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Abstract Substantial scientific progress has been made in the
past 50 years in delineating many of the biological mecha-
nisms involved in the primary and secondary injuries
following trauma to the spinal cord and brain. These advances
have highlighted numerous potential therapeutic approaches
that may help restore function after injury. Despite these
advances, bench-to-bedside translation has remained elusive.
Translational testing of novel therapies requires standardized
measures of function for comparison across different labora-
tories, paradigms, and species. Although numerous functional
assessments have been developed in animal models, it remains
unclear how to best integrate this information to describe the
complete translational “syndrome” produced by neurotrauma.
The present paper describes a multivariate statistical frame-
work for integrating diverse neurotrauma data and reviews the
few papers to date that have taken an information-intensive
approach for basic neurotrauma research. We argue that these
papers can be described as the seminal works of a new field
that we call “syndromics”, which aim to apply informatics
tools to disease models to characterize the full set of
mechanistic inter-relationships from multi-scale data. In the
future, centralized databases of raw neurotrauma data will
enable better syndromic approaches and aid future transla-
tional research, leading to more efficient testing regimens and
more clinically relevant findings.
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Introduction

Basic research on spinal cord injury (SCI) and traumatic brain
injury (TBI) has sought to tackle the complex biological
milieu produced by trauma and reduce it down to its
fundamental mechanistic processes for therapeutic targeting.
Over the past 50 years, this approach has uncovered numerous
biological mechanisms contributing to dysfunction, including
oxidative-stress (1-3), apoptotic cell death (4, 5), tissue loss
(6, 7), neuroinflammation (8—11), alterations in organization
and plasticity (12-16), and long-term changes in function
(17-25), among others. This intensive effort has provided a
wealth of knowledge about individual patho-biological
mechanisms; however, translation of this knowledge into
human therapeutics has remained elusive (26-30). Large-
scale integration of diverse mechanistic findings has the
potential to aid in translation by characterizing the complex
constellation (i.e., the “syndrome”) of biological and
functional changes after trauma. Syndrome-detection from
diverse sources of raw data requires the application of
computationally intensive integrative approaches that are, at
the present time, uncommon in the basic neurotrauma
literature. The current paper reviews the diverse biological
and functional measures that have been characterized for
both SCI and TBI, providing a data-rich framework from
which syndrome-level analyses can be built. We then review
the few recent studies that have used systems biology
approaches to integrate diverse neurotrauma data. We argue
that these papers can be viewed as the seminal works of a
new field that we call “syndromics” which aims to
understand complex disease states as integrated and well-
characterized syndromes that can be quantified through the
use of bioinformatics approaches (Fig. 1). This approach
borrows from methods currently used in epidemiology
known as “syndromic surveillance” to monitor and predict
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tional results

disease outbreaks by integrating diverse sources of informa-
tion (31). We use the term syndromics to refer to a similar
paradigm applied to preclinical, mechanistic studies with the
goal of providing a translational bridge between the clinical
and preclinical literature. The term syndromics is also
reminiscent of other computational biology frameworks such
as “genomics” and “proteomics”, involving the integration of
diverse genetic and protein expression information, respec-
tively. The statistical methods used in syndromics are very
similar to these other “omics”; however the data analyzed
tend to be more multi-scalar in nature.

A fundamental premise of syndromics is that it is
possible to integrate diverse measures from multiple
biological and functional assays into a unified snapshot of
the state of the affected individual. In the following review,
we first discuss some of the pathological and functional
consequences observed following neurotrauma, and the
outcome measures used to assess them. We then review
some of the statistical techniques that could be applied to
neurotrauma data for syndromic integration of these
multiple outcomes. Most of the preclinical examples come
from SCI; however, syndromics is a general framework that
can be applied to TBI, stroke, and other disease models as
well.

One Traumatic Event, Multiple Interrelated Biological
Effects

Traumatic injury to the central nervous system (CNS)
produces complex biological sequelae. For example, SCI
alters expression of a wide range of genomic and proteomic
markers (32-37). These complex molecular events are
involved in a cascade of biological changes, including cell
damage through excitoxicity and lipid peroxidation, result-
ing in cell death through necrosis and apoptosis (4, 38—44).
Each of these cell-death responses has a variety of telltale
markers. For example, excitotoxicity is associated with
cytoplasmic swelling (45, 46), increased calcium (Ca”")
influx (47, 48), alterations in glutamate receptors (41, 49,
50), changes in membrane permeability (51, 52), and acute
electrophysiological changes (53—55). Apoptosis has been
measured through distinctive morphological changes such

as nuclear fragmentation and chromatin condensation (4,
56) or through a variety of cell signaling markers including
positive labeling for TUNEL, caspases, fluorojade-B, and
others (4, 57-62).

