inventories to 

quantify flood damages. Depth-damage curves quantify damage to a structure as flood 

depths increase, using curves that vary by structure type. The exposure data was obtained 

from the National Structure Inventory (NSI, "National Structure Inventory", 2019), which 

includes information on structure replacement cost, content cost, material type, basement 

type, and number of floors. NSI includes about 200,000 structures in San Mateo County. NSI 

and the flood depth maps produced from the hydrodynamic model were used as inputs to 

FAST, which determines the appropriate depth-damage curve for each structure and the 

resulting economic damage. Damages across all structures in the domain were aggregated to 

quantify economic impacts of flooding. Flood damages were calculated with and without the 

restoration projects.  

The damages associated with each return period flood zone were used to determine the 

annual expected damage, which represents the frequency-weighted sum of damages for the 

full range of flood events and is a measure of flood risk per year (e.g., Reguero et al., 2021):` 
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𝐴𝑛𝑛𝑢𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑎𝑚𝑎𝑔𝑒 (𝐴𝐸𝐷) =  
1

2
∑ (

1

𝑇𝑖
−

1

𝑇𝑖+1
) (𝐷𝑖 + 𝐷𝑖+1)𝑛

𝑖=1 , where i represents 

the number of return periods, Ti represents the return period, and Di represents the damage 

associated with a storm with a return period of Ti, following the formula for trapezoidal 

integration. The difference in damage between the baseline flooding and the flooding with 

habitat scenarios determines the avoided damages provided by the restoration projects. The 

annual expected benefit (AEB) of the restoration projects can be calculated as the differences 

with the baseline situation (without restoration):  

𝐴𝑛𝑛𝑢𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 (𝐴𝐸𝐵) =  𝐴𝐸𝐷𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 − 𝐴𝐸𝐷𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑. To discount future 

benefits of adaptation investments (Reguero et al. 2018), the present value of the projects 

was determined by summing annual expected benefit over the lifetime of the project, 

represented by n, and discounting the benefits of each future year by i: 

𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑉) =  ∑
𝐴𝐸𝐵𝑛

(1+𝑖)𝑛. We assumed the project lifespan to be 50 years and 

included several discount rates (Reguero et al. 2018). 7% is the standard value used by the US 

Army Corps of Engineers.                                  

The number of people affected by impacts of marsh restoration on flooding in San Mateo 

County was determined following a similar approach. Population across each census block-

group (BCDC et al., 2020) was assumed to be evenly distributed between residential 

buildings, and population impacted was determined by whether a residential structure was 

flooded. Thus, for determining the social impacts of marsh restoration, the annual expected 

damage equation was used, where Di = residences flooded per census block group × 

population of CBG ÷ total residences in CBG. Absolute and percent in social and economic risk 

with habitat restoration and without can be found in Table S2-3. 
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The San Francisco Bay Conservation and Development Commission’s Adapting to Rising Tides 

project has ranked social vulnerability of census block groups based on demographics (BCDC 

et al., 2020). Social vulnerability of census block-group was determined through 12 indicators 

(Table S2-2). In this work, we considered most vulnerable census block groups to be those 

marked as “high social vulnerability” and “highest social vulnerability”.  

2.2.5 Discussion of uncertainties in the flood risk model. 

Uncertainty is introduced into this model at numerous points. The main uncertainty sources 

of analyses like this involve the hydrodynamic modelling, bathymetry, elevation, damage 

models and socioeconomic changes (Reguero et al. 2021). This model includes local defense 

structures, but results are sensitive to the height of the levees in the model. Thus, the 

hydrodynamic analysis can be considered conservative in the difference between existing and 

marsh restoration scenarios, but the absolute flood results may be non-conservative in 

certain areas, such as behind levees where the crest height is not fully resolved. There may 

be unresolved hydraulic connectivity in some places, which could result in an underestimate 

of flood extents. Studies specifically focused on characterizing the uncertainty in coastal flood 

damage models at local scales have determined that the greatest sources of uncertainty are 

the elevation model and the depth-damage functions (Menendez et al. 2019; Parodi et al. 

2020). This analysis relies on bathymetric and topographic data at the highest resolution 

available for San Francisco Bay. The damage curves for each building type correspond to the 

official curves included with FEMA-HAZUS, which were developed with local empirical data 

on building damage vulnerability for the United States. Other additional uncertainty factors 

affecting the flood results include the forcing conditions (waves, sea levels and storms 
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duration) and differences in the spatial distribution of building stock and exposure value. To 

test the sensitivity of results from this work to uncertainty we added and subtracted 25 cm to 

the resulting flood depths, which is representative of a linear combination of model error (up 

to 19 cm) and DEM error in San Francisco Bay (6 cm, Buffington et al. 2016), and propagated 

the resulting uncertainty through the economic analysis, following the methods of Barnard et 

al. (2019). Results for this can be found in Table S2-4. 

2.3 Results 

Overall, marsh restoration decreases flood risk, providing a net positive annual expected 

benefit (AEB) and present value in avoided damage. These benefits increase with SLR; 

benefits increase by a factor of 5 with 0.5 m SLR and by a factor of more than 20 with 1.0 m 

SLR (Table 2-1). Population protected by restoration is also shown in Table 2-1. At present sea 

level, a large portion (43%) of the people who would be protected from flooding due to 

restoration live in socially vulnerable census block groups. As sea levels rise, the percent of 

population that is protected by restoration and that is socially vulnerable decreases.  

Table 2-1 (A) Property and (B) people protected by marsh restoration in San Mateo County under 3 
different sea level rise (SLR) scenarios. Present value is calculated assuming a 50-yr project lifespan, 
with discount rates of 4, 7, and 10%.  

 
 

A B 

SLR [m] 
Annual expected 
benefit [$ millions] 

Present value [$ millions] 
Number of people 
who benefit from 
flood reduction 

% of benefits in census block 
group ranked high or highest 
social vulnerability 

Discount rate 

4% 7% 10% 

0 1.5 33.2 21.3   15.3 7 43% 

0.5 7.6 164.4 105.6 75.9 322 18% 

1 36.2 777.2 499.3 358.7  254 9% 
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Although the present value of marsh restoration is positive, the benefits vary spatially (Figure 

2.2). Flood depth reduction benefits are not always directly attributable to a certain 

restoration site due to complex hydrodynamics, such as channels, creeks, and sloughs. 

However, the restoration south of SFO, a simple fringing marsh restoration, provides directly 

attributable benefits. The restoration, which is 14.7 ha in area, produces a present value of 

$12.7m in flood reduction benefits (at a 7% discount rate), i.e., $0.9m/ha, a value that can be 

used by planners and managers as a “break-even point” for the cost of restoration.  The value 

of restoration at this site increases substantially with 0.5 m of SLR to $9.2m/ha. 

 

Figure 2.2 Spatial distribution of (A) economic and (B) social flood reduction benefits of marsh 
restoration with sea level rise. Green colors signify positive present value and people protected while 
orange colors signify negative present value and increased risk. 
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Levee height relative to storm water levels is a key determinant of whether a restoration will 

provide risk reduction benefits. In many locations in the study region and in San Francisco Bay 

more broadly, marshes front levees. Areas protected by levees will only flood when levees 

overtop - thus, restoring a marsh on the seaward side of a levee can only reduce flood risk if 

the levee is at risk of overtopping. This outcome is illustrated by the 100-year flood plain with 

different sea level scenarios at the mouth of Colma Creek, in the northern end of the study 

region (Figure 2.3). With 0 m SLR, the restoration provides limited flood depth reduction 

benefits because the levees lining the creek do not overtop and so there is limited flooding 

(Figure 2.3B). However, as SLR progresses, water levels from storms will exceed levee height, 

causing flooding in the lee of the restoration. Therefore, the restoration provides increasing 

benefits over time (Figure 2.3C and Figure 2.3D). The marsh at Colma Creek, if restored at 

present sea level, will provide increasing benefits as levees are increasingly overtopped, even 

as vegetation in the restored marsh restoration migrates upslope where there is space to do 

so. 
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Figure 2.3 Effects of marsh restoration and climate change in Colma Creek. (A) shows the study region. 
(B-D) show reduction in flood heights during a 100-year storm due to habitat restoration with 0, 0.5, 
and 1.0 m SLR. The green areas represent locations of marsh restoration, the pale blue areas show 
flood extent, and the bright blue areas represent regions where flood depth is decreased due to the 
marsh restoration. 

 

2.4 Discussion 

We quantified the flood risk reduction benefits provided by marsh restoration under several 

climate change scenarios in San Mateo County. Overall, marsh restoration provides 

meaningful flood reduction benefits. The highest value restoration site in our study is a 

narrow fringing marsh restoration south of San Francisco International Airport (SFO), which 

provides a present value of $0.9m/ha of restored marsh with 0 m SLR and $9.2m/ha with 0.5 
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m SLR (Figure 2.2). Countywide, flood reduction benefits increase by a factor of 5 and 23 with 

0.5 m and 1.0 m of SLR, respectively. These values are encouraging for managers who may be 

concerned about the lifespan of marsh restorations in an era of accelerating SLR. Our results 

indicate that annual benefits will increase into the future as SLR progresses, highlighting high 

potential benefits for investments in adaptation now.  

Results from this analysis can help to prioritize where investments should be made in marsh 

restoration for flood reduction. In this study system, simple and smaller restorations provide 

more flood reduction benefit, as measured by amount of avoided damage. Restoration of 

fringing marshes could be considered as an alternative or a supplement to gray infrastructure 

solutions as communities adapt to impacts of climate change. Results indicate that 

restoration of diked and drained historical marshes, such as the salt ponds in this study 

region, may not provide straightforward flood reduction benefits. Determining how such sites 

can be restored to produce ecological benefit and flood risk reduction benefit warrants 

further study. If managers and communities are interested in habitat restoration in the salt 

ponds, raising levee heights behind the ponds could be considered as part of a green-gray 

infrastructure solution to restore habitat while keeping adjacent communities safe. These 

results, along with other work (Foxgrover et al. 2019), highlight the enduring cost of diking 

and draining marsh habitat, particularly in an era of accelerating SLR.  

We simulated a total of 2,937 ha of marsh restoration. Excluding restoration of large offshore 

islands and current and former salt ponds, which provide the least clear benefits, the total 

area of restoration is 367 ha. Based on reviews of restoration costs in developed countries, 

restoring this area of marsh would cost on the order of $70 million (in 2021 USD, Bayraktarov 



80 
 

et al., 2015), which is an order of magnitude lower than present value of restoration with 1.0 

m SLR. In contrast, previous work indicates that the cost of raising coastal protection 

structures along the bay coast of San Mateo County (calculated by determining the % of Bay 

shoreline in San Mateo County, which is ~12%) to prepare for the highest SLR scenario we 

explored, 1.0 m, would be $7-18 billion (in 2021 USD, Hirschfeld & Hill, 2017). The restoration 

scenarios we explored here do not fully protect the county from flooding, but they do 

meaningfully decrease flood risk. These scenarios could also decrease the height and, thus, 

cost of shoring up existing hard infrastructure (van Zelst et al. 2021), and cost less than 1% of 

preparing gray infrastructure for 1.0 m of SLR. Although marsh restoration is unlikely to be a 

silver bullet solution for communities interested in increasing resilience to SLR and storm-

driven flooding, this work demonstrates it can be a part of the solution while simultaneously 

providing community and ecosystem co-benefits.  

Future research should focus on wave-resolved interactions between vegetation, levees, and 

waves. In this study region, a densely urbanized estuarine coastline with the some of the 

highest future flood risk in the nation, marshes tend to be on the seaward side of levees. In 

such settings, we demonstrate that marsh restoration can influence flood depths when 

levees overtop; however, when levees do not overtop the influence of restoration is limited 

to reducing damage to the levee system itself. While our work includes phase-averaged 

(spectral) wave dynamics, SWAN does not model individual waves or wave-wave interactions 

that are necessary to quantify swash, a key driver of levee overtopping, as well as levee 

damage. Previous work indicates that marshes can meaningfully reduce dynamic water levels 

at levees (van Zelst et al. 2021), which, paired with these results, demonstrate that a wave-
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resolved investigation of the interactions between levees and marsh vegetation may give 

insight to how marsh restoration could influence levee overtopping and hydraulic failure.   

Our value of benefits is conservative because it does not include additional co-benefits. A 

valuation of ecosystem services of marsh restoration in northern San Francisco Bay reports 

that fluvial and storm surge driven flood reduction accounts for 86% of ecosystem service 

benefits; recreation and water quality improvements account for the remaining 14% of 

benefits (Calder et al. 2019). If these percentages hold true in San Mateo County, the total 

benefits of restoration with 0 m SLR would increase from $21 million to $25 million. 

