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Abstract of the Dissertation

Modeling Vehicular Traffic Shock Wave

with Machine Learning Approaches

by

Jihyoung Kim

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2016

Professor Mario Gerla, Chair

The current trend of transforming old cities into smart cities has revealed many issues

of the modern cities. One of the issues is the prevailing traffic jam on highways of

the modern cities. The vehicular shock wave has been a problem on highways since

it is one of the main causes of the traffic jam. The combination of heavy traffic

and small traffic perturbations or unexpected driver actions are the main causes of

shock waves. In order to alleviate road traffic caused by shock waves, it is crucial

to have a system that predicts shock waves and informs them to the drivers. In

this dissertation, we analyzed 6 months of freeway traffic data of Los Angeles, CA,

provided by CalTrans PeMS (Performance Measurement System) and obtained the

vehicular shock wave propagation speed of each freeway. Based on this information,

we propose a machine learning approaches to predict shock waves. We utilize Hidden

Markov Model (HMM) to predict if the shock wave will occur and propagate based

on neighboring lanes’ traffic information. Addtionally, HMM is used to estimate the

probability of lane change from one lane to other lanes based on the occupancy of

a lane. Baum-Welch algorithm is used to predict the parameters (occupancy and

state).
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We also utilized Deep Learning (DL) in order to predict the shock wave occurrence

and propagation. We compared Stacked AutoEncoder (SAE), Deep Belief Networks

(DBN), and HMM for the accuracy of the prediction of shock wave occurrences and

propagation. These approaches have been tested on the same PeMS data sets and

achieved good accuracy.

In the future, our models will be used to include modern collision prevention

techniques (e.g., anti-shock wave strategies) to test their efficacy and help to reduce

the number of potential accidents and save energy in the process. Also, our models

can be used to improve traffic simulators to provide driving patterns that are close

to real human’s.
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CHAPTER 1

Introduction

Recently, transforming metropolises into smart cities has been a global trend. As

a part of the smart city project, efficient traffic management also has been empha-

sized to mitigate heavy traffic issues during rush hours [BMS12]. The traffic demand

on major highways, one of the major causes of heavy traffic jam on metropolis areas,

has been increasing for the past several decades. The metropolises have resolved the

aforementioned issue either by constructing new highways or extending the existing

ones [FFG14]. However, due to several reasons, extending existing highways or con-

structing new highways is no longer a possible option [Bri06, FFG14]. There are

studies that state the capacity of highways is not fully exploited [FFG14]. Forster et

al. claim by fully exploiting the capacity of highways, the current high traffic demand

on highways could be alleviated [FFG14]. The recent advent of autonomous vehicles

that equip several sensors and recognize the surrounding environment has antedated

the necessity of smart traffic management in smart cities. In order to provide smart

traffic information to each vehicle on the road, each vehicle is required to have ve-

hicular network enabled [BMS12]. In this paper, we will focus on providing smart

traffic information to vehicles in order to mitigate heavy traffic issue using publicly

open data.
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1.1 Traffic Models

Traffic models are classified into two big categories, macroscopic traffic models

and microscopic traffic models. Microscopic models focus on interactions between

individual cars while macroscopic models focus on general overview of traffic sta-

tus of certain road segment. Forster et al. combined two different traffic models,

microscopic traffic model and macroscopic traffic model, to simulate their proposed

CADAS [FFG14]. The assumption of their system is that it is possible to obtain both

microscopic traffic data and macroscopic data. However, in reality it is very hard to

obtain data that contains microscopic traffic information due to privacy issues. Only

several companies such as cell phone carriers, Google maps including Waze, Apple

maps, Bing maps, and so forth are collecting microscopic traffic information. The

aforementioned companies are not disclosing their microscopic traffic data. On the

contrary, in the United States, there are many open data sets on macroscopic traffic

information such as CalTrans (California Department of Transportation) PeMS (Per-

formance Measurement System) data sets [Tra15]. The challenging aspect of using

PeMS data set is the traffic status is not monitored every second. The data set with

the finest granularity is the one collected every 30 seconds, i.e., aggregated traffic

information. Since the traffic information is an aggregated version, we have to find

a way to infer the some information that are not available to the finest granularity

data set, e.g., speed (velocity).

1.2 Overview

The goal of this dissertation is to infer aggregated driving patterns as much as

possible from the macroscopic traffic information given real world traffic data. There

have been many research papers on short term traffic prediction using CalTrans PeMS

data sets [Tra15]. However, to the best of our knowledge, this paper is the first pa-
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per that applies machine learning algorithms to predict vehicular shock wave and

the probability of lane change from one lane to another with real world big traffic

data. Especially, we compared state-of-the-art machine learning algorithm such as

Deep Learning in order to see the accuracy of our models. We believe our model will

contribute to projects that plan on providing real world driving patterns.

1.3 Contributions

The contributions of this dissertation is three-fold.

• We analyzed the PeMS data that was collected for 6 months from January 1,

2016 to June 30, 2016. We removed the stations (loop detectors) that do not

collect traffic status in order to obtain accurate data. Through this process

we could gain insights of the traffic information collected by stations of each

freeway.

• We described what feature of the macroscopic model has the most correlation

between shock wave occurrence and propagation, and build an Hidden Markov

Model (HMM) that predicts the occurrences of shock wave. We also utilized

HMM in order to predict the probability of lane change the lane based on the

occupancy. Baum-Welch algorithm was used in order to predict the probability

of a car switching lanes of a single lane.

• We utilized Deep Learning (DL) algorithms to predict the shock wave occur-

rences. We specifially selected Stacked Autoencoder (SAE) and Deep Belief

Network among DL algorithms. We compared the accuracy of shock wave pre-

diction from HMM, SAE, and Deep Belief Network.
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1.4 Dissertation Outline

The rest of the dissertation is organized as follows. We discuss the formation of

vehicular shock wave in both single-lane scenario and multi-lane scenario in Chapter

2. In Chapter 3, we analyze PeMS data sets and obtain average vehicular shock wave

propagation speed. Based on this information, we infer the average speed collected

by each station every 30 seconds. The 30 second data set does not have aggregated

speed information. In Chapter 4, we introduce Hidden Markov Model and Baum-

Welch algorithm in order to predict the probability of lane switch of a car for the

next 30 second time period. Based on the prediction obtained in Chapter 4, we

labelled which lane the majority of cars will stay in the next 30 seconds in Chapter

5, we utilized Stacked Autoencoder and Deep Belief Network to see how accurately

Deep Learning algorithms predict the shock wave occurrences. Finally, in Chapter 6,

we summarize the results obtained from each model and conclude the dissertation.
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CHAPTER 2

Vehicular Shock Wave (Vehicular Traffic Shock)

In this chapter, a brief introduction to vehicular shock wave formation and scenar-

ios of vehicular shock wave occurrence will be provided. Additionally, traffic models

that are used for inferring vehicular shock wave (traffic shock) will be introduced.

