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ABSTRACT

An investigation is made of theories which satisfy the duvality
principle using the Venezianq amplitude as a Born term. In constructing
the~theory it is found necessary to average over different ways of assigning

] ‘ .

the loop momenta to the points of the duality diagram. The Regge pole terms
in the asymptotic behavior are identified and transcéndental équations_written
dovn which express thé full renormalization of the leading tra jectory.

(It is necessary to assume that the integrals can be so defined that this

asymptotic behavior, found in the limit Re s - = », continues to be the

dominant behavior as Re s - + .) The amplitude is shown to have the

Landau-Cutkosky singularity structure éorresponding to boles lying on the
renormalized leading trajectory. In particular, if low lying particies on
this trajectory are the only stable particles in the theory, the real
singularity structure required by unitarity is correctly bbtained. It is
then possible that the failure in a finite theory of -exact factorization

for all daughters would not spoil the theory.

1—

On leave of absence from the Department of Applied hathematlcs and

Theoretical Physics, Un1vers1ty of Cambrldge, England.
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I. INTRODUCTION

Recently Kikkawa, Sakita, and Virasoro (KSV)l have pfoposed a vay
of constructing a ﬂew form of perturbation theory, consistent with duality;
in which the Veneziano amplitude2 plays the role of a Born term. Such a
series would then appear likely to be fofmally unitary and so would correct -
the most glaring deficiency of the Veneziano modél itself. -However KSV in

a note added in proof, and also Bardakeci, Halpern, and Shapiro (BHS)5 have

_ pointed out that in,brder to obtain full factorization of even the single

loop KSV expression in é way which is ébnsistenf with Veneziano-type functions
associated withktree diagramslL the integrand in the KSV integrai must con;
tain an infinite product which leads fo an exponential divérgéﬁée.

This disastroﬁs conclusion is enforced by the reqp%rement that

factorization, and consequent unitarity-like discontinuity formulae round

normal threshold singularities, is required for all poles contained in the

R .

“Veneziano amplitude vhatever their level in the daughter sequence. While

~this would be an agreeable property if it were obtainable‘it is not clear. -

that its failure robs the KSV approach of all its utility. Two lines of -
thought suggest that this is not hecessarily the caée{ "One is that the
daughter properties of a Venezianovamplitude can be modified by the

5

addition of nonleading terms. Bardakci and Mandelstam” have conjectured that

- these nonleading additions.éannot be used in a way which leads to a simpler,

and so probably less divergent, daughter sequence, but a préof has not, at
present, been given that this is so. Secondly, the:effecf of unitarizing
the theory will be to destroy the narrow resonance approximation of the.

Veneziano amplitude. Resonance poles should move onto unphysical sheets
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leavingemly the stable particle poles renormalized to locations which

are still real. TFor simplicity we shall always consider the model in
which the only stable particle is the spin zero member of the leading
trajectory. If that leading trajectory factorizes properly then the real
normal thresholds corresponding to stable particles will have Cutkosky
discontinuity formulae which correspond to physical unitarity. This will
not be true for singularities ihvolving dauéhter' ﬁrajectory particles, if
the latter do not factorize propefly,'but if these singularities are trans-
lated onto unphysical sheets they may not spoil the @hysical unitarity‘of
the theory. We réturn to a fuller discussion of this'point in the éon—
clusion.

The aim of this péper is tordiscuss some of fhe effécts of imposing
unitarity on the Veneziano formula by'means of a KsV apprpach. We restriét
ourselves to planar diagrams éndféohcéﬁéffhct a theory which only has
s and t channels. In particular in such a theory we study how this re-
'normalizes the particle and resonance poles. This renormalization manifests
itself in two distinct ways. The firét is by the displacement of Landau
singularities and in ﬁarticular the direct channel poles. The second is
through a ﬁodification of the asymptotic behavior of thé amplitude cor-
responding to a renormalized Regge trajectory. KSV have already given
a . leading order approximation discussion of the latter. in this paper we
give a complete calculation using téchniques developed to give a similarly
complete calculation of the asymptotic behavior of ladder diagrams in con-
ventional perturbation theory.6’7 Of course one requires that the two effeéts
give the same answer, that is that the displaced direct channel poles lie