Our modeling is conservative because we have not accounted for future changes in marsh 

height or shape. As sea levels rise, marshes may either vertically accrete, retreat landward, 

erode, prograde, or drown, depending on sediment supply, location, and morphology. In this 

study, we assumed that marsh vegetation will retreat upslope and that sites will be squeezed 

with SLR and transition to mudflat but will otherwise remain the same into the future. This 

assumption neglects the possibilities of sediment and organic matter accretion on the marsh 

platform and allowing the marsh elevation to keep up with SLR and maintain vegetation 

coverage, which could be incorporated using a Marsh Equilibrium Model (MEM, Alizad et al., 

2016), though confirmation of this possibility would require detailed marsh biomass 

measurements and precise marsh elevation measurements, presenting challenges in a 

regional two-dimensional domain. This assumption also neglects the possibility that the 

marsh platform will laterally erode or prograde as water levels rise. Surveys indicate that over 

recent decades, marshes in the northern part of San Francisco Bay, which is more wave 

exposed than our study region, have exhibited both spatial and temporal variability in edge 
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change on a local scale (SFEI and Baye 2020). Management interventions to stabilize a marsh 

edge, such as restoration of oyster reefs, have been shown to be effective in decreasing 

marsh-edge erosion (Meyer et al. 1997). Some form of marsh-edge stabilization will likely be 

necessary in the simulations presented here, particularly those including future SLR. 

Our results show that marsh restoration can be a cost effective approach to climate 

adaptation in one of the most at-risk counties in the U.S. Considering future climate scenarios 

is becoming common practice with traditional infrastructure solutions ( Hallegatte et al. 

2013; Aerts et al. 2014; de Ruig et al. 2019), and similar approaches should be taken when 

assessing the potential of nature-based solutions. This work demonstrates that investments 

in nature and community resilience made today can result in increasing payoffs as climate 

change progresses and risk increases.  
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Abstract 

With increasing coastal hazards and ecosystem deterioration, there is interest in the U.S. and 

internationally in restoring wetlands to reduce coastal flooding and adapt to sea level rise. 

Restoring diked and drained former wetlands, such as the salt ponds in San Francisco Bay, 

California, represents a promising strategy but requires specific analyses to evaluate 

performance and effectiveness. It is widely acknowledged that wetlands can reduce flood 

risk, but under some conditions, marsh restoration may also amplify flooding. These effects 

can be controlled by the restoration design and should be included early in restoration 

planning. Here, we explore management scenarios in one of the salt ponds of San Mateo 

County, California, with both a numerical and a simplified hydrodynamic model to 

understand how different restoration scenarios influence water levels with sea level rise. We 

provide guidance on key factors for restoring coastal wetlands now and into the future. 

3.1 Introduction 

Wetland restoration is receiving increasing attention in the U.S. and internationally (Moraes 

et al. 2022) for the capacity to reduce flood water levels by attenuating wave energy and 

storm surge (Wamsley et al. 2010; Shepard et al. 2011; Möller et al. 2014; Smolders et al. 

2015; Narayan et al. 2016; Crosby et al. 2016). Restoration of wetlands as a sea level rise 

(SLR) adaptation strategy has the potential to provide resilience as well as environmental and 

climate mitigation benefits such as fish and wildlife support and carbon sequestration 

(Callaway et al. 2012; Pinsky et al. 2013; Narayan et al. 2017; Foster-Martinez et al. 2018). In 

California, the increasing need to adapt to rising sea levels is becoming central to climate 

policy and action, with nature-based adaptation receiving special attention.  
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Within California, San Mateo County has the most projected flood exposure due to climate 

change, with more than 140,000 people and $50 billion of property exposed to flooding 

through this century (Hazard Reporting and Analytics, (HERA), 2017). Communities in 

California, as in many other areas, are beginning to experience these impacts and are seeking 

effective solutions, increasingly through use of nature-based solutions. For example, in 2016, 

Bay Area voters passed Measure AA, which uses a $12 per year parcel tax to restore wetlands 

to prepare for climate change (San Francisco Bay Restoration Authority 2017). Coastal 

development has altered or removed up to 90% of the Bay’s historical tidal wetlands (Safran 

et al. 2013) and marsh restoration has emerged as a unifying regional management objective 

in the past several decades, particularly the restoration of salt ponds (Brew and Williams 

2010; Callaway et al. 2007; 2011; Foxgrover et al. 2019). Restoration efforts in San Francisco 

Bay constitute the most ambitious wetland restoration on the U.S. West Coast. Wetland 

restoration can be effective in reducing flood risk, but recent work has also shown that 

restoration of diked and drained former wetlands could amplify flood levels and overtop 

levee crests in some instances (Taylor-Burns et al., in review). Therefore, exploring how 

marsh restoration in diked and drained former wetlands like the San Francisco Bay salt ponds 

can be strategically executed to maintain community safety is a necessary next step.  

Here, we explore how management scenarios in one of the salt ponds of San Mateo County 

could influence flooding in the future and provide guidance on the factors that should be 

considered when restoring diked and drained former wetlands. We combine numerical 

modeling with a simplified model which is applicable in other contexts to provide guidance on 

how restoration in hydraulically altered ponds influences water levels with sea level rise.  
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3.2 Methods 

3.2.1 Study site 

The Cargill salt ponds in Redwood City (Figure 3.1) comprise a 1,400-acre area, formerly 

connected to the bay and diked off to facilitate evaporation for salt production in 1902. 

These ponds are some of the remaining holdings of the Cargill Corporation, which sold 

15,000 acres of salt ponds to the state and federal government in 2003, launching the South 

Bay Salt Pond Restoration Project. In 2009, the Cargill Corporation proposed a plan to 

develop the area with 12,000 housing units as well as commercial buildings. Environmental 

groups argued the Clean Water Act protects the ponds from development, and EPA rulings 

have gone back and forth on this issue over three presidential administrations. While 

development is unlikely, the future of the ponds remains uncertain (Ashley and Didion 2021; 

Handa 2021; Toledo 2021). External levees separate the ponds from the San Francisco Bay, 

and internal levees divide the area into numerous separate basins (Figure 3.1A). The ponds 

are mostly unvegetated, and even if they were re-connected to the bay, their elevation is too 

low relative to the tidal prism of the area to support a full range of marsh vegetation. 

Channelization that is typical of healthy marshes is no longer present in the ponds due to 

decades of industrial salt production.  

3.2.2 Management interventions 

To understand how pond management influences flood depth and extent, simulations with 

existing salt ponds and potential interventions were compared under various sea level and 

storm conditions, including: 0, 0.5, and 1.0 m of SLR, within the range of most updated 
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intermediate estimates for California by 2100 (Sweet et al. 2022), along with annual, 20-year 

and 100-year storm conditions. Several management interventions were simulated, each 

identified by Beagle et al. (2019). These include polder management, horizontal levees, and 

marsh restoration (Figure 3.1B). We used satellite and historical photography, as well as 

conversations with stakeholders, to determine locations for the levee breaches, which are 

made across historical channels (Figure 3.2). The sediment nourishment brought mean 

elevation of the ponds to +1 m NAVD88 which is characteristic of healthy marshes in the 

region (Takekawa et al. 2013).  

 

Figure 3.1 Depiction of the study site (A) and of the management options simulated (B). 

3.2.3 Numerical modeling 

To assess flood impacts of habitat restoration, we used Delft3D Flexible Mesh (Delft3D FM, 

Delft3D Flexible Mesh 2020.04, Deltares, 2022) and Simulating WAves Nearshore (SWAN, 

Booij et al., 1999) through a two-way coupling. Delft3D FM solves the shallow-water 

equations with a finite volume method on staggered unstructured grids in one-, two-, and 

three-dimensional schematizations. We ran the model in a depth averaged two-dimensional-

horizontal schematization. SWAN is a third-generation, phase-averaged numerical model that 
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simulates wave propagation from deep to shallow waters using the energy balance and 

action balance equations. When coupling the flow and wave models, wave-current 

interactions are simulated, resulting in changes in wave setup, current refraction, bottom 

friction, forcing, turbulence, and bed shear stress. The wave energy spectrum model does not 

resolve individual waves. Thus, this model accounts for tides, storm surge, river discharge, 

wave setup, and SLR, but it lacks representation of swash processes, which are critical for 

assessing wave-structure interactions and require a phase-resolving wave model.   

 

Figure 3.2 The numerical model mesh is shown in red. The yellow and purple circles show locations of 
model calibration and validation with sea level observations. The pink and green circles show locations 
of creek gauge data. The blue rectangles show locations of levee breaches in the Cargill Ponds. The 
text boxes in the mesh denote the grid resolution of the mesh in its lowest and highest resolution, 
which are the middle of the bay and in existing and potential San Mateo County marshes, respectively.  

The numerical domain for the model in San Mateo County was adapted from Tehranirad et 

al. (2020), and the approach was based on the Coastal Storm Modeling System (Barnard et al. 
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2014; 2019). The grid resolution in the Cargill Ponds (Figure 3.2) and in other existing and 

potential marsh habitat was ~10 m, capturing sinuous channels and the complex bathymetry 

of the marshes. Bathymetry was derived from a LEAN-corrected 5-m horizontal resolution 

digital elevation model, used above -1 m NAVD88 (Buffington & Thorne, 2018) and from a 10-

m horizontal resolution model, used below -1 m NAVD88 (Fregoso et al., 2017). Satellite-

derived land cover data from the National Land Cover Database (Homer et al. 2020) was used 

to determine land cover type. Open water Manning’s friction values were set to 0.02, 

following Tehranirad et al. (2020), and vegetation was represented implicitly with a 

Manning’s friction coefficient of 0.03, 0.035, and 0.04 for low, transition, and high marsh 

zones, respectively, in the Delft3D model, following values suggested by Bunya et al. (2010) 

and DHI (2013). Marsh habitat locations were determined by tidal vegetation location in the 

Bay Area Aquatic Resources Inventory (San Francisco Estuary Institute & Aquatic Science 

Center, 2015). As marsh vegetation is sensitive to flooding periods (Takekawa et al. 2013), the 

three different marsh zones were determined based on elevation relative to mean sea level 

(MSL) and mean higher high water (MHHW), using z* as a metric, following Beagle et al. 

(2019): 𝑧 ∗ =   
𝑙𝑎𝑛𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛−𝑀𝑆𝐿

𝑀𝐻𝐻𝑊−𝑀𝑆𝐿
. High marsh was assumed to exist in locations with a 

z* value between 1.02 and 1.38; transition marsh was assumed to exist in locations with a z* 

value between 0.75 and 1.02; low marsh was assumed to exist in locations with a z* value 

between -0.14 and 0.75 (Beagle et al. 2019).  MHHW and MSL were determined from Beagle 

et al. (2019) and were assumed to be constant across the study region, neglecting the < 20 

cm variation in MHHW across the region.  
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MSL was assumed to be 1.00 m NAVD88 and MHHW was assumed to be 2.12 m NAVD88. 

Flood control infrastructure was included as a sub-grid feature. Location of flood control 

infrastructure was determined from the San Francisco Estuary Institute’s Bay Shore Inventory 

(San Francisco Estuary Institute, 2016), with height of flood control infrastructure determined 

from the highest resolution DEM available (Danielson et al. 2016). Storm water levels and 

wind and pressure time series were derived from the Coastal Storm Modeling System 

(CoSMoS, Barnard et al., 2014; 2019) and were developed from 21st century total water level 

proxy time-series based on CMIP5 global climate model winds, sea level pressures and sea 

surface temperatures (Taylor et al. 2012). Water levels from this time series were ranked to 

extract mean, annual, 20-yr, and 100-year events. Downscaled 21st century wind and 

pressure for the associated future dates were used to force local models in which storms 

were run in combination with plausible 21st century increases in sea level to incorporate non-

linear interactions between water levels and waves. Storms simulated in Barnard et al. (2019) 

are 50 hours in duration, which is not long enough to isolate the non-tidal residual from tides. 

Thus, data from the tide gauge closest to the open boundary, located in Alameda (NOAA, 

2021), were appended before and after the storm water level time series at the open 

boundary, and a low-pass filter was used to derive the non-tidal residual. The low-pass filter 

caused the storm water levels to become non-progressive in the second day of the 

simulation. Thus, water levels from the first day of the simulation were used to determine 

maximum flood depth during the storms.  
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3.2.4 Simplified inlet-pond model 

To characterize the effects of pond management on water levels, we also use a simplified 

model that is based on resolving the shallow water equations in one dimension, which can be 

applied to other areas without computational effort. For an inlet-pond problem, as 

represented in Figure 3.3, the sea level variations in the pond are defined by Bruun (1978): 

flow momentum and continuity, the ocean tide as a forcing function, and the relationship 

between the bed shear stress and the flow velocity in terms of a friction factor representing 

boundary resistance to flow.  

 

Figure 3.3 Idealized inlet-pond system representation (upper sketch) and head losses in an idealized 
inlet channel or breaching (lower sketch). Adapted from Bruun (1978). 