Specifically, two big categories of traffic models, microscopic traffic models and macro-

scopic traffic models, will be introduced.

2.1 Vehicular Shock Wave Formation

In this section, the mechanism of the vehicular shock wave will be introduced. By

definition, vehicular shock waves (vehicular traffic shocks) are traveling disturbances

in vehicles distribution on highways. The main cause of the vehicular shock wave is

due to the high traffic demand and the unexpected driver actions [FFG14]. Due to the

characteristics of the shock wave, the denser traffic on highways, the more aggravating

shock wave is formed upward in the traffic stream. That is, a minor change in the

driver’s behavior will cause a shock wave upward in the traffic stream. Additionally,

physical perturbation such as ramps, road works, and small amount of increase and

decrease in traffic of a lane cause drivers to change their driving patterns. Moreover,

driving behavior such as delayed reaction to traffic changes is prone to cause traffic

disruption that leads to traffic congestion [FFG14, Wir78, BSS98].

Consider two scenarios that demonstrate the formation of the shock wave. In

5



Figure 2.1: Shock wave forming on a single-lane road

particular, a single-lane road scenario and a multi-lane (two-lane) scenario will be

covered.

2.1.1 Single-Lane Scenario

In Figure 2.1, the formation of a shock wave on a single-lane road is presented.

Each timestamp has the current traffic status a single lane road. The x-axis indicates

timestamps and the y-axis indicates the position in the road. At t = 1, the leading

vehicle is slowing down for unknown reason causing the queueing upstream that

affects the trailing vehicles, and the red arrow indicates the influence on the following

vehicles. At t = 2, the first trailing vehicle has to slow down in order to avoid collision.

At the following timestamps, the other trailing vehicles have to slow down in order to

avoid accident. The whole phenomenon from t = 1 through t = 5 forms a vehicular

shock wave or traffic shock due to the continuous slow down of all vehicles following

6



Figure 2.2: Shock wave forming on a multi-lane road

the leading vehicle. The velocity of a following vehicle cannot be greater than that

of the car right ahead. Otherwise, collision will occur. Moreover, according to the

literature, the aforementioned shock waves occur without a reason and cause traffic

jam, and it is referred as phantom jams [FFG14, HPM90, Wil08]. Another case that

causes traffic jam by the shock wave is the so called ”moving bottleneck”. This is

occurred by the decreased velocity of the leading vehicle and all the trailing vehicles

have to adapt to the new velocity, e.g., a fully loaded truck is the leading vehicle and

faster vehicles have to slow down on a single-lane road.

2.1.2 Multi-Lane Scenario

Figure 2.2 demonstrates the formation of a shock wave on a two-lane road. Al-

though only a two-lane scenario is presented in this section, the main causes of the

formation of a shock wave on a road that has more than two lanes are identical.

7



Therefore, we can consider the same phenomenon will occur on a multi-lane road.

Each timestamp has the current traffic status a single lane road. On multi-lane road,

one of the reasons of the formation of the shock wave is the same situation as the

single-lane scenario. Hence, the single-lane scenario, i.e., shock wave occurred by the

slow down of the leading vehicle, will not be covered in this chapter.

The x-axis indicates timestamps and the y-axis indicates the position in the road.

At t = 1, the leading vehicle on the right lane is trying to switch lane to the left. The

leading vehicle on the left lane has to slow down, otherwise, a collision will occur. At

t = 2, the first trailing vehicle on the left lane has to slow down in order to avoid

collision. At the following timestamps, the other trailing vehicles on the left lane

have to slow down in order to avoid accident. The whole phenomenon occurred on

left lane of the two-lane road from t = 1 through t = 5 forms a vehicular shock wave

due to the continuous slow down of all vehicles following the leading vehicle.

2.2 Traffic Models

In order to infer vehicular shock wave, it is crucial to have well-established baseline

models. These baseline models are built based on empirical data and have proved

to operate well in real life [FFG14]. These baseline models can be categorized in

two categories, i.e., microscopic models and macroscopic models. Microscopic models

describe the reactions of an individual vehicle with respect to its neighboor vehicle

while macroscopic models focus on general overview of traffic status of certain road

segment [FFG14]. Krauss car-following model will be introduced as an example of the

microscopic models. Lighthill-Whitham-Richards (LWR) model will also be covered

as an example of the macroscopic models.

8



2.2.1 Microscopic Models

Krauss car-following model is a time-discrete and space-continuous model [FFG14].

Due to its nature, the states of the model are evaluated for distinct timestamps while

the space is not divided into distinct cells [KWG97, Kra98, FFG14]. The model is

strongly related to Cellular Automata while it uses more realistic acceleration and

deceleration values [NS92, FFG14]. Unlike Cellular Automata, Krauss car-following

model supports spatial continuity, i.e., instead of a vehicle being positioned in a cer-

tain discrete cell, the vehicle can be positioned in any position of the continuous road

segment. Additionally, a parameter for the length of the vehicle is provided in order

to make the model reflect the real world traffic status.

The are three rules in Krauss car-following model, and described as below [FFG14]:

a) Velocity Update: A new velocity is determined by selecting the minimum value

among maximum permitted velocity, and it is referred as desired velocity. Formally,

this is written as follows:

vi(t+ 1)(i) = min[vmax, vi(t) + ai(vi(t))∆t, vi,safe(t)] (2.1)

where i, vmax, vi(t), ai, ∆t, vi,safe(t) denote vehicle i, permitted maximum velocity,

velocity of vehicle i at time t, acceleration value of vehicle i, time difference, and safety

velocity at time t, respectively. The safety velocity is calculated by the following

equation:

vi,safe(t) = vi−1(t) + bi(vi(t))
gi(t)− vi−1(t)
vi(t) + bi(vi(t))

(2.2)

where gi(t) = xi−1(t)−xi(t)− 1, bi, vi−1(t) denote the distance between vehicle i and

i − 1 while xi−1(t) is position of the preceding vehicle at time t, deceleration value,

and the velocity of the preceding vehicle at time t, respectively.

b) Randomization: In order to mimic realistic human’s driving behavior, ran-

domization is crucial. The distance between vehicles cannot be identical, e.g., when

a car slows down or speeds up the distance between the leading car and trailing car
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changes. Randomization provides more realistic description of real traffic on highways

by using probabilistic factor, and this is formulated as follows:

vi(t+ 1)(2) =


vi(t+ 1)(1) − b∆t, with Pd(v(t))

vi(t+ 1)(1), else

(2.3)

where

Pd(v(t)) :=


ps, if v(t) = 0

pm, else

(2.4)

with pm the probability of dallying for moving vehicles and ps the one for stopped

vehicles, respectively. Note that pm << ps. In Equation2.3 describes vehicle i has to

slow down in order to avoid collision by a deceleration value b for a timestamp with

a velocity-dependent probability Pd(v(t)).

