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RENORI1ALIZATION OF REGGE TRAJECTORIES AND SINGUlARITY STRUCTURE 
* 

IN KflGCAWA-SAKITA-VIRASORO TYPE THEORIES 

J. C. Polkinghornet 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

June 1969 

An investigation is made of theories which satisfy the duality 

principle using the Veneziano amplitude as a Born term. In constructing 

the theory it is found necessary to average over different ways of assigning 

the loop momenta to the points of the duality diagram. The Regge pole terms 

in the asymptotic behavior are identified and transcendental equations written 

down which express the full renormalization of the leading trajectory. 

(It is necessary to assume that the integrals can be so defined .that this 

asymptotic behavior, found in the limit Re s - 	cc, continues to be the 

dominant behavior as Re s - + cc ) The amplitude is shown to have the 

Landau-Cutkosky singularity structure corresponding to poles lying on the 

renormalized leading trajectory. In particular, if low lying particles on 

this tra.ectory are the only stable particles in the theory, the real 

singularity structure required by unitarity is correctly obtained. It is 

then possible that the failure ina finite theory of exact factorization. 

for all daughters would not spoil the theory. 

ton leave of absence from the Department of Applied Mathematics and 

Theoretical Physics, University of Cambridge, England. 
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I. INThODUCTION 

Recently Kikkaw, Sakita, and Virasoro (KSV) 1  have proposed a way 

of constructing a new form of perturbation theory, consistent with duality, 

in which the Veneziano amplitude2  plays the role of a Born term.. Such a 

series would then appear likely to be formally unitary and so would correct 

the most glaring deficiency of the Veriezino model itself. However KSV in 

a note added in proof, and also Bardakci, Halpern., and Shapiro (BHs) 5  have 

pointed out that in.order to obtain full factorization of even the single 

loop KSV expression in a way which is consistent with Veneziano-type functions 

associated with tree diagrams the integrand in the KSV integral must con-

tain an infinite product which leads to an exponential divergence. 

This disastrous conclusion is enforced by the requirement that 

factorization, and consequent unitarity-like discontinuity formulae round 

normal threshold singularities, is required for all poles contained in the 

Veneziano amplitude whatever their level in the daughter sequence. While 

this would be an agreeable property if it were obtainable it is not clear. 

that its failure robs the KSV approach of all its utility. Two lines of 

thought suggest that this is not necessarily the case. One is that the 

daughter properties of a Veneziano amplitude can be modified by the 

addition of nonleading terms. Bardakci and Mandelstam 5  have conjectured that 

these .nonleading additions cannot be used in a way which leads to a simpler, 

and so probably less divergent,daughter sequence, but a proof has not, at 

present, been given that this is so. Secondly, the effect of unitarizing 

the theory will be to destroy the narrow resonance approximation of the. 

Veneziano amplitude. Resonance poles should move onto unphysical sheets 
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leaving only the stable particle poles renormalized to locations which 

are still real. For simplicity we shall always consider the model in 

which the only stable particle is the spin zero member of the leading 

traectory. If that leading trajectory factorizes properly then the real 

normal thresholds correspording to stable particles will have Cutkosky 

discontinuity formulae which correspond to physical unitarity. This will 

not be true for singularities involving daughter trajectory particles, if 

the latter do not factorize properly, but if these singularities are trans-

lated onto unphysical sheets they may not spoil the physical unitarity of 

the theory. We return to a fuller discussion of this point in the con- 

clusion. 

The aim of this paper is to discuss some of the effects of imposing 

unitarity on the Veneziano formula by means of a KSV approach. We restrict 

ourselves to planar diagrams and so construct a theory which only has 

s and t channels. In particular in such a theory we study how this re-

normalizes the particle and resonance poles. This renormalization manifests 

itself in two distinct ways. The first is by the displacement of Landau 

singularities and in particular the direct channel poles. The second is 

through a modification of the asymptotic behavior of the amplitude cor-

responding to a renormalized Regge trajectory. KSV have already given 

a.leading order approximation discussion of the latter. In this paper, we 

give a complete calculation using techniques developed to give a similarly 

complete calculation of the asymptotic behavior of ladder diagrams in con- 

ventional perturbation theory. 6 ' 	Of course one requires that the two effects 

give the same answer, that is that the displaced direct channel poles lie 

on the displaded trajectory. We show that the factorization conditions 
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involved are always the same in the two cases, whatever daughter is 

considered, and that when these re satisfied the consistency condition 

is an identity. 