The inlet (i.e., levee breach) is an open channel with a certain cross section, defined by area 

(𝐴𝑐), which depends on the depth (ℎ𝑐). The tide represents the boundary condition on one 

end of the channel, while the water level in the pond is the other. At the channel, the one-

dimensional shallow water momentum equation determines that: 
𝜕𝑢̄

𝜕𝑡
+ 𝑢

𝜕𝑢̄

𝜕𝑥
+ 𝑔

𝜕𝜂

𝜕𝑥
+

𝑓
𝑢̄|𝑢̄|

8ℎ𝑐
= 0, where 𝑢̄ is the depth-averaged flow velocity in the channel, 𝜂 is the tidal 
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elevation, and f  is the Darcy Weisbach friction factor for dissipation and is a function of the 

Chezy roughness coefficient, C, with f = 8g/C2. Integrating over the length of the channel, Lc, 

and assuming no variations in 𝑢 over the length of the channel, the equation can be written 

as: 

 𝑔(𝜂𝑏 − 𝜂0) + 𝐿𝑐
𝜕𝑢̄

𝜕𝑡
+ 𝐹

𝑢̄|𝑢̄|

2
= 0        (Eq 3.1) 

where 𝐹 represents losses at entrance, through the channel (entrance and exit loss, head loss 

due to friction and head loss due to inertia). F  can be expressed as  𝐹 = 𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 + 𝐾𝑒𝑥𝑖𝑡 +

2𝑔𝐿

𝐶2ℎ
 , where 𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 and 𝐾𝑒𝑥𝑖𝑡 are entrance and exit losses, respectively, and 

2𝑔𝐿

𝐶2ℎ
  

represents losses due to friction. The continuity equation imposes a relationship between the 

current speed and the water level in the pond which can be written as: 
𝑑𝑉

𝑑𝑡
= 𝑄𝑐 − 𝑄𝑓= 𝑢̄(𝑡) ∙

𝐴𝑐(𝜂0) − 𝑄𝑓, where 𝑄𝑓 is the rate of freshwater inflow, which we will assume is 0. Since the 

volume at the tidal inlet at any moment is V = 𝜂𝑏𝐴𝑏, the velocity at the channel is shown in 

equation 3.2, where 𝐴𝑏 is the surface area of the pond and 𝐴𝑐 is the area of the inlet or 

breach. 

𝑢̄ =  
𝐴𝑏 (𝜂)

𝐴𝑐(𝜂0)

𝜕𝜂𝑏

𝜕𝑡
               (Eq. 3.2) 

Equations 3.1 and 3.2 are second order differential equations that can be solved at each time 

step, considering that 𝐴𝑏(𝜂) is a function of sea level at the pond and may present different 

area laws. 
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3.2.5 Hypothetical case to assess the effects of sea level rise on wetland restoration 

management 

To understand the effects of SLR and wetland management scenarios over storm tides, we 

simulate hypothetical pond cases: a pond with vertical walls (no change in Ab with 𝜂); a linear 

law; and two non-linear area laws. The full area of the pond for this example is assumed to 5 

million m2, approximately the area of the Cargill Ponds. The ocean forcing time series was 

extracted from results of the numerical model described above. The storm tide in pond is 

calculated to understand the effects of interventions, in support of the numerical simulations.  

3.3 Results 

3.3.1 Numerical results 

In storm simulations where the storm overtops the external levees of the ponds (1 m SLR) 

and where the storm does not flood the ponds even with levee breaches (0 m SLR scenario), 

managed levee breaches have limited effect on peak water levels. However, with 0.5 m of 

SLR, all management interventions cause higher water levels in the ponds due to water 

entering the ponds through managed breaches of the levee system. While polder 

management only entails managed breaching of the salt ponds, implementing horizontal 

levees and marsh restoration require adding sediment to the ponds to raise elevation and 

support marsh vegetation. Sediment nourishment decreases volume of the ponds which can 

cause higher water levels (Figure 3.4). This is shown by the colored lines in the top row, which 

show the difference between water levels in the existing pond configuration and in the 

management alternative. The colored lines reach the highest values in the third column, 
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meaning this management alternative increases water levels most. The third column 

represents the marsh restoration management option and involves adding the most 

sediment to the ponds, decreasing pond volume by the greatest amount. Sediment 

nourishment can also cause an earlier peak water level during the storms (Figure 3.4). This 

earlier peak is shown by the colored dots in the bottom row, which show the timing of peak 

water level between the existing pond configuration and in the management alternative. The 

colored dots are furthest below the 1:1 diagonal black line in the third column, meaning this 

management causes peak water levels to happen earliest. Wider levee breaches can also 

cause higher water levels (Figure 3.4). This pattern is shown in the right-most panel, which 

shows the difference in water levels in the marsh restoration scenario and the existing pond 

configuration with three different levee breach sizes. Large levee breaches, shown by the 

large dashed lines, increase water levels in the ponds most.  

 

Figure 3.4 Differences between water levels between three different management interventions and 
the existing salt ponds (top panels), and with three different levee breach widths (right panel); and 
differences in timing of peak water levels with existing salt pond (bottom panels). The blue lines and 
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dots show results from 0.5 m SLR and an annual storm. The green lines and dots show results from 0.5 
m SLR and a 20-year storm. The orange lines and dots show results from 0.5 m SLR and a 100-year 
storm. The right panel corresponds to the black square shown in the marsh restoration water level 
subplot. The top row shows that marsh restoration (right column) increases water levels most, shown 
by the highest peaks in the right-most subplot in the top row.  The bottom row shows that marsh 
restoration (right column) causes peak water levels to happen earliest, shown by the colored dots 
being furthest below the diagonal black line. The right panel shows that larger levee breaches cause 
water levels in the ponds to be higher, shown by the large dashed lines reaching higher values than the 
medium dashed lines or the dotted lines.  

 

Depending on levee height behind the ponds, higher water levels and earlier peak water 

levels in the ponds can increase flood risk. For example, for 0.5 m SLR and a 100-year storm, 

in comparison to the existing ponds, marsh restoration causes greater flooding over the levee 

at the back of the ponds, resulting in increased flood risk to communities behind the ponds. 

This increase in risk is shown by increased flood extent at 20:00:00 and 20:50:00 behind the 

red line which signifies the levee separating the ponds from industrial and residential 

development (Figure 3.5). 

 

Figure 3.5 Flood extents and depths in the Cargill Ponds during the 0.5 m SLR and 100-year storm 
simulation, with the existing ponds on the top and the marsh restoration scenario on the bottom. Each 
column shows the modeled flood plain at a 50-minute time step, which is shown in the column title. In 
the marsh restoration scenario (bottom row), the ponds fill more quickly and the levee behind the 
ponds overtops earlier compared to the existing marsh scenario, resulting in increased flood risk. This 
can be seen by differences between the existing and restored flood plains at 20:00:00 and 20:50:00. At 
both of these model time steps, the restoration scenario results in increased flooding behind the red 
line which represents the levee separating the ponds from residential and industrial development. 
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3.3.2 Simplified model results 

The balance of frictional drag force in the channel and gravitational force due to a difference 

in water levels between the pond and the channel drives water levels in the system (Figure 

S.3.1). Results from the simplified shallow water equation model illustrate that water levels in 

the tidal pond are dependent on the offshore water levels, the bathymetry within the tidal 

pond, and the width of inlet or levee breach (Figure 3.6).  

 

Figure 3.6 Water level and associated flooded surface area within the tidal pond in column 1. Modeled 
water levels inside and outside the tidal pond are shown in columns 2 through 4, with varying sea 
levels in each column and varying levee breach widths in each color. 
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Bathymetry within the pond influences the inundated surface area at each water level, 

determining how quickly the pond fills. The width of the levee breach also influences the flow 

into and out of the pond. A comparison between two different area laws is shown in Figure 

3.7, illustrating the influence of bathymetry alteration and levee breaches width on water 

levels in the pond. Reducing the volume of the pond causes tidal amplification and a phase 

shift to earlier peak water levels. Wider levee breaches cause higher water levels as well. 

With SLR, the constant area and non-constant areas converge, causing water levels to 

become increasingly similar, while tidal amplification and phase lag decrease.  

 

Figure 3.7 Water level inside the pond under three sea level rise scenarios (panels) with three breach 
widths (colors) and two area laws (line types). 

3.4. Conclusions 

These simulations demonstrate that flooding in diked and drained wetlands can be amplified 

depending on the restoration scenario and the wetland configuration. The width of the inlet, 

and the storage volume of the wetland are key drivers of water levels and adaptation 

benefits to SLR. Both factors can be controlled in the restoration design but are rarely 

considered when planning restorations. The simplified model can be a useful tool to inform 

strategies for wetland restoration. We provide several general conclusions: 
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• Narrow breach widths provide more flood mitigation, but also more restriction for 

hydraulic flow in the marsh, which will likely have ecological impacts (Figure 3.4, 

Figure 3.6, and Figure 3.7). Tradeoffs should be considered between flood mitigation, 

SLR adaptation, and habitat quality. 

• Reducing the volume of the pond can cause amplification of the storm tide and a 

phase shift to earlier peak water levels (Figure 3.4, Figure 3.6, and Figure 3.7). The 

way a restoration is designed can affect the volume of water it can hold and may 

have flood risk implications.  

• Shifting the tidal prism with SLR will also influence the volume of storm water a 

restoration can hold and can have flood risk implications. It will be necessary to 

consider tidal amplification with SLR to maintain community safety where restoration 

is adjacent to levees or berms that protect developed land.  
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4. Horizonal levees extend the lifespan of a 
regional levee system 
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Abstract 

Nature-based solutions are receiving increasing attention as a cost-effective climate 

adaptation strategy. In estuarine areas, horizontal (green) levees can offer a hybrid solution 

to reinforce traditional levees in preparation for the projected impacts of sea level rise (SLR) 

while simultaneously providing new intertidal wetland habitat.  Horizontal levees comprise of 

a gently sloping vegetated area fronting a buried levee. The plants on the horizontal levee 

can provide wave attenuation benefits as well as habitat benefits. We use a hydrodynamic 

model, XBeach non-hydrostatic (XB-NH), to assess the stability and sustainability of existing 

levees and determine how hybrid nature-based climate adaptation measures can reduce the 

risk of levee failure in San Francisco Bay. Here, we implement various horizontal levee 

configurations in the numerical model under a variety of sea level and wave conditions and 

compare overtopping rates of the existing levee and of the horizontal levee configuration to 

assess how horizontal levees perform in reducing flood risk, both with present day conditions 

and with SLR. Results show that the risk of levee failure can be reduced by up to 30% with 

horizontal levels.  Further, the analysis provides insight to horizontal levee design 

considerations and a methodological approach to adapt levees to prepare for SLR in urban 

estuaries. 

4.1 Introduction 

Human caused climate change is raising sea levels and increasing the threat of coastal 

flooding globally, forcing coastal communities to develop adaptation strategies to mitigate 

future hazard risk. Traditional engineering solutions such as seawalls and levees have long 

been used to reduce flood risk. However, as mounting evidence demonstrates that coastal 
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habitats can play an important role in attenuating waves and reducing storm surge (e.g Maza 

et al. 2013; Narayan et al. 2017; Reguero et al. 2021), management interest is shifting 

towards nature-based climate adaptation (Reguero et al. 2018; Olander et al. 2022). 

Management practices across San Francisco Bay (“the Bay”), a densely urbanized estuary in 

California, USA, exemplify this shift. The Bay relies heavily on gray infrastructure for flood 

protection today, with nearly 70% of the present-day Bay shoreline protected by levees and 

berms (Hirschfeld and Hill 2017). This regional levee system currently provides baseline flood 

protection for existing conditions, but without significant investment in existing 

infrastructure, this aging levee system will not provide sufficient protection for future SLR 

(BCDC et al. 2020). Projections for the 21st century estimate that two-thirds of the population 

and property at risk of exposure to SLR- and storm-driven flooding across California are 

focused along the Bay shoreline, assuming no levee failures or additional restoration activities 

(Barnard et al., 2019). To protect the 400,000 people and $150 billion in property at risk in 

the Bay, a gray infrastructure investment of ~$335 billion would be required (Hirschfeld and 

Hill, 2017). Highlighting the shift towards using nature for climate adaptation, in 2016 Bay 

Area voters passed Measure AA, which uses a $12 per year parcel tax to restore wetlands to 

prepare for climate change (San Francisco Bay Restoration Authority 2017), and over the past 

decade research and studies exploring how the region can incorporate nature-based coastal 

adaptation have proliferated (Foster-Martinez et al. 2018; Beagle et al. 2019; Foxgrover et al. 

2019; Taylor Burns et al. 2023).  

 



112 
 

Previous research suggests that vegetation can play an important role in decreasing the 

required height and associated cost of levees and that vegetation could reduce levee 

investment cost by $320 billion on a global scale (van Zelst et al. 2021). However, in highly 

altered urban estuaries such as San Francisco Bay, where large areas of marsh habitat have 

already been reclaimed, developed, and degraded, large-scale habitat restoration options 

may be limited due to lack of accommodation space. An alternative approach to large-scale 

habitat restoration is the employment of vegetation in front of levees through the use of 

horizontal levees (Figure 4.1). Horizontal levees consist of implementing a levee set back 

from the coastline with a wide and gently sloping expanse of vegetated habitat between the 

water and the levee, allowing wave attenuation from plants to reduce the probability of 

wave-driven levee overtopping.  