Finally, we have to ensure the updated maximum velocity is not negative. For-

mally,

vi(t+ 1) = max
[
0, vi(t+ 1)(2)

]
(2.5)

Therefore, the velocity of vehicle i is not only calculated in deterministic fashion

but also in probabilistic fashion using the dally factor.

c) Position Update: After updating velocity of vehicle i, it is important to update

the position of vehicle i. The new position vehicle i is computed by adding the old

position to the multiplication of the constant time difference and the new velocity.

This is calculated by the following formula:

xi(t+ 1) = xi(t) + vi(t+ 1)∆t (2.6)

The aforementioned three rules are applied for each timestamp.
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2.2.2 Macroscopic Models

Macroscopic models were originated from fluid dynamics under the assumption

that traffic streams as a whole are comparable to fluid streams. Since the assumption

of the macroscopic models is to view the traffic streams as a whole, they give us the

general overview of the traffic status. Lighthill-Whitham-Richards (LWR) model is

an example of a Macroscopic Traffic Model. It was originally proposed by Lighthill

and Whitham [LW55], and separately by Richards [Ric]. The model is based on

continuity equation as follows:

∂ρ

∂t
+
∂(ρV )

∂x
= 0 (2.7)

where t denotes time, ρ denotes vehicular density, x denotes position, and V denotes

flow velocity. The evolution of density over time is given by the spatial evolution

of traffic flow. This only applies to homogeneous road segments where inputs and

outputs are only available at the borders of the observed segment [FFG14]. A static

relationship between the traffic flow Q(x, t) and vehicular density ρ(x, t) is stated by

the model as follows:

Q(x, t) = Q̂(ρ(x, t)) (2.8)

By substituting the flow velocity of Equation 2.7 with the traffic flow of Equation 2.8,

we obtain the model of equation of the LWR model, given as below:

∂ρ

∂t
+
dQ̂(ρ)

dρ

∂ρ

∂x
= 0 (2.9)

Equation 2.9 is the so called Transport Equation, and if we replace the wave

function ρ(x, t) with ρ0(x− c̃t, t) in Equation 2.9, the equation transforms as follows:

vt + C × vx = 0 (2.10)

By Equation 2.10, the propagation speed of the shock wave is given as a result of the

LWR model [RKP10, FFG14]. The propagation speed of the shock wave is given as
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below:

c̃ = −dQ̂(ρ)

dρ
(2.11)

For more information regarding the LWR model, we direct the readers to the following

papers [LW55, Ric].

Finally, Figure 2.3 and 2.4 demonstrate the typical triangular properties of the

simplified LWR model [FFG14].

Figure 2.3: Velocity Density Chart

Figure 2.4: Flow Density
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CHAPTER 3

Exploratory Data Analysis

3.1 CalTrans PeMS Data Set

3.1.1 Structure of the data sets

In this chapter, the structures of the California Department of Transportation

(CalTrans) Performance Measurement System (PeMS) data sets [Tra15] will be in-

troduced. The ideal data set to track drivers’ driving patterns and the influence of

drivers on shock wave would be the one tracks every driver at a certain location every

second. Although there are some data sets that track all drivers who pass a certain

location every second, the volume of the data set is very small, i.e., dataset only

tracks traffic a single day or several days. On the contrary, the CalTrans PeMS data

sets have road traffic tracking granularity of 30 seconds, 5 minutes, an hour, and a

day. However, the data sets have been collected for more than a decade [Tra15].

As mentioned in the above paragraph, in order to track shock waves occurred on

freeways, it is essential to have the traffic tracking granularity of the data set low.

Therefore, the station raw data sets (See Table 3.1 for the structure of the data set)

that have road traffic monitored at each station every 30 seconds are the best ones

we can use for shock wave (traffic shock). However, the station raw data sets do not

have the average speed of the vehicles that pass each station (loop detector) every 30

seconds. The station 5-min data sets (See Table 3.2 for the structure of the data set)

have the average speed for each lane.
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Attributes Description

Timestamp Sample period as reported by the field element as

MM/DD/YYYY HH24:MI:SS. This indicates the beginning

of the reporting period.

Station ID Unique station identifier. Use this value to cross-reference

with Metadata files.

Freeway Freeway on which the station is located.

Lane ”N” Flow Number of vehicles that passed over the detector during the

sample period (identified by the timestamp)

Lane ”N” Occupancy Measured occupancy for lane N expressed in percentage.

Empty if the detector does not report occupancy. N ranges

from 1 to the number of lanes at the location. Lanes are

numbered from inside (closest to the median) to outside.

Units are expressed in percentage.

Table 3.1: PeMS Station Raw Data Set Features
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Attributes Description

Timestamp Sample period as reported by the field element as

MM/DD/YYYY HH24:MI:SS. This indicates the beginning

of the reporting period.

Station ID Unique station identifier. Use this value to cross-reference

with Metadata files.

Freeway Freeway on which the station is located.

Direction of Travel Direction of travel measured by the station.

Station Type Type of station. OR = On ramp, FR = Off ramp,

ML = Main line, HV = HOV lane, FF = Freeway-to-

freeway connector.

Samples Total number of samples recorded at this station and

timestamp. This is the summation of all Lane ”N” Samples.

Observed Percentage of individual lane points at this location that

were observed. An individual lane point is a single set of

measurements (e.g., flow and occupancy) for a single lane

at a single time.

Total Flow Sum of raw flows over all lanes during the 5-minute time

period. Note that this basic 5-minute rollup normalizes flow

by the number of good samples received from the controller.

Average Occupancy Average occupancy across all lanes over the 5-minute

period expressed in percentage. Computed as the average

of the occupancies of all individual lanes during the

5-minute period.

Average Speed Flow-weighted average speed over the 5-minute period across

all lanes. The flow-weighted average speed is the lane-by-lane

average of speeds weighted by their flow.
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Lane ”N” Samples Number of good samples received for lane N. N

ranges from 1 to the number of lanes at the

location. Lanes are numbered from inside

(closest to the median) to outside. Units

are mph.

Lane ”N” Flow Total flow for lane N over the 5-minute period

normalized by the number of good samples. Lanes

are numbered from inside (closest to the median)

to outside. Units are vehicles/5-min.

Lane ”N” Average Occupancy Average occupancy for lane N over the 5-minute

period expressed in percentage. N ranges from 1

to the number of lanes at the location. Lanes

are numbered from inside (closest to the median)

to outside.

Lane ”N” Speed Flow-weighted average of lane N speeds, which are

obtained from raw data by g-factor analysis. N

ranges from 1 to the number of lanes. Lanes are

numbered from inside (closest to the median) to

outside. Units are mph.

Lane ”N” Observed 1 indicates observed data, 0 indicates missing data

which may be imputed (or ”filled in”. Lanes are

numbered from inside (closest to the median) to

outside.