Cell death and compensatory repair occur in a dynam-
ically changing tissue microenvironment that includes
changes in inflammatory cytokine levels, altered inflamma-
tory states in CNS microglia, and waves of CNS infiltration
by circulating immune cells (9, 63—67). This neuroinflam-
mation has been implicated in cell death and secondary
injury (41, 68-74) as well as neuroprotection and repair
(75-78). This speaks to the complexity of the interrelation-
ships between different biological mechanisms and high-
lights the difficulty with predicting outcome using only one
or two isolated biomarkers (79—82). The emergent relation-
ships among multiple measures could help define the
conditions under which a particular simple relationship
prevails over another. For example, proinflammatory
cytokines such as tumor necrosis factor alpha (TNF«) are
released following trauma to the nervous system (83, 84)
and can either have detrimental effects such as contributing
to neural cell death (41, 85), or can serve a neuroprotective
function (86-88), depending on the context. However, the
specific factors dictating TNFo function are not well
understood, and different conclusions can be made by
monitoring different aspects of TNF signaling. The failure
to account for complex, multi-inflected interactions among
outcomes reduces replicability of findings and leads to
controversies that could be resolved by including a more
complete set of measures, reflecting a more complete set of
biological mechanisms.

Like cell-death measurements, histological sparing after
neurotrauma is often quantified using multiple different
measurements. For example in the SCI literature, common
morphometric measurements include cross-sectional gray
matter sparing, white matter sparing, and lesion area and
volume (6, 89-93). In addition, it is common for research-
ers to use more specific immunohistochemical markers to
measure specific cellular and subcellular changes (4, 5, 66,
67, 94, 95). For example, changes in oligodendrocyte
precursor cell proliferation/differentiation have been mea-
sured as harbingers of white matter sparing and remyelina-
tion (96—102). Motor neuron sparing can be quantified as
an assay of functional gray matter sparing (41). Reactive
astrocytes have been measured with a specific focus on
their relationship to the glial scar (103—105). Microglia/
monocyte numbers and activity state have been quantified
to characterize their relationship to other morphological
changes (106—-109).

This litany of changes, ranging from subcellular to
histological, is thought to have implications for not only
cell death but also compensatory plasticity after neuro-
trauma. To measure morphological plasticity such as
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regeneration and sprouting, anterograde tracers have been
used to target specific tracts of interest such as the
corticospinal tract (CST) (16, 110—114), rubrospinal tract
(115, 116), and motor unit organization (117, 118), among
others. The relationship between these regenerative changes
and other histological changes such as growth factor levels
(119-121) and breakdown of the glial scar (122, 123) are
thought to predict the degree of axonal regrowth across the
lesion and provide a substrate for functional recovery (110,
122-124).

In addition to regeneration across the lesion, there is
substantial plasticity and reorganization at sites remote to a
focal neurotrauma. For example, in the SCI literature, it has
been well established that there is plasticity and functional
reorganization below a complete transection (117, 124—
131). With training, the spinal cord is capable of learning a
variety of motor tasks, including Pavlovian associations
(132-136), instrumental learning (129, 131, 137-141) and
stepping on a treadmill (124, 125, 142—146). This capacity
for use-dependent plasticity in the spinal cord has been
shown to rely upon propriospinal tract relays (124) and
glutamate receptor-mediated plasticity in the lumbar cord
(147, 148). There is also substantial reorganization in the
cortex following SCI (149-157), which appears to be
largely mediated by the extent of use of the relative areas
represented in the cortex and compensation from the
surrounding representations occurs to promote functional
recovery.

Recovery after injury is likely to result from a complex
amalgamation of all of these tissue changes working in
concert to generate the functional state of the affected
individual. Detecting systematic patterns from this com-
plexity is a daunting task, however, advanced computa-
tional approaches have been effectively used to deal with
similar levels of complexity in other fields, including
information systems (158), physics (159, 160), meteorology
(161), economics (162), epidemiology (163—165), psychol-
ogy (166), chemometrics (167, 168), genomics (169-173),
and proteomics (174). The general approach for these fields
has been to build vast data repositories that allow
integration of multiple pieces of information using multi-
variate statistics. By taking a similar approach to neuro-
trauma, syndromics provides an opportunity to leverage
state-of-the art knowledge about multiple biological mech-
anisms to predict functional recovery (16) and compare
findings across species (175, 176).