Horizontal levees have been identified as a potential approach in San Francisco Bay based on 

ecological and geomorphological factors (Beagle et al. 2019). Recent work shows that 

vegetation can reduce risk of wave-overtopping on levees in the Bay ( van Zelst et al. 2021; 

Taylor-Burns et al. 2023), and regional studies identify suitable locations for horizontal levees 

in San Francisco Bay (Beagle et al. 2019). However, studies have lacked characterization of 

wave-resolved overtopping risk under present and future hydrodynamic forcing conditions. 

Further, how the design of horizontal levees may influence risk of levee failure remains 

unquantified. 

Here, we use a joint-probability analysis paired with a process-based numerical model, 

XBeach non-hydrostatic (XB-NH, de Ridder et al. 2020), to assess how horizontal levees can 

reduce the risk of wave-induced levee overtopping in San Francisco Bay. We test several 
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horizontal levee designs across suitable regions of the Bay shore to quantify the capacity of 

this nature-based adaptation approach to reduce the risk of levee overtopping. Results 

illustrate that low-probability combinations of waves and water levels (e.g., the present-day 

100-year storm) will quickly become more frequent as sea levels rise, pushing existing flood-

control infrastructure to its limit and highlighting the urgent need for adaptation. The results 

demonstrate that 1:100 sloped horizontal levees can reduce risk of overtopping that exceeds 

the structural design of the levee by up to 7% with present sea level. With 0.5 m and 1 m of 

SLR, this value increases to 22% and 30% respectively. While the greater risk reduction values 

occur with more gradually sloping horizontal levees, even 1:20 sloped horizontal levees can 

reduce risk of structural exceedance by up to 3%, 8%, and 20%, with 0, 0.5 and 1 m of SLR, 

respectively. These results demonstrate that this hybrid nature-based climate adaptation 

approach can be a part of the solution in adapting to rising sea levels.  

4.2 Methods 

4.2.1 Study site 

Within California, San Mateo County has the most projected flood exposure due to climate 

change, with more than 140,000 people and $50 billion of property at risk of flooding 

through this century (“Hazard Reporting and Analytics (HERA)” 2017). San Mateo County’s 

bay shoreline is highly altered and contains critical public infrastructure, including the San 

Francisco International Airport, touchdowns of two regional bridges, an interstate highway, 

the heart of the Silicon Valley technology industry, and over 750,000 residents. Levees are an 

essential component of flood control throughout the region. San Mateo County is one of only 

six counties in the country with over 100,000 residents at risk of high-tide flooding with 0.9 m 
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of SLR, and assumptions of population growth (Hauer et al. 2016). A wide variety of pathways 

for integrating nature-based shorelines has been identified regionally ( Beagle et al., 2019; 

BCDC, 2020; Bay Adapt: Regional Strategy for a Rising Bay, 2021), including horizontal levees, 

which are also sometimes called ecotone levees. With the highest future flood risk in the 

state and stakeholder interest in incorporating nature into climate adaptation approaches, 

San Mateo County’s shoreline is a key study site for investigating the potential of horizontal 

levees as a nature-based flood defense (Figure 4.1).   

 

Figure 4.1 Depiction of a horizontal levee (A) and study location (B and C). 

4.2.2 Numerical modeling 

Effects of vegetation and levee overtopping are modeled with XBeach (Roelvink et al. 2009), a 

process-based model which simulates nearshore processes including wave transformation, 

wave-induced setup, over-wash, and inundation. Recently, a non-hydrostatic mode (XB-NH) 

was developed for XBeach (de Ridder et al. 2020), which is similar to a depth-averaged 

version of the SWASH model (Zijlema et al. 2011; Smit et al. 2013) and is able to fully resolve 
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incident-band (short period) waves. Resolution of incident-band waves, though 

computationally costly, is necessary to determine swash on relatively steep slopes and is thus 

necessary to investigate runup (as determined by the last wet grid cell), and potential 

overtopping on levees. Recent work has demonstrated the application of XB-NH for 

overtopping problems (Lashley et al. 2020). 

Runup and overtopping in the non-hydrostatic mode have been validated using several 

separate datasets from sandy beaches. Results show that incident-band driven runup height 

is predicted with good accuracy and a maximum deviation from observations of 15% 

(Roelvink et al. 2018). A reduced two-layer non-hydrostatic formulation is included and 

allows for a more accurate description of the frequency dispersion in relatively deeper water. 

Relative depth (KD) determines whether waves are in deep water (waves do not interact with 

the bottom, KD > π) or shallow water (waves interact with the bottom, KD < π/10), and is 

based on water depth and wavelength. De Ridder et al. (2020) showed good performance up 

to a relative depth of 3.  

XB-NH also allows for the inclusion of the effect of vegetation within the model via vegetation 

parameters including stem density, frictional drag coefficient, stem height, and stem 

diameter (van Rooijen et al. 2015; 2016). The combination of XB-NH and the vegetation 

module was calibrated to wave attenuation data from San Francisco Bay in Taylor-Burns et al. 

(2023). XB-NH can be computationally costly, particularly in shortwave environments where 

wavelengths and grid cell sizes are small. As a result, XB-NH was applied in this study in one-

dimensional mode along transects as opposed to in two-dimensional mode on a lateral grid, 

since the flow at the levee section is considered predominantly shore normal. This approach 
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assumes that wave forcing is shore-normal and neglects lateral flow but allows us to apply 

the tool to a larger area and in multiple scenarios.  

The XB-NH set up included a grid spacing of 30 grid points per wavelength (total number of 

grid points ranged from 2,000 to 12,000). Sensitivity analyses showed that the model results 

converge at this resolution. A Manning’s friction formulation of 0.018 m3/s was used for the 

mudflat on the unvegetated portion of each transect. Simulations all included 10 minutes of 

spin-up which were not used in the analysis and were 1000 waves in duration. 

4.2.3 Transect development 

In prioritizing where to apply one dimensional XB-NH within the study domain,  both wave 

exposure and horizontal levee viability were considered. Beagle et al. (2019) identified which 

areas of the San Francisco Bay shoreline are suitable for horizontal levees, considering the 

appropriate elevation to support marsh habitat, proximity to urban development, and the 

capacity to accommodate a levee with at least a 1:30 slope. To find sections of the San Mateo 

County shoreline that are more exposed to waves, wave heights and water levels were 

extracted from storm simulations (Taylor-Burns et al. in review) approximately 120 m 

offshore from the first line of coastal defense. Wave formation in San Francisco Bay is limited 

by the Bay’s shallow depths and constrained area, but in the main channels of the bay wave 

heights can exceed 1 m (O’Neill et al. 2017). These waves can propagate towards exposed 

shorelines of the bay. Coastal sections dominated by wind wave-levee interaction processes, 

as opposed to long-wave storm tide dominated areas, were identified through a ratio of wave 

and storm contribution to water level (shown in Equation 4.1, where Hs is significant wave 

height and TWL is total water level). Areas with a mean relative wave height to surge ratio of 
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greater than one which coincided with areas identified by Beagle et al. (2019) were selected 

for casting XB-NH transects (Figure 4.2). 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑤𝑎𝑣𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑡𝑜 𝑠𝑢𝑟𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 = (𝐻𝑠/(𝑚𝑒𝑑𝑖𝑎𝑛 𝐻𝑠))/(T𝑊𝐿/(𝑚𝑒𝑑𝑖𝑎𝑛 𝑇𝑊𝐿)) (Eq. 4.1) 

 

Figure 4.2 The relative wave height to surge ratio along throughout the study region (A) and areas with 
a relative wave height to surge ratio shown in orange, areas identified by Beagle et al. (2019) as 
suitable for horizontal levees shown in teal, and transects used in this study shown in white (B). 

The Digital Shoreline Assessment System (DSAS, Himmelstoss et al. 2021) was used to cast 

transects and the results were modified manually to ensure transects are perpendicular to 

the existing levee. Bathymetry was interpolated using two different digital elevation models 

(DEMs): A 5 m resolution vegetation-corrected DEM, only available above -1 m NAVD88 

(Buffington and Thorne 2018) was used above +1 m NAVD88 and a 10 m resolution DEM 

(Fregoso et al. 2017) was used below +1 m NAVD88. Switching between the two DEMs at +1 

m NAVD88 provided the smoothest transition.  

Throughout our study region, mean sea level is about +1 m NAVD88. 0.86 - 2.38 m NAVD88 

was classified as marsh (Takekawa et al. 2013). Vegetation stem density, diameter, and height 

for the three marsh zones were taken from the meta-analysis done by Pinsky et al. (2013). 
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Several regional vegetation surveys have been done in San Francisco Bay, but they do not 

resolve the frictional coefficient of vegetation (Cd) as fully as Pinsky et al. (2013). Because Cd is 

a key parameter in assessing wave transformation across vegetation, the Pinsky et al. (2013) 

meta-analysis was utilized rather than local surveys. Stem density was 500 stems/m2, stem 

height was 150 cm, and stem diameter was 7 mm. There are many areas in the study region 

that are at suitable elevation for marsh habitat but are developed and unvegetated. To 

ensure these places did not get assigned to be marsh habitat, vegetation was restricted to be 

offshore from first line of defense. The first line of defense was determined from a San 

Francisco Estuary Institute report (SFEI, 2016). Numerous studies show that Cd has an inverse 

relationship with Reynolds number (Re), which increases with increasing turbulence. This 

inverse relationship is caused by the bending and flexing of plant stems, which create less 

frictional drag in turbulent conditions. This relationship is important to account for when 

simulating wave decay by plants (e.g. Mendez and Losada 2004; Pinsky et al. 2013) to avoid 

overestimation of frictional drag by plant stems. Pinsky et al (2013) developed a generalized 

relationship between Re and Cd in marsh plants, which is based on uniformly post-processed 

data from 14 different studies ranging up to Re < 3000 (eq 4.2): 

𝑙𝑜𝑔10(𝑪𝒅) =    (−1.72 ± 0.93) + (−1.67 ± 1.19) × 𝑙𝑜𝑔10(3 ×  10−4 × 𝑹𝒆)  (Eq. 4.2) 

Equation 4.2 was used to determine appropriate drag coefficients for the marsh vegetation in 

the XB-NH model. An initial batch of simulations was completed across the full range of water 

level and wave combinations derived from the joint probability analysis. This was done to 

determine Re at the offshore edge of the vegetated zone within each transect. Re was then 

used to determine appropriate Cd for the vegetation within the marsh, as shown in Figure 
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S4.1. Experimental simulations were conducted with the Cd value calculated from the Pinsky 

et al. (2013) equation.  

4.2.4 Wave and sea level data 

Two previously modeled hindcasts were used to develop boundary conditions of water level 

and wave height for this model. A 30-year hindcast by O’Neill et al. (2017) simulated wave 

heights in San Francisco Bay using global climate model of near-surface daily winds paired 

with observations from four regional airports. This approach allowed the authors to keep the 

spatial resolution of modeled winds while increasing the temporal resolution by temporally 

downscaling and using observations to find a “best match” day. The maximum over-water 

windspeed was extracted each day of the hindcast and used to force a SWAN (Simulating 

WAves Nearshore) model, resulting in a time 30-year hindcast of daily maximum wave 

heights across San Francisco Bay. A 70-year hindcast by Nederhoff et al. (2021) used Delft3D 

Flexible Mesh to simulate water levels in San Francisco Bay from 1950 to 2019. Tidal 

constituents and a remote non-tidal residual (NTR, signal minus tide) forced the model at the 

open boundary. ERA5 wind and atmospheric pressure data (Hersbach et al. 2020) forced the 

model at the surface boundary. Creeks and delta flows were included in the model. Upstream 

boundaries for creeks were forced with data from 16 river discharge stations from the USGS. 

Upstream boundaries for the Delta were forced with estimates of Dayflow, which is an 

estimate of the daily average outflow from the Delta, accounting for water consumption 

across the region (California Department of Water Resources 2019). Modeled data was 

compared to observations from 15 NOAA tide gauges across the region, with an average skill 

score of 8 cm root mean square error. Point observations (model output time series at given 
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locations) are publicly available at about 500 m increments along the coast of San Francisco 

Bay. The resulting values from the Nederhoff et al. (2021) hindcast are representative of 

mean sea level, but because this study aims to assess levee overtopping, which is most likely 

to occur at high tides, a constant value of 0.85 m was added to the water level time series, 

which is representative of the difference between MHHW and MSL in this study region 

(Takekawa et al. 2013).   

Boundary conditions were derived using a joint probability analysis toolbox (MvCAT, Sadegh 

et al. 2017), which requires time series observations of two variables at equal time steps. 

Thus, hindcasted wave and water levels from the overlapping 30-year time-period of 1974-

2004 were used for the joint probability analysis. Daily wave height values were extracted 

from the 30-year wave hindcast at the end of each transect. Total water level data were 

extracted from the 70-year total water hindcast at the corresponding times (00:00 each day) 

from the nearest model output point to the offshore end of each transect and the tidal signal 

was removed using a low pass filter. The MvCAT toolbox includes 26 different copula and was 

used to determine joint probability curves for each transect. Across all 48 transects, the Ali-

Mikhail-Haq (AMH) copula had the overall best score, so this copula was selected for 

determining return interval curves. Ranking for the various copula are shown in Table S4-1.  