Table 3.2: PeMS Station 5-min Data Set Features
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3.1.2 Station Status

The PeMS data sets that are used in this dissertation are the 30-sec data sets and

5-min datasets that were collected from January 1, 2016 to June 30, 2016. Specifically,

District 7 (Los Angeles Area) traffic information was used for the data analysis and

shock wave inference. Although in the data sets there were many stations (loop

detectors) listed, many of the stations were not actually collecting traffic status of

the assigned freeway segments. In order to infer vehicular shock wave propagation

speed, accurate traffic information of each freeway in District 7 is crucial. Hence,

all the stations that do not collect more than a single lane traffic information were

excluded. In District 7, all the freeways have more than a single lane, and the stations

that do not collect traffic status of more than one lane are considered malfunctioning.

In this section, the total number of stations of each freeway in both directions, i.e.,

south and north, or west and east, and the total number of functioning stations are

listed as follows. Additionally, all functioning stations of each freeway are displayed

on a map in order to visualize the distance between each station.

a) I-405 South & North

Directions total # of stations total # of functioning stations

South 255 74

North 227 67

Table 3.3: Total number of stations and total number functioning stations on I-405

b) I-5 South & North

c) I-105 East & West

d) I-10 East & West

e) I-110 South & North
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Directions total # of stations total # of functioning stations

South 146 60

North 109 45

Table 3.4: Total number of stations and total number functioning stations on I-5

Directions total # of stations total # of functioning stations

East 82 18

West 90 28

Table 3.5: Total number of stations and total number functioning stations on I-105

Directions total # of stations total # of functioning stations

East 269 85

West 286 97

Table 3.6: Total number of stations and total number functioning stations on I-10

Directions total # of stations total # of functioning stations

South 83 31

North 83 32

Table 3.7: Total number of stations and total number functioning stations on I-110

f) I-710 South & North

Directions total # of stations total # of functioning stations

South 49 11

North 51 16

Table 3.8: Total number of stations and total number functioning stations on I-710
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g) I-605 South & North

Directions total # of stations total # of functioning stations

South 126 38

North 122 38

Table 3.9: Total number of stations and total number functioning stations on I-605

Figure 3.1: The locations of functioning stations on I-405 South

3.2 Vehicular Shock Wave Propagation Speed

In order to see if there are vehicular shock waves propagating on freeways, we

plotted a heatmap of each freeway. In Figure 3.16, we can see that there is shock
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Figure 3.2: The locations of functioning stations on I-405 North

Figure 3.3: The locations of functioning stations on I-5 South
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Figure 3.4: The locations of functioning stations on I-5 North

Figure 3.5: The locations of functioning stations on I-105 East
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Figure 3.6: The locations of functioning stations on I-105 West

Figure 3.7: The locations of functioning stations on I-10 East
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Figure 3.8: The locations of functioning stations on I-10 West

Figure 3.9: The locations of functioning stations on I-110 South
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Figure 3.10: The locations of functioning stations on I-110 North

Figure 3.11: The locations of functioning stations on I-710 South
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Figure 3.12: The locations of functioning stations on I-710 North

Figure 3.13: The locations of functioning stations on I-605 South
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Figure 3.14: The locations of functioning stations on I-605 North

Figure 3.15: The locations of functioning stations in LA city
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Figure 3.16: Vehicular shock wave propagation speed on left lane of each station of

I-405 South (Jan/4/2016 2:00-8:00 pm)

wave propagating from upstream to downstream on the left lane of freeway I-405

South during afternoon rush hour (2:00-8:00 pm). The x-axis is the timestamp and

each tick is 5-min, y-axis is the list of active station IDs where the higher y value is

a station located at a lower latitude, i.e., station ID with higher y-axis value is more

towards south than the one with lower y-axis value. The colorbar on the right side of

each graph indicates the average speed of vehicles passing each station in mi/h. We

can see that at at station a shock wave formed and started to propagate. There are

some regions of the freeway that has constant bottleneck, i.e., there are shock waves

with very low value of slope propagating very slowly in those regions of the freeway.

In Figure 3.16, there are constant bottlenecks from station 717766 to station 759422

from 2:00 pm to 8:00 pm, and we could not find meaningful insights of vehicular wave

propagation speed in those road segments.
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Figure 3.17: Vehicular shock wave propagation speed on left lane of each station of

I-405 South (Jan/4/2016 5:00-10:00 am)

Unlike afternoon rush hours, we couldn’t find shock wave occurring during morn-

ing rush hours (5:00-10:00 am) on any of the lanes of I-405 South (Please refer to

Figure 3.17).

After analyzing six months of data of District 7 PeMS datasets, we discovered

that freeway such as I-5 has constant traffic bottlenecks during the day at more

than half of all stations (See Figure 3.18). Hence, we removed freeways that have

the same constant bottlenecks or no bottleneck from data analysis on shock wave

propagation. Some research papers state that the shockwave propagates around -

9.32 mi/h (-15 km/h) [RKP10, FFG14] on average on U.S. highways. We verified if

the aforementioned value is applicable in District 7 freeways, since the shock wave

propagation speed is crucial for inferring the occurrences of the shock waves.

We utilize multiple linear regression on the heatmap (See Figure 3.17) to obtain
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Figure 3.18: Vehicular shock wave propagation speed on left lane of each station of

I-5 South (Jan/4/2016 5:00-10:00 am)

the slope (gradient in Section 2.2.2).

yi = β0 + β1xi1 + β2xi2 + · · ·+ βjxij (3.1)

where yi is the location of the ith station, xij is the timestamp, i ranges from 1 to

the number of stations, and j ranges from starting time of the shock wave till the end

of the shock wave. Although using R2 as an evaluation metric in linear regression

should be avoided, if the variables are timeseries [LJ99], we utilized it with cross-

validation in order to obtain the slope. Details on cross-validation are introduced in

Section 3.2.1. The average slope (shock wave propagation speed) of freeways from

our analysis is -8.51 mi/h (-13.7 km/h) which is considerably close to the previous

studies [RKP10, FFG14].
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3.2.1 Cross-Validation

Cross-validation is a popular technique that is used for validating the results of

a statistical analysis to see how it will generalize to an independent data set [Gei93,

Koh95, DK82]. In a prediction problem, the statistical model is given a known dataset

for training, and an unkown dataset for testing. In cross-validation, testing the model

is performed during the training phase. The purpose of the cross-validation is to

prevent overfitting. In this section and Section 3.3, we utilize k-fold cross-validation.

In k-fold cross-validation, the sample data set is divided into k chunks. During

the first iteration the first chunk becomes the test data set and the other chunks are

the training data set. In the second iteration, the second chunk is the test data set

and the other chunks are the training data set. This process repeats until the k-th

iteration. In Figure 3.19, test data set is colored as orange and the rest as white.

Additionally, k is set to 5 in Figure 3.19, however, it is very common to set k = 10.