on the displaced trajectory. We show that the factorization conditions
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inﬁolved are always the same in the two cases, whatever daughter is
conéidered, and that when these are satisfiéd the consistency condition
“is an identify. |
Furthermore, for the case of the leading trajectory, these
factorization conditions are shown to‘hold for virtually.any expression
constructed according to the general ideas of KSV, whether or not it con-
fains terms corresponding to ecircling lines in duality diagrams. ‘Presumably
the factorization conditions for daughter trajeqppries_will'require increasing
numbers of these lines and if they are ﬁo hold for éll daughters one would
expect to arrive by a somewhat different route at the disaster found by KSV
and BHS. Howevef, as we have argued above it may be that a useful theory
may be obtained without going to that limit.
| Equations (5.13) - (5.17)vgive the tranScéﬁdgntal equations which
incorporate the unitarity correétionsvto the leading trajectory of the
.Veneziano model. Although these equations are in the form 6fﬂseries in
vthe‘expansipn parameter even thé lowest approximation'éorrespbhds to_ab
partial' iﬁfinite surmation and incorporates important nonperturbative features.
For example it reproduces the CGribov-Pomeranchuk condensation of poles at
Re £ = - % af the first elastic threshold.T’SklHowever‘the threshold is
still af its unrenormalized pqsition.'
| II. THE MODEL
The integral asSociated.with n-loop'planar.diagrams can beiwritteh

-in-the form

. n 1 1 n+l 1
I = (g?)n + 1 H f ax f dy ; H f d:_zj Z‘]-a (t)-1
» i=1 "0 0 J=1 ~0

. An+l ‘ ) | | .
XeXP(H zg . fn(x, ¥, 2) . 5 - 'dn(x, Y, 2, ,t» gn(x_’ ¥, z) .
(2.1)
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The variables x, y, z, are associated with lines of the dual diagram

shown in Fig. 1; s = (p2 + p3)2, t = (pl + pe)é; g2 is the expansion
parameter; ao the linear trajectory.of the original.Venezianb amplitude.
The exponent in the integrand is constructed according to the rules given

by KSV. Its detailed form will depend on how many further lines are to‘be
represented in the dval diagram Fig. 1. The variables associated with these
lines are all functions of x, y, z, determined by the repeated application
of the quadrilateral conditions, Eqs. (3.2), (3.3) of KSV. We discuss the
choice of these further variables in the next paragraph. At present we

énly indicate in (2.1) that whatever the‘choice the coefficient'of s in

(2.1) will vanish when any one of the 2z, vanishes. This was shown by

J .
KSV. The function &, is the product of two terms. One is the (det Aﬁ)f

2
factor arising from performing the symmetric integration over the n loop
momenta. The other is whatever else is required, including é Jacobian
factor. We leave the precise form unsettled but will impose a simple ré-
quirement as the argument develops.

Fig. 1 is the dual diagram associated with Fig. (Qa); In Fig. (éb)
we show some of the many diagrams related to Fig. (2a) by dualify in the
way explained by KSV. The minimum set of further variables which must go
» into the construétion of (2.1) is that which corresponds to all the lines
needed for the dual diagrams of the set Fig. (2c). When one attempts to
construct such a set fof diagrams with more than one loop one immediately
encounters a difficulty. It proves impossible to choose a set in such a
way that each desiredvdual diagram is obtained once and once only. This
is because the internal points of the dual diagram represent loop momenta

and there is not a natural ordering of these loop momenta which holds

universally for all the diagrams of Fig. 2. In fact one must be content

v
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- Fig. 1. Dual diagram showing the variables used.



etc.

(b)
XBL696-2998
Fig. 2. (a) The diagram of which Fig. 1. is the duai

diagram; (b) Other diagrams related to (a) by
duality.
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with a sum over all the possible assignments of points to loop momenta

50 thataevery dual diagram is generated in n! ways. Tor example Fig., 3

‘shows some of the variables required for the two loop diagram,(Cmitted from
{

Fige. 3 are variables needed to correspond to diagrams with self energy

insertions in ‘the external lines. These variables in fact require a

special discussion which‘iS’given in Sec. & when wave function renormalization
is dealt with). The dual diagram corresponding fo Fig (2a) can be con-
structed in two vays, one corresponding-to.Fig. 1, the other to Fig. M.