One Traumatic Event, Multiple Functional
Consequences

Functional changes are a hallmark of neurotrauma and are
the major target for treatment of affected patients (177). SCI
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is associated with a wide range of functional disturbances
including pathological pain and other sensory changes, loss
of sexual function, bladder and bowel changes, and motor
impairments (for review see (178)). Biological mechanisms
are important for therapeutic development, yet the ultimate
goal is to affect function. Therefore, it is critical to
understand precisely what we are measuring when we take
functional measures after neurotrauma. Ultimately, this
issue falls within the field of psychometrics, the scientific
discipline concerned with neurobehavioral scale develop-
ment and metric validation (179, 180). Psychometrics is a
vast literature (181-183) that provides standards for
assessing reliability and validity of a given scale. This field
that has given rise to many of the tools used for clinical
neurological assessment after neurotrauma, such as neuro-
psychological testing batteries (184—186), personality in-
ventories (187), PTSD measures (188), quality-of-life
indices (189-191), and functional independence measures
(192-197). Many of the basic principles from this scientific
discipline, such as guidelines for reliability and validity
assessment, have been applied in the clinical neurotrauma
literature (197-210). However, the basic research commu-
nity in neurotrauma has been less attentive to the scale
development concerns (for exceptions see (211-214)), and
metric properties studies are largely lacking (215).

Despite the lack of clarity about reliability and validity
testing for many of the current scales, over the last 50 years,
the basic SCI literature has produced numerous measures to
assess injury at a behavioral level (16, 25, 157, 211-214,
216-236). A full summary of most of these methods is
beyond the scope of the present paper and have been
reviewed in detail elsewhere (237-244). Some of the most
popular measures have been open-field locomotor assess-
ments (211, 212, 217, 230, 231), footprint analysis (218,
232-234, 245), and fine-grained physiological outcomes
such as electromyography (EMG) and kinematics (222,
234-236, 246-249). Additional functional assessments
have included the inclined plane test, and various methods
for assessing contact placing responses and foot-placement
such as gridwalk test, beam walk, and the horizontal ladder
(25, 89, 92, 241, 250-252).

There is little consensus about what is the most
appropriate or “best” measure of outcome after experimen-
tal neurotrauma. It is therefore common for researchers to
perform a battery of functional assessments in the context
of therapeutic testing (241). Since there are no clear rules
for determining which subsets of outcomes should be
reported in published work, researchers often report only
a subset of the collected data in a given publication to
highlight statistically significant effects and to achieve
clarity of presentation. This opens the possibility that
researchers can repeatedly test their hypothesis on multiple
outcomes and then make strong conclusions on a minority
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of outcomes that show significant effects. Such an approach
increases the risk of a type I error (reporting a significant
effect when there is not one). This is perhaps highlighted by
the recent high-profile studies in which researchers have
been unable to replicate each other’s work in the preclinical
setting (253-257). On the other hand, it is possible that
different functional measures reflect different components
of the complex, multifaceted syndrome that follows SCI. It
is possible, for example, that animals could perform well on
a test of open field locomotion, but still lack some of the
modulatory sensory or reflex function that is necessary for
locomotion in a complex environment with obstacles and
variations in surface texture (258). Conversely, rearrange-
ment of the somatosensory cortex following SCI suggests
that an animal could perform well on tests of sensory
function but lack the lower motor neuron control necessary
for open-field locomotion (150). Thus, there is a need for
comprehensive scales that capture all of the subcomponents
involved in normal function, producing global, syndrome
scores that reflect the entire functional state of the animal.

In an attempt to address this issue, some researchers
have used integrative scales or testing batteries that
combine elements of several of the scales discussed in
previous sections (216, 241, 259). For example, in the
follow-up paper to the 1954 publication of his influential
locomotor scale, Tarlov reported that there were different
time courses for recovery of tactile nociception (pin-prick)
and locomotion, providing a window into the complex
interactions between sensory and motor function (217,
259). In keeping with this tradition, Gale et al. (1985)
incorporated sensory function as well as multiple motor
indices in their complex test, the combined behavioral score
(CBS). The CBS consists of eight subtests that were
designed to tap into locomotion, proprioception, cutaneous
reflexes, posture, and nociceptive processing. The raw
scores from these subtests are converted to reverse-
weighted CBS subscores and then added to yield a scale
that ranges from 0 (no dysfunction) to 100 (complete
dysfunction). Therefore, the global CBS can be interpreted
as a percent dysfunction (216).