Figure 3.19: k-fold cross-validation

During each iteration, evaluation metric such as RMSE,MSE,ME, and R2 can

be utilized in Linear Regression model.
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3.3 Selecting the Right Feature to Infer Shock Wave Occur-

rence

As mentioned in Section 3.1.1, the finer the granularity the better to see the

influence of the shock wave on traffic status. However, the since the 30-second data

set only has occupancy and flow value collected, it is hard to check whether shock

wave occurred or not using those two predictors. This is because the heatmap (See

Figure 3.16) uses speed to check the propagation of the shock wave.

We initially thought inferring speed from either flow or occupancy would address

the issue of not having speed in the finer granularity data set. Since there was a

polynomial characteristic in the correlation between speed and occupancy plot (See

Figure 3.20), we decided to use Polynomial Regression to infer speed from occupancy

(See Figure 3.21). We used cross-validation and regularization in order to avoid

overfitting. However, when we actually predicted the speed from occupancy, the

results didn’t look very reliable. It had many spikes which implies the accuracy of

the prediction is not very good (See Figure 3.22).

Therefore, instead of inferring speed from occupancy, we investigated if the occu-

pancy itself could be used to infer shock wave occurrence. We again plotted a heatmap

of I-405 South using occupancy instead of speed. In Figure 3.23, we could see the

heatmap pattern is exactly the same as the heatmap generated from speed data (See

Figure 3.16). Hence, we can conclude under certain threshold of occupancy, shock

wave occurs and propagates if the occupancy of a lane at the previous timestamp is

high. We will expand what we have discovered in Chapter 4.
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Figure 3.20: Speed vs Occupancy plot and Speed vs Flow plot

Figure 3.21: Inferring speed using Polynomial Regression using occupancy of the left

lane of Station 718296 (I-405) from 1:00-8:00 pm on weekdays
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Figure 3.22: Predicted speed of the left lane of Station 718296 (I-405) from 2:00-8:00

pm on weekdays

Figure 3.23: Vehicular shock wave propagation speed on left lane of each station of

I-405 South (Jan/4/2016 2:00-8:00 am) from Occupancy Data
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3.4 Summary

In this chapter, we analyzed the PeMS data set and plotted the occurrences of the

vehicular shock wave on a heatmap. In order to calculate the shock wave propagation

speed from the heatmap, linear regression and cross validation were adopted. We also

attempted to infer speed from occupancy since the 30-second data set only has occu-

pancy and flow. However, we realized the prediction was inaccurate and discovered

that occupancy can be used for shock wave prediction since the heatmap from speed

data and the heatmap from occupancy data had the same distribution.
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CHAPTER 4

Hidden Markov Model

In this chapter, we discuss how to infer the occurrence of a shock wave of a lane on

a freeway. Additionally, inferring the probability of lane changes of vehicles from one

lane to another based on the macroscopic traffic information is introduced. There are

a few studies that utilize Dynamic Bayesian Network (DBN) or Hidden Markov Model

(HMM) for predicting traffic information [KM00, PN11] or raffic conditions in arterial

networks using probe data [AB12]. The overlapping assumptions of these studies are

1) a hidden state at each station that takes Q possible values (free flow or congestion),

2) the observed velocity is a noisy representation of the current state. Additionally,

the distributions of flow and density are assumed to be Gaussian as many papers that

successfully applied machine learning technique to predict short-term traffic flow of

PeMS data assumed [KM00, PN11].

4.1 Shock Wave Inference

The underlying assumption of the Hidden Markov Model (HMM) model for shock

wave prediction is the traffic status of the current timestamp at a certain station will

affect the traffic status of the station at the next timestamp. In Figure 4.1, Round

nodes represent discrete random variables with binomial distribution, i.e., shock wave

or non-shock wave of a lane at a certain station. On the other hand, rectangular nodes

are the hidden state variable nodes and represent continuous random variable with

Gaussian distributions, i.e., occupancy (Please refer to Section 3.3). We can see that
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the traffic status of a lane L1 at time t is affecting the traffic status of not only the

same lane but also the neighboring lane L2 at time t+ 1.

Figure 4.1: Hidden Markov Model represented as a Dynamic Bayesian Network (One

station)

Another assumption to the model is the traffic status of the next station towards

downstream is affecting the traffic status of the current station at the next timestamp.

In Figure 4.2, lane L1 of station i + 1 at time t is affecting lane L1 of station i at

time t+ 1.

These assumptions can be described by a formula as follows: Let’s denote the

hidden state variable xl,m,t ∈ S = {s1, ..., sQ} where l is the number of lane, m is the

station number, t is the timestamp, Q is the number of possible states. Also, let’s

assume that the hidden process of xt = (x1,m,t, ..., xL,M,t) ∈ SM⊗L is Markovian and

its transition probability is decomposable.

Pr(xt+1|xt) = Pr(xl,m,t+1|xt)

= Pr(xl,m,t+1|xl−1,m,t, xl,m,t, xl+1,m,t, xl−1,m+1,t, xl,m+1,t, xl+1,m+1,t)
(4.1)
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Figure 4.2: Hidden Markov Model represented as a Dynamic Bayesian Network (Multi

stations)

4.2 Lane Change Prediction

4.2.1 The Model

The underlying assumption of the Hidden Markov Model (HMM) model is the

traffic status of a lane, at the next timestamp, at the same station, is affected by

itself and the neighboring lanes of the previous timestamp. Formally, at time t, at

station i, on lane j affects the traffic status at time t+1, at station i, on lane j−1, j,

and j + 1. Unlike previous studies on predicting short-term traffic information, such
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as average velocity of vehicles at a certain station, there is a hidden state at each

station that has Q possible values, i.e., stay or switch lane. The value of Q differs

from lane to lane. If a lane has one neighboring lane, such as carpool lane, left lane,

or lane on the ramp that is merged to the freeway, the value of Q is two since it

has two options, i.e., stay or switch to the neighboring left or right lane. Similarly,

assume there are three lanes on a freeway, the value of Q is three since it has three

options, i.e., stay, switch to the left lane, or switch to the right lane (Please refer to

Figure 4.1).

Let us denote the hidden state variable xl,m,t ∈ S = {s1, ..., sQ} where l is the

number of lane, m is the number of stations, t is the timestamp, and Q is the number

of possible states, respectively. In the aforementioned example, Q is either two or

three. Let us assume that the hidden process of xt = (x1,m,t, ..., xL,M,t) ∈ SM⊗L is

Markovian and its transition probability is decomposable. For a carpool lane or left

lane, the transition probability is as follows:

Pr(xt+1|xt) = Pr(xl,m,t+1|xt) = Pr(xl,m,t+1|xl,m,t, xl+1,m,t) (4.2)

where l = 1. For merging lanes on the ramp, the transition probability is given as

below:

Pr(xt+1|xt) = Pr(xl,m,t+1|xt) = Pr(xl,m,t+1|xl−1,m,t, xl,m,t) (4.3)

where l = N and N the number of total lanes on a freeway at a certain station.