We are inﬁerested in the'singularity structure of the integrai
(2.1), which wili be discussed in later sectibns. Wé shall find that it
has singularities occuring on the expected Landau curves and fhat these
arise from points in the region of inteératioﬁ‘when the variablegrcor-
responding to the lines in the appropriate dual diagram vanish. Since there
are n. ways of constructing any given dual diagram there are‘ n! distinct
points in the region of integration which éontribute to the given
singularity. Each point,because of the symmetrical way of coﬁstructing In’
vields the same contribution and if they were all added together we should
find Cutkosky discontinuity‘formulae which differed from those required
f?r unitarity by a factor of n! It isvtherefore necessary that gn should -
contain a factor (nl)_l. It is clearly equivalent and much more convenient
merely to evaluate the contribution at one of the poinfs dnly and forget
about the (n!)-l; Thié we shall do in all that follows, as a calculational

convenience, both for singularity structure and also for asymptotic behavior

to which we now turn our attention
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XBLE96-2999 .

Fig. 3. Lines needed for the two loop diagram.
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Fig. 4. A dual diagran contained in Fig. 3.
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ITT. ASYMPTOTIC BEHAVIOR
In order to investigate the asymptotic behavior of (2.1) we take
its Mellin transform6’7 with respect to (-s). If the Mellin transform

variable is £ this yields

' n 1 1 n+l 1
\4‘ N ‘ N .
i n( £) = T(-2) ( H f dx, f dy, H f @zj
. _ 0 0. Cj=1 e
b-a =1 ‘ -d :
(o] ' \
zj (f )2 g, no, : (3.1)
The expression (3.1) has poles wvhen £ =« - m (m =0, 1, 2; ...) due to

o

the divergence of the 2z, integrations at zj = 0. There can be explicitly

J
exhibited in the standard way by integrating by parts to yield

- n 1
M_(£) = T(-1) ( e H f ax, f ay,
o 0

If we put £ =@ - m everywhere in (3.2) other than in the vanishing
denominator factors we obtain the leading order approximation already
discussed in the case m = o by KSV. Summed over n it yields a Regge

pole. However we wish to do better than that and sum up all contributions.
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‘not just the leading ones. Only then shall we get the correct trajectory.
The technique is the exact analogue of that employed in perturbation theoryo’7.
One expands each factor

_ | r | r.
..Z,@-Ofo+m= Z (h'lzj)'j(ﬂ-ao'f-m)‘),.

J rj L ‘

(3.3)
and collects terms according to the resulting net powers of (£ - ao + m)-l
displayed. Any term with an rj = 0  1s such that the corresponding Zj

integration can be performed ekplicitly. This replaces Bm+l/ 3z ML

J

dual to- zj become zero and their logarithm which appear- in the exponent,

Bm/ o zjm evaluated at the limits 24 = 1, 6. At z, =1 wvariables

N

become infinite. There is then a vanishing contribution from zj = 1 and
one-is left with the contribution from Zj = 0. Symbolically we can re-
present the effect of. integrating these terms with 'rj-z 0 by the

substitution

l.
m+1 m
e omt T s 2 L (5
“0 Z. Zj 2. :
j=o

The summation of multiple poles in (3.2) to give displaced poles cor-
responding to Regge poles depends upon Tactorization properties of these
derlvatlves evaluated with zj_= . We shall give a detailed discussion
 of the case m= 0 in Sec. 5. We do not attempt a general discussion of
m +:o. Even in conventlonal pertubation theory only spec1al cases have
been solved.)n Our. ﬁurpose in developlng the general argument thus far is

to be ablevto make a_comparison with a different but related discussion
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in the next section.

A word of caution must finally be sounded on the results of the
discussion presented heré. The Mellin transform method is only'able to
handle the limit ~s — o, and it correctly obtains thé behavior in that ()
case. In the case of conventional pertubation theory, analyticity and the fact
that one can obtain bounds on the integrals which show that they cannot
exceed power law behavior for ls! - o in any direction, together then
assure one that the result holds for limits taken in any direction in the
complex plane. In the case we are now discussing the_second of théseA
conditions can not be shown in general and.so we can not exclude in'general
the presence of entire functions which would have exponentially vaniéhing
behavior as Re s - -« but bad behavior as Re s‘» + o, in fact it is an
important constraint to be satisfied on the detailed form of (2.1) that it