Wave heights and water levels at 25 cm increments and spanning the domain of the return 

interval curves values produced from the joint probability analysis were used as boundary 

conditions for the XB-NH simulations. Return period was interpolated across the two-

dimensional space, thus assigning a return period for each combination of wave height and 

water level boundary conditions used as boundary conditions. An example of this approach is 
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shown in Figure 4.3, which shows hindcast wave and water level data in small gray circles. 

These points were used as input to the joint probability analysis, which produced the return 

period curves, shown in the thick black lines. The return period curves were then used to 

interpolate probability onto water level and wave combinations, shown in the large colored 

dots. The large colored dots were used as boundary conditions for XBeach simulations. Some 

of these boundary conditions are outside the range of modeled wave height and water level 

from O’Neill et al. (2017) and Nederhoff et al. (2021). The interpolated return period of these 

simulations is more uncertain than values that were within the range of the modeled time 

series. This uncertainty was quantified by bootstrapping with resampling. 1000 samples with 

a length of the full 300 year time series (10950 samples) were randomly taken from the 

original time series with replacement, and the MvCAT toolbox was used on each of the 1000 

samples to create bootstrapped return period curves. These lines are shown by the gray lines 

in Figure 4.9 and they highlight that uncertainty in return period curves increases with higher 

return periods. The subsequent analyses use the original return period curves, which are 

shown in black. This analysis is focused on exploring overtopping under low-probability 

scenarios, and there are no available time series long enough to robustly capture low-

probability events such as a 1 in 100 storm. Interpolation beyond the modeled data is not 

ideal, but it is necessary in this case. The joint probability analysis was used to assess how 

return period probabilities for combinations of wave heights and water levels will change 

with SLR.  
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Figure 4.3 Gray dots show hindcast wave height (O’Neill et al., 2017) and water levels (Nederhoff et al., 
2021) at or near the end of transect 37. These values were used as input for the joint probability 
analysis, which produced the return period curves which are shown in black. Text labels signify what 
the return period is for each of the six black lines. The gray lines underneath the thick black lines 
represent 1000 bootstrapped curves for each return period. The return period curves were used to 
determine the range and probability of boundary conditions in XB-NH. The boundary condition wave 
and water levels for XB-NH simulations are shown by the large colored dots. Color of the large dots 
represents interpolated return period for the water level and wave height combination. Yellow 
indicates short return period, or high probability, and red indicates long return period, or low 
probability. Thus, high water levels paired with large wave are less probable (red) than low water levels 
and with smaller waves (yellow). 

4.2.5 Horizontal levee design alternatives 

To assess how horizontal levee configuration influences wave decay and overtopping of the 

levee system, a range of slopes were applied to change bathymetry offshore from last 

vegetated grid cell, representing the shoreward edge of the marsh and the location of the 
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existing levee. Slopes ranged from 1/20, which is the steepest slope recommended by Beagle 

et al. (2019), to 1/100 (Figure 4.4). Vegetation zones were shifted accordingly, based on 

changes in elevation.  

 

Figure 4.4 Location of transects (left column), bathymetry and elevation of the existing (middle 
column) and simulated horizontal levees with varying slopes (right column). Rows show groups of 
transects with similar bathymetry. 
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The sum of all shoreward flow over the levee crest was calculated for each simulation to 

determine cumulative flow over the levee crest, representing levee overtopping during the 

peak of a storm as it coincides with high tide. Cumulative flow over the levee crest and flow 

rate over the levee crest were compared to structural design thresholds identified by the 

EurOtop Manual in Table 4-1 (Van der Meer et al. 2018). The EurOtop Manual is a commonly 

used and widely cited document which has been applied and updated over decades, 

providing guidance on analysis and prediction of wave overtopping on various flood defenses.  

Table 4-1 Limits for wave overtopping and structural design of breakwaters, seawalls, dikes, and dams 
from Van der Meer et al. (2018). Italicized text represents the design type and associated limits which 
are most relevant for this study, which is focused vegetated levee crests with relatively small 
significant wave heights. 

Design type 
Mean discharge  

q (L/s/m) 
Maximum volume 

Q (L/m) 

Rubble mound breakwaters;  
 Hm0 > 5 m; no damage 

1 2000 – 3000 

Rubble mound breakwaters; Hm0 > 5 m; 
rear side designed for wave overtopping 

5-10 10,000 – 20,000 

Grass covered crest and landward slope; 
maintained and closed grass cover; 

 Hm0 = 1 – 3 m 
5 2,000 – 3,000 

Grass covered crest and landward slope; 
not maintained grass cover, open spots, 

moss and bare patches;  
Hm0 = 0.5 – 3 m 

.1 500 

Grass covered crest and landward slope; 
Hm0 < 1 m 

5 – 10 500 

Grass covered crest and landward slope; 
Hm0 < 0.3 m 

No limit No limit 

   

4.3 Results 

4.3.1 Effects of sea level rise on overtopping risk  

Levees are commonly designed to withstand a certain low-probability event, such as a 100-

year storm. The joint probability analysis illustrates that as sea levels rise, the design limits of 

these structures will be tested on an increasingly frequent basis, highlighting the growing 
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need for adapting flood infrastructure. As sea level rises, present-day low-probability events 

will become increasingly frequent (Figure 4.5). For example, with 0.5 m SLR, the current 1 in 

100-year wave and water levels will occur, 50 times more frequently, with less than a 1 in 2-

year probability. This increase in frequency is shown by the gray star in figure 4.5, which 

marks where with 0 m SLR 1:100 year event will cause the same wave and water level 

conditions as a 0.5 m SLR 1:2 year event. This analysis is conservative as it does not account 

for increases in wave height due to increased depth and fetch. However, this significant shift 

in flood frequency with SLR is consistent with prior research (Vitousek et al. 2017; Taherkhani 

et al. 2020; Sweet et al. 2022). 

 

Figure 4.5 Joint probability return-period curves of co-occurring wave height and water levels on 
transect 37, with current sea level (yellow), 0.5 (orange) and 1 m of SLR (red). The black vertical line 
shows the levee crest height on transect 37. As sea levels rise, low probability events will become 
increasingly probable. An example of this increase in probability is shown by the gray star, which marks 
where with 0 m SLR 1:100 year event will cause the same wave and water level conditions as a 0.5 m 
SLR 1:2 year event. Thus, 0.5 m SLR makes 1:100 year storm conditions 50 times more probable.   

 

Van der Meer et al. (2018) presents overtopping thresholds for different types of coastal 

protection structures and identifies a peak flow of more than 10 L/m/s or a cumulative 
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overtopping of more than 500 L/m/s as exceeding the structural design of levees like those in 

our study region. Thus, these thresholds are used to identify the probability of levee failure 

with sea level rise, which will cause exceedance of overtopping thresholds to become 

increasingly probable and severe, as shown by the expanding colored area going left to right 

in all rows of Figure 4.6, as well as by the increasing area of warm colors going left to right in 

all rows of Figure 4.6.  

 

Figure 4.6 Cumulative levee overtopping on three different transects (rows) and with three different 
sea level rise (SLR) scenarios (columns). Water level is on the x-axis of all subplots and wave height is 
on the y-axis of all subplots. Color represents the magnitude of cumulative overtopping greater than 
500 L/m at the given water level and wave combination. This threshold is identified as the structural 
design overtopping limit of levees of a design typical in San Francisco Bay. In all three transects, 
overtopping that surpasses the structural design of the levee system becomes increasingly probable 
with sea level rise, shown by the expanding colored area going from left to right. 
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4.3.2 Adaptation to sea level rise through horizontal levees  

The hydrodynamic analysis indicates that horizontal levees can reduce the risk of levee 

overtopping beyond the structural design of the levee (Figure 4.7). As the slope of the 

horizontal levees become increasingly gradual, the magnitude of overtopping decreases, as 

shown by the shrinking area of warm colors going from left to right in columns (a) – (f). For 

example, with no adaptation, maximum cumulative overtopping on transect 14 is 475000 

L/m, 654000 L/m, and 702000 L/m, with 0, 0.5, and 1 m of SLR, respectively. These values 

decrease to 377000 L/m, 550000 L/m, and 669000 L/m, with the implementation of a 1:20 

horizontal levee and to 87000 L/m, 288000 L/m, 472000 L/m with the implementation of a 

1:100 horizontal levee. These values are represented with the maximum overtopping values 

in Figure 4.7, represented by the warm colors in the upper right of each subplot. Gradually 

sloping horizonal levees allow waves to decay over a longer distance and across more 

vegetation before they reach the levee and cause runup and overtopping. Additionally, as the 

slope of the horizontal levee becomes increasingly gradual, the threshold of the structural 

design of the levee is surpassed in fewer simulations, shown by the colored area becoming 

smaller from left to right in the top two rows. This effect is not present in the bottom row, 

suggesting that on transect 14, levee overtopping will occur with 1 m of SLR, whether or not a 

horizontal levee is implemented. The simulations with high water levels and waves result in 

highest cumulative overtopping but are also the least likely to occur (e.g. Figure 4.2). 
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Figure 4.7 Cumulative overtopping on transect 14, with six different adaptation options shown in 
columns (a - f) and three different sea level scenarios shown in rows (1-3). The colored areas in 
columns (a – f) show overtopping greater than 500 L/m. 

The probability of exceeding levee structural design thresholds can be calculated by 

weighting risk of failure by the probability of occurrence of each event (i.e., storm return 

periods). Across all the transects, various horizontal levee designs influence the probability of 

exceeding two different structural design thresholds of the levee system (Figure 4.8). Several 

general trends emerge. Horizontal levees are generally effective in reducing risk (shown by 

the vertical distance between scattered data points and the diagonal black line), and 

gradually sloping horizontal levees reduce probability of exceeding structural design 

thresholds better than steeper sloped designs (shown by the blue data points generally being 

closer to the diagonal black line than the yellow data points). Additionally, though there are 

some locations where horizontal levees have very limited influence on risk, most locations 

that have levee overtopping experience some degree of risk reduction by implementing 

horizontal levees. Because levees are increasingly overtopped throughout the study region 
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with SLR, the risk reduction benefits of horizontal levees increase with SLR and, reach up to 

7%, 22%, and 30% with 0, 05, and 1 m SLR respectively. 

 

Figure 4.8 The probability of exceeding structural design thresholds of the levee on all 48 transects 
with five different adaptation options. The top row shows probability of exceeding q > 10 L/m/s; and 
the bottom row shows probability of exceeding Q > 500 L/m. Each column shows a different sea level 
rise scenario. The color of the dots signifies the adaptation option. Across the study region, the general 
trend shows that increasingly gradually sloped horizontal levees reduce the probability of exceeding 
the structural design thresholds. HL stands for horizontal levee in the legend.  

 

The spatial distribution of risk reduction is shown in Figure 4.9. Risk reduction increases as 

sea levels rise, shown by the greater prevalence of colored lines going from left to right. 

Mean values in reducing the risk of q > 10 L/m/s across all 48 transects are a reduction by 

0.4%, 2.0% and 5.3% with 0, 0.5, and 1 m of SLR, respectively. Mean values in reducing the 

risk of Q > 500 L/m across all 48 transects are a reduction by 0.2%, 1.5% and 2.9% with 0, 0.5, 

and 1 m of SLR, respectively. There are two main hotspots of risk reduction, shown by the 
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white stars in the top right subplot of Figure 4.9. These two areas both have relatively deep 

waters directly offshore from the levee, with no existing marsh platform to attenuate waves 

(Figure 4.10). Tests revealed that offshore water depth is a stronger control on risk reduction 

by horizontal levees than is wave height.  

 

Figure 4.9 Decrease in probability of exceeding two different levee structural design thresholds due to 
horizontal levee implementation. The color of each transect signifies the decrease in failure risk 
delivered by implementing a 1:100 sloping horizontal levee. The top row shows the decrease in risk of 
exceeding 10 L/m/s and the bottom row shows the decrease in risk of exceeding 500 L/m. The three 
different columns show three different sea level scenarios. Green transects show places where 
horizontal levees are reducing the probability of levee failure by the greatest amount, reaching up to 
30% in reduction of failure risk. The white star signifies two hotspots where horizontal levees are 
particularly effective. In both the top and the bottom row, horizontal levees decrease risk of 
overtopping. Horizontal levees play a stronger role as sea levels rise, shown by the increasing number 
of colored and dark colored transects, going from left to right. White stars in the top right plot denote 
hotspots of highest risk reduction from horizontal levees. 
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Figure 4.10 Bathymetry of transects in the two hotspots denoted in Figure 4.9, where horizontal levees 
provide the greatest risk reduction benefits. Hotspot 1 corresponds to the northwest star and hotspot 
2 corresponds to the southeast star. In both hotspots the present levee drops off to relatively deep 
water, with little to no marsh habitat offshore from the existing levee. 

