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Efficient algorithm for current spectral density calculation

in single-electron tunneling and hopping
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Institute for Microelectronics, TU Vienna, Gusshausstrasse 27-29, A-1040 Vienna, Austria

Yusuf A. Kinkhabwala
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800

Alexander N. Korotkov
Department of Electrical Engineering, University of California, Riverside, CA 92521

(Dated: February 2, 2008)

This write-up describes an efficient numerical method for the Monte Carlo calculation of the
spectral density of current in the multi-junction single-electron devices and hopping structures. In
future we plan to expand this write-up into a full-size paper.

PACS numbers:

In this paper we describe an algorithm for the Monte
Carlo calculation of the spectral density SI(ω) of tun-
neling current in multi-junction single-electron devices.1

The same algorithm is applicable to calculation of the
noise at hopping2 because of the problem similarity.
This algorithm has been used in several of our earlier
papers;3,4,5,6,7 however, it has not yet been described ex-
plicitly (except for revised versions of unpublished paper
6).

The first spectral calculations of the electron transport
in single-electron devices using the Monte Carlo tech-
nique have been performed in Refs. 8 and 9; in these
papers the spectral density has been calculated as a
Fourier transform of the correlation function. However,
this method is rather slow in the case when the current
I (t) is a sequence of δ-functions, corresponding to tun-
neling events:

I (t) =
∑

n

qnδ (t − tn) , (1)

where tn is a (random) time of the n-th tunneling event
and qn is the corresponding charge transfer. (The se-
quence {qn} is also random and reflects the path in the
space of charge configurations.)

A significantly faster “standard” algorithm10 (embed-
ded, for example, into the simulation package MOSES11)
is based on the definition of the spectral density SI (ω)
of the current I (t) via the square of the Fourier trans-

form |I (ω)|
2
. More specifically, for the rectangular time

window (natural in simulations) there is a relation
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(here 〈...〉 denotes ensemble averaging and i is the imag-
inary unit), whose right hand side tends to SI (ω) in the

limit T → ∞. Therefore,

S̃I (ω) ≡
2

T
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(3)

is a good approximation for the true spectral density
SI (ω) even for a finite, but large enough time interval
T . (Summation in Eq. (3) is over the tunneling events
within the interval t0 < tn < t0 + T ). In the standard
method10,11 the ensemble averaging in Eq. (3) is replaced
by averaging over K sequential time segments (each of
duration T ) of the Monte Carlo realization, so that t0 be-
comes jT , where j = 1, 2, ... K. It is natural to calculate
simultaneously the spectral density for a set of frequency
points (the set of harmonics of a certain low frequency is
most convenient), and it is useful to choose ω/2π equal to
integer multiples of T−1 to avoid “poisoning” of the right
hand side of Eq. (2) by the δ-function contribution from
SI (0) due to dc current I. (Other ways of subtracting
the effect of I are also possible.)

A major disadvantage of this standard method is that
the relative accuracy of the spectral density calculation
cannot be better than approximately K−1/2, because the
right hand side of Eq. (3) before averaging over K seg-
ments has the rms fluctuation comparable to the mean
value. It is easy to increase K (without increasing the
total simulation time) by decreasing T ; however, besides
increasing the smoothing of SI (ω) [which is ∆ω ∼ T−1

– see Eq. (2)], this may lead to incorrect results when
T becomes comparable or less than the longest correla-
tion time of the simulated process, and therefore the T -
segments are no longer statistically independent. Since
the correlation time is not known in advance (it may be
estimated as the lowest frequency at which the spectral
density levels off), the choice of T is not a trivial task
and requires some intuition that complicates the use of
the standard method.

Here we describe the advanced algorithm of spectral
density calculation which eliminates this problem and
also makes calculation significantly faster (for the same
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accuracy of the result). The method is somewhat simi-
lar to the “reduced” method for dc current calculation10

and basically treats the randomness of tunneling times tn
analytically, while the path in the charge configuration
space is still simulated8 by the Monte Carlo technique.