• 	 Furthermore, for the case of the leading trajectory, these 

factorization conditions are shown to hold for virtually any expression 

constructed according to the general ideas of KBV, whether or not it con-

tains terms corresponding to circling lines in duality diagrams. Presumably 

the factorization conditions for daughter trajectories will require increasing 

numbers of these lines and if they are to hold for all daughters one would - 

expect to arrive by a somewhat differeit route at the disaster found by KSV 

and BHS. However, as we have argued above it may be that a useful theory 

may be obtained without going to that limit. 

Equations (5.15) - (5.17) give the transcendental equations which 

incorporate the unitarity correátions to the leading trajectory of the 

Veneziano model. Although these equations are in the form of series in 

the expansion parameter even the lowest approximation corresponds to a 

partial infinite summation and incorporates important .nonperturbative features. 

For example it reproduces the Gribov-Pomeranchuk condensation of poles at 

Re £ = - 	at the first elastic threshold.' 8  However the threshold is 

still at its unrenorrnalized position. 

Ii. THENODEL 

The integral associated with n-loop planar diagrams can be written 

in the form 

= (g2 ) fl + 1 i1 

	 :: 	

dZ 

ll
+l

Xe(

,n 	
Zj 	 y, z) . S - dn(x y, z, t 	g(x, y, z) 

(2.1) 
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The variables x, y, z, are associated with lines ofthe dual diagram 

shown in Fig. 1; s = (p 2  + p3 ) 2 , t = (p 1  + p2 ) 2 ; g2  is the expansion 

parameter; a0  the linear trajectory of the original Veneziano amplitude. 

The exponent in the integrand is constructed accordIng to the rules given 

by KSV. Its detailed form will depend on how many further lines are to be 

represented in the dual diagram Fig. 1. The variables associated with these 

lines are all functions of x, y, z, determined by the repeated application 

of the quadrilateral conditions, Eqs. (3.2), (3.3) of KSV. We discuss the 

choice of these further variables in the next paragraph. At present we 

only indicate in (2.1) that whatever the choice the coefficient of s in 

(2.1) will vanish when any one of the Zj  vanishes. This was shown by 

KSV. The function g is the product of two terms. One is the (det AY2  

factor arising from performing the symmetric integration over the n loop 

momenta. The other is whatever else is required, including a Jacobian 

factor. We leave the precise form unsettled but will impose a simple re-

quirement as the argument develops. 

FIg. 1 is the dual diagram associated with Fig. (2a). In Fig. (2b) 

we show some of the many diagrams related to Fig. (2a) by duality in the 

way explained by KSV. The minimum set of further variables which must go 

into the construction of (2.1) is that which corresponds to all the lines 

needed for the dual diagrams of the set Fig. (2c). When one attempts to 

construct such a set for diagrams with more than one loop one immediately 

encounters a difficulty. It proves impossible to choose a set in such a 

way that each desired dual diagram is obtained once and once only. This 

is because the internal points of the dual diagram represent loop momenta 

and there is not a natural ordering of these loop momenta which holds 

universally for all the diagrams of Fig. 2. In fact one must be content 
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Fig. 1. Dual diagram showing the variables used. 

I 
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(a) 

:_j 	I 	I 	•. 	•II 

etc. 
S S • 

(b) 
XBL696- 2998 

Fig. 2. (a) The diaam of which Fig. 1. is the dual 

diagram; (b) Other diagrams related to (a) by 

duality. 
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with a sum over all the possible assignments of points to loop momenta 

so that. every dual diagram is generated in n ways. For example Fig. 

shows some of the variables required for the two loop diagram.(Omitted from 

• 

	

	 Fig. 3 are variables needed to correspond to diagrams with self energy, 

insertions in the external lines. These variables in fact require a 

special discussion which is given in Sec. 6 when wave function renormalizatjon 

is dealt with). The dual diagram corresponding to Fig (2a) can be con-

structed in two ways, one corresponding to Fig. 1, the other to hg. h. 