 

4.4 Discussion and conclusions 

This analysis investigates how SLR will affect levee overtopping risk from the joint action of 

waves and storm surges. SLR will challenge existing design thresholds and safety levels for 

future flood defenses. This study provides one of the first insights into nature-based 

adaptation options to increase the resilience and performance of levee systems. Engineering 

performance metrics were employed to test the effectiveness of horizontal levees as a hybrid 

green-gray coastal climate adaptation solution. Results suggest that horizontal levees can be 

an effective approach to adapt to and mitigate the impacts of increasing flood risk in urban 

estuaries like San Francisco Bay. Establishing horizontal levees in front of existing levee 

sections can reduce the risk of exceeding structural design limits of the levees.  

More gradually sloping horizontal levees are better able to reduce this risk by providing a 

wider vegetation field that can reduce waves more than narrower and steeper horizontal 
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levees. For example, 1:100 sloped horizontal levees can reduce risk of overtopping that 

exceeds the structural design of the levee by up to 7%, 22% and 30% with 0, 0.5, and 1 m of 

SLR, while 1:20 sloped horizontal levees can reduce risk of structural exceedance by up to 3%, 

8%, and 20%, with 0, 0.5 and 1 m of SLR, respectively. However, there is a tradeoff between 

using more gradually sloping horizontal levees, because even though they may provide more 

risk reduction benefits, they will cost more to implement as they have a larger footprint, thus 

requiring a larger spatial area of construction and larger land purchases. Hirschfeld and Hill 

(2017) show that land purchase cost could comprise more than half the total cost of adapting 

the San Francisco Bay levee system to prepare for climate change, suggesting that land 

purchase costs are non-trivial. Hotspots of risk reduction suggest that horizontal levees will 

deliver the greatest risk reduction in areas where the current levee is fronted by relatively 

deeper water with little to no existing marsh platform (Figure 4.9). This information can help 

managers prioritize where to invest in horizontal levees given limited adaptation funding.  

Modeled wave decay in XB-NH has been calibrated in vegetated marshes (Taylor-Burns et al. 

2023) and modeled overtopping in XB-NH has been compared to measurements and to 

output from other models, with results suggesting that XB-NH has higher skill in simulating 

overtopping than other models including OpenFOAM, SWASH, SWAN and XBeach Surfbeat 

(Lashley et al. 2020). However, overtopping in XB-NH through vegetation remains 

uncalibrated. This lack of data is a limitation of the present study and a promising area of 

further research. Calibration and validation of overtopping through vegetation should be 

explored before horizontal levees are widely implemented in climate adaptation plans. 

Furthermore, while this study relied on a review equation relating the vegetation drag 
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coefficient (Cd) and the Reynolds number (Re), this relationship is still an area of active 

research. Thus, it should be a research priority to obtain wave transformation and 

overtopping measurements across vegetation in high Reynolds number conditions. Even if 

these observations are obtained, it can be difficult to calculate Cd due to uncertainty and 

variation in methodology for vegetation surveys. This challenge has spurred recent research 

in quantifying wave attenuation in marshes by their standing biomass, (Maza et al. 2022), 

which requires only one field measurement rather than a minimum of three. Incorporating 

this approach into numerical models like XBeach would facilitate wave modeling through 

vegetation. 

Sediment dynamics within marsh habitat are also important to consider. These dynamics 

control the degree to which marshes are or are not able to accrete sediment quickly enough 

to keep pace with sea level rise. San Francisco Bay marshes have been keeping up with sea 

level rise over the last 150 years by accreting 0.2 – 0.5 cm/year (Callaway et al. 2012), but 

these rates are less than 4% of what will be necessary to keep up with accelerating sea level 

rise by 2100 (Knowles 2010; Barnard et al. 2013). Further exacerbating insufficient accretion 

rates, riverine flood control structures channel sediment out to open water and dams 

impound sediment upstream, both disrupting the historic connection marshes have had with 

upland sediment sources. The relative elevations of marshes in San Francisco Bay are 

predicted to decrease by 0.4 to 1.3 m by 2100 (Swanson et al. 2014), causing marshes that do 

not have migration space to transition to mudflats (Elmilady et al. 2019). Sediment dynamics 

also influence whether marsh edge erosion or progradation will occur. Over recent decades, 

marshes in the wave-exposed northern part of San Francisco Bay have exhibited both spatial 
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and temporal variability in edge change on a local scale (SFEI and Baye 2020), though erosion 

is more likely to occur in a future with higher sea levels. Our model did not account for 

sediment interactions and future work could incorporate these processes. 

This study assumed shore-normal flow by using one dimensional XB-NH, which was done due 

to computational limitations. This assumption is conservative because it ensures that, along 

most shorelines, waves take the shortest path across the marsh to the levee. However, it is 

possible that waves are focused on certain shoreline segments in embayments, and our 

approach neglects this possibility. Our approach also neglects the possibility of interactions 

between waves and alongshore currents.   

We also assumed that regional levee failure will be caused by overtopping flow. This neglects 

the possibility of failure due to inertial forces introduced by high water levels and due to 

seismic activity. Moss and Eller (2007) outline six pathways for levee failure, including 

seepage and slumping/spreading, which can both be caused by high water levels without 

overtopping. Studies in the Sacramento-San Joaquin Delta have assessed risk to that region’s 

levee system and show that failures can occur due to high water level events without 

overtopping and due to liquefaction caused by seismic activity (Mount and Twiss 2005; 

Deverel et al. 2016). These threats may also be applicable to the Bay Area’s levee systems. 

Parts of the Bay that are built on fill (soft mud and sand), including several municipalities in 

San Mateo County. These areas are particularly vulnerable to liquefaction and many of them 

are within about 10 km from the San Andreas Fault. Further complicating these risks is the 

fact that most of the levees in San Francisco Bay are not certified by the Federal Emergency 

Management Agency and do not meet certain engineering criteria, meaning their limits are 
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not fully understood. Thus, levees may fail for other reasons before overtopping ever occurs. 

A comprehensive geotechnical risk assessment for the Bay’s levee system would help 

illustrate how realistic this assumption is.  

Finally, in this analysis the MvCAT toolbox was used with local optimization for copula 

parameters as opposed to optimization using the Monte Carlo Markov Chain algorithm, 

which produces a more robust estimate of copula parameters. Additionally, the MvCAT 

toolbox assumes that copula represent the probability of one or both parameters exceeding a 

value, known as an “OR” copula. However, in this context it would be more appropriate to 

use assume that both parameters are exceeded, known as an “AND” copula. Next steps to 

improve this work will be to utilize the Monte Carlo Markov Chain algorithm for copula 

parameter selection and to modify the MvCAT toolbox to allow for “AND copulas. Together, 

these steps would improve the estimations of probabilities associated with each XBeach 

simulation. 

Despite these limitations, results from this study are promising. This work illustrates that 

levees can meaningfully reduce risk of levee failure in urban estuaries like San Francisco Bay, 

while simultaneously offering potential for other co-benefits such has habitat, carbon 

sequestration, and recreation opportunities. Further, the risk reduction benefits provided by 

horizontal levees increase with SLR, suggesting that with further study, this hybrid 

infrastructure approach can be a part of the solution as communities face the need to adapt 

to rising sea levels. 
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Rising sea levels will continue to increase flood risk in coastal communities, and coastal 

habitat restoration can play a strong role in reducing this risk by altering flow and reducing 

wave energy. Traditional engineering and planning tools such as hydrodynamic models have 

long been used to assess the efficacy of “gray infrastructure”, such as sea walls, levees and 

berms, but these approaches have not been applied to assess how nature-based solutions 

can reduce flood risk until more recently. To fully integrate nature-based solutions to coastal 

flood risk reduction, it is necessary to assess their efficacy with the same rigor as is applied to 

gray alternatives. This dissertation uses quantitative coastal engineering tools and 

approaches to assess how marsh habitat can reduce current and future flood risk in a densely 

urbanized estuary, contributing new research to support the integration of nature into 

coastal climate adaptation frameworks.  

In chapter one, a wave-resolved numerical model was applied to investigate how vegetated 

marshes influence wave transformation, particularly wave runup. The model was calibrated 

to observations and then used to examine how marsh and hydrodynamic characteristics 

change the potential for marshes to mitigate wave driven flooding. Results suggest that in 

comparison to wave propagation over an unvegetated mudflat, marsh vegetation reduces 

runup by a median of 40 cm and wave height by a median of 35 cm, even across only 50 m of 

marsh width. In urban estuaries like San Francisco Bay, which is already beginning to 

experience the flooding impacts associated with climate change, a 40 cm reduction in 

dynamic water levels is meaningful for planning purposes and could be a strong incentive to 

invest in marsh conservation and restoration. By reducing the required height of the Bay 

area’s levee system by 0.5 m, salt marsh vegetation could save $3.5 million per kilometer of 
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levee, based on existing estimates of levee construction costs (van Zelst et al. 2021), resulting 

in net savings of $3.5 billion across the approximately 1000 kilometers of bay area shoreline.  

In chapter two, a two-dimensional coupled wave-flow hydrodynamic model was used to 

value the flood protection benefits of stakeholder-identified marsh restoration under current 

and future climate change in San Mateo County, the California county most vulnerable to 

future flooding. Results show that marsh restoration provides a present value of $21 million 

which increases to over $100 million with 0.5 m of sea level rise (SLR), and to about $500 

million with 1 m of SLR. We identify hotspots where marsh restoration delivers the highest 

benefits for adaptation, which reach $9 million/hectare. These findings show that today’s 

investments in nature and community resilience can result in increasing payoffs as climate 

change progresses and risk increases. 

Chapter three explores the limitations of marsh restoration for risk reduction in one of San 

Francisco Bay’s salt ponds, which is built on a diked and drained historical marsh. Results 

demonstrate that marsh restoration in hydraulically altered ponds or inlets must be 

strategically done to maintain community safety. Narrow tidal inlets and volume modification 

of the inlet or pond can amplify water levels during storms and high tides, while creating 

wider tidal inlets and maximizing the volume of the inlet or pond both reduce the risk of tidal 

amplification. Hydraulically altered wetlands represent a large proportion of potential marsh 

restoration sites nationally, and these results can guide such restoration efforts.   

Chapter four explores how establishing marsh habitat in front of levees with horizontal levees 

can reduce the risk of levee overtopping. Results illustrate that sea level rise will increase the 

likelihood of occurrence of low-probability storm events. For example, with 0.5 m of SLR, the 
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current 100-year event will occur semi-annually. This shift will increasingly test the limits of 

regional flood control infrastructure, highlighting the need for adaptation. Results also show 

that horizontal levees can provide adaptation benefits by reducing the probability that 

structural design thresholds of levees are exceeded during storms. The hydrodynamic 

analyses illustrate that horizontal levees can reduce probability of exceeding the structural 

design limit of the levee by up to 7% with present sea level. With 0.5 m and 1 m of SLR, this 

value increases to 22% and 30% respectively, demonstrating that this hybrid nature-based 

climate adaptation approach can be a part of the solution in adapting to rising sea levels. 

The models used in this dissertation are state of the art and widely used, but they do have 

limitations and shortcomings. The XBeach simulations were all done in one dimension due to 

computational limitations, neglecting numerous alongshore processes that occur on complex 

shorelines like San Francisco Bay. The Delft3D and SWAN simulations do not account for 

swash processes due to the limits of the models themselves. None of our work incorporated 

sediment dynamics or pluvial flooding, which are both important factors to consider. All 

models used here have been tested and validated during present day conditions, but 

calibration data is limited during extreme events, and cannot be collected in the field in 

conditions that represent a future with sea level rise. To facilitate reliable model data, 

observations are needed during storms, high tides, and ideally also from flumes where sea 

level rise can be simulated. These measurements will facilitate model calibration and 

validation during conditions of interest and increase confidence in model results for high 

water level and large wave conditions. Advancing the study of sediment dynamics in mashes 

is equally important to further constrain if and how these tidal habitats will persist in a future 
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with sea level rise, increasing confidence in model results for sea level rise scenarios. 

Sediment dynamics vary geographically depending on relative sea level rise and sediment 

availability, which presents a challenge. However, marsh accretion rates and edge stability 

may also present management goals. Thin layer sediment placement of mud on marsh 

platforms can be an effective way to support vegetation and build elevation. Edging and sills 

can be effective in stabilizing marsh edges. Investing in these approaches could be 

worthwhile on urban coastlines.  

Aside from model limitations, implementation of any of these results is limited by the ability 

and will of managers to take action to invest in conservation and restoration based on risk 

reduction metrics. Access to funding is a common limitation but results like those presented 

here can open access to new funding sources. For example, quantifying the risk reduction 

benefit of habitat restoration can facilitate benefit cost analyses, and where restoration 

projects have a sufficient ratio, it may be possible to apply for and receive FEMA grants for 

increasing community resilience. This type of work also facilitates insurance and other risk 

transfer mechanisms to support funding for habitat restoration. If a seawall can be insured, 

the argument can be made that a coral reef which provides the same service as a seawall 

should also be insurable. This type of policy was written to protect the meso-American reef in 

Quintana Roo, Mexico several years ago. Shortly after the policy was written, a hurricane 

passed over the reef causing damage, and subsequently an insurance payout was made to 

fund habitat restoration. Similarly, if a property owner could receive a premium reduction by 

building a bulkhead, the argument can be made that if marsh restoration would serve the 

same purpose, habitat restoration should also result in a decreased premium, resulting in 
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savings. However, habitat restoration funding, even when available, is not commonly 

allocated based on risk reduction metrics, but rather on ecological metrics. Pairing the type of 

work included in this dissertation with ecological analyses may facilitate aligning the two 

goals. Pilot restoration projects that show quantifiable risk reduction benefits may help gain 

confidence in restoration for risk reduction, potentially increasing the use of this approach. 