Let us consider a T -long realization of the process as-
suming for simplicity t0 = 0, so that tn =

∑n
k=1 τk where

τk is the time between the adjacent tunneling events, i.e.
time spent in a particular charge state. In the case when
the system parameters (external voltage, etc.) do not
change with time, the random time τk has the Poisson
distribution with the average value 〈τk〉 = 1/Γk,Σ, where
Γk,Σ is the sum of all tunneling rates for the correspond-

ing charge state. The quantity s ≡ |
∑

n qn exp (iωtn)|
2
,

which is related to the spectral density via Eq. (3), may
be easily expressed as

s =
∑

n,m

qnqm exp

[

iω

(

n
∑

k=1

τk −

m
∑

k=1

τk

)]

=
∑

n

q2
n + 2 Re

∑

n>m

qnqm exp

[

iω
n
∑

k=m+1

τk

]

. (4)

For the ensemble averaging of s let us first average
Eq. (4) over random τk, leaving averaging over paths in
charge space for later. Using the mutual independence of
τk fluctuations, we can average each exponent indepen-
dently:

〈

eiωτk

〉

=

∫ ∞

0

e−τ/〈τk〉

〈τk〉
eiωτdτ =

1

1 − iω 〈τk〉
, (5)

thus obtaining the expression

〈s〉 =
∑

n

q2
n+2 Re

(

∑

n>m

qnqm

n
∏

k=m+1

1

1 − iω 〈τk〉

)

. (6)

This expression can be calculated iteratively introduc-
ing complex variables

Ap ≡

p
∑

n=1

q2
n + 2

p
∑

n>m

qnqm

n
∏

k=m+1

1

1 − iω〈τk〉
, (7)

Bp ≡

p
∑

m=1

qm

p
∏

k=m+1

1

1 − iω 〈τk〉
, (8)

that satisfy recurrent equations

Ap+1 = Ap + q2
p+1 + 2qp+1Bp

1

1 − iω 〈τp+1〉
, (9)

Bp+1 = qp+1 + Bp
1

1 − iω 〈τp+1〉
, (10)

with initial condition A0 = B0 = 0, while 〈s〉 = ReAp at
the end of realization.

It is important to notice that ReAp accumulates with
the length of realization (in contrast to s before aver-
aging, which is a strongly fluctuating variable), so that

(2/ 〈tp〉) ReAp (where 〈tp〉 =
∑p

k 〈τk〉) tends to some
limit at p → ∞. This is the reason why, in contrast
to the standard method, the numerical averaging over
many T -segments is not necessary now, and the ensem-
ble averaging of the segments over different realizations
can be replaced by the natural “time” averaging over the
length of a realization. This eliminates the problem of
choosing T , discussed above, and now T can be treated
as a running variable Tp = 〈tp〉 during the whole simu-
lation run. Similarly, s can also be treated as a running
variable sp. (Strictly speaking, averaging over τk in the
segments with a fixed time T and/or a fixed charge path
is different; however, the difference vanishes at large T ).

Thus, the basic algorithm is the following. The Monte
Carlo technique is used to simulate one long realization
of the random path in the configuration (charge) space,
while the time is treated deterministically as

∑

k 〈τk〉;
the variables Ap and Bp are updated after each tunnel-
ing event using Eqs. (9)–(10), and the current spectral
density SI (ω) is calculated as

SI (ω) ≈
2

〈tp〉
ReAp. (11)

Even though breaking the simulation into segments is not
needed in the new method, the calculation and compari-
son of partial results for SI (ω) on some time segments is
useful for run-time estimates of the calculation accuracy.

Actually, this basic algorithm still requires several im-
provements to become faster than the standard method,
especially at low frequencies. First, the accuracy can be
significantly improved by explicitly calculating the spec-
tral density for the function I (t)−I instead of I (t). (The
average current I can be calculated as

∑

k qk/
∑

k 〈τk〉,
which is the same as in the reduced method.10,11) For this
purpose the definition of quantity sp should be modified

to sp =
∣

∣[
∑p

n qn exp (iωtn)] − I [exp (iωtp) − 1] /iω
∣

∣

2
=

∣

∣

∑p
n exp (iωtn)

[

qn − I (1 − exp (−iωτn)) /iω
]∣

∣

2
. From

this point, the derivation is similar to that discussed
above, though is now significantly lengthier. The final
result is that the only change in the algorithm is a differ-
ent set of recurrent equations replacing Eqs. (9)–(10):

Ap+1 = Ap + q2
p+1 − 2I 〈τp+1〉

qp+1 − I〈τp+1〉

1 + (ω 〈τp+1〉)
2

+2
qp+1 − I 〈τp+1〉

1 − iω 〈τp+1〉
Bp, (12)

Bp+1 = qp+1 −
I 〈τp+1〉

1 − iω 〈τp+1〉
+ Bp

1

1 − iω 〈τp+1〉
. (13)

(The initial conditions are still A0 = B0 = 0).
However, this improvement still does not solve the

problem of relatively poor convergence of the algorithm,
especially at low frequencies. The origin of the prob-
lem is hinted at by Eq. (2). Since we eliminated the
T -segmentation used in the standard method, and now
T is much longer (the whole simulation period), we are
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calculating SI(ω) with a much smaller degree of spec-
tral smoothing. The price for a better spectral resolu-
tion ∆ω is the longer simulation time for the same ac-
curacy. Therefore, to improve convergence, we have to
re-introduce some time constant T0 that would define the
spectral smoothing ∆ω ∼ 1/T0. In principle, there are
many ways to do this. For example, we can periodically
(with period T0) set to zero the value of Bp (in this case
the algorithm becomes somewhat similar to the standard
method). Alternatively, we can introduce a gradual cut-
off of Bp, for example, multiplying the last term in Eq.
(13) by exp(−〈τp+1〉 /T0), and so on.