We are interested in the singularity structure of the integral 

(2.1), which will be discussed in later sections. We shall find that it 

has singularities occuring on the expected Landau curves and that these 

arise from points in the region of integration when the variables cor- 

responding to the lines in the appropriate dual diagram vanish. Since there 

are n ways of constructing any given dual diagram there are n distinct 

points in the region of integration which contribute to the given 

singularity. Each point, because of the symmetrical way of constructing i, 

yields the same contribution and if they were all added togethe' we sculd 

find Cutkosky discontinuity formulae which differed from those required 

for unitarity by a factor of n It is therefore necessary that g should 

contain a factor (n:). It is clearly equivalent and much more convenient 

merely to evaluate the contribution at one of the points only and forget 

about the (n). Thi we shall do in all that follows, as a calcuiationai 

16 

	

	
convenience, both for singularity structure and also for asymptotic behavior 

to which we now turn our attention 



In 

XBL696-2999 

Fig. 5. Lines needed for the two loop diagram. 



-9- 

XBL696- 3000 

Fig. I. •  A dual diagram contained in Fig. 3. 
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III. ASYMPTOTIC BEHAVIOR 

In order to investigate the asyptotic behavior of (2.1) we take 

its Mellin trarsforrn6' with respect to (-s). If the Melliri transform 

variable is 2 this yields 

M(2) = r(-2) (92) 	 f dx. f dy, 	 dz 

2-a-i 	-d 
0 	 2 	n 

z. 	 ge  

The expression (3.1) has poles when 2 = a - m (m = 0, 1, 2, ...) due to 

the divergence of the z integrations at z = 0. There can be explicitly 

exhibited in the standard way by integrating by parts to yield 

M(2) = P(-2) 
(g2)fl 	II 	f dx. 	f dy.  

n+1 	
2-a0+m 

II fdz (3.2) . 
2-a ... (2-a+m  

m+l m+l  1 £ -dl 
m+1 	[n ge J 

j 

If we put 2 = a - rn everywhere in (3.2) other than in the vanishing 

denominator factors we obtain the leading order approximation already 

discussed in the case ni = o by KSV. Summed over n it yields a Regge 

pole. However we wish to do better than that and sum up all contributions, 
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not just the leading ones. Only then shall we get the correct tra,ectory. 

The technique is the exact analogue of that employed in perturbation theory' 7 . 

One expands each factor 

- a + in 

= 	

, 	(ln z) 	
r 

r 	o 	
r 	

a + in) J. 

(3.3) 

and collects terms according to the resulting net powers of 	
- 	

+ 

displayed. Any term with an r. = o , is such that the corresponding 

integration can be performed explicitly. This replaces m+l 	m+l 
/ 

by ?/ z.m evaluated at the limits z. = 1, O At z= 1 variables 

dual to z. become .zero and their logarithm which appear in the exponent, 

become infinite. There is then a vanishing contribution from z. = 1 and 

one is left with the contribution from z. = 0. Symbolically we can re-

present the effect of integrating these terms with •r. 0 by the 

substitution 

f M+l 

dz ()m+l 	rn+l 	 m 	
in 	 (3.4) 

0 	 zj 	 zj  
J=o 

The summation of multiple poles in (3.2) to give displaced poles cor-

responding to Regge poles depends upon factorization properties of these 

derivatives evaluated with z. .= o. We shall give a detailed discussion 

of the case rn = a in Sec. 5. We do not attempt a general discussion of 

in 4 0. Even in conventional pertubation theory only special cases have 

'9 been solved. 	Our purpose in developing the general argument thus far is 

to be able to make a comparison with a different but related discussion 
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in the next section. 

.A word, of caution must finally be sounded on the results of the 

discussion presented here. The Mellin transform method is only able to 

handle the limit -s - , and it correctly obtains the behavior in that 

case. In the case of conventional pertubation theory, analyticity and the fact 

that one can obtain bounds on the integrals which show that they cannot 

exceed power law 'behavior for Is! - CO in any direction, together then 

assure one that the result holds for limits taken in any direction in the 

complex plane. In the case we are now discussing the second of these 

conditions can not be shown in general and so we can not exclude in general 

the presence of entire functions which would have exponentially vanishing 

behavior as Re s - - o but bad behavior as Re s - + '. In fact it is an 

important constraint to be satisfied on the detailed form of (2.1) that it 

is •free from this undesirable behavior. We are at present unable to make 

a useful contribution towards determining how to do this and must proceed 

under the tacit assumption that it can be done. The Regge pole properties 	 H 
that we obtain will then be those which hold in any sensible theory that 

can be constructed. It seems wholly reasonable to suppose that such a 

theory can be found. 