-is free from this undesirable behavior. We are at present ﬁnable to make
a useful contribution towards determining how to do this and must proceed
under the tacit assumption that it can be done. The Regge pole‘prdperties
that we obtain will then be those which hold in any senSible theéry that
can be constructed. It.seems wholly reasonable to suppose that suchva

theory can be found.
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IV. DIRECT CHANNEL POLES

The amplitude (2.1) has multiple poles in. t' corresponding td the
divergencies of the z; inﬁegraﬁions at 'Zi = O Graphically these
correspond to the multiple poles in diagrams like Fig.-(Ea) and the first
diagram of Fig; (2b). When these are summed over ﬁ we expect them to turn
into dis?laced simple poles as in conventional renormalizatién theory. This
is now investigated. ,

In order to exhibit the angular momentum content of the poles we

first expand the’part of the eXponent in (2.1) which depends on s:

e ™ o o, (k)
- p=0 o

Integration by parts then exhibits the poies

| = T 1 -
. o .
I - Z ol | fdxi fdyi (4.2)
P=0 : i=1 o) 0 .
- +m+p _
n+l z, ° , : ) am+l —dn
I PRSI
J=1 o~ ® T o P , i : :

The léading pole behavior is given by putting ao = p +m evefywhere'v
in (4.2) except in the denominators which vanish. If one wants to do better
) . = +m+ p
than a leading order approximation one must expand the zj ° factors

in powers of log Z 3 and integrate when possible, exactly as described



-1k~

UCRL-19209

in ‘the analoguous manipulations of Sec. 3. It is clear that the

factorization conditions required in this case are exactly the same as

those required in Sec. 5‘With £ taken equal to the integer p.

Thus we see that there is complete consistency between the Regge
poles obtained by an investigation of high energy behavior and the direct
channel poles obtained by renormalization. The factorization conditions

required are equivalent and the direct channel poles are indeed the poles

lying on the Regge trajectories.lo In particular the sequence of poles
wvith m=o0, p= 0,1,2, ... lie on the leading trajectory.

While the equivalence is tobe expected on the basis of ‘using the
Sommerfeld-Watson transform in a well behaved theory it has seemed worth-
while to check it explicitly in this case. TFor the leéding trajectory we
shall alsoc be able to show that it holds for all Landau singularities, mot

just the direct channel poles, and this will require a generalization of

the method used above.

V. FACTORIZATION AND THE LEADING TRAJECTORY

While the factorization conditions needed in the arguments of the
two preceeding sections are difficult to discuss in general it is possible

to establish them rather easily for the case of the leading trajectory.

. This we now proceed to do.

We require that when Zj = o the expression

(5.1)
factorizes into a product of two terms, one °of which depends only on

variables associated with lines in the dual diagram lying to the left of
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the 1ine corréspdnding~to zj the other depending only on variables to

the right. Fof the term e_d thisifactofization is immediate. bIt follows
from the fact that when Zj = 0 duality forces the variables corresponding
to_lines crbésing the zj line to go to 1. Their logarithms, which appear
in the exponent then vanish and the terms.which remaln in 4 correépond

J

to lines in two subdlagrams JOlned together only by the =z line. Then
e-d factors into the product of the two e_d faétors corresponding to
these subdiagrams. Similarly the factorlzatlon of the (det A)-g factor
in g 1is immediate for the same reason. The_only condition that we im-

pose on the Jacobian or other extra factors in 8, is that they also should

.factorize.

. The only term in (5.1) which requires a more detailed'discussion_
is fn" The central result we need is the following lemma:
Lerma: A variable COrrespondiﬁg to a line which crosses once the line~
cérresponding’to zj has‘the form
L-A) Ayz,+ o(z.2) : (5.2)
J J
when A' is a function of variables lying to the leftvof the >zj line and

is determined only by the topologlcal structure of the part of the line

vhich lies to the left of the z, llne,ll and A2 is similarly a.function
J . 3 . : B -

of right hand varlables and determined by the topological structure of the

righﬁhhand part of the line.
Thus the two lines in Fig. 5 have the same Al factors but different
A2 factors. We establlsh the result by first con51der1ng two lines having

the same left structure and dlfferlng in their right structure in the way

shown in Fig. <, that is, that one of them carries on to the next point in

\
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Fig. 5. Two lines having the same A, factor but
different A2 factors.
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XBL 696-3002