Following the initial development of the CBS, several
papers came out suggesting that it was highly correlated
with less extensive outcomes such as the five-point Tarlov
open-field scores and the inclined plane test (260-263).
Some reports suggested that exclusion of some of the
subtests on the CBS reduces extraneous variability, result-
ing in greater validity with regard to lesion size (264). In
1995, a modified version of the Tarlov scale was produced
by Basso, Beattie, and Bresnahan (BBB) (211) that was
subjected to careful reliability (265) and validity testing
(211, 265) as part of the multicenter animal SCI study
(MASCIS) (266). The BBB was released with well-
designed, easy-to-use scoring sheets and training materials.

Subsequent work revealed that multiple other measurement
techniques did not provide substantial gains in useful
information over the BBB (241), and the field adopted this
easy-to-use locomotor outcome as the de facto standard for
functional assessment in rodent SCI models, garnering over
1,100 citations since its release in 1995 (267). Subsequent
modifications have been made to this scale, including one
specifically for use in mouse models (212), one utilizing a
straight ally testing field (230), and one that uses a
computer program to assist with recording and scoring
(268).

It has been pointed out that there is often an inverse
relationship between ease-of-use of a scale and its precision
(237). On one end of the spectrum, there are simple-to-use,
but error-prone scales like the five-point Tarlov (217),
which describes function using ambiguous terms such as
“good movement of the joints” (score = 2) and “complete
recovery” (score = 4). On the other end of the spectrum are
high-resolution kinematic measures using high-speed, high-
definition cameras, and precision placement of joint
markers with SMPTE timestamps for data alignment with
electrophysiological outputs (224, 247, 269-272). The
former may lack the precision necessary to detect incre-
mental functional improvement whereas the latter produces
high-precision, but at a cost in money, analysis time, and
expertise required (237). The BBB scale attempts to strike a
balance between these two extremes by providing strict
operational definitions intended to guide observational
scoring and increase reliability (265). However, the BBB
has been criticized for its insensitivity in the extreme lower
and upper portions of the scale where incremental improve-
ments in function may not be accurately represented as
incremental improvement in score (215, 273). For example,
inter-limb coordination as measured by the upper end of the
BBB scale shows some statistical wobble (215) and does
not always correlate with results from detailed analysis of
stepping patterns using automated footprint analysis (245,
273), kinematics (274), or robotic gait analysis (275). A
fundamental issue that arises from these comparisons is:
“What are the best measures of function?” The answer to
this question is not always clear, and in many cases, it can
be countered with another question: “Better for what
purpose?”, as some measures may be better at detecting
functional changes due to a particular therapeutic target.
Instead of choosing between BBB, kinematics, and EMG in
hopes of choosing the best one, it is possible to include all
measurements to gain better resolution of the underlying
syndrome. One benefit of a syndromics approach is that it
incorporates information from all measures and circum-
vents arbitrary decisions about which outcomes reflect the
“best measures™ for therapeutic testing (see section “Statis-
tical Pattern Detection: Coherent Patterns from Numerous
Measurements”).
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Multiple Measurement Techniques for the Same Feature