LI 
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IV. DIRECT CRAEL POLES 

I 

The amplitude (2.1) has multiple poles in t corresponding to the 
e 

divergencies of the z
i 
 integrations at z. = o. Graphically these 

correspond to the multiple poles in diagrams like Fig. (2a) and the first 

• diagram of Fig. (2b). When these are summed over n we expect them to turn 

into displaced simple poles as in conventional renormalization theory. This 

is now investigated. 

In order to exhibit the angular momentum content of the poles we 

first expand the part of the exponent in (2.1) which depends on s: 

CO 
fs 	 f 

1D
s 

e 	= 	) 	
fl 	 • 	.i) 

p p=o 

Integration by parts then exhibits the poles 

Co 	 xi 	1 	1 2n+ip 

= 	

(g 	
f dxi 	f dy. 	(.2) 

n+l -a 
o 
 +m+p 

z. 	 •m+1 	 -d 
IfPr 

/m±1 	n5n
j=l Iao p )  ... (a-p-m)  

The leading p1e behavior is given by putting a 0  = p + meverywhere 

in (4.2) except in the denominators which vanish. If one wants to do better 
•

I -a + m + p 
than a leading order approximation one must expand the z. 0 

	 factors 

in powers of log z, and integrate when possible, exactly as described 
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in the analoguous manipulations of Sec. 3. It is clear that the 

factorization conditions required in this case are exactly the same as 

those required in Sec. 3 with 2 taken equal to the integer p. 

Thus we see that there is complete consistency between the Regge 

poles obtained by an investigation of high energy beha'ior and the direct 

channel poles obtained by renormalization. The factorization conditions 

required are equivalent and the direct channel poles are indeed the poles 

lying on the Regge trajectories) 0  In particular the sequence of poles 

with rn= 0, p = 0,1,2, ... lie on the leading trajectory. 

While the equivalence isbbe expected on the basis of using the 

Soinnerfeld-Watson transform in a well behaved theory it has seemed worth-

while to check it explicitly in this case. For the leading trajectory we 

shall also he able to show that it holds•for all Landau.  singularities, not 

just the direct channel poles, and this will require a generalization of 

the method used above. 

V. FACTORIZATION AND TEE LEADING TRAJECTORY 

While the factorization conditions needed inthe arguments of the 

two preceeding sections are difficult to discuss in general it is possible 

to establish them rather easily for the case of the leading trajectory. 

This we now proceed to do. 

We require that when z. = o the expression 

2 
f 	ge

-d 
	, 	 (5.1) 

factorizes into a product of two terms, one of which depends only on 

variables associated with lines in the dual diagram lying to the left of 

P.  
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the line corresponding to z. the other depending only on variables to 

the right. For the term e 	this factorization is immediate. It follows 

from the fact that when z. = o duality forces the variables corresponding 

• 	 to lines crossing the z line to go to 1. Their logarithms, which appear 

in the exponent, then vanish and the terrns:which remain in d correspond 

to lines in two subdiagrams joined together only by the Zj  line. Then 

ed factors into the product of the two e_d factors corresponding to 

these subdiagrams. Similarly the factorization of the (det A) 2  factor 

in g is immediate for the same reason. The only condition that we irn- 

pose on the Jacobian or other extra factors in g. is that they also should 

factorize. 

The only term in (5.1) which requires a more detailed discussion 

is f n . The central result we need is the following lemma: 

Lemma: A variable corresponding to a line which crosses once the lIne 

corresponding to z. has the form 

1 -A1 A2 z. + O(z.2). 	 (5.2) 

when A1  is a function of variables lying to the left of the z. line and 

is determined only by the topological structure of the part of the line

11  
which lies to the left of the z line, 11  and A2  is similarly a.function 

of right hand variables and determined by the topological structure of the 

right hand part of the line. 

Thus the two lines in FIg. 5 have the same A 1  factors but different 

A,. factors. We establish the result by first considering two lines having 

the same left structure and differing in their right structure in the way 

shom in Fig. , that is, that one of them carries on to the next point; in 
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X8L696- 3001 

Fig. 5. Two lines having the same A 1  factor but 

different A2  factors. 

e 
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xl 	

Izj 

I 	I 

XBL 696-3002 

Fig 6 A q.uadrilateral to be considered. Variables 

associated with the lines are indicated. 
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the dual diagram, but in all other respects its right structure is the 

same. Application of the formulae (3.2) and  (3.3) of K.SV to the 

quadrilateral shown in the figure yields 

x a a)(i-x2 a a1 xX ' ) 
2 3 1 	 3 	 () 