We have used the following way of introducing T0,
which is the best among those we had tried. For sim-
plicity, let us consider first the algorithm without sub-
traction of I, and average Eq. (6) over frequency (from
ω = −∞ to ω = ∞) with the Lorentzian weight factor

(T0/π) /
[

1 + (ω − ω̃)
2
T 2

0

]

. The integral can be easily

calculated using the residue theorem since all the poles
of Eq. (6) are in the lower half of the complex plane;
therefore, closing the integration contour in the upper
half-plane, we will have only one pole at ω = ω̃ + i/T0.
As a result, the only change in Eq. (6) after integration is
that ω is replaced by ω+i/T0 (more correctly, by ω̃+i/T0,
but for simplicity we change the notation from ω̃ back to
ω). Therefore, the Lorentzian averaging over frequency
in our algorithm exactly corresponds to replacing ω with
ω + i/T0 in the iteration equations (9)–(10).

For the algorithm with I subtraction, the Lorentzian
averaging is a little more difficult, because of the extra
poles in the equation for 〈s〉 at ω = i/ 〈τk〉 (upper half-
plane) and at ω = 0. However, as seen from Eqs. (12)–
(13), the pole at ω = 0 is eventually canceled, while the
poles at ω = i/ 〈τk〉 remain only in the simple additive
term in Eq. (12). Therefore, the recipe of replacing ω
with ω + i/T0 still works for Bp+1, and the extra residue
of the upper-half-plane pole should be simply added to
Ap+1. As a result, Eqs. (12)–(13) are replaced with

Ap+1 = Ap + q2
p+1 + 2

qp+1 − I 〈τp+1〉

1 − i (ω + i/T0) 〈τp+1〉
Bp

−
2I 〈τp+1〉

(

qp+1 − I 〈τp+1〉
)

(1 + 〈τp+1〉 /T0)

1 + (ω 〈τp+1〉)
2 + 2 〈τp+1〉 /T0 + (〈τp+1〉 /T0)

2
, (14)

Bp+1 = qp+1 −
I 〈τp+1〉

1 − i (ω + i/T0) 〈τp+1〉

+Bp
1

1 − i (ω + i/T0) 〈τp+1〉
, (15)

while the rest of the algorithm does not change.

The introduction of Lorentzian smoothing greatly im-
proves the convergence of the algorithm. However, it
gives rise to another difficulty. The problem is that the
averaging over frequency increases the δ-function contri-
bution from SI (0) due to average current, and the trick
of the standard method, discussed above, is impossible
for Lorentzian averaging [in contrast to Eq. (2), in which
the convolution function contains zeros]. Formally, our
algorithm subtracts I beforehand; however, in a real sim-
ulation I is not known exactly (note that the estimated
value of I improves during the course of simulation). It
can be shown that the inaccuracy ∆I in the average cur-
rent estimate used in Eqs. (14)–(15) brings to SI (ω) the
extra contribution

∆SI (ω) = 4T0 (∆I)
2
/
(

1 + ω2T 2
0

)

. (16)

This contribution can be subtracted from SI (ω) at the
end of the simulation run, when a better estimate of I is
known and the difference from the initially used estimate
can be calculated. Actually, the value of I used in Eqs.
(14)–(15) can be periodically (sufficiently rare) updated
during the simulation run; in this case (∆I)2 in Eq. (16)
can naturally be replaced with the time-weighted value.

With these modifications, the advanced algorithm be-
comes significantly faster and more convenient than the
standard algorithm. Accurate comparison of their ef-
ficiencies is not straightforward because both methods
have adjustable parameters. (T in the standard method
and T0 in the new method both affect the smoothing
of the spectral density and the convergence speed; the
choice of too short T could also lead to incorrect results.)
Crudely, the speed-up factor (the ratio of CPU times for
the same accuracy using the two methods) for our typical
simulation runs is two to three orders of magnitude.

The authors thank K. K. Likharev for useful discus-
sions and for critical reading and improvement of this
text.
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