Fig. 6. A quadrilateral to be considered. Variables

. associated with the lines are indicated.
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the dual diagram, but in all other respects its right structure is the

same. Application of the formulae (3.2) and (3.3) of KSV to the

quadrilateral shown in the figure yields

(l - X, O al)(l - X, 0 Q) X X )

X = 2 : (5.3)
(1 - %, a5 a, x)(1 - %, Oy O X )
X, 0, o, X X, Q, ,
. oas |23 .o 2o (1-x")
: 1 - X, a5 al X 1 - X5 a5 al
+O<(1-X')2> ,
where
(1 - )1 -0 x, X) I
Xl= R ly L 2 (5~1+)
(1 - X)(1 -0 x, .
(1 - )(1 -a, x. x) .
xg = 2 2 2 - (5.5)
(1 - ax X5) (1 - Qs x)
We suppose that we already know that X' has the fofm
' 2
X = } - Ay A2 2 + o(zj ), (5.6)

]
Because as z2; >0, X -1 and in (5.6) x

the one, we must also have @ = 1.

is not in general equal to

The value of @, determined from (5.5)

3

clearly depends only on right hand variables. Thus (5.3) shows that

1
X= 1-A,A z. +

172 J

is the same A

where Al 1

as in (5.6) but A

’ (5.7)

is different.

O
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It is quite straightforward to shéw by simiiér arguments that the
line having the desired left structure and ending at the first point to
the right of theb s line has the form (5.6). The lemma then follows
from a repeated application of the result (5.7).

We'now use the lemma to show the desired factorization of fn’

which has the form explained by KSV:

[l - fh= " TTi y (5.8)

The factorization of det An 'is immediate and we concentrate attention
on Fn. According to KSV it has the form of a sum of products of logarithms
of sets of Variables. These correspond to lines which fulfil the conditions

that they are a maximal set forming a closed loop with p2 and;f (or

3

equivalently Py aqd ph) and no other closed loops are present in the dual

diagram. A term in Fn therefore has the structure

H In X, . [] an Y, . | | (5.9)

When the Xk are the variables-corresponding to the lines forming -the

-closed loop and the Yz -are the rest. The Xk' lines cross every oné of
the 2z lines and their logarithms in (5.9) provide the z factors dis-
‘played on the left of (5.8). Thué in e#aluating f with Zj = 0 We can
put Zj % O in all the 1n Y factors in (5,9). This means that no lines
crgssing the zj lines contribute. to the 1nY product, which therefore
can be written as a product of a left and a right hand factor. The 1n X
product can be similarly decomposed'ekcépt‘that it contains one X‘ whose

line crosses the zj line. We need only the terms in F which are linear
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in Zj’ and since a variable whose line crosses the Zj line n times
has a logarithm which vanishes like zjn, only X's corresponding to
crossing that line once need be considered. The lemma then applies‘and
gives

InX=~A,A_ 2z + 0Oz

1 8 7 5 (‘5.10)

Factors of z . can be removed from Al ~and- A2 corresponding to the other

z lines crossed, and also from the remaining 1n X factors. The fact
that ’Al and A2 are determined solely by the topological structure of the
left and right hand parts of the line to which they refer,taken together

with the other properties discussed in this paragraph, means that each

“term in £, can be written in the fprm'

L-R + O(zj) -, | | (5.11)

where L(R) dépends only on the left (right) hand variables and is
determined by the left (riéht) hand topoiogical structure of the lines
correéponding.to the KSV preséription for this parﬁicular'term. Summing
over all possible terms corresponds to surming over all possible left ahd

.right hand structures and gives a factored form for fn:

N v(AZL) ()R  (5.12)

o
J .
~This is the factorization condition we desired to establish. It readily

extends to the case where several =z, are put equal to zero.

J

1" 1 [ .
We denote by fn’ gn, dn’ the factors which correspond to

1 "

B ’ "
n(> o) non-zero 2z, between two vanishing 235 and f , g, d,

J

n
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the similar factors corresponding to n non-éero 7z, - before the first
or after the last vanishing zj. Diagramatically these correspond to
Fig. 7 and all the diagrams related td Fig. T by dugliiy. Then the
summation of (3.2) with m = o 1is performed in exactly the same way

]

. ' 6
that it is for ladder diagrams in conventional pertubation theory.‘)’7 The

answer 1is

Zmn(z,t) = @(3:’0) F(-E)@(z,t)