The problem of determining the best measures is not
limited to the relatively abstract concept of functional
recovery. Even in the case of concrete concepts such as
tissue sparing, there is little consensus on how to best
quantify changes. There have been a variety of approaches
taken for histopathological quantification (38, 90, 259, 264,
276-284). In the older literature, histological analyses of
SCI consisted of qualitative descriptions of “typical” cords
from each experimental condition (259). In more recent
studies, researchers have developed ways to quantify tissue
loss; however, the methods for quantification are somewhat
variable across studies. The general approach in SCI is to
measure the amount of gray and/or white matter sparing at
the site of injury (92). Some researchers have estimated the
lesion epicenter by taking serial sections and identifying the
section with the largest extent of lesion and then analyzing
a single coronal section to represent the lesion extent (211).
Using image analysis, the area of spared gray and white
matter in this slice can be calculated and then compared
across experimental groups. Others have estimated lesion
volume by interpolating the volume between two slices
from a fixed interval (92, 264). For example, Bresnahan et
al. (1987) measured the area of five sections between the
rostral and caudal ends of the lesion site. The volume
between these sections was calculated as the frustum of a
cone, with the two sections representing the two bases of
the cone. Others have quantified tissue volume in multiple
ways. For example, von Euler et al. (1996) quantified tissue
loss in three ways: (1) designing an ordinal scale to
describe the extent of tissue loss, (2) by assuming that the
lesion volume is approximately shaped like two cones with
adjacent bases, and (3) by using image analysis software to
reconstruct the lesion site section by section. Although one
would expect the image analysis method to be the most
accurate, the other two methods correlated quite highly with
the section by section reconstruction (#=0.93 and »=0.96 for
the ordinal and conical estimates, respectively). These high
correlations imply that, although there is variability across
lesion quantification techniques, different techniques may
largely explain the same variance in tissue loss. Therefore,
researchers can, in many cases, use an easy but primitive
estimate of tissue sparing (such as the conical method) to
assess tissue loss after SCIL.

Others have quantified tissue using unbiased stereology
(285). Stereology involves estimating tissue length, vol-
ume, area, and cell or fiber counts from sub-sampled
sections to accurately reconstruct entire regions of the
nervous system. Tissue volume can be determined using the
Cavalieri method (277, 286, 287), which, when combined
with systematic random sampling and optical or physical
dissector methods (288, 291), can produce a fairly accurate
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representation of total cell and/or fiber counts within a
volume of tissue (286, 288-290). This allows us to test
specific hypotheses about trauma-induced alterations in
specific population of cells, fiber sparing, and regeneration.
These same techniques can be applied to estimate cell
volume using the nucleator method, which uses radial
points from the center of a pre-defined focal point (e.g.,
nucleolus within a cell), to the perimeter of the particle (e.g.,
membrane), to give an estimation of particle size (292).
Additionally, myelin thickness can be determined by direct
orthogonal measurements in uniform, random locations
(293). These methods of stereological tissue analysis have
proven very useful for SCI researchers to show cutting-edge
work regarding immune response (9, 294), neuronal survival
(295, 296), and plasticity (16, 297). However, given the
number of alternative quantification approaches, it remains
unclear which histological approaches are best for predicting
functional performance, and there is a need for integrative
comparisons of these various measurement methods.

Statistical Pattern Detection: Coherent Patterns
from Numerous Measurements

Determining the best way to integrate information from
multiple measurements represents a major challenge for
translational testing. The goal of basic research is to
develop outcomes that are, at once, sensitive to mechanistic
therapeutics and translatable to human disease features
(298). Application of the appropriate statistical tools is
critical for data integration. A variety of statistical tools
have been used to analyze neurotrauma data. Statistical
approaches can be generally divided into wunivariate
approaches and multivariate approaches (Fig. 2). Univariate
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approaches focus on how a single variable changes as a
function of either: (1) a therapeutic treatment, or (2) as a
correlate of one or more predictor variables. Multivariate
approaches, on the other hand, monitor changes in multiple
variables at once, simultaneously measuring both individual
outcomes as well as the inter-relationship among the
outcomes. In this way, multivariate approaches are uniquely
sensitive to therapeutic approaches that simultaneously
affect multiple outcomes.

As highlighted in the preceding sections, neurotrauma
research often involves multiple outcomes. The historical
approach for dealing with this complexity has been to use
univariate statistics to assess bivariate correlations among
individual outcomes or to separately test a single hypothesis
on multiple individual variables and report significance
when it occurs (Fig. 3). Examples of common univariate
methodologies include ¢ tests and analysis of variance, and
bivariate correlational analysis wherein a single measure is
correlated with another measure, and then this process is
repeated iteratively for all outcomes (6, 151, 299).
Univariate approaches have been used in validation for
many of the functional assessment techniques discussed
above. The “gold standard” for validity testing has been to
show that a functional measure correlates with tissue loss
and/or intensity of experimental trauma. As a consequence,
by design many of the functional measures do infer
underlying tissue loss with reasonable reliability (6, 151,
263, 299-301).

However, because there is some variability in the way
that tissue loss is quantified (see section “Multiple
Measurements for the Same Feature”), the validation
procedures across different scales may not be comparable.