(1 - x2  a3  a1  x)(l - x2  a3  a1  x') 

rx2  a a1  x 	 x2  a 
3  a 

	 1 

	

I 	(-x) 
L1_x2a3a1x. 	l_x2a3a1J 

+ o((1 - x) 2 ) 

where 

(i - a1)(l - a1  x2  x') 
1 	 ' (-a1 X)(1a1 x2 ) 

a x2 x) 
3 	 . 	 ( 5.5) 

a3  x2) (i - a3  x) 

We suppose that we already know that X has the form 

X = 1 A1  A2  z + 0(z 2 ) 	, 	 ( 5.6) 

Because as z. -+ 0, X -* 1 and in (5.6) x1  is not in general. equal to 

the one, we must also have a1  - 1. The value of a3  determined from (5.5) 

clearly depends only on right hand variables. Thus (5.3) shows that 

X = 1 - A1  A2  z. + O(z2) 

where A 1  is the same A 1  as in (.6) but A2  is different. 
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It is quite straightforward to show by similar arguments that the 

• 	 line having the desired left structure and ending at the first point to 

- 	 the right of the z line has the form (5.6). The lemma then follows 

from a repeated application of the result (5.7). 

We now use the lemma to show the desired factorization of f n 

which has the form explained by KSV: 

F 
U 	 n 
11 	f= 	detA 

n 
(5.8) 

The factorizatjon of det A is immediate and we concentrate attention n 

on F. According to KSV it has the form of a sum of products of logarithms 

of sets of variables. These correspond to lines which fulfil the conditions 

that they are a maximal set forming a closed loop with p2  andp 	(or 

equivalently p1  andp) and no other closed loops are present in the dual 

diagram. A term in F therefore has the structure 

llinXk 	lllnY2 	. 	 . 	( 5.9) 

When the Xk  are the variables corresponding to the lines forming the 

closed loop and the Y are the rest. The Xk  lines cross every one of 

the z lines and their logarithms in (5.9) provide the z factors dis-

played on the left of (5.8). Thus in evaluating f with z. = o we can 
0 

put z. = 0 in all the in Y factors in (5.9). This means that no lines 

crossing the z. lines contribute, to the in Y product, which therefore 

can be written as a product of a left and a right hand factor. The in X 

prodict can be similarly decomposed except that it contains one X whose 

line crosses the z. line. . We need only the terms in F which are linear 



-20- 	 UCRL- 19209 

in z., and since a variable whose line crosses the z. line n times 

has a logarithm which vanishes like z j , only X's corresponding to 	
is 

crossing that line once need be considered. The lemma then applies and 

gives 

ln X = - A1  A2  z. 	+ O(z. 2 ).  

Factors of z can be removed from A1  and A2  corresponding to the other 

z lines crossed, and also from the remaining in X factors. The fact 

that A1  and A2  are determined solely by the topological structure of the 

left and right hand parts of the line to which they refer, taken together 

with the other properties discussed in this paragraph, means that each 

term in f can be written in the form 
n 

L 	B + O(z.) 	 (5.11) 

where L(R) depends only on the left (right) hand variables and is 

determined by the left (right) hand topological structure of the lines 

corresponding to the IV prescription for this particular term. Summing 

over all possible terms corresponds to summing over all possible left and 

right hand structures and gives a factored form for f: 

= 	(.L) • ( 	R) 	. 	 (5.12) njz

This is the factorization condition we desired to establish. It readily 

extends to the case where several z are put equal to zero. 

We denote by f, g, d, the factors which correspond to 

n(> o) non-zero Zj  between two vanishing z, and f, g, d, 

11 
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the similar factors correponding to n non-zero z. - before the first 

or after the last vanishing z. Diagramatically these correspond to 

Fig. 7 and all the diagrams related to Fig. 7 by duality. Then the 

summation of (3.2)  with m = o is performed in exactly the same way 

that it is for ladder diagrams in conventional pertubation theory.
6 ' 7 
 The 

answer is 

00 

M (2,t) = 
	2,t) 	2)( 2,t) 	, 	 ( 5.13) 

2- 	-(2,t) 

where 

CO 

(2,t)= 	 (2,t) 	, 	 - 	 ( s.i) 

(2,t) 
= 

9
2fl+2 H 	

f 
dx 	dy. 	 (s.is) 

j=l 	f 
dz 	

) [f2gled]. 