’ (5.13)
b~ - (£,t) , '
n=o © wél '
where’
#(l»eyt) = Z -F—n(’z)t) P ‘(5'1)*)
" n=0
n+l 1 | | |
R s S [ e e (5.19)
i=1 ~0 0 ,
4 -0
n 1 o] !
H az .Z.sj - _}__ ! 'L’ -dn
J £ - dz. n &n°
3=1 0 o J
G (3;’0) = Z @n(‘eyt) » IR 4 ) (5-16)
. n=0 : '
n+l 1 1 n 1
2n+l '
Gn (2,t) = il f ax, f ay, |l f az,
i=1 J=1 0
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The vanishing of the denominator in (5.13) gives the Regge pole trajectory.
As noted in the introduction, even the approximat;on which retains
only Fo in (5.14) incorporates important non-perturbative

features. If circling lines are omitted fo is given by the expression

(4.30) of KSV with the exponent ali(t) replaced by £. Higher terms

in (5.1%6) involve non-vanishing 2z's and are more complicated.

VI. SINGUIARITY STRUCTURE AND UNITARITY
We have used the form (2.1) for the K3V model in which the loop.
integrations have been performed. When one considers singularity structure
it is often more convenient to retain these momentum integrations.

Singulérities from the x, y, z integrations then give poles corresponding

.tQ lines in diagrams of Fig. 2 and integrating over the loop momenta then

gives sihgularities of the intergal located on the Landau curves associated
with thé diagrams of Fig. 2, The implicit ie. prescriptions required to
enable'syﬁmetric integration to be performed mean that in the physical region
these singularities only occur on positive o arcs of the Landau curves.
These statements are true for any term.of the form (2.1) but they
need modification for the infinite sum of such terms. This is because the

renormalization effects discussed in Sec. 4 shift the location of poles,

and the Landau singularities must be similarly displaced. This will be

the case if the discussion of Sec. 4 can be extended to poles which arev
not just direct channel poles Eut lie within more complicated diagfams.
In cénventional renormalizgtion theory this extention is trivial because
subdiagrams behave in a way independent of their relation to.the rést of

the diagram. This is not the case for KSV theory and so the extension in
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general is a very compligated matter. Once.again we only attempt to
discuss the leading trajectory.

If will be sufficient to consider the two-particle normal threshold.
More complicated singularities are dealt with by an obvious extension of
the same method. We first look at the set of singularities corresponding
to Fig. 8. This is one of many relevant singularity cohfigurations. The
others are obtained by considering all the other ways in which self~energy:
loops can be assigned to the upper or lower line. The different éon—
tributions obtained in this way correspond to singularities at different
points of the integration regioh in (2.1) and are additive. Returning to
the configuration under discussion, the integrals over all thé loop momenta
of the self energy parts can be pérformed leaving only k still to

integrate. The contributions associated with the upper and lower lines are

now both very similar to that discussed in Sec. L. The essential difference

is the presence of terms corresponding to variables which are not preseﬁt
in the direct channel pole case. Examples of these variables are shown
by the dotted lines in Fig. 9. e shall call them extra variables.
One now infegrates by parts with respect to the z' and z” variables
to exhibit the multiple bare poles. Factorization occurs when any

"

Zi(zi ) is put equal to zero. At the same time any extra variable»line
cutting this z'(z") line becomes unity by duality and the variable
disappears from the expression.

Alternatively one might first perform all the integrations over

loop momenta. Then the coefficient of § in the resulting exponential is

of the form

!

'
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The dual diagram of Fig. 8. The z!' and z"
variables correspond to the barred lines. Dotted

lines represent extra variables discussed in the text.
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Expanding the exponential with respect to the last two terms of (6.1)

[} t

and then integrating by parts to exhibit the poles due to the =z and z

integrations gives the contribution of the desired form.