For example, the BBB scale was validated by testing
whether the scale could predict the degree of experimental
trauma (i.e., the degree of cord displacement or weight drop
height). In addition, the scores were regressed onto the
percentage of tissue sparing at the lesion epicenter (211).
Other validation procedures that have used multiple
quantification methodologies have found that histological
quantification methods can influence conclusions about the
validity of a scale (92, 264). Bresnahan et al. (1987) found
that lesion area at the epicenter correlated better with three
common functional measures (open-field locomotion, the
inclined plane, and gridwalk) than lesion volume estimation
(92). In contrast, von Euler et al. (1996) found that area of
tissue loss at the lesion epicenter correlated less well with
several functional measures than an ordinal lesion volume
score (264). These findings illustrate the potential danger of
drawing conclusions about the validity of a functional
measure based on a unitary tissue quantification method.
However, many functional measures do appear to reflect
tissue changes in one form or another, suggesting that there
is an underlying multi-dimensional disease state that is
reflected across different quantification methods. Yet,
univariate analyses are blind to consistent patterns among
several outcomes (16, 302).

Multivariate statistical approaches represent a powerful
alternative to univariate testing of neurotrauma data. Because
multivariate approaches are sensitive to associations among
multiple outcomes, they have the potential to identify
underlying disease states that are unconstrained by the
limitations of individual measures. This feature allows
researchers to partition out the error that is particular to each
outcome measure and to focus on the consistent disease

UNIVARATE vs. MULTIVARIATE PROCESSING OF SCI DATA
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From this perspective, underlying syndrome states are conceptualized
as the cause of observed outcomes, and multivariate outcome
monitoring provides a more accurate window into the underlying
syndrome. With more measures, the picture of the underlying
syndrome becomes more clear and less distorted by the error in
individual measures

@ Springer



444

Transl. Stroke Res. (2011) 2:438—454

patterns that are shared across outcomes (303). This produces
a dramatic increase in statistical power and helps identify
robust disease patterns that are less likely to be idiosyncratic
to a specific outcome measure (304). At the same time,
multivariate approaches can be used to identify different
classes of outcomes, which can be particularly beneficial for
diagnosis and treatment in clinical neurotrauma (305, 306).

To date, only a small number of papers have applied
multivariate approaches to basic research in SCI (9, 16, 274,
302, 307-314) and TBI models (315-317). A typical
approach has been to use multivariate pattern detectors such
as principal component analysis (PCA) to distill numerous
measurement variables down to a small number of multivar-
iate patterns. PCA (318) and related approaches such as
exploratory factor analysis (303) are classical tools for
detecting the common variance that is shared by multiple
observed variables. This represents a powerful approach to
consolidate data in a hypothesis-free manner to discover the
underlying associations among measures. This may be
especially useful in disease models such as SCI and TBI
wherein researchers often have only vague notions that
several outcomes might be related. For example, gray matter
sparing, white matter sparing, and locomotor performance
may move together as a group; however, there may not be
strong hypotheses about the magnitude or multi-dimensional/
multi-inflected nature of that relationship (92, 241). It is
conceivable that early functional performance could reflect
gray matter sparing through early neuroprotection whereas
later performance is predicted by an amalgamation of gray
matter sparing as well as white matter sparing and
remyelination (49, 69, 319, 320). Multivariate pattern
detectors provide an unbiased way to identify these relation-
ships in a manner that is untarnished by preconceptions (e.g.,
hypotheses) about how the data should look.

Once identified, multivariate patterns can be used as
outcomes for statistical hypothesis testing. For example, Grau
et al. (2004) used PCA to deal with multiple outcomes in a
spinal contusion model (302). Numerous histological and
behavioral variables were distilled using PCA to identify
data-driven outcome clustering. In a second step, hypothe-
sized group differences were tested using multivariate
analysis of variance and linear discriminant function analysis.
By testing for consensus between alternative approaches of
data-driven and hypothesis-driven statistics, the authors were
able to make strong arguments about multivariate patterns
that were highly robust. Others, such as Courtine et al.
(2009), used PCA to detect clustering of 135 kinematic
variables into systematic patterns during recovery after spinal
cord transection (307). These patterns were then used (in the
form of PC scores) to test for therapeutic interventions,
revealing therapeutics that affected a large number of
outcomes as a coherent pattern. This can be thought of as a
data-filtering approach that uses a/l of the information within
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the dataset as a preamble to hypothesis testing. In this way,
the hypothesized therapeutic approach can be tested on the
entire ensemble of outcomes through syndromic analysis.