Finally, for other lanes on a freeway at a certain station, the transition probability is

given as follows:

Pr(xt+1|xt) = Pr(xl,m,t+1|xt) = Pr(xl,m,t+1|xl−1,m,t, xl,m,t, xl+1,m,t) (4.4)

where 1 < l < N .

Since the finest granularity of the PeMS datasets is the one that has aggregated the

traffic information collected every 30 seconds, it is important to have an assumption
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on the distribution of flow and density of each lane of the monitored freeway. Flow and

density of each lane are collected every 30 seconds and can be assumed as Gaussian

since both of them aggregated.

4.2.2 Baum-Welch Algorithm

Baum-Welch algorithm has been very successful in the speech recognition, genomic

sequence modeling field. Leonard E. Baum proposed Hidden Markov Models and

Baum-Welch algorithm in the late 1960s [BE, Rab]. The Baum-Welch algorithm

utilizes Expectation-Maximization (EM) algorithm in order to find the Maximum

Likelihood Estimate (MLE) of the parameters of the Hidden Markov Model (HMM).

This is the most important step to predict the average probability of lane change per

lane since PeMS data sets only provide aggregated traffic information (Please refer

to table3.1).

Equations 4.2, 4.3, 4.4 are called the Markov Property of the chain [Rab89]. Due to

the Markov Property the complete probability distribution of the states of a Markov

chain is defined by the initial distribution πi = Pr(xl,1 = i) and the state transition

probability which is given as follows:

aij = Pr(xl,t+1 = j|xl,t = i), 1 ≤ i, j ≤ Q (4.5)

where Q is the number of possible states.

Let’s denote π = {πi} and A = {aij}. Additionally, let’s assume the transition

probabilities are time-independent. Since the observation values are the density or

occupancy values of a lane, the Markov Model has continuous observations. A Hidden

Markov Model that has continuous observations is called Continuous Density Hidden

Markov Model (CDHMM). Unlike HMM with categorical observations, the model

parameter B of CDHMM is not described as matrix of point probabilities, but rather

as a complete Probabilistic Density Function (PDF) over the continuous observation
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space for each state. Therefore, the probability of a certain observation at time t for

state i is given by

bi(y(t)) = Pr(y(t)|xt = i), ∀y(t), i (4.6)

where y(t) is the pdf of the continuous observations. Let us denote B = {bi(y(t))}.

The Hidden Markov chain is described as θ = (A,B,π), and the goal of Baum-Welch

algorithm is to find the local maxima of θ∗ = argmaxθPr(y(t)|θ). Baum-Welch

algorithm is formally described as follows:

a) Initialization

Set θ = (A,B,π) with random values if prior distributions of parameters are not

available.

b) Forward Procedure

Let us denote αi(t) = Pr(y(t), xt = i|θ), 1 ≤ t ≤ t which is the probability

of being state i at time t with the observation pdf y(t) and often called as forward

probability. We first initialize the forward probability as given:

αi(1) = πibi(y(1)) (4.7)

then recursively find

αj(t+ 1) = bj(y(t+ 1))

Q∑
i=1

αi(t)aij (4.8)

until it converges.

c) Backward Procedure

Let us denote βi(t) = Pr(y(t)|xt = i, θ), t ≤ t ≤ T which is the probability

viewing pdf of partial sequence from t to T given state i at time t, and often called

as backward probability. We first initialize the forward probability as given:

βi(T ) = 1 (4.9)
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then recursively find

βi(t) =

Q∑
i=1

βj(t+ 1)aijbj(y(t)) (4.10)

until it converges.

d) Update Parameters

After operating Forward Procedure and Backward Procedure, we need to update

HMM parameters. Let us denote two temporary variables γi(t) and ξij(t). γi(t) is

the probability of being in state i at time t given the observation sequence y(t) and

the parameters θ. Formally,

γi(t) = Pr(xl,t = i|y(t), θ) =
αi(t)βi(t)∑Q
j=1 αj(t)βj(t)

(4.11)

ξij(t) is the probability of being in state i and j at times t and t+ 1 respectively

given the observed sequence y(t) and parameters θ. Formally it is given as follows:

ξij(t) = Pr(xl,t = i, xl,t+1 = j|y(t), θ) =
αi(t)aijβj(t+ 1)bj(y(t+ 1))∑Q

i=1

∑Q
j=1 αi(t)aijβj(t+ 1)bj(y(t+ 1))

(4.12)

After the calculation of two temporary variables γi(t) and ξij(t), we are able to

update θ. According to our assumption the observation is a univariate Gaussian. We

direct our readers to [Rab89] for more information on updating θ and Baum-Welch

re-estimation for means and covariances of a CDHMM with Gaussian pdf.

4.3 Prediction Results

4.3.1 Shock Wave Prediction Accuracy

Since we know the threshold of the occupancy that tells you whether a shock wave

occurred or not, we can categorize the state of a node (lane) of the DBN representation
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of the HMM. We compared the accuracy of the categorization of the two states, shock

wave or non-shock wave, performed by HMM. The following table demonstrates the

accuracy of the prediction. SW denotes shock wave which one of the possible state

variable values. NSW denotes non-shock wave.

Lane1 SW NSW

SW 0.903 0.085

NSW 0.097 0.915

Table 4.1: Confusion Matrix of Lane 1 of I-405

The above matrix (table) is the confusion matrix of the prediction. We can see

from this confusion matrix that accuracy is 90.9%. The average accuracy of lanes are

high, however, the accuracy of the prediction of each lane differed from each other.

Refer to the following tables.

Lane2 SW NSW

SW 0.868 0.049

NSW 0.132 0.851

Table 4.2: Confusion Matrix of Lane 2 of I-405

Lane3 SW NSW

SW 0.887 0.098

NSW 0.113 0.902

Table 4.3: Confusion Matrix of Lane 3 of I-405
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Lane4 SW NSW

SW 0.923 0.093

NSW 0.077 0.907

Table 4.4: Confusion Matrix of Lane 4 of I-405

4.3.2 Lane Switch Prediction

In this section, we present the results of the prediction of parameters, i.e., proba-

bility of a vehicle staying on a certain lane to switch to the neighboring lane(s) or stay

on the same lane. Since the data has aggregated occupancy values, we can consider

the prediction as the probability that majority of cars remain on lane or switch lanes.

The code for Hidden Markov Model and Baum-Welch algorithm was written in

Python. The data sets used for the prediction are the 30-second PeMS data sets

collected from January 1, 2016 through June 30, 2016. Since there is no baseline model

for the prediction, we consider this prediction as a result of an unsupervised learning.

The following tables are the average results of the aforementioned predictions during

rush hours. Please be aware the probabilities are all normalized.