A drawback of nature-based solutions for coastal flood risk reduction is that they will almost 

always require more time and space to grow than traditional engineering approaches. 

Concrete can be poured in a matter of days or weeks, but a successful habitat restoration can 

take years or decades to fully establish. However, concrete will never evolve or adapt to 

changing conditions, but marshes, coral reefs, and mangroves can shift, grow, accrete, and 

repair themselves. The capitalistic focus on short-term gains rather than long-term 

sustainability has been a major driver in creating the climate crisis. While threats of climate 

change are imminent in many places, we need to learn from our past mistakes and chose 

adaptation strategies that will meet goals for decades to come. In a similar vein, while benefit 

cost analyses can be a powerful tool in assessing and selecting adaptation measures, the 

commonly used and Federal Emergency Management Agency (FEMA) mandated 7% discount 

rate (the rate which is used to “discount” future benefits in comparison to present day 

benefits or costs) is arbitrary and arguably too high. Lowering this rate to 3% or 5% would 

enable communities to invest in long-term climate solutions such as habitat restoration 

rather than relying on quick fixes that may not last.  

Collectively, this suite of work provides motivation and guidance for integrating marsh habitat 

conservation and restoration into coastal risk reduction plans and budgets. Results from 
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chapter one and three are idealized and can thus be used to inform planning in other urban 

estuaries. Results from chapter two and four are specific to San Mateo County, CA, but the 

approach used here can be applied to other areas to quantify climate adaptation benefits of 

marsh restoration. Using traditional engineering approaches, this dissertation shows that 

marsh habitat can play an important role in reducing coastal flood risk in an era of climate 

change, supporting both community safety and conservation goals.  
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Figure S1.1 In column A, examples of bursts with good model-data agreement, and in column B, 
examples of bursts with poor model-data agreement. Wave height is on the y axis and cross-shore 
distance is on the x axis. Red dots show observed wave height, and black dots show modeled wave 
height, both calculated spectrally from variance density time series at observation points. The black 
line shows estimated wave height along the whole transect, which is estimated by the variance in 
water level. In subplot 1B, modeled wave height at station SPD, which is at the edge of the low marsh, 
is higher than the observed wave height. In subplot 2B, modeled wave height at station DX2, which is 
at the edge of the first transition zone, is higher than observed wave height. Discrepancies in subplots 
1B and 2B could be due to non-shore-normal wave direction in the observations, which the XBeach 
simulations do not include. In subplot 3B, modeled wave height at stations SPD, DX1, and DX are lower 
than observed wave heights. This could be due to wind-driven wave growth along the transect, which 
is reported in Foster-Martinez et al. (2018) and which the XBeach simulations do not include. 
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Table S1-1 Summary of scatter index scores for modeled versus observed wave heights with different 
model settings. Scores are shown at each observation point for the calibration and validation time 
periods in the two columns on the left. Model settings are shown in the top row and include: Manning 
friction coefficient (varied from 0.016 to 0.020, per the range of values recommended in Chow 1959); 
maximum wave steepness before breaking (varied from 0.3 to 0.8, per the range of values 
recommended in the XBeach user manual); Cd values for the four vegetation zones (varied from mean 
values - 1 standard deviation to mean values + 1 standard deviation, or [0, 0.11, 0.31, 0.4] to [0.75, 
0.77, 0.81, 1.46] from low marsh to high marsh); and bathymetry, including a 5 m LEAN corrected DEM 
which was developed to account for the height of vegetation above bed level (K. Buffington and 
Thorne 2018) but which under-estimates bed level in the marsh, a 2 m DEM (Danielson et al. 2016) 
which is the highest resolution DEM available and which over-estimates bed level in the marsh, and 
the 2 m DEM corrected for discrepancies with a linear interpolation. The bottom row, which is bolded, 
shows the overall skill score, weighted equally across the six observation stations. Skill scores show 
that model results are relatively insensitive to changes in Manning friction coefficient and maximum 
wave steepness. Skill scores show that model sensitivity to bathymetry is similar to sensitivity to 
changes in Cd coefficients of one standard deviation. 
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Figure S2.1 Depiction of the model mesh shown in red. The yellow and blue circles show locations of 
calibration and validation data. The text boxes in the mesh denote the grid resolution of the mesh in its 
lowest and highest resolution, which are the middle of the bay and in existing and potential San Mateo 
County marshes, respectively. 



152 
 

 

Figure S2.2 Observed (red) and modeled (blue) amplitude (cm, row 1) and phase (degrees, row 2) of 
the top five tidal constituents in the model; vector difference between observed and modeled tidal 

constituents (cm, row 3). 
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Figure S2.3 Calibration (rows 1 and 2) and validation (rows 3 and 4) time series, comparing model data 
(blue) and observations (red) at the Redwood City tide gauge (rows 1 and 3) and at a water logger 
deployed in Laumeister Marsh (rows 2 and 4). Skill scores include bias, root mean square error (RMSE) 
and mean absolute error (MAE). 

 

Table S2-1 Results from sensitivity analysis of water levels on bathymetry in Laumeister Marsh. Results 
show that modeled water levels in the marsh channel are highly dependent on local channel depth and 
slightly dependent on local marsh platform height. Remote bathymetry has limited impact on model 
performance. Root mean squared error (RMSE), bias, and mean absolute error (MAE) of water levels 
were used to evaluate model performance. 

Bathymetry Laumeister water levels Redwood City water levels 

Channel Depth Platform Height RMSE (cm) Bias (cm) MAE (cm) RMSE (cm) Bias (cm) MAE (cm) 

Deep* High+ 16.63 6.38 13.55 9.24 0.35 7.35 

Deep Mid++ 15.65 6.23 12.65 9.24 0.35 7.35 

Deep Low+++ 15.16 6.17 12.05 9.23 0.36 7.34 

Mid**  High 43.76 20.50 34.82 9.24 0.35 7.35 

Mid Mid 41.87 20.02 33.18 9.24 0.35 7.35 

Mid Low 41.00 19.99 32.19 9.23 0.36 7.34 

Shallow*** High 107.03 63.03 91.00 9.42 0.34 7.48 

Shallow Mid 101.79 59.55 85.59 9.42 0.34 7.48 

Shallow Low n/a n/a n/a n/a n/a n/a 
* 0.25 m NAVD88; **1 m NAVD88; ***2 m NAVD88; +2.73 m NAVD88; ++2.23 m NAVD88; +++1.73 m NAVD88  
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Table S2-2 Indicators and rank of social vulnerability as determined by BCDC Adapting to Rising Tides 
“Vulnerable Communities” (BCDC et al., 2020). 

Social Vulnerability Indicators 
Social vulnerability rank determination:  

Number of indicators in a given percentile relative to the 9 county 
Bay area  

Very low income 
Highest social vulnerability:  

8 or more indicators in the 70th percentile  
OR  

6 or more indicators in the 90th percentile 

 

Not a U.S. citizen  

Without a vehicle  

People with disability  

Single parent households 
High social vulnerability:  

6-7 indicators in the 70th percentile  
OR  

4-5 indicators in the 90th percentile 

 

Communities of color  

Limited English proficiency  

Without a high school degree  

Young children under 5 
Moderate social vulnerability:  

4-5 indicators in the 70th percentile  
OR  

3 indicators in the 90th percentile 

 

Severely housing cost burdened  

Older adults  

Renters  

 

 

Table S2-3 On top, annual expected damages (property loss and people flooded) with existing and 
restored habitat under 3 different SLR scenarios. On the bottom, total and percentage of protected 
people and property with existing and restored habitat under 3 different SLR scenarios. 

Annual expected damages 

  Existing habitat Restored habitat 

SLR 
Property loss  
($ millions) 

Population 
flooded 

Property loss  
($ millions) 

Population 
flooded 

0  366  13588 364.80  13581 

0.5 1,020  29576 1,012.22  29350 

1.0  5,839  112668 5,802.92  112450 

       

SLR 
Total property 

protected  
($ millions) 

Total 
population 
protected 

% Property 
protected 

% Population 
protected 

0 1.55  7 0.4 0.1 

0.5  7.68  226 0.8 0.8 

1.0 36.24  218 0.6 0.2 
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Table S2-4 Uncertainty ranges for risk with and without marsh restoration, assuming total vertical 
uncertainty of 25 cm.  

Base case damage 
SLR Storm  Existing   Restored   Difference  

0 1  $      354,798,560.00   $      353,573,250.00   $       1,225,310.00  
0 20  $      378,091,940.00   $      376,647,300.00   $       1,444,640.00  

0 100  $      533,088,700.00   $      520,691,170.00   $     12,397,530.00  

0.5 1  $      984,671,500.00   $      972,521,400.00   $     12,150,100.00  

0.5 20  $   1,038,250,050.00   $   1,029,675,000.00   $       8,575,050.00  
0.5 100  $   1,912,055,300.00   $   2,028,920,600.00   $ (116,865,300.00) 

1 1  $   5,513,224,700.00   $   5,475,691,500.00   $     37,533,200.00  

1 20  $   6,060,539,000.00   $   6,024,786,000.00   $     35,753,000.00  

1 100  $ 11,020,855,000.00   $ 10,985,019,000.00   $     35,836,000.00  
         AEB  

0     $      1,545,069.65  

0.5        $      7,678,641.25  

1     $    36,242,725.00  

          

Maximum damage (+25 cm) 
SLR Storm  Existing   Restored   Difference  

0 1 $453,108,001.32  $432,243,541.52   $     20,864,459.80  

0 20 $483,406,720.98  $461,873,759.39   $     21,532,961.59  

0 100 $700,828,434.49  $649,782,201.80   $     51,046,232.69  

5 1 $1,270,378,392.96  $1,232,305,399.73   $     38,072,993.23  
5 20 $1,354,566,448.41  $1,319,451,763.10   $     35,114,685.31  

5 100 $2,496,076,956.32  $2,631,226,753.15   $ (135,149,796.83) 

1 1 $6,939,577,266.06  $6,870,943,917.24   $     68,633,348.82  

1 20 $7,529,324,520.43  $7,466,996,300.30   $     62,328,220.13  
1 100 $12,558,269,457.50  $12,506,557,525.48   $     51,711,932.02  

         AEB  

0     $    21,590,359.05  

0.5        $    32,763,445.08  
1     $    64,487,548.29  

          

Minimum damage (- 25 cm) 
SLR Storm  Existing   Restored   Difference  

0 1 $291,688,398.61  $281,216,710.94   $     10,471,687.67  

0 20 $315,485,691.24  $303,653,983.37   $     11,831,707.87  
0 100 $443,655,745.94  $420,955,719.39   $     22,700,026.55  

5 1 $803,219,149.32  $773,284,912.53   $     29,934,236.79  

5 20 $848,240,550.64  $818,697,656.33   $     29,542,894.31  

5 100 $1,546,437,646.25  $1,588,834,372.68   $   (42,396,726.43) 
1 1 $4,364,167,225.56  $4,301,308,169.35   $     62,859,056.21  

1 20 $4,842,956,016.69  $4,779,227,027.20   $     63,728,989.49  

1 100 $9,614,711,708.93  $9,544,919,742.15   $     69,791,966.78  

         AEB  

0     $    11,284,747.57  

0.5        $    27,994,560.63  

1     $    62,799,740.83  
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Figure S3.1 A time series of the balance between the gravitational force and frictional force in the bay-
pond system, and the resulting water level time series. The three panels show, from top to bottom, the 
forces and water levels in a system with a 1 m, 10 m, and 50 m channel width.   
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Table S4-1 Ranking of the top 5 copula for each transect from the joint probability analysis. 