00 

(2,t) 	 T=
( 2,t) 
	

(5.16) 

(3n - 	

(2,t) = g2n;l 	
dx. 	dyi 	

1
H 	f  dz 

j  

2- 	 k 	
[fn2guedn . (

5.17) 
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Fig. 7. Diagrams corresponding to (a) f, .g, d 

(b)f,g,d 
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The vanishing of the denominator in (5.13) gives the Regge pole trajectory. 

As noted in the introduction, even the approximation which retains 

only 	T 	 in (5.14) incorporates important 	non-pefturbative 

features. If circling lines are omitted F is given by the expression 

(.30) of KSV with the exponent a 13(t) replaced by 2. Higiér terms 

in (.i6) involve non-vanishing z's and are more complicated. 

VI SINGUlARITY STRUCTURE MID UNITARITY 

We have used the form (2.1) for the KSV model in which the loop. 

integrations have been performed. When one considers singularity structure 

it is often more convenient to retain these momentum integrations. 

Singularities from the x, y, z integrations then give poles corresponding 

to lines in diagrams of Fig. 2 and integrating over the loop momenta then 

gives singularities of the intergal located on the Landau curves associated 

with the diagrams of Fig. 2. The implicit i€ prescriptions required to 

enable symmetric integration to be performed mean that in the physical region 

these singularities only occur on positive a arcs of the Landau curves. 

These statements are true for any term of the form (2.1) but they 

need modification for the infinite sum of such.terms. This is because the 

renormalization effects discussed in Sec. k shift the location of poles, 

and the Landau singularities must be similarly displaced. This will be 

the case if the discussion of Sec. 4 can be extended to poles which are 

not just direct channel poles but lie within more complicated diagrams. 

In conventional renormalization theory this extention is trivial because 

subdiagrams behave in a way independent of their relation to the rest of 

the diagram. This is not the case for }V theory and so the extension in 
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general is a very complicated matter. 	Once again we only attempt to 

discuss the leading trajectory. 

It will be sufficient to consider the two-particle normal threshold. 

More complicated singularities are dealt with by an obvious extension of 

the same method. 	We first look at 	the set of singularities corresponding 

to Fig. 8. 	This is one of many relevant singularity configurations. 	The 

others are obtained by considering all the other ways in which self-energy 

loops can be assigned to the upper or lower line. 	The different con- 

tributions obtained in this way correspond to singularities at different 

points of the integration region in (2.1) and are additive. 	Returning to 

the configuration under discussion, the integrals over all the loop momenta 

of the self energy parts can be performed leaving only 	k 	still to 

integrate. 	The contributions associated with the upper and lower lines are 

now both very similar to that discussed in Sec. 4. 	The essential difference 

is the presence of terms corresponding to variables which are not present 

in the direct channel pole 	case. 	Examples of these variables are shown 

by the dotted lines in 	Fig. 9. 	We shall call them extra variables. 

One now integrates by parts with respect to the 	z 	and z 	variables 

to exhibit the multiple bare poles. 	Factorjzation occurs when any 

z.(z. " ) 	is put equal to zero. 	At the same time any extra variable line 

cutting this 	z (z ) 	line becomes unity by duality and the variable 

disappears from the expression. (,) 

Alternatively one might first perform all the inegratjons over 

loop momenta. 	Then the coefficient of 	s 	in the resulting exponentia] is 

of the form 

fl  in x • 	in x '  + II z f2 + II z f31 	. (5.i) 

/ 
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Fig. 8. Singularities being considered. The barred 

lines indicate pole terms. 
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Fig. 9. The dual diagram of Fig. 8. The z' and Z" 

variables correspond to the barred lines. Dotted 

lines represent extra variables discussed in the text. 
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Expanding the exponential with respect to the last two terms of (6.1) 

and then integrating by parts to exhibit the poles due to the z and z 

integrations gives the contribution of the desired form. 

When a sum is taken over all numbers  of loops and over all 

assignnients of self energy loops to the top and bottom lines the resulting 

singularity structure corresponds to Fig.10. The thick lines correspond 

to renormalized poles located at the positions determined by the leading 

trajectory. The shaded blobs represent complete KSV type scattering amplitude 

expressions, except that there are modifications 

p - a -1 
0 	 0 

z 	 p - a -1 
	 , 	(6.2) 

which prevent bare particle poles occuring in the squared momenta cor-

responding to the thick lines. In fact exactly similar terms with ,p = o 

must occur in the external lines also. This is because our external particles 

are supposed to be the stable spin zero member of the leading trajectory. 