L1 L2

L1 0.685 0.315

L2 0.287 0.713

Table 4.5: Final Transition Matrix of Lane 1 of I-405

One thing we realized is the probability that the occupancy of L2 will change is

lower than other lanes. The reason we can think of is the existence of the carpool

lane.
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L1 L2 L3

L1 0.685 0.315 0

L2 0.287 0.478 0.235

L3 0 0.613 0.387

Table 4.6: Final Transition Matrix of Lane 2 of I-405

L2 L3 L4

L2 0.672 0.328 0

L3 0.431 0.483 0.086

L4 0 0.704 0.296

Table 4.7: Final Transition Matrix of Lane 3 of I-405

4.4 Summary

In this section, we proposed a model that predicts the upcoming shock wave

occurrences based on the neighboring lanes and stations. Additionally, using Baum-

Welch algorithm we could predict the lane switch probability of each lane at a certain

station. However, this does not mean each vehicle will switch the lane by a certain

probability value but rather the occupancy of a lane will change by that value.
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CHAPTER 5

Deep Learning

Deep Learning (DL) has been very popular in various areas such as image recogni-

tion, speech recognition, natural language processing, and so forth [Da15]. Although

Deep Learning architecture consists of multiple layers of Neural Networks (NN), it

is different from multiple Artificial Neural Network (ANN) because it shares weights

between NN layers unlike ANN. There is a study on traffic flow prediction using Deep

Learning [LDK15]. By its black box nature, Deep Learning has been successful not

only in unsupervised learning but also in supervised learning. Since Artificial Neural

Network (ANN) has been successful in predicting short-term traffic [KPK13], Deep

Learning has also been successful in predicting traffic information [LDK15].

Deep Learning algorithms adopt either deep architecture or multilayer architec-

ture to extract complex data abstractions. These algorithms construct a hierarchical

architecture of learning and data representations where higher level features are de-

rived from lower level features [LDK15]. Due to the hierarchical nature of the Deep

Learning algorithms, they can learn multiple levels of data representations that cor-

respond to different levels of abstractions. Traffic data involves timeseries, and time-

series prediction involves analyzing non-linearity aspect of the timeseries. Therefore,

Deep Learning is suitable for predicting vehicular shockwave without prior knowledge.

In this chapter, specifically Stacked Auto Encoder (SAE) and Deep Belief Network

(DBN) are introduced among Deep Learning algorithms.
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5.1 Encoders

5.1.1 Autoencoder

An autoencoder is a Neural Network that attempts to reproduce its input, i.e., the

output layer has the same number nodes as the input layer of the model [HOT06a].

An autoencoder has one input layer, an output layer, and one ore more hidden layers

connecting them. Given a set of training samples x = {x(1), ..., x(n)}, where x(i) ∈ Rd,

an autoencoder first encodes the input to a hidden representation y = y(x) via a

deterministic mapping as follows:

y(x) = s(Wx+ b) or y = s(Wx + b) (5.1)

where s is the non-linearity function such as sigmoid function, i.e., 1
(1+exp−x)

, W

is the weight matrix, and b is the encoding bias vector, respectively. The latent

representation y is decoded into a reconstruction z = z(x) via a similar deterministic

mapping:

z(x) = s(W
′
x+ c) or z = s(W

′
x + c) (5.2)

where s is the non-linearity function, W
′

is the weight matrix, and c is the decoding

bias vector, respectively. Given a code y, z is considered as the prediction of input

vector x. Minimizing the reconstruction error L(x, z) is crucial in order to obtain the

best model parameters which are denoted as θ. The formula of reconstruction error

is given as below:

L(x, z) = ‖ x− z ‖2 (5.3)

which is the squared error, and the model parameters as follows:

θ = arg minθL(x, z) = arg minθ‖ x− z ‖2 (5.4)
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5.1.2 Stacked Autoencoder

Stacked Autoencoder is formed by stacking the aforementioned autoencoders in

order to build deep neural network. Architecture-wise the input is the at the lowest

layer of the network, and the encoded hidden layer produces the output layer. The

output of the kth hidden layer becomes the input of the (k+1)th hidden layer. In this

way, the hierarchy of the deep neural network is formed. The top layer is a predictor.

In Figure 5.1, the bottom layer of SAE in the left most layer and the top layer is the

right most layer.

Figure 5.1: Stacked Autoencoder with a binary Logistic Regression Predictor

Training stacked autoencoders is performed by utilizing greedy layerwise unsuper-

vised learning algorithm [LDK15, HOT06a]. The training procedure is summarized

as follows:
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Algorithm 1. Training SAEs

Given training samples X and the desired number of hidden layers l,

Step 1) Pretrain

— Set weight parameters and initialize weight matrices and bias vectors

randomly.

— Greedy layerwise training hidden layers

— Use the output of the kth layer as the input of the k + 1th layer. The

first layer’s input is the training data set.

— Find the encoding parameters {W k+1
1 , bk+1

1 }lk=1 for k + 1th hidden layer by

minimizing the objective function.

Step 2) Fine tuning the whole network

— Initialize {W k+1
1 , bk+1

1 } or by supervised training.

— Use the Back Propagation with the gradient-based optimization technique

to update the whole network’s parameters.

Table 5.1: Trainign SAE Algorithm

5.2 Boltzmann Machine

5.2.1 Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM) is a variant of Boltzmann machines with

the restriction of the usage of bipartite graph. The two disjoint sets are called hidden

layer and visible layer. The nodes of each layer has a connection with nodes in the

other layer, however, the nodes within the same layer cannot have a connection be-

tween them. Formally, RBM has binary-valued hidden and visible units, and consists

of a weight matrix W = {wi,j}. W is associated with the connection between the

hidden unit hj and the visible unit vi (See Figure 5.2). Additionally, it is associated

with the bias weight for the visible units, ai, and the bias weight for the hidden units,
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bi [HOT06a].

Figure 5.2: Restricted Boltzmann Machine

The energy of a configuration (v, h) is defined as follows:

E(v, h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i

∑
j

viwi,jhj (5.5)

The conditional probability of visible units v given hidden units h is

Pr(v|h) =
m∏
i

Pr(vi|h) (5.6)

Conversely, the conditional probability of hidden units h given visible units v is

Pr(h|v) =
m∏
i

Pr(hi|v) (5.7)

The individual activation probabilities are

Pr(hj = 1|v) = s(bj +
m∑
i=1

wi,jvi) (5.8)

and

Pr(vi = 1|h) = s(ai +
n∑
j=1

wi,jhj) (5.9)

where s is the sigmoid function.
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The goal of RBM is to maximize the product of probabilities assigned to the

training data set V . Formally,

arg maxW
∏
v∈V

Pr(v) (5.10)

The training algorithm of RBM is summarized as follows [HOT06a].

Algorithm 2. Training RBM

Given training samples X, select a training sample v.

— Compute the probabilities of the hidden units and sample a hidden

activation vector h from this probability distribution.