  Top 5 Copula Ranking 

Transect 1 2 3 4 5 

1 AMH t Gaussian FGM Fischer-Kock 

2 AMH t Gaussian FGM Fischer-Kock 

3 AMH t Gaussian FGM Fischer-Kock 

4 AMH FGM Fischer-Kock Nelsen Frank 

5 AMH FGM Fischer-Kock t Gaussian 

6 AMH Shih-Louis t Gaussian FGM 

7 AMH t Gaussian FGM Fischer-Kock 

8 AMH t Gaussian FGM Fischer-Kock 

9 AMH t Gaussian FGM Fischer-Kock 

10 AMH t Gaussian FGM Fischer-Kock 

11 AMH t Gaussian FGM Fischer-Kock 

12 AMH t Gaussian FGM Fischer-Kock 

13 AMH t Gaussian FGM Fischer-Kock 

14 AMH t Gaussian FGM Fischer-Kock 

15 AMH t Gaussian FGM Fischer-Kock 

16 AMG t Gaussian FGM Fischer-Kock 

17 Shih-Louis AMH FGM Fischer-Kock Nelsen 

18 Shih-Louis AMH FGM Fischer-Kock Nelsen 

19 Shih-Louis AMH FGM Fischer-Kock Nelsen 

20 Shih-Louis AMH FGM Fischer-Kock Nelsen 

21 Shih-Louis AMH FGM Nelsen Plackett 

22 Shih-Louis AMH FGM Fischer-Kock Nelsen 

23 Shih-Louis AMH FGM Fischer-Kock Nelsen 

24 Shih-Louis AMH FGM Fischer-Kock Nelsen 

25 Shih-Louis AMH FGM Fischer-Kock Nelsen 

26 Shih-Louis AMH FGM Fischer-Kock Nelsen 

27 Shih-Louis AMH FGM Fischer-Kock Nelsen 

28 Shih-Louis AMH FGM Fischer-Kock Gaussian 

29 Shih-Louis AMH Gaussian t FGM 

30 Shih-Louis AMH FGM Fischer-Kock Nelsen 

31 Shih-Louis AMH FGM Fischer-Kock Nelsen 

32 Shih-Louis AMH FGM Fischer-Kock Nelsen 

33 Shih-Louis AMH FGM Fischer-Kock Nelsen 

34 Shih-Louis AMH FGM Fischer-Kock Nelsen 

35 Shih-Louis AMH FGM Fischer-Kock Nelsen 

36 Shih-Louis AMH FGM Fischer-Kock Nelsen 

37 Shih-Louis AMH FGM Fischer-Kock Nelsen 

38 Shih-Louis AMH FGM Fischer-Kock Nelsen 

39 Shih-Louis AMH FGM Nelsen Plackett 

40 Shih-Louis AMH FGM Nelsen Plackett 

41 Shih-Louis Raftery AMH FGM Nelsen 

42 Shih-Louis AMH FGM Nelsen Plackett 

43 Shih-Louis AMH FGM Fischer-Kock Nelsen 

44 Shih-Louis AMH FGM Fischer-Kock Nelsen 

45 Shih-Louis AMH FGM Fischer-Kock Nelsen 

46 Shih-Louis AMH FGM Fischer-Kock Nelsen 

47 Shih-Louis AMH Gaussian t FGM 

48 Shih-Louis AMH Gaussian FGM Fischer-Kock 
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Figure S4.1 A plot of the Pinsky (2013) equation relating vegetation drag coefficient (Cd) and Reynolds 
number (Re) in marshes. The equation is shown on the black line, with one and two standard 
deviations shown in dark and light pink, respectively. The black dots represent conditions in our 
experimental runs. 
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XBeach Non-hydrostatic 

XBeach was originally developed as a phase-averaged wave model that resolves amplitude 

variation on the wave group scale but does not resolve individual waves as in a Boussinesq 

model. Recently, a non-hydrostatic mode (XB-NH) was developed for XBeach which is able to 

fully resolve incident-band (short period) waves. XBeach simulates nearshore processes 

including wave transformation, wave-induced setup, over-wash, and inundation. In addition 

to information on water levels and wave heights, model outputs can include parameters such 

as flow and orbital velocity, bed shear stress, and Stokes drift. The non-hydrostatic mode is 

able to fully resolve incident-band waves. Resolution of incident-band waves, though 

computationally costly, is necessary to determine swash on relatively steep slopes and is thus 

necessary to investigate runup and potential overtopping.  

Non-hydrostatic XBeach calculations are based on the non-linear shallow water equations, 

including a non-hydrostatic pressure term. The depth averaged dynamic pressure is 

computed from the mean of the dynamic pressure at the surface and at the bed by assuming 

the dynamic pressure at the surface to be zero and a linear change over depth, where w is 

the vertical velocity and z is the vertical coordinate:  

𝛿𝑤

𝛿𝑡
+

𝛿𝑞

𝛿𝑧
= 0 

The vertical velocity at the bed is set by the kinematic boundary condition: 

𝑤𝑏 = 𝑢 
𝛿(𝜂 − ℎ)

𝛿𝑥
 

Combining the Keller-box method for the description of the pressure gradient in the vertical, 

and with substitution, the dynamic pressure at the bed can be described by: 
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𝛿𝑤𝑠

𝛿𝑡
= 2

𝑞𝑏

ℎ
−

𝛿𝑤𝑏

𝛿𝑡
 

The dynamic pressure at the bed is subsequently solved by solving the continuity equation:  

𝛿𝑢

𝛿𝑥
+

𝑤𝑠 −  𝑤𝑏

ℎ
= 0 

This method simplifies the hydrodynamics of plunging waves. For example, it does not 

include highly resolved vertical discretization and it does not simulate the overturning of 

waves. However, it has been shown to provide sufficient skill to describe dominant 

characteristics of the flow.  

XB-NH allows for the inclusion of the effect of vegetation within the model via vegetation 

parameters including stem density, frictional drag coefficient, stem height, and stem 

diameter (van Rooijen et al. 2015; 2016). Wave-vegetation interactions are included in the 

model following the approach of Mendez and Losada (2004). It is possible to include multiple 

heterogenous vegetation layers, but in this dissertation only one layer was used. Dissipation 

by vegetation is described by: 

𝐷 =  𝐴𝑣 ×  
𝜌𝐶𝐷𝑏𝑁

2√𝜋
(
𝑘𝑔

2𝜎
)3𝐻3 

𝐴𝑣 =  
(𝑠𝑖𝑛ℎ3𝑘𝛼ℎ) + 3(𝑠𝑖𝑛ℎ𝑘𝛼ℎ)

3𝑘𝑐𝑜𝑠ℎ3𝑘ℎ
 

𝐶𝐷is the bulk drag coefficient, 𝑏 is the vegetation stem diameter, 𝑁 is the stem density, and 𝛼 

is the relative vegetation height. 

XBeach non-hydrostatic is computationally costly, particularly in short wave environments. A 

minimum of 30 grid cells per wavelength are recommended to capture wave transformation 
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across the grid, and thus short wave environments result in small grid cells and small time 

steps, quickly increasing the run time of a simulation. Additionally, simulations with too many 

grid cells will fail, which makes regional 2D models challenging to create in short wave 

environments. 

XBeach has been extensively tested and validated in sandy beach environments. The 

vegetation module within XBeach was developed more recently and while wave 

transformation and setup have been tested and validated, observations of runup and 

overtopping through vegetation have not yet been collected. 
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Delft 3D Flexible Mesh 

Delft3D Flexible Mesh solves the shallow water equations with a finite volume method on 

staggered unstructured grids in 1D and 2D horizontal (2DH) schematizations. In this 

dissertation, only the 2DH application was used. The shallow-water equations express 

conservation of mass and momentum: 

𝜕ℎ

𝜕𝑡
+ ∇ ∙ (ℎ𝑢) = 0  

and 

 
𝜕𝑢

𝜕𝑡
+ 

1

ℎ
(∇ ∙ (ℎ𝑢𝑢) − 𝑢∇ ∙ (ℎ𝑢)) = −𝑔∇Ϛ +

1

ℎ
∇ ∙ (𝑣ℎ( ∇𝑢 + ∇𝑢𝑇)) +

1

ℎ
 
𝜏𝑏+𝜏𝑤

𝜌
  

where 

∇ = (
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
)𝑇 

Ϛ is the water level, ℎ is the water depth, 𝑢 is the velocity vector, 𝑔 is gravitational 

acceleration, 𝑣 is the viscosity of water, 𝜌 is the density of water. 𝜏𝑏 represents the bottom 

friction and is represented by 𝜏𝑏 =  
𝜌𝑔

𝐶2 ||𝑢||𝑢. 𝜏𝑤 represents the wind friction acting on the 

free surface, 𝜏𝑤 =  𝐶𝑑𝜌𝑎||𝑢̃10||𝑢̃10. 𝑢̃10 represents the absolute wind velocity.  

The two-dimensional shallow water equations are solved in a staggered scheme, meaning 

that velocity is solved at the edges or faces of the grid cells while water levels are solved at 

cell centers. This arrangement is called an Arakawa C-grid and the approach requires that the 

grid is orthogonal. The model can also be used on an unstructured grid, meaning that grid 

cells can have any number of faces. However, in this application, Delft3D Flexible Mesh was 
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coupled to SWAN, which requires that grid cells have no more than 4 nodes (i.e. are 

rectangular or triangular). 

The model can include such processes as tide and wind driven flows (such as storm surges), 

stratified and density driven flows, river flows, channel flows, rainfall runoff, salt intrusion, 

and transportation of material and pollutants.  

It is assumed that depth is much smaller than the length scale, allowing the vertical 

momentum to be reduced to the hydrostatic pressure relation and neglecting vertical 

accellerations. The Boussinesq approximation is also made in the model, which means fluid 

density differences are neglected except when they are multiplied by gravitational 

acceleration.  
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SWAN 

SWAN (Simulating Waves Nearshore) is a third-generation numerical wave model. SWAN 

computes random waves and currents in coastal areas with shallow water. The model is 

based on Eulerian formulation of discrete spectral balance of action energy, and solves the 

spectral action balance equation: 

𝜕

𝜕𝑡
𝑁 +  

𝜕

𝜕𝑥
𝑐𝑥𝑁 + 

𝜕

𝜕𝑦
𝑐𝑦𝑁 +  

𝜕

𝜕𝜎
𝑐𝜎𝑁 +  

𝜕

𝜕𝜃
𝑐𝜃𝑁 =

𝑆

𝜎
 

The first term on the left side of the equals sign represents the temporal rate of change of 

action density, N. The second and third terms represent the propagation of action in the x 

and y directions, with velocities cx and cy, respectively. The fourth term represents shifting in 

relative frequency due to changes in depths and currents, with velocity cσ in σ space. The fifth 

term represents refraction due to changes in depths and currents with velocity cθ in θ space. 

S represents the source term in terms of energy density, and represents the effects of wave 

generation and dissipation, and wave-wave interactions, depending on wave frequency and 

direction.  

Transfer of wind energy into waves is described in SWAN with the following formula, where 𝐴 

and 𝐵 depend on wave frequency and direction and wind speed and direction: 

𝑆𝑖𝑛(𝜎, 𝜃) = 𝐴 + 𝐵𝐸(𝜎, 𝜃) 

Dissipation of wave energy is described in SWAN as the sum of contributions from 

whitecapping, bottom friction, and depth induced breaking. Dissipation due to whitecapping 

is described by: 
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𝑆𝑑𝑠,𝑤(𝜎, 𝜃) = 𝛤𝜎̃
𝑘

𝑘̃
𝐸(𝜎, 𝜃) 

𝛤 is a steepness dependent coefficient. 𝑘 is a wave number. 𝜎̃ and 𝑘̃ denote a mean 

frequency and a mean wave number, respectively.  

Bottom-induced dissipation is described by: 

𝑆𝑑𝑠,𝑏(𝜎, 𝜃) = −𝐶𝑏𝑜𝑡𝑡𝑜𝑚

𝜎2

𝑔2𝑠𝑖𝑛ℎ2(𝑘𝑑)
𝐸(𝜎, 𝜃) 

Where 𝐶𝑏𝑜𝑡𝑡𝑜𝑚 is a friction coefficient. Dissipation due to depth-induced wave breaking is 

described by: 

𝑆𝑑𝑠,𝑏𝑟(𝜎, 𝜃) =
𝑆𝑑𝑠,𝑏𝑟,𝑡𝑜𝑡

𝐸𝑡𝑜𝑡
𝐸(𝜎, 𝜃) 

where 𝐸𝑡𝑜𝑡 is the total wave energy and 𝑆𝑑𝑠,𝑏𝑟,𝑡𝑜𝑡 is the rate of dissipation of total energy. 

This rate depends on a breaking parameter 
𝐻𝑚𝑎𝑥

𝑑𝑒𝑝𝑡ℎ
. In SWAN, this value is set to a constant of 

0.73.  

SWAN can simulate wind-driven wave generation, white-capping, bottom dissipation, and 

depth-induced wave breaking following the above equations. Quadruplet wave-wave 

interactions and triad wave-wave interactions are also included in SWAN. These interactions 

are included implicitly rather than explicitly, meaning that the model is not subject to the 

Courant criterion and thus can utilize larger time steps, increasing computational efficiency 

by two orders of magnitude.  
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Quadruplet wave-wave interactions and triad wave-wave interactions are included in SWAN, 

through a discrete interaction approximation (DIA) and a lumped triad approximation (LTA), 

respectively. The DIA approximation for quadruplet wave-wave interactions has been found 

to work fairly well in many cases but has been found to be less satisfactory for long-crested 

waves with a narrow directional distribution and for waves with frequency resolutions with 

ratios very different from 10%. The LTA approximation for triad wave-wave interactions has 

been found to perform reasonably well but it was developed from observations in a flume 

rather than the field. SWAN computes wave-induced setup, and in 2D this computation is 

done on approximations which do not apply in lakes.  

 

 

 

 

 

 

 