Before a sensible scattering amplitude is obtained the poles in the ex- 

ternal momenta, corresponding to Fig. 11, must be removed and external wave 

function renormalization performed. Thus modifications like (6.1) must 

he understood throughout to be associated with these external momenta lines. 

The shaded blobs themselves contain the t-channel normal threshold. 

Exactly as in conventional perturbatipn theory this leads to a total 

discontinuity round the normal threshold which is exactly in the form re-

quired by unitarity. In a similar way Cutkosky discontinuity formulae 

consistent with unitarity can be established for any Landau singularity. 

Finally one might examine the singularity structure of terms in 
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Fig. 10. The resultant singularity structure. 
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Fig. 11. Singularities generating poles associated with 

external wave function renormalization. 
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the sum (5.14)  defining the function 	which gives the correct Ree 

trajectory. It is easy to see that individual terms have singularities 

at the bare normal thresholds 12. When the sum is performed they must be 

translated to the renormalized normal thresholds. However an explicit 

verification of this seems complicated and we do not attempt it. That it 

must be true follows for the leading trajectory frbm the unitarity properties 

already established. 
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VII. CONCLUSION 

Our investigation has essentially been concerned with renormalization 

effects in a KSV trpe theory. The bare' leading trajectory of the 

Veneziano model is renormalized into a new non-linear trajectory which 

becomes complex at the first normal threshold. We have verified that the 

complete amplitude obtained by infinite sunmation has the correct Landau-

Cutkosky singularity structure corresponding to the particles lying on this 

renornialized leading trajectory. In particular this is true for the 

singularities corresponding to the lowest stable member of this trajectory. 

Thensingularities are real and are those required by unitarity in the 

physical region. Note that these results follow from simple duality re-

quirements of the IV type. It is only necessary to invoke the existence 

of encircling lines in dual diagrams in order to obtain daughter trajectoiy 

factorization. 

As far as its leading trajectory is concerned there is only one 

friajor requirement of a sensible theory which remains unestablished. This 

is that it is possible to define the detailed form of (2.1) so that the 

Regge pole found in the limit s - - 	remains the dominant asymptotic 

contribution as s - + . It seems very likely that this is possible but 

it would clearly be of great interest to prove that this is so. We are 

unable at present to do this. 

While the theory treats the leading trajectory poles satisfactorily, 

and in particular has the real singularity structure required by unitarity, 

it seems that if similar properties were required for all the daughter 

trajectories one would again find the encircling lines which lead to the 

difficulties noticed by KSV and BHS. There are three possible ways out of 

the problem. 
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One is that the infinities encountered by KSV and BHS are a 

property of the type of expansion used and are not present in the correctly 

summed theory. It appears that the infinities are connected with the 

rapidly increasing degeneracy of daughters which is found in the Veneziano 

model. This degeneracy is broken in a KSV theory as the daughters move 

off to different points on unphysical sheets. In order to investigate the 

effect of this it would be desirable to develop an analogue to renormalized 

perturbation theory for the KSV model, which at present is formulated in 

terms of 'bar& particles. 

An alternative possibility depends upon what really happens to the 

daughter trajectories if full factorization is not imposed. It seems natural 

to suppose that their effects are removed from .the real axis onto unphysical 

sheets. Without full factorization they cannot become simply a displaced 

pole. A reasonable conjecture is that each becomes a sequence of displaced 

poles. If these sequences had points of the boundary of the physical region 

as limit points care would be needed that unitarity was not upset in the 

neighborhood of these points. The relationship between unitaity and 

the real Landau-Cutkosky singularity structure depends upon being able to 

make analytic continuations in the neighborhood of the physical region. 

Near such points this would not be possible. Examples of such behavior 

consistent with unitarity have been discussed by Martin in a rather 

different context. 13  

Finally there is the possibility that satellite Veneziano terms 

might modify the theory in a way that removed some of the daughter 

difficulties. 
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Obviously none of these possibilities is more than a pious hope 

in our present state of knowledge. However the beautiful way in which the 

KSV model produces a consistent structure associated with the renormalized 

leading trajectory gives grounds for thinking that this approach has value 

and that the little understood daughter phenomena may not prove fatal to 

its ultimate utility. 
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