In some neurotrauma datasets, however, the multivariate
association among measures is an end in itself. For
example, a recent paper was concerned with whether a
novel morphological observation—extensive corticospinal
tract sprouting in primates after SCl—was related to
functional performance (16). Fortunately, this group took
multiple functional measures from the same animals (214,
226), enabling a syndromic analytical approach. Through
rigorous measurement of multiple variables from EMG,
kinematics, observational scales and tissue morphology,
and matched efforts in data organization/data annotation, it
was possible to perform syndromic analysis, revealing the
multivariate association between the degree of CST sprout-
ing and functional performance. This highlights the
powerful opportunity for novel discoveries that can come
from syndromic analysis, if neurotrauma researchers can
develop well-organized multivariable datasets.

Validation of Syndromic Patterns

Once multivariate syndromic patterns are extracted, their
validity and reliability can be assessed through a number of
statistical and experimental approaches. For example, statisti-
cal perturbation analyses can be used to subsample subject
populations (bootstrapping) or variable sets (feature selection)
to evaluate the generality of syndromic patterns across diverse
data types. An exhaustive review of such “model selection
approaches” is beyond the scope of the present paper, and we
refer readers to excellent outside sources (321). Multivariate
approaches have been widely exploited to validate genomic
patterns as predictors of a particular disease state (322).
Preclinical neurotrauma research has powerful additional
opportunity for syndromic validation beyond just statistical
approaches. Trauma, unlike many other neurological diseases,
has a known etiology that can be precisely replicated in the
laboratory using controlled biomechanical injury devices
(323-325). Syndromic patterns can be validated by their
sensitivity to biomechanically defined injury gradations. This
fundamental fact—that the basic etiology of neurotrauma is
known—uniquely positions the neurotrauma literature to help
tune translational syndromic methods for potential applica-
tions to other neurological diseases that do not benefit from a
well-characterized etiology.

Achieving High N through Data Sharing

One of the hurdles for syndromic testing is that the typical
sample size (N) used in basic neurotrauma experiments is
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much smaller than traditionally thought to be required for
multivariate statistical studies. Historically, multivariate
statistical approaches, such as exploratory factor analysis
and principal components analysis, were held to require
sample sizes of N>250 for reliable detection of multivariate
patterns (304). This traditional rule of thumb for sample
size presents a challenge for syndromic analysis in neuro-
trauma models because it is a far greater N than a typical
basic research laboratory is able to achieve in a single
study. However, recent Monte Carlo studies have suggested
that multivariate methods can be reliably applied when
certain statistical criteria are met (high communalities and
high levels of component saturation) (326). These statistical
features are often met in basic neurotrauma research
because animal models are well-standardized, resulting in
reduced error variance and better resolution at the multi-
variate level (327). In addition, the bioinformatics field has
produced a number of new statistical methods, such as
sparse principal components analysis, that are less vulner-
able to distortions of multivariate patterns created by low
Ns (328). Together, recent innovations in the statistical
literature provide support for the application of multivariate
approaches to ‘low-N’ basic neurotrauma research, as long
as researchers apply the appropriate statistical safeguards
(e.g., sparse PCA with the L; penalty (329)).

Although there are no technical difficulties with apply-
ing modern multivariate methods to small datasets, there is
still a strong argument for developing large, shared datasets
to improve translation of multivariate findings. By applying
multivariate pattern detection on large-scale heterogeneous
datasets, it becomes possible to identify emergent multi-
variate patterns that translate across diverse laboratories and
models (175). The goal of taking such an approach is to
identify consistent syndromic patterns that reflect transla-
tional measures of neurotrauma pathology (176) and
therefore consistent targets for translational testing.

Common Data Elements for Preclinical Animal Models

Identification of candidate common data elements (CDEs)
for basic animal research will be critical for the success of
data-sharing efforts and syndromic analysis (175, 176).
CDEs are variables that have well-defined operational
definitions and use the same variable names across different
studies. Under the direction of the National Institute of
Neurological Diseases and Stroke (NINDS), the clinical
neurotrauma literature has undertaken a substantial effort
toward developing CDEs for clinical trials for both TBI
(306, 330-334) and SCI (209). At the current time, the
preclinical literature has lagged behind the clinical literature
in identifying CDEs for translational testing, and there is a
lack of consensus in the field as to the best methods to

move forward (28, 29). Collaborative data-sharing across
multiple laboratories has the potential to assist in this effort.
With the exception of the MASCIS trial from the early
1990s (266), there are few examples of large-scale data-
sharing projects in the preclinical literature. We have
recently undertaken a large-scale data-sharing effort involv-
ing several SCI research centers including UCSF, UCSD,
UCLA, UCI, University of Louisville, and the Ohio State
University (175, 176). The goal of this project is to develop
a common database infrastructure for animal SCI research
that will enable large-scale syndromic discovery and
translation between species (Fig. 4).