— Computer the outer product of v and h (positive gradient)

— From h, sample a reconstruction v
′

of the visible units, then resample

the hidden activations h
′

from h. (Gibbs sampling)

— Computer the outer product of v
′

and v
′

(negative gradient)

— Update weight matrix (W ): ∆W = ε(vhT − v′h′T ) where ε is the

learning rate.

Table 5.2: Trainign RBM Algorithm

5.2.2 Deep Belief Network

Deep Belief Network is formed by composing simple and unsupervised networks

such as Restricted Boltzmann machines or autoencoders [Hin09]. In this dissertation,

we will use RBM to construct a Deep Belief Network. Since Restricted Boltzmann

Machine consists of a hidden layer and a visible layer (See Figure 5.2), when we

construct a Deep Belief Network the hidden layer of the sub-RBM serves as the

visible layer of the current RBM (See Figure 5.3).

The training algorithm of RBM is summarized as follows [HOT06b]:
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Figure 5.3: Deep Belief Network composed of Restricted Boltzmann Machine

Algorithm 3. Training Deep Belief Network

Given training samples X,

— Train a RBM to obtain weight matrix W and utilize it as the weight

matrix for the lowest two layers of the network.

— Transform X by sampling or by computing the mean activation of

the hidden units to obtain new data X ′.

— Repeat the above two steps with the new input X ′ until the top two

layers are reached.

— Fine tune the parameters.

Table 5.3: Trainign Deep Belief Network

5.3 Inference Results Comparison

In this section, we compare the shock wave prediction results obtain from SAE,

Deep Belief Network, and HMM. Originally, we attempted to compare the lane switch

prediction probability generated by HMM. The transition matrix created by Baum-

Welch algorithm indicates the likelihood of the occupancy of a lane will change, but

not the likelihood of an individual vehicle switching lanes based on the occupancy.
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We were anticipating Deep Learning algorithms could help us to obtain an insight by

performing several feature engineering methods, however, since the data itself is an

aggregated macroscopic traffic data, we couldn’t find a way to verify the probability

of a vehicle to switch lanes without the help of microscopic traffic data. Hence, the

lane switch prediction is excluded.

5.3.1 Shock Wave Prediction

Since we know that under certain threshold value of occupancy, shock wave oc-

curs, we could label the data set with two categories, SW (shock wave) and NSW

(non-shock wave). We took into account of the neighboring lanes’ traffic status as

considered in Section 4.

5.3.1.1 SAE

The following is the confusion matrix of each lane of I-405 during rush hours.

Lane1 SW NSW

SW 0.931 0.096

NSW 0.078 0.922

Table 5.4: Confusion Matrix of Lane 1

(SAE)

Lane2 SW NSW

SW 0.923 0.077

NSW 0.076 0.924

Table 5.5: Confusion Matrix of Lane 2

(SAE)

Lane3 SW NSW

SW 0.932 0.068

NSW 0.091 0.909

Table 5.6: Confusion Matrix of Lane 3

(SAE)

Lane4 SW NSW

SW 0.935 0.065

NSW 0.070 0.930

Table 5.7: Confusion Matrix of Lane 4

(SAE)
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5.3.1.2 Deep Belief Network

The following is the confusion matrix of each lane of I-405 during rush hours.

Lane1 SW NSW

SW 0.928 0.072

NSW 0.073 0.927

Table 5.8: Confusion Matrix of Lane 1

(DBN)

Lane2 SW NSW

SW 0.926 0.064

NSW 0.068 0.932

Table 5.9: Confusion Matrix of Lane 2

(DBN)

Lane3 SW NSW

SW 0.940 0.060

NSW 0.081 0.919

Table 5.10: Confusion Matrix of Lane 3

(DBN)

Lane4 SW NSW

SW 0.927 0.063

NSW 0.064 0.936

Table 5.11: Confusion Matrix of Lane 4

(DBN)

5.3.1.3 Comparison with HMM

The following is the prediction accuracy comparison chart of the shock wave oc-

currence of SAE, Deep Belief Network (DBN), and HMM.

Lane SAE DBN HMM

Lane1 92.7 (%) 92.8 (%) 90.9 (%)

Lane2 92.4 (%) 92.9 (%) 86 (%)

Lane3 92.1 (%) 93.0 (%) 89.5 (%)

Lane4 93.3 (%) 93.2 (%) 91.5 (%)

Table 5.12: Prediction Accuracy Comparison between SAE, DBN, and HMM
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The Deep Belief Network slightly outperformed SAE, however, in a very negligible

amount.

5.4 Summary

In this chapter, we adopted two Deep Learning algorithms, Stacked Autoencoder

(SAE) and Deep Belief Network (DBN) in order to predict the occurrences of shock

waves on freeway I-405. We compared the results of the prediction from the aforemen-

tioned two DL algorithms with that of of HMM. All three models have high accuracy

in terms of predicting shock wave. Lane change prediction has been excluded since

there is no ground truth to verify the prediction. In order to verify the lane change

prediction it is crucial to have a microscopic traffic data that has individual vehicle

information.
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CHAPTER 6

Conclusion

In this dissertation, the main goal of the research is to predict the occurrences

of shock waves on highways given an aggregated macroscopic traffic data set. We

first attempted to obtain the vehicular propagation speed by plotting a heatmap for

each lane of a freeway. We utilized Linear Regression with cross-validation in order to

obtain the best slope of the heatmap which is shock wave propagation speed. Since the

finest granularity PeMS data set has only occupancy (density) and flow information

of a lane, we attempted to infer the average speed of vehicles passing by the station

from either flow or occupancy. After investigating the correlation between speed and

flow, and speed and occupancy, we realized there was a stronger correlation between

speed and occupancy than speed and flow. We then utilized Polynomial Regression

to infer speed from occupancy, however, the prediction was inaccurate. We changed

our strategy to see if a heatmap of occupancy can be used to calculate shock wave

propagation speed. Fortunately, the heatmaps of occupancy and the heatmaps of

speed were almost the same. Therefore, the finest granularity data set was used to

infer shock wave.

We built a model based on HMM in the assumption of the traffic status of a

lane is affected by itself and the neighboring lanes at current station and a station

ahead at the previous timestamp. From the HMM, we could categorize whether a

data point will experience shock wave based on the lane occupancy. We evaluated

the model performance by comparing the prediction accuracy. Additionally, from the

Baum-Welch algorithm, we obtained the probability of lane switch. Note that this is
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not the probability of an individual car to switch lane, but more like the occupancy

of lane will change.

We utilized Stacked Autoencoder and Deep Belief Network that are Deep Learning

algorithms in order to predict shock wave occurrences on a freeway. We compared

the prediction results with those of HMM, and obtained high accuracy rate.

For future work, we will evaluate our models that are based on macroscopic traffic

data if they perform well on mixed microscopic traffic data and macroscopic data.
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