When a sum is taken.over all numbers of loops and over all
assignments of selfenergy loops to the top and hottom lines the resulting
singularity structure corresponds to Fig.10. The thick lines correspond
to renormalized poles located at the pgsitions determined by the leading
trajectory. The shaded blobs represent complete KSV type scattering amplitude
expressions, except that there are modifications

p - ao -1 ¢y P - ao

z' . -1 Bza' , (6.2)
Q

which prevent bare particlé poles‘occuring in the squared momenta cor-
respbndingbto the thick lines. In fact exactly similar terms with p = o
must occur‘in the external lines also. This is becauserur external particles
are supposed to be the stable‘spin zero member of the leading trajectory.
Before a sensible scattefing amplitude is obtained the poles in the ex-~
ternal moﬁenta, corresponding to Fig. 11, must be removed and external wave
function renormalization.performed. Thus modifications like'(6.i) must
be undersfood throughout to be associaﬁed with these external momenta lines.
The shaded blobs themselves coniain the t-channel normal threshold.
Exactly as in conventional perturbation theory this leads to a total
discontinuity round the normal threshold which is éXactly in the form re-
quired by unitarity. In a similar way Cutkosky discontinuityvformulae
consistént with unitarity can be established for any Landau singularity.

Finally one might examine the singularity structuré of terms in



-28a

XBL696-3006

Fig. 10. The resultant singularity structure.
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Fig. 11. Singularities generating poies agsociated with

external wave function renormalization.
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the sum (5.1k4) defining the function ngl- vhich gives the correct Regge

trajectory. It is easy to see that individual terms have singularities
at the bare normal thresholdsL% When the sum is performed they must be
translated to the renormalized normal thresholds. However an explicit

verification of this seems complicated and we do not attempt it. That it

must be true follows for the leading trajectory from the unitarity properties

already established.



-’
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VIT. CONCLUSION
Our investigation has essentially been concerned with renormalization

effécts in a KSV type theory. The 'bare' leading trajectory of the

Veneziano model is renormalized into a new non-linear trajectory which

becomes complex at the first normal threshold. We have verified that the
complete amplitude obtained by infinite summation has the correct Landau-
Cﬁtkosky singularity structure corresponding to the particles lying on this
renormalized leading trajectory. In particular this is true for the
singularities corresponding to the lowest stable member of this trajecﬁory.
Then .singularities are reai and are those requiréd by unitarity in the
physical region. Note that these results follow from simple duality re-
quirements of the KSV type. It is only necessary to invoke ' the exisfence
of éncircling lines in dual diagrams inh order to obtain daughter trajectory
factorization.

As far as its leading trajectory is concerned there is only one
major regquirement of & sensible theory which remains unestablished. This
is that it is possible to define the detailed form éf (2.1) so that the
Regge pole found in the limit s - - « remains the dominant asymptotic
contributioh as s = + o, It seems very likely that this is possible but
it would clearly be of great interest to prove that this is so. We are
unable at present to do this.

While the theory treats the leading trajectory poles satisfactorily,
and in particular has the real singularity structure required B& uhitarity,
it seems that if similar properties were required for all the daughter |
trajectories one would again find the encirecling linés which_lead to the
difficulties noticed by KSV and BHS. fhere aré three possible ways out of

the problem.
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One is that the infinities encountered by KSV and BHS are a
property of the type of expansion used and are not present in the correctly =
summed theory. It appears that the infinities are connected with the
rapidly increasing degeneracy of daughters which ié found in the Veneziano
model. This degeneracy is broken in a KSV theory aé the daughters move
off to different poihts on unphysical sheets., Ih order to ihvestigate the
effect of this it would be desirable +to develop an analogue.to renormalized
perturbation theory for the KSV model, which atlpresent is formulated in
terms of 'bare' particles.

An alternative possibility depends upon what really happens to the
daughter trajectories if full factorization is not imposed. It seems natural
to suppose that their effects are removed from the real axis onto unphysical
sheets. Without full factorization they cannot become simply a displaced
pole. A reasonable conjecture is that each becomes a sequence of displaced
poles. If these sequences had points of the bogndary of the physical region
as limit @oinfé cére would be needed that unitarity was nqt upset in the
neighborhood of thes¢ points. The relationship between unitarity and
the real Landau-Cutkosky singularity structure depends upon being able to
make analytic continnations in the neighborhood of the physical region.

Near such points this would not be possible. Examples of such behavior
consistent with unitarity have been discussed by Martin in a rather P

13

different context.
Finally there is the possibility that satellite Veneziano terms b
might modify the theory in a way that removed some of the daughter

difficulties.
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Obviously none of these possibilities is more than a pious hopé

in our present state 6f knbwledge. However the beautiful way in which the

KSV model produces a consistent structure associated with the renormalized

leadipg trajectory gives grounds for thinking that this approach has value

and that the little understood daughter phenomené may not prove fatal to

its ultimate utility.
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