Syndromics as a Generalizable Framework for Multiple
Diseases

At the current time, most of the syndromic work for
neurotrauma has been isolated to a small number of high-
profile papers (16). However, we anticipate that syndromic
approaches will begin to become prevalent in a wide variety
of disease models. The goal is to monitor and capture as
much information as possible about the state of the subject
and then use advanced analytical techniques to leverage this
information in the process of therapeutic testing. The
syndromic approach represents a stark contrast from
historical methods used in preclinical outcome research,
which have relied heavily on pre-existing hypotheses and
strong theoretical foundations. While hypothesis-driven
research is a powerful approach for proof-of-concept testing
in highly controlled experimental scenarios, it may not be
the best method for detecting translational therapeutic
effects in complex systems such as the injured nervous
system in vivo (253-257).

STEPS FOR SYNDROMIC ANALYSIS OF NEUROTRAUMA DATA
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Fig. 4 Methodological workflow for syndromic analysis
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The clinical literature has long acknowledged the
problem of complexity, and there would be substantial
translational power gained by adopting similar analytic
methods in the basic scientific research. Indeed, factor
analysis, one of the first multivariate techniques, was
developed to tackle the problem of complexity in human
cognitive testing (303). These methods were later extended
to a wide variety of clinical problems including human
diagnostics such as intelligence tests (303, 335), neuro-
cognitive inventories (336), electrocardiograms (337, 338),
pain measures after SCI (339), and the AIS scale (340) and
will greatly benefit our efforts in the preclinical models.

Concluding Remarks

In this review, we presented syndromics as a new framework
for dealing with data from basic neurotrauma research. The
goal of syndromics is to leverage existing knowledge within
the vast basic science literature to discover new patterns within
disease models. This approach is consistent with innovations
in analytical methods for systematic reviews (341) and meta-
analyses (342-344) in the sense that it combines findings
from several sources to characterize the emergent trends
within a field of study. However, unlike traditional meta-
analyses of data that is extracted from published works,
syndromic analysis involves access to the original raw data
from diverse scales and relies heavily on open data-sharing
among researchers (345). In recent years, the genomic field
has pioneered data-sharing standards which have enabled
new meta-analytic techniques such as gene-set enrichment
analysis (GSEA) and on raw data in genomic databases or
meta-GSEA which combines multi-center data after correct-
ing for variance in gene expression across studies (322, 346—
348). However, at the current stage, there is little intrinsic
incentive for preclinical neurotrauma researchers to engage in
a similar data-sharing exercise using diverse histological and
functional outcome sets for syndromic analysis. The NIH has
a resource sharing policy that demands timely release and
access to data upon request by other researchers for data
collected as part of an NIH project (349). However, as
previously pointed out (345), getting data to the point that it
can be shared often requires substantial effort, and it is
unclear who should shoulder this burden. It is understandable
that researchers who have ongoing obligations to new
projects will have little time/resources available to help index
their old data, especially when data are collected by graduate
students, postdocs, and other research staff who were not
trained in standards for that file structures, variable names,
and large-scale quantification methodologies.

Because multivariate techniques, such as those advocated
in this review, are not yet common in the basic neurotrauma
literature, the field has an opportunity to develop consensus-
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based standards for collection of multivariate basic neuro-
trauma data. In the immediate future, the field would benefit
from the implementation of multivariate techniques to assess
the redundancy of the current measures of function. This
would streamline the current testing methods, allowing for a
more organized literature. In the more distant future, the field
could harness multivariate techniques to better assess the
validity of new measures. In addition to methodological gains,
researchers could use advanced statistical techniques such as
structural equation modeling (e.g., Fig. 3b) to produce
theoretical gains as well. Therefore, future work that
leverages these methodologies is likely to be informative
and applicable to multiple fields of study.
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